1
|
Bassiony A, Zhou M, Peng Q, Wang Y, Liu G, Yang J, Yan K, Mu D, Fu J, Lv H, Lin Z, Shi J. Methyl jasmonate-loaded chitosan nanoparticles improve tea drought resistance on drought-sensitive cultivar 'Zhongcha 108'. Int J Biol Macromol 2025; 311:144004. [PMID: 40339862 DOI: 10.1016/j.ijbiomac.2025.144004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
DS severely impacts tea plant growth and yield. Foliar application of Methyl jasmonate (MJ) -loaded Chitosan nanoparticles (CNPs) (MJ-CNPs) significantly boost tea DS resistance, necessitating further mechanism exploration. This study comprehensively investigated alterations at the phenotypic, biochemical, and genetic levels. Relative water content, total pigment content, and soluble proteins decreased, while soluble sugar increased significantly under DS and with apparent recovery after MJ-CNPs treatment. Catechins exhibited a significant decrease under DS, especially EGCG (24.6 to 13.4 mg•g-1), but were absolutely mitigated by treatment. Antioxidant capacities (DPPH, FRAP, ABTS, and SOA) showed a further improvement by MJ-CNPs treatment. Endogenous ABA and SA increased under DS, further elevated by MJ-CNPs. CsNCED, CsPYL8, CsPP2C, CsMYB, and CsABF genes involved in ABA-dependent pathways were confirmed with promoted expressions by foliar pre-treatment. The CsJAZ and CsMYC2 gene family which involved in the jasmonic acid (JA) pathway, displayed varied expression patterns. The integration of metabolite and gene expression levels provided a comprehensive illustration of tea DS tolerance mechanism and offered promising promotion strategies through foliar application of MJ-CNPs.
Collapse
Affiliation(s)
- Abdelkader Bassiony
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China; Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Mengxue Zhou
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qunhua Peng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanhua Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiaqi Yang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kangni Yan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Mu
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Sciences, Anqing Normal University, Anqing 246133, Anhui, China
| | - Jianyu Fu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haipeng Lv
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhi Lin
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jiang Shi
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Yang B, Zhang R, Ren Y, Tong M, Li K, Yan T, He J. Application of nano chitosan synthesized from Exopalaemon modestus shell to control the infection of cherry tomato leaves by Alternaria alternata. Int J Biol Macromol 2025; 308:142456. [PMID: 40157670 DOI: 10.1016/j.ijbiomac.2025.142456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/13/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The early blight (EB) caused by Alternaria alternata was a major challenge in tomato production worldwide, often leading to serious yield loss. Induced resistance was currently one of the promising strategies to replace traditional chemical pesticides for controlling plant diseases. Here, nano-chitosan (Em-CNPs) were synthesized from chitosan (Em-CS) extracted from Taihu Lake Exopalaemon modestus by ion crosslinking method under the condition of the 5:3 ratio of Em-CS solution to tripolyphosphate solution at pH 4.5 for 1 h. The synthesized Em-CNPs were spherical shape and average particle size of 38.40 nm. Em-CNPs exhibited a significant inhibitory effect on the spore germination and mycelium growth of A. alternata. Furthermore, application of Em-CNPs significantly reduced the lesion area of cherry tomato leaves inoculated with A. alternata by 29.52 % and 16.59 %, compared with the control and Em-CS treatment, respectively. Multivariate analysis indicated that Em-CNPs enhanced the resistance of leaves to A. alternata by directly antifungal activity and increasing the activity of defense enzymes and the content of secondary metabolites in cherry tomato leaves. To sum up, Em-CNPs can be used as an environmentally friendly fungicide and inducer to control tomato EB in agricultural production.
Collapse
Affiliation(s)
- Boya Yang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Runan Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yanfang Ren
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China.
| | - Mingsi Tong
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Ke Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Tengyu Yan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Junyu He
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
3
|
Dey A, Sadhukhan A. Molecular mechanisms of plant productivity enhancement by nano fertilizers for sustainable agriculture. PLANT MOLECULAR BIOLOGY 2024; 114:128. [PMID: 39586900 DOI: 10.1007/s11103-024-01527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
Essential plant nutrients encapsulated or combined with nano-dimensional adsorbents define nano fertilizers (NFs). Nanoformulation of non-essential elements enhancing plant growth and stress tolerance also comes under the umbrella of NFs. NFs have an edge over conventional chemical fertilizers, viz., higher plant biomass and yield using much lesser fertilization, thereby reducing environmental pollution. Foliar and root applications of NFs lead to their successful uptake by the plant, depending on the size, surface charge, and other physicochemical properties of NFs. Smaller NFs can pass through channels on the waxy cuticle depending on the hydrophobicity, while larger NFs pass through the stomatal conduits of leaves. Charge-based adsorption, followed by apoplastic movement and endocytosis, translocates NFs through the root, while the size of NFs influences passage into vascular tissues. Recent transcriptomic, proteomic, and metabolomic studies throw light on the molecular mechanisms of growth promotion by NFs. The expression levels of nutrient transporter genes are regulated by NFs, controlling uptake and minimizing excess nutrient toxicity. Accelerated growth by NFs is brought about by their extensive regulation of cell division, photosynthesis, carbohydrate, and nitrogen metabolism, as well as the phytohormone-dependent signaling pathways related to development, stress response, and plant defense. NFs mimic Ca,2+ eliciting second messengers and associated proteins in signaling cascades, reaching transcription factors and finally orchestrating gene expression to enhance growth and stress tolerance. Developing advanced nano fertilizers of the future must involve exploring molecular interactions with plants to reduce toxicity and improve effectiveness.
Collapse
Affiliation(s)
- Arpan Dey
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ayan Sadhukhan
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India.
| |
Collapse
|
4
|
Yang X, Feng K, Wang G, Zhang S, Shi Q, Wang X, Song X, Dong S, Wen Y, Guo P, Wang Y, Zhao J, Yuan X, Ren J. Chitosan nanoparticles alleviate chromium toxicity by modulating metabolic homeostasis and promoting chromium sequestration in Zea mays L. Int J Biol Macromol 2024; 282:137322. [PMID: 39515685 DOI: 10.1016/j.ijbiomac.2024.137322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Chitosan nanoparticles (CSNPs) have been proposed as a potential alternative in alleviating chromium (Cr) toxicity. However, the mechanisms underlying remains poorly understood. This study investigates the effects of CSNPs on carbon/nitrogen metabolism, cell wall Cr binding capacity, and antioxidant activity in Zea mays L. under Cr stress. Cr stress decreased the total dry weight (DW) by 48.5 %. By contrast, the total DW was reduced by only 26.2 % in CSNPs-treated plants. Analysis of transcriptomic, enzyme activity, and metabolite content data, CSNPs-treated plants exhibited a higher level of relatively stable Carbon and Nitrogen metabolism than untreated plants. CSNPs application resulted in a substantial increase in the levels of sucrose and soluble protein by 78.0 % and 19.4 % in the leaves, and 60.0 % and 59.7 % in the roots, respectively. Meanwhile, CSNPs increased the contents of glutathione, phytochelatin, and cell wall polysaccharide. This increase resulted in a higher retention of Cr in vacuole and cell wall. Additionally, CSNPs alleviated the oxidative damage by improving antioxidant activity. Overall, our results suggest that CSNPs alleviates Cr toxicity by modulating metabolic homeostasis and promoting Cr sequestration in maize plants. This study provides new insights into the mechanisms underlying CSNPs-mediated Cr stress response with potential implications for crop production.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030800, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ke Feng
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Guo Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Shifang Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Qifeng Shi
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Xinru Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Xie Song
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Yinyuan Wen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Pingyi Guo
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Yuguo Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Juan Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China.
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China.
| | - Jianhong Ren
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030800, China.
| |
Collapse
|
5
|
Moosavi SNV, Saadatmand S, Jamei R, Darvishzadeh R. Chitosan nanoparticles (CSNPs) conferred salinity tolerance in maize by upregulating E3 ubiquitin-protein ligase, P5CS1, HKT1, NHX1, and PMP3 genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61210-61219. [PMID: 39414681 DOI: 10.1007/s11356-024-34933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/04/2024] [Indexed: 10/18/2024]
Abstract
This study explored the transcriptional behaviors of several candidate genes in response to the application of CSNPs (50 and 100 mgl-1) in maize seedlings grown under two salinity levels (NaCl of 0.07 and 0.14 gkg-1soil). Employing CSNPs at both concentrations mitigated the inhibitory role of salinity on the leaf and root fresh weights. The application of CSNPs enhanced the transcription of the E3 ubiquitin-protein ligase gene by an average of threefold, contrasted with the salinity controls. The Δ1-pyrroline-5-carboxylate synthetase (P5CS1) gene was upregulated in response to both individual and mixed treatments of CSNPs and salinity. The transcription of the high-affinity K+ transporter (HKT1) gene displayed an upward trend in response to the CSNPs and salinity treatments. The Na+/H+ exchangers (NHX1) gene exhibited a similar trend to that of the HKT1 gene. The utilization of CSNPs was accompanied by an upregulation in the plasma membrane proteolipid 3 (PMP3) gene, contrasted with the salinity controls. The phenylalanine ammonia-lyase (PAL) activity displayed an upward trend in response to the foliar application of CSNPs. The CSNPs at the 100 mgl-1 concentration were more capable of inducing the ascorbate peroxidase enzyme under both salinity conditions than the 50 mgl-1 dose. The simultaneous exposure of maize seedlings to CSNPs and salinity resulted in the drastic upregulation of the catalase activities. This study provides novel insights into the major mechanisms underlying the stress-mitigating effects of CSNPs, thereby providing a suitable platform for their application in sustainable agricultural practices.
Collapse
Affiliation(s)
| | - Sara Saadatmand
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Rashid Jamei
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Reza Darvishzadeh
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
6
|
Ithape D, Dalvi S, Srivastava AK. Chitosan-thiourea and their derivatives: Applications and action mechanisms for imparting drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154365. [PMID: 39383780 DOI: 10.1016/j.jplph.2024.154365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
The increasing abiotic stresses from changing global climatic conditions, including drought, extreme temperatures, salinity, storms, pollutants, and floods, impend crop cultivation and sustainability. To mitigate these effects, numerous synthetic and non-synthetic chemicals or plant growth regulators are in practice. Chitosan, a natural organic substance rich in nitrogen and carbon, and thiourea, a synthetic plant growth regulator containing sulfur and nitrogen, have garnered significant interest for their roles in enhancing plant stress tolerance. Despite extensive use, the precise mechanisms of their actions remain unclear. Towards this endeavor, the present review examines how chitosan and thiourea contribute to stress tolerance in crop plants, particularly under drought conditions, to improve production and sustainability. It also explores thiourea's potential as a hydrogen sulfide (H2S) donor and the possible applications of thiolated chitosan derivatives and chitosan-thiourea combinations, emphasizing their biological functions and benefits for sustainable agriculture.
Collapse
Affiliation(s)
- Dinesh Ithape
- Tissue Culture Section, Agri. Sci & Tech. Dept. Vasantdada Sugar Institute, Manjari(Bk), Pune, 412307, India; Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Sunil Dalvi
- Tissue Culture Section, Agri. Sci & Tech. Dept. Vasantdada Sugar Institute, Manjari(Bk), Pune, 412307, India.
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha Atomic Research Center, Mumbai, 400094, India
| |
Collapse
|
7
|
Arora PK, Tripathi S, Omar RA, Chauhan P, Sinhal VK, Singh A, Srivastava A, Garg SK, Singh VP. Next-generation fertilizers: the impact of bionanofertilizers on sustainable agriculture. Microb Cell Fact 2024; 23:254. [PMID: 39304847 DOI: 10.1186/s12934-024-02528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Bionanofertilizers are promising eco-friendly alternative to chemical fertilizers, leveraging nanotechnology and biotechnology to enhance nutrient uptake by plants and improve soil health. They consist of nanoscale materials and beneficial microorganisms, offering benefits such as enhanced seed germination, improved soil quality, increased nutrient use efficiency, and pesticide residue degradation, ultimately leading to improved crop productivity. Bionanofertilizers are designed for targeted delivery of nutrients, controlled release, and minimizing environmental pollutants, making them a sustainable option for agriculture. These fertilizers also have the potential to enhance plant growth, provide disease resistance, and contribute to sustainable farming practices. The development of bionanofertilizers addresses the adverse environmental impact of chemical fertilizers, offering a safer and productive means of fertilization for agricultural practices. This review provides substantial evidence supporting the potential of bionanofertilizers in revolutionizing agricultural practices, offering eco-friendly and sustainable solutions for crop management and soil health.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India.
| | - Shivam Tripathi
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Rishabh Anand Omar
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Prerna Chauhan
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Vijay Kumar Sinhal
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Amit Singh
- Department of Law, MJP Rohilkhand University, Bareilly, India
| | - Alok Srivastava
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Sanjay Kumar Garg
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Vijay Pal Singh
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| |
Collapse
|
8
|
Ashraf H, Ghouri F, Zhong M, Cheema SA, Haider FU, Sun L, Ali S, Alshehri MA, Fu X, Shahid MQ. Oryza glumaepatula and calcium oxide nanoparticles enhanced Cr stress tolerance by maintaining antioxidant defense, chlorophyll and gene expression levels in rice. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122239. [PMID: 39182380 DOI: 10.1016/j.jenvman.2024.122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Chromium (Cr), a potent heavy metal, threatens rice cultivation due to its escalating presence in soil from human activities. Wild rice contains useful genes for phytoremediation; however, it is difficult to use directly for metal mitigation. Here, a single segment substitution line (SSSL), SG001, was developed by crossing O. glumaepatula and Huajingxian74 (HJX) to evaluate the survival ability of plants against Cr. Further, we explored the potential effect of calcium oxide nanoparticles (CaO-NPs) (50 μM) to minimize the toxic effect of Cr (100 μM) in rice cultivars, SG001 and HJX. The findings of this study indicated that Cr toxicity led to increased oxidative stress. This was shown by higher levels of hydrogen peroxide (H2O2), which was increased by 104% in SG001 and 177% in HJX, and malondialdehyde (MDA) increased by 79% in SG001 and 135% in HJX. Furthermore, it also depicted that Cr toxicity considerably declined shoot and root length, shoot and root fresh weight by 30%, 27%, 25%, and 20% in SG001 and 44%, 51%, 42%, and 45% in HJX, respectively. This mitigation was evidenced by decreased Cr contents, increased calcium (Ca) levels in SG001, and the maintenance of chlorophyll, antioxidant defense, and gene expression levels. Moreover, there was a notable reduction in MDA and H2O2, while the defense mechanisms of key antioxidants, including ascorbate peroxidase, superoxide dismutase, glutathione, catalase, and peroxidase were upregulated, along with an increase in soluble protein contents in both rice cultivars after applying CaO-NPs. CaO-NPs effectively restored cellular and subcellular structural integrity and growth in both lines, which had been seriously disrupted by Cr toxicity. Overall, our findings suggest that SG001, in combination with CaO-NPs, could serve as an effective strategy to mitigate Cr toxicity in plants.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Xuelin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Brown A, Al-Azawi TNI, Methela NJ, Rolly NK, Khan M, Faluku M, Huy VN, Lee DS, Mun BG, Hussian A, Yun BW. Chitosan-fulvic acid nanoparticles enhance drought tolerance in maize via antioxidant defense and transcriptional reprogramming. PHYSIOLOGIA PLANTARUM 2024; 176:e14455. [PMID: 39073158 DOI: 10.1111/ppl.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Nanoparticles are promising alternatives to synthetic fertilizers in the context of climate change and sustainable agriculture. Maize plants were grown under gradient concentrations (50 μM, 100 μM, 200 μM, 500 μM, and 1 mM) of chitosan (Ch), fulvic acid (FA) or chitosan-fulvic acid nanoparticles (Ch-FANPs). Based on the overall phenotypic assessment, 100 μM was selected for downstream experiments. Maize plants grown under this optimized concentration were thereafter subjected to drought stress by water withholding for 14 days. Compared to the individual performances, the combined treatment of Ch-FANPs supported the best plant growth over chitosan, fulvic acid, or sole watered plants and alleviated the adverse effects of drought by enhancing root and shoot growth, and biomass by an average 20%. In addition, Ch-FANPs-treated plants exhibited a significant reduction in hydrogen peroxide (H2O2) content (~10%), with a concomitant increase in ascorbate peroxidase (APX) activity (>100%) while showing a reduced lipid peroxidation level observed by the decrease in malondialdehyde (MDA) content (~100%) and low electrolyte leakage level. Furthermore, chlorophyll content increased significantly (>100%) in maize plants treated with Ch-FANPs compared to Ch or FA and control in response to drought. The expression of drought-induced transcription factors, ZmDREB1A, ZmbZIP1, and ZmNAC28, and the ABA-dependent ZmCIPK3 was upregulated by Ch-FANPs. Owing to the above, Ch-FANPs are proposed as a growth-promoting agent and elicitor of drought tolerance in maize via activation of antioxidant machinery and transcriptional reprogramming of drought-related genes.
Collapse
Affiliation(s)
- Alexander Brown
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
| | - Tiba Nazar Ibrahim Al-Azawi
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Nusrat Jahan Methela
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Nkulu Kabange Rolly
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Murtaza Khan
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Mwondha Faluku
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
| | - Vu Ngoc Huy
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
| | - Da-Sol Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Bong-Gyu Mun
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Adil Hussian
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Byung-Wook Yun
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| |
Collapse
|
10
|
Tripathi S, Tiwari K, Mahra S, Victoria J, Rana S, Tripathi DK, Sharma S. Nanoparticles and root traits: mineral nutrition, stress tolerance and interaction with rhizosphere microbiota. PLANTA 2024; 260:34. [PMID: 38922515 DOI: 10.1007/s00425-024-04409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/07/2024] [Indexed: 06/27/2024]
Abstract
MAIN CONCLUSION This review article highlights a broader perspective of NPs and plant-root interaction by focusing on their beneficial and deleterious impacts on root system architecture (RSA). The root performs a vital function by securing itself in the soil, absorbing and transporting water and nutrients to facilitate plant growth and productivity. In dicots, the architecture of the root system (RSA) is markedly shaped by the development of the primary root and its branches, showcasing considerable adaptability in response to changes in the environment. For promoting agriculture and combating global food hunger, the use of nanoparticles (NPs) may be an exciting option, for which it is essential to understand the behaviour of plants under NPs exposure. The nature of NPs and their physicochemical characteristics play a significant role in the positive/negative response of roots and shoots. Root morphological features, such as root length, root mass and root development features, may regulated positively/negatively by different types of NPs. In addition, application of NPs may also enhance nutrient transport and soil fertility by the promotion of soil microorganisms including plant growth-promoting rhizobacteria (PGPRs) and also soil enzymes. Interestingly the interaction of nanomaterials (NMs) with rhizospheric bacteria can enhance plant development and soil health. However, some studies also suggested that the increased use of several types of engineered nanoparticles (ENPs) may disrupt the equilibrium of the soil-root interface and unsafe morphogenesis by causing the browning of roots and suppressing the growth of root and soil microbes. Thus, this review article has sought to compile a broader perspective of NPs and plant-root interaction by focusing on their beneficial or deleterious impacts on RSA.
Collapse
Affiliation(s)
- Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - J Victoria
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shweta Rana
- Departments of Physical and Natural Sciences, FLAME University, Pune, India
| | - Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India.
| |
Collapse
|
11
|
Wani AK, Akhtar N, Mir TUG, Rahayu F, Suhara C, Anjli A, Chopra C, Singh R, Prakash A, El Messaoudi N, Fernandes CD, Ferreira LFR, Rather RA, Américo-Pinheiro JHP. Eco-friendly and safe alternatives for the valorization of shrimp farming waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38960-38989. [PMID: 37249769 PMCID: PMC10227411 DOI: 10.1007/s11356-023-27819-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
The seafood industry generates waste, including shells, bones, intestines, and wastewater. The discards are nutrient-rich, containing varying concentrations of carotenoids, proteins, chitin, and other minerals. Thus, it is imperative to subject seafood waste, including shrimp waste (SW), to secondary processing and valorization for demineralization and deproteination to retrieve industrially essential compounds. Although several chemical processes are available for SW processing, most of them are inherently ecotoxic. Bioconversion of SW is cost-effective, ecofriendly, and safe. Microbial fermentation and the action of exogenous enzymes are among the significant SW bioconversion processes that transform seafood waste into valuable products. SW is a potential raw material for agrochemicals, microbial culture media, adsorbents, therapeutics, nutraceuticals, and bio-nanomaterials. This review comprehensively elucidates the valorization approaches of SW, addressing the drawbacks of chemically mediated methods for SW treatments. It is a broad overview of the applications associated with nutrient-rich SW, besides highlighting the role of major shrimp-producing countries in exploring SW to achieve safe, ecofriendly, and efficient bio-products.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tahir Ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Farida Rahayu
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Cece Suhara
- Research Center for Horticulture and Plantation, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Anjli Anjli
- HealthPlix Technologies Private Limited, Bengaluru, 560103, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | - Clara Dourado Fernandes
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
- Institute of Technology and Research, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Rauoof Ahmad Rather
- Division of Environmental Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Srinagar, Jammu and Kashmir, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil.
- Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil.
| |
Collapse
|
12
|
Verma KK, Joshi A, Song XP, Singh S, Kumari A, Arora J, Singh SK, Solanki MK, Seth CS, Li YR. Synergistic interactions of nanoparticles and plant growth promoting rhizobacteria enhancing soil-plant systems: a multigenerational perspective. FRONTIERS IN PLANT SCIENCE 2024; 15:1376214. [PMID: 38742215 PMCID: PMC11089215 DOI: 10.3389/fpls.2024.1376214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Sustainable food security and safety are major concerns on a global scale, especially in developed nations. Adverse agroclimatic conditions affect the largest agricultural-producing areas, which reduces the production of crops. Achieving sustainable food safety is challenging because of several factors, such as soil flooding/waterlogging, ultraviolet (UV) rays, acidic/sodic soil, hazardous ions, low and high temperatures, and nutritional imbalances. Plant growth-promoting rhizobacteria (PGPR) are widely employed in in-vitro conditions because they are widely recognized as a more environmentally and sustainably friendly approach to increasing crop yield in contaminated and fertile soil. Conversely, the use of nanoparticles (NPs) as an amendment in the soil has recently been proposed as an economical way to enhance the texture of the soil and improving agricultural yields. Nowadays, various research experiments have combined or individually applied with the PGPR and NPs for balancing soil elements and crop yield in response to control and adverse situations, with the expectation that both additives might perform well together. According to several research findings, interactive applications significantly increase sustainable crop yields more than PGPR or NPs alone. The present review summarized the functional and mechanistic basis of the interactive role of PGPR and NPs. However, this article focused on the potential of the research direction to realize the possible interaction of PGPR and NPs at a large scale in the upcoming years.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Shraddha Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, MH, India
- Homi Bhabha National Institute, Mumbai, MH, India
| | - Aradhna Kumari
- College of Agriculture, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Ganj Basoda, Vidisha, Madhya Pradesh, India
| | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Santosh Kumar Singh
- Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | | | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| |
Collapse
|
13
|
Zuo H, Chen J, Lv Z, Shao C, Chen Z, Zhou Y, Shen C. Tea-Derived Polyphenols Enhance Drought Resistance of Tea Plants ( Camellia sinensis) by Alleviating Jasmonate-Isoleucine Pathway and Flavonoid Metabolism Flow. Int J Mol Sci 2024; 25:3817. [PMID: 38612625 PMCID: PMC11011871 DOI: 10.3390/ijms25073817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Extreme drought weather has occurred frequently in recent years, resulting in serious yield loss in tea plantations. The study of drought in tea plantations is becoming more and more intensive, but there are fewer studies on drought-resistant measures applied in actual production. Therefore, in this study, we investigated the effect of exogenous tea polyphenols on the drought resistance of tea plant by pouring 100 mg·L-1 of exogenous tea polyphenols into the root under drought. The exogenous tea polyphenols were able to promote the closure of stomata and reduce water loss from leaves under drought stress. Drought-induced malondialdehyde (MDA) accumulation in tea leaves and roots was also significantly reduced by exogenous tea polyphenols. Combined transcriptomic and metabolomic analyses showed that exogenous tea polyphenols regulated the abnormal responses of photosynthetic and energy metabolism in leaves under drought conditions and alleviated sphingolipid metabolism, arginine metabolism, and glutathione metabolism in the root system, which enhanced the drought resistance of tea seedlings. Exogenous tea polyphenols induced jasmonic acid-isoleucine (JA-ILE) accumulation in the root system, and the jasmonic acid-isoleucine synthetase gene (TEA028623), jasmonic acid ZIM structural domain proteins (JAMs) synthesis genes (novel.22237, TEA001821), and the transcription factor MYC2 (TEA014288, TEA005840) were significantly up-regulated. Meanwhile, the flavonoid metabolic flow was significantly altered in the root; for example, the content of EGCG, ECG, and EGC was significantly increased. Thus, exogenous tea polyphenols enhance the drought resistance of tea plants through multiple pathways.
Collapse
Affiliation(s)
- Haoming Zuo
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.S.)
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Jiahao Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.S.)
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Zhidong Lv
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.S.)
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.S.)
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Ziqi Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.S.)
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Yuebin Zhou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.S.)
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Chengwen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.S.)
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
14
|
Agunbiade VF, Babalola OO. Drought Stress Amelioration Attributes of Plant-Associated Microbiome on Agricultural Plants. Bioinform Biol Insights 2024; 18:11779322241233442. [PMID: 38464334 PMCID: PMC10924568 DOI: 10.1177/11779322241233442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
The future global food security depends on the availability of water for agriculture. Yet, the ongoing rise in nonagricultural uses for water, such as urban and industrial uses, and growing environmental quality concerns have increased pressure of irrigation water demand and posed danger to food security. Nevertheless, its severity and duration are predicted to rise shortly. Drought pressure causes stunted growth, severe damage to photosynthesis activity, loss in crop yield, reduced seed germination, and reduced nutrient intake by plants. To overcome the effects of a devastating drought on plants, it is essential to think about the causes, mechanisms of action, and long-term agronomy management and genetics. As a result, there is an urgent need for long-term medication to deal with the harmful effects of drought pressure. The review focuses on the adverse impact of drought on the plant, physiological, and biochemical aspects, and management measures to control the severity of drought conditions. This article reviews the role of genome editing (GE) technologies such as CRISPR 9 (CRISPR-Cas9) related spaces and short palindromic relapse between proteins in reducing the effects of phytohormones, osmolytes, external compounds, proteins, microbes (plant growth-promoting microorganism [PGPM]), approach omics, and drought on plants that support plant growth. This research is to examine the potential of using the microbiome associated with plants for drought resistance and sustainable agriculture. Researchers also advocate using a mix of biotechnology, agronomic, and advanced GE technologies to create drought-tolerant plant varieties.
Collapse
Affiliation(s)
- Victor Funso Agunbiade
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
15
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Varma RS. A review of chitosan nanoparticles: Nature's gift for transforming agriculture through smart and effective delivery mechanisms. Int J Biol Macromol 2024; 260:129522. [PMID: 38246470 DOI: 10.1016/j.ijbiomac.2024.129522] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Chitosan nanoparticles (CNPs) have emerged as a promising tool in agricultural advancements due to their unique properties including, biocompatability, biodegradability, non-toxicity and remarkable versatility. These inherent properties along with their antimicrobial, antioxidant and eliciting activities enable CNPs to play an important role in increasing agricultural productivity, enhancing nutrient absorption and improving pest management strategies. Furthermore, the nano-formulation of chitosan have the ability to encapsulate various agricultural amendments, enabling the controlled release of pesticides, fertilizers, plant growth promoters and biocontrol agents, thus offering precise and targeted delivery mechanisms for enhanced efficiency. This review provides a comprehensive analysis of the latest research and developments in the use of CNPs for enhancing agricultural practices through smart and effective delivery mechanisms. It discusses the synthesis methods, physicochemical properties, and their role in enhancing seed germination and plant growth, crop protection against biotic and abiotic stresses, improving soil quality and reducing the environmental pollution and delivery of agricultural amendments. Furthermore, the potential environmental benefits and future directions for integrating CNPs into sustainable agricultural systems are explored. This review aims to shed light on the transformative potential of chitosan nanoparticles as nature's gift for revolutionizing agriculture and fostering eco-friendly farming practices.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran; Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan 771751735, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
16
|
Kumar D, Singh R, Upadhyay SK, Verma KK, Tripathi RM, Liu H, Dhankher OP, Tripathi RD, Sahi SV, Seth CS. Review on interactions between nanomaterials and phytohormones: Novel perspectives and opportunities for mitigating environmental challenges. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111964. [PMID: 38159611 DOI: 10.1016/j.plantsci.2023.111964] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Nanotechnology offers the potential to provide innovative solutions for sustainable crop production as plants are exposed to a combination of climate change factors (CO2, temperature, UV radiation, ozone), abiotic (heavy metals, salinity, drought), and biotic (virus, bacteria, fungi, nematode, and insects) stresses. The application of particular sizes, shapes, and concentration of nanomaterials (NMs) potentially mitigate the negative impacts in plants by modulation of photosynthetic rate, redox homeostasis, hormonal balance, and nutrient assimilation through upregulation of anti-stress metabolites, antioxidant defense pathways, and genes and genes network. The present review inculcates recent advances in uptake, translocation, and accumulation mechanisms of NMs in plants. The critical theme of this review provides detailed insights into different physiological, biochemical, molecular, and stress tolerance mechanism(s) of NMs action and their cross-talk with different phytohormones. The role of NMs as a double-edged sword for climate change factors, abiotic, and biotic stresses for nutrients uptake, hormones synthesis, cytotoxic, and genotoxic effects including chromosomal aberration, and micronuclei synthesis have been extensively studied. Importantly, this review aims to provide an in-depth understanding of the hormesis effect at low and toxicity at higher doses of NMs under different stressors to develop innovative approaches and design smart NMs for sustainable crop production.
Collapse
Affiliation(s)
| | - Ritu Singh
- Departmental of Environmental Science, Central University of Rajasthan, Ajmer 305817, Rajsthan, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, Uttar Pradesh, India
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Rudra Deo Tripathi
- CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Shivendra V Sahi
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19104, USA
| | | |
Collapse
|
17
|
Xu L, Liu P, Li X, Mi Q, Zheng Q, Xing J, Yang W, Zhou H, Cao P, Gao Q, Xu G. NtERF283 positively regulates water deficit tolerance in tobacco (Nicotianatabacum L.) by enhancing antioxidant capacity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108413. [PMID: 38330776 DOI: 10.1016/j.plaphy.2024.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Ethylene responsive factor (ERF) is a plant-specific transcription factor that plays a pivotal regulatory role in various stress responses. Although the genome of tobacco harbors 375 ER F genes, the functional roles of the majority of these genes remain unknown. Expression pattern analysis revealed that NtERF283 was induced by water deficit and salt stresses and mainly expressed in the roots and leaves. Subcellular localization and transcriptional activity assays confirmed that NtERF283 was localized in the nucleus and exhibited transcriptional activity. In comparison to the wild-type (WT), the NtERF283-overexpressing transgenic plants (OE) exhibited enhanced water deficit tolerance, whereas the knockout mutant erf283 displayed contrasting phenotypes. Transcriptional analysis demonstrated that several oxidative stress response genes were significantly altered in OE plants under water deficit conditions. 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining showed that erf283 accumulated a higher level of reactive oxygen species (ROS) compared to the WT under water deficit conditions. Conversely, OE plants displayed the least amount of ROS accumulation. Furthermore, the activities of POD and SOD were higher in OE plants and lower in erf283, suggesting that NtERF283 enhanced the capacity to effectively eliminate ROS, consequently enhancing water deficit tolerance in tobacco. These findings strongly indicate the significance of NtERF283 in promoting tobacco water deficit tolerance through the activation of the antioxidant system.
Collapse
Affiliation(s)
- Li Xu
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Xuemei Li
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Qili Mi
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Qingxia Zheng
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Jiaxin Xing
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Wenwu Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Huina Zhou
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Peijian Cao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Qian Gao
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China.
| | - Guoyun Xu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China.
| |
Collapse
|
18
|
Rehman A, Khan S, Sun F, Peng Z, Feng K, Wang N, Jia Y, Pan Z, He S, Wang L, Qayyum A, Du X, Li H. Exploring the nano-wonders: unveiling the role of Nanoparticles in enhancing salinity and drought tolerance in plants. FRONTIERS IN PLANT SCIENCE 2024; 14:1324176. [PMID: 38304455 PMCID: PMC10831664 DOI: 10.3389/fpls.2023.1324176] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024]
Abstract
Plants experience diverse abiotic stresses, encompassing low or high temperature, drought, water logging and salinity. The challenge of maintaining worldwide crop cultivation and food sustenance becomes particularly serious due to drought and salinity stress. Sustainable agriculture has significant promise with the use of nano-biotechnology. Nanoparticles (NPs) have evolved into remarkable assets to improve agricultural productivity under the robust climate alteration and increasing drought and salinity stress severity. Drought and salinity stress adversely impact plant development, and physiological and metabolic pathways, leading to disturbances in cell membranes, antioxidant activities, photosynthetic system, and nutrient uptake. NPs protect the membrane and photosynthetic apparatus, enhance photosynthetic efficiency, optimize hormone and phenolic levels, boost nutrient intake and antioxidant activities, and regulate gene expression, thereby strengthening plant's resilience to drought and salinity stress. In this paper, we explored the classification of NPs and their biological effects, nanoparticle absorption, plant toxicity, the relationship between NPs and genetic engineering, their molecular pathways, impact of NPs in salinity and drought stress tolerance because the effects of NPs vary with size, shape, structure, and concentration. We emphasized several areas of research that need to be addressed in future investigations. This comprehensive review will be a valuable resource for upcoming researchers who wish to embrace nanotechnology as an environmentally friendly approach for enhancing drought and salinity tolerance.
Collapse
Affiliation(s)
- Abdul Rehman
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Sana Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Fenlei Sun
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhen Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Keyun Feng
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yinhua Jia
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhaoe Pan
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shoupu He
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Supercomputer Center in Zhengzhou, Zhengzhou University, Zhengzhou, China
| | - Lidong Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongge Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
19
|
Pudake RN, Pallavi. Novel application of bio-based nanomaterials for the alleviation of abiotic stress in crop plants. NANOTECHNOLOGY FOR ABIOTIC STRESS TOLERANCE AND MANAGEMENT IN CROP PLANTS 2024:181-201. [DOI: 10.1016/b978-0-443-18500-7.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Abuelsoud W, Saleh AM, Mohammed AE, Alotaibi MO, AbdElgawad H. Chitosan nanoparticles upregulate C and N metabolism in soybean plants grown under elevated levels of atmospheric carbon dioxide. Int J Biol Macromol 2023; 252:126434. [PMID: 37604417 DOI: 10.1016/j.ijbiomac.2023.126434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Despite the wide utilization of chitosan nanoparticles (CSNPs) as a promising approach for sustainable agriculture, their efficiency under elevated CO2 (eCO2), has not been evaluated. The interactive effects of CSNPs and eCO2 were evaluated on the growth and C and N metabolism of soybean plants. Plants were treated with CSNPs and grown under ambient CO2 (410 ppm, aCO2) or eCO2 (645 ppm). Regardless of CO2 level, CSNPs improved the net photosynthetic rate. CSNPs aggravated the effect of eCO2 treatment on the levels of non-structural carbohydrates (i.e., glucose, fructose, sucrose, and starch), especially in shoots, which was inconsistence with the upregulation of carbohydrates metabolizing enzymes. Being the most pivotal energetic and signaling organic compounds in higher plants, the synergistic action of CSNPs and eCO2 on the accumulation of soluble sugars upregulated the N metabolism as indicated by induced activities of nitrate reductase, arginase, glutamate dehydrogenase, glutamine synthetase, and glutamine oxoglutarate aminotransferase which was manifested finally as increased shoot and root total nitrogen content as well as proline and aspartate in roots. At the hormonal level, the coexistence of eCO2 with CSNPs further supports their positive impact on the contents of IAA and, to a lesser extent, GAs. The present data prove that the biofertilization capacity of CSNPs is even more potent under futuristic eCO2 levels and could even further improve the growth and resilience of plants.
Collapse
Affiliation(s)
- Walid Abuelsoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62521 Beni-Suef, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
21
|
Bhattacharya S, Gupta S, Saha J. Nanoparticles regulate redox metabolism in plants during abiotic stress within hormetic boundaries. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:850-869. [PMID: 37757867 DOI: 10.1071/fp23068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Abiotic stress management remains under scrutiny because of the unpredictable nature of climate, which undergoes abrupt alterations. Population pressure, loss of cultivable lands, environmental pollution and other anthropogenic disturbances add to the problem and grossly hinder ongoing management strategies. This has driven increasing effort to find better performing, eco-friendly and reliable alternatives that can contribute to sustainable agricultural practices to manage abiotic stress. Nanotechnology and its implementation in agriculture have emerged as a promising option to cater to the problem of abiotic stress. Induction of reactive oxygen species (ROS) is an inevitable phenomenon linked to stress. Nanoparticles (NPs) perform dual actions in regulating ROS biology. The bidirectional roles of NPs in modulating ROS generation and/or ROS detoxification is tightly coupled within the hormetic boundaries. Nonetheless, how these NPs control the ROS metabolism within hormetic limits demands extensive investigation. This review focuses on the details of ROS metabolism under normal versus stressed conditions. It shall elaborate on the types, modes and process of uptake and translocation of NPs. The molecular dissection of the role of NPs in controlling transcriptomic expressions and modulating molecular crosstalks with other growth regulators, ions, reactive nitrogen species and other signalling molecules shall also be detailed. Throughout, this review aims to summarise the potential roles and regulation of NPs and consider how they can be used for green synthesis within a sustainable agricultural industry.
Collapse
Affiliation(s)
- Saswati Bhattacharya
- Department of Botany, Dr. A.P.J. Abdul Kalam Government College, New Town, Rajarhat, India
| | - Sumanti Gupta
- Department of Botany, Rabindra Mahavidyalaya, Champadanga, Hooghly, West Bengal, India
| | - Jayita Saha
- Department of Botany, Rabindra Mahavidyalaya, Champadanga, Hooghly, West Bengal, India
| |
Collapse
|
22
|
Khodadadi F, Ahmadi FS, Talebi M, Matkowski A, Szumny A, Afshari M, Rahimmalek M. Metabolic and Transcriptomic Approaches of Chitosan and Water Stress on Polyphenolic and Terpenoid Components and Gene Expression in Salvia abrotanoides (Karl.) and S. yangii. Int J Mol Sci 2023; 24:15426. [PMID: 37895107 PMCID: PMC10607810 DOI: 10.3390/ijms242015426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
In this research, a HPLC analysis, along with transcriptomics tools, was applied to evaluate chitosan and water stress for the prediction of phenolic flavonoids patterns and terpenoid components accumulation in Salvia abrotanoides Karel and S. yangii. The results indicated that the tanshinone contents under drought stress conditions increased 4.2-fold with increasing drought stress intensity in both species. The rosmarinic acid content in the leaves varied from 0.038 to 11.43 mg/g DW. In addition, the flavonoid content was increased (1.8 and 1.4-fold) under mild water deficit conditions with a moderate concentration of chitosan (100 mg L-1). The application of foliar chitosan at 100 and 200 mg L-1 under well-watered and mild stress conditions led to increases in hydroxyl cryptotanshinone (OH-CT) and cryptotanshinone (CT) contents as the major terpenoid components in both species. The expressions of the studied genes (DXS2, HMGR, KSL, 4CL, and TAT) were also noticeably induced by water deficit and variably modulated by the treatment with chitosan. According to our findings, both the drought stress and the application of foliar chitosan altered the expression levels of certain genes. Specifically, we observed changes in the expression levels of DXS and HMGR, which are upstream genes in the MEP and MVA pathways, respectively. Additionally, the expression level of KSL, a downstream gene involved in diterpenoid synthesis, was also affected. Finally, the present investigation confirmed that chitosan treatments and water stress were affected in both the methylerythritol phosphate pathway (MEP) and mevalonate (MVA) pathways, but their commitment to the production of other isoprenoids has to be considered and discussed.
Collapse
Affiliation(s)
- Farzaneh Khodadadi
- Department of Plant Biotechnology, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Farajollah Shahriai Ahmadi
- Department of Plant Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Majid Talebi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Mahvash Afshari
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 83111-84156, Iran;
| | - Mehdi Rahimmalek
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
23
|
Gu L, Cao Y, Chen X, Wang H, Zhu B, Du X, Sun Y. The Genome-Wide Identification, Characterization, and Expression Analysis of the Strictosidine Synthase-like Family in Maize ( Zea mays L.). Int J Mol Sci 2023; 24:14733. [PMID: 37834181 PMCID: PMC10572891 DOI: 10.3390/ijms241914733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Maize is often subjected to various environmental stresses. The strictosidine synthase-like (SSL) family is thought to catalyze the key step in the monoterpene alkaloids synthesis pathway in response to environmental stresses. However, the role of ZmSSL genes in maize growth and development and its response to stresses is unknown. Herein, we undertook the systematic identification and analysis of maize SSL genes. Twenty SSL genes were identified in the maize genome. Except for chromosomes 3, 5, 6, and 10, they were unevenly distributed on the remaining 6 chromosomes. A total of 105 SSL genes from maize, sorghum, rice, Aegilops tauschii, and Arabidopsis were divided into five evolutionary groups, and ZmSSL gene structures and conserved protein motifs in the same group were similar. A collinearity analysis showed that tandem duplication plays an important role in the evolution of the SSL family in maize, and ZmSSL genes share more collinear genes in crops (maize, sorghum, rice, and Ae. tauschii) than in Arabidopsis. Cis-element analysis in the ZmSSL gene promoter region revealed that most genes contained many development and stress response elements. We evaluated the expression levels of ZmSSL genes under normal conditions and stress treatments. ZmSSL4-9 were widely expressed in different tissues and were positively or negatively regulated by heat, cold, and infection stress from Colletotrichum graminicola and Cercospora zeina. Moreover, ZmSSL4 and ZmSSL5 were localized in the chloroplast. Taken together, we provide insight into the evolutionary relationships of the ZmSSL genes, which would be useful to further identify the potential functions of ZmSSLs in maize.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yiyue Sun
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (L.G.); (Y.C.); (X.C.); (H.W.); (B.Z.); (X.D.)
| |
Collapse
|
24
|
Ahmed AM, Abd-Rabbu HS, Wahba HE, Khalid KA. Chitosan and salty irrigation water affect morphological and physiological characteristics of rosemary herb. AGRICULTURAL WATER MANAGEMENT 2023; 286:108381. [DOI: 10.1016/j.agwat.2023.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
25
|
El-Ganainy SM, Soliman AM, Ismail AM, Sattar MN, Farroh KY, Shafie RM. Antiviral Activity of Chitosan Nanoparticles and Chitosan Silver Nanocomposites against Alfalfa Mosaic Virus. Polymers (Basel) 2023; 15:2961. [PMID: 37447606 DOI: 10.3390/polym15132961] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Plant viruses are a global concern for sustainable crop production. Among the currently available antiviral approaches, nanotechnology has been overwhelmingly playing an effective role in circumventing plant viruses. Alfalfa mosaic virus (AMV) was isolated and identified from symptomatic pepper plants in Egypt using symptomatology, serological tests using the direct ELISA technique, differential hosts and electron microscopy. The virus was biologically purified from a single local lesion that developed on Chenopodium amaranticolor. The AMV infection was further confirmed using an AMV coat protein-specific primer RT-PCR. We further evaluated the antiviral potential of chitosan nanoparticles (CS-NPs) and chitosan silver nanocomposites (CS-Ag NC) in different concentrations against AMV infections in pepper plants. All tested concentrations of CS-NPs and CS-Ag NC induced the inhibition of AMV systemically infected pepper plants when applied 24 h after virus inoculation. The foliar application of 400 ppm CS-NPs or 200 ppm CS-Ag NC produced the highest AMV inhibitory effect (90 and 91%) when applied 24 h after virus inoculation. Treatment with CS-NPs and CS-Ag NC considerably increased the phenol, proline and capsaicin contents compared to the infected plants. Moreover, the agronomic metrics (plant height, fresh and dry pod weights and number of pods per plant) were also significantly improved. According to our results, the potential applications of CS-NPs and CS-Ag NC may provide an effective therapeutic measure for better AMV and other related plant virus management.
Collapse
Affiliation(s)
- Sherif Mohamed El-Ganainy
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Ahmed M Soliman
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Ahmed Mahmoud Ismail
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | | | - Khaled Yehia Farroh
- Nanotechnology and Advanced Materials Central Lab., Regional Center for Food and Feed, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Radwa M Shafie
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| |
Collapse
|
26
|
Shah IH, Sabir IA, Rehman A, Hameed MK, Albashar G, Manzoor MA, Shakoor A. Co-application of copper oxide nanoparticles and Trichoderma harzianum with physiological, enzymatic and ultrastructural responses for the mitigation of salt stress. CHEMOSPHERE 2023:139230. [PMID: 37343643 DOI: 10.1016/j.chemosphere.2023.139230] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Chemical contamination or nutrient pollution is concerning for health, environmental, and economic reasons. Ecofriendly surface modification of nanoparticles is a consistent challenge for agricultural purposes. In response to this environmental concern, CuO-NPs synthesized through biological method using green source and characterized for morphological and structural features through SEM (scanning electron microscope) and TEM (transmission electron microscope) spectroscopy. Our research findings illustrate that the presence of salt stress induces a notable decline in both physiological and biochemical parameters within plants. Nevertheless, the utilization of T. harzianum and CuO-NPs exhibited a mitigating effect on the detrimental consequences induced by salt stress in plants. The application of T. harzianum and the simultaneous co-inoculation with CuO-NPs notably enhanced fresh biomass and facilitated vegetative growth in comparison to the control group. Furthermore, the exposure of both T. harzianum inoculum and Copper oxide nanoparticles resulted in a significant reduction of oxidative stresses, including reactive oxygen species (ROS) levels, H2O2, and lipid peroxidation (MDA) levels in the above-ground parts of the plant, while also minimizing electrolyte leakage (EL) by reducing root growth. Additionally, the co-inoculation of the endophyte and CuO-NPs led to a significant enhancement in antioxidant enzymatic activities, such as superoxide dismutase (SOD) and chitinase (CAT) activity in the above-ground parts, under salt stress conditions. The inoculum, along with its combination with CuO-NPs, decreased electrolyte conductivity and improved total chlorophyll contents as compared to the control. The combined application of T. harzianum and CuO-NPs improved salt tolerance in A. thaliana plants by triggering salt-associated gene expression. These findings suggest that the application of T. harzianum and CuO-NPs can considerably promote leaf anatomical changes in A. thaliana and have ability to enhance salt tolerance, particularly in saline areas.
Collapse
Affiliation(s)
- Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Irfan Ali Sabir
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Asad Rehman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Gadah Albashar
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Awais Shakoor
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia.
| |
Collapse
|
27
|
Ogunyemi SO, Abdallah Y, Ibrahim E, Zhang Y, Bi J, Wang F, Ahmed T, Alkhalifah DHM, Hozzein WN, Yan C, Li B, Xu L. Bacteriophage-mediated biosynthesis of MnO 2NPs and MgONPs and their role in the protection of plants from bacterial pathogens. Front Microbiol 2023; 14:1193206. [PMID: 37396367 PMCID: PMC10308383 DOI: 10.3389/fmicb.2023.1193206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/17/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Xanthomonas oryzae pv. oryzae (Xoo) is the plant pathogen of Bacterial Leaf Blight (BLB), which causes yield loss in rice. Methods In this study, the lysate of Xoo bacteriophage X3 was used to mediate the bio-synthesis of MgO and MnO2. The physiochemical features of MgONPs and MnO2NPs were observed via Ultraviolet - Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Transmission/Scanning electron microscopy (TEM/SEM), Energy dispersive spectrum (EDS), and Fourier-transform infrared spectrum (FTIR). The impact of nanoparticles on plant growth and bacterial leaf blight disease were evaluated. Chlorophyll fluorescence was used to determine whether the nanoparticles application were toxic to the plants. Results An absorption peak of 215 and 230 nm for MgO and MnO2, respectively, confirmed nanoparticle formation via UV-Vis. The crystalline nature of the nanoparticles was detected by the analysis of XRD. Bacteriological tests indicated that MgONPs and MnO2NPs sized 12.5 and 9.8 nm, respectively, had strong in vitro antibacterial effects on rice bacterial blight pathogen, Xoo. MnO2NPs were found to have the most significant antagonist effect on nutrient agar plates, while MgONPs had the most significant impact on bacterial growth in nutrient broth and on cellular efflux. Furthermore, no toxicity to plants was observed for MgONPs and MnO2NPs, indeed, MgONPs at 200 μg/mL significantly increased the quantum efficiency of PSII photochemistry on the model plant, Arabidopsis, in light (ΦPSII) compared to other interactions. Additionally, significant suppression of BLB was noted in rice seedlings amended with the synthesized MgONPs and MnO2NPs. MnO2NPs showed promotion of plant growth in the presence of Xoo compared to MgONPs. Conclusion An effective alternative for the biological production of MgONPs and MnO2NPs was reported, which serves as an effective substitute to control plant bacterial disease with no phytotoxic effect.
Collapse
Affiliation(s)
- Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yasmine Abdallah
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Plant Pathology Department, Faculty of Agriculture, Minia University, Elminya, Egypt
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ji’an Bi
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Fang Wang
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
28
|
Wang R, Zhao W, Yao W, Wang Y, Jiang T, Liu H. Genome-Wide Analysis of Strictosidine Synthase-like Gene Family Revealed Their Response to Biotic/Abiotic Stress in Poplar. Int J Mol Sci 2023; 24:10117. [PMID: 37373265 DOI: 10.3390/ijms241210117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The strictosidine synthase-like (SSL) gene family is a small plant immune-regulated gene family that plays a critical role in plant resistance to biotic/abiotic stresses. To date, very little has been reported on the SSL gene in plants. In this study, a total of thirteen SSLs genes were identified from poplar, and these were classified into four subgroups based on multiple sequence alignment and phylogenetic tree analysis, and members of the same subgroup were found to have similar gene structures and motifs. The results of the collinearity analysis showed that poplar SSLs had more collinear genes in the woody plants Salix purpurea and Eucalyptus grandis. The promoter analysis revealed that the promoter region of PtrSSLs contains a large number of biotic/abiotic stress response elements. Subsequently, we examined the expression patterns of PtrSSLs following drought, salt, and leaf blight stress, using RT-qPCR to validate the response of PtrSSLs to biotic/abiotic stresses. In addition, the prediction of transcription factor (TF) regulatory networks identified several TFs, such as ATMYB46, ATMYB15, AGL20, STOP1, ATWRKY65, and so on, that may be induced in the expression of PtrSSLs in response to adversity stress. In conclusion, this study provides a solid basis for a functional analysis of the SSL gene family in response to biotic/abiotic stresses in poplar.
Collapse
Affiliation(s)
- Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wenna Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yuting Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Huanzhen Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
29
|
Mukarram M, Khan MMA, Kurjak D, Corpas FJ. Chitosan oligomers (COS) trigger a coordinated biochemical response of lemongrass (Cymbopogon flexuosus) plants to palliate salinity-induced oxidative stress. Sci Rep 2023; 13:8636. [PMID: 37244976 DOI: 10.1038/s41598-023-35931-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023] Open
Abstract
Plant susceptibility to salt depends on several factors from its genetic makeup to modifiable physiological and biochemical status. We used lemongrass (Cymbopogon flexuosus) plants as a relevant medicinal and aromatic cash crop to assess the potential benefits of chitosan oligomers (COS) on plant growth and essential oil productivity during salinity stress (160 and 240 mM NaCl). Five foliar sprays of 120 mg L-1 of COS were applied weekly. Several aspects of photosynthesis, gas exchange, cellular defence, and essential oil productivity of lemongrass were traced. The obtained data indicated that 120 mg L-1 COS alleviated photosynthetic constraints and raised the enzymatic antioxidant defence including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities that minimised salt-induced oxidative damage. Further, stomatal conductance (gs) and photosynthetic CO2 assimilation (A) were improved to support overall plant development. The same treatment increased geraniol dehydrogenase (GeDH) activity and lemongrass essential oil production. COS-induced salt resilience suggests that COS could become a useful biotechnological tool in reclaiming saline soil for improved crop productivity, especially when such soil is unfit for leading food crops. Considering its additional economic value in the essential oil industry, we propose COS-treated lemongrass as an excellent alternative crop for saline lands.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001, Zvolen, Slovakia.
| | - M Masroor A Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001, Zvolen, Slovakia
| | - Francisco J Corpas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
30
|
Abd-Rabbu HS, Wahba HE, Khalid KA. The effects of foliar application of chitosan on the morphological and chemical characters of French lavender against water deficiency. VEGETOS 2023. [DOI: 10.1007/s42535-023-00631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 09/02/2023]
|
31
|
Upadhayay VK, Chitara MK, Mishra D, Jha MN, Jaiswal A, Kumari G, Ghosh S, Patel VK, Naitam MG, Singh AK, Pareek N, Taj G, Maithani D, Kumar A, Dasila H, Sharma A. Synergistic impact of nanomaterials and plant probiotics in agriculture: A tale of two-way strategy for long-term sustainability. Front Microbiol 2023; 14:1133968. [PMID: 37206335 PMCID: PMC10189066 DOI: 10.3389/fmicb.2023.1133968] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/06/2023] [Indexed: 05/21/2023] Open
Abstract
Modern agriculture is primarily focused on the massive production of cereals and other food-based crops in a sustainable manner in order to fulfill the food demands of an ever-increasing global population. However, intensive agricultural practices, rampant use of agrochemicals, and other environmental factors result in soil fertility degradation, environmental pollution, disruption of soil biodiversity, pest resistance, and a decline in crop yields. Thus, experts are shifting their focus to other eco-friendly and safer methods of fertilization in order to ensure agricultural sustainability. Indeed, the importance of plant growth-promoting microorganisms, also determined as "plant probiotics (PPs)," has gained widespread recognition, and their usage as biofertilizers is being actively promoted as a means of mitigating the harmful effects of agrochemicals. As bio-elicitors, PPs promote plant growth and colonize soil or plant tissues when administered in soil, seeds, or plant surface and are used as an alternative means to avoid heavy use of agrochemicals. In the past few years, the use of nanotechnology has also brought a revolution in agriculture due to the application of various nanomaterials (NMs) or nano-based fertilizers to increase crop productivity. Given the beneficial properties of PPs and NMs, these two can be used in tandem to maximize benefits. However, the use of combinations of NMs and PPs, or their synergistic use, is in its infancy but has exhibited better crop-modulating effects in terms of improvement in crop productivity, mitigation of environmental stress (drought, salinity, etc.), restoration of soil fertility, and strengthening of the bioeconomy. In addition, a proper assessment of nanomaterials is necessary before their application, and a safer dose of NMs should be applicable without showing any toxic impact on the environment and soil microbial communities. The combo of NMs and PPs can also be encapsulated within a suitable carrier, and this method aids in the controlled and targeted delivery of entrapped components and also increases the shelf life of PPs. However, this review highlights the functional annotation of the combined impact of NMs and PPs on sustainable agricultural production in an eco-friendly manner.
Collapse
Affiliation(s)
- Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Manoj Kumar Chitara
- Department of Plant Pathology, College of Agriculture, A.N.D University of Agriculture and Technology, Ayodhya, Uttar Pradesh, India
| | - Dhruv Mishra
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Manindra Nath Jha
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Aman Jaiswal
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Geeta Kumari
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Saipayan Ghosh
- Department of Horticulture, PGCA, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Vivek Kumar Patel
- Department of Plant Pathology, PGCA, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Mayur G. Naitam
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Ashish Kumar Singh
- Department of Biotechnology and Synthetic Biology, Center of Innovative and Applied Bioprocessing, Sector 81, Mohali, India
| | - Navneet Pareek
- Department of Soil Science, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Gohar Taj
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences and Humanities, GBPUA&; T, Pantnagar, Uttarakhand, India
| | | | - Ankit Kumar
- Department of Horticulture, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Hemant Dasila
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Adita Sharma
- College of Fisheries, Dholi, Dr. Rajendra Prasad Central Agricultural University, Muzaffarpur, Bihar, India
| |
Collapse
|
32
|
Liu Y, Qin D, Wang H, Zhu Y, Bi S, Liu Y, Cheng X, Chen X. Effect and mechanism of fish scale extract natural hydrogel on skin protection and cell damage repair after UV irradiation. Colloids Surf B Biointerfaces 2023; 225:113281. [PMID: 37004386 DOI: 10.1016/j.colsurfb.2023.113281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/20/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
Skin lesions caused by ultraviolet radiation exposure seriously reduce people's life quality, safe natural products development to prevent and repair ultraviolet damage is an effective strategy. We investigated the protective and reparative effects of the natural composite gel (SE-gel) derived from fish scales on UV-irradiated skin by inhibiting reactive oxygen species (ROS) -mediated oxidative stress and inflammatory responses. Our results showed that SE-gel rich in glycine and proline had good ultraviolet absorption, water absorption, moisturizing and free radical scavenging abilities. In vitro, SE-gel could improve UV-irradiated L929 cell viability by 1.24 times via inhibiting 50% ROS production and malondialdehyde, and improving superoxide dismutase activity to reduce oxidative stress caused by UV irradiation. In UV-irradiated mouse skin damage model, SE-gel prevent UV-induced skin erythema, epidermal thickening, collagen fiber degradation and disruption, and reduced UV-induced inflammatory response via NF-κB signaling pathway, showing potential application in UV-irradiated skin damage prevention and repair.
Collapse
|
33
|
Saleh AM, Abu El-Soud WM, Alotaibi MO, Beemster GTS, Mohammed AE, AbdElgawad H. Chitosan nanoparticles support the impact of arbuscular mycorrhizae fungi on growth and sugar metabolism of wheat crop. Int J Biol Macromol 2023; 235:123806. [PMID: 36841386 DOI: 10.1016/j.ijbiomac.2023.123806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Arbuscular mycorrhizae fungi (AMF) symbiosis is an indispensable approach in sustainable agriculture. AMF-plant association is likely to be enhanced by the nanoparticle's application. Herein, the impact of chitosan nanoparticles (CSNPs) on the mycorrhizal colonization in wheat has been investigated. The provoked changes in wheat growth, physiology and metabolism were assessed. CSNPs treatment improved AMF colonization (52 %) by inducing the levels of auxins and strigolactones in roots by 32 and 21 %, respectively besides flavonoids exudation into the rhizosphere (9 %). Such supporting action of CSNPs was associated with improved plant biomass production (21 %) compared to AMF treatment. Both treatments synergistically enhanced the photochemical efficiency of photosystem II and stomatal conductance, therefore the photosynthetic rate was increased. The combined application of CSNPs and AMF enhanced accumulation of glucose, fructose, sucrose, and starch (12, 22, 31 and 13 %, respectively), as well as the activities of sucrose-p-synthase, invertases and starch synthase compared to AMF treatment. The synchronous application of CSNPs and AMF promoted the levels of polyphenols, carotenoids, and tocopherols therefore, improved antioxidant capacity (33 %), in the roots. CSNPs can be applied as an efficient biofertilization strategies to enhance plant growth and fitness, beside improvement of health promoting compounds in wheat.
Collapse
Affiliation(s)
- Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt; Biology Department, Faculty of Science at Yanbu, Taibah University, King Khalid Rd., Al Amoedi, Yanbu El-Bahr, 46423, Saudi Arabia
| | - Walid M Abu El-Soud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62521 Beni-Suef, Egypt
| |
Collapse
|
34
|
Bionanotechnology in Agriculture: A One Health Approach. Life (Basel) 2023; 13:life13020509. [PMID: 36836866 PMCID: PMC9964896 DOI: 10.3390/life13020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Healthy eating habits are one of the requirements for the health of society. In particular, in natura foods are increasingly encouraged, since they have a high concentration of nutrients. However, these foods are often grown in the presence of agrochemicals, such as fertilizers and pesticides. To increase crop productivity and achieve high vigor standards in less time, farmers make excessive use of agrochemicals that generate various economic, environmental, and clinical problems. In this way, bionanotechnology appears as an ally in developing technologies to improve planting conditions, ranging from the health of farmers and consumers to the production of new foods and functional foods. All these improvements are based on the better use of land use in synergy with the lowest generation of environmental impacts and the health of living beings, with a view to the study and production of technologies that take into account the concept of One Health in its processes and products. In this review article, we will address how caring for agriculture can directly influence the quality of the most desired foods in contemporary society, and how new alternatives based on nanotechnology can point to efficient and safe solutions for living beings on our planet.
Collapse
|
35
|
Jiménez-Arias D, Bonardd S, Morales-Sierra S, Almeida
Pinheiro de Carvalho MÂ, Díaz Díaz D. Chitosan-Enclosed Menadione Sodium Bisulfite as an Environmentally Friendly Alternative to Enhance Biostimulant Properties against Drought. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3192-3200. [PMID: 36758115 PMCID: PMC9951248 DOI: 10.1021/acs.jafc.2c07927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Biostimulants are an interesting strategy to increase crop tolerance to water deficits, and there is an extensive bibliography on them. However, most of them need to be treated continuously to increase protection throughout the growth cycle. In this context, we chose menadione sodium bisulfite, whose protective effect against water deficit has been previously demonstrated but only for a short period of time. Nanoencapsulation seems to be an interesting way to improve the properties of biostimulants. Our results show that menadione sodium bisulfite (MSB) encapsulated in chitosan/tripolyphosphate nanoparticles can increase the system's tolerance against an imposed water deficit and delay the need for retreatment by at least 1 week, accelerating plant recovery after rehydration. This highlights the positive properties of nanoencapsulation and shows how a simple encapsulation process can significantly improve the biostimulant protective properties, opening up new possibilities to be explored under field conditions to cope with water-deficit stress.
Collapse
Affiliation(s)
- David Jiménez-Arias
- ISOPlexis,
Center for Sustainable Agriculture and Food Technology, Madeira University, Campus Universitário da Penteada, 9020-105 Funchal, Madeira, Portugal
| | - Sebastian Bonardd
- Departamento
de Química Orgánica, Universidad
de la Laguna, Avda. Astrofísico Francisco Sánchez 3, La Laguna 38206, Tenerife, Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de la Laguna, Avda. Astrofísico Francisco Sánchez
2, La Laguna 38206, Tenerife, Spain
| | - Sarai Morales-Sierra
- Grupo
de Biología Vegetal Aplicada, Departamento de Botánica,
Ecología y Fisiología Vegetal-Facultad de Farmacia, Universidad de la Laguna, Avenida. Astrofísico Francisco Sánchez
s/n, La Laguna 38071, Tenerife, Canary Islands, Spain
| | - Miguel Â. Almeida
Pinheiro de Carvalho
- ISOPlexis,
Center for Sustainable Agriculture and Food Technology, Madeira University, Campus Universitário da Penteada, 9020-105 Funchal, Madeira, Portugal
- CiTAB,
Centre for the Research and Technology of Agroenvironmental and Biological
Sciences, University of Trás-os-Montes
and Alto Douro, Quinta dos Prados, 5000-801 Vila Real, Portugal
| | - David Díaz Díaz
- Departamento
de Química Orgánica, Universidad
de la Laguna, Avda. Astrofísico Francisco Sánchez 3, La Laguna 38206, Tenerife, Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de la Laguna, Avda. Astrofísico Francisco Sánchez
2, La Laguna 38206, Tenerife, Spain
- Institute
of Organic Chemistry, Faculty of Chemistry and Pharmacy, Regensburg University, Regensburg 93053, Germany
| |
Collapse
|
36
|
Mohd Amnan MA, Teo WFA, Aizat WM, Khaidizar FD, Tan BC. Foliar Application of Oil Palm Wood Vinegar Enhances Pandanus amaryllifolius Tolerance under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:785. [PMID: 36840132 PMCID: PMC9958832 DOI: 10.3390/plants12040785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Drought stress severely threatens plant growth, yield and survivability. Wood vinegar, formed by the condensation of smoke produced during biochar production, has been shown to promote plant growth and enhance stress tolerance. They have now been recognized as a sustainable alternative and are frequently used exogenously to support plants coping with environmental stress. This study aimed to evaluate the efficacy of oil palm wood vinegar (OPWV) in mitigating the adverse effects of drought stress on Pandanus amaryllifolius. The optimal concentrations and frequencies of OPWV application were determined before the drought treatment. The results showed that the imposed drought stress negatively affected the plant growth parameters but applying OPWV at 1:500 dilution at 3-day intervals for 12 days increased its tolerance. These include increased leaf relative water content, root-to-shoot ratio, relative stem circumference, chlorophyll pigments and antioxidant enzyme activities. In contrast, the drought-stressed plants treated with OPWV showed decreased relative electrolyte leakage, hydrogen peroxide, proline, malondialdehyde, and enhanced drought-responsive gene expressions, such as HSP70, GAPDH, and Thau, while ENO and β-Fruc were reduced. These biostimulatory effects of OPWV might be due to several antioxidant compounds, such as anthranilic acid, tetrasiloxane, syringol, guaiacol, and catechol. Altogether, our results showed the effectiveness of OPWV in alleviating the adverse effects of drought stress, and as such, OPWV could be potentially applied in agriculture.
Collapse
Affiliation(s)
- Muhammad Asyraf Mohd Amnan
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Wee Fei Aaron Teo
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Fiqri Dizar Khaidizar
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
37
|
Wu Y, Li X, Zhang J, Zhao H, Tan S, Xu W, Pan J, Yang F, Pi E. ERF subfamily transcription factors and their function in plant responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1042084. [PMID: 36531407 PMCID: PMC9748296 DOI: 10.3389/fpls.2022.1042084] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/09/2022] [Indexed: 06/09/2023]
Abstract
Ethylene Responsive Factor (ERF) subfamily comprise the largest number of proteins in the plant AP2/ERF superfamily, and have been most extensively studied on the biological functions. Members of this subfamily have been proven to regulate plant resistances to various abiotic stresses, such as drought, salinity, chilling and some other adversities. Under these stresses, ERFs are usually activated by mitogen-activated protein kinase induced phosphorylation or escape from ubiquitin-ligase enzymes, and then form complex with nucleic proteins before binding to cis-element in promoter regions of stress responsive genes. In this review, we will discuss the phylogenetic relationships among the ERF subfamily proteins, summarize molecular mechanism how the transcriptional activity of ERFs been regulated and how ERFs of different subgroup regulate the transcription of stress responsive genes, such as high-affinity K+ transporter gene PalHKT1;2, reactive oxygen species related genes LcLTP, LcPrx, and LcRP, flavonoids synthesis related genes FtF3H and LhMYBSPLATTER, etc. Though increasing researches demonstrate that ERFs are involved in various abiotic stresses, very few interact proteins and target genes of them have been comprehensively annotated. Hence, future research prospects are described on the mechanisms of how stress signals been transited to ERFs and how ERFs regulate the transcriptional expression of stress responsive genes.
Collapse
|
38
|
Rasheed A, Li H, Tahir MM, Mahmood A, Nawaz M, Shah AN, Aslam MT, Negm S, Moustafa M, Hassan MU, Wu Z. The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:976179. [PMID: 36507430 PMCID: PMC9730289 DOI: 10.3389/fpls.2022.976179] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/16/2022] [Indexed: 06/17/2023]
Abstract
Drought stress (DS) is a serious challenge for sustaining global crop production and food security. Nanoparticles (NPs) have emerged as an excellent tool to enhance crop production under current rapid climate change and increasing drought intensity. DS negatively affects plant growth, physiological and metabolic processes, and disturbs cellular membranes, nutrient and water uptake, photosynthetic apparatus, and antioxidant activities. The application of NPs protects the membranes, maintains water relationship, and enhances nutrient and water uptake, leading to an appreciable increase in plant growth under DS. NPs protect the photosynthetic apparatus and improve photosynthetic efficiency, accumulation of osmolytes, hormones, and phenolics, antioxidant activities, and gene expression, thus providing better resistance to plants against DS. In this review, we discuss the role of different metal-based NPs to mitigate DS in plants. We also highlighted various research gaps that should be filled in future research studies. This detailed review will be an excellent source of information for future researchers to adopt nanotechnology as an eco-friendly technique to improve drought tolerance.
Collapse
Affiliation(s)
- Adnan Rasheed
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huijie Li
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Humanity and Public Administration, Jiangxi Agricultural University, Nanchang, China
| | - Majid M Tahir
- Department of Soil and Environmental Sciences, Faculty of Agriculture, University of Poonch, Rawalakot, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Muhammad Talha Aslam
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sally Negm
- Life Sciences Department, College of Science and Art, King Khalid University, Mohail, Saudi Arabia
- Unit of Food Bacteriology, Central Laboratory of Food Hygiene, Ministry of Health, Sharkia, Egypt
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Ziming Wu
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
39
|
Mazrou RM, Hassan S, Yang M, Hassan FA. Melatonin Preserves the Postharvest Quality of Cut Roses through Enhancing the Antioxidant System. PLANTS (BASEL, SWITZERLAND) 2022; 11:2713. [PMID: 36297737 PMCID: PMC9609555 DOI: 10.3390/plants11202713] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The vase life of cut rose is relatively short, therefore; preserving its postharvest quality via eco-friendly approaches is of particular economic importance. From the previous literature, despite melatonin (MT) plays diverse important roles in the postharvest quality maintenance, its impact on preserving the postharvest quality of cut flowers is really scarce. This research therefore was undertaken to find out the possibility of exogenous MT as an eco-friendly preservative to extend the vase life of cut roses. The flowering stems of Rosa hybrida cv. 'First Red' were pulsed in MT solutions at 0, 0.1, 0.2 and 0.3 mM for 30 min and then transferred to distilled water for evaluation. The vase life was significantly prolonged and relative water content was considerably maintained due to MT application compared to the control, more so with 0.2 mM concentration which nearly doubled the vase life (1.9-fold) higher than the control. SEM investigation showed that MT treatment reduced the stomatal aperture in lower epidermis which was widely opened in control flowers. MT treatment significantly increased the phenol content, glutathione (GSH) content and CAT, APX and GR enzyme activities compared to untreated flowers. Additionally, the radical scavenging capacity in MT-treated flowers was considerably higher than that of control and therefore MT treatment reduced H2O2 production and lipid peroxidation, which altogether reflected in membrane stability maintenance.
Collapse
Affiliation(s)
- Ragia M. Mazrou
- Horticulture Department, Faculty of Agriculture, Menoufia University, Shebin El Kom 32516, Egypt
| | - Sabry Hassan
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mei Yang
- College of Forestry, Guangxi University, Nanning 530004, China
| | - Fahmy A.S. Hassan
- Horticulture Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
40
|
Chitosan and chitosan-derived nanoparticles modulate enhanced immune response in tomato against bacterial wilt disease. Int J Biol Macromol 2022; 220:223-237. [PMID: 35970370 DOI: 10.1016/j.ijbiomac.2022.08.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022]
Abstract
The present study evaluated the priming efficacy of chitosan and chitosan-derived nanoparticles (CNPs) against bacterial wilt of tomato. In the current study, seed-treated CNPs plus pathogen-inoculated tomato seedlings recorded significant protection of 62 % against pathogen-induced wilt disease and subsequently better growth. The induced resistance was witnessed by a prominent increase in lignin, callose and H2O2 deposition, followed by superoxide radical accumulation in leaves. Additionally, chitosan and CNPs-treated tomato plants recorded a remarkable increase in the upregulation of phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), catalase (CAT) and β-1, 3 glucanase (GLU) in comparison with untreated plants. The chitosan and CNPs-induced antioxidant enzymes were positively correlated with the stimulation of corresponding gene expression in CNPs treated plants related to pathogen-inoculated ones. The results of this study describe that how the application of chitosan and CNPs elicit defense responses at the cellular, biochemical and gene expression in tomato plants against bacterial wilt disease, thereby improve growth and yield.
Collapse
|
41
|
Ling Y, Zhao Y, Cheng B, Tan M, Zhang Y, Li Z. Seed Priming with Chitosan Improves Germination Characteristics Associated with Alterations in Antioxidant Defense and Dehydration-Responsive Pathway in White Clover under Water Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:2015. [PMID: 35956492 PMCID: PMC9370098 DOI: 10.3390/plants11152015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Water stress decreases seed-germination characteristics and also hinders subsequent seedling establishment. Seed priming with bioactive compounds has been proven as an effective way to improve seed germination under normal and stressful conditions. However, effect and mechanism of seed priming with chitosan (CTS) on improving seed germination and seedling establishment were not well-understood under water-deficit conditions. White clover (Trifolium repens) seeds were pretreated with or without 5 mg/L CTS before being subjected to water stress induced by 18% (w/v) polyethylene glycol 6000 for 7 days of germination in a controlled growth chamber. Results showed that water stress significantly decreased germination percentage, germination vigor, germination index, seed vigor index, and seedling dry weight and also increased mean germination time and accumulation of reactive oxygen species, leading to membrane lipid peroxidation during seed germination. These symptoms could be significantly alleviated by the CTS priming through activating superoxide dismutase, catalase, and peroxidase activities. In addition, seeds pretreated with CTS exhibited significantly higher expression levels of genes encoding dehydration-responsive transcription factors (DREB2, DREB4, and DREB5) and dehydrins (Y2K, Y2SK, and SK2) than those seeds without the CTS priming. Current findings indicated that the CTS-induced tolerance to water stress could be associated with the enhancement in dehydration-responsive pathway during seed germination.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhou Li
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.Z.); (B.C.); (M.T.); (Y.Z.)
| |
Collapse
|
42
|
Attaran Dowom S, Karimian Z, Mostafaei Dehnavi M, Samiei L. Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress. BMC PLANT BIOLOGY 2022; 22:364. [PMID: 35869431 PMCID: PMC9308334 DOI: 10.1186/s12870-022-03689-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/10/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND The use of organic nanoparticles to improve drought resistance and water demand characteristics in plants seems to be a promising eco-friendly strategy for water resource management in arid and semi-arid areas. This study aimed to investigate the effect of chitosan nanoparticles (CNPs) (0, 30, 60 and 90 ppm) on some physiological, biochemical, and anatomical responses of Salvia abrotanoides under multiple irrigation regimes (30% (severe), 50% (medium) and 100% (control) field capacity). RESULTS The results showed that drought stress decreases almost all biochemical parameters. However, foliar application of CNPs mitigated the effects caused by drought stress. This elicitor decreased electrolyte conductivity (35%), but improved relative water content (12.65%), total chlorophyll (63%), carotenoids (68%), phenol (23.1%), flavonoid (36.4%), soluble sugar (58%), proline (49%), protein (45.2%) in S. abrotanoides plants compared to the control (CNPs = 0). Furthermore, the activity of antioxidant enzymes superoxide dismutase (86%), polyphenol oxidase (72.8%), and guaiacol peroxidase (75.7%) were enhanced after CNPs treatment to reduce the effects of water deficit. Also, the CNPs led to an increase in stomatal density (5.2 and 6.6%) while decreasing stomatal aperture size (50 and 25%) and semi-closed stomata (26 and 53%) in leaves. CONCLUSION The findings show that CNPs not only can considerably reduce water requirement of S. abrotanoides but also are able to enhance the drought tolerance ability of this plant particularly in drought-prone areas.
Collapse
Affiliation(s)
- Samaneh Attaran Dowom
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Karimian
- Department of Ornamental plants, Research center for plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Leila Samiei
- Department of Ornamental plants, Research center for plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
43
|
Vodyashkin AA, Kezimana P, Vetcher AA, Stanishevskiy YM. Biopolymeric Nanoparticles-Multifunctional Materials of the Future. Polymers (Basel) 2022; 14:2287. [PMID: 35683959 PMCID: PMC9182720 DOI: 10.3390/polym14112287] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology plays an important role in biological research, especially in the development of delivery systems with lower toxicity and greater efficiency. These include not only metallic nanoparticles, but also biopolymeric nanoparticles. Biopolymeric nanoparticles (BPNs) are mainly developed for their provision of several advantages, such as biocompatibility, biodegradability, and minimal toxicity, in addition to the general advantages of nanoparticles. Therefore, given that biopolymers are biodegradable, natural, and environmentally friendly, they have attracted great attention due to their multiple applications in biomedicine, such as drug delivery, antibacterial activity, etc. This review on biopolymeric nanoparticles highlights their various synthesis methods, such as the ionic gelation method, nanoprecipitation method, and microemulsion method. In addition, the review also covers the applications of biodegradable polymeric nanoparticles in different areas-especially in the pharmaceutical, biomedical, and agricultural domains. In conclusion, the present review highlights recent advances in the synthesis and applications of biopolymeric nanoparticles and presents both fundamental and applied aspects that can be used for further development in the field of biopolymeric nanoparticles.
Collapse
Affiliation(s)
- Andrey A. Vodyashkin
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
| | - Parfait Kezimana
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
- Department of Agrobiotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya Str., 117588 Moscow, Russia
| | - Yaroslav M. Stanishevskiy
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
| |
Collapse
|
44
|
Balusamy SR, Rahimi S, Sukweenadhi J, Sunderraj S, Shanmugam R, Thangavelu L, Mijakovic I, Perumalsamy H. Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohydr Polym 2022; 284:119189. [DOI: 10.1016/j.carbpol.2022.119189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
|
45
|
Tang W, Liu X, He Y, Yang F. Enhancement of Vindoline and Catharanthine Accumulation, Antioxidant Enzymes Activities, and Gene Expression Levels in Catharanthus roseus Leaves by Chitooligosaccharides Elicitation. Mar Drugs 2022; 20:md20030188. [PMID: 35323487 PMCID: PMC8950274 DOI: 10.3390/md20030188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/17/2023] Open
Abstract
Catharanthus roseus (L.) G. Don is a plant belonging to the genus Catharanthus of the Apocynaceae family. It contains more than one hundred alkaloids, of which some exhibit significant pharmacological activities. Chitooligosaccharides are the only basic aminooligosaccharides with positively charged cations in nature, which can regulate plant growth and antioxidant properties. In this study, the leaves of Catharanthus roseus were sprayed with chitooligosaccharides of different molecular weights (1 kDa, 2 kDa, 3 kDa) and different concentrations (0.01 μg/mL, 0.1 μg/mL, 1 μg/mL and 10 μg/mL). The fresh weights of its root, stem and leaf were all improved after chitooligosaccharides treatments. More importantly, the chitooligosaccharides elicitor strongly stimulated the accumulation of vindoline and catharanthine in the leaves, especially with the treatment of 0.1 μg/mL 3 kDa chitooligosaccharides, the contents of them were increased by 60.68% and 141.54%, respectively. Furthermore, as the defensive responses, antioxidant enzymes activities (catalase, glutathione reductase, ascorbate peroxidase, peroxidase and superoxide dismutase) were enhanced under chitooligosaccharides treatments. To further elucidate the underlying mechanism, qRT-PCR was used to investigate the genes expression levels of secologanin synthase (SLS), strictosidine synthase (STR), strictosidine glucosidase (SGD), tabersonine 16-hydroxylase (T16H), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT), peroxidase 1 (PRX1) and octadecanoid-responsive Catharanthus AP2-domain protein 3 (ORCA3). All the genes were significantly up-regulated after chitooligosaccharides treatments, and the transcription abundance of ORCA3, SLS, STR, DAT and PRX1 reached a maximal level with 0.1 μg/mL 3 kDa chitooligosaccharides treatment. All these results suggest that spraying Catharanthus roseus leaves with chitooligosaccharides, especially 0.1 μg/mL of 3 kDa chitooligosaccharides, may effectively improve the pharmaceutical value of Catharanthus roseus.
Collapse
Affiliation(s)
| | | | | | - Fan Yang
- Correspondence: ; Tel./Fax: +86-411-86323646
| |
Collapse
|
46
|
Kandhol N, Jain M, Tripathi DK. Nanoparticles as potential hallmarks of drought stress tolerance in plants. PHYSIOLOGIA PLANTARUM 2022; 174:e13665. [PMID: 35279848 DOI: 10.1111/ppl.13665] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 05/12/2023]
Abstract
Plants are inevitably exposed to drought stress limiting their growth and causing yield loss, thus inciting food crises across the world. Nanoparticles (NPs) are regarded as effective and promising tools for modulation of crop yield to overcome current and future constraints in sustainable agricultural production by upgrading the plant tolerance mechanism under abiotic stress conditions, including drought. NPs exhibit alleviating effects against drought stress via induction of physiological and biochemical readjustments accompanied by modulation of gene expression involved in drought response/tolerance. NPs ameliorate drought-induced reduction in carbon assimilation via increasing the photosynthetic activity. The improved root growth, upregulation of aquaporins, modification of intracellular water metabolism, accumulation of compatible solutes and ion homeostasis are the major mechanisms used by NPs to mitigate the osmotic stress caused by water deficit. NPs reduce water loss from leaves through stomatal closure due to fostered abscisic acid (ABA) accumulation and ameliorate oxidative stress damage by reducing reactive oxygen species and activating the antioxidant defense system. This review provides an evolutionary foundation regarding drought stress in plant life and summarizes the interactions between NPs and plants under drought. The subsequent impact of NPs on plant development and productivity and recent nanobiotechnological approaches to improve drought stress resilience are presented. On the whole, this review highlights the significance of NPs in dealing with the global problem of water scarcity faced by farmers.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
47
|
The Efficacies of 1-Methylcyclopropene and Chitosan Nanoparticles in Preserving the Postharvest Quality of Damask Rose and Their Underlying Biochemical and Physiological Mechanisms. BIOLOGY 2022; 11:biology11020242. [PMID: 35205108 PMCID: PMC8869683 DOI: 10.3390/biology11020242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Damask rose is one of the most important aromatic plants that is being used in the perfume, cosmetic and pharmaceutical industries. However, the short blooming period leads to a reduced oil quantity and quality; therefore, preserving the flower shelf life is a crucial step in maintaining the economic viability of this crop. This research aimed to study the effect of 400 mg m−3 of 1-methylcyclopropene (1-MCP) and either the pre- or postharvest application of 1% chitosan nanoparticles (CSNPs) on maintaining the quality of damask rose flowers during storage at 4 or 20 °C. The results showed that both treatments were shown to help preserve the quality and extend the shelf life of damask rose. CSNPs were more effective than 1-MCP. Collectively, 1-MCP or CSNPs as eco-friendly applications are recommended as novel and promising approaches for the commercial industry for retaining the quality of damask rose during storage. Abstract Preserving the flower shelf life of damask rose is a crucial matter in promoting its economic viability. Chitosan nanoparticles (CSNPs) and 1-methylcyclopropene (1-MCP) may potentially decrease the postharvest loss of several horticultural commodities, but no findings on damask rose have been published. Therefore, the aim of this research was to study the effect of 1-MCP (400 mg m−3) and either the pre- or postharvest application of CSNPs (1%) on maintaining the quality of damask rose flowers during storage at 4 or 20 °C. The shelf life of damask rose has been significantly extended, along with a reduction in weight loss due to 1-MCP, CSNPs and pre-CSNP treatments. 1-MCP or CSNP applications have resulted in a higher relative water content, volatile oil, total anthocyanins, total carotenoids, total phenolics and antioxidant activity. Ethylene evolution, H2O2 generation and malondialdehyde content were significantly decreased due to 1-MCP or CSNPs treatment, and hence, the cell membrane functions have been maintained. The 1-MCP or CSNP-treated flowers have shown higher activities of catalase and ascorbate peroxidase and lower activities of polyphenol oxidase and lipoxygenase in comparison to untreated flowers. Our results showed that the postharvest application of 1-MCP or CSNPs is a very promising method to maintain the postharvest quality of damask rose during storage.
Collapse
|
48
|
Karamchandani BM, Chakraborty S, Dalvi SG, Satpute SK. Chitosan and its derivatives: Promising biomaterial in averting fungal diseases of sugarcane and other crops. J Basic Microbiol 2022; 62:533-554. [DOI: 10.1002/jobm.202100613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/08/2022] [Indexed: 02/01/2023]
Affiliation(s)
| | - Saswata Chakraborty
- Department of Microbiology Savitribai Phule Pune University Pune Maharashtra India
| | - Sunil G. Dalvi
- Tissue Culture Section Vasantdada Sugar Institute Pune Maharashtra India
| | - Surekha K. Satpute
- Department of Microbiology Savitribai Phule Pune University Pune Maharashtra India
| |
Collapse
|
49
|
A Pivotal Role of Chitosan Nanoparticles in Enhancing the Essential Oil Productivity and Antioxidant Capacity in Matricaria chamomilla L. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chitosan is a biopolymer with several biological and agricultural applications. Recently, development of chitosan nanoparticles (CSNPs) adds additional value by further using it as an eco-friendly biostimulant. Therefore, the impact of CSNPs foliar application on the growth, essential oil productivity and antioxidant capacity of chamomile was investigated. Treatments comprised 0, 100, 200, 300 and 400 mg L−1 of CSNPs applied to plants as a foliar spray. CSNPs foliar application improved the growth and productivity of chamomile plants. Relative to the control, the flower yield was increased by 52.10 and 55.74% while the essential oil percentage was increased by 57.14 and 47.06% due to CSNPs at 300 mg L−1 during the two seasons of study. Moreover, CSNPs enhanced the photosynthetic pigments, total soluble sugars and N, P and K percentages. Interestingly, CSNPs increased the antioxidant capacity as measured by total phenolics and the antioxidant activity (DPPH). Collectively, it is suggested that CSNPs might be a promising eco-friendly bio-stimulant and it could be an alternative strategy to improve the productivity, quality and decrease the production cost of chamomile and possibly some other medicinal species.
Collapse
|
50
|
Nguyen DTC, Le HTN, Nguyen TT, Nguyen TTT, Bach LG, Nguyen TD, Tran TV. Multifunctional ZnO nanoparticles bio-fabricated from Canna indica L. flowers for seed germination, adsorption, and photocatalytic degradation of organic dyes. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126586. [PMID: 34265649 DOI: 10.1016/j.jhazmat.2021.126586] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 05/21/2023]
Abstract
The potential of green nanomaterials for environmental and agricultural fields is emerging due to their biocompatible, eco-friendly, and cost-effective performance. We report the use of Canna indica flowers extract as new capping and stabilizing source to bio-fabricate ZnO nanoparticles (ZnO NPs for dyes removal, seed germination. ZnO NPs was biosynthesized by ultrasound-assisted alkaline-free route to reach the critical green strategy. The physicochemical findings of ZnO revealed small crystallite size (27.82 nm), sufficient band-gap energy (3.08 eV), and diverse functional groups. Minimum‑run resolution IV approach found the most pivotal factors influencing on removal of Coomassie Brilliant Blue G-250. Uptake studies pointed out that pseudo second-order, and Langmuir were the best fitted models. Dye molecules behaved monolayer adsorption on ZnO surface layers, and controlled by chemisorption. Natural solar light was used as effective source for photocatalytic degradation of methylene blue (94.23% of removal and 31.09 mg/g of uptake capacity). Compared with H2O and ZnSO4, ZnO NPs positively affected the growth of shoot and root lengths (10.2-27.8%) of bean seedlings in most cases. ZnO acts an agrochemical for boosting weight gain, and germination ratio. This study may be promising for developing the recyclable, multifunctional ZnO nanoparticles for environmental and agricultural applications.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Institute of Environmental Sciences, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Hanh T N Le
- Institute of Hygiene and Public Health, 159 Hung Phu, Ward 8, District 8, Ho Chi Minh City 700000, Viet Nam
| | - Thuong Thi Nguyen
- Institute of Environmental Sciences, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Thi Thanh Thuy Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Long Giang Bach
- Institute of Environmental Sciences, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Trinh Duy Nguyen
- Institute of Environmental Sciences, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Thuan Van Tran
- Institute of Environmental Sciences, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|