1
|
Gradaščević N, Selović A, Mujić N, Smječanin N, Karaman N, Nuhanović M. Study of radionuclides and heavy metal migration through soil profiles (0-60 cm) at points near the targets of NATO strikes in 1995: environmental monitoring and assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:522. [PMID: 35737131 DOI: 10.1007/s10661-022-10168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The activity concentrations of natural and artificial radionuclides (40K, 232Th, 226Ra, 238U, 137Cs) and concentrations of six heavy metals of interest (Cd, Cr, Cu, Ni, Pb and Zn) were investigated in 18 soil samples through soil depths (0-10, 10-20, 20-30, 30-40.40-50, 50-60 cm) at the three selected sites in the Hadžići. Since at this area ammunition with depleted uranium had been used during the NATO strikes in 1995, this study was conducted with the aim to assess the radiological and environmental health hazards. Radioactivity was determined by gamma spectrometry using HPGe and LEGE detectors and content of heavy metals by using a flame atomic absorption spectrometry. The correlation with distribution of the radionuclides and their activity concentrations through depths was found only at the site 1 for 40K, 232Th and 226Ra, where minimum/maximum activity concentrations for 40K were 814.42 Bq/kg/1039.48 Bq/kg, for 232Th 53.98 Bq/kg/74.12 Bq/kg and for 226Ra 50.32 Bq/kg/65.73 Bq/kg. Vertical distribution of 137Cs along 3 site profiles was used for distinction of cultivated and uncultivated soil. Using the activity ratio of 238U/226Ra and 235U/238U, the presence of depleted uranium (DU) was established at the site 3. Obtained Igeo values for determined heavy metals showed that all of three sites were unpolluted to moderately polluted. Pb content in all three sites showed correlation with concentration decreasing with increasing soil depth.
Collapse
Affiliation(s)
- Nedžad Gradaščević
- Veterinary Faculty, Department of Radiobiology With Radiation Hygiene, Biophysics & Environmental Protection, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Alisa Selović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Nedim Mujić
- Veterinary Faculty, Department of Radiobiology With Radiation Hygiene, Biophysics & Environmental Protection, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Narcisa Smječanin
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Nejra Karaman
- Veterinary Faculty, Department of Radiobiology With Radiation Hygiene, Biophysics & Environmental Protection, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Mirza Nuhanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| |
Collapse
|
2
|
Gemeiner H, Menegário AA, Williams PN, Matavelli Rosa AE, Santos CA, Pedrobom JH, Elias LP, Chang HK. Lability and bioavailability of Co, Fe, Pb, U and Zn in a uranium mining restoration site using DGT and phytoscreening. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57149-57165. [PMID: 34085201 DOI: 10.1007/s11356-021-14605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Mine restoration is a long and ongoing process, requiring careful management, which must be informed by site-specific, geochemical risk assessment. Paired topsoil and tree core samples from 4 sites within the uranium mining complex of INB Caldas in Minas Gerais (Brazil) were collected. Soil samples were analysed for their total content of Co, Fe, Pb, U and Zn by XRF, and subsequently, the potential environmental bioavailability of these metals were investigated by DGT and pore water analysis. In addition, results were compared with metal concentrations obtained by Tree Coring from the forest vegetation. In all sampling areas, mean total concentrations of U (Ctot. = 100.5 ± 66.5 to 129.6 ± 57.1 mg kg-1), Pb (Ctot. = 30.8 ± 12.7 to 90.8 ± 90.8 mg kg-1), Zn (Ctot. = 91.5 ± 24.7 to 99.6 ± 10.3 mg kg-1) and Co (Ctot. = 73.8 ± 25.5 to 119.7 ± 26.4 mg kg-1) in soils exceeded respective quality reference values. Study results suggest that AMD caused the increase of labile concentrations of Zn in affected soils. The high lability of the elements Pb (R = 62 ± 34 to 81 ± 29%), U (R = 57 ± 20 to 77 ± 28%) and Zn (R = 21 ± 25 to 34 ± 31%) in soils together with high bioconcentration factors found in wood samples for Pb (BCF = 0.0004 ± 0.0003 to 0.0026 ± 0.0033) and Zn (BCF = 0.012 ± 0.013 to 0.025 ± 0.021) indicated a high toxic potential of these elements to the biota in the soils of the study site. The combination of pore water and DGT analysis with Tree Coring showed to be a useful approach to specify the risk of metal polluted soils. However, the comparison of the results from DGT and Tree Coring could not predict the uptake of metals into the xylems of the sampled tree individuals.
Collapse
Affiliation(s)
- Hendryk Gemeiner
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Amauri Antonio Menegário
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil.
| | - Paul N Williams
- Institute for Global Security, School of Biological Sciences, Queen's University Belfast, BT9 5DL, Belfast, UK
| | - Amália E Matavelli Rosa
- Indústrias Nucleares do Brasil S.A. - INB Rodovia Poços de Caldas - Andradas, km 20,6 (BR 146, km 540), Caldas, MG, 37780-000, Brazil
| | - Cristiane A Santos
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
- Department of Geology and Basin Studies Laboratory (LEBAC), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Jorge Henrique Pedrobom
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Lucas Pellegrini Elias
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Hung Kiang Chang
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
- Department of Geology and Basin Studies Laboratory (LEBAC), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| |
Collapse
|
3
|
Chen L, Liu J, Zhang W, Zhou J, Luo D, Li Z. Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125319. [PMID: 33582470 DOI: 10.1016/j.jhazmat.2021.125319] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Uranium(U), a highly toxic radionuclide, is becoming a great threat to soil health development, as returning nuclear waste containing U into the soil systems is increased. Numerous studies have focused on: i) tracing the source in U contaminated soils; ii) exploring U geochemistry; and iii) assessing U phyto-uptake and its toxicity to plants. Yet, there are few literature reviews that systematically summarized the U in soil-plant system in past decade. Thus, we present its source, geochemical behavior, uptake, toxicity, detoxification, and bioremediation strategies based on available data, especially published from 2018 to 2021. In this review, we examine processes that can lead to the soil U contamination, indicating that mining activities are currently the main sources. We discuss the relationship between U bioavailability in the soil-plant system and soil conditions including redox potential, soil pH, organic matter, and microorganisms. We then review the soil-plant transfer of U, finding that U mainly accumulates in roots with a quite limited translocation. However, plants such as willow, water lily, and sesban are reported to translocate high U levels from roots to aerial parts. Indeed, U does not possess any identified biological role, but provokes numerous deleterious effects such as reducing seed germination, inhibiting plant growth, depressing photosynthesis, interfering with nutrient uptake, as well as oxidative damage and genotoxicity. Yet, plants tolerate U toxicity via various defense strategies including antioxidant enzymes, compartmentalization, and phytochelatin. Moreover, we review two biological remediation strategies for U-contaminated soil: (i) phytoremediation and (ii) microbial remediation. They are quite low-cost and eco-friendly compared with traditional physical or chemical remediation technologies. Finally, we conclude some promising research challenges regarding U biogeochemical behavior in soil-plant systems. This review, thus, further indicates that the combined application of U low accumulators and microbial inoculants may be an effective strategy for the bioremediation of U-contaminated soils.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Jinrong Liu
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.
| | - Weixiong Zhang
- Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou 730030, Gansu, PR China
| | - Jiqiang Zhou
- Gansu Nonferrous Engineering Exploration & Design Research Institute, Lanzhou 730030, Gansu, PR China
| | - Danqi Luo
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Zimin Li
- Université catholique de Louvain (UCLouvain), Earth and Life Institute, Soil Science, Louvain-La-Neuve 1348, Belgium.
| |
Collapse
|
4
|
Rajabi F, Jessat J, Garimella JN, Bok F, Steudtner R, Stumpf T, Sachs S. Uranium(VI) toxicity in tobacco BY-2 cell suspension culture - A physiological study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111883. [PMID: 33454591 DOI: 10.1016/j.ecoenv.2020.111883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
For the first time, the physiological and cellular responses of Nicotiana tabacum (BY-2) cells to uranium (U) as an abiotic stressor were studied using a multi-analytic approach that combined biochemical analysis, thermodynamic modeling and spectroscopic studies. The goal of this investigation was to determine the U threshold toxicity in tobacco BY-2 cells, the influence of U on the homeostasis of micro-macro essential nutrients, as well as the effect of Fe starvation on U bioassociation in cultured BY-2 cells. Our findings demonstrated that U interferes with the homeostasis of essential elements. The interaction of U with BY-2 cells confirmed both time- and concentration-dependent kinetics. Under Fe deficiency, a reduced level of U was detected in the cells compared to Fe-sufficient conditions. Interestingly, blocking the Ca channels with gadolinium chloride caused a decrease in U concentration in the BY-2 cells. Spectroscopic studies evidenced changes in the U speciation in the culture media with increasing exposure time under both Fe-sufficient and deficient conditions, leading us to conclude that different stress response reactions are related to Fe metabolism. Moreover, it is suggested that U toxicity in BY-2 cells is highly dependent on the existence of other micro-macro elements as shown by negative synergistic effects of U and Fe on cell viability.
Collapse
Affiliation(s)
- Fatemeh Rajabi
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Jenny Jessat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Jawaharlal Nehru Garimella
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Frank Bok
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Sachs
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
5
|
Zhang Y, Lai JL, Ji XH, Luo XG. Unraveling response mechanism of photosynthetic metabolism and respiratory metabolism to uranium-exposure in Vicia faba. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122997. [PMID: 32512460 DOI: 10.1016/j.jhazmat.2020.122997] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 05/28/2023]
Abstract
As a natural radionuclide, uranium (U) has obvious phytotoxicity, the purpose of this study is to unravel the response mechanism of U on photosynthetic and respiratory metabolism in plants. Therefore, 14-day-old Vicia faba seedlings were exposed to 0-25 μM U during 72 h. U effects on growth parameters, physiological parameters of plants, and potential phytotoxicity mechanism were investigated by physiological analysis, and metabolome and transcriptome data. U significantly inhibited photosynthesis and respiration of plants. In metabolome analysis, 53 metabolites related to carbohydrate metabolism were identified (13 up-regulated, 12 down-regulated). In transcriptome analysis, U significantly inhibited the expression of photoreactive electron transport chain (up: 0; down: 31), Calvin cycle (up: 0; down: 12) and photorespiration pathway genes (up: 0; down: 8). U significantly inhibited the expression of cellular energy metabolic pathways genes (e.g., glycolysis, TCA cycle, and oxidative phosphorylation pathways) (up 8, down 18). We concluded that U inhibited the expression of genes involved in the photosynthetic metabolic pathway, which caused the decrease of photosynthetic rate. Meanwhile, U inhibited the expression of the electron transport chain genes in the mitochondrial oxidative phosphorylation pathway, which leads to the abnormal energy supply of cells and the inhibition of root respiration rate.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jin-Long Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; College of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xiao-Hui Ji
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723000, China; College of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
6
|
Moll H, Sachs S, Geipel G. Plant cell (Brassica napus) response to europium(III) and uranium(VI) exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32048-32061. [PMID: 32504441 PMCID: PMC7392935 DOI: 10.1007/s11356-020-09525-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Experiments conducted over a period of 6 weeks using Brassica napus callus cells grown in vitro under Eu(III) or U(VI) stress showed that B. napus cells were able to bioassociate both potentially toxic metals (PTM), 628 nmol Eu/gfresh cells and 995 nmol U/gfresh cells. Most of the Eu(III) and U(VI) was found to be enriched in the cell wall fraction. Under high metal stress (200 μM), cells responded with reduced cell viability and growth. Subsequent speciation analyses using both metals as luminescence probes confirmed that B. napus callus cells provided multiple-binding environments for Eu(III) and U(VI). Moreover, two different inner-sphere Eu3+ species could be distinguished. For U(VI), a dominant binding by organic and/or inorganic phosphate groups of the plant biomass can be concluded.
Collapse
Affiliation(s)
- Henry Moll
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328, Dresden, Germany.
| | - Susanne Sachs
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Gerhard Geipel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| |
Collapse
|
7
|
Kretzschmar J, Strobel A, Haubitz T, Drobot B, Steudtner R, Barkleit A, Brendler V, Stumpf T. Uranium(VI) Complexes of Glutathione Disulfide Forming in Aqueous Solution. Inorg Chem 2020; 59:4244-4254. [PMID: 32148028 DOI: 10.1021/acs.inorgchem.9b02921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The interactions between glutathione disulfide, GSSG, the redox partner and dimer of the intracellular detoxification agent glutathione, GSH, and hexavalent uranium, U(VI), were extensively studied by solution NMR (in D2O), complemented by time-resolved laser-induced fluorescence and IR spectroscopies. As expected for the hard Lewis acid U(VI), coordination facilitates by the ligands' O-donor carboxyl groups. However, owing to the adjacent cationic α-amino group, the glutamyl-COO reveal monodentate binding, while the COO of the glycyl residues show bidentate coordination. The log K value for the reaction UO22+ + H3GSSG- → UO2(H3GSSG)+ (pH 3, 0.1 M NaClO4) was determined for the first time, being 4.81 ± 0.08; extrapolation to infinite dilution gave log K⊖ = 5.24 ± 0.08. U(VI) and GSSG form precipitates in the whole pD range studied (2-8), showing least solubility for 4 < pD < 6.5. Thus, particularly GSSG, hereby representing also other peptides and small proteins, affects the mobility of U(VI), strongly depending on the speciation of either component.
Collapse
Affiliation(s)
- Jerome Kretzschmar
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Alexander Strobel
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Toni Haubitz
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Björn Drobot
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Robin Steudtner
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Astrid Barkleit
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Vinzenz Brendler
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| |
Collapse
|
8
|
Gupta DK, Vuković A, Semenishchev VS, Inouhe M, Walther C. Uranium accumulation and its phytotoxicity symptoms in Pisum sativum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3513-3522. [PMID: 31836983 DOI: 10.1007/s11356-019-07068-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/14/2019] [Indexed: 05/10/2023]
Abstract
Environmental contamination by uranium (U) and other radionuclides is a serious problem worldwide, especially due to, e.g. mining activities. Ultimate accumulation of released U in aquatic systems and soils represent an escalating problem for all living organisms. In order to investigate U uptake and its toxic effects on Pisum sativum L., pea plantlets were hydroponically grown and treated with different concentrations of U. Five days after exposure to 25 and 50 μM U, P. sativum roots accumulated 2327.5 and 5559.16 mg kg-1 of U, respectively, while in shoots concentrations were 11.16 and 12.16 mg kg-1, respectively. Plants exposed to both U concentrations showed reduced biomass of shoots and reduced content of photosynthetic pigments (total chlorophyll and carotenoids) relative to control. As a biomarker of oxidative stress, lipid peroxidation (LPO) levels were determined, while antioxidative response was determined by catalase (CAT) and glutathione reductase (GR) activities as well as cysteine (Cys) and non-protein thiol (NP-SH) concentrations, both in roots and shoots. Both U treatments significantly increased LPO levels in roots and shoots, with the highest level recorded at 50 μM U, 50.38% in shoots and 59.9% in roots relative to control. U treatment reduced GR activity in shoots, while CAT activity was increased only in roots upon treatment with 25 μM U. In pea roots, cysteine content was significantly increased upon treatment with both U concentrations, for 19.8 and 25.5%, respectively, compared to control plants, while NP-SH content was not affected by the applied U. This study showed significant impact of U on biomass production and biochemical markers of phytotoxicity in P. sativum, indicating presence of oxidative stress and cellular redox imbalance in roots and shoots. Obtained tissue-specific response to U treatment showed higher sensitivity of shoots compared to roots. Much higher accumulation of U in pea roots compared to shoots implies potential role of this species in phytoremediation process.
Collapse
Affiliation(s)
- Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhavan, Aliganj, Jorbagh Road, New Delhi, 110003, India.
- Institut für Radioökologie und Strahlenschutz (IRS), Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| | - Ana Vuković
- Department of Biology, Josip Juraj Strossmayer University, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Vladimir S Semenishchev
- Radiochemistry and Applied Ecology Department, Ural Federal University, Physical Technology Institute, Mira Str, 19, Ekaterinburg, Russia
| | - Masahiro Inouhe
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, 790-8577, Japan
| | - Clemens Walther
- Institut für Radioökologie und Strahlenschutz (IRS), Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| |
Collapse
|
9
|
Zhang YY, Lv JW, Dong XJ, Fang Q, Tan WF, Wu XY, Deng QW. Influence on Uranium(VI) migration in soil by iron and manganese salts of humic acid: Mechanism and behavior. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113369. [PMID: 31662254 DOI: 10.1016/j.envpol.2019.113369] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Soil contains large amounts of humic acid (HA), iron ions and manganese ions, all of which affect U(VI) migration in the soil. HA interacts with iron and manganese ions to form HA salts (called HA-Fe and HA-Mn in this paper); however, the effects of HA-Fe and HA-Mn on the migration of U(VI) is not fully understood. In this study, HA-Fe and HA-Mn were compounded by HA interactions with ferric chloride hexahydrate and manganese chloride tetrahydrate, respectively. The influence of HA, HA-Fe and HA-Mn on U(VI) immobilization and migration was investigated by bath adsorption experiments and adsorption-desorption experiments using soil columns. The results showed that the presence of HA, HA-Fe and HA-Mn retarded the migration of U(VI) in soil. Supported by X-ray photoelectron spectroscopy (XPS) and BCR sequential extraction analyses, a plausible explanation for the retardation was that HA-Fe and HA-Mn could reduce hexavalent uranium to stable tetravalent uranium and increase the specific gravity of Fe/Mn oxide-bound uranium and organic/sulfide-bound uranium, which made it difficult for them to longitudinally migrate in soil. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and surface area and pore size analyses indicated that the complex formed between the hydroxyl, amino and carboxyl groups of HA-Fe and U(VI) increased the crystallinity of HA-Fe. The reaction between U(VI) and the hydroxyl, amino, aldehyde, keto and chlorine-containing groups of HA-Mn had no effect on the crystallinity of HA-Mn. Notably, the column desorption experiment found that the U(VI) immobilized in the soil remigrated under the effect of rain leaching, and acid rain promoted uranium remigration better than neutral rain. The findings provide some guidance for the decommissioning disposal of uranium contaminated site and it's risk assessments.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Jun-Wen Lv
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Contamination Control and Remediation, Hengyang 421001, China.
| | - Xue-Jie Dong
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qi Fang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Contamination Control and Remediation, Hengyang 421001, China
| | - Wen-Fa Tan
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Contamination Control and Remediation, Hengyang 421001, China
| | - Xiao-Yan Wu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Contamination Control and Remediation, Hengyang 421001, China
| | - Qin-Wen Deng
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Contamination Control and Remediation, Hengyang 421001, China
| |
Collapse
|
10
|
Gao N, Huang Z, Liu H, Hou J, Liu X. Advances on the toxicity of uranium to different organisms. CHEMOSPHERE 2019; 237:124548. [PMID: 31549660 DOI: 10.1016/j.chemosphere.2019.124548] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 05/10/2023]
Abstract
The extensive application of radioactive element uranium (U) and its compounds in the nuclear industry has significantly increased the risk of exposure to the environment. Therefore, research on the safety risks and toxicity mechanisms of U exposure has received increasing attention. This paper reviews the toxic effects of U on different species under different conditions, and summarizes the potential toxicity mechanisms. Under the exposure of U, reactive oxygen species (ROS) produced in cells will damage membrane structure in cells, and inhibit respiratory chain reaction by reducing the production of NADH and ATP. It also induce the expression of apoptosis factors such as Bcl-2, Bid, Bax, and caspase family to cause apoptosis cascade reaction, leading to DNA degradation and cell death. We innovatively list some methods to reduce the toxicity of U because some microorganisms can precipitate uranyl ions through biomineralization or reduction processes. Our work provides a solid foundation for further risk assessment of U.
Collapse
Affiliation(s)
- Ning Gao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Zhihui Huang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Haiqiang Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Xinhui Liu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong Province, China
| |
Collapse
|
11
|
Sha YH, Hu N, Wang YD, Chen SY, Zou C, Dai ZR, Zhang H, Ding DX. Enhanced phytoremediation of uranium contaminated soil by artificially constructed plant community plots. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 208-209:106036. [PMID: 31493563 DOI: 10.1016/j.jenvrad.2019.106036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
In order to develop an artificially constructed plant community plot for the enhanced phytoremediation of uranium contaminated soils, three uranium accumulators including Bamboo-willow (Salix sp.), Paspalum scrobiculatum linn and Macleaya cordata were used to construct four artificial plant community plots, and greenhouse experiments were conducted to investigate the bioaccumulation of uranium by the plants and the organic acid content, enzyme activity, and the change of microbial community structure in their rhizosphere soils. The transfer factor (TF) and the total bioaccumulation amount (TBA) of uranium were used to describe remediation efficiencies in this paper. It was found that their remediation efficiencies were in the order Bamboo-willow (Salix sp.)-Paspalum scrobiculatum linn-Macleaya cordata > Bamboo-willow (Salix sp.)-Macleaya cordata > Paspalum scrobiculatum linn-Macleaya cordata > Bamboo-willow (Salix sp.)-Paspalum scrobiculatum linn. The bioaccumulation amount of uranium by each plant in the Bamboo-willow (Salix sp.)-Paspalum scrobiculatum linn-Macleaya cordata community plot was significantly (P < 0.05) higher than that by its single population, the bioaccumulation amounts of uranium by Bamboo-willow (Salix sp.), Paspalum scrobiculatum linn and Macleaya cordata were 0.29, 0.32 and 2.19 mg/plant, respectively, and they were increased by 31.82%, 77.78% and 146.07%, respectively, and the transfer efficiencies by the plants were increased by 150%, 110% and 52.17%, respectively. The interaction between the plants' roots and the microorganisms in the rhizosphere soil of the Bamboo-willow (Salix sp.)-Paspalum scrobiculatum linn-Macleaya cordata community plot resulted in the high content of organic acids such as oxalic acid in the rhizosphere soil of the plant community plot, which was significantly (P < 0.05) higher than that of its single population. The chelation of the organic acids with uranium led to an increase in the proportion of exchangeable uranium in soil solution. In addition, Burkholderia, which is an iron-producing carrier bacterium and can increase the uptake and accumulation of uranium by plants, and Leptolyngbya, which is a plant growth promoting rhizobacteria and can increase the biomass of plants, emerged in the rhizosphere soil of the plant community plot. These may be the mechanisms by which the phytoremediation of the uranium contaminated soils was enhanced by the plant community plot.
Collapse
Affiliation(s)
- Yin-Hua Sha
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Henyang, 421001, People's Republic of China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Henyang, 421001, People's Republic of China
| | - Yong-Dong Wang
- Hunan Province Key Laboratory of Green Development Technology for Exetremely Low Grade Uranium Resources, University of South China, Henyang, 421001, People's Republic of China
| | - Si-Yu Chen
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Henyang, 421001, People's Republic of China
| | - Chao Zou
- Hunan Province Key Laboratory of Green Development Technology for Exetremely Low Grade Uranium Resources, University of South China, Henyang, 421001, People's Republic of China
| | - Zhong-Ran Dai
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Henyang, 421001, People's Republic of China
| | - Hui Zhang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Henyang, 421001, People's Republic of China
| | - De-Xin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Henyang, 421001, People's Republic of China.
| |
Collapse
|
12
|
Imran M, Hu S, Luo X, Cao Y, Samo N. Phytoremediation through Bidens pilosa L., a nonhazardous approach for uranium remediation of contaminated water. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:752-759. [PMID: 30656944 DOI: 10.1080/15226514.2018.1556594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A few plant species are recognized for uranium bioaccumulation, particularly as upper accumulator. Uranium has a dynamic impact on the physiological, biochemical, and photochemical reactions. Therefore, the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), soluble sugar, protein, photochemical reactions, and accumulation of uranium characteristics were studied in Bidens pilosa L. while applying altered concentrations of uranium in the form of C4H6O6U. It was done to measure the capacity of B. pilosa L. to remediate uranium from wastewater. In this study, the results showed that B. pilosa L. not only has the ability of uranium accumulation but it can accumulate in the upper parts i.e. leaves and stem. Overall it can accumulate as much as 1538 mg/kg on a dry weight basis. Uranium accumulation is a complex process which changes both physiological and biochemical index in plant species under different treatments. SOD decreased in leaves and stem in response to all treatments whereas POD and CAT increased at treatment 3 and 72 h up to 1335 μ/g-FW and 47 μ/g-FW at 72 h, respectively. This increase was followed by a downward trend. The correlation coefficient between fluorescence ratio Fv/Fm and the concentrations of uranium treatment were significantly negative i.e. -0.928. The Fourier transform infrared spectroscopy (FTIR) analysis also highlighted that uranium does not change the basic chemical composition of B. pilosa L., but has an effect on the contents of chemical constituents. From the study, it is concluded that B. Pilosa L. has shown a capacity for uranium enrichment, especially as an upper accumulator.
Collapse
Affiliation(s)
- Muhammad Imran
- a Plant Cell Engineering Laboratory, Department of Biotechnology, School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang , Sichuan Province , China
| | - Shanglian Hu
- a Plant Cell Engineering Laboratory, Department of Biotechnology, School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang , Sichuan Province , China
| | - Xuegang Luo
- a Plant Cell Engineering Laboratory, Department of Biotechnology, School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang , Sichuan Province , China
| | - Ying Cao
- a Plant Cell Engineering Laboratory, Department of Biotechnology, School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang , Sichuan Province , China
| | - Naseem Samo
- a Plant Cell Engineering Laboratory, Department of Biotechnology, School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang , Sichuan Province , China
| |
Collapse
|
13
|
Li P, Zhang R, Zheng G. Genetic and physiological effects of the natural radioactive gas radon on the epiphytic plant Tillandsia brachycaulos. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:385-390. [PMID: 30268929 DOI: 10.1016/j.plaphy.2018.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Radon (222Rn) is the most abundant natural radioactive gas in nature and triggers carcinogenesis. Few reports exist on whether radon can damage plants as it does animals. Therefore, we chose Tillandsia brachycaulos, a common indicator plant, as the material to detect the physiological and genetic changes caused by radon. With an increase in radon concentration, DNA indices (tail length, tail DNA, tail moment and Olive tail moment) from the comet assay and malondialdehyde (MDA) content increased significantly, suggesting that T. brachycaulos inevitably suffered from radiation damage. However, neither the leaf relative conductivity nor the soluble protein content changed significantly with radon fumigation, and no dose-dependent effect existed between the chlorophyll content and radon concentration, indicating that T. brachycaulos had resistance to radon stress. Foliar trichomes most likely excluded the pollutant from plants because DNA damage in T. brachycaulos with trichomes manually removed was considerably greater than that with trichomes. Moreover, the antioxidant enzyme system further reduced the damage of radon to plants because the activity of superoxide dismutase (SOD) increased significantly with the radon concentration.
Collapse
Affiliation(s)
- Peng Li
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Ruiwen Zhang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Guiling Zheng
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
14
|
Henner P, Brédoire F, Tailliez A, Coppin F, Pierrisnard S, Camilleri V, Keller C. Influence of root exudation of white lupine (Lupinus albus L.) on uranium phytoavailability in a naturally uranium-rich soil. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 190-191:39-50. [PMID: 29751206 DOI: 10.1016/j.jenvrad.2018.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Mechanisms of uranium (U) transfer from soil to plants remain poorly understood. The kinetics of supply of U to the soil solution from solid phases could be a key point to understand its phytoavailability and implications for environmental risk assessment. Root activity, particularly the continuous release of organic acids in the rhizosphere, could have an effect on this supply. We tested the impact of citrate exudation by roots of Lupinus albus, either P-sufficient (P+) or P-deficient (P-), on the phytoavailability of U from a naturally contaminated soil (total content of 413 mg U kg-1) using a rhizotest design. Combined effects of P (P-/P+ used to modulate plant physiology) and citrate (model exudate) on the solubilization of U contained in the soils were tested in closed reactors (batch). The batch experiment showed the existence of a low U available pool (0.4% total U) and high accessibility (kd' around 20 L kg-1) which was not significantly affected by P treatment or citrate concentrations. Analysis of U, Fe, Ca, P and citrate concentrations in the batches suggested a complex combination of mechanisms and factors including desorption, resorption, precipitation, co-sorption. On rhizotest, L. albus plants extracted 0.5-0.75% of the total U and between 25 and 40% of the estimated available U present in the rhizotest in 5 days. Uranium accumulation at the whole plant level (20 mg U kg-1d.w., shoot to root ratio around 10-3) seemed to be dependent neither on the plant P nutrition status nor citrate exudation level, possibly in relation with the equivalent accessibility of U whatever the growth conditions. Yet differential translocation to shoots seemed to be positively correlated to citrate exudation.
Collapse
Affiliation(s)
- Pascale Henner
- Institute for Radioprotection and Nuclear Safety (IRSN/PSE-ENV/SRTE), Laboratory of Research on Radionuclides Transfer Within Terrestrial Ecosystems (LR2T), Cadarache, Bat 183, BP 3, 13115 Saint Paul-lez-Durance, France.
| | - Félix Brédoire
- Institute for Radioprotection and Nuclear Safety (IRSN/PSE-ENV/SRTE), Laboratory of Research on Radionuclides Transfer Within Terrestrial Ecosystems (LR2T), Cadarache, Bat 183, BP 3, 13115 Saint Paul-lez-Durance, France
| | - Antoine Tailliez
- Institute for Radioprotection and Nuclear Safety (IRSN/PSE-ENV/SRTE), Laboratory of Research on Radionuclides Transfer Within Terrestrial Ecosystems (LR2T), Cadarache, Bat 183, BP 3, 13115 Saint Paul-lez-Durance, France
| | - Frédéric Coppin
- Institute for Radioprotection and Nuclear Safety (IRSN/PSE-ENV/SRTE), Laboratory of Research on Radionuclides Transfer Within Terrestrial Ecosystems (LR2T), Cadarache, Bat 183, BP 3, 13115 Saint Paul-lez-Durance, France
| | - Sylvie Pierrisnard
- Institute for Radioprotection and Nuclear Safety (IRSN/PSE-ENV/SRTE), Laboratory of Research on Radionuclides Transfer Within Terrestrial Ecosystems (LR2T), Cadarache, Bat 183, BP 3, 13115 Saint Paul-lez-Durance, France
| | - Virginie Camilleri
- Institute for Radioprotection and Nuclear Safety (IRSN/PSE-ENV/SRTE), Laboratory of Research on Radionuclides Effects on Ecosystems (LECO), Cadarache, Bat 183, BP 3, 13115 Saint Paul-lez-Durance, France
| | - Catherine Keller
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, BP 80, 13545 Aix-en-Provence Cedex 04, France
| |
Collapse
|
15
|
Berthet S, Villiers F, Alban C, Serre NBC, Martin-Laffon J, Figuet S, Boisson AM, Bligny R, Kuntz M, Finazzi G, Ravanel S, Bourguignon J. Arabidopsis thaliana plants challenged with uranium reveal new insights into iron and phosphate homeostasis. THE NEW PHYTOLOGIST 2018; 217:657-670. [PMID: 29165807 DOI: 10.1111/nph.14865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
Uranium (U) is a naturally occurring radionuclide that is toxic to plants. It is known to interfere with phosphate nutrition and to modify the expression of iron (Fe)-responsive genes. The transporters involved in the uptake of U from the environment are unknown. Here, we addressed whether IRT1, a high-affinity Fe2+ transporter, could contribute to U uptake in Arabidopsis thaliana. An irt1 null mutant was grown hydroponically in different conditions of Fe bioavailability and phosphate supply, and challenged with uranyl. Several physiological parameters (fitness, photosynthesis) were measured to evaluate the response to U treatment. We found that IRT1 is not a major route for U uptake in our experimental conditions. However, the analysis of irt1 indicated that uranyl interferes with Fe and phosphate homeostasis at different levels. In phosphate-sufficient conditions, the absence of the cation chelator EDTA in the medium has drastic consequences on the physiology of irt1, with important symptoms of Fe deficiency in chloroplasts. These effects are counterbalanced by U, probably because the radionuclide competes with Fe for complexation with phosphate and thus releases active Fe for metabolic and biogenic processes. Our study reveals that challenging plants with U is useful to decipher the complex interplay between Fe and phosphate.
Collapse
Affiliation(s)
- Serge Berthet
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | - Florent Villiers
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | - Claude Alban
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | - Nelson B C Serre
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | | | - Sylvie Figuet
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | - Anne-Marie Boisson
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | - Richard Bligny
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | - Marcel Kuntz
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | - Giovanni Finazzi
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | - Stéphane Ravanel
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | | |
Collapse
|
16
|
Kretzschmar J, Haubitz T, Hübner R, Weiss S, Husar R, Brendler V, Stumpf T. Network-like arrangement of mixed-valence uranium oxide nanoparticles after glutathione-induced reduction of uranium(vi). Chem Commun (Camb) 2018; 54:8697-8700. [DOI: 10.1039/c8cc02070a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2–5 nm UO2+x nanocrystals yielded under near-neutral conditions arrange as 20–40 nm chain-like building blocks, and finally form network-like aggregates.
Collapse
Affiliation(s)
- Jerome Kretzschmar
- Institute of Resource Ecology
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden
- Germany
| | - Toni Haubitz
- Institute of Resource Ecology
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden
- Germany
- Institute of Chemistry
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden
- Germany
| | - Stephan Weiss
- Institute of Resource Ecology
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden
- Germany
| | - Richard Husar
- Institute of Resource Ecology
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden
- Germany
| | - Vinzenz Brendler
- Institute of Resource Ecology
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden
- Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden
- Germany
| |
Collapse
|
17
|
Tawussi F, Walther C, Gupta DK. Does low uranium concentration generates phytotoxic symptoms in Pisum sativum L. in nutrient medium? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22741-22751. [PMID: 28879634 DOI: 10.1007/s11356-017-0056-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Due to excessive mining and use of radionuclide especially uranium (U) and its fission products, numerous health hazards as well as environmental contamination worldwide have been created. The present study focused on demonstrating whether low concentration of U treatment in liquid nutient medium may translocate traces of U in plants and in fruits of Pisum sativum after 30 and 60 days of exposure for the safe use as a food supplement for human/animals. Hydroponically grown plants (in amended Hoagland medium) were treated with two different concentrations of uranium ([U] = 100 and 500 nM, respectively). Plants showed a decrease in total chlorophyll after 60 days of treatment. On the other hand, Eh of the nutrient medium was not affected from the initial days till 60 days of treatment, but pH of nutrient medium was increased upon durations, highest at 60 days of treatment. In seeds, micro/macro elements were under limit as well as U concentration was also under detection limit. We did not observe any U in the above ground parts (shoots/seeds) of the plant, i.e., under detection limit. Our observation suggests that P. sativum plants may be useful to grow at low radionuclide [U]-contaminated areas for safe human/animal use, but for other fission products, we have to investigate further for the safe human/animal use.
Collapse
Affiliation(s)
- Frank Tawussi
- Institut für Radioökologie und Strahlenschutz (IRS), Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Clemens Walther
- Institut für Radioökologie und Strahlenschutz (IRS), Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Dharmendra K Gupta
- Institut für Radioökologie und Strahlenschutz (IRS), Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| |
Collapse
|
18
|
Wang P, Du L, Tan Z, Su R, Li T. Effects of Organic Acids and Sylvite on Phytoextraction of 241Am Contaminated Soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:407-412. [PMID: 27999882 DOI: 10.1007/s00128-016-2004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Contamination of soil with Americium (241Am) at nuclear sites in China poses a serious problem. We screened six plants, from five families, for their 241Am-enrichment potential. Europium (Eu), which is morphologically and chemically similar to the highly toxic 241Am, was used in its place. Moreover, the effects of sylvite, citric acid (CA), malic acid (MA), and humic acid (HA) on the absorption of 241Am by the plants, and its transport within them, were evaluated along with their effect on plant biomass and 241Am extraction volume. Barley and cabbage showed relatively stronger Eu accumulation capacities. Citric acid promoted the absorption of 241Am by barley roots and its transport within the plants. The effects of sylvite were not obvious and those of HA were the weakest in case of sunflower; HA, however, maximally increased the biomass of the plants. Our results could provide the basis for future radionuclide phytoremediation of contaminated soils.
Collapse
Affiliation(s)
- Ping Wang
- Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang City, 621900, Sichuan Province, China.
| | - Liang Du
- Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang City, 621900, Sichuan Province, China
| | - Zhaoyi Tan
- Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang City, 621900, Sichuan Province, China
| | - Rongbo Su
- Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang City, 621900, Sichuan Province, China
| | - Taowen Li
- Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang City, 621900, Sichuan Province, China
| |
Collapse
|
19
|
Mechanism of Attenuation of Uranyl Toxicity by Glutathione in Lactococcus lactis. Appl Environ Microbiol 2016; 82:3563-3571. [PMID: 27060118 DOI: 10.1128/aem.00538-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/03/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Both prokaryotic and eukaryotic organisms possess mechanisms for the detoxification of heavy metals, and these mechanisms are found among distantly related species. We investigated the role of intracellular glutathione (GSH), which, in a large number of taxa, plays a role in protection against the toxicity of common heavy metals. Anaerobically grown Lactococcus lactis containing an inducible GSH synthesis pathway was used as a model organism. Its physiological condition allowed study of putative GSH-dependent uranyl detoxification mechanisms without interference from additional reactive oxygen species. By microcalorimetric measurements of metabolic heat during cultivation, it was shown that intracellular GSH attenuates the toxicity of uranium at a concentration in the range of 10 to 150 μM. In this concentration range, no effect was observed with copper, which was used as a reference for redox metal toxicity. At higher copper concentrations, GSH aggravated metal toxicity. Isothermal titration calorimetry revealed the endothermic binding of U(VI) to the carboxyl group(s) of GSH rather than to the reducing thiol group involved in copper interactions. The data indicate that the primary detoxifying mechanism is the intracellular sequestration of carboxyl-coordinated U(VI) into an insoluble complex with GSH. The opposite effects on uranyl and on copper toxicity can be related to the difference in coordination chemistry of the respective metal-GSH complexes, which cause distinct growth phase-specific effects on enzyme-metal interactions. IMPORTANCE Understanding microbial metal resistance is of particular importance for bioremediation, where microorganisms are employed for the removal of heavy metals from the environment. This strategy is increasingly being considered for uranium. However, little is known about the molecular mechanisms of uranyl detoxification. Existing studies of different taxa show little systematics but hint at a role of glutathione (GSH). Previous work could not unequivocally demonstrate a GSH function in decreasing the presumed uranyl-induced oxidative stress, nor could a redox-independent detoxifying action of GSH be identified. Combining metabolic calorimetry with cell number-based assays and genetics analysis enables a novel and general approach to quantify toxicity and relate it to molecular mechanisms. The results show that GSH-expressing microorganisms appear advantageous for uranyl bioremediation.
Collapse
|
20
|
Srivastava S, Bhainsa KC. Evaluation of uranium removal by Hydrilla verticillata (L.f.) Royle from low level nuclear waste under laboratory conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 167:124-129. [PMID: 26618901 DOI: 10.1016/j.jenvman.2015.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023]
Abstract
The present study evaluated uranium (U) removal ability and tolerance to low level nuclear waste (LLNW) of an aquatic weed Hydrilla verticillata. Plants were screened for growth in 10%-50% waste treatments up to 3 d. Treatments of 20% and 50% waste imposed increasing toxicity with duration assessed in terms of change in fresh weight and in the levels of photosynthetic pigments and thiobarbituric acid-reactive substances. U concentration, however, did not show a progressive increase and was about 42 μg g(-1) dw from 20% to 50% waste at 3 d. This suggested that a saturation stage was reached with respect to U removal due to increasing toxicity. However, in another experiment with 10% waste and 10% waste+10 ppm U treatments, plants showed an increase in U concentration with the maximum level approaching 426 μg g(-1) dw at 3 d without showing any toxicity as compared to that at 20% and 50% waste treatments. Hence, plants possessed significant potential to take up U and toxicity of LLNW limited their U removal ability. This implies that the use of Hydrilla plants for U removal from LLNW is feasible at low concentrations and would require repeated harvesting at short intervals.
Collapse
Affiliation(s)
- Sudhakar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
| | - K C Bhainsa
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| |
Collapse
|
21
|
Horemans N, Van Hees M, Saenen E, Van Hoeck A, Smolders V, Blust R, Vandenhove H. Influence of nutrient medium composition on uranium toxicity and choice of the most sensitive growth related endpoint in Lemna minor. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 151 Pt 2:427-37. [PMID: 26187266 DOI: 10.1016/j.jenvrad.2015.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/20/2015] [Accepted: 06/25/2015] [Indexed: 05/21/2023]
Abstract
Uranium (U) toxicity is known to be highly dependent on U speciation and bioavailability. To assess the impact of uranium on plants, a growth inhibition test was set up in the freshwater macrophyte Lemna minor. First growth media with different compositions were tested in order to find a medium fit for testing U toxicity in L. minor. Following arguments were used for medium selection: the ability to sustain L. minor growth, a high solubility of U in the medium and a high percentage of the more toxic U-species namely UO2(2+). Based on these selection criteria a with a low phosphate concentration of 0.5 mg L(-1) and supplemented with 5 mM MES (2-(N-morpholino)ethanesulfonic acid) to ensure pH stability was chosen. This medium also showed highest U toxicity compared to the other tested media. Subsequently a full dose response curve for U was established by exposing L. minor plants to U concentrations ranging from 0.05 μM up to 150 μM for 7 days. Uranium was shown to adversely affect growth of L. minor in a dose dependent manner with EC10, EC30 and EC50 values ranging between 1.6 and 4.8 μM, 7.7-16.4 μM and 19.4-37.2 μM U, respectively, depending on the growth endpoint. Four different growth related endpoints were tested: frond area, frond number, fresh weight and dry weight. Although differences in relative growth rates and associated ECx-values calculated on different endpoints are small (maximal twofold difference), frond area is recommended to be used to measure U-induced growth effects as it is a sensitive growth endpoint and easy to measure in vivo allowing for measurements over time.
Collapse
Affiliation(s)
- Nele Horemans
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium; Hasselt University, Centre for Environmental Sciences, Agoralaan gebouw D, B-3590, Diepenbeek, Belgium.
| | - May Van Hees
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium
| | - Eline Saenen
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium
| | - Arne Van Hoeck
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium
| | - Valérie Smolders
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium
| | - Ronny Blust
- Department of Biology, University of Antwerp (UA), Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | | |
Collapse
|
22
|
Saenen E, Horemans N, Vanhoudt N, Vandenhove H, Biermans G, van Hees M, Wannijn J, Vangronsveld J, Cuypers A. Oxidative stress responses induced by uranium exposure at low pH in leaves of Arabidopsis thaliana plants. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 150:36-43. [PMID: 26263174 DOI: 10.1016/j.jenvrad.2015.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/20/2015] [Accepted: 07/19/2015] [Indexed: 05/10/2023]
Abstract
Anthropogenic activities have led to a widespread uranium (U) contamination in many countries. The toxic effects of U at the cellular level have mainly been investigated at a pH around 5.5, the optimal pH for hydroponically grown plants. However, since the speciation of U, and hence its toxicity, is strongly dependent on environmental factors such as the pH, it is important to investigate the effects of U at different environmentally relevant pH levels. Although U is poorly translocated from the roots to the shoots, resulting in a low U concentration in the leaves, it has been demonstrated that toxic effects in the leaves were already visible after 1 day exposure at pH 5.5, although only when exposed to relatively high U concentrations (100 μM). Therefore, the present study aimed to analyse the effects of different U concentrations (ranging from 0 to 100 μM) at pH 4.5 in leaves of Arabidopsis thaliana plants. Results indicate that U induces early senescence in A. thaliana leaves as was suggested by a decreased expression of CAT2 accompanied by an induction of CAT3 expression, a decreased CAT capacity and an increased lipid peroxidation. In addition, miRNA398b/c is involved in the regulation of the SOD response in the leaves. As such, an increased MIR398b/c expression was observed leading to a decreased transcript level of CSD1/2. Finally, the biosynthesis of ascorbate was induced after U exposure. This can point towards an important role for this metabolite in the scavenging of reactive oxygen species under U stress.
Collapse
Affiliation(s)
- Eline Saenen
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium; Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Nathalie Vanhoudt
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Hildegarde Vandenhove
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Geert Biermans
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium; Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - May van Hees
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Jean Wannijn
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Jaco Vangronsveld
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Ann Cuypers
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
23
|
Lanier C, Manier N, Cuny D, Deram A. The comet assay in higher terrestrial plant model: Review and evolutionary trends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 207:6-20. [PMID: 26327498 DOI: 10.1016/j.envpol.2015.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/13/2015] [Indexed: 05/24/2023]
Abstract
The comet assay is a sensitive technique for the measurement of DNA damage in individual cells. Although it has been primarily applied to animal cells, its adaptation to higher plant tissues significantly extends the utility of plants for environmental genotoxicity research. The present review focuses on 101 key publications and discusses protocols and evolutionary trends specific to higher plants. General consensus validates the use of the percentage of DNA found in the tail, the alkaline version of the test and root study. The comet protocol has proved its effectiveness and its adaptability for cultivated plant models. Its transposition in wild plants thus appears as a logical evolution. However, certain aspects of the protocol can be improved, namely through the systematic use of positive controls and increasing the number of nuclei read. These optimizations will permit the increase in the performance of this test, namely when interpreting mechanistic and physiological phenomena.
Collapse
Affiliation(s)
- Caroline Lanier
- Université Lille 2, EA 4483, Laboratoire des Sciences Végétales et Fongiques - Faculté des Sciences Pharmaceutiques et Biologiques, B.P. 83, F-59006 Lille Cedex, France; Université Lille 2, Faculté Ingénierie et Management de la Santé (ILIS), EA 4483, 42, Rue Ambroise Paré, 59120 Loos, France
| | - Nicolas Manier
- INERIS, Parc Technologique ALATA, B.P. 2, 60550 Verneuil en Halatte, France
| | - Damien Cuny
- Université Lille 2, Faculté Ingénierie et Management de la Santé (ILIS), EA 4483, 42, Rue Ambroise Paré, 59120 Loos, France
| | - Annabelle Deram
- Université Lille 2, EA 4483, Laboratoire des Sciences Végétales et Fongiques - Faculté des Sciences Pharmaceutiques et Biologiques, B.P. 83, F-59006 Lille Cedex, France; Université Lille 2, Faculté Ingénierie et Management de la Santé (ILIS), EA 4483, 42, Rue Ambroise Paré, 59120 Loos, France.
| |
Collapse
|
24
|
Saenen E, Horemans N, Vanhoudt N, Vandenhove H, Biermans G, Van Hees M, Wannijn J, Vangronsveld J, Cuypers A. Induction of Oxidative Stress and Antioxidative Mechanisms in Arabidopsis thaliana after Uranium Exposure at pH 7.5. Int J Mol Sci 2015; 16:12405-23. [PMID: 26042463 PMCID: PMC4490451 DOI: 10.3390/ijms160612405] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/06/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022] Open
Abstract
To evaluate the environmental impact of uranium (U) contamination, it is important to investigate the effects of U at ecologically relevant conditions. Since U speciation, and hence its toxicity, strongly depends on environmental pH, the present study aimed to investigate dose-dependent effects of U at pH 7.5. Arabidopsis thaliana plants (Mouse-ear Cress) were exposed for three days to different U concentrations at pH 7.5. In the roots, the increased capacities of ascorbate peroxidase and glutathione reductase indicate an important role for the ascorbate-glutathione cycle during U-induced stress. However, a significant decrease in the ascorbate redox state was observed after exposure to 75 and 100 µM U, indicating that those roots are severely stressed. In accordance with the roots, the ascorbate-glutathione cycle plays an important role in the antioxidative defence systems in A. thaliana leaves exposed to U at pH 7.5 as the ascorbate and glutathione biosynthesis were upregulated. In addition, small inductions of enzymes of the antioxidative defence system were observed at lower U concentrations to counteract the U-induced stress. However, at higher U concentrations it seems that the antioxidative defence system of the leaves collapses as reductions in enzyme activities and gene expression levels were observed.
Collapse
Affiliation(s)
- Eline Saenen
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Nathalie Vanhoudt
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Hildegarde Vandenhove
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Geert Biermans
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - May Van Hees
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Jean Wannijn
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Jaco Vangronsveld
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Ann Cuypers
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
25
|
Horemans N, Van Hees M, Van Hoeck A, Saenen E, De Meutter T, Nauts R, Blust R, Vandenhove H. Uranium and cadmium provoke different oxidative stress responses in Lemna minor L. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17 Suppl 1:91-100. [PMID: 25073449 DOI: 10.1111/plb.12222] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/13/2014] [Indexed: 05/10/2023]
Abstract
Common duckweed (Lemna minor L.) is ideally suited to test the impact of metals on freshwater vascular plants. Literature on cadmium (Cd) and uranium (U) oxidative responses in L. minor are sparse or, for U, non-existent. It was hypothesised that both metals impose concentration-dependent oxidative stress and growth retardation on L. minor. Using a standardised 7-day growth inhibition test, the adverse impact of these metals on L. minor growth was confirmed, with EC50 values for Cd and U of 24.1 ± 2.8 and 29.5 ± 1.9 μm, respectively, and EC10 values of 1.5 ± 0.2 and 6.5 ± 0.9 μm, respectively. The metal-induced oxidative stress response was compared through assessing the activity of different antioxidative enzymes [catalase, glutathione reductase, superoxide dismutase (SOD), ascorbate peroxidase (APOD), guaiacol peroxidase (GPOD) and syringaldizyne peroxidase (SPOD)]. Significant changes in almost all antioxidative enzymes indicated their importance in counteracting the U- and Cd-imposed oxidative burden. However, some striking differences were also observed. For activity of APODs and SODs, a biphasic but opposite response at low Cd compared to U concentrations was found. In addition, Cd (0.5-20 μm) strongly enhanced plant GPOD activity, whereas U inhibited it. Finally, in contrast to Cd, U up to 10 μm increased the level of chlorophyll a and b and carotenoids. In conclusion, although U and Cd induce similar growth arrest in L. minor, the U-induced oxidative stress responses, studied here for the first time, differ greatly from those of Cd.
Collapse
Affiliation(s)
- N Horemans
- Belgian Nuclear Research Institute, Environmental Health and Safety, Biosphere Impact Studies, Mol, Belgium; Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Viehweger K. How plants cope with heavy metals. BOTANICAL STUDIES 2014; 55:35. [PMID: 28510963 PMCID: PMC5432744 DOI: 10.1186/1999-3110-55-35] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 11/13/2013] [Indexed: 05/19/2023]
Abstract
Heavy metals are naturally occurring in the earth's crust but anthropogenic and industrial activities have led to drastic environmental pollutions in distinct areas. Plants are able to colonize such sites due to several mechanisms of heavy metal tolerance. Understanding of these pathways enables different fruitful approaches like phytoremediation and biofortification.Therefore, this review addresses mechanisms of heavy metal tolerance and toxicity in plants possessing a sophisticated network for maintenance of metal homeostasis. Key elements of this are chelation and sequestration which result either in removal of toxic metal from sensitive sites or conduct essential metal to their specific cellular destination. This implies shared pathways which can result in toxic symptoms especially in an excess of metal. These overlaps go on with signal transduction pathways induced by heavy metals which include common elements of other signal cascades. Nevertheless, there are specific reactions some of them will be discussed with special focus on the cellular level.
Collapse
Affiliation(s)
- Katrin Viehweger
- Radiotherapeutics Division, Helmholtz-Zentrum Dresden-Rossendorf eV; Institute of Radiopharmacy, P.O. Box 510119, D-01314, Dresden, Germany.
| |
Collapse
|
27
|
Gamma dose rate and 226Ra activity concentrations in the soil around a Mexican radioactive waste-storage center. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Saenen E, Horemans N, Vanhoudt N, Vandenhove H, Biermans G, Van Hees M, Wannijn J, Vangronsveld J, Cuypers A. The pH strongly influences the uranium-induced effects on the photosynthetic apparatus of Arabidopsis thaliana plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:254-261. [PMID: 25014646 DOI: 10.1016/j.plaphy.2014.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
To study the impact of environmental uranium (U) contamination, effects should be analysed at different environmentally relevant pH levels as the speciation of U, and hence its toxicity, is strongly dependent on the pH. As photosynthesis is a major energy producing process in plants intimately connected to plant growth and known to be susceptible to metal stress, the effects of different U concentrations on photosynthesis in 18-day-old Arabidopsis thaliana (Columbia ecotype) are investigated at two contrasting pH levels, pH 4.5 and pH 7.5. At pH 4.5, U is highly taken up by the roots but is poorly translocated to the shoots, while at pH 7.5, less U is taken up but the translocation is higher. The lower U concentrations in the shoots at pH 4.5 are accompanied by a more reduced leaf growth as compared to pH 7.5. In addition, U does not influence the photosynthetic machinery at pH 7.5, while an optimization of the photosynthesis takes place after U exposure at pH 4.5. As such, more of the absorbed quanta are effectively used for photosynthesis accompanied by a decreased non-photochemical quenching and an increased electron transport rate. Since the enhanced photosynthesis at pH 4.5 is accompanied by a decreased growth, we suggest that the energy produced during photosynthesis is used for defence reactions against U-induced oxidative stress rather than for growth. As such, a high discrepancy was observed between the two pH levels, with an optimized photosynthetic apparatus at pH 4.5 and almost no effects at pH 7.5.
Collapse
Affiliation(s)
- Eline Saenen
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium; Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium
| | - Nathalie Vanhoudt
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium
| | - Hildegarde Vandenhove
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium
| | - Geert Biermans
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium; Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - May Van Hees
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium
| | - Jean Wannijn
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium
| | - Jaco Vangronsveld
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Ann Cuypers
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
29
|
Doustaly F, Combes F, Fiévet JB, Berthet S, Hugouvieux V, Bastien O, Aranjuelo I, Leonhardt N, Rivasseau C, Carrière M, Vavasseur A, Renou JP, Vandenbrouck Y, Bourguignon J. Uranium perturbs signaling and iron uptake response in Arabidopsis thaliana roots. Metallomics 2014; 6:809-21. [DOI: 10.1039/c4mt00005f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The early plant root response to uranyl was characterized using complete Arabidopsis transcriptome microarrays.
Collapse
Affiliation(s)
- Fany Doustaly
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)
- Direction des Sciences du Vivant (DSV)
- Institut de Recherche en Technologies et Sciences pour le Vivant (iRTSV)
- Laboratoire de Physiologie Cellulaire Végétale (PCV)
- Grenoble F-38054, France
| | - Florence Combes
- CEA
- DSV
- iRTSV
- Laboratoire de Biologie à Grande Echelle
- Grenoble F-38054, France
| | - Julie B. Fiévet
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)
- Direction des Sciences du Vivant (DSV)
- Institut de Recherche en Technologies et Sciences pour le Vivant (iRTSV)
- Laboratoire de Physiologie Cellulaire Végétale (PCV)
- Grenoble F-38054, France
| | - Serge Berthet
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)
- Direction des Sciences du Vivant (DSV)
- Institut de Recherche en Technologies et Sciences pour le Vivant (iRTSV)
- Laboratoire de Physiologie Cellulaire Végétale (PCV)
- Grenoble F-38054, France
| | - Véronique Hugouvieux
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)
- Direction des Sciences du Vivant (DSV)
- Institut de Recherche en Technologies et Sciences pour le Vivant (iRTSV)
- Laboratoire de Physiologie Cellulaire Végétale (PCV)
- Grenoble F-38054, France
| | - Olivier Bastien
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)
- Direction des Sciences du Vivant (DSV)
- Institut de Recherche en Technologies et Sciences pour le Vivant (iRTSV)
- Laboratoire de Physiologie Cellulaire Végétale (PCV)
- Grenoble F-38054, France
| | - Iker Aranjuelo
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)
- Direction des Sciences du Vivant (DSV)
- Institut de Recherche en Technologies et Sciences pour le Vivant (iRTSV)
- Laboratoire de Physiologie Cellulaire Végétale (PCV)
- Grenoble F-38054, France
| | - Nathalie Leonhardt
- CEA
- CNRS
- Université Aix-Marseille
- Laboratoire de Biologie du Développement des Plantes
- UMR 7265
| | - Corinne Rivasseau
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)
- Direction des Sciences du Vivant (DSV)
- Institut de Recherche en Technologies et Sciences pour le Vivant (iRTSV)
- Laboratoire de Physiologie Cellulaire Végétale (PCV)
- Grenoble F-38054, France
| | - Marie Carrière
- CEA
- INAC
- UMR E3 CEA-UJF
- SCIB
- Laboratoire Lésions des Acides Nucléiques
| | - Alain Vavasseur
- CEA
- CNRS
- Université Aix-Marseille
- Laboratoire de Biologie du Développement des Plantes
- UMR 7265
| | - Jean-Pierre Renou
- Unité de Recherche en Génomique Végétale
- UMR 1165
- INRA
- CNRS
- Université d'Evry Val d'Essonne
| | - Yves Vandenbrouck
- CEA
- DSV
- iRTSV
- Laboratoire de Biologie à Grande Echelle
- Grenoble F-38054, France
| | - Jacques Bourguignon
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)
- Direction des Sciences du Vivant (DSV)
- Institut de Recherche en Technologies et Sciences pour le Vivant (iRTSV)
- Laboratoire de Physiologie Cellulaire Végétale (PCV)
- Grenoble F-38054, France
| |
Collapse
|
30
|
Nie X, Dong F, Liu N, Liu M, Zhang W, Sun S, Yang J. An investigation on the subcellular distribution and compartmentalization of uranium in Phaseolus vulgaris L. J Radioanal Nucl Chem 2013. [DOI: 10.1007/s10967-013-2859-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Tailliez A, Pierrisnard S, Camilleri V, Keller C, Henner P. Do rhizospheric processes linked to P nutrition participate in U absorption by Lupinus albus grown in hydroponics? JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2013; 124:255-265. [PMID: 23831550 DOI: 10.1016/j.jenvrad.2013.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/16/2013] [Accepted: 05/31/2013] [Indexed: 06/02/2023]
Abstract
Phosphate (P) is an essential element for plant development but is generally present in limiting amount in the soil solution. Plant species have developed different mechanisms promoting the solubilization of this element in soils to ensure a sufficient supply for their growth. One of these mechanisms is based on the ability of certain species such as L. albus to exude large amounts of citrate through specific tertiary roots called cluster-roots. Uranium (U) is an ubiquitous contaminant known firstly for its chemical toxicity and secondly for its high affinity for P with which it forms low-soluble complexes in soils. We highlight the effects of P-U interaction on the physiology of L. albus and particularly on citrate exudation, and the impact of this root process on the phytoavailability of U and its accumulation in plants in a hydroponic study. Different levels of P (1 and 100 μM) and U (0 and 20 μM) have been tested. Our results show no toxicity of U on the development of L. albus with an adequate P supply, whereas the effects of P starvation are amplified by the presence of U in the growth medium, except for the production of cluster-roots. Citrate exudation is totally inhibited by U in a low-P environment whereas it increases in the presence of U when its toxicity is lowered by the addition of P. The differences observed in terms of toxicity and accumulation are partly explained by the microphotographs obtained by electron microscopy (TEM-EDX): in the absence of P, U penetrates deep into the roots and causes lethal damages, whereas in presence of P, we observe the formation of U-P complexes which limit the internalization of the pollutant and so its toxicity.
Collapse
Affiliation(s)
- Antoine Tailliez
- L2BT, Institut de Radioprotection et de Sûreté Nucléaire, Centre de Cadarache, 13115 St. Paul lez Durance, France.
| | | | | | | | | |
Collapse
|
32
|
Saenen E, Horemans N, Vanhoudt N, Vandenhove H, Biermans G, Van Hees M, Wannijn J, Vangronsveld J, Cuypers A. Effects of pH on uranium uptake and oxidative stress responses induced in Arabidopsis thaliana. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:2125-2133. [PMID: 23737149 DOI: 10.1002/etc.2290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/04/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
Uranium (U) causes oxidative stress in Arabidopsis thaliana plants grown at pH 5.5. However, U speciation and its toxicity strongly depend on environmental parameters, for example pH. It is unknown how different U species determine U uptake and translocation within plants and how they might affect the oxidative defense mechanisms of these plants. The present study analyzed U uptake and oxidative stress-related responses in A. thaliana (Columbia ecotype) under contrasted U chemical speciation conditions. The 18-d-old seedlings were exposed for 3 d to 25 µM U in a nutrient solution of which the pH was adjusted to 4.5, 5.5, 6.5, or 7.5. Results indicate that there is a different rate of U uptake and translocation at the different pHs, with high uptake and low translocation at low pH and lower uptake but higher translocation at high pH. After U exposure, an increased glutathione reductase activity and total glutathione concentration were observed in U-exposed roots, pointing toward an important role for glutathione in the root defense system against U either by chelation or by antioxidative defense mechanisms. In leaves, antioxidative defense mechanisms were activated on U exposure, indicated by increased superoxide dismutase and catalase activity. As it seems that U toxicity is influenced by pH, it is important to consider site-specific characteristics when making U risk assessments.
Collapse
Affiliation(s)
- Eline Saenen
- Belgian Nuclear Research Centre, Biosphere Impact Studies, Mol, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gjorgieva D, Kadifkova-Panovska T, Mitrev S, Kovacevik B, Kostadinovska E, Bačeva K, Stafilov T. Assessment of the genotoxicity of heavy metals in Phaseolus vulgaris L. as a model plant system by Random Amplified Polymorphic DNA (RAPD) analysis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:366-373. [PMID: 22320688 DOI: 10.1080/10934529.2012.645784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Impact assessments of environmental pollutants are important in eco-genotoxicology. A random amplified polymorphic DNA (RAPD) technique was used to detect genotoxicity-induced DNA damage in Phaseolus vulgaris L. from heavy metals at two different concentrations. The results from six 10-base pair (bp) random RAPD primers with 60-70% GC content used, showed a total of 295 RAPD fragments of 700-4000 bp in molecular size in the seedlings of untreated and treated samples, of which only 163 fragments were polymorphic. Polymorphisms became evident as the disappearance and/or appearance of DNA fragments in treated samples compared to the control. A dendrogram constructed using the Numerical Taxonomy and Multivariate Analysis System (NTSYSps), showed that the control group merged with groups treated with CuSO(4)·5H(2)O (150 mg L(-1)) and MnSO(4)·H(2)O (150 mg L(-1)) in a separate cluster. These groups were linked with all of the other samples treated with metals at concentrations of 150 mg L(-1) and CuSO(4)·5H(2)O and Cd(NO(3))(2) at concentrations of 350 mg L(-1). Finally, the samples treated with metals at concentrations of 350 mg L(-1) together with NiSO(4) at the concentration of 150 mg L(-1), clustered separately. The DNA polymorphism detected by RAPD analysis offered a useful biomarker assay for the detection of toxic chemicals genotoxicity in plant model systems.
Collapse
Affiliation(s)
- Darinka Gjorgieva
- Faculty of Medical Sciences, Goce Delčev University, Štip, Macedonia.
| | | | | | | | | | | | | |
Collapse
|
34
|
Kumar S, Loganathan VA, Gupta RB, Barnett MO. An Assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2011; 92:2504-12. [PMID: 21665352 DOI: 10.1016/j.jenvman.2011.05.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 05/02/2011] [Accepted: 05/08/2011] [Indexed: 05/19/2023]
Abstract
The ever-increasing growth of biorefineries is expected to produce huge amounts of lignocellulosic biochar as a byproduct. The hydrothermal carbonization (HTC) process to produce biochar from lignocellulosic biomass is getting more attention due to its inherent advantage of using wet biomass. In the present study, biochar was produced from switchgrass at 300 °C in subcritical water and characterized using X-ray diffraction, fourier transform infra-red spectroscopy, scanning electron micrcoscopy, and thermogravimetric analysis. The physiochemical properties indicated that biochar could serve as an excellent adsorbent to remove uranium from groundwater. A batch adsorption experiment at the natural pH (~3.9) of biochar indicated an H-type isotherm. The adsorption data was fitted using a Langmuir isotherm model and the sorption capacity was estimated to be ca. 2.12 mg of U g(-1) of biochar. The adsorption process was highly dependent on the pH of the system. An increase towards circumneutral pH resulted in the maximum adsorption of ca. 4 mg U g(-1) of biochar. The adsorption mechanism of U(VI) onto biochar was strongly related to its pH-dependent aqueous speciation. The results of the column study indicate that biochar could be used as an effective adsorbent for U(VI), as a reactive barrier medium. Overall, the biochar produced via HTC is environmentally benign, carbon neutral, and efficient in removing U(VI) from groundwater.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA 23529, USA
| | | | | | | |
Collapse
|
35
|
Impact of uranium (U) on the cellular glutathione pool and resultant consequences for the redox status of U. Biometals 2011; 24:1197-204. [DOI: 10.1007/s10534-011-9478-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/28/2011] [Indexed: 01/01/2023]
|
36
|
Vanhoudt N, Vandenhove H, Horemans N, Remans T, Opdenakker K, Smeets K, Bello DM, Wannijn J, Van Hees M, Vangronsveld J, Cuypers A. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part I: responses in the roots. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2011; 102:630-7. [PMID: 21492976 DOI: 10.1016/j.jenvrad.2011.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/16/2011] [Accepted: 03/22/2011] [Indexed: 05/10/2023]
Abstract
When aiming to evaluate the environmental impact of uranium contamination, it is important to unravel the mechanisms by which plants respond to uranium stress. As oxidative stress seems an important modulator under other heavy metal stress, this study aimed to investigate oxidative stress related responses in Arabidopsis thaliana exposed to uranium concentrations ranging from 0.1 to 100 μM for 1, 3 and 7 days. Besides analyzing relevant reactive oxygen species-producing and -scavenging enzymes at protein and transcriptional level, the importance of the ascorbate-glutathione cycle under uranium stress was investigated. These results are reported separately for roots and leaves in two papers: Part I dealing with responses in the roots and Part II unraveling responses in the leaves and presenting general conclusions. Results of Part I indicate that oxidative stress related responses in the roots were only triggered following exposure to the highest uranium concentration of 100 μM. A fast oxidative burst was suggested based on the observed enhancement of lipoxygenase (LOX1) and respiratory burst oxydase homolog (RBOHD) transcript levels already after 1 day. The first line of defense was attributed to superoxide dismutase (SOD), also triggered from the first day. The enhanced SOD-capacity observed at protein level corresponded with an enhanced expression of iron SOD (FSD1) located in the plastids. For the detoxification of H(2)O(2), an early increase in catalase (CAT1) transcript levels was observed while peroxidase capacities were enhanced at the later stage of 3 days. Although the ascorbate peroxidase capacity and gene expression (APX1) increased, the ascorbate/dehydroascorbate redox balance was completely disrupted and shifted toward the oxidized form. This disrupted balance could not be inverted by the glutathione part of the cycle although the glutathione redox balance could be maintained.
Collapse
Affiliation(s)
- Nathalie Vanhoudt
- Belgian Nuclear Research Center (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Vanhoudt N, Cuypers A, Horemans N, Remans T, Opdenakker K, Smeets K, Bello DM, Havaux M, Wannijn J, Van Hees M, Vangronsveld J, Vandenhove H. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: responses in the leaves and general conclusions. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2011; 102:638-645. [PMID: 21497426 DOI: 10.1016/j.jenvrad.2011.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/16/2011] [Accepted: 03/22/2011] [Indexed: 05/30/2023]
Abstract
The cellular redox balance seems an important modulator under heavy metal stress. While for other heavy metals these processes are well studied, oxidative stress related responses are also known to be triggered under uranium stress but information remains limited. This study aimed to further unravel the mechanisms by which plants respond to uranium stress. Seventeen-day-old Arabidopsis thaliana seedlings, grown on a modified Hoagland solution under controlled conditions, were exposed to 0, 0.1, 1, 10 and 100 μM uranium for 1, 3 and 7 days. While in Part I of this study oxidative stress related responses in the roots were discussed, this second Part II discusses oxidative stress related responses in the leaves and general conclusions drawn from the results of the roots and the leaves will be presented. As several responses were already visible following 1 day exposure, when uranium concentrations in the leaves were negligible, a root-to-shoot signaling system was suggested in which plastids could be important sensing sites. While lipid peroxidation, based on the amount of thiobarbituric acid reactive compounds, was observed after exposure to 100 μM uranium, affecting membrane structure and function, a transient concentration dependent response pattern was visible for lipoxygenase initiated lipid peroxidation. This transient character of uranium stress responses in leaves was emphasized by results of lipoxygenase (LOX2) and antioxidative enzyme transcript levels, enzyme capacities and glutathione concentrations both in time as with concentration. The ascorbate redox balance seemed an important modulator of uranium stress responses in the leaves as in addition to the previous transient responses, the total ascorbate concentration and ascorbate/dehydroascorbate redox balance increased in a concentration and time dependent manner. This could represent either a slow transient response or a stable increase with regard to plant acclimation to uranium stress.
Collapse
Affiliation(s)
- Nathalie Vanhoudt
- Belgian Nuclear Research Center (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Soudek P, Petrová S, Benešová D, Dvořáková M, Vaněk T. Uranium uptake by hydroponically cultivated crop plants. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2011; 102:598-604. [PMID: 21486682 DOI: 10.1016/j.jenvrad.2011.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 01/25/2011] [Accepted: 03/15/2011] [Indexed: 05/10/2023]
Abstract
Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC(50) value about 0.1mM. Cucumis sativa represented the most resistant plant to uranium (EC(50)=0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1mM or 0.5mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation.
Collapse
Affiliation(s)
- Petr Soudek
- Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojová 263, 162 05 Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
39
|
Vanhoudt N, Vandenhove H, Horemans N, Wannijn J, Van Hees M, Vangronsveld J, Cuypers A. The combined effect of uranium and gamma radiation on biological responses and oxidative stress induced in Arabidopsis thaliana. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2010; 101:923-30. [PMID: 20637531 DOI: 10.1016/j.jenvrad.2010.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/28/2010] [Accepted: 06/17/2010] [Indexed: 05/11/2023]
Abstract
Uranium never occurs as a single pollutant in the environment, but always in combination with other stressors such as ionizing radiation. As effects induced by multiple contaminants can differ markedly from the effects induced by the individual stressors, this multiple pollution context should not be neglected. In this study, effects on growth, nutrient uptake and oxidative stress induced by the single stressors uranium and gamma radiation are compared with the effects induced by the combination of both stressors. By doing this, we aim to better understand the effects induced by the combined stressors but also to get more insight in stressor-specific response mechanisms. Eighteen-day-old Arabidopsis thaliana seedlings were exposed for 3 days to 10 muM uranium and 3.5 Gy gamma radiation. Gamma radiation interfered with uranium uptake, resulting in decreased uranium concentrations in the roots, but with higher transport to the leaves. This resulted in a better root growth but increased leaf lipid peroxidation. For the other endpoints studied, effects under combined exposure were mostly determined by uranium presence and only limited influenced by gamma presence. Furthermore, an important role is suggested for CAT1/2/3 gene expression under uranium and mixed stressor conditions in the leaves.
Collapse
Affiliation(s)
- Nathalie Vanhoudt
- Belgian Nuclear Research Centre, Biosphere Impact Studies, Boeretang, Belgium.
| | | | | | | | | | | | | |
Collapse
|
40
|
Vanhoudt N, Vandenhove H, Horemans N, Wannijn J, Bujanic A, Vangronsveld J, Cuypers A. Study of oxidative stress related responses induced in Arabidopsis thaliana following mixed exposure to uranium and cadmium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:879-86. [PMID: 20822913 DOI: 10.1016/j.plaphy.2010.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 08/06/2010] [Accepted: 08/13/2010] [Indexed: 05/09/2023]
Abstract
In this study, toxicity effects in plants of uranium in a binary pollution condition were investigated by studying biological responses and unraveling oxidative stress related mechanisms in Arabidopsis thaliana seedlings, grown on hydroponics and exposed for 3 days to 10 μM uranium in combination with 5 μM cadmium. While uranium mostly accumulated in the roots with very low root-to-shoot transport, cadmium was taken up less by the roots but showed higher translocation to the shoots. Under mixed exposure, cadmium influenced uranium uptake highly but not the other way round resulting in a doubled uranium concentration in the roots. Under our mixed exposure conditions, it is clear that micronutrient concentrations in the roots are strongly influenced by addition of cadmium as a second stressor, while leaf macronutrient concentrations are mostly influenced by uranium. Oxidative stress related responses are highly affected by cadmium while uranium influence is more limited. Hereby, an important role was attributed to the ascorbate redox balance together with glutathione as both metabolites, but more explicitly for ascorbate, increased their reduced form, indicating an important defense and regulatory function. While for roots, based on an increase in FSD1 gene expression, oxidative stress was suggested to be superoxide induced, in leaves on the other hand, hydrogen peroxide related genes were mostly altered.
Collapse
Affiliation(s)
- Nathalie Vanhoudt
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | | | | | | | | | | | | |
Collapse
|
41
|
Hogan AC, van Dam RA, Houston MA, Harford AJ, Nou S. Uranium exposure to the tropical duckweed Lemna aequinoctialis and pulmonate snail Amerianna cumingi: fate and toxicity. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 59:204-215. [PMID: 20127482 DOI: 10.1007/s00244-010-9465-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 01/01/2010] [Indexed: 05/28/2023]
Abstract
The discharge of catchment-management water from the Ranger uranium (U) mine into Magela Creek upstream of the Ramsar-listed Magela Floodplain in Kakadu National Park is an important part of the mine's water-management system. Because U is one of the primary toxicants associated with this water, a receiving-water trigger value (TV), based on chronic toxicity data from five local native species, was derived for U. To strengthen the data set underpinning the derivation of the TV, the chronic toxicity of U to two additional tropical freshwater species, duckweed Lemna aequinoctialis (96-hour growth rate), and pulmonate gastropod, Amerianna cumingi (96-hour reproduction), was determined. The fate of U within the test systems was an important component of the study because analysis of U concentrations during the snail tests indicated that a substantial proportion of U (approximately 25%) was being lost from the test solutions when integrated during the entire test duration. Analysis of the snails and their food for U indicated that only a small proportion that was lost from solution was being taken up by the snails. Therefore, the majority of U that was lost was considered unavailable to the snails, and thus the exposure concentrations used to calculate the toxicity estimates were adjusted downward. Integrating the loss of U from the L. aequinoctialis test solutions over time showed that only a small proportion (6% to 13%) was lost during the test: Of that, almost half (2-5%) was taken up by the plants (constituting exposure). Uranium was only moderately toxic to L. aequinoctialis, with no observed-effect concentrations, lowest observed-effect concentrations, and inhibition concentrations causing 10% and 50% effects (IC10 and IC50) values of 226, 404, 207, and 1435 microg/l, respectively. A. cumingi was found to be more sensitive to U than L. aequinoctialis, with NOEC, LOEC, IC10, and IC50 values of 60, 61, 15, and 278 microg/l, respectively. The data for these two additional species will be used to revise the current TV for U in Magela Creek.
Collapse
Affiliation(s)
- Alicia C Hogan
- Department of the Environment, Water, Heritage, and the Arts, Environmental Research Institute of the Supervising Scientist, Darwin, NT, 0801, Australia.
| | | | | | | | | |
Collapse
|
42
|
Dhawan A, Bajpayee M, Parmar D. The Comet Assay: A Versatile Tool for Assessing DNA Damage. THE COMET ASSAY IN TOXICOLOGY 2009. [DOI: 10.1039/9781847559746-00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Alok Dhawan
- Developmental Toxicology Division Indian Institute of Toxicology Research (Formerly Industrial Toxicology Research Centre) P.O. Box 80 M.G. Marg Lucknow 226 001 India
| | - Mahima Bajpayee
- Developmental Toxicology Division Indian Institute of Toxicology Research (Formerly Industrial Toxicology Research Centre) P.O. Box 80 M.G. Marg Lucknow 226 001 India
| | - Devendra Parmar
- Developmental Toxicology Division Indian Institute of Toxicology Research (Formerly Industrial Toxicology Research Centre) P.O. Box 80 M.G. Marg Lucknow 226 001 India
| |
Collapse
|
43
|
Cenkci S, Yildiz M, Ciğerci IH, Konuk M, Bozdağ A. Toxic chemicals-induced genotoxicity detected by random amplified polymorphic DNA (RAPD) in bean (Phaseolus vulgaris L.) seedlings. CHEMOSPHERE 2009; 76:900-906. [PMID: 19477479 DOI: 10.1016/j.chemosphere.2009.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/27/2009] [Accepted: 05/02/2009] [Indexed: 05/27/2023]
Abstract
Assessment of genotoxins-induced DNA damage and mutations at molecular level is important in eco-genotoxicology. In this research, RAPD was used to detect DNA damage in the roots and leaves of bean (Phaseolus vulgaris L.) seedlings exposed to toxic chemicals of Hg, B, Cr and Zn (HgCl(2), H(3)BO(3), K(2)Cr(2)O(7) and ZnSO(4)7H(2)O) at concentrations of 150 and 350 ppm for 7 d. Inhibition of shoot and root growth and increase of Hg, B, Cr and Zn element contents in the roots and leaves were observed with an increase in the concentration. For the RAPD analyses, 12 RAPD primers of 60-70% GC content were found to produce unique polymorphic band profiles and subsequently were used to produce a total of 120 bands of 263-3125 bp in the roots and leaves of untreated and treated seedlings. Polymorphisms became evident as disappearance and/or appearance of DNA bands in 150 and 350 ppm treatments compared with untreated control treatments. The DNA changes in RAPD profiles were more in the roots than in the leaves. The highest polymorphism was observed in boric acid treatments among the toxic chemicals. In a dendrogram constructed based on genetic similarity coefficients, the treatments were grouped into three main clusters: (a) root-B-150 ppm treatment grouped alone, (b) root-350 ppm-Hg, B, Cr and Zn treatments clustered together, and (c) the others including untreated control treatments merged together. We concluded that DNA alterations detected by RAPD analysis offered a useful biomarker assay for the evaluation of genotoxic effects of Hg, B, Cr and Zn pollutions on plants.
Collapse
Affiliation(s)
- Süleyman Cenkci
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Biology, 03200 Afyonkarahisar, Turkey.
| | | | | | | | | |
Collapse
|
44
|
Vanhoudt N, Vandenhove H, Smeets K, Remans T, Van Hees M, Wannijn J, Vangronsveld J, Cuypers A. Effects of uranium and phosphate concentrations on oxidative stress related responses induced in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:987-996. [PMID: 18640846 DOI: 10.1016/j.plaphy.2008.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 05/30/2008] [Accepted: 06/03/2008] [Indexed: 05/26/2023]
Abstract
The production of reactive oxygen species (ROS) and the induction of the antioxidative defense mechanism are very important in heavy metal toxicity. In this study, biological effects induced after uranium contamination were investigated for Arabidopsis thaliana. Three-week-old seedlings were exposed for 4days to 100microM U in an adjusted Hoagland solution. Uranium exposure caused a decreased growth of leaves (38%) and roots (70%) and a modified nutrient profile was observed. Investigation of lipid peroxidation products indicated a significant increase of membrane damage. Important ROS-producing and -scavenging enzymes were studied at transcriptional and protein level to investigate the importance of the ROS-signature in uranium toxicity. Elevated gene expression was observed for NADPH-oxidase, a ROS-producing enzyme. Changes in gene expression for different ROS-scavenging enzymes as Cu/ZnSOD, FeSOD and APX were also observed. Analysis of enzyme capacities showed little effects after uranium contamination. Higher ascorbate levels in uranium exposed leaves suggested an increase of antioxidative defense via the ascorbate-glutathione pathway after uranium exposure. Theoretical calculations indicated rapid formation of uranium-phosphate precipitates if normal phosphate concentrations are used. Precipitation tests recommend the use of 25microM P in combination with 100microM U to inhibit uranium precipitation. Because this combination was used for uranium toxicity investigation, the influence of this low phosphate concentration on plant growth and oxidative stress had to be evaluated. Minor differences between low phosphate (25microM P) and high phosphate (100microM P) treatments were observed justifying the use of the low phosphate concentration in combination with uranium.
Collapse
Affiliation(s)
- Nathalie Vanhoudt
- Belgian Nuclear Research Centre (SCK*CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Dhawan A, Bajpayee M, Parmar D. Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol 2008; 25:5-32. [PMID: 18427939 DOI: 10.1007/s10565-008-9072-z] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 03/17/2008] [Indexed: 11/29/2022]
Abstract
New chemicals are being added each year to the existing burden of toxic substances in the environment. This has led to increased pollution of ecosystems as well as deterioration of the air, water, and soil quality. Excessive agricultural and industrial activities adversely affect biodiversity, threatening the survival of species in a particular habitat as well as posing disease risks to humans. Some of the chemicals, e.g., pesticides and heavy metals, may be genotoxic to the sentinel species and/or to non-target species, causing deleterious effects in somatic or germ cells. Test systems which help in hazard prediction and risk assessment are important to assess the genotoxic potential of chemicals before their release into the environment or commercial use as well as DNA damage in flora and fauna affected by contaminated/polluted habitats. The Comet assay has been widely accepted as a simple, sensitive, and rapid tool for assessing DNA damage and repair in individual eukaryotic as well as some prokaryotic cells, and has increasingly found application in diverse fields ranging from genetic toxicology to human epidemiology. This review is an attempt to comprehensively encase the use of Comet assay in different models from bacteria to man, employing diverse cell types to assess the DNA-damaging potential of chemicals and/or environmental conditions. Sentinel species are the first to be affected by adverse changes in their environment. Determination of DNA damage using the Comet assay in these indicator organisms would thus provide information about the genotoxic potential of their habitat at an early stage. This would allow for intervention strategies to be implemented for prevention or reduction of deleterious health effects in the sentinel species as well as in humans.
Collapse
Affiliation(s)
- Alok Dhawan
- Developmental Toxicology Division, Indian Institute of Toxicology Research (formerly Industrial Toxicology Research Centre), PO Box 80, M.G. Marg, Lucknow, 226 001, India.
| | | | | |
Collapse
|