1
|
Jerab D, Blangero F, da Costa PCT, de Brito Alves JL, Kefi R, Jamoussi H, Morio B, Eljaafari A. Beneficial Effects of Omega-3 Fatty Acids on Obesity and Related Metabolic and Chronic Inflammatory Diseases. Nutrients 2025; 17:1253. [PMID: 40219010 PMCID: PMC11990730 DOI: 10.3390/nu17071253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are known to help resolve inflammation through generation of anti-inflammatory eicosanoids and specialized pro-resolving mediators, including resolvins, protectins, and maresins. Through binding to the GPR120/FFAR4 receptor, their beneficial effects result from phospholipid membrane remodeling, impairment of inflammatory signaling molecules clustering, subsequent inhibition of NF-κB and inflammasome activation, and a reduction in oxidative stress. Obesity, a chronic inflammatory disease that contributes to metabolic disorders, is alleviated by n-3 PUFAs. In the adipose tissue (AT) of individuals with obesity, n-3 PUFAs counteract hypoxia, inhibit immune cell infiltration and AT inflammation, improve insulin sensitivity, and reduce fat mass. Beyond AT, n-3 PUFAs also alleviate other metabolic disorders such as metabolic-associated steatotic liver disease (MASLD), gut dysbiosis, and/or renal dysfunction. In cardiovascular disease (CVD), they are mainly recommended as a secondary prevention for patients with coronary heart disease risks. This review provides an in-depth analysis of the benefits of n-3 PUFAs in obesity and related metabolic diseases, examining both the mechanistic and clinical aspects. Additionally, it also explores the effects of n-3 PUFAs in obesity-related chronic inflammatory conditions, including inflammatory bowel disease, psoriasis, rheumatoid arthritis, osteoarthritis, and multiple sclerosis, by targeting specific pathophysiological mechanisms. Clinical applications and limitations of n-3 PUFAs are discussed based on findings from human clinical trials.
Collapse
Affiliation(s)
- Donia Jerab
- CarMeN Laboratory, Institut National de Recherche pour l’ Agriculture, l’ Alimentation et l’Environnement, UMR1397, Institut National de la Santé et de la Recherche Médicale, U 1060, Université Claude Bernard Lyon I, 69310 Pierre-Bénite, France (B.M.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis 1002, Tunisia;
| | - Ferdinand Blangero
- CarMeN Laboratory, Institut National de Recherche pour l’ Agriculture, l’ Alimentation et l’Environnement, UMR1397, Institut National de la Santé et de la Recherche Médicale, U 1060, Université Claude Bernard Lyon I, 69310 Pierre-Bénite, France (B.M.)
| | - Paulo César Trindade da Costa
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil (J.L.d.B.A.)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil (J.L.d.B.A.)
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis 1002, Tunisia;
| | - Henda Jamoussi
- Research Unit “Obesity: Etiopathology and Treatment, UR18ES01”, Faculty of Medicine, Tunis El Manar University, Tunis 2092, Tunisia;
| | - Beatrice Morio
- CarMeN Laboratory, Institut National de Recherche pour l’ Agriculture, l’ Alimentation et l’Environnement, UMR1397, Institut National de la Santé et de la Recherche Médicale, U 1060, Université Claude Bernard Lyon I, 69310 Pierre-Bénite, France (B.M.)
| | - Assia Eljaafari
- CarMeN Laboratory, Institut National de Recherche pour l’ Agriculture, l’ Alimentation et l’Environnement, UMR1397, Institut National de la Santé et de la Recherche Médicale, U 1060, Université Claude Bernard Lyon I, 69310 Pierre-Bénite, France (B.M.)
- Department of Clinical Research, Hospices Civils de Lyon, 69002 Lyon, France
| |
Collapse
|
2
|
Mallardo M, Mazzeo F, Lus G, Signoriello E, Daniele A, Nigro E. Impact of Lifestyle Interventions on Multiple Sclerosis: Focus on Adipose Tissue. Nutrients 2024; 16:3100. [PMID: 39339700 PMCID: PMC11434938 DOI: 10.3390/nu16183100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by demyelination in the central nervous system (CNS), affecting individuals globally. The pathological mechanisms underlying MS remain unclear, but current evidence suggests that inflammation and immune dysfunction play a critical role in the pathogenesis of MS disease. Adipose tissue (AT) is a dynamic multifunctional organ involved in various immune diseases, including MS, due to its endocrine function and the secretion of adipokines, which can influence inflammation and immune responses. Physical activity represents an efficacious non-pharmacological strategy for the management of a spectrum of conditions that not only improves inflammatory and immune functions but also directly affects the status and function of AT. Additionally, the exploration of nutritional supplementation represents an important field of MS research aimed at enhancing clinical symptoms and is closely tied to the regulation of metabolic responses, including adipokine secretion. This review, therefore, aims to elucidate the intricate relationship between lifestyle and MS by providing an overview of the latest published data about the involvement of AT and the main adipokines, such as adiponectin, leptin, and tumor necrosis factor α (TNFα) in the pathogenesis of MS. Furthermore, we explore whether physical activity and dietary management could serve as useful strategies to improve the quality of life of MS patients.
Collapse
Affiliation(s)
- Marta Mallardo
- Department of Molecular and Biotechnological Medicine, University of Naples "Federico II", 80138 Naples, Italy
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences (DiSEGIM), University of Naples "Parthenope", 80035 Naples, Italy
| | - Giacomo Lus
- Multiple Sclerosis Center, II Neurological Clinic, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
- Department of Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Elisabetta Signoriello
- Multiple Sclerosis Center, II Neurological Clinic, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
- Department of Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Aurora Daniele
- Department of Molecular and Biotechnological Medicine, University of Naples "Federico II", 80138 Naples, Italy
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Ersilia Nigro
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
- Department of Pharmaceutical, Biological, Environmental Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via G. Vivaldi 42, 81100 Caserta, Italy
| |
Collapse
|
3
|
Zailani H, Wang WL, Satyanarayanan SK, Chiu WC, Liu WC, Sung YS, Chang JPC, Su KP. Omega-3 Polyunsaturated Fatty Acids and Blood-Brain Barrier Integrity in Major Depressive Disorder: Restoring Balance for Neuroinflammation and Neuroprotection. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:349-363. [PMID: 39351324 PMCID: PMC11426295 DOI: 10.59249/yzlq4631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Major depressive disorder (MDD), affecting over 264 million individuals globally, is associated with immune system dysregulation and chronic neuroinflammation, potentially linked to neurodegenerative processes. This review examines blood-brain barrier (BBB) dysfunction in MDD, focusing on key regulators like matrix metalloproteinase 9 (MMP9), aquaporin-4 (AQP4), and ATP-binding cassette subfamily B member 1 (ABCB1). We explore potential mechanisms by which compromised BBB integrity in MDD may contribute to neuroinflammation and discuss the therapeutic potential of omega-3 polyunsaturated fatty acids (n-3 PUFAs). n-3 PUFAs have demonstrated anti-inflammatory and neuroprotective effects, and potential ability to modulate MMP9, AQP4, and ABCB1, thereby restoring BBB integrity in MDD. This review aims to elucidate these potential mechanisms and evaluate the evidence for n-3 PUFAs as a strategy to mitigate BBB dysfunction and neuroinflammation in MDD.
Collapse
Affiliation(s)
- Halliru Zailani
- Mind-Body Interface Research Center (MBI-Lab), China
Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Nutrition, China Medical
University, Taichung, Taiwan
- Department of Biochemistry, Ahmadu Bello University,
Zaria, Nigeria
| | - Wen-Lung Wang
- Department of Psychiatry, An Nan Hospital, China
Medical University, Tainan, Taiwan
| | - Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong
Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong
Science Park, Hong Kong, China
| | - Wei-Che Chiu
- Department of Psychiatry, Cathay General Hospital,
Taipei, Taiwan
- School of Medicine, Fu Jen Catholic University, Taipei,
Taiwan
| | - Wen-Chun Liu
- Department of Education and Research, An Nan Hospital,
China Medical University, Tainan, Taiwan
- Department of Nursing, National Tainan Junior College
of Nursing, Tainan, Taiwan
| | - Yi-Shan Sung
- Mind-Body Interface Research Center (MBI-Lab), China
Medical University Hospital, Taichung, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Research Center (MBI-Lab), China
Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University,
Taichung, Taiwan
- Child and Adolescent Psychiatry Division, Department
of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China
Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University,
Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China
Medical University, Taichung, Taiwan
- An Nan Hospital, China Medical University, Tainan,
Taiwan
| |
Collapse
|
4
|
Tryfonos C, Chrysafi M, Vadikolias K, Berberoglou L, Vorvolakos T, Dimoliani S, Tsourouflis G, Kontogiorgis C, Antasouras G, Giaginis C. Nutritional interventional studies in patients with multiple sclerosis: a scoping review of the current clinical evidence. J Neurol 2024; 271:1536-1570. [PMID: 38177875 DOI: 10.1007/s00415-023-12140-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/15/2023] [Accepted: 11/25/2023] [Indexed: 01/06/2024]
Abstract
A good nutritional status appears to slow down disease progression and ameliorate symptoms' intensity in patients with multiple sclerosis (MS). Up to date, there are several interventional studies, which have explored the potential beneficial effects of specific dietary patterns as well as specific bioactive nutrients against disease progression and symptomatology of MS patients. This is a thorough, scoping review, which aims to critically summarize and scrutinize the currently available clinical evidence of the potential beneficial effects of nutritional interventional studies against MS progression and symptomatology. This review was conducted to systematically map the research done in this area, as well as to identify gaps in knowledge. For this purpose, we thoroughly explored the most accurate scientific web databases, e.g., PubMed, Scopus, Web of Science, and Google Scholar to achieve the most relevant clinical human studies applying effective and characteristic keywords. There are currently several dietary patterns and specific bioactive nutrients that show promising results by slowing down disease progression and by improving MS symptoms. However, there are also certain conflicting results, while most of the existing studies enrolled a small number of MS patients. Nutritional interventions may exert substantial protective effects against MS progression and symptomatology. However, large, long-term, randomized, double-blind, controlled clinical trials with a prospective design are strongly recommended to delineate whether such nutritional intervention may attenuate disease progression, and improve symptomatology in MS patients.
Collapse
Affiliation(s)
- Christina Tryfonos
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400, Myrina, Greece
| | - Maria Chrysafi
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400, Myrina, Greece
| | - Konstantinos Vadikolias
- Department of Neurology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Lefteris Berberoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Campus (Dragana) Building 5, 68100, Alexandroupolis, Greece
| | - Theofanis Vorvolakos
- Department of Psychiatry, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Sophia Dimoliani
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400, Myrina, Greece
| | - Gerasimos Tsourouflis
- Second Department of Surgery, Propedeutic, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Campus (Dragana) Building 5, 68100, Alexandroupolis, Greece
| | - Georgios Antasouras
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400, Myrina, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400, Myrina, Greece.
| |
Collapse
|
5
|
González-Alva P, Solís-Suárez DL, Cifuentes-Mendiola SE, García-Hernández AL. A diet rich in omega-3 fatty acid improves periodontitis and tissue destruction by MMP2- and MMP9-linked inflammation in a murine model. Odontology 2024; 112:185-199. [PMID: 37378834 PMCID: PMC10776722 DOI: 10.1007/s10266-023-00831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Periodontitis is an oral-cavity inflammatory disease and is the principal cause associated with tooth loss. Matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) are important proteases involved in periodontal tissue destruction. The omega-3 polyunsaturated fatty acids (ω-3 PUFA) have been demonstrated to possess immunoregulatory properties in periodontitis. The aim of the study was to investigate the effects of ω-3 PUFA on inflammation and on the expression of MMP-2 and -9 in a murine periodontitis model. Twenty-four male C57BL/6 mice were divided into control mice (Control), control mice treated with ω-3 PUFA (O3), mice with periodontitis (P), and mice with periodontitis treated with ω-3 PUFA (P + O3). ω-3 PUFA were administered orally once a day for 70 days. Periodontitis in mice was induced by Porphyromonas gingivalis-infected ligature placement around the second maxillary molar. The mice were sacrificed, and blood and maxillary samples were collected. Flow cytometry was used to quantify tumor necrosis factor-alpha (TNFα), interleukin (IL)-2, IL-4, IL-5, and interferon-gamma. Histologic analysis and immunohistochemistry for MMP-2 and -9 were performed. The data were statistically evaluated using analysis of variance (ANOVA) and the Tukey post hoc test. Histological analysis showed that ω-3 PUFA supplementation prevented inflammation and tissue destruction and revealed that bone destruction was more extensive in the P group than in the P + O3 group (p < 0.05). Also, it decreased the serum expressions of TNFα and IL-2 and the tissue expression of MMP-2 and -9 in the periodontitis-induced model (p < 0.05). ω-3 PUFA supplementation prevented alveolar bone loss and periodontal destruction, probably by decreasing the expression of MMP-2 and MMP-9 and its immunoregulatory properties.
Collapse
Affiliation(s)
- Patricia González-Alva
- Laboratory of Tissue Bioengineering, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Diana Laura Solís-Suárez
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, 54714, Cuautitlán Izcalli, Mexico
- Postgraduate Course in Dental Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Saúl Ernesto Cifuentes-Mendiola
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, 54714, Cuautitlán Izcalli, Mexico
| | - Ana Lilia García-Hernández
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, 54714, Cuautitlán Izcalli, Mexico.
| |
Collapse
|
6
|
Kousparou C, Fyrilla M, Stephanou A, Patrikios I. DHA/EPA (Omega-3) and LA/GLA (Omega-6) as Bioactive Molecules in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:10717. [PMID: 37445890 DOI: 10.3390/ijms241310717] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Neurodegenerative diseases are characterized by neuroinflammation, neuronal depletion and oxidative stress. They coincide with subtle chronic or flaring inflammation, sometimes escalating with infiltrations of the immune system cells in the inflamed parts causing mild to severe or even lethal damage. Thus, neurodegenerative diseases show all features of autoimmune diseases. Prevalence of neurodegenerative diseases has dramatically increased in recent decades and unfortunately, the therapeutic efficacy and safety profile of available drugs is moderate. The beneficial effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) polyunsaturated fatty acids (omega-3 PUFAs) are nowadays highlighted by a plethora of studies. They play a role in suppression of inflammation, gene expression, cellular membrane fluidity/permeability, immune functionality and intracellular/exocellular signaling. The role of omega-6 polyunsaturated fatty acids, such as linoleic acid (LA), gamma linolenic acid (GLA), and arachidonic acid (AA), on neuroprotection is controversial, as some of these agents, specifically AA, are proinflammatory, whilst current data suggest that they may have neuroprotective properties as well. This review provides an overview of the existing recent clinical studies with respect to the role of omega-3 and omega-6 PUFAs as therapeutic agents in chronic, inflammatory, autoimmune neurodegenerative diseases as well as the dosages and the period used for testing.
Collapse
Affiliation(s)
- Christina Kousparou
- School of Medicine, European University Cyprus, 6 Diogenous Str., 2404 Nicosia, Cyprus
| | - Maria Fyrilla
- School of Medicine, European University Cyprus, 6 Diogenous Str., 2404 Nicosia, Cyprus
| | - Anastasis Stephanou
- School of Medicine, European University Cyprus, 6 Diogenous Str., 2404 Nicosia, Cyprus
| | - Ioannis Patrikios
- School of Medicine, European University Cyprus, 6 Diogenous Str., 2404 Nicosia, Cyprus
| |
Collapse
|
7
|
Hassanshahi G, Noroozi Karimabad M, Jebali A. The therapeutic effect of PEGlated nanoliposome of pistachio unsaturated oils and its efficacy to attenuate inflammation in multiple sclerosis: A randomized, double-blind, placebo-controlled clinical trial phase I. J Neuroimmunol 2022; 362:577768. [PMID: 34823120 DOI: 10.1016/j.jneuroim.2021.577768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/02/2021] [Accepted: 11/14/2021] [Indexed: 12/01/2022]
Abstract
The aim of this study was to evaluate the therapeutic effect of PEGlated nanoliposome of pistachio unsaturated oils (PEGNLPUOs) and their efficacy to attenuate inflammation in multiple sclerosis (MS). This study was a randomized, double-blind, placebo-controlled clinical trial phase I. The level of docosahexaenoic and eicosapentaenoic acid was significantly increased and the level of matrix metallopeptidase-9 was significantly decreased in MS patients treated with PEGNLPUOs. The level of cytokine showed a Th2-biased response with attenuation of inflammation after treatment with PEGNLPUOs. The number of relapses, disability scores, and T2 lesions was significantly decreased after treatment with PEGNLPUOs.
Collapse
Affiliation(s)
- Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Jebali
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
The Role of Nutritional Lifestyle and Physical Activity in Multiple Sclerosis Pathogenesis and Management: A Narrative Review. Nutrients 2021; 13:nu13113774. [PMID: 34836032 PMCID: PMC8620342 DOI: 10.3390/nu13113774] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
Studies on the role of nutritional factors and physical activity (PA) in the pathogenesis of multiple sclerosis (MS) go back a long time. Despite the intrinsic difficulty of studying their positive or negative role in MS, the interest of researchers on these topics increased during the last few decades, since the role of diet has been investigated with the perspective of the association with disease-modifying drugs (DMD). The association of DMD, diets, and PA might have an additive effect in modifying disease severity. Among the various diets investigated (low-carbohydrate, gluten-free, Mediterranean, low-fat, fasting-mimicking, and Western diets) only low-carbohydrate, Mediterranean, and fast-mimicking diets have shown both in animal models and in humans a positive effect on MS course and in patient-reported outcomes (PROs). However, the Mediterranean diet is easier to be maintained compared to fast-mimicking and low-carbohydrate diets, which may lead to detrimental side effects requiring careful clinical monitoring. Conversely, the Western diet, which is characterized by a high intake of highly saturated fats and carbohydrates, may lead to the activation of pro-inflammatory immune pathways and is therefore not recommended. PA showed a positive effect both in animal models as well as on disease course and PROs in humans. Training with combined exercises is considered the more effective approach.
Collapse
|
9
|
Feng C, Li L, Li Q, Switzer K, Liu M, Han S, Zheng B. Docosahexaenoic acid ameliorates autoimmune inflammation by activating GPR120 signaling pathway in dendritic cells. Int Immunopharmacol 2021; 97:107698. [PMID: 33932699 DOI: 10.1016/j.intimp.2021.107698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/19/2022]
Abstract
Although the phenomenon that omega-3 polyunsaturated fatty acids (n-3 PUFAs) shows to have a beneficial effect in patients suffering from multiple sclerosis (MS) and other autoimmune diseases has been empirically well-documented, the molecular mechanisms that underline the anti-inflammatory effects of n-3 PUFAs are yet to be understood. In experimental autoimmune encephalomyelitis (EAE), a model for MS, we show that one of the underlying mechanisms by which dietary docosahexaenoic acid (DHA) exerts its anti-inflammatory effect is regulating the functional activities of dendritic cells (DCs). In DHA-treated EAE mice, DCs acquire a regulatory phenotype characterized by low expression of co-stimulatory molecules, decreased production of pro-inflammatory cytokines, and enhanced capability of regulatory T-cell induction. The effect of DHA on DCs is mediated by the lipid-sensing receptor, G protein-coupled receptor 120 (GPR120). A GPR120-specific small-molecule agonist could ameliorate the autoimmune inflammation by regulating DCs, while silencing GPR120 in DCs strongly increased the immunogenicity of DCs. Stimulation of GPR120 induces suppressor of cytokine signaling 3 (SOCS3) expression and down-regulates signal transducer and activator of transcription 3 (STAT3) phosphorylation, explaining the molecular mechanism for regulatory DC induction.
Collapse
Affiliation(s)
- Chunlei Feng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lingyun Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qing Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kirsten Switzer
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shuhua Han
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Biao Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States.
| |
Collapse
|
10
|
Tong J, Satyanarayanan SK, Su H. Nutraceuticals and probiotics in the management of psychiatric and neurological disorders: A focus on microbiota-gut-brain-immune axis. Brain Behav Immun 2020; 90:403-419. [PMID: 32889082 DOI: 10.1016/j.bbi.2020.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jiaqi Tong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Senthil Kumaran Satyanarayanan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| |
Collapse
|
11
|
Parolini C. Marine n-3 polyunsaturated fatty acids: Efficacy on inflammatory-based disorders. Life Sci 2020; 263:118591. [PMID: 33069735 DOI: 10.1016/j.lfs.2020.118591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
Inflammation is a physiological response to injury, stimulating tissue repair and regeneration. However, the presence of peculiar individual conditions can negatively perturb the resolution phase eventually leading to a state of low-grade systemic chronic inflammation, characterized by tissue and organ damages and increased susceptibility to non-communicable disease. Marine n-3 polyunsaturated fatty acids (n-3 PUFAs), mainly eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), are able to influence many aspects of this process. Experiments performed in various animal models of obesity, Alzheimer's disease and multiple sclerosis have demonstrated that n-3 PUFAs can modulate the basic mechanisms as well as the disease progression. This review describes the available data from experimental studies to the clinical trials.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
12
|
Xia DN, Tan YQ, Yang JY, Zhou G. Omega-3 polyunsaturated fatty acids: a promising approach for the management of oral lichen planus. Inflamm Res 2020; 69:989-999. [PMID: 32770320 DOI: 10.1007/s00011-020-01388-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Oral lichen planus (OLP) is a T-cell-mediated inflammatory disease with a risk of malignant transformation. Although the etiology of OLP is still uncertain, growing evidence suggests that oral microbiota, antigen-specific, and non-specific mechanisms are involved in the pathogenesis of OLP. Antigen-specific mechanisms include antigen presentation, T-cell activation, nuclear factor-kappa B signaling pathway, and cytokine secretion, while non-specific mechanisms consist of matrix metalloproteinases (MMP)-9 upregulation, psychological pressure, oxidative damage, aberrant expression of microRNAs (miRNAs), and autophagy. Till now, there is no cure for OLP, and the main purpose of OLP therapy is symptomatic control. FINDING Seafood and its derivative omega-3 polyunsaturated fatty acids (n-3 PUFAs) can suppress antigen presentation, T-cell activation, and nuclear factor-kappa B signaling pathway, modulate the overexpressed inflammatory cytokines, inhibit the expression of MMP-9, as well as regulate the expression of miRNAs and autophagy. And they are possible agents for ameliorating psychological disorder and oxidative damage. Moreover, n-3 PUFAs supplementation has a beneficial effect on preventing tumorigenesis. CONCLUSION n-3 PUFAs consumption may provide a non-toxic, inexpensive administration for OLP.
Collapse
Affiliation(s)
- Duo-Na Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China
| | - Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China
| | - Jing-Ya Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China. .,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
13
|
Jebali A, Noroozi Karimabad M, Ahmadi Z, Khorramdel H, Kaeidi A, Mirzaei M, Zare-Bidaki M, Ahmadinia H, Vakilian A, Darekordi A, Hassanshahi G. Attenuation of inflammatory response in the EAE model by PEGlated nanoliposome of pistachio oils. J Neuroimmunol 2020; 347:577352. [PMID: 32781342 DOI: 10.1016/j.jneuroim.2020.577352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 01/29/2023]
Abstract
The aim of this study was to investigate the effect of PEGlated nanoliposome of pistachio unsaturated oils (PEGNLPUOs) to attenuate the inflammatory response in the EAE model by modulating of NFKB and oxidative stress signaling pathway. Real-time PCR demonstrated that the administration of 10%v/v PEGNLPUOs significantly decreased the expression level of AKT1, MAPK, and NFKB genes from NFKB signaling pathway and MGST1, NOS2, and HO-1 genes from oxidative stress signaling pathway. This study showed that the administration of pistachio oil and PEGNLPUOs at a concentration of 10%v/v decreased the number and percentage of Th1(CD4+) and increased Th2(CD8+) cells.
Collapse
Affiliation(s)
- Ali Jebali
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Ahmadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdel
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammadreza Mirzaei
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Zare-Bidaki
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hassan Ahmadinia
- Department of epidemiology and biostatics, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Alireza Vakilian
- Department of Internal Medicine, School of Medicine, Non-Communicable Diseases Research Center, Ali Ibn Abitaleb Educational and Treatment Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Neurology Department, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Darekordi
- Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
14
|
Lane M, Yadav V. Multiple Sclerosis. TEXTBOOK OF NATURAL MEDICINE 2020. [PMCID: PMC7348625 DOI: 10.1016/b978-0-323-43044-9.00199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Sadr NKS, Galehdari H, Seifi T, Delfan N, Khatami SR, Hafizi A. Matrix Metalloproteinase-9 Gene Polymorphisms in South-West Iranian Multiple Sclerosis (MS) Patients. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419100107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Dietary Supplements on Controlling Multiple Sclerosis Symptoms and Relapses: Current Clinical Evidence and Future Perspectives. MEDICINES 2019; 6:medicines6030095. [PMID: 31547410 PMCID: PMC6789617 DOI: 10.3390/medicines6030095] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Background: Multiple sclerosis (MS) constitutes a chronic progressive demyelinating disease which negatively affects the central nervous system. MS symptoms detrimentally affect the quality of life, as well as the life expectancy of MS patients. In this aspect, the present study aims to critically summarize and evaluate the currently available clinical studies focusing on the potential beneficial effects of dietary supplements on controlling MS symptomatology and relapse. Methods: PubMed database was comprehensively searched, using relative keywords to identify clinical trials that investigated the beneficial effects of dietary supplementation against MS symptomatology and progression. 40 clinical trials were found, which were divided into categories. Results: Nutritional status of MS patients, as well as supplementation have been suggested as potential factors affecting progression. Several substantial studies have documented a systematically high prevalence of vitamin A, B12 and D3 deficiency amongst MS patients. At present, clinical data have suggested that most of the dietary supplements under study may exert antioxidant and anti-inflammatory properties, improving depression symptomatology and quality of life overall. However, malnutrition risk in MS patients has not been adequately explored in order for more precise conclusions to be drawn. The supplements that may have a positive effect on MS are vitamins, fatty acids, antioxidants, phytochemicals and melatonin. Conclusions: Several dietary supplements may decrease inflammation and fatigue, also increasing also autoimmunity tolerance in MS patients, and thus improving quality of life and life expectancy. Currently, there is no effective clinical indication for applying dietary supplementation as complementary treatment against MS symptomatology.
Collapse
|
17
|
AlAmmar WA, Albeesh FH, Ibrahim LM, Algindan YY, Yamani LZ, Khattab RY. Effect of omega-3 fatty acids and fish oil supplementation on multiple sclerosis: a systematic review. Nutr Neurosci 2019; 24:569-579. [PMID: 31462182 DOI: 10.1080/1028415x.2019.1659560] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system, resulting in the degradation of the myelin sheath. Diet especially fish oils and omega-3 has been found to play an important role in MS. This work aimed to review the literature systematically for evidence on the effect of omega-3 fatty acids (EPA, DPA and DHA) on MS progression in adults.Methods: The literature search was conducted in PubMed, Oxford, Cochrane, Embase, International pharmaceutical abstract, PsychINFO, and clinical trials government. The inclusions were studies performed on humans both male and female, aged 18 years at minimum, diagnosed with MS according to McDonald 2010 criteria. Otherwise, all studies were excluded.Results: A total of 5554 studies were screened and seven were thoroughly focused on as they typically met the inclusion criteria. These studies showed the beneficial roles of fish oil supplementation and omega-3 fatty acids in improving the quality of life of MS patients. These roles were attributed to their beneficial effects on inflammatory markers, glutathione reductase, reducing the relapsing rate, and achieving balanced omega-6 to omega-3 ratios.Conclusion: Omega-3 and fish oils supplementations have beneficial effects on reducing the relapsing rate, inflammatory markers, and improving the quality of life for MS patients.
Collapse
Affiliation(s)
- Welayah Ali AlAmmar
- Clinical Nutrition Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fatima Hassan Albeesh
- Clinical Nutrition Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Layla Makki Ibrahim
- Clinical Nutrition Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Yasmin Yussuf Algindan
- Clinical Nutrition Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Lamya Zohair Yamani
- Department of Clinical Laboratory Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rabie Yousif Khattab
- Clinical Nutrition Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
18
|
Kouchaki E, Afarini M, Abolhassani J, Mirhosseini N, Bahmani F, Masoud SA, Asemi Z. High-dose ω-3 Fatty Acid Plus Vitamin D3 Supplementation Affects Clinical Symptoms and Metabolic Status of Patients with Multiple Sclerosis: A Randomized Controlled Clinical Trial. J Nutr 2018; 148:1380-1386. [PMID: 29982544 DOI: 10.1093/jn/nxy116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/08/2018] [Indexed: 11/14/2022] Open
Abstract
Background Combined omega-3 fatty acid and vitamin D supplementation may improve multiple sclerosis (MS) by correcting metabolic abnormalities and attenuating oxidative stress and inflammation. Objective This study aimed to determine the effects of ω-3 fatty acid and vitamin D cosupplementation on the disability score and metabolic status of patients with MS. Methods This was a randomized, placebo-controlled clinical trial with Expanded Disability Status Scale (EDSS) score and inflammation as primary outcomes and oxidative stress biomarkers and metabolic profile as secondary outcomes. Patients, aged 18-55 y, were matched for disease EDSS scores, gender, medications, BMI, and age (n = 53) and randomly received a combined 2 × 1000 mg/d ω-3 fatty acid and 50,000 IU/biweekly cholecalciferol supplement or placebo for 12 wk. The placebos were matched in colour, shape, size, packaging, smell, and taste with supplements. Fasting blood samples were collected at baseline and end of intervention to measure different outcomes. Multiple linear regression models were used to assess treatment effects on outcomes adjusting for confounding variables. Results Patients taking ω-3 fatty acid plus vitamin D supplements showed a significant improvement in EDSS (β -0.18; 95% CI: -0.33, -0.04; P = 0.01), compared with placebo. Serum high-sensitivity C-reactive protein (β -1.70 mg/L; 95% CI: -2.49, -0.90 mg/L; P < 0.001), plasma total antioxidant capacity (β +55.4 mmol/L; 95% CI: 9.2, 101.6 mmol/L; P = 0.02), total glutathione (β +51.14 µmol/L; 95% CI: 14.42, 87.87 µmol/L; P = 0.007), and malondialdehyde concentrations (β -0.86 µmol/L; 95% CI: -1.10, -0.63 µmol/L; P < 0.001) were significantly improved in the supplemented group compared with the placebo group. In addition, ω-3 fatty acid and vitamin D cosupplementation resulted in a significant reduction in serum insulin, insulin resistance, and total/HDL-cholesterol, and a significant increase in insulin sensitivity and serum HDL-cholesterol concentrations. Conclusion Overall, taking ω-3 fatty acid and vitamin D supplements for 12 wk by patients with MS had beneficial effects on EDSS and metabolic status. This trial was registered at the Iranian website (www.irct.ir) for registration of clinical trials as IRCT2017090133941N20.
Collapse
Affiliation(s)
- Ebrahim Kouchaki
- Department of Neurology, School of Medicine.,Physiology Research Center; and
| | | | | | | | - Fereshteh Bahmani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
19
|
Penesová A, Dean Z, Kollár B, Havranová A, Imrich R, Vlček M, Rádiková Ž. Nutritional intervention as an essential part of multiple sclerosis treatment? Physiol Res 2018; 67:521-533. [PMID: 29750884 DOI: 10.33549/physiolres.933694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system. In addition to the genetic, epigenetic and immunological components, various other factors, e.g. unhealthy dietary habits, play a role in the MS pathogenesis. Dietary intervention is a highly appealing approach, as it presents a simple and relatively low risk method to potentially improve outcomes in patients with brain disorders in order to achieve remission and improvement of clinical status, well-being and life expectancy of patients with MS. The importance of saturated fat intake restriction for the clinical status improvement of MS patients was pointed for the first time in 1950s. Recently, decreased risk of first clinical diagnosis of CNS demyelination associated with higher intake of omega-3 polyunsaturated fatty acids particularly originating from fish was reported. Only few clinical trials have been performed to address the question of the role of dietary intervention, such is e.g. low saturated fat diet in MS treatment. This review summarizes current knowledge about the effect of different dietary approaches (diets low in saturated fat and dietary supplements such as fish oil, lipoic acid, omega-3 polyunsaturated fatty acids, seeds oils, high fiber diet, vitamin D, etc.) on neurological signs, patient's well-being, physical and inflammatory status. So far the results are not conclusive, therefore much more research is needed to confirm and to understand the effectiveness of these dietary interventions in the long term and well defined studies.
Collapse
Affiliation(s)
- A Penesová
- Institute of Clinical and Translational Research, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Araya-Quintanilla F, Gutiérrez-Espinoza H, Sánchez-Montoya U, Muñoz-Yañez MJ, Baeza-Vergara A, Petersen-Yanjarí M, Fernández-Lecaros L. Effectiveness of omega-3 fatty acid supplementation in patients with Alzheimer disease: A systematic review and meta-analysis. Neurologia 2017; 35:105-114. [PMID: 28986068 DOI: 10.1016/j.nrl.2017.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/02/2017] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Alzheimer disease (AD) is a neurodegenerative disease characterised by progressive dementia associated with global cognitive dysfunction. METHODS We conducted a systematic review and meta-analysis of clinical trials evaluating omega-3 supplementation in patients with AD. OBJECTIVE To determine if there is scientific evidence of the effectiveness of omega-3 supplementation in improving cognitive function in patients with AD. SEARCH STRATEGY We included only randomised controlled trials (RCTs) from the following databases: Medline, Cochrane Central, Cinahl, and LILACS. An electronic search was also conducted using Google Scholar. STUDY SELECTION Six articles met the eligibility criteria. The risk of bias was assessed following the Cochrane method. CONCLUSION There is no consistent evidence to support the effectiveness of omega-3 supplementation in improving cognitive function in AD patients in the short and medium term.
Collapse
Affiliation(s)
- F Araya-Quintanilla
- Universidad de las Américas, Facultad de Ciencias de la Salud, Santiago, Chile.
| | - H Gutiérrez-Espinoza
- Universidad de las Américas, Facultad de Ciencias de la Salud, Santiago, Chile; Unidad de Kinesiología, Centro de Diagnóstico y Tratamiento (CDT), Hospital Clínico San Borja-Arriarán, Santiago, Chile
| | - U Sánchez-Montoya
- Universidad de las Américas, Facultad de Ciencias de la Salud, Escuela de Nutrición y Dietética, Santiago, Chile
| | - M J Muñoz-Yañez
- Universidad Gabriela Mistral, Facultad de Ciencias de la Salud, Escuela de Kinesiología, Santiago, Chile
| | - A Baeza-Vergara
- Universidad de las Américas, Facultad de Ciencias de la Salud, Escuela de Nutrición y Dietética, Santiago, Chile
| | - M Petersen-Yanjarí
- Universidad de las Américas, Facultad de Ciencias de la Salud, Escuela de Nutrición y Dietética, Santiago, Chile
| | - L Fernández-Lecaros
- Universidad de las Américas, Facultad de Ciencias de la Salud, Escuela de Nutrición y Dietética, Santiago, Chile
| |
Collapse
|
21
|
Bagur MJ, Murcia MA, Jiménez-Monreal AM, Tur JA, Bibiloni MM, Alonso GL, Martínez-Tomé M. Influence of Diet in Multiple Sclerosis: A Systematic Review. Adv Nutr 2017; 8:463-472. [PMID: 28507011 PMCID: PMC5421121 DOI: 10.3945/an.116.014191] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nutrition is considered to be a possible factor in the pathogenesis of the neurological disease multiple sclerosis (MS). Nutrition intervention studies suggest that diet may be considered as a complementary treatment to control the progression of the disease; a systematic review of the literature on the influence of diet on MS was therefore conducted. The literature search was conducted by using Medlars Online International Literature (MEDLINE) via PubMed and Scopus. Forty-seven articles met the inclusion criteria. The reviewed articles assessed the relations between macro- and micronutrient intakes and MS incidence. The patients involved used alternative therapies (homeopathy), protocolized diets that included particular foods (herbal products such as grape seed extract, ginseng, blueberries, green tea, etc.), or dietary supplements such as vitamin D, carnitine, melatonin, or coenzyme Q10. Current studies suggest that high serum concentrations of vitamin D, a potent immunomodulator, may decrease the risk of MS and the risk of relapse and new lesions, while improving brain lesions and timed tandem walking. Experimental evidence suggests that serum vitamin D concentration is lower during MS relapses than in remission and is associated with a greater degree of disability [Expanded Disability Status Scale (EDSS) score >3]. The findings suggest that circulating vitamin D concentrations can be considered a biomarker of MS and supplemental vitamin D can be used therapeutically. Other studies point to a negative correlation between serum vitamin B-12 concentrations and EDSS score. Vitamin B-12 has fundamental roles in central nervous system function, especially in the methionine synthase-mediated conversion of homocysteine to methionine, which is essential for DNA and RNA synthesis. Therefore, vitamin B-12 deficiency may lead to an increase in the concentration of homocysteine. Further research is clearly necessary to determine whether treatment with vitamin B-12 supplements delays MS progression.
Collapse
Affiliation(s)
- M José Bagur
- Department Science and Technology and Genetics Agroforestal, University of Castilla La-Mancha, Campus Universitario, Albacete, Spain
| | - M Antonia Murcia
- Department of Food Science, Regional Campus of International Excellence “Campus Mare Nostrum,” University of Murcia, Murcia, Spain;,CIBEROBN CB12/03/30038 (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain; and
| | - Antonia M Jiménez-Monreal
- Department of Food Science, Regional Campus of International Excellence “Campus Mare Nostrum,” University of Murcia, Murcia, Spain;,CIBEROBN CB12/03/30038 (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain; and
| | - Josep A Tur
- CIBEROBN CB12/03/30038 (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain; and,Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain
| | - M Mar Bibiloni
- CIBEROBN CB12/03/30038 (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain; and,Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Gonzalo L Alonso
- Department Science and Technology and Genetics Agroforestal, University of Castilla La-Mancha, Campus Universitario, Albacete, Spain
| | - Magdalena Martínez-Tomé
- Department of Food Science, Regional Campus of International Excellence "Campus Mare Nostrum," University of Murcia, Murcia, Spain; .,CIBEROBN CB12/03/30038 (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain; and
| |
Collapse
|
22
|
Tavakol S, Shakibapour S, Bidgoli SA. The Level of Testosterone, Vitamin D, and Irregular Menstruation More Important than Omega-3 in Non-Symptomatic Women Will Define the Fate of Multiple Scleroses in Future. Mol Neurobiol 2016; 55:462-469. [DOI: 10.1007/s12035-016-0325-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/29/2016] [Indexed: 01/01/2023]
|
23
|
Wang J, Song Y, Gao M, Bai X, Chen Z. Neuroprotective Effect of Several Phytochemicals and Its Potential Application in the Prevention of Neurodegenerative Diseases. Geriatrics (Basel) 2016; 1:geriatrics1040029. [PMID: 31022822 PMCID: PMC6371135 DOI: 10.3390/geriatrics1040029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/16/2016] [Accepted: 11/08/2016] [Indexed: 12/18/2022] Open
Abstract
The detrimental effects of oxidative stress and chronic neuroinflammation on neuronal cell death have been implicated in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). The nutritional neuroscience is quickly growing, and phytochemicals or phytobioactive compounds such as curcumin, resveratrol, propolis, ginsenoside, and ω-3 polyunsaturated fatty acids (PUFAs) have been extensively applied to potential therapeutic purposes for numerous neurodegenerative diseases for their anti-oxidative and anti-inflammatory effects. However, their administration as food supplements in the daily diet of the elderly is normally a voluntary and less-organized behavior, indicating the uncertainty of therapeutic effects in this sporadic population; specifically, the effective physiological dosages and the real positive effects in preserving brain health have not yet been fully elucidated. In this review, we collect several lines of evidence on these compounds, which constitute a major type of nutraceuticals and are widely integrated into the daily anti-aging caring of elderly patients, and discuss the underlying anti-oxidative and anti-inflammatory mechanisms of these phytochemicals. In conclusion, we highlight the implications of these compounds in the prevention and treatment of geriatric diseases, and of the potential supplementation procedures used as a dietary therapeutic program in clinical nursing services for patients with neurodegenerative diseases or for the elderly in certain communities, which we hope will lead to more beneficial health outcomes with respect to brain function, innate immunity, and gastrointestinal function, as well as more economic and social benefits.
Collapse
Affiliation(s)
- Jintang Wang
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, 118 Wenquan Road, Haidian District, Beijing 100095, China.
| | - Yuetao Song
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, 118 Wenquan Road, Haidian District, Beijing 100095, China.
| | - Maolong Gao
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, 118 Wenquan Road, Haidian District, Beijing 100095, China.
| | - Xujing Bai
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, 118 Wenquan Road, Haidian District, Beijing 100095, China.
| | - Zheng Chen
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, 118 Wenquan Road, Haidian District, Beijing 100095, China.
| |
Collapse
|
24
|
Riccio P, Rossano R, Larocca M, Trotta V, Mennella I, Vitaglione P, Ettorre M, Graverini A, De Santis A, Di Monte E, Coniglio MG. Anti-inflammatory nutritional intervention in patients with relapsing-remitting and primary-progressive multiple sclerosis: A pilot study. Exp Biol Med (Maywood) 2016; 241:620-35. [PMID: 26785711 PMCID: PMC4950325 DOI: 10.1177/1535370215618462] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/29/2015] [Indexed: 01/06/2023] Open
Abstract
The aim of this work was to assess the influence of nutritional intervention on inflammatory status and wellness in people with multiple sclerosis. To this end, in a seven-month pilot study we investigated the effects of a calorie-restricted, semi-vegetarian diet and administration of vitamin D and other dietary supplements (fish oil, lipoic acid, omega-3 polyunsaturated fatty acids, resveratrol and multivitamin complex) in 33 patients with relapsing-remitting multiple sclerosis and 10 patients with primary-progressive multiple sclerosis. At 0/3/6 months, patients had neurological examination, filled questionnaires and underwent anthropometric measurements and biochemical analyses. Serum fatty acids and vitamin D levels were measured as markers of dietary compliance and nutritional efficacy of treatment, whereas serum gelatinase levels were analyzed as markers of inflammatory status. All patients had insufficient levels of vitamin D at baseline, but their values did not ameliorate following a weekly administration of 5000 IU, and rather decreased over time. Conversely, omega-3 polyunsaturated fatty acids increased already after three months, even under dietary restriction only. Co-treatment with interferon-beta in relapsing-remitting multiple sclerosis was irrelevant to vitamin D levels. After six months nutritional treatment, no significant changes in neurological signs were observed in any group. However, serum levels of the activated isoforms of gelatinase matrix metalloproteinase-9 decreased by 59% in primary-progressive multiple sclerosis and by 51% in relapsing-remitting multiple sclerosis patients under nutritional intervention, including dietary supplements. This study indicates that a healthy nutritional intervention is well accepted by people with multiple sclerosis and may ameliorate their physical and inflammatory status.
Collapse
Affiliation(s)
- Paolo Riccio
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Marilena Larocca
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Vincenzo Trotta
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Ilario Mennella
- Department of Agricultural and Food Science, University of Naples "Federico II", 80055 Portici, Napoli, Italy
| | - Paola Vitaglione
- Department of Agricultural and Food Science, University of Naples "Federico II", 80055 Portici, Napoli, Italy
| | | | - Antonio Graverini
- O.T.I. Officine Terapie Innovative S.r.l., 67061 Carsoli, Aquila, Italy
| | | | - Elisabetta Di Monte
- Center for Multiple Sclerosis, Hospital ASL 4 "Madonna Delle Grazie", 75100 Matera, Italy
| | | |
Collapse
|
25
|
Zhang W, Zhang H, Mu H, Zhu W, Jiang X, Hu X, Shi Y, Leak RK, Dong Q, Chen J, Gao Y. Omega-3 polyunsaturated fatty acids mitigate blood-brain barrier disruption after hypoxic-ischemic brain injury. Neurobiol Dis 2016; 91:37-46. [PMID: 26921472 DOI: 10.1016/j.nbd.2016.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/04/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been shown to protect the neonatal brain against hypoxic/ischemic (H/I) injury. However, the mechanism of n-3 PUFA-afforded neuroprotection is not well understood. One major determinant of H/I vulnerability is the permeability of the blood-brain barrier (BBB). Therefore, we examined the effects of n-3 PUFAs on BBB integrity after neonatal H/I. Female rats were fed a diet with or without n-3 PUFA enrichment from day 2 of pregnancy to 14days after parturition. H/I was introduced in 7day-old offspring. We observed relatively rapid BBB penetration of the small molecule cadaverine (640Da) at 4h post-H/I and a delayed penetration of larger dextrans (3kD-40kD) 24-48h after injury. Surprisingly, the neonatal BBB was impermeable to Evans Blue or 70kD dextran leakage for up to 48h post-H/I, despite evidence of IgG extravasation at this time. As expected, n-3 PUFAs ameliorated H/I-induced BBB damage, as shown by reductions in tracer efflux and IgG extravasation, preservation of BBB ultrastructure, and enhanced tight junction protein expression. Furthermore, n-3 PUFAs prevented the elevation in matrix metalloproteinase (MMP) activity in the brain and blood after H/I. Thus, n-3 PUFAs may protect neonates against BBB damage by blunting MMPs activation after H/I.
Collapse
Affiliation(s)
- Wenting Zhang
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hui Zhang
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Neurology of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Hongfeng Mu
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Wen Zhu
- Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoyan Jiang
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yejie Shi
- Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Qiang Dong
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Neurology of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA.
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
26
|
Chiurchiù V, Orlacchio A, Maccarrone M. Is Modulation of Oxidative Stress an Answer? The State of the Art of Redox Therapeutic Actions in Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7909380. [PMID: 26881039 PMCID: PMC4736210 DOI: 10.1155/2016/7909380] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/18/2015] [Indexed: 12/11/2022]
Abstract
The central nervous system is particularly sensitive to oxidative stress due to many reasons, including its high oxygen consumption even under basal conditions, high production of reactive oxygen and nitrogen species from specific neurochemical reactions, and the increased deposition of metal ions in the brain with aging. For this reason, along with inflammation, oxidative stress seems to be one of the main inducers of neurodegeneration, causing excitotoxicity, neuronal loss, and axonal damage, ultimately being now considered a key element in the onset and progression of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and hereditary spastic paraplegia. Thus, the present paper reviews the role of oxidative stress and of its mechanistic insights underlying the pathogenesis of these neurodegenerative diseases, with particular focus on current studies on its modulation as a potential and promising therapeutic strategy.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- School of Medicine and Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
- European Center for Brain Research (CERC), Laboratory of Neurochemistry of Lipids, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Antonio Orlacchio
- European Center for Brain Research (CERC), Laboratory of Neurogenetics, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of System Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Mauro Maccarrone
- School of Medicine and Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
- European Center for Brain Research (CERC), Laboratory of Neurochemistry of Lipids, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
27
|
Mostafa GA, El-Khashab HY, Al-Ayadhi LY. A possible association between elevated serum levels of brain-specific auto-antibodies and reduced plasma levels of docosahexaenoic acid in autistic children. J Neuroimmunol 2015; 280:16-20. [PMID: 25773150 DOI: 10.1016/j.jneuroim.2015.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 12/05/2014] [Accepted: 01/26/2015] [Indexed: 11/19/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are not only essential for energy production, but they also exhibit a range of immunomodulatory properties that progress through T cell mediated events. Autoimmunity may have a pathogenic role in a subgroup of autistic children. This study is the first to investigate the relationship between serum levels of anti-myelin basic protein (anti-MBP) brain-specific auto-antibodies and reduced plasma levels of PUFAs in autistic children. Plasma levels of PUFAs (including linoleic, alphalinolenic, arachidonic "AA" and docosahexaenoic "DHA" acids) and serum anti-MBP were measured in 80 autistic children, aged between 4 and 12 years, and 80 healthy-matched children. Autistic patients had significantly lower plasma levels of PUFAs than healthy children. On the other hand, ω6/ω3 ratio (AA/DHA) was significantly higher in autistic patients than healthy children. Low plasma DHA, AA, linolenic and linoleic acids were found in 67.5%, 50%, 40% and 35%, respectively of autistic children. On the other hand, 70% of autistic patients had elevated ω6/ω3 ratio. Autistic patients with increased serum levels of anti-MBP auto-antibodies (75%) had significantly lower plasma DHA (P<0.5) and significantly higher ω6/ω3 ratio (P<0.5) than patients who were seronegative for these antibodies. In conclusions, some autistic children have a significant positive association between reduced levels of plasma DHA and increased serum levels of anti-MBP brain-specific auto-antibodies. However, replication studies of larger samples are recommended to validate whether reduced levels of plasma PUFAs are a mere association or have a role in the induction of the production of anti-MBP in some autistic children.
Collapse
Affiliation(s)
- Gehan A Mostafa
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Heba Y El-Khashab
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Abstract
The question whether dietary habits and lifestyle have influence on the course of multiple sclerosis (MS) is still a matter of debate, and at present, MS therapy is not associated with any information on diet and lifestyle. Here we show that dietary factors and lifestyle may exacerbate or ameliorate MS symptoms by modulating the inflammatory status of the disease both in relapsing-remitting MS and in primary-progressive MS. This is achieved by controlling both the metabolic and inflammatory pathways in the human cell and the composition of commensal gut microbiota. What increases inflammation are hypercaloric Western-style diets, characterized by high salt, animal fat, red meat, sugar-sweetened drinks, fried food, low fiber, and lack of physical exercise. The persistence of this type of diet upregulates the metabolism of human cells toward biosynthetic pathways including those of proinflammatory molecules and also leads to a dysbiotic gut microbiota, alteration of intestinal immunity, and low-grade systemic inflammation. Conversely, exercise and low-calorie diets based on the assumption of vegetables, fruit, legumes, fish, prebiotics, and probiotics act on nuclear receptors and enzymes that upregulate oxidative metabolism, downregulate the synthesis of proinflammatory molecules, and restore or maintain a healthy symbiotic gut microbiota. Now that we know the molecular mechanisms by which dietary factors and exercise affect the inflammatory status in MS, we can expect that a nutritional intervention with anti-inflammatory food and dietary supplements can alleviate possible side effects of immune-modulatory drugs and the symptoms of chronic fatigue syndrome and thus favor patient wellness.
Collapse
Affiliation(s)
- Paolo Riccio
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
29
|
Ortiz GG, Pacheco-Moisés FP, Macías-Islas MÁ, Flores-Alvarado LJ, Mireles-Ramírez MA, González-Renovato ED, Hernández-Navarro VE, Sánchez-López AL, Alatorre-Jiménez MA. Role of the blood-brain barrier in multiple sclerosis. Arch Med Res 2014; 45:687-97. [PMID: 25431839 DOI: 10.1016/j.arcmed.2014.11.013] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/18/2014] [Indexed: 12/24/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system associated with demyelination and axonal loss eventually leading to neurodegeneration. MS exhibits many of the hallmarks of an inflammatory autoimmune disorder including breakdown of the blood-brain barrier (BBB). The BBB is a complex organization of cerebral endothelial cells, pericytes and their basal lamina, which are surrounded and supported by astrocytes and perivascular macrophages. In pathological conditions, lymphocytes activated in the periphery infiltrate the central nervous system to trigger a local immune response that ultimately damages myelin and axons. Cytotoxic factors including pro-inflammatory cytokines, proteases, and reactive oxygen and nitrogen species accumulate and may contribute to myelin destruction. Dysregulation of the BBB and transendothelial migration of activated leukocytes are among the earliest cerebrovascular abnormalities seen in MS brains and parallel the release of inflammatory cytokines. In this review we establish the importance of the role of the BBB in MS. Improvements in our understanding of molecular mechanism of BBB functioning in physiological and pathological conditions could lead to improvement in the quality of life of MS patients.
Collapse
Affiliation(s)
- Genaro Gabriel Ortiz
- Laboratorio Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México.
| | - Fermín Paul Pacheco-Moisés
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Miguel Ángel Macías-Islas
- Departamento de Neurología, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico de Nacional de Occidente (CMNO), IMSS, Guadalajara, Jalisco, México
| | - Luis Javier Flores-Alvarado
- Departamento de Bioquímica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Mario A Mireles-Ramírez
- Departamento de Neurología, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico de Nacional de Occidente (CMNO), IMSS, Guadalajara, Jalisco, México
| | - Erika Daniela González-Renovato
- Laboratorio Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Vanessa Elizabeth Hernández-Navarro
- Laboratorio Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Angélica Lizeth Sánchez-López
- Laboratorio Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Moisés Alejandro Alatorre-Jiménez
- Laboratorio Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| |
Collapse
|
30
|
Namjooyan F, Ghanavati R, Majdinasab N, Jokari S, Janbozorgi M. Uses of complementary and alternative medicine in multiple sclerosis. J Tradit Complement Med 2014; 4:145-52. [PMID: 25161918 PMCID: PMC4142451 DOI: 10.4103/2225-4110.136543] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, disabling, recurrent demyelination of the central nervous system (CNS). It could affect different regions in the brain and spinal cord, and according to the domain which is affected, it could cause different symptoms such as motor, sensory, or visual impairment; fatigue; bowel, bladder, and sexual dysfunction; cognitive impairment; and depression. MS patients also face reduced quality of life. Drugs that are used in MS are not fully efficient and patients suffer from many symptoms and adverse effects. Today there is an increasing trend of using complementary and alternative medicine (CAM). People are more likely to use this type of treatment. Using appropriate lifestyle and CAM therapy can subside some of the symptoms and could improve the quality of life in these patients. Many people with MS explore CAM therapies for their symptoms. This review is aimed to introduce CAM therapies that could be used in MS patients.
Collapse
Affiliation(s)
- Foroogh Namjooyan
- Department of Pharmacognosy, Marine Natural Pharmaceutical Research Center, School of Pharmacy, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Rahil Ghanavati
- Department of Traditional Pharmacy, School of Pharmacy, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Majdinasab
- Department of Neurology, School of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shiva Jokari
- Jundishapur University of Medical Sciences, Arvand International Branch, Abadan, Iran
| | | |
Collapse
|
31
|
Holmøy T, Løken-Amsrud KI, Bakke SJ, Beiske AG, Bjerve KS, Hovdal H, Lilleås F, Midgard R, Pedersen T, Šaltytė Benth J, Torkildsen Ø, Wergeland S, Myhr KM, Michelsen AE, Aukrust P, Ueland T. Inflammation markers in multiple sclerosis: CXCL16 reflects and may also predict disease activity. PLoS One 2013; 8:e75021. [PMID: 24069377 PMCID: PMC3777920 DOI: 10.1371/journal.pone.0075021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/08/2013] [Indexed: 12/05/2022] Open
Abstract
Background Serum markers of inflammation are candidate biomarkers in multiple sclerosis (MS). ω-3 fatty acids are suggested to have anti-inflammatory properties that might be beneficial in MS. We aimed to explore the relationship between serum levels of inflammation markers and MRI activity in patients with relapsing remitting MS, as well as the effect of ω-3 fatty acids on these markers. Methods We performed a prospective cohort study in 85 relapsing remitting MS patients who participated in a randomized clinical trial of ω-3 fatty acids versus placebo (the OFAMS study). During a period of 24 months 12 repeated magnetic resonance imaging (MRI) scans and nine serum samples were obtained. We measured 10 inflammation markers, including general down-stream markers of inflammation, specific markers of up-stream inflammatory pathways, endothelial action, and matrix regulation. Results After Bonferroni correction, increasing serum levels of CXCL16 and osteoprotegerin were associated with low odds ratio for simultaneous MRI activity, whereas a positive association was observed for matrix metalloproteinase (MMP) 9. CXCL16 were also associated with low MRI activity the next month, but this was not significant after Bonferroni correction. In agreement with previously reported MRI and clinical results, ω-3 fatty acid treatment did not induce any change in the inflammation markers. Conclusions Serum levels of CXCL16, MMP-9, and osteoprotegerin reflect disease activity in MS, but are not affected by ω-3 fatty acid treatment. CXCL16 could be a novel biomarker and potential predictor of disease activity in MS.
Collapse
Affiliation(s)
- Trygve Holmøy
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Kristin Ingeleiv Løken-Amsrud
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Innlandet Hospital Trust, Lillehammer, Norway
| | - Søren Jacob Bakke
- Department of Neuroradiology, Oslo University Hospital, Oslo, Norway
| | | | - Kristian S. Bjerve
- Department of Medical Biochemistry, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Harald Hovdal
- Department of Neurology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | | | - Rune Midgard
- Department of Neurology, Molde Hospital, Molde, Norway
- Unit for Applied Clinical Research, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Jutrate Šaltytė Benth
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Helse Sør-Øst Health Services Research Centre, Akershus University Hospital, Lørenskog, Norway
| | - Øivind Torkildsen
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- KG KG Jebsen MS Research Centre, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Stig Wergeland
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- KG KG Jebsen MS Research Centre, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kjell-Morten Myhr
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- KG KG Jebsen MS Research Centre, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Annika E. Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
32
|
Jelinek GA, Hadgkiss EJ, Weiland TJ, Pereira NG, Marck CH, van der Meer DM. Association of fish consumption and Ω 3 supplementation with quality of life, disability and disease activity in an international cohort of people with multiple sclerosis. Int J Neurosci 2013; 123:792-800. [PMID: 23713615 PMCID: PMC3821380 DOI: 10.3109/00207454.2013.803104] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The role of fish consumption and omega 3 supplementation in multiple sclerosis (MS) is controversial, although there is some evidence to support a beneficial effect. We surveyed a large cohort of people with MS recruited via Web 2.0 platforms, requesting information on type of MS, relapse rates, disability, health-related quality of life, frequency of fish consumption and omega 3 supplementation, including type and dose, using validated tools where possible. We aimed to determine whether there was an association between fish consumption and omega 3 supplementation and quality of life, disability and disease activity for people with MS. Univariate and multivariate analyses were undertaken. Of 2469 respondents, 1493 (60.5%) had relapsing-remitting MS. Those consuming fish more frequently and those taking omega 3 supplements had significantly better quality of life, in all domains, and less disability. For fish consumption, there was a clear dose-response relationship for these associations. There were also trends towards lower relapse rates and reduced disease activity; flaxseed oil supplementation was associated with over 60% lower relapse rate over the previous 12 months. Further dietary studies and randomised controlled trials of omega 3 supplementation for people with MS are required, preferably using flaxseed oil.
Collapse
Affiliation(s)
- George A Jelinek
- 1Emergency Practice Innovation Centre, St Vincents Hospital , Fitzroy , Australia
| | | | | | | | | | | |
Collapse
|
33
|
Mo XL, Wei HK, Peng J, Tao YX. Free Fatty Acid Receptor GPR120 and Pathogenesis of Obesity and Type 2 Diabetes Mellitus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:251-76. [DOI: 10.1016/b978-0-12-386933-3.00007-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Farinotti M, Vacchi L, Simi S, Di Pietrantonj C, Brait L, Filippini G. Dietary interventions for multiple sclerosis. Cochrane Database Syst Rev 2012; 12:CD004192. [PMID: 23235605 DOI: 10.1002/14651858.cd004192.pub3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Clinical and experimental data suggest that certain dietary regimens, particularly those including polyunsaturated fatty acids (PUFAs) and vitamins, might improve outcomes in people with multiple sclerosis (MS). Diets and dietary supplements are much used by people with MS in the belief that they might improve disease outcomes and overcome the effectiveness limits of conventional treatments.This is an update of the Cochrane review "Dietary intervention for multiple sclerosis" (first published on The Cochrane Library 2007, Issue 1). OBJECTIVES To answer MS patients' questions regarding the efficacy and safety of dietary regimens for MS. Can changes in dietary habits be an effective intervention for MS patients? Are the potential side effects of these interventions known, and have they been measured? Are potential interactions between dietary interventions and other curative or symptomatic treatments known and have they been studied? SEARCH METHODS We searched the Cochrane Multiple Sclerosis and Rare Diseases of the Central Nervous System Group Specialised Register (November 2011), CENTRAL (The Cochrane Library 2011, Issue 4), MEDLINE (PubMed) (1966 to November 2011), EMBASE (embase.com) (1974 to November 2011) and reference lists of papers found. SELECTION CRITERIA All controlled trials (randomised controlled trials (RCTs) and controlled clinical trials (CCTs)) on a specific dietary intervention, diet plan or dietary supplementation, except for vitamin D supplementation, compared to no dietary modification or placebo were eligible. DATA COLLECTION AND ANALYSIS Two review authors independently selected articles, assessed trial quality and extracted data. Data were entered and analysed in RevMan.Dichotomous data were summarised as relative risks (RR) with 95% confidence intervals (95% CI) using a random-effects model in the presence of heterogeneity (I² > 60%). Continuous data were analysed using weighted mean differences, determined by the difference between the pre- and post-intervention changes in the treatment and control groups. MAIN RESULTS Six RCTs that investigated PUFAs emerged from the search strategy, accounting for 794 randomised patients.PUFAs did not have a significant effect on disease progression at 24 months. Omega-6 fatty acids (11 to 23 g/day linoleic acid) didn't show any benefit in 144 MS patients (RR 1.04, 95% CI 0.66 to 1.63). Linoleic acid (2.9 to 3.4 g/day) had no benefit in 65 chronic progressive MS patients (RR 0.78, 95% CI 0.43 to 1.42). Omega-3 fatty acids had no benefit in 292 relapsing remitting MS patients (RR 0.82, 95% CI 0.65 to 1.03, P = 0.08).Slight potential benefits in relapse outcomes were associated with omega-6 fatty acids in some studies, however these findings were limited by the reduced validity of the endpoints. No judgements about safety or patient-reported outcomes were possible. In general, trial quality was poor.No studies on vitamin supplementation and allergen-free diets were analysed as none met the eligibility criteria, mainly due to lack of clinical outcomes. AUTHORS' CONCLUSIONS PUFAs seem to have no major effect on the main clinical outcome in MS (disease progression), but they may tend to reduce the frequency of relapses over two years. However, the data that are available are insufficient to assess a real benefit or harm from PUFA supplementation because of their uncertain quality.Evidence on the possible benefits and risks of vitamin supplementation and antioxidant supplements in MS is lacking. More research is required to assess the effectiveness of dietary interventions in MS.
Collapse
Affiliation(s)
- Mariangela Farinotti
- Neuroepidemiology Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milano, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Kim DY, Hao J, Liu R, Turner G, Shi FD, Rho JM. Inflammation-mediated memory dysfunction and effects of a ketogenic diet in a murine model of multiple sclerosis. PLoS One 2012; 7:e35476. [PMID: 22567104 PMCID: PMC3342287 DOI: 10.1371/journal.pone.0035476] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 03/18/2012] [Indexed: 11/18/2022] Open
Abstract
A prominent clinical symptom in multiple sclerosis (MS), a progressive disorder of the central nervous system (CNS) due to heightened neuro-inflammation, is learning and memory dysfunction. Here, we investigated the effects of a ketogenic diet (KD) on memory impairment and CNS-inflammation in a murine model of experimental autoimmune encephalomyelitis (EAE), using electrophysiological, behavioral, biochemical and in vivo imaging approaches. Behavioral spatial learning deficits were associated with motor disability in EAE mice, and were observed concurrently with brain inflammation. The KD improved motor disability in the EAE model, as well as CA1 hippocampal synaptic plasticity (long-term potentiation) and spatial learning and memory (assessed with the Morris Water Maze). Moreover, hippocampal atrophy and periventricular lesions in EAE mice were reversed in KD-treated EAE mice. Finally, we found that the increased expression of inflammatory cytokines and chemokines, as well as the production of reactive oxygen species (ROS), in our EAE model were both suppressed by the KD. Collectively, our findings indicate that brain inflammation in EAE mice is associated with impaired spatial learning and memory function, and that KD treatment can exert protective effects, likely via attenuation of the robust immune response and increased oxidative stress seen in these animals.
Collapse
Affiliation(s)
- Do Young Kim
- Barrow Neurological Institute, Medical Center, St. Joseph’s Hospital, Phoenix, Arizona, United States of America
| | - Junwei Hao
- Barrow Neurological Institute, Medical Center, St. Joseph’s Hospital, Phoenix, Arizona, United States of America
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruolan Liu
- Barrow Neurological Institute, Medical Center, St. Joseph’s Hospital, Phoenix, Arizona, United States of America
| | - Gregory Turner
- Keller Center for Imaging Innovation, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Fu-Dong Shi
- Barrow Neurological Institute, Medical Center, St. Joseph’s Hospital, Phoenix, Arizona, United States of America
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- * E-mail: (JMR); (FDS)
| | - Jong M. Rho
- Barrow Neurological Institute, Medical Center, St. Joseph’s Hospital, Phoenix, Arizona, United States of America
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Alberta Children’s Hospital, Calgary, Alberta, Canada
- * E-mail: (JMR); (FDS)
| |
Collapse
|
36
|
Sundrani DP, Chavan-Gautam PM, Pisal HR, Mehendale SS, Joshi SR. Matrix metalloproteinase-1 and -9 in human placenta during spontaneous vaginal delivery and caesarean sectioning in preterm pregnancy. PLoS One 2012; 7:e29855. [PMID: 22253805 PMCID: PMC3257231 DOI: 10.1371/journal.pone.0029855] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/05/2011] [Indexed: 11/18/2022] Open
Abstract
Preterm birth is a major public health problem in terms of loss of life, long-term and short term disabilities worldwide. The process of parturition (both term and preterm) involves intensive remodelling of the extracellular matrix (ECM) in the placenta and fetal membranes by matrix metalloproteinases (MMPs). Our previous studies show reduced docosahexaenoic acid (DHA) in women delivering preterm. Further omega 3 fatty acids are reported to regulate MMP levels. This study was undertaken to examine the placental levels of MMPs and their association with placental DHA levels in women delivering preterm. The levels of MMP-1 and MMP-9 in 74 women delivering preterm (52 by spontaneous vaginal delivery and 22 by caesarean sectioning) and 75 women delivering at term (59 by spontaneous vaginal delivery and 16 by caesarean sectioning) were determined by enzyme-linked immunosorbent assay (ELISA) and their association with placental DHA was studied. Placental MMP-1 levels were higher (p<0.05) in women delivering preterm (both by spontaneous vaginal delivery and caesarean sectioning) as compared to those delivering at term. In contrast, placental MMP-9 levels in preterm pregnancies was higher (p<0.05) in women with spontaneous vaginal delivery while lower (p<0.05) in women delivering by caesarean sectioning. Low placental DHA was associated with higher placental MMP-9 levels. Our study suggests a differential effect of mode of delivery on the levels of MMPs from placenta. Further this study suggests a negative association of DHA and the levels of MMP-9 in human placenta although the mechanisms need further study.
Collapse
Affiliation(s)
- Deepali P. Sundrani
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Preeti M. Chavan-Gautam
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Hemlata R. Pisal
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Savita S. Mehendale
- Department of Obstetrics and Gynecology, Bharati Medical College and Hospital, Bharati Vidyapeeth University, Pune, India
| | - Sadhana R. Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
- * E-mail:
| |
Collapse
|
37
|
Chiurchiù V, Maccarrone M. Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011; 15:2605-41. [PMID: 21391902 DOI: 10.1089/ars.2010.3547] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A chronic inflammatory disease is a condition characterized by persistent inflammation. A number of human pathologies fall into this category, and a great deal of research has been conducted to learn more about their characteristics and underlying mechanisms. In many cases, a genetic component has been identified, but also external factors like food, smoke, or environmental pollutants can significantly contribute to worsen their symptoms. Accumulated evidence clearly shows that chronic inflammatory diseases are subjected to a redox control. Here, we shall review the identity, source, regulation, and biological activity of redox molecules, to put in a better perspective their key-role in cancer, diabetes, cardiovascular diseases, atherosclerosis, chronic obstructive pulmonary diseases, and inflammatory bowel diseases. In addition, the impact of redox species on autoimmune disorders (rheumatoid arthritis, systemic lupus erythematosus, psoriasis, and celiac disease) and neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis) will be discussed, along with their potential therapeutic implications as novel drugs to combat chronic inflammatory disorders.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- European Center for Brain Research/Santa Lucia Foundation, Rome, Italy
| | | |
Collapse
|
38
|
Riccio P. The molecular basis of nutritional intervention in multiple sclerosis: a narrative review. Complement Ther Med 2011; 19:228-37. [PMID: 21827937 DOI: 10.1016/j.ctim.2011.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 06/03/2011] [Accepted: 06/29/2011] [Indexed: 11/28/2022] Open
Abstract
It is commonly accepted that nutrition is one of the possible environmental factors involved in the pathogenesis of multiple sclerosis (MS), but its role as complementary MS treatment is unclear and largely disregarded. At present, MS therapy is not associated to a particular diet, probably due to lack of information on the effects of nutrition on the disease. To overcome the distrust of the usefulness of dietary control in MS and to encourage nutritional interventions in the course of the disease, it is necessary to assess the nature and the role of bioactive dietary molecules and their targets, and establish how a dietary control can influence cell metabolism and improve the wellness of MS patients. The aim of this review is to provide a rationale for a nutritional intervention in MS by evaluating at the molecular level the effects of dietary molecules on the inflammatory and autoimmune processes involved in the disease. Present data reveal that healthy dietary molecules have a pleiotropic role and are able to change cell metabolism from anabolism to catabolism and down-regulate inflammation by interacting with enzymes, nuclear receptors and transcriptional factors. The control of gut dysbiosis and the combination of hypo-caloric, low-fat diets with specific vitamins, oligoelements and dietary integrators, including fish oil and polyphenols, may slow-down the progression of the disease and ameliorate the wellness of MS patients.
Collapse
Affiliation(s)
- P Riccio
- Dipartimento di Biologia D.B.A.F., University of Basilicata, Potenza, Italy.
| |
Collapse
|
39
|
Shinto L, Marracci G, Bumgarner L, Yadav V. The effects of omega-3 Fatty acids on matrix metalloproteinase-9 production and cell migration in human immune cells: implications for multiple sclerosis. Autoimmune Dis 2011; 2011:134592. [PMID: 21799946 PMCID: PMC3140187 DOI: 10.4061/2011/134592] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 05/23/2011] [Indexed: 11/20/2022] Open
Abstract
In multiple sclerosis (MS), compromised blood-brain barrier (BBB) integrity contributes to inflammatory T cell migration into the central nervous system. Matrix metalloproteinase-9 (MMP-9) is associated with BBB disruption and subsequent T cell migration into the CNS. The aim of this paper was to evaluate the effects of omega-3 fatty acids on MMP-9 levels and T cell migration. Peripheral blood mononuclear cells (PBMC) from healthy controls were pretreated with two types of omega-3 fatty acids, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Cell supernatants were used to determine MMP-9 protein and activity levels. Jurkat cells were pretreated with EPA and DHA and were added to fibronectin-coated transwells to measure T cell migration. EPA and DHA significantly decreased MMP-9 protein levels, MMP-9 activity, and significantly inhibited human T cell migration. The data suggest that omega-3 fatty acids may benefit patients with multiple sclerosis by modulating immune cell production of MMP-9.
Collapse
Affiliation(s)
- Lynne Shinto
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, CR 120, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
40
|
Kong W, Yen JH, Ganea D. Docosahexaenoic acid prevents dendritic cell maturation, inhibits antigen-specific Th1/Th17 differentiation and suppresses experimental autoimmune encephalomyelitis. Brain Behav Immun 2011; 25:872-82. [PMID: 20854895 PMCID: PMC3031664 DOI: 10.1016/j.bbi.2010.09.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/14/2010] [Accepted: 09/14/2010] [Indexed: 01/01/2023] Open
Abstract
Docosahexaenoic acid (DHA), the most abundant essential n-3 polyunsaturated fatty acid in the CNS, emerged recently together with eicosapentaenoic acid (EPA) and DHA/EPA metabolic derivatives as a major player in the resolution of inflammation. Protective anti-inflammatory effects of DHA were reported in clinical studies and animal models of colitis, sepsis, and stroke. Here we report for the first time a beneficial effect of dietary n-3 fatty acids in experimental autoimmune encephalomyelitis (EAE), a model for human multiple sclerosis. In the present study we investigated the effects of DHA on the function of bone marrow-derived dendritic cells (DC) in CD4(+) T cell stimulation and differentiation. Pretreatment of DC with DHA prevented LPS-induced DC maturation, maintaining an immature phenotype characterized by low expression of costimulatory molecules and lack of proinflammatory cytokine production (IL-12p70, IL-6, and IL-23). DHA-treated DC were poor stimulators of antigen-specific T cells in terms of proliferation and Th1/Th17 differentiation. This was associated with an increase in p27(kip1), a cell cycle arresting agent, and with decreases in Tbet, GATA-3, and RORγt, master transcription factors for Th1, Th2, and Th17. In contrast, T cells co-cultured with DC-DHA express higher levels of TGFβ and Foxp3, without exhibiting a functional Treg phenotype. Similar to the in vitro results, the beneficial effect of DHA in EAE was associated with reduced numbers of IFNγ- and IL-17-producing CD4(+) T cells in both spleen and CNS.
Collapse
Affiliation(s)
- Weimin Kong
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140,Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Jui-Hung Yen
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Doina Ganea
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140
| |
Collapse
|
41
|
Talukdar S, Olefsky JM, Osborn O. Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases. Trends Pharmacol Sci 2011; 32:543-50. [PMID: 21663979 DOI: 10.1016/j.tips.2011.04.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/25/2011] [Accepted: 04/29/2011] [Indexed: 01/08/2023]
Abstract
The past decade has seen great progress in the understanding of the molecular pharmacology, physiological function and therapeutic potential of G-protein-coupled receptors (GPCRs). Free fatty acids (FFAs) have been demonstrated to act as ligands of several GPCRs including GPR40, GPR43, GPR84, GPR119 and GPR120. We have recently shown that GPR120 acts as a physiological receptor of ω3 fatty acids in macrophages and adipocytes, which mediate potent anti-inflammatory and insulin sensitizing effects. The important role GPR120 plays in the control of inflammation raises the possibility that targeting this receptor could have therapeutic potential in many inflammatory diseases including obesity and type 2 diabetes. In this review paper, we discuss lipid-sensing GPCRs and highlight potential outcomes of targeting such receptors in ameliorating disease.
Collapse
Affiliation(s)
- Saswata Talukdar
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
42
|
CAM Interventions for Multiple Sclerosis: Part 1—Diet and Supplements for Relieving Symptoms. ACTA ACUST UNITED AC 2011. [DOI: 10.1089/act.2011.17301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Riccio P, Rossano R, Liuzzi GM. May diet and dietary supplements improve the wellness of multiple sclerosis patients? A molecular approach. Autoimmune Dis 2011; 2010:249842. [PMID: 21461338 PMCID: PMC3065662 DOI: 10.4061/2010/249842] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/27/2010] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis is a complex and multifactorial neurological disease, and nutrition is one of the environmental factors possibly involved in its pathogenesis. At present, the role of nutrition is unclear, and MS therapy is not associated to a particular diet. MS clinical trials based on specific diets or dietary supplements are very few and in some cases controversial. To understand how diet can influence the course of MS and improve the wellness of MS patients, it is necessary to identify the dietary molecules, their targets and the molecular mechanisms involved in the control of the disease. The aim of this paper is to provide a molecular basis for the nutritional intervention in MS by evaluating at molecular level the effect of dietary molecules on the inflammatory and autoimmune processes involved in the disease.
Collapse
Affiliation(s)
- Paolo Riccio
- Dipartimento di Biologia D.B.A.F., Università degli Studi della Basilicata, 85100 Potenza, Italy
| | | | | |
Collapse
|
44
|
Yadav V, Shinto L, Bourdette D. Complementary and alternative medicine for the treatment of multiple sclerosis. Expert Rev Clin Immunol 2010; 6:381-95. [PMID: 20441425 PMCID: PMC2901236 DOI: 10.1586/eci.10.12] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multiple sclerosis (MS) is a chronic disabling disease of the CNS that affects people during early adulthood. Despite several US FDA-approved medications, the treatment options in MS are limited. Many people with MS explore complementary and alternative medicine (CAM) treatments to help control their MS and treat their symptoms. Surveys suggest that up to 70% of people with MS have tried one or more CAM treatment for their MS. People with MS using CAM generally report deriving some benefit from the therapies. The CAM therapies most frequently used include diet, omega-3 fatty acids and antioxidants. There is very limited research evaluating the safety and effectiveness of CAM in MS. The most promising among CAM therapies that warrant further investigation are a low-fat diet, omega-3 fatty acids, lipoic acid and vitamin D supplementation as potential anti-inflammatory and neuroprotective agents in both relapsing and progressive forms of MS. There is very limited research evaluating the safety and effectiveness of CAM in MS. However, in recent years, the NIH and the National MS Society have been actively supporting the research in this very important area.
Collapse
Affiliation(s)
- Vijayshree Yadav
- Department of Neurology L226, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | |
Collapse
|
45
|
Challem J. Medical Journal Watch: Context and Applications. ALTERNATIVE AND COMPLEMENTARY THERAPIES 2009; 15:267-272. [DOI: 10.1089/act.2009.15505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Jack Challem
- Tucson, Arizona, a personal nutrition coach, is the author of 20 books on nutrition and health, including The Food–Mood Solution: All Natural Ways to Banish Anxiety, Depression, Anger, Stress, Overeating, and Alcohol and Drug Problems—and Feel Good Again and Stop Prediabetes Now: The Ultimate Plan to Lose Weight and Prevent Diabetes (both published in Hoboken, NJ: John Wiley & Sons, in 2007)
| |
Collapse
|
46
|
Matrix Metalloproteinase-9 (MMP9)-A Mediating Enzyme in Cardiovascular Disease, Cancer, and Neuropsychiatric Disorders. Cardiovasc Psychiatry Neurol 2009; 2009:904836. [PMID: 20037727 PMCID: PMC2796208 DOI: 10.1155/2009/904836] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 06/30/2009] [Indexed: 01/29/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP9) has been implicated in numerous somatic illnesses, including cardiovascular disorders and cancer. Recently, MMP9 has been shown to be increasingly important in several aspects of central nervous system activity. Furthermore, a pathogenic role for this enzyme has been suggested in such neuropsychiatric disorders as schizophrenia, bipolar illness, and multiple sclerosis. In this paper, the results of biochemical and molecular-genetic studies on MMP9 that have been performed in these pathological conditions will be summarized. Furthermore, I hypothesize that the MMP9 gene, as shown by functional −1562 C/T polymorphism studies, may be mediating the relationship of neuropsychiatric illnesses (schizophrenia, bipolar mood disorder, multiple sclerosis) that are comorbid with cardiovascular disease and cancer.
Collapse
|