1
|
Martello JM, de Campos M, do Nascimento CAC, Garcia A, Tarumoto MB, de Siqueira GF, Brown PH, Crusciol CAC. Adequate Boron Supply Modulates Carbohydrate Synthesis and Allocation in Sugarcane. PLANTS (BASEL, SWITZERLAND) 2025; 14:657. [PMID: 40094556 PMCID: PMC11901633 DOI: 10.3390/plants14050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Boron (B) is an essential and widely studied element in plants. Due to B dynamics in highly weathered soils, its concentration is generally low. Among other benefits, B interacts with calcium pectate, promotes stability on cellular membrane, and influences directly on plant nutrients uptake and non-structural metabolites synthesis. In sugarcane (Saccharum spp.) crop, adequate B supply has been associated with juice quality and yield of stalks and sugar and its response on adequate B concentration on commercial fields can differ greatly even into a group of varieties recommended for the same production environment. In this context, the authors aimed to assess the effects of B availability on sugarcane root and shoot development, nutrient status, and carbohydrate synthesis and allocation in two sugarcane varieties recommended for the same production environment using hydroponic solution. The experimental design was completely randomized and consisted of four treatments and four replicates. The treatments comprised two sugarcane varieties (RB867515 and RB92579) and two B concentrations (0.05 and 0.5 mg L-1) considered deficient and adequate, respectively, for plant development. Carbohydrate partitioning, nutrient concentrations in various plant parts, and growth and morphological parameters were evaluated. Under adequate B supply, the total concentrations of reducing sugars and sucrose increased 67 and 20% in RB867515 and 30 and 20% in RB92579, respectively, whereas starch decreased by 27% for both varieties. Adequate B supply increased the concentrations of all elements in all plant organs, except for N and K in leaves, and improved most yield and morphological parameters. Principal component analysis correlated the higher carbohydrates concentration and yield parameters with the variety RB92579, whereas the highest concentration of most nutrients was mainly associated with the variety RB867515, especially under adequate B supply. The main influence of adequate B supply was on carbohydrate synthesis. Although the sugarcane varieties responded differently to B availability, their biometric parameters were enhanced by adequate B supply. These results emphasize the need for B fertilization, regardless of the sugarcane variety's susceptibility to B deficiency.
Collapse
Affiliation(s)
- Jorge Martinelli Martello
- Lageado Experimental Farm, Department of Crop Science, College of Agricultural Sciences, São Paulo State University (UNESP), P.O. Box 237, Botucatu 18610-307, SP, Brazil; (J.M.M.); (M.d.C.); (A.G.); (M.B.T.); (G.F.d.S.)
| | - Murilo de Campos
- Lageado Experimental Farm, Department of Crop Science, College of Agricultural Sciences, São Paulo State University (UNESP), P.O. Box 237, Botucatu 18610-307, SP, Brazil; (J.M.M.); (M.d.C.); (A.G.); (M.B.T.); (G.F.d.S.)
| | - Carlos Antônio Costa do Nascimento
- Department of Crop Science, Luiz de Queiroz College of Agriculture (USP-ESALQ), University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Ariani Garcia
- Lageado Experimental Farm, Department of Crop Science, College of Agricultural Sciences, São Paulo State University (UNESP), P.O. Box 237, Botucatu 18610-307, SP, Brazil; (J.M.M.); (M.d.C.); (A.G.); (M.B.T.); (G.F.d.S.)
| | - Miriam Büchler Tarumoto
- Lageado Experimental Farm, Department of Crop Science, College of Agricultural Sciences, São Paulo State University (UNESP), P.O. Box 237, Botucatu 18610-307, SP, Brazil; (J.M.M.); (M.d.C.); (A.G.); (M.B.T.); (G.F.d.S.)
| | - Gabriela Ferraz de Siqueira
- Lageado Experimental Farm, Department of Crop Science, College of Agricultural Sciences, São Paulo State University (UNESP), P.O. Box 237, Botucatu 18610-307, SP, Brazil; (J.M.M.); (M.d.C.); (A.G.); (M.B.T.); (G.F.d.S.)
| | - Patrick H. Brown
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, Davis 1 Shields Ave., Davis, CA 95616, USA;
| | - Carlos Alexandre Costa Crusciol
- Lageado Experimental Farm, Department of Crop Science, College of Agricultural Sciences, São Paulo State University (UNESP), P.O. Box 237, Botucatu 18610-307, SP, Brazil; (J.M.M.); (M.d.C.); (A.G.); (M.B.T.); (G.F.d.S.)
| |
Collapse
|
2
|
Vera-Maldonado P, Aquea F, Reyes-Díaz M, Cárcamo-Fincheira P, Soto-Cerda B, Nunes-Nesi A, Inostroza-Blancheteau C. Role of boron and its interaction with other elements in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1332459. [PMID: 38410729 PMCID: PMC10895714 DOI: 10.3389/fpls.2024.1332459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
Boron (B) is an essential microelement for plants, and its deficiency can lead to impaired development and function. Around 50% of arable land in the world is acidic, and low pH in the soil solution decreases availability of several essential mineral elements, including B, magnesium (Mg), calcium (Ca), and potassium (K). Plants take up soil B in the form of boric acid (H3BO3) in acidic soil or tetrahydroxy borate [B(OH)4]- at neutral or alkaline pH. Boron can participate directly or indirectly in plant metabolism, including in the synthesis of the cell wall and plasma membrane, in carbohydrate and protein metabolism, and in the formation of ribonucleic acid (RNA). In addition, B interacts with other nutrients such as Ca, nitrogen (N), phosphorus (P), K, and zinc (Zn). In this review, we discuss the mechanisms of B uptake, absorption, and accumulation and its interactions with other elements, and how it contributes to the adaptation of plants to different environmental conditions. We also discuss potential B-mediated networks at the physiological and molecular levels involved in plant growth and development.
Collapse
Affiliation(s)
- Peter Vera-Maldonado
- Programa de Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Felipe Aquea
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Paz Cárcamo-Fincheira
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Braulio Soto-Cerda
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Nucleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Claudio Inostroza-Blancheteau
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Nucleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
3
|
Zou J, Zhang Q, Amoako FK, Ackah M, Li H, Shi Y, Li J, Jiang Z, Zhao W. Genome-wide transcriptome profiling of mulberry (Morus alba) response to boron deficiency and toxicity reveal candidate genes associated with boron tolerance in leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108316. [PMID: 38176189 DOI: 10.1016/j.plaphy.2023.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
Mulberry (Morus alba) is an essential plant with countless economic benefits; however, its growth and metabolic processes are hampered by boron (B) stresses. Very little research has been performed to elucidate boron tolerance and detoxification mechanisms in this species. The M. alba cultivar, Yu-711, was exposed to five different concentrations of boric acid (H3BO3), including deficient (T1; 0 mM) moderate B deficiency (T2; 0.02 mM), sufficient (CK; 0.1 mM) and toxic (T3 and T4; 0.5 and 1 mM) levels for 18 days of growth in pots experiment. Transcriptome analysis of B deficiency and toxicity treatments was performed on mulberry leaves. The transcriptome data reveal that a total of 6114 genes were differentially expressed (DEGs), of which 3830 were up-regulated and 2284 were down-regulated. A comparative analysis between treatment groups CK-vs-T1 (deficiency) and CK-vs-T4 (toxicity) indicates that 590 and 1383 genes were down-regulated in both deficiency and B toxicity, respectively. The results show that 206 genes were differentially expressed in all treatments. B deficiency and toxicity significantly altered the expression of the key aquaporins (PIP2-1, PIP2-7, PIP2-4 and NIP3-1) and high-affinity boron transporter genes (BOR1 and BOR7). In addition, boron stress also altered the expression of antioxidants and photosynthesis-related genes. B stresses were found to alter several transcription factors including ERF1B, which is associated with the regulation of boron uptake and the synthesis and signaling of phytohormones. Unravelling the mechanisms of B tolerance and detoxification is important and would give us further insight into how B stresses affect mulberry plants.
Collapse
Affiliation(s)
- Jincheng Zou
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Qiaonan Zhang
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, Kiel, 24118, Germany
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China.
| | - Haonan Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Yisu Shi
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Jianbin Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Zijie Jiang
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China.
| |
Collapse
|
4
|
Chen Z, Bai X, Zeng B, Fan C, Li X, Hu B. Physiological and molecular mechanisms of Acacia melanoxylon stem in response to boron deficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1268835. [PMID: 37964998 PMCID: PMC10641760 DOI: 10.3389/fpls.2023.1268835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Boron is an essential micronutrient for plant growth as it participates in cell wall integrity. The growth and development of Acacia melanoxylon stem can be adversely affected by a lack of boron. To explore the mechanism of boron deficiency in A. melanoxylon stem, the changes in morphological attributes, physiological, endogenous hormone levels, and the cell structure and component contents were examined. In addition, the molecular mechanism of shortened internodes resulting from boron deficiency was elucidated through transcriptome analysis. The results showed that boron deficiency resulted in decreased height, shortened internodes, and reduced root length and surface area, corresponding with decreased boron content in the roots, stems, and leaves of A. melanoxylon. In shortened internodes of stems, oxidative damage, and disordered hormone homeostasis were induced, the cell wall was thickened, hemicellulose and water-soluble pectin contents decreased, while the cellulose content increased under boron deficiency. Furthermore, plenty of genes associated with cell wall metabolism and structural components, including GAUTs, CESAs, IRXs, EXPs, TBLs, and XTHs were downregulated under boron deficiency. Alterations of gene expression in hormone signaling pathways comprising IAA, GA, CTK, ET, ABA, and JA were observed under boron deficiency. TFs, homologous to HD1s, NAC10, NAC73, MYB46s, MYB58, and ERF92s were found to interact with genes related to cell wall metabolism, and the structural components were identified. We established a regulatory mechanism network of boron deficiency-induced shortened internodes in A. melanoxylon based on the above results. This research provides a theoretical basis for understanding the response mechanism of woody plants to boron deficiency.
Collapse
Affiliation(s)
- Zhaoli Chen
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Xiaogang Bai
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Bingshan Zeng
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Chunjie Fan
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Xiangyang Li
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Bing Hu
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Ren H, Zhang Y, Zhong M, Hussian J, Tang Y, Liu S, Qi G. Calcium signaling-mediated transcriptional reprogramming during abiotic stress response in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:210. [PMID: 37728763 DOI: 10.1007/s00122-023-04455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Calcium (Ca2+) is a second messenger in plants growth and development, as well as in stress responses. The transient elevation in cytosolic Ca2+ concentration have been reported to be involved in plants response to abiotic and biotic stresses. In plants, Ca2+-induced transcriptional changes trigger molecular mechanisms by which plants adapt and respond to environment stresses. The mechanism for transcription regulation by Ca2+ could be either rapid in which Ca2+ signals directly cause the related response through the gene transcript and protein activities, or involved amplification of Ca2+ signals by up-regulation the expression of Ca2+ responsive genes, and then increase the transmission of Ca2+ signals. Ca2+ regulates the expression of genes by directly binding to the transcription factors (TFs), or indirectly through its sensors like calmodulin, calcium-dependent protein kinases (CDPK) and calcineurin B-like protein (CBL). In recent years, significant progress has been made in understanding the role of Ca2+-mediated transcriptional regulation in different processes in plants. In this review, we have provided a comprehensive overview of Ca2+-mediated transcriptional regulation in plants in response to abiotic stresses including nutrition deficiency, temperature stresses (like heat and cold), dehydration stress, osmotic stress, hypoxic, salt stress, acid rain, and heavy metal stress.
Collapse
Affiliation(s)
- Huimin Ren
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Minyi Zhong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Jamshaid Hussian
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad, 22060, Pakistan
| | - Yuting Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
6
|
Bolaños L, Abreu I, Bonilla I, Camacho-Cristóbal JJ, Reguera M. What Can Boron Deficiency Symptoms Tell Us about Its Function and Regulation? PLANTS (BASEL, SWITZERLAND) 2023; 12:777. [PMID: 36840125 PMCID: PMC9963425 DOI: 10.3390/plants12040777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
On the eve of the 100th anniversary of Dr. Warington's discovery of boron (B) as a nutrient essential for higher plants, "boronists" have struggled to demonstrate a role beyond its structural function in cell walls dimerizing pectin molecules of rhamnogalacturonan II (RGII). In this regard, B deficiency has been associated with a plethora of symptoms in plants that include macroscopic symptoms like growth arrest and cell death and biochemical or molecular symptoms that include changes in cell wall pore size, apoplast acidification, or a steep ROS production that leads to an oxidative burst. Aiming to shed light on B functions in plant biology, we proposed here a unifying model integrating the current knowledge about B function(s) in plants to explain why B deficiency can cause such remarkable effects on plant growth and development, impacting crop productivity. In addition, based on recent experimental evidence that suggests the existence of different B ligands other than RGII in plant cells, namely glycolipids, and glycoproteins, we proposed an experimental pipeline to identify putative missing ligands and to determine how they would integrate into the above-mentioned model.
Collapse
Affiliation(s)
- Luis Bolaños
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Isidro Abreu
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Ildefonso Bonilla
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Juan J. Camacho-Cristóbal
- Departamento de Fisiología, Anatomía y Biología Celular, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - María Reguera
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
7
|
Wang Y, Niu Z, Hu X, Wu X, Yang Z, Hao C, Zhou M, Yang S, Dong N, Liu M, Ru Z. Molecular characterization of the genome-wide BOR transporter family and their responses to boron conditions in common wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:997915. [PMID: 36275596 PMCID: PMC9583536 DOI: 10.3389/fpls.2022.997915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Boron (B) deficiency is an agricultural problem that causes significant yield losses in many countries. B transporters (BORs) are responsible for B uptake and distribution and play important roles in yield formation. A comprehensive analysis of the BOR family members in common wheat is still lacking. In the present study, to clarify the molecular characterization and response to B status, genome-wide TaBOR genes and expression patterns were investigated. Fourteen TaBOR genes were identified in common wheat by a homology search. The corresponding phylogenetic tree indicated that 14 TaBOR genes were separately classified into subfamilies of TaBOR1, TaBOR3, and TaBOR4. All TaBOR genes had 12-14 extrons and 11-13 introns. Most TaBOR proteins contained 10 conserved motifs, and motifs 1, 2, 3, 4, and 6 constituted the conserved bicarbonate (HCO3 -) domain. Fourteen TaBOR genes were mapped on 13 chromosomes mainly distributed in the first, third, fifth, and seventh homologous groups. The promoters of TaBOR genes consisted of phytohormones, light responses, and stress-related cis-elements. GO analysis indicated that TaBOR genes were enriched in terms of transmembrane transport and ion homeostasis. TaBOR genes showed diverse expression profiles in different tissues. The members of the TaBOR1 subfamily showed high expression in grains, leaves, roots, stems, and spikes, but members of the TaBOR4 subfamily were highly expressed only in spikes and grains. RT-qPCR indicated that TaBOR1-5A, TaBOR1-5B, and TaBOR1-5D were induced by low B concentrations and had much higher expression in roots than in shoots. TaBOR3-3A, TaBOR3-3B, TaBOR3-3D, TaBOR4-1A, TaBOR4-1B, TaBOR4-1D, and TaBOR3-4B were induced by low and high B concentrations and had high expression in roots and shoots. TaBOR3-4D and TaBOR3-7B were upregulated by low and high B concentrations, respectively, but had expression only in roots. Our results provide basic information on the TaBOR family, which is beneficial for elucidating the functions of TaBOR genes to overcome the problem of B deficiency.
Collapse
Affiliation(s)
- Yuquan Wang
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Zhipeng Niu
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xigui Hu
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xiaojun Wu
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Zijun Yang
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Chenyan Hao
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Mengxue Zhou
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Shumin Yang
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Na Dong
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Mingjiu Liu
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Zhengang Ru
- Henan Key Laboratory of Hybrid Wheat, Xinxiang, Henan, China
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
8
|
Crosstalk of Cytokinin with Ethylene and Auxin for Cell Elongation Inhibition and Boron Transport in Arabidopsis Primary Root under Boron Deficiency. PLANTS 2022; 11:plants11182344. [PMID: 36145745 PMCID: PMC9504276 DOI: 10.3390/plants11182344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022]
Abstract
Several studies have shown the role of phytohormones in the regulation of root growth of Arabidopsis plants under boron (B) deficiency. Ethylene and auxin play an important role in the control of Arabidopsis primary root cell elongation under short-term B deprivation, whereas cytokinins regulate root growth inhibition under B deficiency by controlling meristem cell proliferation. In this work, we study the possible interaction among cytokinin, ethylene, and auxin in the primary root response to B-deprivation treatment, as well as their possible role in B uptake and transport. Wild type (WT) and two mutants related to auxin and ethylene (aux1 and acs11) Arabidopsis plants were grown in control (10 µM B) or B starvation (0 µM B) treatment, in the absence or presence of trans-zeatin, and their primary root growth was analyzed. The possible interaction between these hormones was also studied by analyzing AUX1 gene expression in the acs11 mutant and ACS11 gene expression in the aux1 mutant. The GUS reporter lines ARR5::GUS, IAA2::GUS, and EBS::GUS were used to observe changes in cytokinin, auxin, and ethylene levels in the root, respectively. The results of this work suggest that cytokinin inhibits root cell elongation under B deficiency through two different mechanisms: (i) an ethylene-dependent mechanism through increased expression of the ACS11 gene, which would lead to increased ethylene in the root, and (ii) an ethylene-independent mechanism through decreased expression of the AUX1 gene, which alters auxin signaling in the meristematic and elongation zones and stele. We also report that changes in the expression of several B transporters occur in response to auxin, ethylene, and cytokinin that may affect the plant B content.
Collapse
|
9
|
Bi X, Guo H, Li X, Zheng L, An M, Xia Z, Wu Y. A novel strategy for improving watermelon resistance to cucumber green mottle mosaic virus by exogenous boron application. MOLECULAR PLANT PATHOLOGY 2022; 23:1361-1380. [PMID: 35671152 PMCID: PMC9366068 DOI: 10.1111/mpp.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The molecular mode controlling cucumber green mottle mosaic virus (CGMMV)-induced watermelon blood flesh disease (WBFD) is largely unknown. In this study, we have found that application of exogenous boron suppressed CGMMV infection in watermelon fruit and alleviated WBFD symptoms. Our transcriptome analysis showed that the most up-regulated differentially expressed genes (DEGs) were associated with polyamine and auxin biosynthesis, abscisic acid catabolism, defence-related pathways, cell wall modification, and energy and secondary metabolism, while the down-regulated DEGs were mostly involved in ethylene biosynthesis, cell wall catabolism, and plasma membrane functions. Our virus-induced gene silencing results showed that silencing of SPDS expression in watermelon resulted in a higher putrescine content and an inhibited CGMMV infection correlating with no WBFD symptoms. SBT and TUBB1 were also required for CGMMV infection. In contrast, silencing of XTH23 and PE/PEI7 (low-level lignin, cellulose and pectin) and ATPS1 (low-level glutathione) promoted CGMMV accumulation. Furthermore, RAP2-3, MYB6, WRKY12, H2A, and DnaJ11 are likely to participate in host antiviral resistance. In addition, a higher (spermidine + spermine):putrescine ratio, malondialdehyde content, and lactic acid content were responsible for fruit decay and acidification. Our results provide new knowledge on the roles of boron in watermelon resistance to CGMMV-induced WBFD. This new knowledge can be used to design better control methods for CGMMV in the field and to breed CGMMV resistant watermelon and other cucurbit crops.
Collapse
Affiliation(s)
- Xinyue Bi
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Huiyan Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Xiaodong Li
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
- Centre for Biological Disaster Prevention and ControlNational Forestry and Grassland AdministrationShenyangChina
| | - Lijiao Zheng
- Xinmin City Agricultural Technology Extension CentreShenyangChina
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
10
|
Growth, Gas Exchange, and Boron Distribution Characteristics in Two Grape Species Plants under Boron Deficiency Condition. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The boron (B) deficiency tolerance capacity of two grape materials, ‘Xishui-4’ (Vitis flexuosa) and ‘Crystal’ (V. vinifera × V. labrusca), were evaluated using a potted experiment in order to identify the B-use efficiency of grape and screen B-efficient grape resources. The sterile lines of two genotypes of grape were used as test materials, and a large number of test-tube seedlings were obtained through rapid propagation. The test-tube seedlings were acclimatization and transplanted, and the tested seedlings were treated with B stress after survival. In this experiment, the materials were cultured in nutrient solution, which contained 0.00 (B0), 0.25 (B1), and 0.50 (control) mg·L−1 B concentrations, and the two genotypes of grape seedlings were cultured in vitro. The results were counted after 60 days of culture. The results showed that the B deficiency significantly reduced the growth parameters such as plant height, leaf area, total root length, and dry biomass of the two genotypes, and the inhibition of ‘Crystal’ growth parameters was greater than that of ‘Xishui-4’. Moreover, the B deficiency also affected photosynthesis of the two genotypes, such as decreased leaf photosynthetic pigments, net photosynthesis rate, transpiration rate, stomatal conductance, intercellular carbon dioxide concentration, and stomatal density. Interestingly, the decrease ranges of ‘Crystal’ were greater than those of ‘Xishui-4’, indicating that ‘Crystal’ photosynthesis was more susceptible to B deficiency. Under the control condition, the concentration and accumulation of B in ‘Crystal’ were significantly higher than those in ‘Xishui-4’. However, under the condition of B deficiency, the B concentration, accumulation amount, accumulation rate, utilization index, and tolerance index of ‘Xishui-4’ were higher than those of ‘Crystal’, and the B transport capacity of ‘Xishui-4’ was more stable, indicating that ‘Xishui-4’ had a better tolerance against B-deficient stress than ‘Crystal’ did. Therefore, ‘Xishui-4’ is a plant with strong adaptability to B deficiency stress, which can be used as B efficient grape resources and a genetic improvement of B efficient grape.
Collapse
|
11
|
Matthes MS, Darnell Z, Best NB, Guthrie K, Robil JM, Amstutz J, Durbak A, McSteen P. Defects in meristem maintenance, cell division, and cytokinin signaling are early responses in the boron deficient maize mutant tassel-less1. PHYSIOLOGIA PLANTARUM 2022; 174:e13670. [PMID: 35292977 DOI: 10.1111/ppl.13670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Meristems house the stem cells needed for the developmental plasticity observed in adverse environmental conditions and are crucial for determining plant architecture. Meristem development is particularly sensitive to deficiencies of the micronutrient boron, yet how boron integrates into meristem development pathways is unknown. We addressed this question using the boron-deficient maize mutant, tassel-less1 (tls1). Reduced boron uptake in tls1 leads to a progressive impairment of meristem development that manifests in vegetative and reproductive defects. We show, that the tls1 tassel phenotype (male reproductive structure) was partially suppressed by mutations in the CLAVATA1 (CLV1)-ortholog, thick tassel dwarf1 (td1), but not by other mutants in the well characterized CLV-WUSCHEL pathway, which controls meristem size. The suppression of tls1 by td1 correlates with altered signaling of the phytohormone cytokinin. In contrast, mutations in the meristem maintenance gene knotted1 (kn1) enhanced both vegetative and reproductive defects in tls1. In addition, reduced transcript levels of kn1 and cell cycle genes are early defects in tls1 tassel meristems. Our results show that specific meristem maintenance and hormone pathways are affected in tls1, and suggest that reduced boron levels induced by tls1 are the underlying cause of the observed defects. We, therefore, provide new insights into the molecular mechanisms affected by boron deficiency in maize, leading to a better understanding of how genetic and environmental factors integrate during shoot meristem development.
Collapse
Affiliation(s)
- Michaela S Matthes
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, USA
| | - Zoe Darnell
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, USA
| | - Norman B Best
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, USA
| | - Katy Guthrie
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, USA
| | - Janlo M Robil
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, USA
| | - Jen Amstutz
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, USA
| | - Amanda Durbak
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
12
|
Wilder SL, Scott S, Waller S, Powell A, Benoit M, Guthrie JM, Schueller MJ, Awale P, McSteen P, Matthes MS, Ferrieri RA. Carbon-11 Radiotracing Reveals Physiological and Metabolic Responses of Maize Grown under Different Regimes of Boron Treatment. PLANTS (BASEL, SWITZERLAND) 2022; 11:241. [PMID: 35161222 PMCID: PMC8839955 DOI: 10.3390/plants11030241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
In agriculture, boron is known to play a critical role in healthy plant growth. To dissect the role of boron in maize metabolism, radioactive carbon-11 (t½ 20.4 min) was used to examine the physiological and metabolic responses of 3-week-old B73 maize plants to different levels of boron spanning 0 mM, 0.05 mM, and 0.5 mM boric acid (BA) treatments. Growth behavior, of both shoots and roots, was recorded and correlated to plant physiological responses. 11CO2 fixation, leaf export of [11C]-photosynthates, and their rate of transport increased systematically with increasing BA concentrations, while the fraction of [11C]-photosynthates delivered to the roots under 0 mM and 0.5 mM BA treatments was lower than under 0.05 mM BA treatment, likely due to changes in root growth. Additionally, solid-phase extraction coupled with gamma counting, radio-fluorescence thin layer chromatography, and radio-fluorescence high-performance liquid chromatography techniques applied to tissue extracts provided insight into the effects of BA treatment on 'new' carbon (as 11C) metabolism. Most notable was the strong influence reducing boron levels had on raising 11C partitioning into glutamine, aspartic acid, and asparagine. Altogether, the growth of maize under different regimes of boron affected 11CO2 fixation, its metabolism and allocation belowground, and altered root growth. Finally, inductively coupled plasma mass spectrometry provided insight into the effects of BA treatment on plant uptake of other essential nutrients. Here, levels of boron and zinc systematically increased in foliar tissues with increasing BA concentration. However, levels of magnesium, potassium, calcium, manganese, and iron remained unaffected by treatment. The rise in foliar zinc levels with increased BA concentration may contribute to improved 11CO2 fixation under these conditions.
Collapse
Affiliation(s)
- Stacy L. Wilder
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.L.W.); (S.S.); (S.W.); (A.P.); (M.B.); (J.M.G.); (M.J.S.)
| | - Stephanie Scott
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.L.W.); (S.S.); (S.W.); (A.P.); (M.B.); (J.M.G.); (M.J.S.)
| | - Spenser Waller
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.L.W.); (S.S.); (S.W.); (A.P.); (M.B.); (J.M.G.); (M.J.S.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Avery Powell
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.L.W.); (S.S.); (S.W.); (A.P.); (M.B.); (J.M.G.); (M.J.S.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Mary Benoit
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.L.W.); (S.S.); (S.W.); (A.P.); (M.B.); (J.M.G.); (M.J.S.)
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - James M. Guthrie
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.L.W.); (S.S.); (S.W.); (A.P.); (M.B.); (J.M.G.); (M.J.S.)
| | - Michael J. Schueller
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.L.W.); (S.S.); (S.W.); (A.P.); (M.B.); (J.M.G.); (M.J.S.)
- Chemistry Department, University of Missouri, Columbia, MO 65211, USA
| | - Prameela Awale
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (P.A.); (P.M.)
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (P.A.); (P.M.)
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Michaela S. Matthes
- Institute for Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany;
| | - Richard A. Ferrieri
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA; (S.L.W.); (S.S.); (S.W.); (A.P.); (M.B.); (J.M.G.); (M.J.S.)
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
- Chemistry Department, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
13
|
Huang Y, Wang S, Wang C, Ding G, Cai H, Shi L, Xu F. Induction of jasmonic acid biosynthetic genes inhibits Arabidopsis growth in response to low boron. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:937-948. [PMID: 33289292 PMCID: PMC8252524 DOI: 10.1111/jipb.13048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/02/2020] [Indexed: 05/31/2023]
Abstract
The essential micronutrient boron (B) has key roles in cell wall integrity and B deficiency inhibits plant growth. The role of jasmonic acid (JA) in plant growth inhibition under B deficiency remains unclear. Here, we report that low B elevates JA biosynthesis in Arabidopsis thaliana by inducing the expression of JA biosynthesis genes. Treatment with JA inhibited plant growth and, a JA biosynthesis inhibitor enhanced plant growth, indicating that the JA induced by B deficiency affects plant growth. Furthermore, examination of the JA signaling mutants jasmonate resistant1, coronatine insensitive1-2, and myc2 showed that JA signaling negatively regulates plant growth under B deficiency. We identified a low-B responsive transcription factor, ERF018, and used yeast one-hybrid assays and transient activation assays in Nicotiana benthamiana leaf cells to demonstrate that ERF018 activates the expression of JA biosynthesis genes. ERF018 overexpression (OE) lines displayed stunted growth and up-regulation of JA biosynthesis genes under normal B conditions, compared to Col-0 and the difference between ERF018 OE lines and Col-0 diminished under low B. These results suggest that ERF018 enhances JA biosynthesis and thus negatively regulates plant growth. Taken together, our results highlight the importance of JA in the effect of low B on plant growth.
Collapse
Affiliation(s)
- Yupu Huang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Chuang Wang
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Hongmei Cai
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Lei Shi
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
14
|
Boron Deficiency Increases Cytosolic Ca 2+ Levels Mainly via Ca 2+ Influx from the Apoplast in Arabidopsis thaliana Roots. Int J Mol Sci 2019; 20:ijms20092297. [PMID: 31075903 PMCID: PMC6540140 DOI: 10.3390/ijms20092297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 11/17/2022] Open
Abstract
Boron (B) is a micronutrient for plant development, and its deficiency alters many physiological processes. However, the current knowledge on how plants are able to sense the B-starvation signal is still very limited. Recently, it has been reported that B deprivation induces an increase in cytosolic calcium concentration ([Ca2+]cyt) in Arabidopsis thaliana roots. The aim of this work was to research in Arabidopsis whether [Ca2+]cyt is restored to initial levels when B is resupplied and elucidate whether apoplastic Ca2+ is the major source for B-deficiency-induced rise in [Ca2+]cyt. The use of chemical compounds affecting Ca2+ homeostasis showed that the rise in root [Ca2+]cyt induced by B deficiency was predominantly owed to Ca2+ influx from the apoplast through plasma membrane Ca2+ channels in an IP3-independent manner. Furthermore, B resupply restored the root [Ca2+]cyt. Interestingly, expression levels of genes encoding Ca2+ transporters (ACA10, plasma membrane PIIB-type Ca2+-ATPase; and CAX3, vacuolar cation/proton exchanger) were upregulated by ethylene glycol tetraacetic acid (EGTA) and abscisic acid (ABA). The results pointed out that ACA10, and especially CAX3, would play a major role in the restoration of Ca2+ homeostasis after 24 h of B deficiency.
Collapse
|
15
|
Global Transcriptomic Profile Analysis of Genes Involved in Lignin Biosynthesis and Accumulation Induced by Boron Deficiency in Poplar Roots. Biomolecules 2019; 9:biom9040156. [PMID: 31010161 PMCID: PMC6523340 DOI: 10.3390/biom9040156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 12/29/2022] Open
Abstract
To uncover the transcriptomic mechanism of lignin accumulation caused by boron deficiency (BD), Nanlin895 (Populus × euramericana “Nanlin895”) was subjected to control (CK, 0.25 mg·L−1) and BD (0 mg·L−1) treatments for 3 days. RNA-Seq was carried out to survey the expression patterns of the lignin-regulated biosynthetic genes in response to BD. The results showed that 5946 genes were identified as differentially expressed genes (DEGs), 2968 (44.2%) of which were upregulated and 3318 (55.8%) of which were downregulated in response to BD. Among them, the expression of lignin monomer biosynthetic (PAL, CCR, CAD, COMT, F5H, PER/LAC) and modulated genes, for example, transcription factors (MYBs) and hormone signal regulating genes (GIDs, histidine kinase 1, coronatine-insensitive protein 1), were upregulated, and some hormone signal regulating genes, such as AUXs and BR-related (sterol methyltransferases), were downregulated under BD treatment. There are also some genes that were screened as candidates for an association with wood formation, which will be used for the further analysis of the function of lignin formation. These results provide an important theoretical basis and reference data in plant for further research on the mechanism of lignin accumulation under BD.
Collapse
|
16
|
Fang KF, Du BS, Zhang Q, Xing Y, Cao QQ, Qin L. Boron deficiency alters cytosolic Ca 2+ concentration and affects the cell wall components of pollen tubes in Malus domestica. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:343-351. [PMID: 30444945 DOI: 10.1111/plb.12941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Boron (B) is essential for normal plant growth, including pollen tube growth. B deficiency influences various physiological and metabolic processes in plants. However, the underlying mechanism of B deficiency in pollen tube growth is not sufficiently understood. In the present research, the influence of B deficiency on apple (Malus domestica) pollen tube growth was studied and the possible regulatory mechanism evaluated. Apple pollen grains were cultured under different concentrations of B. Scanning ion-selective electrode technique, fluorescence labelling and Fourier-transform infrared (FTIR) analysis were used to detect calcium ion flux, cytosolic Ca2+ concentration ([Ca2+ ]cyt), actin filaments and cell wall components of pollen tubes. B deficiency inhibited apple pollen germination and induced retardation of tube growth. B deficiency increased extracellular Ca2+ influx and thus led to increased [Ca2+ ]cyt in the pollen tube tip. In addition, B deficiency modified actin filament arrangement at the pollen tube apex. B deficiency also altered the deposition of pollen tube wall components. Clear differences were not observed in the distribution patterns of cellulose and callose between control and B deficiency treated pollen tubes. However, B deficiency affected distribution patterns of pectin and arabinogalactan proteins (AGP). Clear ring-like signals of pectins and AGP on control pollen tubes varied according to B deficiency. B deficiency further decreased acid pectins, esterified pectins and AGP content at the tip of the pollen tube, which were supported by changes in chemical composition of the tube walls. B appears to have an active role in pollen tube growth by affecting [Ca2+ ]cyt, actin filament assembly and pectin and AGP deposition in the pollen tube. These findings provide valuable information that enhances our current understanding of the mechanism regulating pollen tube growth.
Collapse
Affiliation(s)
- K F Fang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - B S Du
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Q Zhang
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Y Xing
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Q Q Cao
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - L Qin
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
17
|
Sechet J, Htwe S, Urbanowicz B, Agyeman A, Feng W, Ishikawa T, Colomes M, Kumar KS, Kawai‐Yamada M, Dinneny JR, O'Neill MA, Mortimer JC. Suppression of Arabidopsis GGLT1 affects growth by reducing the L-galactose content and borate cross-linking of rhamnogalacturonan-II. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1036-1050. [PMID: 30203879 PMCID: PMC6263843 DOI: 10.1111/tpj.14088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 05/16/2023]
Abstract
Boron is a micronutrient that is required for the normal growth and development of vascular plants, but its precise functions remain a subject of debate. One established role for boron is in the cell wall where it forms a diester cross-link between two monomers of the low-abundance pectic polysaccharide rhamnogalacturonan-II (RG-II). The inability of RG-II to properly assemble into a dimer results in the formation of cell walls with abnormal biochemical and biomechanical properties and has a severe impact on plant productivity. Here we describe the effects on RG-II structure and cross-linking and on the growth of plants in which the expression of a GDP-sugar transporter (GONST3/GGLT1) has been reduced. In the GGLT1-silenced plants the amount of L-galactose in side-chain A of RG-II is reduced by up to 50%. This leads to a reduction in the extent of RG-II cross-linking in the cell walls as well as a reduction in the stability of the dimer in the presence of calcium chelators. The silenced plants have a dwarf phenotype, which is rescued by growth in the presence of increased amounts of boric acid. Similar to the mur1 mutant, which also disrupts RG-II cross-linking, GGLT1-silenced plants display a loss of cell wall integrity under salt stress. We conclude that GGLT1 is probably the primary Golgi GDP-L-galactose transporter, and provides GDP-L-galactose for RG-II biosynthesis. We propose that the L-galactose residue is critical for RG-II dimerization and for the stability of the borate cross-link.
Collapse
Affiliation(s)
- Julien Sechet
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
- Present address:
INRAVersailles78000France
| | - Soe Htwe
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Breeanna Urbanowicz
- Complex Carbohydrate Research CenterThe University of GeorgiaAthensGA30602USA
| | - Abigail Agyeman
- Complex Carbohydrate Research CenterThe University of GeorgiaAthensGA30602USA
- Present address:
School of PharmacySouth UniversitySavannahGA31406USA
| | - Wei Feng
- Department of Plant BiologyCarnegie Institute for ScienceStanfordCA94305USA
| | - Toshiki Ishikawa
- Graduate School of Science and EngineeringSaitama UniversitySaitama338‐8570Japan
| | - Marianne Colomes
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
- Present address:
NutribioParis75440France
| | - Kavitha Satish Kumar
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Maki Kawai‐Yamada
- Graduate School of Science and EngineeringSaitama UniversitySaitama338‐8570Japan
| | - José R. Dinneny
- Department of Plant BiologyCarnegie Institute for ScienceStanfordCA94305USA
- Department of BiologyStanford UniversityStanfordCA94305USA
| | - Malcolm A. O'Neill
- Complex Carbohydrate Research CenterThe University of GeorgiaAthensGA30602USA
| | - Jenny C. Mortimer
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
18
|
Zhou T, Hua Y, Zhang B, Zhang X, Zhou Y, Shi L, Xu F. Low-Boron Tolerance Strategies Involving Pectin-Mediated Cell Wall Mechanical Properties in Brassica napus. PLANT & CELL PHYSIOLOGY 2017; 58:1991-2005. [PMID: 29016959 DOI: 10.1093/pcp/pcx130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/22/2017] [Indexed: 05/18/2023]
Abstract
Boron (B) is an essential micronutrient for the growth and development of plants. Oilseed rape (Brassica napus L.) is a staple oleaginous crop, which is greatly susceptible to B deficiency. Significant differences in tolerance of low-B stresses are observed in rapeseed genotypes, but the underlying mechanism remains unclear, particularly at the single-cell level. Here we provide novel insights into pectin-mediated cell wall (CW) mechanical properties implicated in the differential tolerance of low B in rapeseed genotypes. Under B deficiency, suspension cells of the low-B-sensitive genotype 'W10' showed more severely deformed morphology, lower viabilities and a more easily ruptured CW than those of the low-B-tolerant genotype 'QY10'. Cell rupture was attributed to the weakened CW mechanical strength detected by atomic force microscopy; the CW mechanical strength of 'QY10' was reduced by 13.6 and 17.4%, whereas that of 'W10' was reduced by 29.0 and 30.4% under 0.25 and 0.10 μM B conditions, respectively. The mechanical strength differences between 'QY10' and 'W10' were diminished after the removal of pectin. Further, 'W10' exhibited significantly higher pectin concentrations with much more rhamnogalacturonan II (RG-II) monomer, and also presented obviously higher mRNA abundances of pectin biosynthesis-related genes than 'QY10' under B deficiency. CW regeneration was more difficult for protoplasts of 'W10' than for those of 'QY10'. Taking the results together, we conclude that the variations in pectin-endowed CW mechanical properties play key roles in modulating the differential genotypic tolerance of rapeseed to low-B stresses at both the single-cell and the plant level, and this can potentially be used as a selection trait for low-B-tolerant rapeseed breeding.
Collapse
Affiliation(s)
- Ting Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingpeng Hua
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuqing Zhang
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
19
|
Tassi E, Giorgetti L, Morelli E, Peralta-Videa JR, Gardea-Torresdey JL, Barbafieri M. Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO 2 and excess boron: Modulation of boron phytotoxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:50-58. [PMID: 27665987 DOI: 10.1016/j.plaphy.2016.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/17/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
Little is known about the interaction of nanoparticles (NPs) with soil constituents and their effects in plants. Boron (B), an essential micronutrient that reduces crop production at both deficiency and excess, has not been investigated with respect to its interaction with cerium oxide NPs (nano-CeO2). Considering conflicting results on the nano-CeO2 toxicity and protective role as antioxidant, their possible modulation on B toxicity in sunflower (Helianthus annuus L.) was investigated. Sunflower was cultivated for 30 days in garden pots containing original or B-spiked soil amended with nano-CeO2 at 0-800 mg kg-1. At harvest, Ce and B concentrations in tissues, biomass, and activities of stress enzymes in leaves were determined. Results showed that in the original soil, Ce accumulated mainly in roots, with little translocation to stems and leaves, while reduced root Ce was observed in plants from B-spiked soil. In the original soil, higher levels of nano-CeO2 reduced plant B concentration. Although morphological effects were not visible, changes in biomass and oxidative stress response were observed. Sunflower leaves from B-spiked soil showed visible symptoms of B toxicity, such as necrosis and chlorosis in old leaves, as well as an increase of superoxide dismutase (SOD) activity. However, at high nano-CeO2 level, SOD activity decreased reaching values similar to that of the control. This study has shown that nano-CeO2 reduced both the B nutritional status of sunflower in original soil and the B phytotoxicity in B-spiked soil.
Collapse
Affiliation(s)
- E Tassi
- Institute of Ecosystem Studies, National Research Council (ISE-CNR), Via Moruzzi, 1 - 56124, Pisa, Italy.
| | - L Giorgetti
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Via Moruzzi, 1 - 56124, Pisa, Italy
| | - E Morelli
- Biophysics Institute, National Research Council (IBF-CNR), Via Moruzzi, 1 - 56124, Pisa, Italy
| | - J R Peralta-Videa
- Chemistry Department, The University of Texas at El Paso, 500 West Univ. Av., El Paso, TX 79968, United States; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; Center for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States
| | - J L Gardea-Torresdey
- Chemistry Department, The University of Texas at El Paso, 500 West Univ. Av., El Paso, TX 79968, United States; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; Center for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States
| | - M Barbafieri
- Institute of Ecosystem Studies, National Research Council (ISE-CNR), Via Moruzzi, 1 - 56124, Pisa, Italy
| |
Collapse
|
20
|
Hua Y, Zhou T, Ding G, Yang Q, Shi L, Xu F. Physiological, genomic and transcriptional diversity in responses to boron deficiency in rapeseed genotypes. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5769-5784. [PMID: 27639094 PMCID: PMC5066495 DOI: 10.1093/jxb/erw342] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Allotetraploid rapeseed (Brassica napus L. AnAnCnCn, 2n=4x=38) is highly susceptible to boron (B) deficiency, a widespread limiting factor that causes severe losses in seed yield. The genetic variation in the sensitivity to B deficiency found in rapeseed genotypes emphasizes the complex response architecture. In this research, a B-inefficient genotype, 'Westar 10' ('W10'), responded to B deficiencies during vegetative and reproductive development with an over-accumulation of reactive oxygen species, severe lipid peroxidation, evident plasmolysis, abnormal floral organogenesis, and widespread sterility compared to a B-efficient genotype, 'Qingyou 10' ('QY10'). Whole-genome re-sequencing (WGS) of 'QY10' and 'W10' revealed a total of 1 605 747 single nucleotide polymorphisms and 218 755 insertions/deletions unevenly distributed across the allotetraploid rapeseed genome (~1130Mb). Digital gene expression (DGE) profiling identified more genes related to B transporters, antioxidant enzymes, and the maintenance of cell walls and membranes with higher transcript levels in the roots of 'QY10' than in 'W10' under B deficiency. Furthermore, based on WGS and bulked segregant analysis of the doubled haploid (DH) line pools derived from 'QY10' and 'W10', two significant quantitative trait loci (QTLs) for B efficiency were characterized on chromosome C2, and DGE-assisted QTL-seq analyses then identified a nodulin 26-like intrinsic protein gene and an ATP-binding cassette (ABC) transporter gene as the corresponding candidates regulating B efficiency. This research facilitates a more comprehensive understanding of the differential physiological and transcriptional responses to B deficiency and abundant genetic diversity in rapeseed genotypes, and the DGE-assisted QTL-seq analyses provide novel insights regarding the rapid dissection of quantitative trait genes in plant species with complex genomes.
Collapse
Affiliation(s)
- Yingpeng Hua
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangda Ding
- Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyong Yang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Huang JH, Qi YP, Wen SX, Guo P, Chen XM, Chen LS. Illumina microRNA profiles reveal the involvement of miR397a in Citrus adaptation to long-term boron toxicity via modulating secondary cell-wall biosynthesis. Sci Rep 2016; 6:22900. [PMID: 26962011 PMCID: PMC4790630 DOI: 10.1038/srep22900] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/24/2016] [Indexed: 12/25/2022] Open
Abstract
The mechanisms underlying tolerance to B-toxicity in plants are still controversial. Our previous studies indicated that B-toxicity is mainly limited to leaves in Citrus and that alternations of cell-wall structure in vascular bundles are involved in tolerance to B-toxicity. Here, miRNAs and their expression patterns were first identified in B-treated Citrus sinensis (tolerant) and C. grandis (intolerant) leaves via high-throughput sequencing. Candidate miRNAs were then verified with molecular and anatomical approaches. The results showed that 51 miRNAs in C. grandis and 20 miRNAs in C. sinensis were differentially expressed after B-toxic treatment. MiR395a and miR397a were the most significantly up-regulated miRNAs in B-toxic C. grandis leaves, but both were down-regulated in B-toxic C. sinensis leaves. Four auxin response factor genes and two laccase (LAC) genes were confirmed through 5′-RACE to be real targets of miR160a and miR397a, respectively. Up-regulation of LAC4 resulted in secondary deposition of cell-wall polysaccharides in vessel elements of C. sinensis, whereas down-regulation of both LAC17 and LAC4, led to poorly developed vessel elements in C. grandis. Our findings demonstrated that miR397a plays a pivotal role in woody Citrus tolerance to B-toxicity by targeting LAC17 and LAC4, both of which are responsible for secondary cell-wall synthesis.
Collapse
Affiliation(s)
- Jing-Hao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Shou-Xing Wen
- Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Peng Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Resource and Environmental Science, Fujian Agriculture and Forestry University,Fuzhou 350002, China
| | - Xiao-Min Chen
- Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Resource and Environmental Science, Fujian Agriculture and Forestry University,Fuzhou 350002, China.,Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
22
|
Camacho-Cristóbal JJ, Martín-Rejano EM, Herrera-Rodríguez MB, Navarro-Gochicoa MT, Rexach J, González-Fontes A. Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3831-40. [PMID: 25922480 PMCID: PMC4473985 DOI: 10.1093/jxb/erv186] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
One of the earliest symptoms of boron (B) deficiency is the inhibition of root elongation which can reasonably be attributed to the damaging effects of B deprivation on cell wall integrity. It is shown here that exposure of wild-type Arabidopsis thaliana seedlings to B deficiency for 4h led to a drastic inhibition of root cell length in the transition between the elongation and differentiation zones. To investigate the possible mediation of ethylene, auxin, and reactive oxygen species (ROS) in the effect of B deficiency on root cell elongation, B deficiency was applied together with aminoethoxyvinylglycine (AVG, a chemical inhibitor of ethylene biosynthesis), silver ions (Ag(+), an antagonist of ethylene perception), α-(phenylethyl-2-oxo)-indoleacetic acid (PEO-IAA, a synthetic antagonist of TIR1 receptor function), and diphenylene iodonium (DPI, an inhibitor of ROS production). Interestingly, all these chemicals partially or fully restored cell elongation in B-deficient roots. To further explore the possible role of ethylene and auxin in the inhibition of root cell elongation under B deficiency, a genetic approach was performed by using Arabidopsis mutants defective in the ethylene (ein2-1) or auxin (eir1-4 and aux1-22) response. Root cell elongation in these mutants was less sensitive to B-deficient treatment than that in wild-type plants. Altogether, these results demonstrated that a signalling pathway involving ethylene, auxin, and ROS participates in the reduction of root cell elongation when Arabidopsis seedlings are subjected to B deficiency. A similar signalling process has been described to reduce root elongation rapidly under various types of cell wall stress which supports the idea that this signalling pathway is triggered by the impaired cell wall integrity caused by B deficiency.
Collapse
Affiliation(s)
- Juan J Camacho-Cristóbal
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013, Sevilla, Spain
| | - Esperanza M Martín-Rejano
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013, Sevilla, Spain
| | - M Begoña Herrera-Rodríguez
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013, Sevilla, Spain
| | - M Teresa Navarro-Gochicoa
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013, Sevilla, Spain
| | - Jesús Rexach
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013, Sevilla, Spain
| | - Agustín González-Fontes
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013, Sevilla, Spain
| |
Collapse
|
23
|
Zhou XX, Yang LT, Qi YP, Guo P, Chen LS. Mechanisms on boron-induced alleviation of aluminum-toxicity in Citrus grandis seedlings at a transcriptional level revealed by cDNA-AFLP analysis. PLoS One 2015; 10:e0115485. [PMID: 25747450 PMCID: PMC4352013 DOI: 10.1371/journal.pone.0115485] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/24/2014] [Indexed: 11/18/2022] Open
Abstract
The physiological and biochemical mechanisms on boron (B)-induced alleviation of aluminum (B)-toxicity in plants have been examined in some details, but our understanding of the molecular mechanisms underlying these processes is very limited. In this study, we first used the cDNA-AFLP to investigate the gene expression patterns in Citrus grandis roots responsive to B and Al interactions, and isolated 100 differentially expressed genes. Results showed that genes related to detoxification of reactive oxygen species (ROS) and aldehydes (i.e., glutathione S-transferase zeta class-like isoform X1, thioredoxin M-type 4, and 2-alkenal reductase (NADP+-dependent)-like), metabolism (i.e., carboxylesterases and lecithin-cholesterol acyltransferase-like 4-like, nicotianamine aminotransferase A-like isoform X3, thiosulfate sulfurtransferase 18-like isoform X1, and FNR, root isozyme 2), cell transport (i.e., non-specific lipid-transfer protein-like protein At2g13820-like and major facilitator superfamily protein), Ca signal and hormone (i.e., calcium-binding protein CML19-like and IAA-amino acid hydrolase ILR1-like 4-like), gene regulation (i.e., Gag-pol polyprotein) and cell wall modification (i.e., glycosyl hydrolase family 10 protein) might play a role in B-induced alleviation of Al-toxicity. Our results are useful not only for our understanding of molecular processes associated with B-induced alleviation of Al-toxicity, but also for obtaining key molecular genes to enhance Al-tolerance of plants in the future.
Collapse
Affiliation(s)
- Xin-Xing Zhou
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Peng Guo
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- * E-mail:
| |
Collapse
|
24
|
Lu YB, Qi YP, Yang LT, Lee J, Guo P, Ye X, Jia MY, Li ML, Chen LS. Long-term boron-deficiency-responsive genes revealed by cDNA-AFLP differ between Citrus sinensis roots and leaves. FRONTIERS IN PLANT SCIENCE 2015; 6:585. [PMID: 26284101 PMCID: PMC4517394 DOI: 10.3389/fpls.2015.00585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/13/2015] [Indexed: 05/20/2023]
Abstract
Seedlings of Citrus sinensis (L.) Osbeck were supplied with boron (B)-deficient (without H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. We identified 54 (38) and 38 (45) up (down)-regulated cDNA-AFLP bands (transcript-derived fragments, TDFs) from B-deficient leaves and roots, respectively. These TDFs were mainly involved in protein and amino acid metabolism, carbohydrate and energy metabolism, nucleic acid metabolism, cell transport, signal transduction, and stress response and defense. The majority of the differentially expressed TDFs were isolated only from B-deficient roots or leaves, only seven TDFs with the same GenBank ID were isolated from the both. In addition, ATP biosynthesis-related TDFs were induced in B-deficient roots, but unaffected in B-deficient leaves. Most of the differentially expressed TDFs associated with signal transduction and stress defense were down-regulated in roots, but up-regulated in leaves. TDFs related to protein ubiquitination and proteolysis were induced in B-deficient leaves except for one TDF, while only two down-regulated TDFs associated with ubiquitination were detected in B-deficient roots. Thus, many differences existed in long-term B-deficiency-responsive genes between roots and leaves. In conclusion, our findings provided a global picture of the differential responses occurring in B-deficient roots and leaves and revealed new insight into the different adaptive mechanisms of C. sinensis roots and leaves to B-deficiency at the transcriptional level.
Collapse
Affiliation(s)
- Yi-Bin Lu
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical SciencesFuzhou, China
| | - Lin-Tong Yang
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jinwook Lee
- Department of Horticultural Science, Kyungpook National UniversityDaegu, South Korea
| | - Peng Guo
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xin Ye
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Meng-Yang Jia
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Mei-Li Li
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Li-Song Chen
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry UniversityFuzhou, China
- *Correspondence: Li-Song Chen, Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Boxue Building, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|
25
|
Chatterjee M, Tabi Z, Galli M, Malcomber S, Buck A, Muszynski M, Gallavotti A. The boron efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility. THE PLANT CELL 2014; 26:2962-77. [PMID: 25035400 PMCID: PMC4145125 DOI: 10.1105/tpc.114.125963] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/02/2014] [Accepted: 06/23/2014] [Indexed: 05/18/2023]
Abstract
Although boron has a relatively low natural abundance, it is an essential plant micronutrient. Boron deficiencies cause major crop losses in several areas of the world, affecting reproduction and yield in diverse plant species. Despite the importance of boron in crop productivity, surprisingly little is known about its effects on developing reproductive organs. We isolated a maize (Zea mays) mutant, called rotten ear (rte), that shows distinct defects in vegetative and reproductive development, eventually causing widespread sterility in its inflorescences, the tassel and the ear. Positional cloning revealed that rte encodes a membrane-localized boron efflux transporter, co-orthologous to the Arabidopsis thaliana BOR1 protein. Depending on the availability of boron in the soil, rte plants show a wide range of phenotypic defects that can be fully rescued by supplementing the soil with exogenous boric acid, indicating that rte is crucial for boron transport into aerial tissues. rte is expressed in cells surrounding the xylem in both vegetative and reproductive tissues and is required for meristem activity and organ development. We show that low boron supply to the inflorescences results in widespread defects in cell and cell wall integrity, highlighting the structural importance of boron in the formation of fully fertile reproductive organs.
Collapse
Affiliation(s)
- Mithu Chatterjee
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854-8020
| | - Zara Tabi
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116
| | - Mary Galli
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854-8020
| | - Simon Malcomber
- Department of Biological Sciences, California State University Long Beach, Long Beach, California 90840 Division of Environmental Biology, National Science Foundation, Arlington, Virginia 22230
| | - Amy Buck
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116
| | - Michael Muszynski
- Department of Genetics, Development, and Cell Biology, Iowa State University, Iowa 50011-2156
| | - Andrea Gallavotti
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854-8020 Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey 08901
| |
Collapse
|
26
|
Lu YB, Yang LT, Qi YP, Li Y, Li Z, Chen YB, Huang ZR, Chen LS. Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing. BMC PLANT BIOLOGY 2014; 14:123. [PMID: 24885979 PMCID: PMC4041134 DOI: 10.1186/1471-2229-14-123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/30/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Boron (B)-deficiency is a widespread problem in many crops, including Citrus. MicroRNAs (miRNAs) play important roles in nutrient deficiencies. However, little is known on B-deficiency-responsive miRNAs in plants. In this study, we first identified miRNAs and their expression pattern in B-deficient Citrus sinensis roots by Illumina sequencing in order to identify miRNAs that might be involved in the tolerance of plants to B-deficiency. RESULTS We isolated 52 (40 known and 12 novel) up-regulated and 82 (72 known and 10 novel) down-regulated miRNAs from B-deficient roots, demonstrating remarkable metabolic flexibility of roots, which might contribute to the tolerance of plants to B-deficiency. A model for the possible roles of miRNAs in the tolerance of roots to B-deficiency was proposed. miRNAs might regulate the adaptations of roots to B-deficiency through following several aspects: (a) inactivating reactive oxygen species (ROS) signaling and scavenging through up-regulating miR474 and down-regulating miR782 and miR843; (b) increasing lateral root number by lowering miR5023 expression and maintaining a certain phenotype favorable for B-deficiency-tolerance by increasing miR394 expression; (c) enhancing cell transport by decreasing the transcripts of miR830, miR5266 and miR3465; (d) improving osmoprotection (miR474) and regulating other metabolic reactions (miR5023 and miR821). Other miRNAs such as miR472 and miR2118 in roots increased in response to B-deficiency, thus decreasing the expression of their target genes, which are involved in disease resistance, and hence, the disease resistance of roots. CONCLUSIONS Our work demonstrates the possible roles of miRNAs and related mechanisms in the response of plant roots to B-deficiency.
Collapse
Affiliation(s)
- Yi-Bin Lu
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Yan Li
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong Li
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan-Bin Chen
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeng-Rong Huang
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
27
|
Abreu I, Poza L, Bonilla I, Bolaños L. Boron deficiency results in early repression of a cytokinin receptor gene and abnormal cell differentiation in the apical root meristem of Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 77:117-21. [PMID: 24589475 DOI: 10.1016/j.plaphy.2014.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/08/2014] [Indexed: 05/18/2023]
Abstract
The development of Arabidopsis thaliana was dramatically altered within few hours following boron (B) deprivation. This effect was particularly evident in the apical root meristem. The essentiality of boron in plants has been clearly linked to its structural role in the cell wall, however the diversity and rapidity alterations of plant organogenesis when the micronutrient is absent suggest that B deficiency could also affect gene regulation during plant development. Therefore, the effect of B deficiency on cell elongation, apical root meristem cell division, and early differentiation of root tissues was investigated in A. thaliana seedlings. Dark-growth experiments indicated that hypocotyl elongation was inhibited 2 days after removing B, but apical root growth ceased almost immediately following B deprivation. Detection of cycline B1 by GUS staining of a promoter-reporter construct revealed that low B led to a reduced zone of cell division. The expression of CRE1/WOL/AHK4, encoding an integral membrane protein with histidine kinase domain that mediates cytokinin signaling and root xylem differentiation, was inhibited under B deficiency resulting in arrested xylem development at the protoxylem stage. Because the transition from cell division to cell differentiation in apical root meristems is controlled by cytokinins, this result support the hypothesis that signaling mechanisms during cell differentiation and organogenesis are highly sensitive to B deficiency, and together with previous reports that link the micronutrient with auxin or ethylene control of root architecture, suggests that B could play a role in regulation of hormone mediated early plant development signaling.
Collapse
Affiliation(s)
- Isidro Abreu
- Departament of Biology, University Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Laura Poza
- Departament of Biology, University Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ildefonso Bonilla
- Departament of Biology, University Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Luis Bolaños
- Departament of Biology, University Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
28
|
González-Fontes A, Navarro-Gochicoa MT, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, Quiles-Pando C, Rexach J. Is Ca2+ involved in the signal transduction pathway of boron deficiency? New hypotheses for sensing boron deprivation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 217-218:135-9. [PMID: 24467905 DOI: 10.1016/j.plantsci.2013.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 05/18/2023]
Abstract
Plants sense and transmit nutrient-deprivation signals to the nucleus. This increasingly interesting research field advances knowledge of signal transduction pathways for mineral deficiencies. The understanding of this topic for most micronutrients, especially boron (B), is more limited. Several hypotheses have been proposed to explain how a B deprivation signal would be conveyed to the nucleus, which are briefly summarized in this review. These hypotheses do not explain how so many metabolic and physiological processes quickly respond to B deficiency. Short-term B deficiency affects the cytosolic Ca(2+) levels as well as root expression of genes involved in Ca(2+) signaling. We propose and discuss that Ca(2+) and Ca(2+)-related proteins - channels/transporters, sensor relays, and sensor responders - might have major roles as intermediates in a transduction pathway triggered by B deprivation. This hypothesis may explain how plants sense and convey the B-deprivation signal to the nucleus and modulate physiological responses. The possible role of arabinogalactan-proteins in the B deficiency signaling pathway is also taken into account.
Collapse
Affiliation(s)
- Agustín González-Fontes
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain.
| | - M Teresa Navarro-Gochicoa
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - Juan J Camacho-Cristóbal
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - M Begoña Herrera-Rodríguez
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - Carlos Quiles-Pando
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - Jesús Rexach
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| |
Collapse
|
29
|
González-Fontes A, Rexach J, Quiles-Pando C, Herrera-Rodríguez MB, Camacho-Cristóbal JJ, Navarro-Gochicoa MT. Transcription factors as potential participants in the signal transduction pathway of boron deficiency. PLANT SIGNALING & BEHAVIOR 2013; 8:e26114. [PMID: 23989264 PMCID: PMC4091350 DOI: 10.4161/psb.26114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Boron (B) plays a well-known structural role in the cell wall, however the way of perceiving B deficiency by roots and transmitting this environmental signal to the nucleus to elicit a response is not well established. It is known that the direct interaction between Ca2+ sensors and transcription factors (TFs) is a necessary step to regulate the expression of downstream target genes in some signaling pathways. Interestingly, B deprivation affected gene expressions of several TFs belonging to MYB, WRKY, and bZIP families, as well as expressions of Ca2+ -related genes such as several CML (calmodulin-like protein) and CPK (Ca2+ -dependent protein kinase) genes. Taken together, these results suggest that B deficiency could affect the expression of downstream target genes by alteration of a calcium signaling pathway in which the interaction between CMLs and/or CPKs with TFs (activator or repressor) would be a crucial step, which would explain why some genes are upregulated whereas others are repressed upon B deprivation.
Collapse
|
30
|
Leaungthitikanchana S, Fujibe T, Tanaka M, Wang S, Sotta N, Takano J, Fujiwara T. Differential expression of three BOR1 genes corresponding to different genomes in response to boron conditions in hexaploid wheat (Triticum aestivum L.). PLANT & CELL PHYSIOLOGY 2013; 54:1056-63. [PMID: 23596187 DOI: 10.1093/pcp/pct059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Boron (B) is an essential micronutrient for plants. Efflux-type B transporters, BORs, have been identified in Arabidopsis thaliana and rice. Here we identified BOR1 genes encoding B efflux transporters, from the hexaploid genome of wheat (Triticum aestivum L.). We cloned three genes closely related to OsBOR1 and named them TaBOR1.1, TaBOR1.2 and TaBOR1.3. All three TaBOR1s showed B efflux activities when expressed in tobacco BY-2 cells. TaBOR1-green fluorescent protein (GFP) fusion proteins were expressed in Arabidopsis leaf cells localized in the plasma membrane. The transcript accumulation patterns of the three genes differ in terms of tissue specificity and B nutrition responses. In roots, transcripts for all three genes accumulated abundantly while in shoots, the TaBOR1.2 transcript is the most abundant, followed by those of TaBOR1.1 and TaBOR1.3. Accumulation of TaBOR1.1 transcript is up-regulated under B deficiency conditions in both roots and shoots. In contrast, TaBOR1.2 transcript accumulation significantly increased in roots under excess B conditions. TaBOR1.3 transcript accumulation was reduced under excess B. Taken together, these results demonstrated that TaBOR1s are the B efflux transporters in wheat and, interestingly, the genes on the A, B and D genomes have different expression patterns.
Collapse
Affiliation(s)
- Sumana Leaungthitikanchana
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Yang LT, Qi YP, Lu YB, Guo P, Sang W, Feng H, Zhang HX, Chen LS. iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency. J Proteomics 2013; 93:179-206. [PMID: 23628855 DOI: 10.1016/j.jprot.2013.04.025] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/09/2013] [Accepted: 04/16/2013] [Indexed: 12/24/2022]
Abstract
UNLABELLED Seedlings of Citrus sinensis were fertilized with boron (B)-deficient (0μM H3BO3) or -sufficient (10μM H3BO3) nutrient solution for 15weeks. Thereafter, iTRAQ analysis was employed to compare the abundances of proteins from B-deficient and -sufficient roots. In B-deficient roots, 164 up-regulated and 225 down-regulated proteins were identified. These proteins were grouped into the following functional categories: protein metabolism, nucleic acid metabolism, stress responses, carbohydrate and energy metabolism, cell transport, cell wall and cytoskeleton metabolism, biological regulation and signal transduction, and lipid metabolism. The adaptive responses of roots to B-deficiency might include following several aspects: (a) decreasing root respiration; (b) improving the total ability to scavenge reactive oxygen species (ROS); and (c) enhancing cell transport. The differentially expressed proteins identified by iTRAQ are much larger than those detected using 2D gel electrophoresis, and many novel B-deficiency-responsive proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes were identified in this work. Our results indicate remarkable metabolic flexibility of citrus roots, which may contribute to the survival of B-deficient plants. This represents the most comprehensive analysis of protein profiles in response to B-deficiency. BIOLOGICAL SIGNIFICANCE In this study, we identified many new proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes that were not previously known to be associated with root B-deficiency responses. Therefore, our manuscript represents the most comprehensive analysis of protein profiles in response to B-deficiency and provides new information about the plant response to B-deficiency. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Lin-Tong Yang
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Quiles-Pando C, Rexach J, Navarro-Gochicoa MT, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, González-Fontes A. Boron deficiency increases the levels of cytosolic Ca(2+) and expression of Ca(2+)-related genes in Arabidopsis thaliana roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 65:55-60. [PMID: 23416496 DOI: 10.1016/j.plaphy.2013.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/09/2013] [Indexed: 05/08/2023]
Abstract
Boron (B) deficiency affects the expressions of genes involved in major physiological processes. However, signal transduction pathway through which plants are able to sense and transmit B-deprivation signal to the nucleus is unknown. The aim of this work was to research in Arabidopsis thaliana roots whether the short-term B deficiency affects cytosolic Ca(2+) levels ([Ca(2+)]cyt) as well as expression of genes involved in Ca(2+) signaling. To visualize in vivo changes in root [Ca(2+)]cyt, Arabidopsis seedlings expressing Yellow Cameleon (YC) 3.6 were grown in a nutrient solution supplemented with 2 μM B and then transferred to a B-free medium for 24 h. Root [Ca(2+)]cyt was clearly higher in B-deficient seedlings upon 6 and 24 h of B treatments when compared to controls. Transcriptome analyses showed that transcript levels of Ca(2+) signaling-related genes were affected by B deprivation. Interestingly, Ca(2+) channel (CNGC19, cyclic nucleotide-gated ion channel) gene was strongly upregulated as early as 6 h after B deficiency. Expression levels of Ca(2+) transporter (ACA, autoinhibited Ca(2+)-ATPase; CAX, cation exchanger) genes increased when seedlings were subjected to B deficiency. Gene expressions of calmodulin-like proteins (CMLs) and Ca(2+)-dependent protein kinases (CPKs) were also overexpressed upon exposure to B starvation. Our results suggest that B deficiency causes early responses in the expression of CNGC19 Ca(2+)-influx channel, ACA- and CAX-efflux, and Ca(2+) sensor genes to regulate Ca(2+) homeostasis. It is the first time that changes in the levels of in vivo cytosolic Ca(2+) and expression of Ca(2+) channel/transporter genes are related with short-term B deficiency in Arabidopsis roots.
Collapse
Affiliation(s)
- Carlos Quiles-Pando
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain.
| | | | | | | | | | | |
Collapse
|
33
|
Spinardi A, Bassi D. Olive fertility as affected by cross-pollination and boron. ScientificWorldJournal 2012; 2012:375631. [PMID: 22919310 PMCID: PMC3417202 DOI: 10.1100/2012/375631] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/18/2012] [Indexed: 01/05/2023] Open
Abstract
Self-compatibility of local olive (Olea europaea L.) accessions and of the cultivars “Frantoio” and “Leccino” was investigated in Garda Lake area, northern Italy. Intercompatibility was determined for “Casaliva,” “Frantoio,” and “Leccino,” as well as the effects of foliar Boron applications (0, 262, 525, or 1050 mg·L−1) applied about one week before anthesis on fruit set, shotberry set, and on in vitro pollen germination. Following self-pollination, fruit set was significantly lower and the occurrence of shot berries significantly higher than those obtained by open pollination. No significant effect of controlled cross-pollination over self-pollination on fruit set and shotberry set was detectable. B treatments increased significantly fruit set in “Frantoio” and “Casaliva” but not in “Leccino.” B sprays had no effect on shotberry set, suggesting that these parthenocarpic fruits did not strongly compete for resources allocation and did not take advantage of increased B tissue levels. Foliar B application enhanced in vitro pollen germination, and the optimal level was higher for pollen germination than for fruit set. Our results highlight the importance of olive cross pollination for obtaining satisfactory fruit set and the beneficial effect of B treatments immediately prior to anthesis, possibly by affecting positively the fertilisation process and subsequent plant source-sink relations linked to fruitlet retention.
Collapse
Affiliation(s)
- A Spinardi
- Department of Plant Production, Università degli Studi di Milano, 20133 Milano, Italy.
| | | |
Collapse
|
34
|
Beato VM, Teresa Navarro-Gochicoa M, Rexach J, Begoña Herrera-Rodríguez M, Camacho-Cristóbal JJ, Kempa S, Weckwerth W, González-Fontes A. Expression of root glutamate dehydrogenase genes in tobacco plants subjected to boron deprivation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:1350-4. [PMID: 21705226 DOI: 10.1016/j.plaphy.2011.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/02/2011] [Indexed: 05/02/2023]
Abstract
Recently it has been reported that boron (B) deficiency increases the expression of Nicotiana tabacum asparagine synthetase (AS) gene in roots, and that AS might play a main role as a detoxifying mechanism to convert ammonium into asparagine. Interestingly, glutamate dehydrogenase (GDH) genes, Ntgdh-NAD;A1 and Ntgdh-NAD;B2, were up-regulated when tobacco roots were subjected to B deprivation for 8 and 24 h. In addition, aminating and deaminating GDH (EC 1.4.1.2) activities were higher in B-deficient than in B-sufficient plants after 24 h of B deficiency. Ammonium concentrations were kept sufficiently low and with similar values in B-deficient roots when compared to control. Glucose and fructose contents decreased after 24 h of B deprivation. This drop in hexoses, which was corroborated by metabolomic analysis, correlated with higher GDH gene expression. Furthermore, metabolomic profiling showed that concentrations of several organic acids, phenolics, and amino acids increased after 24 h of B deficiency. Our results suggest that GDH enzyme plays an important role in metabolic acclimation of tobacco roots to B deprivation. A putative model to explain these results is proposed and discussed.
Collapse
Affiliation(s)
- Víctor M Beato
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain.
| | | | | | | | | | | | | | | |
Collapse
|