1
|
Li N, Li J, Xie J, Rui W, Pu K, Gao Y, Wang T, Zhang M. Glycine betaine and plant abiotic stresses: Unravelling physiological and molecular responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112479. [PMID: 40132665 DOI: 10.1016/j.plantsci.2025.112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Plants are constantly subjected to various abiotic stresses (drought, salinity, heavy metals and low temperature) throughout their life cycle, which significantly hinder their growth and productivity. Key abiotic stresses include drought, salinity, heavy metals, and extreme temperatures. In response, plants modulate glycine betaine (GB) levels, a vital compatible solute that influences growth and stress tolerance by interacting with phytohormones and cellular signaling pathways. Not all species can synthesize endogenous GB; however, some non-GB accumulating plants have been genetically modified to enhance GB production through the overexpression of synthesis genes such as choline oxidase, choline monooxygenase, and betaine aldehyde dehydrogenase. Exogenous GB treatment can mitigate stress effects by improving nutritional balance, reducing reactive oxygen species (ROS), minimizing membrane damage, and alleviating photoinhibition. Nonetheless, the specificity of GB application, transport, and accumulation across species, as well as its interaction with phytohormones in stress alleviation, remains uncertain. This review focuses on GB's role as an antioxidant, osmo-regulator, and nitrogen source, evaluating the physiological, biochemical, and molecular mechanisms by which GB mitigates abiotic stresses, aiming to develop GB-based strategies for enhancing plant stress resilience.
Collapse
Affiliation(s)
- Nenghui Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China.
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China.
| | - Wenjing Rui
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Kaiguo Pu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Yanqiang Gao
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Tiantian Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Miao Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| |
Collapse
|
2
|
Pu K, Li N, Gao Y, Wang T, Zhang M, Sun W, Li J, Xie J. Mitigating effects of Methyl Jasmonate on photosynthetic inhibition and oxidative stress of pepper (Capsicum annuum L) seedlings under low temperature combined with low light. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109843. [PMID: 40168861 DOI: 10.1016/j.plaphy.2025.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Low temperature combined with low light (LL) is a critical abiotic stress that restricting plant growth and yield of pepper (Capsicum annuum L.). Methyl jasmonate (MeJA) is considered with potential benefits for improving plant stress resistance; however, the physiological mechanisms underlying the adaptation of pepper to LL stress have not been explored. This study aimed to investigate the potential mitigating effects of foliar MeJA (200 μmol L-1) application on pepper seedlings subjected to LL stress (10/5 °C, 100 μmol m-2 s-1) for 168 h. Our results indicated that the application of exogenous MeJA reduced the negative effect on growth inhibition of pepper seedlings caused by LL stress, significantly increased chlorophyll contents and photosynthetic capacity as a result of improved photosynthesis rate. In addition, MeJA reduced the accumulation of reactive oxygen species and malondialdehyde contents induced by LL stress, while enhancing the activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and monodehydroascorbate reductase as a result of upregulated expression levels of antioxidant enzyme genes (CaSOD, CaPOD, CaCAT, CaAPX, CaGR, CaDHAR, and CaMDHAR). Additionally, it increased the ascorbic acid and reduced glutathione content, while reducing oxidized glutathione content, thereby preventing membrane lipid peroxidation and protecting plants from oxidative damage under LL stress. Furthermore, seedlings treated with MeJA exhibited significantly enhanced soluble sugar and soluble protein contents in leaves. Taken together, present findings indicate that MeJA application may serve as an effective strategy for mitigating LL-induced oxidative stress by maintaining plant growth, enhancing chlorophyll fluorescence, upregulating the antioxidant defence system, optimizing ascorbate-glutathione cycle, and osmotic adjustment.
Collapse
Affiliation(s)
- Kaiguo Pu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Nenghui Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Yanqiang Gao
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Tiantian Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Miao Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Wenli Sun
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Yuce M, Aydin M, Turan M, Ilhan E, Ekinci M, Agar G, Yildirim E. Ameliorative effects of SL on tolerance to salt stress on pepper (Capsicum annuum L.) plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109798. [PMID: 40147330 DOI: 10.1016/j.plaphy.2025.109798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Salinity is one of the most important problems that threaten agricultural production, especially in arid and semiarid areas. Strigolactones (SLs) are important in providing tolerance to various abiotic stresses in plants. The study was carried out in a hydroponic system to determine the effects of external GR24 (were applied as a foliar spray; 0, 10, and 20 μM) applications at different doses on plant growth and some physiological, biochemical, and gene expression in two pepper genotype (Yalova and Maraş) grown under salt stress (0 and 100 mM NaCl). Plants were harvested and measured 10 days after the NaCl treatments. At the end of the research, it was determined that salt stress negatively affected plant growth in both genotype. Still, SL applications positively affected plant development both under normal and salt stress. While salt stress increased the amount of hydrogen peroxide (H2O2) and malondialdehyde (MDA), SL application caused a decrease in these parameters. Salt stress negatively affected the amount of chlorophyll and photosynthetic properties in both genotype, whereas SL applications mitigated this negative effect. SL applications caused a significant increase in antioxidant enzyme activities under both normal and salt stress conditions. SL content, which decreased with salt stress, increased with exogenous SL application. The content of other plant nutrients except sodium (Na) and chloride (Cl) decreased significantly in pepper seedlings grown under salt stress. External SL applications increased the uptake of these nutrients, especially under salt stress. In addition, the expression levels of CIPK3, CBL2, CCD7, DMAX2, PsbA, PsbB, PsbP1, TIP1;2, TIP5;1, SOS1, SOS2 and HKT2;2 genes were investigated in this study. It was observed that the expression levels of CCD7, DMAX2, SOS1, SOS2, and HKT2;2 genes increased with salinity stress, especially in the Maraş genotype, while SL applications decreased these expression levels. In the study, it was determined that especially exogenous 20 μM SL application could significantly reduce the negative effects of salt stress in pepper.
Collapse
Affiliation(s)
- Merve Yuce
- Atatürk University, Faculty of Agriculture, Department of Horticulture, Erzurum, Turkey.
| | - Murat Aydin
- Atatürk University, Faculty of Agriculture, Department of Agricultural Biotechnology, Erzurum, Turkey
| | - Metin Turan
- Yeditepe University, Faculty of Economy and Administrative Sciences, Department of Agricultural Trade and Management, Istanbul, Turkey
| | - Emre Ilhan
- Erzurum Technical University, Faculty of Science, Department of Molecular Biology and Genetics, 25050, Erzurum, Turkey
| | - Melek Ekinci
- Atatürk University, Faculty of Agriculture, Department of Horticulture, Erzurum, Turkey
| | - Guleray Agar
- Atatürk University, Faculty of Science, Department of Biology, Erzurum, Turkey
| | - Ertan Yildirim
- Atatürk University, Faculty of Agriculture, Department of Horticulture, Erzurum, Turkey
| |
Collapse
|
4
|
Cai Y, Ying J, Ye Y, Wen S, Qian R. Green light induces Solanum lycopersicum JA synthesis and inhibits Botrytis cinerea infection cushion formation to resist grey mould disease. PHYSIOLOGIA PLANTARUM 2025; 177:e70156. [PMID: 40102179 DOI: 10.1111/ppl.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Light signals are prevalent and influence the survival strategies of both plants and the pathogenic fungi that infect them. In this study, we found that green light inhibits the infectivity of Botrytis cinerea on Solanum lycopersicum. Through transcriptome analysis and validation of S. lycopersicum leaves infected with B. cinerea, we discovered that green light enhances the synthesis of jasmonic acid and its related metabolites by upregulating the expression of OPR3 and JAR1 in S. lycopersicum. Additionally, green light boosts the activity of antioxidant enzymes like peroxidase, catalase, and ascorbic acid peroxidase in S. lycopersicum to combat tomato grey mould. Conversely, green light inhibits the expression of plant-induced colonization onset genes, mitogen-activated protein kinase genes, and the formation of infection cushions in B. cinerea. Our findings provide insights into the role of environmental green light signals in the interaction system between plants and phytopathogenic fungi.
Collapse
Affiliation(s)
- Yunfei Cai
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Jiali Ying
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Youju Ye
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Shuangshuang Wen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Renjuan Qian
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| |
Collapse
|
5
|
Li N, Gao Y, Pu K, Zhang M, Wang T, Li J, Xie J. Glycine betaine enhances tolerance of low temperature combined with low light in pepper (Capsicum annuum L.) by improving the antioxidant capacity and regulating GB metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109705. [PMID: 40022883 DOI: 10.1016/j.plaphy.2025.109705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/27/2024] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Glycine betaine (GB) is commonly used as an osmotic regulator and a donor to facilitate changes in methylation in plants and animals, thereby enhancing stress resistance. However, low temperature combined with low light stress represent the most prevalent stresses during pepper growth period in northwest China, and limited studies have focused on the potential stress-mitigating effects of GB. Therefore, to examine the regulatory mechanism of GB-induced tolerance to LL stress, pepper seedlings were pretreated with 20 mmol L-1 GB and 60 μmol L-1 3-Deazaneplanocin A hydrochloride at a temperature of 10/5 °C and illumination of 100 μmol m-2 s-1. The results demonstrated that GB significantly alleviated the detrimental effects of low temperature combined with low light stress on growth of primary and lateral roots and increased the roots absorption of mineral nutrients (N, P, Ca, Fe, and Zn). In addition, GB induced the expression of the genes for CaSOD, CaPOD, CaCAT, CaGR1, and CaDHAR, improved osmotic regulation, and increased the activities of enzymatic (superoxide dismutase, peroxidase, catalase, glutathione reductase, and dehydroascorbate reductase) and non-enzymatic antioxidants (ascorbate and glutathione). This resulted in enhanced scavenging of reactive oxygen species, thereby maintaining a balanced oxidation-reduction within the cells. Furthermore, GB substituted S-adenosylmethionine, a partial methylation donor, during the methyl group metabolism process, altering the m6A methylation level and increasing the resistance of pepper seedlings to LL stress. Overall, exogenous GB pretreatment could be used as a potential strategy for enhancing the LL tolerance of plants.
Collapse
Affiliation(s)
- Nenghui Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Yanqiang Gao
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Kaiguo Pu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Miao Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Tiantian Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China.
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China.
| |
Collapse
|
6
|
Wang X, Yang S, Li B, Chen C, Li J, Wang Y, Du Q, Li M, Wang H, Li J, Wang J, Xiao H. Exogenous 5-aminolevulinic acid enhanced saline-alkali tolerance in pepper seedlings by regulating photosynthesis, oxidative damage, and glutathione metabolism. PLANT CELL REPORTS 2024; 43:267. [PMID: 39425750 DOI: 10.1007/s00299-024-03352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
KEY MESSAGE A plant growth regulator, 5-aminolevulinic acid, enhanced the saline-alkali tolerance via photosynthetic, oxidative-reduction, and glutathione metabolism pathways in pepper seedlings. Saline-alkali stress is a prominent environmental problem, hindering growth and development of pepper. 5-Aminolevulinic acid (ALA) application effectively improves plant growth status under various abiotic stresses. Here, we evaluated morphological, physiological, and transcriptomic differences in saline-alkali-stressed pepper seedlings after ALA application to explore the impact of ALA on saline-alkali stress. The results indicated that saline-alkali stress inhibited plant growth, decreased biomass and photosynthesis, altered the osmolyte content and antioxidant system, and increased reactive oxygen species (ROS) accumulation and proline content in pepper seedlings. Conversely, the application of exogenous ALA alleviated this damage by increasing the photosynthetic rate, osmolyte content, antioxidant enzyme activity, and antioxidants, including superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase, and reducing glutathione to reduce ROS accumulation and malonaldehyde content. Moreover, the transcriptomic analysis revealed the differentially expressed genes were mainly associated with photosynthesis, oxidation-reduction process, and glutathione metabolism in saline-alkali stress + ALA treatment compared to saline-alkali treatment. Among them, the change in expression level in CaGST, CaGR, and CaGPX was close to the variation of corresponding enzyme activity. Collectively, our findings revealed the alleviating effect of ALA on saline-alkali stress in pepper seedlings, broadening the application of ALA and providing a feasible strategy for utilize saline-alkali soil.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Sizhen Yang
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Baixue Li
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chunlin Chen
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jinling Li
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yichao Wang
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qingjie Du
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Research Center of Protected Horticulture Engineering Technology, Zhengzhou, 450046, China
| | - Meng Li
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Research Center of Protected Horticulture Engineering Technology, Zhengzhou, 450046, China
| | - Hu Wang
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Research Center of Protected Horticulture Engineering Technology, Zhengzhou, 450046, China
| | - Juanqi Li
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Research Center of Protected Horticulture Engineering Technology, Zhengzhou, 450046, China
| | - Jiqing Wang
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Research Center of Protected Horticulture Engineering Technology, Zhengzhou, 450046, China.
| | - HuaiJuan Xiao
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Research Center of Protected Horticulture Engineering Technology, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Li J, Yang P, Fu H, Li J, Wang Y, Zhu K, Yu J, Li J. Transcriptome analysis reveals key regulatory networks and genes involved in the acquisition of cold stress memory in pepper seedlings. BMC PLANT BIOLOGY 2024; 24:959. [PMID: 39396950 PMCID: PMC11479542 DOI: 10.1186/s12870-024-05660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Temperature is an important limiting factor in the counter-seasonal cultivation of pepper. Currently, there are no studies on transcriptomic analysis of 'cold stress memory' in pepper. In this study, in order to understand the mechanism of 'cold stress memory' in pepper (Capsicum annuum L.), seedlings were subjected to the following treatments: normal temperature treatment (P0), the first cold treatment for 3 days (P3), the recovery temperature treatment for 3 days (R3), and another cold treatment for 3 days (RP3). The results showed that P3 plants wilted the most, RP3 the second and R3 the least. Leaf reactive oxygen species (ROS) and electrolyte leakage were the most in P3, the second in RP3 and the least in R3. In addition, RP3 had the highest accumulation of zeaxanthin, violaxanthin and β-cryptoxanthin, followed by P3, and R3 had the least. These results suggest that pepper seedlings are characterized by 'cold stress memory'. Transcriptomics was used to analyze the key genes and transcription factors involved in the biosynthesis of zeaxanthin, violaxanthin and β-cryptoxanthin during the formation of 'cold stress memory'. This study provides candidate genes and transcription factors for an in-depth study of the cold tolerance mechanism in pepper.
Collapse
Affiliation(s)
- Jian Li
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, China
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
| | - Ping Yang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
| | - Hongbo Fu
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
| | - Juan Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
- College of Horticulture and Forestry, Tarim University, Alar, 843300, China
| | - Yanzhuang Wang
- College of Horticulture and Forestry, Tarim University, Alar, 843300, China
| | - Keyan Zhu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, China.
| | - Jie Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China.
| |
Collapse
|
8
|
Pu K, Li N, Gao Y, Zhang M, Wang T, Xie J, Li J. Alleviating Effects of Methyl Jasmonate on Pepper ( Capsicum annuum L.) Seedlings under Low-Temperature Combined with Low-Light Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2694. [PMID: 39409564 PMCID: PMC11478966 DOI: 10.3390/plants13192694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Low temperature combined with low light (LL) is an important factor limiting pepper quality and yield. 'Hang Jiao No. 2' were used as experimental materials, and different concentrations of MeJA (T1 (0 μM), T2 (100 μM), T3 (150 μM), T4 (200 μM), T5 (250 μM) and T6 (300 μM)) were sprayed under LL stress to explore the positive effect of exogenous methyl jasmonate (MeJA) on peppers under LL stress. The photosynthetic properties, osmoregulatory substance, reactive oxygen species, antioxidant enzyme activities, and related gene expressions of the peppers were measured. Our results demonstrated that 200 μM MeJA treatment significantly increased chlorophyll content, light quantum flux per active RC electron transfer (Eto/RC), maximum captured photonic flux per active RC (TRo/RC), energy flux for electron transfer in the excitation cross section (Eto/CSm), energy flux captured by absorption in the excitation cross section (TRo/CSm), soluble protein, and soluble sugar content. Moreover, it significantly improved the maximum photochemical efficiency of PSII (Fv/Fm) and performance index based on absorbed light energy (PI (abs)) by 56.77% and 67.00%, respectively, and significantly decreased malondialdehyde (MDA) content and relative conductivity by 30.55% and 28.17%, respectively. Additionally, antioxidant enzyme activities were elevated, and the expression of the related genes was activated in pepper seedlings under stress, leading to a significant reduction in reactive oxygen species content. In conclusion, our findings confirmed that 200 μM MeJA could reduce the injury of LL to pepper leaves to the photosynthetic organs of pepper leaves, protect the integrity of the cell membrane, and further improve the tolerance of pepper seedlings to LL.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China; (K.P.); (N.L.); (Y.G.); (M.Z.); (T.W.)
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China; (K.P.); (N.L.); (Y.G.); (M.Z.); (T.W.)
| |
Collapse
|
9
|
Wang X, Ran C, Fu Y, Han L, Yang X, Zhu W, Zhang H, Zhang Y. Application of Exogenous Ascorbic Acid Enhances Cold Tolerance in Tomato Seedlings through Molecular and Physiological Responses. Int J Mol Sci 2024; 25:10093. [PMID: 39337579 PMCID: PMC11432314 DOI: 10.3390/ijms251810093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Ascorbic acid (AsA), an essential non-enzymatic antioxidant in plants, regulates development growth and responses to abiotic and biotic stresses. However, research on AsA's role in cold tolerance remains largely unknown. Here, our study uncovered the positive role of AsA in improving cold stress tolerance in tomato seedlings. Physiological analysis showed that AsA significantly enhanced the enzyme activity of the antioxidant defense system in tomato seedling leaves and increased the contents of proline, sugar, abscisic acid (ABA), and endogenous AsA. In addition, we found that AsA is able to protect the photosynthetic system of tomato seedlings, thereby relieving the declining rate of chlorophyll fluorescence parameters. qRT-PCR analysis indicated that AsA significantly increased the expression of genes encoding antioxidant enzymes and involved in AsA synthesis, ABA biosynthesis/signal transduction, and low-temperature responses in tomato. In conclusion, the application of exogenous AsA enhances cold stress tolerance in tomato seedlings through various molecular and physiological responses. This provides a theoretical foundation for exploring the regulatory mechanisms underlying cold tolerance in tomato and offers practical guidance for enhancing cold tolerance in tomato cultivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.W.); (C.R.); (Y.F.); (L.H.); (X.Y.); (W.Z.)
| | - Yingying Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.W.); (C.R.); (Y.F.); (L.H.); (X.Y.); (W.Z.)
| |
Collapse
|
10
|
Pei M, Yang P, Li J, Wang Y, Li J, Xu H, Li J. Comprehensive analysis of pepper (Capsicum annuum) RAV genes family and functional identification of CaRAV1 under chilling stress. BMC Genomics 2024; 25:731. [PMID: 39075389 PMCID: PMC11285464 DOI: 10.1186/s12864-024-10639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Despite its known significance in plant abiotic stress responses, the role of the RAV gene family in the response of Capsicum annuum to chilling stress remains largely unexplored. RESULTS In this study, we identified and characterized six members of the CaRAV gene subfamily in pepper plants through genome-wide analysis. Subsequently, the CaRAV subfamily was classified into four branches based on homology with Arabidopsis thaliana, each exhibiting relatively conserved domains within the branch. We discovered that light response elements accounted for the majority of CaRAVs, whereas low-temperature response elements were specific to the NGA gene subfamily. After pepper plants were subjected to chilling stress, qRT‒PCR analysis revealed that CaRAV1, CaRAV2 and CaNGA1 were significantly induced in response to chilling stress, indicating that CaRAVs play a role in the response to chilling stress. Using virus-induced gene silencing (VIGS) vectors, we targeted key members of the CaRAV gene family. Under normal growth conditions, the MDA content and SOD enzyme activity of the silenced plants were slightly greater than those of the control plants, and the REC activity was significantly greater than that of the control plants. The levels of MDA and electrolyte leakage were greater in the silenced plants after they were exposed to chilling stress, and the POD and CAT enzyme activities were significantly lower than those in the control, which was particularly evident under repeated chilling stress. In addition, the relative expression of CaPOD and CaCAT was greater in V2 plants upon repeated chilling stress, especially CaCAT was significantly greater in V2 plants than in the other two silenced plants, with 3.29 and 1.10 increases within 12 and 24 h. These findings suggest that CaRAV1 and CaNGA1 positively regulate the response to chilling stress. CONCLUSIONS Silencing of key members of the CaRAV gene family results in increased susceptibility to chilling damage and reduced antioxidant enzyme activity in plants, particularly under repeated chilling stress. This study provides valuable information for understanding the classification and putative functions of RAV transcription factors in pepper plants.
Collapse
Affiliation(s)
- Minkun Pei
- College of Horticulture, Xinjiang Agriculture University, Urumqi, 830052, China
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661100, China
| | - Ping Yang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661100, China
| | - Jian Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661100, China
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, China
| | - Yanzhuang Wang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661100, China
- College of Horticulture and Forestry, Tarim University, Alar, 843300, China
| | - Juan Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661100, China
- College of Horticulture and Forestry, Tarim University, Alar, 843300, China
| | - Hongjun Xu
- College of Horticulture, Xinjiang Agriculture University, Urumqi, 830052, China.
| | - Jie Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661100, China.
| |
Collapse
|
11
|
Bulle M, Venkatapuram AK, Abbagani S, Kirti PB. CRISPR/Cas9 based genome editing of Phytoene desaturase (PDS) gene in chilli pepper (Capsicum annuum L.). J Genet Eng Biotechnol 2024; 22:100380. [PMID: 38797550 PMCID: PMC11070243 DOI: 10.1016/j.jgeb.2024.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 05/29/2024]
Abstract
An effective CRISPR/Cas9 reagent delivery system has been developed in a commercially significant crop, the chilli pepper using a construct harboring two distinct gRNAs targeting exons 14 and 15 of the Phytoene desaturase (CaPDS) gene, whose loss-of-function mutation causes a photo-bleaching phenotype and impairs the biosynthesis of carotenoids. The construct carrying two sgRNAs was observed to create visible albino phenotypes in cotyledons regenerating on a medium containing 80 mg/L kanamycin, and plants regenerated therefrom after biolistic-mediated transfer of CRISPR/Cas9 reagents into chilli pepper cells. Analysis of CRISPR/Cas9 genome-editing events, including kanamycin screening of mutants and assessing homozygosity using the T7 endonuclease assay (T7E1), revealed 62.5 % of transformed plants exhibited successful editing at the target region and displayed both albino and mosaic phenotypes. Interestingly, the sequence analysis showed that insertions and substitutions were present in all the plant lines in the targeted CaPDS region. The detected mutations were mostly 12- to 24-bp deletions that disrupted the exon-intron junction, along with base substitutions and the insertion of 1-bp at the protospacer adjacent motif (PAM) region of the target site. The reduction in essential photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoid) in knockout chilli pepper lines provided further evidence that the CaPDS gene had been functionally disrupted. In this present study, we report that the biolistic delivery of CRISPR/Cas9 reagents into chilli peppers is very effective and produces multiple mutation events in a short span of time.
Collapse
Affiliation(s)
- Mallesham Bulle
- Agri Biotech Foundation, PJTS Agricultural University Campus, Rajendranagar, Hyderabad 500030, Telangana, India.
| | - Ajay Kumar Venkatapuram
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sadanandam Abbagani
- Plant Biotechnology Research Unit, Department of Biotechnology, Kakatiya University, Warangal, Telangana 506 009, India
| | - P B Kirti
- Agri Biotech Foundation, PJTS Agricultural University Campus, Rajendranagar, Hyderabad 500030, Telangana, India
| |
Collapse
|
12
|
Liang G, Wang H, Gou H, Li M, Cheng Y, Zeng B, Mao J, Chen B. Overexpression of VaBAM3 from Vitis amurensis enhances seedling cold tolerance by promoting soluble sugar accumulation and reactive oxygen scavenging. PLANT CELL REPORTS 2024; 43:151. [PMID: 38802546 DOI: 10.1007/s00299-024-03236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
KEY MESSAGE The VaBAM3 cloned from Vitis amurensis can enhance the cold tolerance of overexpressed plants, but VaBAM3 knock out by CRISPR/Cas9 system weakened grape callus cold tolerance. In grape production, extreme cold conditions can seriously threaten plant survival and fruit quality. Regulation of starch content by β-amylase (BAM, EC: 3.2.1.2) contributes to cold tolerance in plants. In this study, we cloned the VaBAM3 gene from an extremely cold-tolerant grape, Vitis amurensis, and overexpressed it in tomato and Arabidopsis plants, as well as in grape callus for functional characterization. After exposure to cold stress, leaf wilting in the VaBAM3-overexpressing tomato plants was slightly less pronounced than that in wild-type tomato plants, and these plants were characterized by a significant accumulation of autophagosomes. Additionally, the VaBAM3-overexpressing Arabidopsis plants had a higher freezing tolerance than the wild-type counterparts. Under cold stress conditions, the activities of total amylase, BAM, peroxidase, superoxide dismutase, and catalase in VaBAM3-overexpressing plants were significantly higher than those in the corresponding wild-type plants. Furthermore, sucrose, glucose, and fructose contents in these lines were similarly significantly higher, whereas starch contents were reduced in comparison to the levels in the wild-type plants. Furthermore, we detected high CBF and COR gene expression levels in cold-stressed VaBAM3-overexpressing plants. Compared with those in VaBAM3-overexpressing grape callus, the aforementioned indicators tended to change in the opposite direction in grape callus with silenced VaBAM3. Collectively, our findings indicate that heterologous overexpression of VaBAM3 enhanced cold tolerance of plants by promoting the accumulation of soluble sugars and scavenging of excessive reactive oxygen species. These findings provide a theoretical basis for the cultivation of cold-resistant grape and support creation of germplasm resources for this purpose.
Collapse
Affiliation(s)
- Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Han Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Min Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongjuan Cheng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baozhen Zeng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
13
|
Bulle M, Venkatapuram AK, Rahman MM, Attia KA, Mohammed AA, Abbagani S, Kirti PB. Enhancing drought tolerance in chilli pepper through AdDjSKI-mediated modulation of ABA sensitivity, photosynthetic preservation, and ROS scavenging. PHYSIOLOGIA PLANTARUM 2024; 176:e14379. [PMID: 38853306 DOI: 10.1111/ppl.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/21/2024] [Accepted: 05/12/2024] [Indexed: 06/11/2024]
Abstract
Drought stress threatens the productivity of numerous crops, including chilli pepper (Capsicum annuum). DnaJ proteins are known to play a protective role against a wide range of abiotic stresses. This study investigates the regulatory mechanism of the chloroplast-targeted chaperone protein AdDjSKI, derived from wild peanut (Arachis diogoi), in enhancing drought tolerance in chilli peppers. Overexpressing AdDjSKI in chilli plants increased chlorophyll content, reflected in the maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) compared with untransformed control (UC) plants. This enhancement coincided with the upregulated expression of PSII-related genes. Our subsequent investigations revealed that transgenic chilli pepper plants expressing AdDjSKI showed reduced accumulation of superoxide and hydrogen peroxide and, consequently, lower malondialdehyde levels and decreased relative electrolyte leakage percentage compared with UC plants. The mitigation of ROS-mediated oxidative damage was facilitated by heightened activities of antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase, coinciding with the upregulation of the expression of associated antioxidant genes. Additionally, our observations revealed that the ectopic expression of the AdDjSKI protein in chilli pepper plants resulted in diminished ABA sensitivity, consequently promoting seed germination in comparison with UC plants under different concentrations of ABA. All of these collectively contributed to enhancing drought tolerance in transgenic chilli plants with improved root systems when compared with UC plants. Overall, our study highlights AdDjSKI as a promising biotechnological solution for enhancing drought tolerance in chilli peppers, addressing the growing global demand for this economically valuable crop.
Collapse
Affiliation(s)
- Mallesham Bulle
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- Plant Biotechnology Research Unit, Department of Biotechnology, Kakatiya University, Warangal, Telangana, India
| | - Ajay Kumar Venkatapuram
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Md Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Kotab A Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Riyadh, Saudi Arabia
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Riyadh, Saudi Arabia
| | - Sadanandam Abbagani
- Plant Biotechnology Research Unit, Department of Biotechnology, Kakatiya University, Warangal, Telangana, India
| | - P B Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
14
|
Liu Z, Wang J, Yue Z, Wang J, Dou T, Chen T, Li J, Dai H, Yu J. Study of cabbage antioxidant system response on early infection stage of Xanthomonas campestris pv. campestris. BMC PLANT BIOLOGY 2024; 24:324. [PMID: 38658831 PMCID: PMC11040805 DOI: 10.1186/s12870-024-04994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) significantly affects the production of cabbage and other cruciferous vegetables. Plant antioxidant system plays an important role in pathogen invasion and is one of the main mechanisms underlying resistance to biological stress. Therefore, it is important to study the resistance mechanisms of the cabbage antioxidant system during the early stages of Xcc. In this study, 108 CFU/mL (OD600 = 0.1) Xcc race1 was inoculated on "zhonggan 11" cabbage using the spraying method. The effects of Xcc infection on the antioxidant system before and after Xcc inoculation (0, 1, 3, and 5 d) were studied by physiological indexes determination, transcriptome and metabolome analyses. We concluded that early Xcc infection can destroy the balance of the active oxygen metabolism system, increase the generation of free radicals, and decrease the scavenging ability, leading to membrane lipid peroxidation, resulting in the destruction of the biofilm system and metabolic disorders. In response to Xcc infection, cabbage clears a series of reactive oxygen species (ROS) produced during Xcc infection via various antioxidant pathways. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased after Xcc infection, and the ROS scavenging rate increased. The biosynthesis of non-obligate antioxidants, such as ascorbic acid (AsA) and glutathione (GSH), is also enhanced after Xcc infection. Moreover, the alkaloid and vitamin contents increased significantly after Xcc infection. We concluded that cabbage could resist Xcc invasion by maintaining the stability of the cell membrane system and improving the biosynthesis of antioxidant substances and enzymes after infection by Xcc. Our results provide theoretical basis and data support for subsequent research on the cruciferous vegetables resistance mechanism and breeding to Xcc.
Collapse
Affiliation(s)
- Zeci Liu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jie Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Zhibin Yue
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jue Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Tingting Dou
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Tongyan Chen
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jinbao Li
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Haojie Dai
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jihua Yu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
15
|
Li W, Wu H, Hua J, Zhu C, Guo S. Arbuscular mycorrhizal fungi enhanced resistance to low-temperature weak-light stress in snapdragon ( Antirrhinum majus L.) through physiological and transcriptomic responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1330032. [PMID: 38681217 PMCID: PMC11045995 DOI: 10.3389/fpls.2024.1330032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024]
Abstract
Introduction Low temperature (LT) and weak light (WL) seriously affects the yield and quality of snapdragon in winter greenhouse. Arbuscular mycorrhizal fungi (AMF) exert positive role in regulating growth and enhancing abiotic stress tolerance in plants. Nevertheless, the molecular mechanisms by AMF improve the LT combined with WL (LTWL) tolerance in snapdragon remain mostly unknown. Methods We compared the differences in root configuration, osmoregulatory substances, enzymatic and non-enzymatic antioxidant enzyme defense systems and transcriptome between AMF-inoculated and control groups under LT, WL, low light, and LTWL conditions. Results Our analysis showed that inoculation with AMF effectively alleviated the inhibition caused by LTWL stress on snapdragon root development, and significantly enhanced the contents of soluble sugars, soluble proteins, proline, thereby maintaining the osmotic adjustment of snapdragon. In addition, AMF alleviated reactive oxygen species damage by elevating the contents of AsA, and GSH, and the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR). RNA-seq analysis revealed that AMF regulated the expression of genes related to photosynthesis (photosystem I related proteins, photosystem II related proteins, chlorophyll a/b binding protein), active oxygen metabolism (POD, Fe-SOD, and iron/ascorbate family oxidoreductase), plant hormone synthesis (ARF5 and ARF16) and stress-related transcription factors gene (bHLH112, WRKY72, MYB86, WRKY53, WRKY6, and WRKY26) under LTWL stress. Discussion We concluded that mycorrhizal snapdragon promotes root development and LTWL tolerance by accumulation of osmoregulatory substances, activation of enzymatic and non-enzymatic antioxidant defense systems, and induction expression of transcription factor genes and auxin synthesis related genes. This study provides a theoretical basis for AMF in promoting the production of greenhouse plants in winter.
Collapse
Affiliation(s)
- Wei Li
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Haiying Wu
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Junkai Hua
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Chengshang Zhu
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shaoxia Guo
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
16
|
Ding Z, Yao Y, Yao K, Hou X, Zhang Z, Huang Y, Wang C, Liao W. SlSERK3B Promotes Tomato Seedling Growth and Development by Regulating Photosynthetic Capacity. Int J Mol Sci 2024; 25:1336. [PMID: 38279340 PMCID: PMC10816166 DOI: 10.3390/ijms25021336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
Brassinosteroids (BRs) are a group of polyhydroxylated steroids for plant growth and development, regulating numerous physiological and biochemical processes and participating in multi-pathway signaling in plants. 24-Epibrassinolide (EBR) is the most commonly used BR for the investigation of the effects of exogenous steroidal phytohormones on plant physiology. Although SlSERK3B is considered a gene involved in the brassinosteroid (BR) signaling pathway, its specific role in plant growth and development has not been reported in detail. In this study, tomato (Solanum lycopersicum L.) seedlings treated with 0.05 μmol L-1 EBR showed a significant increase in plant height, stem diameter, and fresh weight, demonstrating that BR promotes the growth of tomato seedlings. EBR treatment increased the expression of the BR receptor gene SlBRI1, the co-receptor gene SlSERK3A and its homologs SlSERK3B, and SlBZR1. The SlSERK3B gene was silenced by TRV-mediated virus-induced gene silencing (VIGS) technology. The results showed that both brassinolide (BL) content and BR synthesis genes were significantly up-regulated in TRV-SlSERK3B-infected seedlings compared to the control seedlings. In contrast, plant height, stem diameter, fresh weight, leaf area and total root length were significantly reduced in silenced plants. These results suggest that silencing SlSERK3B may affect BR synthesis and signaling, thereby affecting the growth of tomato seedlings. Furthermore, the photosynthetic capacity of TRV-SlSERK3B-infected tomato seedlings was reduced, accompanied by decreased photosynthetic pigment content chlorophyll fluorescence, and photosynthesis parameters. The expression levels of chlorophyll-degrading genes were significantly up-regulated, and carotenoid-synthesising genes were significantly down-regulated in TRV-SlSERK3B-infected seedlings. In conclusion, silencing of SlSERK3B inhibited BR signaling and reduced photosynthesis in tomato seedlings, and this correlation suggests that SlSERK3B may be related to BR signaling and photosynthesis enhancement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China; (Z.D.); (Y.Y.); (K.Y.); (X.H.); (Z.Z.); (Y.H.); (C.W.)
| |
Collapse
|
17
|
Xiang N, Zhang B, Hu J, Li K, Guo X. Modulation of carotenoid biosynthesis in maize (Zea mays L.) seedlings by exogenous abscisic acid and salicylic acid under low temperature. PLANT CELL REPORTS 2023; 43:1. [PMID: 38108914 DOI: 10.1007/s00299-023-03106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023]
Abstract
KEY MESSAGE Abscisic acid could regulate structural genes in the carotenoid biosynthesis pathway and alleviate the decrease of carotenoids in maize seedlings under low-temperature stress. Low temperature often hampers the development of maize seedlings and hinders the accumulation of carotenoids, which are functional against chilling stress for plants and providing health benefits for human. To explore effective approaches in reducing chilling stress and enhancing the potential nutritional values of maize seedlings, exogenous plant hormones abscisic acid (ABA) and salicylic acid (SA) that may affect carotenoid biosynthesis were applied on low-temperature-stressed maize seedlings. Results showed that low temperature significantly reduced the carotenoid levels in maize seedlings, only preserving 62.8% in comparison to the control. The applied ABA probably interacted with the ABA-responsive cis-acting elements (ABREs) in the promoter regions of PSY3, ZDS and CHYB and activated their expressions. Consequently, the total carotenoid concentration was apparently increased to 1121 ± 47 ng·g-1 fresh weight (FW), indicating the stress alleviation by ABA. The application of SA did not yield positive results in alleviating chilling stress in maize seedlings. However, neoxanthin content could be notably boosted to 52.12 ± 0.45 ng·g-1 FW by SA, offering a biofortification strategy for specific nutritional enhancement. Structural gene PSY1 demonstrated positive correlations with β-carotene and zeaxanthin (r = 0.93 and 0.89), while CRTISO was correlated with total carotenoids (r = 0.92), indicating their critical roles in carotenoid accumulation. The present study exhibited the effectiveness of ABA to mitigate chilling stress and improve the potential nutritional values in low-temperature-stressed maize seedlings, thereby promoting the production of plant-based food sources.
Collapse
Affiliation(s)
- Nan Xiang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou, China
- Department of Food, Nutrition, and Health, University of British Columbia, Vancouver, BC, Canada
| | - Bing Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou, China
| | - Jianguang Hu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kun Li
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xinbo Guo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou, China.
| |
Collapse
|
18
|
Yang R, Cao Z, Liu X, Xiao M, Li M, Chen Y, Chen L, Sun C, Chu X, Ren Q, Wei W. Inverse correlations between serum carotenoids and respiratory morbidity and mortality: the Third National Health and Nutrition Examination Survey. Br J Nutr 2023; 130:1932-1941. [PMID: 37039482 DOI: 10.1017/s0007114523000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The objective was to evaluate the association between serum carotenoid levels and respiratory morbidity and mortality in a nationally representative sample of US adults. We assessed the association of serum carotenoid levels with respiratory morbidity and mortality using logistic regression and proportional hazards regression models. Meanwhile, a series of confounders were controlled in regression models and restricted cubic spline, which included age, sex, race, marriage, education, income, drinking, smoking, regular exercise, BMI, daily energy intake, vitamin E, vitamin C, fruit intake, vegetable intake, diabetes, hypertension, asthma, emphysema and chronic bronchitis. Compared with participants in the lowest tertiles, participants in the highest tertiles of serum total carotenoids, β-cryptoxanthin and lutein/zeaxanthin levels had a significantly lower prevalence of emphysema (ORtotal carotenoids = 0·61, 95% CI: 0·41-0·89, ORβ-cryptoxanthin = 0·67, 95% CI: 0·49-0·92), chronic bronchitis (ORβ-cryptoxanthin = 0·66, 95% CI: 0·50-0·87) and asthma (Q2: ORlutein/zeaxanthin = 0·78, 95% CI: 0·62-0·97); participants in the highest tertiles of total carotenoids, α-carotene, lutein/zeaxanthin and lycopene had a lower risk of respiratory mortality (hazard ratio (HR)total carotenoids = 0·62, 95% CI: 0·42-0·90, HRα-carotene = 0·54, 95% CI: 0·36-0·82, HRlutein/zeaxanthin = 0·48, 95% CI: 0·33-0·71, HRlycopene = 0·66, 95% CI: 0·45-0·96) than those in the lowest tertiles. Higher serum total carotenoids and β-cryptoxanthin levels is associated with decreased prevalence of emphysema and chronic bronchitis, and higher serum total carotenoids, α-carotene, lutein/zeaxanthin and lycopene levels had a lower mortality of respiratory disease.
Collapse
Affiliation(s)
- Ruiming Yang
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Ziteng Cao
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Xin Liu
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Mengjie Xiao
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Mengyao Li
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Yunyan Chen
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Luyao Chen
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Xia Chu
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Qiang Ren
- Department of Respiratory Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Wei Wei
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
- Department of Pharmacology, College of Pharmacy Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
19
|
Li C, Lu X, Liu Y, Xu J, Yu W. Trehalose alleviates the inhibition of adventitious root formation caused by drought stress in cucumber through regulating ROS metabolism and activating trehalose and plant hormone biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108159. [PMID: 37944244 DOI: 10.1016/j.plaphy.2023.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/10/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Trehalose (Tre) plays a vital role in response to drought stress in plants but its regulatory mechanism remains unclear. Here, this study explores the mechanism of re-regulated drought tolerance during cucumber adventitious root formation. Our results indicate that 2 mM Tre displays remarkable drought alleviation in the aspect of root number, root length, fresh weight, and dry weight. Under drought stress, Tre could inhibit greatly the MDA, H2O2, and O2- accumulation, enhance obviously the activities of SOD, POD, and CAT enzymes and up-regulate significantly the transcript levels of SOD, POD, and CAT genes. Furthermore, Tre treatment also promotes Tre metabolism during drought stress: significantly increases starch and Tre contents and decreases glucose content, the biosynthesis enzymatic activity of the Tre metabolic pathway including TPS and TPP are enhanced and the activity of degradation enzyme THL is decreased, and corresponding genes TPS1, TPS2, TPPA, and TPPB are up-regulated. Tre significantly reversed the decrease caused by PEG in IAA, ethylene, ABA, and BR contents and the increase caused by PEG in GA3 and KT contents. Collectively, Tre appears to be the effective treatment in counteracting the negative effects of drought stress during adventitious root formation by regulating ROS, Tre metabolisms and plant hormones.
Collapse
Affiliation(s)
- Changxia Li
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| | - Xuefang Lu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yunzhi Liu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Junrong Xu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
20
|
Song X, Zhu L, Wang D, Liang L, Xiao J, Tang W, Xie M, Zhao Z, Lai Y, Sun B, Tang Y, Li H. Molecular Regulatory Mechanism of Exogenous Hydrogen Sulfide in Alleviating Low-Temperature Stress in Pepper Seedlings. Int J Mol Sci 2023; 24:16337. [PMID: 38003525 PMCID: PMC10671541 DOI: 10.3390/ijms242216337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Pepper (Capsicum annuum L.) is sensitive to low temperatures, with low-temperature stress affecting its plant growth, yield, and quality. In this study, we analyzed the effects of exogenous hydrogen sulfide (H2S) on pepper seedlings subjected to low-temperature stress. Exogenous H2S increased the content of endogenous H2S and its synthetase activity, enhanced the antioxidant capacity of membrane lipids, and protected the integrity of the membrane system. Exogenous H2S also promoted the Calvin cycle to protect the integrity of photosynthetic organs; enhanced the photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and photosynthesis; and reduced the intercellular CO2 concentration (Ci). Moreover, the activities of superoxide dismutase, peroxidase, catalase, and anti-cyclic glutathione (ASA-GSH) oxidase were improved to decompose excess reactive oxygen species (ROS), enhance the oxidative stress and detoxification ability of pepper seedlings, and improve the resistance to low-temperature chilling injury in 'Long Yun2' pepper seedlings. In addition, the H2S scavenger hypotaurine (HT) aggravated the ROS imbalance by reducing the endogenous H2S content, partially eliminating the beneficial effects of H2S on the oxidative stress and antioxidant defense system, indicating that H2S can effectively alleviate the damage of low temperature on pepper seedlings. The results of transcriptome analysis showed that H2S could induce the MAPK-signaling pathway and plant hormone signal transduction; upregulate the expression of transcription factors WRKY22 and PTI6; induce defense genes; and activate the ethylene and gibberellin synthesis receptors ERF1, GDI2, and DELLA, enhancing the resistance to low-temperature chilling injury of pepper seedlings. The plant-pathogen interaction was also significantly enriched, suggesting that exogenous H2S also promotes the expression of genes related to plant-pathogen interaction. The results of this study provide novel insights into the molecular mechanisms and genetic modifications of H2S that mitigate the hypothermic response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (L.Z.); (D.W.)
| |
Collapse
|
21
|
Saini S, Sharma P, Singh P, Kumar V, Yadav P, Sharma A. Nitric oxide: An emerging warrior of plant physiology under abiotic stress. Nitric Oxide 2023; 140-141:58-76. [PMID: 37848156 DOI: 10.1016/j.niox.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
The natural environment of plants comprises a complex set of various abiotic stresses and their capability to react and survive under this anticipated changing climate is highly flexible and involves a series of balanced interactions between signaling molecules where nitric oxide becomes a crucial component. In this article, we focussed on the role of nitric oxide (NO) in various signal transduction pathways of plants and its positive impact on maintaining cellular homeostasis under various abiotic stresses. Besides this, the recent data on interactions of NO with various phytohormones to control physiological and biochemical processes to attain abiotic stress tolerance have also been considered. These crosstalks modulate the plant's defense mechanism and help in alleviating the negative impact of stress. While focusing on the diverse functions of NO, an effort has been made to explore the functions of NO-mediated post-translational modifications, such as the N-end rule pathway, tyrosine nitration, and S-nitrosylation which revealed the exact mechanism and characterization of proteins that modify various metabolic processes in stressed conditions. Considering all of these factors, the present review emphasizes the role of NO and its interlinking with various phytohormones in maintaining developmental processes in plants, specifically under unfavorable environments.
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pooja Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vikram Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priya Yadav
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India.
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
22
|
Chang CY, Yang SX, Zhang MQ, Guo YT, Li XM, Yan Y, Ding CH, Niu KX, Wang ML, Li QQ, Zhang J, Zhang X, Chen S, Xie C, Ni Z, Sun Q, Gou JY. Suppression of ZEAXANTHIN EPOXIDASE 1 restricts stripe rust growth in wheat. PLANT COMMUNICATIONS 2023; 4:100608. [PMID: 37101397 PMCID: PMC10504589 DOI: 10.1016/j.xplc.2023.100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 04/23/2023] [Indexed: 05/30/2023]
Abstract
Reducing losses caused by pathogens is an effective strategy for stabilizing crop yields. Daunting challenges remain in cloning and characterizing genes that inhibit stripe rust, a devastating disease of wheat (Triticum aestivum) caused by Puccinia striiformis f. sp. tritici (Pst). We found that suppression of wheat zeaxanthin epoxidase 1 (ZEP1) increased wheat defense against Pst. We isolated the yellow rust slower 1 (yrs1) mutant of tetraploid wheat in which a premature stop mutation in ZEP1-B underpins the phenotype. Genetic analyses revealed increased H2O2 accumulation in zep1 mutants and demonstrated a correlation between ZEP1 dysfunction and slower Pst growth in wheat. Moreover, wheat kinase START 1.1 (WKS1.1, Yr36) bound, phosphorylated, and suppressed the biochemical activity of ZEP1. A rare natural allele in the hexaploid wheat ZEP1-B promoter reduced its transcription and Pst growth. Our study thus identified a novel suppressor of Pst, characterized its mechanism of action, and revealed beneficial variants for wheat disease control. This work opens the door to stacking wheat ZEP1 variants with other known Pst resistance genes in future breeding programs to enhance wheat tolerance to pathogens.
Collapse
Affiliation(s)
- Chao-Yan Chang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shu-Xian Yang
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Mei-Qi Zhang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yue-Ting Guo
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiao-Ming Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yan Yan
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ci-Hang Ding
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ke-Xin Niu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Meng-Lu Wang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qin-Quan Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China
| | - Shisheng Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jin-Ying Gou
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
23
|
Li N, Pu K, Ding D, Yang Y, Niu T, Li J, Xie J. Foliar Spraying of Glycine Betaine Alleviated Growth Inhibition, Photoinhibition, and Oxidative Stress in Pepper ( Capsicum annuum L.) Seedlings under Low Temperatures Combined with Low Light. PLANTS (BASEL, SWITZERLAND) 2023; 12:2563. [PMID: 37447123 DOI: 10.3390/plants12132563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Low temperature combined with low light (LL stress) is a typical environmental stress that limits peppers' productivity, yield, and quality in northwestern China. Glycine betaine (GB), an osmoregulatory substance, has increasingly valuable effects on plant stress resistance. In this study, pepper seedlings were treated with different concentrations of GB under LL stress, and 20 mM of GB was the best treatment. To further explore the mechanism of GB in response to LL stress, four treatments, including CK (normal temperature and light, 28/18 °C, 300 μmol m-2 s-1), CB (normal temperature and light + 20 mM GB), LL (10/5 °C, 100 μmol m-2 s-1), and LB (10/5 °C, 100 μmol m-2 s-1 + 20 mM GB), were investigated in terms of pepper growth, biomass accumulation, photosynthetic capacity, expression levels of encoded proteins Capsb, cell membrane permeability, antioxidant enzyme gene expression and activity, and subcellular localization. The results showed that the pre-spraying of GB under LL stress significantly alleviated the growth inhibition of pepper seedlings; increased plant height by 4.64%; increased root activity by 63.53%; and decreased photoinhibition by increasing the chlorophyll content; upregulating the expression levels of encoded proteins Capsb A, Capsb B, Capsb C, Capsb D, Capsb S, Capsb P1, and Capsb P2 by 30.29%, 36.69%, 18.81%, 30.05%, 9.01%, 6.21%, and 16.45%, respectively; enhancing the fluorescence intensity (OJIP curves), the photochemical efficiency (Fv/Fm, Fv'/Fm'), qP, and NPQ; improving the light energy distribution of PSΠ (Y(II), Y(NPQ), and Y(NO)); and increasing the photochemical reaction fraction and reduced heat dissipation, thereby increasing plant height by 4.64% and shoot bioaccumulation by 13.55%. The pre-spraying of GB under LL stress also upregulated the gene expression of CaSOD, CaPOD, and CaCAT; increased the activity of the ROS-scavenging ability in the pepper leaves; and coordinately increased the SOD activity in the mitochondria, the POD activity in the mitochondria, chloroplasts, and cytosol, and the CAT activity in the cytosol, which improved the LL resistance of the pepper plants by reducing excess H2O2, O2-, MDA, and soluble protein levels in the leaf cells, leading to reduced biological membrane damage. Overall, pre-spraying with GB effectively alleviated the negative effects of LL stress in pepper seedlings.
Collapse
Affiliation(s)
- Nenghui Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Kaiguo Pu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Dongxia Ding
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Yan Yang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| |
Collapse
|
24
|
Han S, Wang Y, Zhang Q, Wang W, Pei D. Chrysanthemum morifolium β-carotene hydroxylase overexpression promotes Arabidopsis thaliana tolerance to high light stress. JOURNAL OF PLANT PHYSIOLOGY 2023; 284:153962. [PMID: 36940578 DOI: 10.1016/j.jplph.2023.153962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The β-carotene hydroxylase gene (BCH) regulates zeaxanthin production in response to high light levels ro protect Chrysanthemum morifolium plants against light-induced damage. In this study, the Chrysanthemum morifolium CmBCH1 and CmBCH2 genes were cloned and their functional importance was assessed by overexpressing them in Arabidopsis thaliana. These transgenic plants were evaluated for gene-related changes in phenotypic characteristics, photosynthetic activity, fluorescence properties, carotenoid biosynthesis, aboveground/belowground biomass, pigment content, and the expression of light-regulated genes under conditions of high light stress relative to wild-type (WT) plants. When exposed to high light stress, WT A. thaliana leaves turned yellow and the overall biomass was reduced compared to that of the transgenic plants. WT plants exposed to high light stress also exhibited significant reductions in the net photosynthetic rate, stomatal conductance, Fv/Fm, qP, and ETR, whereas these changes were not observed in the transgenic CmBCH1 and CmBCH2 plants. Lutein and zaxanthin levels were significantly increased in the transgenic CmBCH1 and CmBCH2 lines, with progressive induction with prolonged light exposure, whereas no significant changes were observed in light-exposed WT plants. The transgenic plants also expressed higher levels of most carotenoid biosynthesis pathway genes, including phytoene synthase (AtPSY), phytoene desaturase (AtPDS), lycopene-β-cyclase (AtLYCB), and ζ-carotene desaturase (AtZDS). The elongated hypocotyl 5 (HY5) and succinate dehydrogenase (SDH) genes were significantly induced following exposure to high light conditions for 12h, whereas phytochrome-interacting factor 7 (PIF7) was significantly downregulated in these plants.
Collapse
Affiliation(s)
- Shuang Han
- Henan Provincial Key Laboratory of Plant-Microbe Interactions, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Yunjing Wang
- Henan Provincial Key Laboratory of Plant-Microbe Interactions, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Qingchen Zhang
- Henan Provincial Key Laboratory of Plant-Microbe Interactions, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Wenjing Wang
- Henan Provincial Key Laboratory of Plant-Microbe Interactions, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Dongli Pei
- Henan Provincial Key Laboratory of Plant-Microbe Interactions, Shangqiu Normal University, Shangqiu, Henan, 476000, China.
| |
Collapse
|
25
|
Song X, Xu Z, Zhang J, Liang L, Xiao J, Liang Z, Yu G, Sun B, Huang Z, Tang Y, Lai Y, Li H. NO and GSH Alleviate the Inhibition of Low-Temperature Stress on Cowpea Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:1317. [PMID: 36987004 PMCID: PMC10059058 DOI: 10.3390/plants12061317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Low-temperature stress in early spring seriously affects the growth and development of cowpea seedlings. To study the alleviative effect of the exogenous substances nitric oxide (NO) and glutathione (GSH) on cowpea (Vigna unguiculata (Linn.) Walp.) seedlings under 8 °C low-temperature stress, 200 μmol·L-1 NO and 5 mmol·L-1 GSH were sprayed on cowpea seedlings whose second true leaf was about to unfold to enhance the tolerance of cowpea seedlings to low temperature. Spraying NO and GSH can eliminate excess superoxide radicals (O2-) and hydrogen peroxide (H2O2) to varying degrees, reduce the content of malondialdehyde and relative conductivity, delay the degradation of photosynthetic pigments, increase the content of osmotic regulating substances such as soluble sugar, soluble protein, and proline, and improve the activity of antioxidant enzymes such as superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and monodehydroascorbate reductase. This study revealed that the mixed use of NO and GSH played an important role in alleviating low temperature stress, and the effect of spraying NO alone was better than that of spraying GSH.
Collapse
Affiliation(s)
- Xueping Song
- Department of Horticulturae, Sichuan Agricultural University, Chengdu 610000, China
| | - Zeping Xu
- Department of Horticulturae, Sichuan Agricultural University, Chengdu 610000, China
| | - Jianwei Zhang
- Department of Horticulturae, Sichuan Agricultural University, Chengdu 610000, China
| | - Le Liang
- Department of Horticulturae, Sichuan Agricultural University, Chengdu 610000, China
| | - Jiachang Xiao
- Department of Horticulturae, Sichuan Agricultural University, Chengdu 610000, China
| | - Zongxu Liang
- Department of Horticulturae, Sichuan Agricultural University, Chengdu 610000, China
| | - Guofeng Yu
- Department of Horticulturae, Sichuan Agricultural University, Chengdu 610000, China
| | - Bo Sun
- Department of Horticulturae, Sichuan Agricultural University, Chengdu 610000, China
| | - Zhi Huang
- Department of Horticulturae, Sichuan Agricultural University, Chengdu 610000, China
| | - Yi Tang
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu 610000, China
| | - Yunsong Lai
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu 610000, China
| | - Huanxiu Li
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu 610000, China
| |
Collapse
|
26
|
Gao Y, Zhang J, Wang C, Han K, Hu L, Niu T, Yang Y, Chang Y, Xie J. Exogenous Proline Enhances Systemic Defense against Salt Stress in Celery by Regulating Photosystem, Phenolic Compounds, and Antioxidant System. PLANTS (BASEL, SWITZERLAND) 2023; 12:928. [PMID: 36840277 PMCID: PMC9963348 DOI: 10.3390/plants12040928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to explore how exogenous proline induces salinity tolerance in celery. We analyzed the effects of foliar spraying with 0.3 mM proline on celery growth, photosystem, phenolic compounds, and antioxidant system under salt stress (100 mM NaCl), using no salt stress and no proline spraying as control. The results showed that proline-treated plants exhibited a significant increase in plant biomass due to improved growth physiology, supported by gas exchange parameters, chlorophyll fluorescence, and Calvin cycle enzyme activity (Ketosasaccharide-1,5-diphosphate carboxylase and Fructose-1,6-diphosphate aldolase) results. Also, proline spraying significantly suppressed the increase in relative conductivity and malondialdehyde content caused by salt stress, suggesting a reduction in biological membrane damage. Moreover, salt stress resulted in hydrogen peroxide, superoxide anions and 4-coumaric acid accumulation in celery, and their contents were reduced after foliar spraying of proline. Furthermore, proline increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and the content of non-enzymatic antioxidants (reduced ascorbic acid, glutathione, caffeic acid, chlorogenic acid, total phenolic acids, and total flavonoids). Additionally, proline increased the activity of key enzymes (ascorbate oxidase, ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase) in the ascorbic acid-glutathione cycle, activating it to counteract salt stress. In summary, exogenous proline promoted celery growth under salt stress, enhanced photosynthesis, increased total phenolic acid and flavonoid contents, and improved antioxidant capacity, thereby improving salt tolerance in celery.
Collapse
|
27
|
Liang G, Hou Y, Wang H, Wang P, Mao J, Chen B. VaBAM1 weakens cold tolerance by interacting with the negative regulator VaSR1 to suppress β-amylase expression. Int J Biol Macromol 2023; 225:1394-1404. [PMID: 36436609 DOI: 10.1016/j.ijbiomac.2022.11.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Cold stress is a key climatic factor that limits grape productivity and quality. Although β-amylase (BAM) is known to play an important role as a mediator of starch degradation under conditions of cold stress, the mechanism by which BAM regulates cold tolerance in grape remains unclear. Here, we identified VaBAM1 from Vitis amurensis and characterized its interactive regulating mechanism under cold stress in Arabidopsis thaliana and grape. VaBAM1-overexpressing A. thaliana plants (OEs) exhibited high freezing tolerance. Soluble sugar content and amylase activity were increased in OEs and VaBAM1-overexpressing grape calli (VaBAM1-OEs) under cold stress; however, they were decreased in grape calli in which VaBAM1 was edited using CRISPR/Cas9. The results of yeast two-hybrid, bimolecular fluorescence complementation, and pull-down experiments showed that serine/arginine-rich splicing factor 1 (VaSR1) interacted with VaBAM1. Furthermore, the expression of VaSR1 was opposite that of VaBAM1 in phloem tissue of Vitis amurensis during winter dormancy. In VaSR1-overexpressing grape calli (VaSR1-OEs), BAM activity and the expression levels of C-repeat binding transcription factor and cold response genes were all significantly lower than that in untransformed calli subjected to cold stress. Moreover, VvBAM1 was downregulated in VaSR1-OEs under cold stress. Overall, we identified that VaSR1 interacts with VaBAM1, negatively regulating BAM activity and resulting in decreased plant cold tolerance.
Collapse
Affiliation(s)
- Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yingjun Hou
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Han Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
28
|
Kumar D, Ohri P. Say "NO" to plant stresses: Unravelling the role of nitric oxide under abiotic and biotic stress. Nitric Oxide 2023; 130:36-57. [PMID: 36460229 DOI: 10.1016/j.niox.2022.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Nitric oxide (NO) is a diatomic gaseous molecule, which plays different roles in different strata of organisms. Discovered as a neurotransmitter in animals, NO has now gained a significant place in plant signaling cascade. NO regulates plant growth and several developmental processes including germination, root formation, stomatal movement, maturation and defense in plants. Due to its gaseous state, it is unchallenging for NO to reach different parts of cell and counterpoise antioxidant pool. Various abiotic and biotic stresses act on plants and affect their growth and development. NO plays a pivotal role in alleviating toxic effects caused by various stressors by modulating oxidative stress, antioxidant defense mechanism, metal transport and ion homeostasis. It also modulates the activity of some transcriptional factors during stress conditions in plants. Besides its role during stress conditions, interaction of NO with other signaling molecules such as other gasotransmitters (hydrogen sulfide), phytohormones (abscisic acid, salicylic acid, jasmonic acid, gibberellin, ethylene, brassinosteroids, cytokinins and auxin), ions, polyamines, etc. has been demonstrated. These interactions play vital role in alleviating plant stress by modulating defense mechanisms in plants. Taking all these aspects into consideration, the current review focuses on the role of NO and its interaction with other signaling molecules in regulating plant growth and development, particularly under stressed conditions.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
29
|
Li M, Zhang Y, Xu X, Chen Y, Chu J, Yao X. The combined treatments of brassinolide and zeaxanthin better alleviate oxidative damage and improve hypocotyl length, biomass, and the quality of radish sprouts stored at low temperature. Food Chem X 2022; 15:100394. [PMID: 36211765 PMCID: PMC9532720 DOI: 10.1016/j.fochx.2022.100394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
The rot and deterioration of sprouts are closely related to their physiological state and postharvest storage quality. The study investigated the influences of brassinolide, zeaxanthin, and their combination on physiological metabolism, chlorophyll fluorescence, and nutritional quality of radish sprouts stored at 4 °C. The combined treatments enhanced hypocotyl length, fresh weight, contents of secondary metabolites, nutritional ingredients, glutathione, the photoprotective capacity of PSII, and FRAP level in radish sprouts compared with zeaxanthin alone. The combined treatments enhanced hypocotyl length, fresh weight, glutathione content, Fv/Fm value, and antioxidant capacity in sprouts compared to brassinolide alone. The combined treatment of zeaxanthin and brassinolide could make radish sprouts keep high biomass and antioxidant capacity by increasing the contents of stress-resistant metabolites and by weakening the photoinhibition of PSII in radish sprouts stored at 4 °C.
Collapse
Affiliation(s)
- Minghui Li
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Yanfen Zhang
- Technology Transfer Center of Hebei University, Baoding 071002, China
| | - Xihang Xu
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Ying Chen
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China
| |
Collapse
|
30
|
Gao F, Zhang X, Zhang J, Li J, Niu T, Tang C, Wang C, Xie J. Zinc oxide nanoparticles improve lettuce ( Lactuca sativa L.) plant tolerance to cadmium by stimulating antioxidant defense, enhancing lignin content and reducing the metal accumulation and translocation. FRONTIERS IN PLANT SCIENCE 2022; 13:1015745. [PMID: 36388475 PMCID: PMC9647129 DOI: 10.3389/fpls.2022.1015745] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) contamination is a serious global concern that warrants constant attention. Therefore, a hydroponic study was conducted to evaluate the effect of different concentrations (0, 1, 2.5, 5, 10, 15 mg/l) of zinc oxide nanoparticles (ZnONPs) on the Cd content in lettuce (Lactuca sativa L.) under Cd stress conditions. The results showed that Cd stress triggered a decrease in plant biomass, an increase in relative electrolyte conductivity (REC), a decrease in root activity, accumulation of reactive oxygen species (ROS) accumulation, and nutrient imbalance. The application of ZnONPs reduced the toxicity symptoms of lettuce seedlings under Cd stress, with the most pronounced effect being observed 2.5 mg/l. ZnONPs promoted the growth of lettuce under Cd stress, mainly in terms of increase in biomass, chlorophyll content, antioxidant enzyme activity, and proline content, as well as reduction in Cd content, malondialdehyde, and reactive oxygen species (ROS) in plant tissues. ZnONPs also enhanced the uptake of ions associated with photosynthesis, such as iron, manganese, magnesium, and zinc. In addition, ZnONPs increase the amount of lignin in the roots, which blocks or reduces the entry of Cd into plant tissues.
Collapse
Affiliation(s)
- Feng Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xiaodan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Chaonan Tang
- Institute of Vegetables, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
31
|
Li J, Xie J, Yu J, Lyv J, Zhang J, Ding D, Li N, Zhang J, Bakpa EP, Yang Y, Niu T, Gao F. Melatonin enhanced low-temperature combined with low-light tolerance of pepper ( Capsicum annuum L.) seedlings by regulating root growth, antioxidant defense system, and osmotic adjustment. FRONTIERS IN PLANT SCIENCE 2022; 13:998293. [PMID: 36247609 PMCID: PMC9554354 DOI: 10.3389/fpls.2022.998293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Melatonin (MT) is an important biologically active hormone that plays a vital role in plant growth and development. In particular, it has been investigated for its roles in abiotic stress management. In this study, pepper seedlings were subjected to low-temperature combined with low-light stress (LL) (15/5°C, 100 μmol m-2s-1) prior to a foliar spray of 200mM MT for 168h to investigate the protective role of MT in pepper seedlings. Our results demonstrated that LL stress negatively affected root growth, and accelerated the accumulation of reactive oxygen species (ROS), including H2O2 and O 2 - , changed the osmolytes contents, and antioxidative system. However, these were reversed by exogenous MT application. MT effectively promoted the root growth as indicated by significant increase in root length, surface area, root volume, tips, forks, and crossings. In addition, MT reduced the burst of ROS and MDA contents induced by LL, enhanced the activities of SOD, CAT, POD, APX, DHAR, and MDHAR resulted by upregulated expressions of CaSOD, CaPOD, CaCAT, CaAPX, CaDHAR, and CaMDHAR, and elevated the contents of AsA and GSH, declined DHA and GSSH contents, which prevented membrane lipid peroxidation and protected plants from oxidative damages under LL stress. Furthermore, seedlings treated with MT released high contents of soluble sugar and soluble protein in leave, which might enhance LL tolerance by maintaining substance biosynthesis and maintaining cellular homeostasis resulted by high levels of osmolytes and carbohydrate in the cytosol. Our current findings confirmed the mitigating potential of MT application for LL stress by promoting pepper root growth, improving antioxidative defense system, ascorbate-glutathione cycle, and osmotic adjustment.
Collapse
Affiliation(s)
- Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Junfeng Zhang
- Institution of Vegetable, Gansu Academy of Agricultural Science, Lanzhou, China
| | - Dongxia Ding
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Nenghui Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | | | - Yan Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Feng Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
32
|
Yang Y, Xie J, Li J, Zhang J, Zhang X, Yao Y, Wang C, Niu T, Bakpa EP. Trehalose alleviates salt tolerance by improving photosynthetic performance and maintaining mineral ion homeostasis in tomato plants. FRONTIERS IN PLANT SCIENCE 2022; 13:974507. [PMID: 36035709 PMCID: PMC9412767 DOI: 10.3389/fpls.2022.974507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 05/26/2023]
Abstract
Trehalose (Tre), which was an osmoprotective or stabilizing molecule, played a protective role against different abiotic stresses in plants and showed remarkable perspectives in salt stress. In this study, the potential role of Tre in improving the resistance to salt stress in tomato plants was investigated. Tomato plants (Micro Tom) were treated with Hoagland nutrient solution (CK), 10 mM Tre (T), 150 mM sodium chloride (NaCl, S), and 10 mM Tre+150 mM NaCl (S+T) for 5 days. Our results showed that foliar application of Tre alleviated the inhibition of tomato plant growth under salt stress. In addition, salt stress decreased the values of net photosynthetic rate (Pn, 85.99%), stomata conductance (gs, 57.3%), and transpiration rate (Tr, 47.97%), but increased that of intercellular carbon dioxide concentration (Ci, 26.25%). However, exogenous application of Tre significantly increased photosynthetic efficiency, increased the activity of Calvin cycle enzymes [ribulose diphosphate carboxylase/oxygenase (Rubisco), fructose-1,6-bisphosphate aldolase (FBA), fructose-1, 6-bisphosphatase (FBPase), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and transketolase (TK)], up-regulated the expression of genes encoding enzymes, induced stomatal opening, and alleviated salt-induced damage to the chloroplast membrane and structure. In the saline environment, photosynthetic electron transport was restricted, resulting the J-I-P phase to decrease. At the same time, the absorption, capture, and transport energies per excited cross-section and per active reaction center decreased, and the dissipation energy increased. Conversely, Tre reversed these values and enhanced the photosystem response to salt stress by protecting the photosynthetic electron transport system. In addition, foliage application with Tre significantly increased the potassium to sodium transport selectivity ratio (S K-Na ) by 16.08%, and increased the levels of other ions to varying degrees. Principal component analysis (PCA) analysis showed that exogenous Tre could change the distribution of elements in different organs and affect the expressions of SlSOS1, SlNHX, SlHKT1.1, SlVHA, and SlHA-A at the transcriptional level under salt stress, thereby maintaining ion homeostasis. This study demonstrated that Tre was involved in the process of mitigating salt stress toxicity in tomato plants and provided specific insights into the effectiveness of Tre in mediating salt tolerance.
Collapse
|
33
|
Cia Zeaxanthin Biosynthesis, OsZEP and OsVDE Regulate Striped Leaves Occurring in Response to Deep Transplanting of Rice. Int J Mol Sci 2022; 23:ijms23158340. [PMID: 35955477 PMCID: PMC9369140 DOI: 10.3390/ijms23158340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The rice leaf color mutant B03S was previously generated from the photoperiod- and thermo-sensitive genic male sterile (PTGMS) rice line Efeng 1S, of which male sterility manifests by photoperiod and temperature but exhibits mainly temperature-sensitive characteristics. After these plants were deeply transplanted, the new leaves manifested typical zebra stripe patterns. Here, B03S was subjected to deep and shallow transplanting, shading with soil and aluminum foil, and control conditions in situ to determine the cause of the striped-leaf trait. The direct cause of striped leaves is the base of the leaf sheath being under darkness during deep transplanting, of which the critical shading range reached or exceeds 4 cm above the base. Moreover, typical striped leaves were analyzed based on the targeted metabolome method by ultra-performance liquid chromatography/tandem mass spectrometry (UPLC–MS/MS) combined with transcriptome and real-time quantitative PCR (qPCR)-based verification to clarify the metabolic pathways and transcriptional regulation involved. Carotenoids enter the xanthophyll cycle, and the metabolites that differentially accumulate in the striped leaves include zeaxanthin and its derivatives for photooxidative stress protection, driven by the upregulated expression of OsZEP. These findings improve the understanding of the physiological and metabolic mechanisms underlying the leaf color mutation in rice plants, enrich the theoretical foundation of the nonuniform leaf color phenomenon widely found in nature and highlight key advancements concerning rice production involving the transplanting of seedlings or direct broadcasting of seeds.
Collapse
|
34
|
Ding D, Li J, Xie J, Li N, Bakpa EP, Han K, Yang Y, Wang C. Exogenous Zeaxanthin Alleviates Low Temperature Combined with Low Light Induced Photosynthesis Inhibition and Oxidative Stress in Pepper (Capsicum annuum L.) Plants. Curr Issues Mol Biol 2022; 44:2453-2471. [PMID: 35735609 PMCID: PMC9221838 DOI: 10.3390/cimb44060168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Low temperature combined with low light (LL) affects crop production, especially the yield and quality of peppers, in northwest China during the winter and spring seasons. Zeaxanthin (Z) is a known lipid protectant and active oxygen scavenger. However, whether exogenous Z can mitigate LL-induced inhibition of photosynthesis and oxidative stress in peppers remains unclear. In this study, we investigated the effects of exogenous Z on photosynthesis and the antioxidant machinery of pepper seedlings subject to LL stress. The results showed that the growth and photosynthesis of pepper seedlings were significantly inhibited by LL stress. In addition, the antioxidant machinery was disturbed by the uneven production and elimination of reactive oxygen species (ROS), which resulted in damage to the pepper. For example, membrane lipid peroxidation increased ROS content, and so on. However, exogenous application of Z before LL stress significantly increased the plant height, stem diameter, net photosynthetic rate (Pn), and stomata, which were obviously closed at LL. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), mono de-hydroascorbate reductase (MDHAR), de-hydroascorbate reductase (DHAR), ascorbate peroxidase (APX), and ascorbate oxidase (AAO) improved significantly due to the increased expression of CaSOD, CaCAT, CaAPX, CaMDHAR, and CaDHAR. The ascorbic (AsA) and glutathione (GSH) contents and ascorbic/dehydroascorbate (AsA/DHA) and glutathione/oxidized glutathione (GSH/GSSG) ratios also increased significantly, resulting in the effective removal of hydrogen peroxide (H2O2) and superoxide anions (O2•−) caused by LL stress. Thus, pre-treatment with Z significantly reduced ROS accumulation in pepper seedlings under LL stress by enhancing the activity of antioxidant enzymes and accumulation of components of the ascorbate–glutathione (AsA–GSH) cycle and upregulated key genes in the AsA–GSH cycle.
Collapse
|
35
|
Wang H, Liu Z, Xie J, Li J, Zhang J, Yu J, Hu L, Zhang G. The CaALAD Gene From Pepper ( Capsicum annuum L.) Confers Chilling Stress Tolerance in Transgenic Arabidopsis Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:884990. [PMID: 35574110 PMCID: PMC9100946 DOI: 10.3389/fpls.2022.884990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The ALAD gene encodes an enzyme that is essential for chlorophyll biosynthesis and is involved in many other physiological processes in plants. In this study, the CaALAD gene was cloned from pepper and sequenced. Multiple sequence alignment and phylogenetic analysis of ALAD proteins from nine plant species showed that ALAD is highly conserved, and that CaALAD shows the highest homology with the ALAD protein from eggplant. Subcellular localization indicated that the CaALAD protein is mainly localized to the chloroplasts. After transferring CaALAD into the Arabidopsis thaliana genome, cold tolerance of the transgenic lines improved. Overexpression of CaALAD increased the relative transcription of the AtCBF2, AtICE1, and AtCOR15b genes in transgenic Arabidopsis plants exposed to low temperature (4°C) stress, and the contents of reactive oxygen species decreased due to increased activities of superoxide dismutase, peroxidase, and catalase. Moreover, chlorophyll biosynthesis, as determined by the contents of porphobilinogen, protoporphyrin IX, Mg-protoporphyrin IX, prochlorophyllate, and chlorophyll in the transgenic Arabidopsis plants, increased in response to low temperature stress. In addition, the transgenic lines were more sensitive to exogenous ALA and NaHS, and the H2S content of transgenic line plants increased more rapidly than in the wild-type, suggesting that CaALAD may respond to low temperatures by influencing the content of H2S, a signaling molecule. Our study gives a preliminary indication of the function of CaALAD and will provide a theoretical basis for future molecular breeding of cold tolerance in pepper.
Collapse
Affiliation(s)
| | | | - Jianming Xie
- College of Horticulture, Gansu Agriculture University, Lanzhou, China
| | | | | | | | | | | |
Collapse
|
36
|
Nitric Oxide Enhanced Salt Stress Tolerance in Tomato Seedlings, Involving Phytohormone Equilibrium and Photosynthesis. Int J Mol Sci 2022; 23:ijms23094539. [PMID: 35562930 PMCID: PMC9102644 DOI: 10.3390/ijms23094539] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
Nitric oxide (NO), as a ubiquitous gas signaling molecule, modulates various physiological and biochemical processes and stress responses in plants. In our study, the NO donor nitrosoglutathione (GSNO) significantly promoted tomato seedling growth under NaCl stress, whereas NO scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide potassium (cPTIO) treatment reversed the positive effect of NO, indicating that NO plays an essential role in enhancing salt stress resistance. To explore the mechanism of NO-alleviated salt stress, the transcriptome of tomato leaves was analyzed. A total of 739 differentially expressed genes (DEGs) were identified and classified into different metabolic pathways, especially photosynthesis, plant hormone signal transduction, and carbon metabolism. Of these, approximately 16 and 9 DEGs involved in plant signal transduction and photosynthesis, respectively, were further studied. We found that GSNO increased the endogenous indoleacetic acid (IAA) and salicylic acid (SA) levels but decreased abscisic acid (ABA) and ethylene (ETH) levels under salt stress conditions. Additionally, GSNO induced increases in photosynthesis pigment content and chlorophyll fluorescence parameters under NaCl stress, thereby enhancing the photosynthetic capacity of tomato seedlings. Moreover, the effects of NO mentioned above were reversed by cPTIO. Together, the results of this study revealed that NO regulates the expression of genes related to phytohormone signal transduction and photosynthesis antenna proteins and, therefore, regulates endogenous hormonal equilibrium and enhances photosynthetic capacity, alleviating salt toxicity in tomato seedlings.
Collapse
|
37
|
Yang Y, Yao Y, Li J, Zhang J, Zhang X, Hu L, Ding D, Bakpa EP, Xie J. Trehalose Alleviated Salt Stress in Tomato by Regulating ROS Metabolism, Photosynthesis, Osmolyte Synthesis, and Trehalose Metabolic Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:772948. [PMID: 35360323 PMCID: PMC8963455 DOI: 10.3389/fpls.2022.772948] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/21/2022] [Indexed: 05/12/2023]
Abstract
Trehalose plays a critical role in plant response to salinity but the involved regulatory mechanisms remain obscure. Here, this study explored the mechanism of exogenous trehalose-induced salt tolerance in tomato plants by the hydroponic test method. Our results indicated that 10 mM trehalose displayed remarkable plant biomass by improving growth physiology, which were supported by the results of chlorophyll fluorescence and rapid light-response curve. In the salinity environment, trehalose + NaCl treatment could greatly inhibit the decrease of malondialdehyde level, and it increases the contents of other osmotic substances, carbohydrates, K+, and K+/Na+ ratio. Meanwhile, trehalose still had similar effects after recovery from salt stress. Furthermore, trehalose pretreatment promoted trehalose metabolism; significantly increased the enzymatic activity of the trehalose metabolic pathway, including trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP), and trehalase (TRE); and upregulated the expression of SlTPS1, SlTPS5, SlTPS7, SlTPPJ, SlTPPH, and SlTRE under saline conditions. However, the transcriptional levels of SlTPS1, SlTPS5, and SlTPS7 genes and the activity of TPS enzyme were reversed after recovery. In addition, we found that hydrogen peroxide (H2O2) and superoxide anion (O2 -) were accumulated in tomato leaves because of salt stress, but these parameters were all recovered by foliar-applied trehalose, and its visualization degree was correspondingly reduced. Antioxidant enzyme activities (SOD, POD, and CAT) and related gene expression (SlCu/Zn-SOD, SlFe-SOD, SlMn-SOD, SlPOD, and SlCAT) in salt-stressed tomato leaves were also elevated by trehalose to counteract salt stress. Collectively, exogenous trehalose appeared to be the effective treatment in counteracting the negative effects of salt stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
38
|
Wang H, Liu Z, Luo S, Li J, Zhang J, Li L, Xie J. 5-Aminolevulinic acid and hydrogen sulphide alleviate chilling stress in pepper (Capsicum annuum L.) seedlings by enhancing chlorophyll synthesis pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:567-576. [PMID: 34455225 DOI: 10.1016/j.plaphy.2021.08.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/15/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
5- Aminolevulinic acid (ALA) as a precursor in chlorophyll (Chl) synthesis and hydrogen sulphide (H2S) as a gas signalling molecules can alleviate various abiotic stresses by enhancing photosynthesis. However, little is known about their mechanisms ameliorating photosynthesis under chilling stress, or interactions of ALA and H2S in Chl synthesis. In this study, we explored the effects of exogenous ALA and H2S on chilling stress-induced photosynthesis damage in pepper (Capsicum annuum L.) seedlings. Chilling inhibited the photosynthetic capacity of pepper seedlings, ALA or H2S treatment alone could alleviate this inhibition, and ALA + H2S treatment was even more effective for improving photosynthetic capacity. Additionally, levels of Chl synthesis pathway substances including endogenous ALA, protoporphyrin IX (Proto IX), Mg-protoporphyrin (Mg-Proto IX), protochlorophyllide (Pchl) and Chl (Chl a and Chl b) were significantly decreased, and chilling down-regulated upstream genes HEMA1, HEMB, FAR1, FHY3, CHLH, HEME1, HEMF and PORA. ALA + H2S treatment significantly increased levels of Chl and upstream substances, and up-regulated expression of HEMA1, HEMB and FAR1. In conclusion, exogenous ALA and H2S enhanced chlorophyll synthesis pathway, and thus improved the photosynthesis of pepper seedlings under chilling stress.
Collapse
Affiliation(s)
- Huiping Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Zeci Liu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Shilei Luo
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jing Li
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jing Zhang
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Lushan Li
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jianming Xie
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
39
|
Habibi F, García-Pastor ME, Guillén F, Serrano M, Valero D. Fatty acid composition in relation to chilling susceptibility of blood orange cultivars at different storage temperatures. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:770-776. [PMID: 34217133 DOI: 10.1016/j.plaphy.2021.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Fatty acid composition in the peel of four blood orange cultivars ('Moro', 'Tarocco', 'Sanguinello', and 'Sanguine') was identified and quantified by gas chromatography-mass spectrometry (GC-MS), in order to find its correlation with chilling susceptibility at harvest time and after 180 days of storage at 2 and 5 °C (2 days at 20 °C for shelf life). Twelve fatty acids were detected including 6 saturated (SFA) and 6 unsaturated (UFA), from which 4 monounsaturated (MUFA) and 2 polyunsaturated (PUFA) fatty acids occurred. The major fatty acids were palmitic, linoleic, and linolenic acids. The chilling injury (CI) index was significantly higher at 2 than 5 °C for all cultivars, with 'Sanguinello' being the more tolerant cultivar. The multivariate statistical analyses showed that 'Sanguinello' had the highest UFA, UFA/SFA ratio, and the lowest SFA, while 'Moro' as a cold sensitive cultivar had the highest SFA, the lowest UFA, and UFA/SFA ratio. Our findings revealed that the higher level of PUFAs (linoleic and linolenic acids) and enhancement of the UFA/SFA ratio are considered the most main adaptive mechanism under low temperatures of storage.
Collapse
Affiliation(s)
- Fariborz Habibi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran; Department of Food Technology, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312, Orihuela, Alicante, Spain
| | - María Emma García-Pastor
- Department of Food Technology, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312, Orihuela, Alicante, Spain
| | - Fabián Guillén
- Department of Food Technology, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312, Orihuela, Alicante, Spain
| | - María Serrano
- Department of Applied Biology, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312, Orihuela, Alicante, Spain
| | - Daniel Valero
- Department of Food Technology, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312, Orihuela, Alicante, Spain.
| |
Collapse
|
40
|
Wang S, Fang H, Xie J, Wu Y, Tang Z, Liu Z, Lv J, Yu J. Physiological Responses of Cucumber Seedlings to Different Supplemental Light Duration of Red and Blue LED. FRONTIERS IN PLANT SCIENCE 2021; 12:709313. [PMID: 34322149 PMCID: PMC8311605 DOI: 10.3389/fpls.2021.709313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/16/2021] [Indexed: 05/10/2023]
Abstract
Normal development of plants is inhibited by inadequate light in winter in greenhouses in Northwest China. Growth lamps, using light-emitting diodes (LEDs) with red blue light (7R2B), were used to supplement daylight for 1, 2, and 3 h. Seedling growth, photosynthesis, and photosynthetic product; the Calvin cycle key and sugar metabolism-related enzymes and their encoding genes; and the light signal sensing regulation of key gene expression were studied in greenhouse cucumbers under three treatments to determine the best supplemental light durations to enhance cucumber cultivation in greenhouses in winter. Treatment with LED red and blue light for 3 h significantly promoted the growth and development of cucumbers, root growth, and dry matter accumulation. It improved the photosynthetic rate, photosynthetic pigment content, and light energy utilization efficiency in cucumbers. Supplementation with red and blue LED light for 3 h upregulated the expression levels of key genes encoding the Calvin cycle and enzymes related to sugar metabolism in cucumber leaves, which promoted the synthesis and accumulation of photosynthates. The expression levels of phytochrome B, cryptochrome 1, and hypocotyl 5 in the cucumber leaves were also significantly upregulated after 3 h of light supplementation. Combined LED red and blue light for 3 h should be used to supplement natural light to enhance the cucumber cultivation in greenhouses in winter.
Collapse
Affiliation(s)
- Shuya Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Hua Fang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|