1
|
Zhang W, Wang W, Zhou Y, Wang J. A comparative study of blood and hippocampal D-serine change patterns in drug-naïve patients and animal models of depression. Psychiatry Res 2025; 348:116453. [PMID: 40138763 DOI: 10.1016/j.psychres.2025.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
The dysfunction of the N-methyl-d-aspartate receptor (NMDAR) has been implicated in depression, and D‑serine, an endogenous co-agonist of NMDAR, plays a critical role in its function. However, the pattern and relationship of alterations in central and peripheral D‑serine concentrations in depression remain unclear. In this study, we conducted two parallel cross-sectional studies to investigate D‑serine alterations in depression. In the clinical study, we recruited drug-naïve patients with major depressive disorder (MDD) and age and sex-matched healthy controls to assess peripheral D‑serine levels in serum. In the preclinical study, a chronic social defeat stress (CSDS) mouse model of depression was used to measure both peripheral and hippocampal D‑serine levels, given the hippocampus's key role in depression. Our results revealed significantly higher levels of D‑serine and the D‑serine/L‑serine ratio in the serum of MDD patients compared to controls, while L‑serine levels showed no significant differences. Similarly, in the CSDS mouse model, serum D‑serine levels were also increased. However, hippocampal D‑serine and L‑serine levels were decreased in depressed mice compared to controls, with no significant correlation observed between blood and hippocampal D‑serine levels. These findings suggest a potential pattern of D‑serine concentrations between peripheral blood and the hippocampus in depression. However, the clinical implications of contrasting changes in D‑serine in the peripheral and central systems, as well as the underlying mechanisms, require further investigation.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China; Affiliated Cixi Hospital, Wenzhou Medical University, PR China
| | - Weiwen Wang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China
| | - Yongjie Zhou
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, Guangzhou, PR China
| | - Jiesi Wang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
2
|
Aziz A, Costa CFFA, Zhao E, Radford-Smith D, Probert F, Anthony DC, Burnet PWJ. Repeated administration of L-alanine to mice reduces behavioural despair and increases hippocampal mammalian target of rapamycin signalling: Analysis of gender and metabolic effects. J Psychopharmacol 2025:2698811251332838. [PMID: 40242990 DOI: 10.1177/02698811251332838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
BACKGROUND The amino acid L-alanine, has been shown to be elevated in biofluids during major depression but its relevance remains unexplored. AIM We have investigated the effects of repeated L-alanine administration on emotional behaviours and central gene expression in mice. METHODS Mice received a daily, 2-week intraperitoneal injection of either saline or L-alanine at 100 or 200 mg/kg and were exposed to the open field, light-dark box and forced swim test. The expression of L-alanine transporters (asc-1, ASCT2), glycine receptor subunits (GlyRs), NMDA receptor subunits (GluNs) mRNAs were measured, together with western blots of the signalling protein mammalian target of rapamycin (mTOR). Since L-alanine modulates glucose homeostasis, peripheral and central metabolomes were evaluated with 1H-NMR. RESULTS L-alanine administration at 100 mg/kg, but not at 200 mg/kg, to both male and female mice increased latency to float and reduced floating time in the forced swim test, but had no effect on anxious behaviour in the open field and light-dark box tests. There was a significant reduction in mRNAs encoding asc-1 and ASCT2 and GluN2B in the hippocampus of mice following 100 mg/kg L-alanine only. On western blots, hippocampal GluN2B immunoreactivity was reduced, but mTOR signalling was increased in the 100 mg/kg L-alanine group. 1H-NMR revealed gender-specific changes in the forebrain, plasma and liver metabolomes only at 200 mg/kg of L-alanine. CONCLUSIONS Our data suggest that L-alanine may have antidepressant-like effect that may involve the modulation of glutamate neurotransmission independently of metabolism. In major depression, therefore, elevated L-alanine may be a homeostatic response to pathophysiological processes, though this will require further investigation.
Collapse
Affiliation(s)
- Abdullah Aziz
- Department of Psychiatry, University of Oxford, Oxford, UK
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Carolina Fernandes Ferreira Alves Costa
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Nephrology and Infectious Diseases R&D Group, INEB - Institute of Biomedical Engineering, i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Erying Zhao
- Psychological Science and Health Management Centre, Harbin Medical University, Harbin, China
| | | | - Fay Probert
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
3
|
Ostrakhovitch EA, Ono K, Yamasaki TR. Metabolomics in Parkinson's Disease and Correlation with Disease State. Metabolites 2025; 15:208. [PMID: 40137172 PMCID: PMC11944848 DOI: 10.3390/metabo15030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Changes in the level of metabolites, small molecules that are intermediates produced by metabolism or catabolism, are associated with developing diseases. Metabolite signatures in body fluids such as plasma, cerebrospinal fluid, urine, and saliva are associated with Parkinson's disease. Here, we discuss alteration of metabolites in the TCA cycle, pentose phosphate pathway, kynurenic network, and redox system. We also summarize the efforts of many research groups to differentiate between metabolite profiles that characterize PD motor progression and dyskinesia, gait and balance, and non-motor symptoms such as depression and cognitive decline. Understanding how changes in metabolites lead to progression in PD may allow for the identification of individuals at the earliest stage of the disease and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Elena A. Ostrakhovitch
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
- Lexington VA Medical Center, Department of Neurology, Lexington, KY 40502, USA
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan;
| | - Tritia R. Yamasaki
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
- Lexington VA Medical Center, Department of Neurology, Lexington, KY 40502, USA
| |
Collapse
|
4
|
Zhong J, Li H, Cao K, Zhou L, An L, Zhao J, Bai S, Shi Y, Liu Z, Liang Q, Zhang R, Deng D. Glutamate-mediated antidepressant effects of Jieyu I formula via modulation of PFC CaMKII-LHb CaMKII/GABA circuitry in lipopolysaccharide-induced depression model. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119414. [PMID: 39870335 DOI: 10.1016/j.jep.2025.119414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jieyu I Formula (JY-I) is an improved version of the classic formula "Sini San" documented in the books Shanghan Lun, which is known for regulating the liver and treating depression. However, the disturbance of neuronal signal transmission in the neural circuit of the brain is closely related to the occurrence of depression, yet its neural mechanism is still unclear. AIM OF THE STUDY This study aimed to observe the antidepressant effect of JY-I on depressed mice induced by lipopolysaccharide and its underlying central nervous system mechanisms, focusing on the prefrontal cortex (PFC) to lateral habenular nucleus (LHb) neural circuit in the depressed mice model. MATERIALS AND METHODS JY-I comprised herbs include Bupleurum chinense, Fructus Aurantii, Paeonia lactiflora, Lotus Seed Heart, Schisandra chinensis, and Hypericum perforatum, which are prepared in a ratio of 2:2:2:2:1:1. The mouse model of depression was induced by lipopolysaccharide. The antidepressant efficacy of JY-I was observed by behavioral tests. Observation of the PFC/LHb neuron activity in mice using in-vivo electrophysiological combined with optogenetic technology. Subsequently, the activity of the LHb neuron was observed using immunofluorescence staining analysis and Western blot. Inject Rabies virus into the LHb brain region and observe the projection of the PFC from upstream brain regions received by the LHb. Using chemogenetic techniques to activate/inhibit the PFC-LHb neural circuit and investigate the effect of JY-I on depression-like behaviors. RESULTS Depression-like behaviors in mice can be induced by intraperitoneal administration of lipopolysaccharide, the behavior changes were reversed with the administration of the JY-I. The combination of optogenetics and electrophysiological recording result indicates that JY-I activates glutamate (Glu) neurons in the PFC, thus maintaining an optimal excitatory/inhibitory (E/I) balance and ameliorating depression-like behaviors. Notably, the PFC, a crucial brain area for emotion regulation, exerts its antidepressant effect on downstream LHb region through the activation of Glu neurons. CONCLUSIONS JY-I can significantly improve lipopolysaccharide-induced depression-like behaviors. JY-I exerts antidepressant effects by activating the PFC Glu neurons projecting to the LHb, revealing a promising therapeutic target for depression.
Collapse
Affiliation(s)
- Jialong Zhong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Huan Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Kerun Cao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liuchang Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Lin An
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Jinlan Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Shasha Bai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Qi Liang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen, 518000, China.
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China.
| | - Di Deng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China.
| |
Collapse
|
5
|
Pu J, Liu Y, Wu H, Liu C, Chen Y, Tang W, Yu Y, Gui S, Zhong X, Wang D, Chen X, Chen Y, Chen X, Qiao R, Jiang Y, Zhang H, Ren Y, Fan L, Wang H, Xie P. Characterizing metabolomic and proteomic changes in depression: a systematic analysis. Mol Psychiatry 2025:10.1038/s41380-025-02919-z. [PMID: 39955468 DOI: 10.1038/s41380-025-02919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/21/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Despite the widespread use of metabolomics and proteomics to explore the molecular landscape of depression, there is a lack of consensus regarding dysregulated molecules with replicable evidence. Thus, this study aimed to identify robust metabolomic and proteomic features in depression by integrating evidence from large-scale studies. In this study, a knowledge base-mining approach was adopted to compile a list of dysregulated molecules derived from metabolomic and proteomic studies. A vote-counting approach was performed to identify consistently altered molecules in the blood and urine samples of patients with depression. A total of 2398 molecular entries were selected, comprising 857 unique metabolites and 468 unique proteins from 143 metabolomic and 23 proteomic studies in depression. The results of vote-counting analyses revealed that 11 metabolites in blood and 5 metabolites in urine exhibited consistent disturbances across studies. Circulating levels of glutamic acid and phosphatidylcholine (32:0) were elevated in depressive patients, whereas the levels of tryptophan, kynurenic acid, kynurenine, acetylcarnitine, serotonin, creatinine, inosine, phenylalanine, and valine were lower. Urinary levels of isobutyric acid, alanine, and nicotinic acid were higher, whereas the levels of N-methylnicotinamide and tyrosine were lower. Moreover, analysis of the proteomic dataset identified only one circulating protein, ceruloplasmin, that was consistently dysregulated. Convergence comparison prioritized tryptophan as the top-ranked circulating metabolite, followed by kynurenic acid, acetylcarnitine, creatinine, serotonin, and valine. Collectively, robust evidence of metabolomic changes was observed in patients with depression, pointing to a role as potential biomarkers. Further investigation of consensus proteomic features for depression is necessitated.
Collapse
Affiliation(s)
- Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hailin Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chi Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Yu
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaopeng Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renjie Qiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanyi Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanping Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Jinfeng Laboratory, Chongqing, China.
- Chongqing Institute for Brain and Intelligence, Chongqing, China.
| |
Collapse
|
6
|
Li M, She K, Zhu P, Li Z, Liu J, Luo F, Ye Y. Chronic Pain and Comorbid Emotional Disorders: Neural Circuitry and Neuroimmunity Pathways. Int J Mol Sci 2025; 26:436. [PMID: 39859152 PMCID: PMC11764837 DOI: 10.3390/ijms26020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Chronic pain is a multidimensional experience that not only involves persistent nociception but is also frequently accompanied by significant emotional disorders, such as anxiety and depression, which complicate its management and amplify its impact. This review provides an in-depth exploration of the neurobiological mechanisms underlying the comorbidity of chronic pain and emotional disturbances. Key areas of focus include the dysregulation of major neurotransmitter systems (serotonin, gamma-aminobutyric acid, and glutamate) and the resulting functional remodeling of critical neural circuits implicated in pain processing, emotional regulation, and reward. Given the contribution of neuroimmune mechanisms to pain chronicity and mood disorders, we further conducted an in-depth investigation into the role of neuroimmune factors, including resident immune cells, infiltrating immune cells, and the release of inflammatory mediators. This review further discusses current therapeutic strategies, encompassing pharmacological interventions, neuromodulation, and integrative approaches, and emphasizes the necessity of targeted treatments that address both pain and emotional components. Finally, it identifies gaps in the current understanding and outlines future research directions aimed at elucidating the complex interplay between chronic pain and emotional disorders, thereby laying the foundation for more effective and holistic treatment paradigms.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.L.); (K.S.); (P.Z.); (Z.L.); (J.L.)
| | - Yingze Ye
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.L.); (K.S.); (P.Z.); (Z.L.); (J.L.)
| |
Collapse
|
7
|
Gruenbaum BF, Merchant KS, Zlotnik A, Boyko M. Gut Microbiome Modulation of Glutamate Dynamics: Implications for Brain Health and Neurotoxicity. Nutrients 2024; 16:4405. [PMID: 39771027 PMCID: PMC11677762 DOI: 10.3390/nu16244405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/07/2024] [Accepted: 12/20/2024] [Indexed: 01/05/2025] Open
Abstract
The gut-brain axis plays an integral role in maintaining overall health, with growing evidence suggesting its impact on the development of various neuropsychiatric disorders, including depression. This review explores the complex relationship between gut microbiota and glutamate (Glu) regulation, highlighting its effect on brain health, particularly in the context of depression following certain neurological insults. We discuss how microbial populations can either facilitate or limit Glu uptake, influencing its bioavailability and predisposing to neuroinflammation and neurotoxicity. Additionally, we examine the role of gut metabolites and their influence on the blood-brain barrier and neurotransmitter systems involved in mood regulation. The therapeutic potential of microbiome-targeted interventions, such as fecal microbiota transplantation, is also highlighted. While much research has explored the role of Glu in major depressive disorders and other neurological diseases, the contribution of gut microbiota in post-neurological depression remains underexplored. Future research should focus on explaining the mechanisms linking the gut microbiota to neuropsychiatric outcomes, particularly in conditions such as post-stroke depression, post-traumatic brain-injury depression, and epilepsy-associated depression. Systematic reviews and human clinical studies are needed to establish causal relationships and assess the efficacy of microbiome-targeted therapies in improving the neuropsychiatric sequalae after neurological insults.
Collapse
Affiliation(s)
- Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Kiran S. Merchant
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (A.Z.); (M.B.)
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (A.Z.); (M.B.)
| |
Collapse
|
8
|
Tang Y, Wang C, Li Q, Liu G, Song D, Quan Z, Yan Y, Qing H. Neural Network Excitation/Inhibition: A Key to Empathy and Empathy Impairment. Neuroscientist 2024; 30:644-665. [PMID: 38347700 DOI: 10.1177/10738584231223119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Empathy is an ability to fully understand and feel the mental states of others. We emphasize that empathy is elicited by the transmission of pain, fear, and sensory information. In clinical studies, impaired empathy has been observed in most psychiatric conditions. However, the precise impairment mechanism of the network systems on the pathogenesis of empathy impairment in psychiatric disorders is still unclear. Multiple lines of evidence suggest that disturbances in the excitatory/inhibitory balance in neurologic disorders are key to empathetic impairment in psychiatric disorders. Therefore, we here describe the roles played by the anterior cingulate cortex- and medial prefrontal cortex-dependent neural circuits and their impairments in psychiatric disorders, including anxiety, depression, and autism. In addition, we review recent studies on the role of microglia in neural network excitation/inhibition imbalance, which contributes to a better understanding of the neural network excitation/inhibition imbalance and may open up innovative psychiatric therapies.
Collapse
Affiliation(s)
- Yuanhong Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Qingquan Li
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yan Yan
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| |
Collapse
|
9
|
Shoji H, Maeda Y, Miyakawa T. Chronic corticosterone exposure causes anxiety- and depression-related behaviors with altered gut microbial and brain metabolomic profiles in adult male C57BL/6J mice. Mol Brain 2024; 17:79. [PMID: 39511657 PMCID: PMC11545877 DOI: 10.1186/s13041-024-01146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
Chronic exposure to glucocorticoids in response to long-term stress is thought to be a risk factor for major depression. Depression is associated with disturbances in the gut microbiota composition and peripheral and central energy metabolism. However, the relationship between chronic glucocorticoid exposure, the gut microbiota, and brain metabolism remains largely unknown. In this study, we first investigated the effects of chronic corticosterone exposure on various domains of behavior in adult male C57BL/6J mice treated with the glucocorticoid corticosterone to evaluate them as an animal model of depression. We then examined the gut microbial composition and brain and plasma metabolome in corticosterone-treated mice. Chronic corticosterone treatment resulted in reduced locomotor activity, increased anxiety-like and depression-related behaviors, decreased rotarod latency, reduced acoustic startle response, decreased social behavior, working memory deficits, impaired contextual fear memory, and enhanced cued fear memory. Chronic corticosterone treatment also altered the composition of gut microbiota, which has been reported to be associated with depression, such as increased abundance of Bifidobacterium, Turicibacter, and Corynebacterium and decreased abundance of Barnesiella. Metabolomic data revealed that long-term exposure to corticosterone led to a decrease in brain neurotransmitter metabolites, such as serotonin, 5-hydroxyindoleacetic acid, acetylcholine, and gamma-aminobutyric acid, as well as changes in betaine and methionine metabolism, as indicated by decreased levels of adenosine, dimethylglycine, choline, and methionine in the brain. These results indicate that mice treated with corticosterone have good face and construct validity as an animal model for studying anxiety and depression with altered gut microbial composition and brain metabolism, offering new insights into the neurobiological basis of depression arising from gut-brain axis dysfunction caused by prolonged exposure to excessive glucocorticoids.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Yasuhiro Maeda
- Open Facility Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
10
|
Yang C, Chen J, Tang J, Li L, Zhang Y, Li Y, Ruan C, Wang C. Study on the Mechanism of Dictyophora duplicata Polysaccharide in Reducing Depression-like Behavior in Mice. Nutrients 2024; 16:3785. [PMID: 39519618 PMCID: PMC11547661 DOI: 10.3390/nu16213785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Depression is a prevalent worldwide mental health disorder that inflicts significant harm to individuals and society. Dictyophora duplicata is an edible fungus that contains a variety of nutrients, including polysaccharides. This study aims to investigate the monosaccharide composition and molecular weight of the Dictyophora duplicata polysaccharide (DDP-B1), followed by an exploration of its antidepressant effects in chronic unpredictable mild stress (CUMS) mice. METHODS Dictyophora duplicata was purified using a DEAE-52 column and an S-400 column to obtain DDP-B1. The monosaccharide composition and molecular weight of DDP-B1 were investigated via high-performance gel permeation chromatograph. Six-week-old C57BL/6 male mice were utilized for the CUMS modeling to evaluate the antidepressant efficacy of DDP-B1. Fluoxetine served as the positive control group. The depressive-like behaviors and brain pathology of mice were evaluated. Immunofluorescence (IF) staining, metabolomics analysis, and western blot were employed to further investigate the underlying mechanisms. RESULTS DDP-B1 significantly alleviated the depression-like behavior of CUMS mice and increased the expression of SYN and PSD-95 in the mice's brains, which was further validated by western blot. Metabolomics analysis indicated a reduction in serum glutamate in CUMS mice following DDP-B1 treatment. Moreover, DDP-B1 treatment led to an increase in levels of GABAAR, BDNF, p-TrkB and p-p70S6K. CONCLUSIONS DDP-B1 regulated abnormalities in the glutamatergic system, subsequently activated the BDNF-TrkB-mTOR pathway and mitigated the pathological manifestations of CUMS mice. This study validated the potential of DDP-B1 as an antidepressant medication and established a theoretical foundation for the development of fungi with similar properties.
Collapse
Affiliation(s)
- Chenxi Yang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
| | - Jiaqi Chen
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
| | - Jie Tang
- Sichuan Institute of Edible Fungi, Chendu 610066, China;
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
| | - Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Changchun Ruan
- Jilin Province Technology Research Center of Biological Control Engineering, Jilin Province International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
| |
Collapse
|
11
|
Suthar H, Tanghal RB, Chatzi L, Goodrich JA, Morello-Frosch R, Aung M. Metabolic Perturbations Associated with both PFAS Exposure and Perinatal/Antenatal Depression in Pregnant Individuals: A Meet-in-the-Middle Scoping Review. Curr Environ Health Rep 2024; 11:404-415. [PMID: 38898328 PMCID: PMC11324697 DOI: 10.1007/s40572-024-00451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE OF REVIEW Depression during the perinatal or antenatal period affects at least 1 in 10 women worldwide, with long term health implications for the mother and child. Concurrently, there is increasing evidence associating maternal exposure to per- and poly-fluoroalkyl substances (PFAS) to adverse pregnancy outcomes. We reviewed the body of evidence examining both the associations between PFAS exposure and perturbations in the maternal metabolome, and the associations between the maternal metabolome and perinatal/antenatal depression. Through this, we sought to explore existing evidence of the perinatal metabolome as a potential mediation pathway linking PFAS exposure and perinatal/antenatal depression. RECENT FINDINGS There are few studies examining the metabolomics of PFAS exposure-specifically in pregnant women-and the metabolomics of perinatal/antenatal depression, let alone studies examining both simultaneously. Of the studies reviewed (N = 11), the majority were cross sectional, based outside of the US, and conducted on largely homogenous populations. Our review identified 23 metabolic pathways in the perinatal metabolome common to both PFAS exposure and perinatal/antenatal depression. Future studies may consider findings from our review to conduct literature-derived hypothesis testing focusing on fatty acid metabolism, alanine metabolism, glutamate metabolism, and tyrosine metabolism when exploring the biochemical mechanisms conferring the risk of perinatal/antenatal depression due to PFAS exposure. We recommend that researchers also utilize heterogenous populations, longitudinal study designs, and mediation approaches to elucidate key pathways linking PFAS exposures to perinatal/antenatal depression.
Collapse
Affiliation(s)
- Himal Suthar
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, SSB 225R, 1845 N Soto St., Los Angeles, CA, 90032, USA
| | - Roselyn B Tanghal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, SSB 225R, 1845 N Soto St., Los Angeles, CA, 90032, USA
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, SSB 225R, 1845 N Soto St., Los Angeles, CA, 90032, USA
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, SSB 225R, 1845 N Soto St., Los Angeles, CA, 90032, USA
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - Max Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, SSB 225R, 1845 N Soto St., Los Angeles, CA, 90032, USA.
| |
Collapse
|
12
|
Chen J, Qiu Y, Guo J, Shan L, Chen G, Wang F, Wang W. Determining of 18 amino acids in plasma of pregnant women with sleep disorders by UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1241:124163. [PMID: 38815356 DOI: 10.1016/j.jchromb.2024.124163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
Many pregnant women experience sleep disorders, and amino acid levels could play a crucial role in affecting maternal sleep. To explore this potential relationship, an accurate and effective UHPLC-MS/MS method has been developed to monitor 18 amino acids in the plasma samples of pregnant women. This method aims to assess how plasma amino acid levels might be linked to sleep disorders during pregnancy. Plasma samples were precipitated with acetonitrile containing 0.2% formic acid. We used 5% seralbumin as the surrogate matrix to establish quantitative curves for amino acid determination in human plasma. The method was validated in both the surrogate matrix and human plasma. The optimized UHPLC-MS/MS method was validated, showing that that the analytes had comparable recovery and negligible matrix effects in both 5% seralbumin and human plasma. The linearity, lower limit of quantification, precision, accuracy, and stability all met the acceptance criteria. The validated method was successfully applied to determination of the plasma levels of 18 amino acids in pregnant women with or without sleep disorders, indicating that alanine, lysine, tryptophan, glutamic acid, and phenylalanine levels had significant changes which may be related to sleep disorders during early pregnancy. An accurate, reliable, and efficient UHPLC-MS/MS method was successfully developed and support to find the specific amino acids as potential biomarkers for sleep disorders in pregnant women.
Collapse
Affiliation(s)
- Jindong Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yifan Qiu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jing Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Ligang Shan
- Department of Anesthesiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Guangxue Chen
- Department of Gynaecology and Obstetrics, Beijing Jishuitan Hospital, Beijing102208, China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China.
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
13
|
Wang J, Fan L, Teng T, Wu H, Liu X, Yin B, Li X, Jiang Y, Zhao J, Wu Q, Guo Y, Zhou X, Xie P. Adolescent male rats show altered gut microbiota composition associated with depressive-like behavior after chronic unpredictable mild stress: Differences from adult rats. J Psychiatr Res 2024; 173:183-191. [PMID: 38547740 DOI: 10.1016/j.jpsychires.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
Accumulating evidence reveals the metabolism and neurotransmitter systems are different in major depressive disorder (MDD) between adolescent and adult patients; however, much is still unknown from the gut microbiome perspective. To minimize confounding factors such as geographical location, ethnicity, diet, and drugs, we investigated the gut microbial differences between adolescent and adult male Sprague-Dawley rats. We exposed the adolescent rats to chronic unpredictable mild stress (CUMS) for 3 weeks and assessed their behavior using the sucrose preference test (SPT), open field test (OFT), and forced swimming test (FST). We collected and sequenced fecal samples after the behavioral tests and compared them with our previous data on adult rats. Both adolescent and adult CUMS rats exhibited reduced sucrose preference in SPT, reduced total distance in OFT, and increased immobility time in FST. Moreover, compared to their respective controls, the adolescent CUMS rats had distinct amplicon sequence variants (ASVs) mainly in the Muribaculaceae family, Bacteroidetes phylum, while the adult CUMS rats had those in the Lachnospiraceae family, Firmicutes phylum. In the adolescent group, the Muribaculaceae negatively correlated with FST and positively correlated with SPT and OFT. In the adult group, the different genera in the Lachnospiraceae showed opposite correlations with FST. Furthermore, the adolescent CUMS rats showed disrupted microbial functions, such as "Xenobiotics biodegradation and metabolism" and "Immune system", while the adult CUMS rats did not. These results confirmed the gut microbiota differences between adolescent and adult rats after CUMS modeling and provided new insight into the age-related influence on depression models.
Collapse
Affiliation(s)
- Jie Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Fan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Wu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianting Zhao
- Department of Neurology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical College, Xinxiang, China
| | - Qingyuan Wu
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Fakih N, Fakhoury M. Alzheimer Disease-Link With Major Depressive Disorder and Efficacy of Antidepressants in Modifying its Trajectory. J Psychiatr Pract 2024; 30:181-191. [PMID: 38819242 DOI: 10.1097/pra.0000000000000779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Alzheimer disease (AD) is a devastating neurodegenerative disorder that affects millions of individuals worldwide, with no effective cure. The main symptoms include learning and memory loss, and the inability to carry out the simplest tasks, significantly affecting patients' quality of life. Over the past few years, tremendous progress has been made in research demonstrating a link between AD and major depressive disorder (MDD). Evidence suggests that MDD is commonly associated with AD and that it can serve as a precipitating factor for this disease. Antidepressants such as selective serotonin reuptake inhibitors, which are the first line of treatment for MDD, have shown great promise in the treatment of depression in AD, although their effectiveness remains controversial. The goal of this review is to summarize current knowledge regarding the association between AD, MDD, and antidepressant treatment. It first provides an overview of the interaction between AD and MDD at the level of genes, brain regions, neurotransmitter systems, and neuroinflammatory markers. The review then presents current evidence regarding the effectiveness of various antidepressants for AD-related pathophysiology and then finally discusses current limitations, challenges, and future directions.
Collapse
Affiliation(s)
- Nour Fakih
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | | |
Collapse
|
15
|
Zinellu A, Tommasi S, Sedda S, Mangoni AA. Arginine metabolomics in mood disorders. Heliyon 2024; 10:e27292. [PMID: 38515671 PMCID: PMC10955251 DOI: 10.1016/j.heliyon.2024.e27292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Alterations of nitric oxide (NO) homeostasis have been described in mood disorders. However, the analytical challenges associated with the direct measurement of NO have prompted the search for alternative biomarkers of NO synthesis. We investigated the published evidence of the association between these alternative biomarkers and mood disorders (depressive disorder or bipolar disorder). Electronic databases were searched from inception to the June 30, 2023. In 20 studies, there was a trend towards significantly higher asymmetric dimethylarginine (ADMA) in mood disorders vs. controls (p = 0.072), and non-significant differences in arginine (p = 0.29), citrulline (p = 0.35), symmetric dimethylarginine (SDMA; p = 0.23), and ornithine (p = 0.42). In subgroup analyses, the SMD for ADMA was significant in bipolar disorder (p < 0.001) and European studies (p = 0.02), the SMDs for SDMA (p = 0.001) and citrulline (p = 0.038) in European studies, and the SMD for ornithine in bipolar disorder (p = 0.007), Asian (p = 0.001) and American studies (p = 0.005), and patients treated with antidepressants (p = 0.029). The abnormal concentrations of ADMA, SDMA, citrulline, and ornithine in subgroups of mood disorders, particularly bipolar disorder, warrant further research to unravel their pathophysiological role and identify novel treatments in this group (The protocol was registered in PROSPERO: CRD42023445962).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sara Tommasi
- Department of Clinical Pharmacology, Southern Adelaide Local Health Network, Australia
- Discipline of Clinical Pharmacology, Flinders University, Adelaide, Australia
| | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A. Mangoni
- Department of Clinical Pharmacology, Southern Adelaide Local Health Network, Australia
- Discipline of Clinical Pharmacology, Flinders University, Adelaide, Australia
| |
Collapse
|
16
|
Tamman AJF, Abdallah CG. Ultrahigh-Field Magnetic Resonance Spectroscopy Findings Do Not Support Previous Brain Metabolite Findings in Major Depressive Disorder. Biol Psychiatry 2024; 95:385-386. [PMID: 38325915 DOI: 10.1016/j.biopsych.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024]
Affiliation(s)
- Amanda J F Tamman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Chadi G Abdallah
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas; Yale School of Medicine, New Haven, Connecticut; Michael E. DeBakey VA Medical Center, Houston, Texas; U.S. Department of Veterans Affairs, National Center for PTSD - Clinical Neurosciences Division, West Haven, Connecticut; Core for Advanced Magnetic Resonance Imaging, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
17
|
Huang R, Gong M, Tan X, Shen J, Wu Y, Cai X, Wang S, Min L, Gong L, Liang W. Effects of Chaihu Shugan San on Brain Functional Network Connectivity in the Hippocampus of a Perimenopausal Depression Rat Model. Mol Neurobiol 2024; 61:1655-1672. [PMID: 37751044 DOI: 10.1007/s12035-023-03615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
In this study, we used Chaihu Shugan San (CSS), a traditional Chinese herbal formula, as a probe to investigate the involvement of brain functional network connectivity and hippocampus energy metabolism in perimenopausal depression. A network pharmacology approach was performed to discover the underlying mechanisms of CSS in improving perimenopausal depression, which were verified in perimenopausal depression rat models. Network pharmacology analysis indicated that complex mechanisms of energy metabolism, neurotransmitter metabolism, inflammation, and hormone metabolic processes were closely associated with the anti-depressive effects of CSS. Thus, the serum concentrations of estradiol (E2), glutamate (Glu), and 5-hydroxytryptamine (5-HT) were detected by ELISA. The brain functional network connectivity between the hippocampus and adjacent brain regions was evaluated using resting-state functional magnetic resonance imaging (fMRI). A targeted metabolomic analysis of the hippocampal tricarboxylic acid cycle was also performed to measure the changes in hippocampal energy metabolism using liquid chromatography-tandem mass spectrometry (LC-MS/MS). CSS treatment significantly improved the behavioral performance, decreased the serum Glu levels, and increased the serum 5-HT levels of PMS + CUMS rats. The brain functional connectivity between the hippocampus and other brain regions was significantly changed by PMS + CUMS processes but improved by CSS treatment. Moreover, among the metabolites in the hippocampal tricarboxylic acid cycle, the concentrations of citrate and the upregulation of isocitrate and downregulation of guanosine triphosphate (GTP) in PMS + CUMS rats could be significantly improved by CSS treatment. A brain functional network connectivity mechanism may be involved in perimenopausal depression, wherein the hippocampal tricarboxylic acid cycle plays a vital role.
Collapse
Affiliation(s)
- Ruiting Huang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, People's Republic of China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, People's Republic of China
| | - Min Gong
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China
| | - Xue Tan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China
| | - Jianying Shen
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - You Wu
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Xiaoshi Cai
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Suying Wang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Li Min
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Lin Gong
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Wenna Liang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China.
| |
Collapse
|
18
|
Krzyściak W, Bystrowska B, Karcz P, Chrzan R, Bryll A, Turek A, Mazur P, Śmierciak N, Szwajca M, Donicz P, Furman K, Pilato F, Kozicz T, Popiela T, Pilecki M. Association of Blood Metabolomics Biomarkers with Brain Metabolites and Patient-Reported Outcomes as a New Approach in Individualized Diagnosis of Schizophrenia. Int J Mol Sci 2024; 25:2294. [PMID: 38396971 PMCID: PMC10888632 DOI: 10.3390/ijms25042294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Given its polygenic nature, there is a need for a personalized approach to schizophrenia. The aim of the study was to select laboratory biomarkers from blood, brain imaging, and clinical assessment, with an emphasis on patients' self-report questionnaires. Metabolomics studies of serum samples from 51 patients and 45 healthy volunteers, based on the liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS), led to the identification of 3 biochemical indicators (cortisol, glutamate, lactate) of schizophrenia. These metabolites were sequentially correlated with laboratory tests results, imaging results, and clinical assessment outcomes, including patient self-report outcomes. The hierarchical cluster analysis on the principal components (HCPC) was performed to identify the most homogeneous clinical groups. Significant correlations were noted between blood lactates and 11 clinical and 10 neuroimaging parameters. The increase in lactate and cortisol were significantly associated with a decrease in immunological parameters, especially with the level of reactive lymphocytes. The strongest correlations with the level of blood lactate and cortisol were demonstrated by brain glutamate, N-acetylaspartate and the concentrations of glutamate and glutamine, creatine and phosphocreatine in the prefrontal cortex. Metabolomics studies and the search for associations with brain parameters and self-reported outcomes may provide new diagnostic evidence to specific schizophrenia phenotypes.
Collapse
Affiliation(s)
- Wirginia Krzyściak
- Department of Medical Diagnostics, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Beata Bystrowska
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Paulina Karcz
- Department of Electroradiology, Jagiellonian University Medical College, Faculty of Health Sciences, 31-126 Krakow, Poland;
| | - Robert Chrzan
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Amira Bryll
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Aleksander Turek
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Paulina Mazur
- Department of Medical Diagnostics, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Natalia Śmierciak
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Marta Szwajca
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Paulina Donicz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Katarzyna Furman
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Fabio Pilato
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Tamas Kozicz
- Department of Clinical Genomics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Tadeusz Popiela
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Maciej Pilecki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| |
Collapse
|
19
|
Wojtas A. The possible place for psychedelics in pharmacotherapy of mental disorders. Pharmacol Rep 2023; 75:1313-1325. [PMID: 37934320 PMCID: PMC10661751 DOI: 10.1007/s43440-023-00550-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Since its emergence in the 1960s, the serotonergic theory of depression bore fruit in the discovery of a plethora of antidepressant drugs affecting the lives of millions of patients. While crucial in the history of drug development, recent studies undermine the effectiveness of currently used antidepressant drugs in comparison to placebo, emphasizing the long time it takes to initiate the therapeutic response and numerous adverse effects. Thus, the scope of contemporary pharmacological research shifts from drugs affecting the serotonin system to rapid-acting antidepressant drugs. The prototypical representative of the aforementioned class is ketamine, an NMDA receptor antagonist capable of alleviating the symptoms of depression shortly after the drug administration. This discovery led to a paradigm shift, focusing on amino-acidic neurotransmitters and growth factors. Alas, the drug is not perfect, as its therapeutic effect diminishes circa 2 weeks after administration. Furthermore, it is not devoid of some severe side effects. However, there seems to be another, more efficient, and safer way to target the glutamatergic system. Hallucinogenic agonists of the 5-HT2A receptor, commonly known as psychedelics, are nowadays being reconsidered in clinical practice, shedding their infamous 1970s stigma. More and more clinical studies prove their clinical efficacy and rapid onset after a single administration while bearing fewer side effects. This review focuses on the current state-of-the-art literature and most recent clinical studies concerning the use of psychedelic drugs in the treatment of mental disorders. Specifically, the antidepressant potential of LSD, psilocybin, DMT, and 5-MeO-DMT will be discussed, together with a brief summary of other possible applications.
Collapse
Affiliation(s)
- Adam Wojtas
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
20
|
Song JG, Mun D, Lee B, Song M, Oh S, Kim JM, Yang J, Kim Y, Kim HW. Protective Effects of Lacticaseibacillus rhamnosus IDCC3201 on Motor Functions and Anxiety Levels in a Chronic Stress Mouse Model. Food Sci Anim Resour 2023; 43:1044-1054. [PMID: 37969325 PMCID: PMC10636227 DOI: 10.5851/kosfa.2023.e54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 11/17/2023] Open
Abstract
Growing evidence indicates a crucial role of the gut microbiota in physiological functions. Gut-brain axis imbalance has also been associated with neuropsychiatric and neurodegenerative disorders. Studies have suggested that probiotics regulate the stress response and alleviate mood-related symptoms. In this study, we investigated the effects of the probiotic Lacticaseibacillus rhamnosus IDCC3201 (L3201) on the behavioral response and fecal metabolite content in an unpredictable chronic mild stress (UCMS) mouse model. Our study shows that chronic stress in mice for three weeks resulted in significant changes in behavior, including lower locomotor activity, higher levels of anxiety, and depressive-like symptoms, compared to the control group. Metabolomic analysis demonstrated that disrupted fecal metabolites associated with aminoacyl-tRNA biosynthesis and valine, leucine, and isoleucine biosynthesis by UCMS were restored with the administration of L3201. Oral administration of the L3201 ameliorated the observed changes and improved the behavioral alterations along with fecal metabolites, suggesting that probiotics play a neuroprotective role.
Collapse
Affiliation(s)
- Jae Gwang Song
- College of Life Sciences, Sejong
University, Seoul 05006, Korea
| | - Daye Mun
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Bomi Lee
- College of Life Sciences, Sejong
University, Seoul 05006, Korea
| | - Minho Song
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Sangnam Oh
- Department of Functional Food and
Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Jun-Mo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | | | - Younghoon Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Hyung Wook Kim
- College of Life Sciences, Sejong
University, Seoul 05006, Korea
| |
Collapse
|
21
|
Kositsyn YM, de Abreu MS, Kolesnikova TO, Lagunin AA, Poroikov VV, Harutyunyan HS, Yenkoyan KB, Kalueff AV. Towards Novel Potential Molecular Targets for Antidepressant and Antipsychotic Pharmacotherapies. Int J Mol Sci 2023; 24:ijms24119482. [PMID: 37298431 DOI: 10.3390/ijms24119482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Depression and schizophrenia are two highly prevalent and severely debilitating neuropsychiatric disorders. Both conventional antidepressant and antipsychotic pharmacotherapies are often inefficient clinically, causing multiple side effects and serious patient compliance problems. Collectively, this calls for the development of novel drug targets for treating depressed and schizophrenic patients. Here, we discuss recent translational advances, research tools and approaches, aiming to facilitate innovative drug discovery in this field. Providing a comprehensive overview of current antidepressants and antipsychotic drugs, we also outline potential novel molecular targets for treating depression and schizophrenia. We also critically evaluate multiple translational challenges and summarize various open questions, in order to foster further integrative cross-discipline research into antidepressant and antipsychotic drug development.
Collapse
Affiliation(s)
- Yuriy M Kositsyn
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory 354340, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia
| | - Murilo S de Abreu
- Neuroscience Group, Moscow Institute of Physics and Technology, Moscow 115184, Russia
| | - Tatiana O Kolesnikova
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory 354340, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Vivarium, Ural Federal University, Yekaterinburg 620049, Russia
| | - Alexey A Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vladimir V Poroikov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Hasmik S Harutyunyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
- Department of Biochemistry, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
- Department of Biochemistry, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
| | - Allan V Kalueff
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory 354340, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia
- Neuroscience Group, Moscow Institute of Physics and Technology, Moscow 115184, Russia
- Vivarium, Ural Federal University, Yekaterinburg 620049, Russia
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
| |
Collapse
|
22
|
Zhang ZW, Han P, Fu J, Yu H, Xu H, Hu JC, Lu JY, Yang XY, Zhang HJ, Bu MM, Jiang JD, Wang Y. Gut microbiota-based metabolites of Xiaoyao Pills (a typical Traditional Chinese medicine) ameliorate depression by inhibiting fatty acid amide hydrolase levels in brain. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116555. [PMID: 37100263 DOI: 10.1016/j.jep.2023.116555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicines (TCMs) are often prepared in oral dosage forms, making TCMs interact with gut microbiota after oral administration, which could affect the therapeutic effect of TCM. Xiaoyao Pills (XYPs) are a commonly used TCM in China to treat depression. The biological underpinnings, however, are still in its infancy due to its complex chemical composition. AIM OF THE STUDY The study aims to explore XYPs' underlying antidepressant mechanism from both in vivo and in vitro. MATERIALS AND METHODS XYPs were composed of 8 herbs, including the root of Bupleurum chinense DC., the root of Angelica sinensis (Oliv.) Diels, the root of Paeonia lactiflora Pall., the sclerotia of Poria cocos (Schw.) Wolf, the rhizome of Glycyrrhiza uralensis Fisch., the leaves of Mentha haplocalyx Briq., the rhizome of Atractylis lancea var. chinensis (Bunge) Kitam., and the rhizome of Zingiber officinale Roscoe, in a ratio of 5:5:5:5:4:1:5:5. The chronic unpredictable mild stress (CUMS) rat models were established. After that, the sucrose preference test (SPT) was carried out to evaluate if the rats were depressed. After 28 days of treatment, the forced swimming test and SPT were carried out to evaluate the antidepressant efficacy of XYPs. The feces, brain and plasma were taken out for 16SrRNA gene sequencing analysis, untargeted metabolomics and gut microbiota transformation analysis. RESULTS The results revealed multiple pathways affected by XYPs. Among them, the hydrolysis of fatty acids amide in brain decreased most significant via XYPs treatment. Moreover, the XYPs' metabolites which mainly derived from gut microbiota (benzoic acid, liquiritigenin, glycyrrhetinic acid and saikogenin D) were found in plasma and brain of CUMS rats and could inhibit the levels of FAAH in brain, which contributed to XYPs' antidepressant effect. CONCLUSIONS The potential antidepressant mechanism of XYPs by untargeted metabolomics combined with gut microbiota-transformation analysis was revealed, which further support the theory of gut-brain axis and provide valuable evidence of the drug discovery.
Collapse
Affiliation(s)
- Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jin-Yue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Xin-Yu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hao-Jian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Meng-Meng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
23
|
Plausible Role of Stem Cell Types for Treating and Understanding the Pathophysiology of Depression. Pharmaceutics 2023; 15:pharmaceutics15030814. [PMID: 36986674 PMCID: PMC10058940 DOI: 10.3390/pharmaceutics15030814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Major Depressive Disorder (MDD), colloquially known as depression, is a debilitating condition affecting an estimated 3.8% of the population globally, of which 5.0% are adults and 5.7% are above the age of 60. MDD is differentiated from common mood changes and short-lived emotional responses due to subtle alterations in gray and white matter, including the frontal lobe, hippocampus, temporal lobe, thalamus, striatum, and amygdala. It can be detrimental to a person’s overall health if it occurs with moderate or severe intensity. It can render a person suffering terribly to perform inadequately in their personal, professional, and social lives. Depression, at its peak, can lead to suicidal thoughts and ideation. Antidepressants manage clinical depression and function by modulating the serotonin, norepinephrine, and dopamine neurotransmitter levels in the brain. Patients with MDD positively respond to antidepressants, but 10–30% do not recuperate or have a partial response accompanied by poor life quality, suicidal ideation, self-injurious behavior, and an increased relapse rate. Recent research shows that mesenchymal stem cells and iPSCs may be responsible for lowering depression by producing more neurons with increased cortical connections. This narrative review discusses the plausible functions of various stem cell types in treating and understanding depression pathophysiology.
Collapse
|
24
|
Lv S, Yao K, Zhang Y, Zhu S. NMDA receptors as therapeutic targets for depression treatment: Evidence from clinical to basic research. Neuropharmacology 2023; 225:109378. [PMID: 36539011 DOI: 10.1016/j.neuropharm.2022.109378] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Ketamine, functioning as a channel blocker of the excitatory glutamate-gated N-methyl-d-aspartate (NMDA) receptors, displays compelling fast-acting and sustained antidepressant effects for treatment-resistant depression. Over the past decades, clinical and preclinical studies have implied that the pathology of depression is associated with dysfunction of glutamatergic transmission. In particular, the discovery of antidepressant agents modulating NMDA receptor function has prompted breakthroughs for depression treatment compared with conventional antidepressants targeting the monoaminergic system. In this review, we first summarized the signalling pathway of the ketamine-mediated antidepressant effects, based on the glutamate hypothesis of depression. Second, we reviewed the hypotheses of the synaptic mechanism and network of ketamine antidepressant effects within different brain areas and distinct subcellular localizations, including NMDA receptor antagonism on GABAergic interneurons, extrasynaptic and synaptic NMDA receptor-mediated antagonism, and ketamine blocking bursting activities in the lateral habenula. Third, we reviewed the different roles of NMDA receptor subunits in ketamine-mediated cognitive and psychiatric behaviours in genetically-manipulated rodent models. Finally, we summarized the structural basis of NMDA receptor channel blockers and discussed NMDA receptor modulators that have been reported to exert potential antidepressant effects in animal models or in clinical trials. Integrating the cutting-edge technologies of cryo-EM and artificial intelligence-based drug design (AIDD), we expect that the next generation of first-in-class rapid antidepressants targeting NMDA receptors would be an emerging direction for depression therapeutics. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Shiyun Lv
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kejie Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Youyi Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Tang XH, Diao YG, Ren ZY, Zang YY, Zhang GF, Wang XM, Duan GF, Shen JC, Hashimoto K, Zhou ZQ, Yang JJ. A role of GABA A receptor α1 subunit in the hippocampus for rapid-acting antidepressant-like effects of ketamine. Neuropharmacology 2023; 225:109383. [PMID: 36565851 DOI: 10.1016/j.neuropharm.2022.109383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Ketamine can produce rapid-acting antidepressant effects in treatment-resistant patients with depression. Although alterations in glutamatergic and GABAergic neurotransmission in the brain play a role in depression, the precise molecular mechanisms in these neurotransmission underlying ketamine's antidepressant actions remain largely unknown. Mice exposed to FSS (forced swimming stress) showed depression-like behavior and decreased levels of GABA (γ-aminobutyric acid), but not glutamate, in the hippocampus. Ketamine increased GABA levels and decreased glutamate levels in the hippocampus of mice exposed to FSS. There was a correlation between GABA levels and depression-like behavior. Furthermore, ketamine increased the levels of enzymes and transporters on the GABAergic neurons (SAT1, GAD67, GAD65, VGAT and GAT1) and astrocytes (EAAT2 and GAT3), without affecting the levels of enzymes and transporters (SAT2, VGluT1 and GABAAR γ2) on glutamatergic neurons. Moreover, ketamine caused a decreased expression of GABAAR α1 subunit, which was specifically expressed on GABAergic neurons and astrocytes, an increased GABA synthesis and metabolism in GABAergic neurons, a plasticity change in astrocytes, and an increase in ATP (adenosine triphosphate) contents. Finally, GABAAR antagonist bicuculline or ATP exerted a rapid antidepressant-like effect whereas pretreatment with GABAAR agonist muscimol blocked the antidepressant-like effects of ketamine. In addition, pharmacological activation and inhibition of GABAAR modulated the synthesis and metabolism of GABA, and the plasticity of astrocytes in the hippocampus. The present data suggest that ketamine could increase GABA synthesis and astrocyte plasticity through downregulation of GABAAR α1, increases in GABA, and conversion of GABA into ATP, resulting in a rapid-acting antidepressant-like action. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Xiao-Hui Tang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Gang Diao
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhuo-Yu Ren
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan-Yu Zang
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Guang-Fen Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xing-Ming Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Gui-Fang Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jin-Chun Shen
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Zhi-Qiang Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
26
|
Kojouri M, Pinto R, Mustafa R, Huang J, Gao H, Elliott P, Tzoulaki I, Dehghan A. Metabolome-wide association study on physical activity. Sci Rep 2023; 13:2374. [PMID: 36759570 PMCID: PMC9911764 DOI: 10.1038/s41598-022-26377-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/14/2022] [Indexed: 02/11/2023] Open
Abstract
The underlying mechanisms linking physical activity to better health are not fully understood. Here we examined the associations between physical activity and small circulatory molecules, the metabolome, to highlight relevant biological pathways. We examined plasma metabolites associated with self-reported physical activity among 2217 participants from the Airwave Health Monitoring Study. Metabolic profiling was conducted using the mass spectrometry-based Metabolon platform (LC/GC-MS), measuring 828 known metabolites. We replicated our findings in an independent subset of the study (n = 2971) using untargeted LC-MS. Mendelian randomisation was carried out to investigate potential causal associations between physical activity, body mass index, and metabolites. Higher vigorous physical activity was associated (P < 0.05/828 = 6.03 × 10-5) with circulatory levels of 28 metabolites adjusted for age, sex and body mass index. The association was inverse for glutamate and diacylglycerol lipids, and direct for 3-4-hydroxyphenyllactate, phenyl lactate (PLA), alpha-hydroxy isovalerate, tiglylcarnitine, alpha-hydroxyisocaproate, 2-hydroxy-3-methylvalerate, isobutyrylcarnitine, imidazole lactate, methionine sulfone, indole lactate, plasmalogen lipids, pristanate and fumarate. In the replication panel, we found 23 untargeted LC-MS features annotated to the identified metabolites, for which we found nominal associations with the same direction of effect for three features annotated to 1-(1-enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1), 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2), 1-stearoyl-2-dihomo-linolenoyl-GPC (18:0/20:3n3 or 6). Using Mendelian randomisation, we showed a potential causal relationship between body mass index and three identified metabolites. Circulatory metabolites are associated with physical activity and may play a role in mediating its health effects.
Collapse
Affiliation(s)
- Maedeh Kojouri
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
| | - Rui Pinto
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, London, W2 1PG, UK
| | - Rima Mustafa
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, London, W2 1PG, UK
| | - Jian Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
| | - He Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, London, W2 1PG, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, London, W2 1PG, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, W2 1PG, UK.
- UK Dementia Research Institute, Imperial College London, London, W2 1PG, UK.
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
27
|
Scotton E, Casa PL, de Abreu FP, de Avila E Silva S, Wilges RLB, Rossetto MV, Géa LP, Rosa AR, Colombo R. Differentially regulated targets in the fast-acting antidepressant effect of (R)-ketamine: A systems biology approach. Pharmacol Biochem Behav 2023; 223:173523. [PMID: 36731751 DOI: 10.1016/j.pbb.2023.173523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023]
Abstract
Approximately two-thirds of patients with major depressive disorder (MDD) fail to respond to conventional antidepressants, suggesting that additional mechanisms are involved in the MDD pathophysiology. In this scenario, the glutamatergic system represents a promising therapeutic target for treatment-resistant depression. To our knowledge, this is the first study using semantic approach with systems biology to identify potential targets involved in the fast-acting antidepressant effects of ketamine and its enantiomers as well as identifying specific targets of (R)-ketamine. We performed a systematic review, followed by a semantic analysis and functional gene enrichment to identify the main biological processes involved in the therapeutic effects of these agents. Protein-protein interaction networks were constructed, and the genes exclusively regulated by (R)-ketamine were explored. We found that the regulation of α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) receptor and N-methyl-d-aspartate (NMDA) receptor subunits-Postsynaptic Protein 95 (PSD-95), Brain Derived Neurotrophic Factor (BDNF), and Tyrosine Receptor Kinase B (TrkB) are shared by the three-antidepressant agents, reinforcing the central role of the glutamatergic system and neurogenesis on its therapeutic effects. Differential regulation of Transforming Growth Factor Beta 1 (TGF-β1) receptors-Mitogen-Activated Protein Kinases (MAPK's), Receptor Activator of Nuclear Factor-Kappa Beta Ligand (RANKL), and Serotonin Transporter (SERT) seems to be particularly involved in (R)-ketamine antidepressant effects. Our data helps further studies investigating the relationship between these targets and the mechanisms of (R)-ketamine and searching for other therapeutic compounds that share the regulation of these specific biomolecules. Ultimately, this study could contribute to improve the fast management of depressive-like symptoms with less detrimental side effects than ketamine and (S)-ketamine.
Collapse
Affiliation(s)
- Ellen Scotton
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Pharmacology Department and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Pedro Lenz Casa
- Institute of Biotechnology, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.
| | | | | | - Renata Luiza Boff Wilges
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Luiza Paul Géa
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Adriane R Rosa
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Pharmacology Department and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafael Colombo
- Institute of Biotechnology, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.
| |
Collapse
|
28
|
Ho CSH, Tay GWN, Wee HN, Ching J. The Utility of Amino Acid Metabolites in the Diagnosis of Major Depressive Disorder and Correlations with Depression Severity. Int J Mol Sci 2023; 24:ijms24032231. [PMID: 36768551 PMCID: PMC9916471 DOI: 10.3390/ijms24032231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent and disabling condition with a high disease burden. There are currently no validated biomarkers for the diagnosis and treatment of MDD. This study assessed serum amino acid metabolite changes between MDD patients and healthy controls (HCs) and their association with disease severity and diagnostic utility. In total, 70 MDD patients and 70 HCs matched in age, gender, and ethnicity were recruited for the study. For amino acid profiling, serum samples were analysed and quantified by liquid chromatography-mass spectrometry (LC-MS). Receiver-operating characteristic (ROC) curves were used to classify putative candidate biomarkers. MDD patients had significantly higher serum levels of glutamic acid, aspartic acid and glycine but lower levels of 3-Hydroxykynurenine; glutamic acid and phenylalanine levels also correlated with depression severity. Combining these four metabolites allowed for accurate discrimination of MDD patients and HCs, with 65.7% of depressed patients and 62.9% of HCs correctly classified. Glutamic acid, aspartic acid, glycine and 3-Hydroxykynurenine may serve as potential diagnostic biomarkers, whereas glutamic acid and phenylalanine may be markers for depression severity. To elucidate the association between these indicators and clinical features, it is necessary to conduct additional studies with larger sample sizes that involve a spectrum of depressive symptomatology.
Collapse
Affiliation(s)
- Cyrus Su Hui Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Correspondence:
| | - Gabrielle Wann Nii Tay
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Hai Ning Wee
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Jianhong Ching
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
29
|
Lages YV, Balthazar L, Krahe TE, Landeira-Fernandez J. Pharmacological and Physiological Correlates of the Bidirectional Fear Phenotype of the Carioca Rats and Other Bidirectionally Selected Lines. Curr Neuropharmacol 2023; 21:1864-1883. [PMID: 36237160 PMCID: PMC10514533 DOI: 10.2174/1570159x20666221012121534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
The Carioca rat lines originated from the selective bidirectional breeding of mates displaying extreme defense responses to contextual conditioned fear. After three generations, two distinct populations could be distinguished: the Carioca High- and Low-conditioned Freezing rats, CHF, and CLF, respectively. Later studies identified strong anxiety-like behaviors in the CHF line, while indications of impulsivity and hyperactivity were prominent in the CLF animals. The present review details the physiological and pharmacological-related findings obtained from these lines. The results discussed here point towards a dysfunctional fear circuitry in CHF rats, including alterations in key brain structures and the serotoninergic system. Moreover, data from these animals highlight important alterations in the stress-processing machinery and its associated systems, such as energy metabolism and antioxidative defense. Finally, evidence of an alteration in the dopaminergic pathway in CLF rats is also debated. Thus, accumulating data gathered over the years, place the Carioca lines as significant animal models for the study of psychiatric disorders, especially fear-related ones like anxiety.
Collapse
Affiliation(s)
- Yury V. Lages
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura Balthazar
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiological Sciences, Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas. E. Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J. Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Abstract
Depression is one of the most poorly understood diseases due to its elusive pathogenesis. There is an urgency to identify molecular and biological mechanisms underlying depression and the gut microbiome is a novel area of interest. Here we investigate the relation of fecal microbiome diversity and composition with depressive symptoms in 1,054 participants from the Rotterdam Study cohort and validate these findings in the Amsterdam HELIUS cohort in 1,539 subjects. We identify association of thirteen microbial taxa, including genera Eggerthella, Subdoligranulum, Coprococcus, Sellimonas, Lachnoclostridium, Hungatella, Ruminococcaceae (UCG002, UCG003 and UCG005), LachnospiraceaeUCG001, Eubacterium ventriosum and Ruminococcusgauvreauiigroup, and family Ruminococcaceae with depressive symptoms. These bacteria are known to be involved in the synthesis of glutamate, butyrate, serotonin and gamma amino butyric acid (GABA), which are key neurotransmitters for depression. Our study suggests that the gut microbiome composition may play a key role in depression.
Collapse
|
31
|
From antioxidant to neuromodulator: The role of ascorbate in the management of major depression disorder. Biochem Pharmacol 2022; 206:115300. [DOI: 10.1016/j.bcp.2022.115300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022]
|
32
|
Are mGluR2/3 Inhibitors Potential Compounds for Novel Antidepressants? Cell Mol Neurobiol 2022:10.1007/s10571-022-01310-8. [DOI: 10.1007/s10571-022-01310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
AbstractDepression is the most common mental illness characterized by anhedonia, avolition and loss of appetite and motivation. The majority of conventional antidepressants are monoaminergic system selective inhibitors, yet the efficacies are not sufficient. Up to 30% of depressed patients are resistant to treatment with available antidepressants, underscoring the urgent need for development of novel therapeutics to meet clinical needs. Recent years, compounds acting on the glutamate system have attracted wide attention because of their strong, rapid and sustained antidepressant effects. Among them, selective inhibitors of metabotropic glutamate receptors 2 and 3 (mGluR2/3) have shown robust antidepressant benefits with fewer side-effects in both preclinical and clinical studies. Thus, we here attempt to summarize the antidepressant effects and underlying mechanisms of these inhibitors revealed in recent years as well as analyze the potential value of mGluR2/3 selective inhibitors in the treatment of depression.
Collapse
|
33
|
Li S, Yang Z, Yao M, Shen Y, Zhu H, Jiang Y, Ji Y, Yin J. Exploration for biomarkers of postpartum depression based on metabolomics: A systematic review. J Affect Disord 2022; 317:298-306. [PMID: 36031003 DOI: 10.1016/j.jad.2022.08.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Postpartum depression (PPD) is the most frequent psychiatric complication during the postnatal period and its mechanisms are not fully understood. Metabolomics, can quantitatively measure metabolites in a high-throughput method, and thus uncover the underlying pathophysiology of disease. OBJECTIVES In this study, we reviewed metabolomics studies conducted on PPD, aiming to understand the changes of metabolites in PPD patients and analyze the potential application of metabolomics in PPD prediction and diagnosis. METHODS Relevant articles were searched in PubMed, Google scholar, and Web of Science databases from January 2011 to July 2022. The metabolites involved were systematically examined and compared. MetaboAnalyst online software was applied to analyze metabolic pathways. RESULTS A total of 14 papers were included in this study. There were several highly reported metabolites, such as kynurenine, kynurenic acid, and eicosapentaenoic acid. Dysregulation of metabolic pathways involved amino acids metabolism, fatty acids metabolism, and steroids metabolism. LIMITATIONS The included studies are relatively inadequate, and further work is needed. CONCLUSIONS This study summarized significant metabolic alterations that provided clues for the prediction, diagnosis, and pathogenesis of PPD.
Collapse
Affiliation(s)
- Shiming Li
- The affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Zhuoqiao Yang
- Department Of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| | - Mengxin Yao
- Department Of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haohao Zhu
- The affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Ying Jiang
- The affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Yingying Ji
- The affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, Wuxi, Jiangsu 214151, China.
| | - Jieyun Yin
- Department Of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
34
|
Zhang CC, Zhu LX, Shi HJ, Zhu LJ. The Role of Vesicle Release and Synaptic Transmission in Depression. Neuroscience 2022; 505:171-185. [DOI: 10.1016/j.neuroscience.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
|
35
|
Maratha S, Sharma V, Walia V. Possible involvement of NO-cGMP signaling in the antidepressant like Effect of Amantadine in mice. Metab Brain Dis 2022; 37:2067-2075. [PMID: 35666396 DOI: 10.1007/s11011-022-01006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
In the present study, antidepressant like effect of amantadine was studied in mice using tail suspension test (TST) and forced swim test (FST). Further the effect of amantadine treatment on the brain nitrite, glutamate and serotonin levels was also determined. Amantadine (AMT) (50, 100 and 150 mg/kg, i.p.) was administered to the mice and after 30 min of administration the mice were subjected to TST and FST. It was observed that the administration of AMT (100 and 150 mg/kg, i.p.) decreased the immobility period of mice in TST and FST significantly as compared to control. The findings from the whole brain neurochemical assay suggested that the AMT (100 and 150 mg/kg, i.p.) treatment decreased the brain nitrite and glutamate level but increased the brain serotonin significantly as compared to control. Further the influence of NO-cGMP signaling in the antidepressant like effect of amantadine was also determined. It was observed that the NO donor (i.e. L-Arginine (50 mg/kg, i.p.)) potentiated the effect elicited by AMT (50 mg/kg, i.p.) in FST and decreased the brain serotonin level of AMT (50 mg/kg, i.p.) treated mice. Further the pretreatment of cGMP modulator (i.e. Sildenafil (1 mg/kg, i.p.)) potentiated the behavioral effect elicited by AMT (50 mg/kg, i.p.) in TST and FST and decreased the brain nitrite and glutamate level of AMT (50 mg/kg, i.p.) treated mice. In conclusion, amantadine exerted antidepressant like effect in mice and NO-cGMP signaling influences the antidepressant like effect of amantadine in mice.
Collapse
Affiliation(s)
- Sushma Maratha
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Vijay Sharma
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, India.
| |
Collapse
|
36
|
Katsube M, Watanabe H, Suzuki K, Ishimoto T, Tatebayashi Y, Kato Y, Murayama N. Food-derived antioxidant ergothioneine improves sleep difficulties in humans. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
37
|
Characterization of monoaminergic neurochemicals in cortex and striatum of mouse brain. J Pharm Biomed Anal 2022; 217:114844. [DOI: 10.1016/j.jpba.2022.114844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
|
38
|
Cai T, Zheng SP, Shi X, Yuan LZ, Hu H, Zhou B, Xiao SL, Wang F. Therapeutic effect of fecal microbiota transplantation on chronic unpredictable mild stress-induced depression. Front Cell Infect Microbiol 2022; 12:900652. [PMID: 35967846 PMCID: PMC9366333 DOI: 10.3389/fcimb.2022.900652] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022] Open
Abstract
Background and objective Depression is a complex neuropsychiatric disease with extensive morbidity. Its pathogenesis remains unclear, and it is associated with extremely low rates of cure and complete remission. It is vital to study the pathogenesis of depression to develop effective treatments. This study aimed to explore the therapeutic effects and mechanisms of fecal microbiota transplantation (FMT) for the treatment of depression in rats. Methods Thirty Sprague-Dawley (SD) rats were randomly divided into three groups: control, chronic unpredictable mild stress (CUMS) to model depression, and CUMS+FMT. For the CUMS and CUMS+FMT groups, after CUMS intervention (four weeks), the rats were given normal saline or FMT (once/week for three weeks), respectively. Behavior, colonic motility, 16S rDNA amplicon sequencing, and untargeted metabolomics on fecal samples were compared between the three rat groups. The following markers were analyzed: 5-hydroxytryptamine (5-HT), gamma-aminobutyric acid (GABA), glutamate (Glu), and brain-derived neurotrophic factor (BDNF) levels in the hippocampus; glucagon-like peptide 1 (GLP-1), lipopolysaccharide (LPS), and interleukin (IL)-6 levels in the serum; and GLP-1, GLP-1 receptor (GLP-1R), and serotonin 4 receptor (5-HT4R) levels in colonic tissues. Results FMT improved symptoms of depression and colonic motility in rats exposed to CUMS. The expression levels of 5-HT, GABA, BDNF, and other biochemical indices, significantly differed among the three groups. Meanwhile, the intestinal microbiota in the CUMS+FMT group was more similar to that of the control group with a total of 13 different fecal metabolites. Conclusion FMT exerted antidepressant effects on CUMS-induced depression in rats, and the mechanism involved various neurotransmitters, inflammatory factors, neurotrophic factors, and glucagon-like peptides.
Collapse
Affiliation(s)
- Ting Cai
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shao-peng Zheng
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Shi
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling-zhi Yuan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hai Hu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bai Zhou
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shi-lang Xiao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fen Wang,
| |
Collapse
|
39
|
de Bie TH, Balvers MGJ, de Vos RCH, Witkamp RF, Jongsma MA. The influence of a tomato food matrix on the bioavailability and plasma kinetics of oral gamma-aminobutyric acid (GABA) and its precursor glutamate in healthy men. Food Funct 2022; 13:8399-8410. [PMID: 35852458 DOI: 10.1039/d2fo01358d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gamma-aminobutyric acid (GABA) and its precursor glutamate play signaling roles in a range of tissues. Both function as neurotransmitters in the central nervous system, but they also modulate pancreatic and immune functioning, for example. Besides endogenous production, both compounds are found in food products, reaching relatively high levels in tomatoes. Recent studies in rodents suggest beneficial effects of oral GABA on glucose homeostasis and blood pressure. However, the bioavailability from food remains unknown. We studied the bioavailability of GABA and glutamate from tomatoes relative to a solution in water. After a fasting blood sample was taken, eleven healthy men randomly received 1 liter of 4 different drinks in a cross-over design with a one-week interval. The drinks were a solution of 888 mg L-1 GABA, a solution of 3673 mg L-1 glutamate, pureed fresh tomatoes and plain water as the control. Following intake, 18 blood samples were taken at intervals for 24 hours. Plasma GABA and glutamate concentrations were determined by ultra-pressure liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Fasting plasma GABA and glutamate concentrations were found to be 16.71 (SD 2.18) ng mL-1 and 4626 (SD 1666) ng mL-1, respectively. Fasting GABA levels were constant (5.8 CV%) between individuals, while fasting glutamate levels varied considerably (23.5 CV%). GABA from pureed tomatoes showed similar bioavailability to that of a solution in water. For glutamate, the absorption from pureed tomatoes occurred more slowly as seen from a longer tmax (0.98 ± 0.14 h vs. 0.41 ± 0.04 h, P = 0.003) and lower Cmax (7815 ± 627 ng mL-1vs. 16 420 ± 2778 ng mL-1, P = 0.006). These data suggest that GABA is bioavailable from tomatoes, and that food products containing GABA could potentially induce health effects similar to those claimed for GABA supplements. The results merit further studies on the bioavailability of GABA from other food products and the health effects of GABA-rich diets. The clinical trial registry number is NCT04086108 (https://clinicaltrials.gov/ct2/show/NCT04303468).
Collapse
Affiliation(s)
- Tessa H de Bie
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands. .,Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Ric C H de Vos
- Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Maarten A Jongsma
- Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
40
|
Tartt AN, Mariani MB, Hen R, Mann JJ, Boldrini M. Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications. Mol Psychiatry 2022; 27:2689-2699. [PMID: 35354926 PMCID: PMC9167750 DOI: 10.1038/s41380-022-01520-y] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) was previously hypothesized to be a disease of monoamine deficiency in which low levels of monoamines in the synaptic cleft were believed to underlie depressive symptoms. More recently, however, there has been a paradigm shift toward a neuroplasticity hypothesis of depression in which downstream effects of antidepressants, such as increased neurogenesis, contribute to improvements in cognition and mood. This review takes a top-down approach to assess how changes in behavior and hippocampal-dependent circuits may be attributed to abnormalities at the molecular, structural, and synaptic level. We conclude with a discussion of how antidepressant treatments share a common effect in modulating neuroplasticity and consider outstanding questions and future perspectives.
Collapse
Affiliation(s)
| | | | - Rene Hen
- Departments of Psychiatry, Columbia University, New York, NY, USA
- Neuroscience, Columbia University, New York, NY, USA
- Pharmacology, Columbia University, New York, NY, USA
- Integrative Neuroscience, NYS Psychiatric Institute, New York, NY, USA
| | - J John Mann
- Departments of Psychiatry, Columbia University, New York, NY, USA
- Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA
| | - Maura Boldrini
- Departments of Psychiatry, Columbia University, New York, NY, USA.
- Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
41
|
Glutamate Efflux across the Blood–Brain Barrier: New Perspectives on the Relationship between Depression and the Glutamatergic System. Metabolites 2022; 12:metabo12050459. [PMID: 35629963 PMCID: PMC9143347 DOI: 10.3390/metabo12050459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Depression is a significant cause of disability and affects millions worldwide; however, antidepressant therapies often fail or are inadequate. Current medications for treating major depressive disorder can take weeks or months to reach efficacy, have troubling side effects, and are limited in their long-term capabilities. Recent studies have identified a new set of glutamate-based approaches, such as blood glutamate scavengers, which have the potential to provide alternatives to traditional antidepressants. In this review, we hypothesize as to the involvement of the glutamate system in the development of depression. We identify the mechanisms underlying glutamate dysregulation, offering new perspectives on the therapeutic modalities of depression with a focus on its relationship to blood–brain barrier (BBB) permeability. Ultimately, we conclude that in diseases with impaired BBB permeability, such as depression following stroke or traumatic brain injury, or in neurogenerative diseases, the glutamate system should be considered as a pathway to treatment. We propose that drugs such as blood glutamate scavengers should be further studied for treatment of these conditions.
Collapse
|
42
|
Plasma Amino Acid Concentrations in Patients with Alcohol and/or Cocaine Use Disorders and Their Association with Psychiatric Comorbidity and Sex. Biomedicines 2022; 10:biomedicines10051137. [PMID: 35625874 PMCID: PMC9138967 DOI: 10.3390/biomedicines10051137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Co-occurrence of mental and substance use disorders (SUD) is prevalent, but complicates their clinical courses, and specific biomarkers are required. Amino acids are altered in primary mental disorders; however, little is known about SUD and psychiatric comorbidity. Because most psychiatric disorders and biomarkers show sex differences, we investigated amino acids in men and women with alcohol and/or cocaine use disorders (AUD and/or CUD) and psychiatric comorbidity. (2) Methods: A cross-sectional study was conducted in 295 participants, who were divided into four groups (AUD, n = 60; CUD, n = 41; AUD + CUD, n = 64; and control, n = 130). Participants were clinically assessed, and plasma amino acid concentrations were analyzed in relation to sex, diagnosis of SUD and psychiatric comorbidity (3) Results: In the total sample, there were sex differences, and women showed lower Iso, Leu, Gln and Glu than men. While patients with CUD and AUD + CUD had higher Glu, Gly, Orn and Ser than controls, patients with AUD showed no differences. In SUD, patients with psychiatric comorbidity had lower Orn and higher Ala than non-comorbid patients in the AUD group. (4) Conclusions: There was a dysregulation of plasma amino acids in abstinent patients with SUD. However, our results suggest the importance of considering the clinical characteristics and sex in the validity of amino acids as potential biomarkers for SUD.
Collapse
|
43
|
Badamasi IM, Maulidiani M, Lye MS, Ibrahim N, Shaari K, Stanslas J. A Preliminary Nuclear Magnetic Resonance Metabolomics Study Identifies Metabolites that Could Serve as Diagnostic Markers of Major Depressive Disorder. Curr Neuropharmacol 2022; 20:965-982. [PMID: 34126904 PMCID: PMC9881106 DOI: 10.2174/1570159x19666210611095320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The evaluation of metabolites that are directly involved in the physiological process, few steps short of phenotypical manifestation, remains vital for unravelling the biological moieties involved in the development of the (MDD) and in predicting its treatment outcome. METHODOLOGY Eight (8) urine and serum samples each obtained from consenting healthy controls (HC), twenty-five (25) urine and serum samples each from first episode treatment naïve MDD (TNMDD) patients, and twenty (22) urine and serum samples each s from treatment naïve MDD patients 2 weeks after SSRI treatment (TWMDD) were analysed for metabolites using proton nuclear magnetic resonance (1HNMR) spectroscopy. The evaluation of patients' samples was carried out using Partial Least Squares Discriminant Analysis (PLS-DA) and Orthogonal Partial Least Square- Discriminant Analysis (OPLSDA) models. RESULTS In the serum, decreased levels of lactate, glucose, glutamine, creatinine, acetate, valine, alanine, and fatty acid and an increased level of acetone and choline in TNMDD or TWMDD irrespective of whether an OPLSDA or PLSDA evaluation was used were identified. A test for statistical validations of these models was successful. CONCLUSION Only some changes in serum metabolite levels between HC and TNMDD identified in this study have potential values in the diagnosis of MDD. These changes included decreased levels of lactate, glutamine, creatinine, valine, alanine, and fatty acid, as well as an increased level of acetone and choline in TNMDD. The diagnostic value of these changes in metabolites was maintained in samples from TWMDD patients, thus reaffirming the diagnostic nature of these metabolites for MDD.
Collapse
Affiliation(s)
- Ibrahim Mohammed Badamasi
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia;
| | - Maulidiani Maulidiani
- Laboratory of Natural Products Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia; ,Present address of this author: Faculty of Science and Marine Environment, Universiti Malaysia Terengganu
| | - Munn Sann Lye
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia;
| | | | - Khozirah Shaari
- Laboratory of Natural Products Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia;
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; ,Address correspondence to this author at the Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; E-mails: ,
| |
Collapse
|
44
|
Peplinska-Miaskowska J, Wichowicz H, Smoleński R, Jablonska P, Kaska L. The comparison of nucleotide metabolites and amino acids patterns in patients with eating disorders, with and without symptoms of depression. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:333-341. [PMID: 35076345 DOI: 10.1080/15257770.2022.2028827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Purines, pyrimidines, and amino acid level have gained attention recently as potential determinants of mental disorders. However, eating disorders patients (ED) have not been yet appropriately studied, especially subjects with coexisting mood disorders. This paper examines the serum level of nucleotide catabolites and plasma amino acids in eating disorders with hyperphagia, with and without Major Depressive Disorder (MDD). Samples were taken from adult persons suffering from eating disorders (two forms: simple obesity and binge eating disorder) with MDD (n = 20) and without (n = 17). Serum nucleotides and plasma amino acids concentrations were analyzed with high-performance liquid chromatography-mass spectrometry. The nucleotides metabolite in MDD patients had a significantly (p < 0.05) lower uridine. Among MDD patients with ED significantly (p < 0.05) higher levels of asparagine, glutamine, proline, and arginine were found as compared to the control group. This study demonstrated differences in nucleotide metabolite and amino acid pattern in depression patients with eating disorders. This may be relevant to the mechanisms and may help identify biomarkers.
Collapse
Affiliation(s)
| | - Hubert Wichowicz
- Department of Psychiatry, Medical University of Gdansk, Gdansk, Poland.,Institute of Health Sciences, Pomeranian University of Slupsk, Poland
| | - Ryszard Smoleński
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Kaska
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
45
|
Zoladz PR, Del Valle CR, Goodman CS, Dodson JL, Smith IF, Elmouhawesse KM, Sparkman HR, Naylor MM, Hopson EP. Ketamine sex- and dose-dependently mitigates behavioral sequelae induced by a predator-based psychosocial stress model of post-traumatic stress disorder. Behav Brain Res 2022; 428:113895. [DOI: 10.1016/j.bbr.2022.113895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 12/28/2022]
|
46
|
Frank D, Gruenbaum BF, Shelef I, Zvenigorodsky V, Severynovska O, Gal R, Dubilet M, Zlotnik A, Kofman O, Boyko M. Blood Glutamate Scavenging With Pyruvate as a Novel Preventative and Therapeutic Approach for Depressive-Like Behavior Following Traumatic Brain Injury in a Rat Model. Front Neurosci 2022; 16:832478. [PMID: 35237125 PMCID: PMC8883046 DOI: 10.3389/fnins.2022.832478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Depression is a common and serious complication following traumatic brain injury (TBI). Both depression and TBI have independently been associated with pathologically elevated extracellular brain glutamate levels. In the setting of TBI, blood glutamate scavenging with pyruvate has been widely shown as an effective method to provide neuroprotection by reducing blood glutamate and subsequent brain glutamate levels. Here we evaluate pyruvate as a novel approach in the treatment and prevention of post-TBI depression-like behavior in a rat model. Rats were divided into five groups: (1) sham-operated control with pyruvate, (2) sham-operated control with placebo, (3) post-TBI with placebo, (4) post-TBI given preventative pyruvate, and (5) post-TBI treated with pyruvate. These groups had an equal number of females and males. Rats were assessed for depressive-like behavior, neurological status, and glutamate levels in the blood and brain. Post-TBI neurological deficits with concurrent elevations in glutamate levels were demonstrated, with peak glutamate levels 24 h after TBI. Following TBI, the administration of either prophylactic or therapeutic pyruvate led to reduced glutamate levels, improved neurologic recovery, and improved depressive-like behavior. Glutamate scavenging with pyruvate may be an effective prophylactic and therapeutic option for post-TBI depression by reducing associated elevations in brain glutamate levels.
Collapse
Affiliation(s)
- Dmitry Frank
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Ilan Shelef
- Department of Radiology, Soroka University Medical Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Vladislav Zvenigorodsky
- Department of Radiology, Soroka University Medical Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Olena Severynovska
- Department of Physiology, Faculty of Biology, Ecology and Medicine, Dnepropetrovsk State University, Dnepropetrovsk, Ukraine
| | - Ron Gal
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Michael Dubilet
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Ora Kofman
- Department of Psychology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- *Correspondence: Matthew Boyko,
| |
Collapse
|
47
|
Effect of Coriander Plants on Human Emotions, Brain Electrophysiology, and Salivary Secretion. BIOLOGY 2021; 10:biology10121283. [PMID: 34943198 PMCID: PMC8698652 DOI: 10.3390/biology10121283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary This research aims to investigate the effects of coriander plants on human emotions and physiological activities. The results showed coriander plants could significantly reduce the angry sub-scores, alpha amylase and amino acids (arginine, proline, histidine, and taurine) concentrations in saliva. Theta (4–8 Hz) band activity of the cerebral cortex was significantly enhanced. Moreover, taurine significantly positively correlated with anger and negatively correlated with vigor. All the results signified that coriander plant could influence the activity of brain electrophysiological and salivary secretion through its VOCs to improve people’s negative emotions. This study will provide a theoretical basis for the living coriander plants have some therapeutic effect on the human psychological state. Abstract Coriander is a popular herb with versatile applications. However, the current research about coriander medicinal values have been mainly focusing on its extracts while lacking in the relationship between living coriander plants and emotion. Therefore, this study aims to investigate the effects of coriander plants on human emotions and physiological activities. The results showed that the main Volatile organic compounds (VOCs) of coriander plants were 2-ethyl-1-hexanol, d-limonene, eucalyptol, benzyl alcohol, Isophorone, dimethyl glutarate, α-terpineol, styrene, methyl methacrylate, α-pinene. Coriander plants could significantly reduce the angry sub-scores, alpha amylase and amino acids (arginine, proline, histidine, and taurine) concentrations in saliva. Theta (4–8 Hz) band activity of the cerebral cortex was significantly enhanced. Moreover, taurine significantly positively correlated with anger and negatively correlated with vigor. All the results signified that coriander plant could influence the activity of brain electrophysiological and salivary secretion through its VOCs to improve people’s negative emotions.
Collapse
|
48
|
Kurkinen K, Kärkkäinen O, Lehto SM, Luoma I, Kraav SL, Nieminen AI, Kivimäki P, Therman S, Tolmunen T. One-carbon and energy metabolism in major depression compared to chronic depression in adolescent outpatients: A metabolomic pilot study. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021. [DOI: 10.1016/j.jadr.2021.100261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
49
|
Miki T, Eguchi M, Kochi T, Fukunaga A, Chen S, Nanri A, Kabe I, Mizoue T. Prospective study on the association between serum amino acid profiles and depressive symptoms among the Japanese working population. PLoS One 2021; 16:e0256337. [PMID: 34403453 PMCID: PMC8370628 DOI: 10.1371/journal.pone.0256337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Accumulating evidence suggests that amino acids, particularly tryptophan and glutamate, play an important role in the pathology of depression, but prospective epidemiologic data on this issue is scarce. We examined the association between circulating amino acids and the risk of depressive symptoms in a Japanese working population. Methods Participants were 841 workers who were free from depressive symptoms and provided blood at baseline and completed 3-yr follow-up survey. 30 varieties of amino acid concentrations in serum were measured using liquid chromatography/mass spectrometry. Depressive symptoms were defined using the Center for Epidemiologic Studies Depression Scale. Logistic regression was used to calculate the odds ratios of depressive symptoms according to serum amino acids with adjustment for lifestyle factors. Results A total of 151 (18.0%) workers were newly identified as having depressive symptoms at the follow-up. Baseline tryptophan and glutamate concentrations in serum were not appreciably associated with the risk of depressive symptoms. Risk of depressive symptoms tended to increase with increasing arginine concentrations; the multivariable-adjusted odds ratio for the highest versus lowest tertile of serum arginine was 1.65 (95% confidence interval: 0.96–2.83; P for trend = 0.07). No clear association was found for other amino acids. Conclusions Results of the present study do not support a significant role of circulating amino acids in the development of depressive symptoms among Japanese.
Collapse
Affiliation(s)
- Takako Miki
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
- * E-mail:
| | - Masafumi Eguchi
- Department of Health Administration, Furukawa Electric Corporation, Tokyo, Japan
| | - Takeshi Kochi
- Department of Health Administration, Furukawa Electric Corporation, Tokyo, Japan
| | - Ami Fukunaga
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Sanmei Chen
- Department of Global Health Nursing, Graduate School of Biomedical and Nursing Sciences, Hiroshima University, Hiroshima, Japan
| | - Akiko Nanri
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women’s University, Fukuoka, Japan
| | | | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
50
|
Hung CI, Lin G, Chiang MH, Chiu CY. Metabolomics-based discrimination of patients with remitted depression from healthy controls using 1H-NMR spectroscopy. Sci Rep 2021; 11:15608. [PMID: 34341439 PMCID: PMC8329159 DOI: 10.1038/s41598-021-95221-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
The aim of the study was to investigate differences in metabolic profiles between patients with major depressive disorder (MDD) with full remission (FR) and healthy controls (HCs). A total of 119 age-matched MDD patients with FR (n = 47) and HCs (n = 72) were enrolled and randomly split into training and testing sets. A 1H-nuclear magnetic resonance (NMR) spectroscopy-based metabolomics approach was used to identify differences in expressions of plasma metabolite biomarkers. Eight metabolites, including histidine, succinic acid, proline, acetic acid, creatine, glutamine, glycine, and pyruvic acid, were significantly differentially-expressed in the MDD patients with FR in comparison with the HCs. Metabolic pathway analysis revealed that pyruvate metabolism via the tricarboxylic acid cycle linked to amino acid metabolism was significantly associated with the MDD patients with FR. An algorithm based on these metabolites employing a linear support vector machine differentiated the MDD patients with FR from the HCs with a predictive accuracy, sensitivity, and specificity of nearly 0.85. A metabolomics-based approach could effectively differentiate MDD patients with FR from HCs. Metabolomic signatures might exist long-term in MDD patients, with metabolic impacts on physical health even in patients with FR.
Collapse
Affiliation(s)
- Ching-I Hung
- Department of Psychiatry, Chang-Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Gigin Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Medical Imaging and Intervention, Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
| | - Meng-Han Chiang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Medical Imaging and Intervention, Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
| | - Chih-Yung Chiu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC.
- Division of Pediatric Pulmonology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, 5 Fu-Shing St., Kweishan, Taoyuan, 333, Taiwan, ROC.
| |
Collapse
|