1
|
Shamabadi A, Karimi H, Fallahzadeh MA, Vaseghi S, Arabzadeh Bahri R, Fallahpour B, Abdolghaffari AH, Akhondzadeh S. Sex-controlled differences in sertraline and citalopram efficacies in major depressive disorder: a randomized, double-blind trial. Int Clin Psychopharmacol 2025; 40:156-166. [PMID: 38640201 DOI: 10.1097/yic.0000000000000550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
To investigate the response to antidepressants while controlling for sex, which has been controversial, 92 outpatient males and females with major depressive disorder were assigned to sertraline (100 mg/day) or citalopram (40 mg/day) in two strata and were assessed using Hamilton depression rating scale (HDRS) scores and brain-derived neurotrophic factor (BDNF), interleukin (IL)-6 and cortisol serum levels in this 8-week, randomized, parallel-group, double-blind clinical trial. Data of 40 sertraline and 40 citalopram recipients with equal representation of males and females assigned to each medication were analyzed, while their baseline characteristics were not statistically different ( P > 0.05). There were no significant differences between sertraline and citalopram recipients in outcome changes ( P > 0.05), all of which indicated improvement, but a significant time-treatment-sex interaction effect in BDNF levels was observed ( P = 0.035). Regarding this, subgroup analyses illustrated a significantly greater increase in male BDNF levels following sertraline treatment ( P = 0.020) with a moderate to large effect size (Cohen's d = 0.76 and ). Significant associations were observed between percentage changes in IL-6 levels and BDNF levels in sertraline recipients ( P = 0.033) and HDRS scores in citalopram recipients ( P < 0.001). Sex was an effect modifier in BDNF alterations following sertraline and citalopram administration. Further large-scale, high-quality, long-term studies are recommended.
Collapse
Affiliation(s)
- Ahmad Shamabadi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran
| | - Hanie Karimi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran
| | - Mohammad Ali Fallahzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj
| | - Razman Arabzadeh Bahri
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran
| | - Bita Fallahpour
- Department of Psychiatry, Razi Hospital, University of Social Welfare and Rehabilitation Sciences
| | | | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran
| |
Collapse
|
2
|
Tiwari S, Paramanik V. Lactobacillus fermentum ATCC 9338 Supplementation Prevents Depressive-Like Behaviors Through Glucocorticoid Receptor and N-Methyl-D-aspartate2b in Chronic Unpredictable Mild Stress Mouse Model. Mol Neurobiol 2025:10.1007/s12035-025-04738-3. [PMID: 39956887 DOI: 10.1007/s12035-025-04738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Depression is a long-term, related to stress neuropsychiatric disorder, leading to psychological health issues including worthlessness, anhedonia, sleep and appetite disturbances, dysregulated HPA axis, neuronal cell death, and alterations in the gut microbiota (GM). Dysregulated HPA axis increases level of glucocorticoids that induce proinflammatory response with activation of abnormal kynurenine pathway via metabolizing indoleamine-2,3-dioxygenase (IDO). Kynurenine pathway leads to excitotoxicity of N-methyl-D-aspartate (NMDA) receptor responsible for neuronal cell death. Further, probiotics supplementation gained attention from researchers and clinicians to treat neuropsychiatric diseases. GM alteration remains a key reason for depression; however, there is limited information about the role of probiotics on depression involving glucocorticoid receptor and NMDA excitotoxicity through IDO. Chronic unpredictable mild stress (CUMS) model was prepared to check the role of Lactobacillus fermentum ATCC 9338 (LF) and 1-methyl-D-tryptophan (1-MT) in depression. Herein, mice were placed into experimental groups: control, CUMS stressed, CUMS vehicle, CUMS LF, CUMS 1-MT, and CUMS UT (untreated). Results showed that peroral administration of 1 × 108 CFU/day/mouse LF and intraperitoneal dose of 1-MT (15 mg/kg BW/day) alleviate depressive-like behavior and improve motor coordination and walking patterns. Mice supplemented with LF and 1-MT exhibited a decreased expression of GR and NMDAR2b in the cortex, hippocampus, and medulla. Acetylcholinesterase, SOD, and CAT activities were improved in CUMS mice with supplementation of LF and 1-MT. The GM abundance in LF mice was similar to that in control mice. Such study suggests the roles of LF and 1-MT in depression and oxidative stress, and helpful to understand their therapeutic potential through the HPA axis and IDO.
Collapse
Affiliation(s)
- Sneha Tiwari
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484 887, India
| | - Vijay Paramanik
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484 887, India.
| |
Collapse
|
3
|
Dony L, Krontira AC, Kaspar L, Ahmad R, Demirel IS, Grochowicz M, Schäfer T, Begum F, Sportelli V, Raimundo C, Koedel M, Labeur M, Cappello S, Theis FJ, Cruceanu C, Binder EB. Chronic exposure to glucocorticoids amplifies inhibitory neuron cell fate during human neurodevelopment in organoids. SCIENCE ADVANCES 2025; 11:eadn8631. [PMID: 39951527 PMCID: PMC11827642 DOI: 10.1126/sciadv.adn8631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Disruptions in the tightly regulated process of human brain development have been linked to increased risk for brain and mental illnesses. While the genetic contribution to these diseases is well established, important environmental factors have been less studied at molecular and cellular levels. Here, we used single-cell and cell type-specific techniques to investigate the effect of glucocorticoid (GC) exposure, a mediator of antenatal environmental risk, on gene regulation and lineage specification in unguided human neural organoids. We characterized the transcriptional response to chronic GC exposure during neural differentiation and studied the underlying gene regulatory networks by integrating single-cell transcriptomics with chromatin accessibility data. We found lasting cell type-specific changes that included autism risk genes and several transcription factors associated with neurodevelopment. Chronic GC exposure influenced lineage specification primarily by priming the inhibitory neuron lineage through transcription factors like PBX3. We provide evidence for convergence of genetic and environmental risk factors through a common mechanism of altering lineage specification.
Collapse
Affiliation(s)
- Leander Dony
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
| | - Anthi C. Krontira
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Lea Kaspar
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Ruhel Ahmad
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Ilknur Safak Demirel
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Tim Schäfer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fatema Begum
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Vincenza Sportelli
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
| | - Catarina Raimundo
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Maik Koedel
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Marta Labeur
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Silvia Cappello
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
- Physiological Genomics, Biomedical Center (BMC), LMU Munich Faculty of Medicine, 82152 Planegg-Martinsried, Germany
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
- TUM School of Computation, Information and Technology, Technical University of Munich, 85748 Garching bei München, Germany
| | - Cristiana Cruceanu
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Elisabeth B. Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
4
|
Jaschke NP, Wang A. Integrated control of leukocyte compartments as a feature of adaptive physiology. Immunity 2025; 58:279-294. [PMID: 39909034 DOI: 10.1016/j.immuni.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/10/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025]
Abstract
As a highly diverse and mobile organ, the immune system is uniquely equipped to participate in tissue responses in a tunable manner, depending on the number, type, and nature of cells deployed to the respective organ. Most acute organismal stressors that threaten survival-predation, infection, poisoning, and others-induce pronounced redistribution of immune cells across tissue compartments. Here, we review the current understanding of leukocyte compartmentalization under homeostatic and noxious conditions. We argue that leukocyte shuttling between compartments is a function of local tissue demands, which are linked to the organ's contribution to adaptive physiology at steady state and upon challenge. We highlight the neuroendocrine signals that relay and organize this trafficking behavior and outline mechanisms underlying the functional diversification of leukocyte responses. In this context, we discuss important areas of future inquiry and the implications of this scientific space for clinical medicine in the era of targeted immunomodulation.
Collapse
Affiliation(s)
- Nikolai P Jaschke
- Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| | - Andrew Wang
- Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Dixon R, Malave L, Thompson R, Wu S, Li Y, Sadik N, Anacker C. Sex-specific and developmental effects of early life adversity on stress reactivity are rescued by postnatal knockdown of 5-HT 1A autoreceptors. Neuropsychopharmacology 2025; 50:507-518. [PMID: 39396089 PMCID: PMC11736140 DOI: 10.1038/s41386-024-01999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024]
Abstract
Early Life Adversity (ELA) predisposes to stress hypersensitivity in adulthood, but neurobiological mechanisms that protect from the enduring effects of ELA are poorly understood. Serotonin 1A (5HT1A) autoreceptors in the raphé nuclei regulate adult stress vulnerability, but whether 5HT1A could be targeted to prevent ELA effects on susceptibility to future stressors is unknown. Here, we exposed mice with postnatal knockdown of 5HT1A autoreceptors to the limited bedding and nesting model of ELA from postnatal day (P)3-10 and tested behavioral, neuroendocrine, neurogenic, and neuroinflammatory responses to an acute swim stress in male and female mice in adolescence (P35) and in adulthood (P56). In females, ELA decreased raphé 5HT neuron activity in adulthood and increased passive coping with the acute swim stress, corticosterone levels, neuronal activity, and corticotropin-releasing factor (CRF) levels in the paraventricular nucleus (PVN) of the hypothalamus. ELA also reduced neurogenesis in the ventral dentate gyrus (vDG) of the hippocampus, an important mediator of individual differences in stress susceptibility, and increased microglia activation in the PVN and vDG. These effects of ELA were specific to females and manifested predominantly in adulthood, but not earlier on in adolescence. Postnatal knockdown of 5HT1A autoreceptors prevented these effects of ELA on 5HT neuron activity, stress reactivity, neurogenesis, and neuroinflammation in adult female mice. Our findings demonstrate that ELA induces long-lasting and sex-specific impairments in the serotonin system, stress reactivity, and vDG function, and identify 5HT1A autoreceptors as potential targets to prevent these enduring effects of ELA.
Collapse
Affiliation(s)
- Rushell Dixon
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, Inc. (RFMH), New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | - Lauren Malave
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, Inc. (RFMH), New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | - Rory Thompson
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, Inc. (RFMH), New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | - Serena Wu
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, Inc. (RFMH), New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | - Yifei Li
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, Inc. (RFMH), New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | - Noah Sadik
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, Inc. (RFMH), New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | - Christoph Anacker
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, Inc. (RFMH), New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA.
- Columbia University Institute for Developmental Sciences, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY, 10032, USA.
- Columbia University Stem Cell Initiative (CSCI), Columbia University Irving Medical Center (CUIMC), New York, NY, 10032, USA.
| |
Collapse
|
6
|
Hanif S, Sclar M, Lee J, Nichols C, Likhtik E, Burghardt NS. Social isolation during adolescence differentially affects spatial learning in adult male and female mice. Learn Mem 2025; 32:a054059. [PMID: 39824649 PMCID: PMC11801479 DOI: 10.1101/lm.054059.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/03/2024] [Indexed: 01/20/2025]
Abstract
Social isolation is a risk factor for cognitive impairment. Adolescents may be particularly vulnerable to these effects, because they are in a critical period of development marked by significant physical, hormonal, and social changes. However, it is unclear if the effects of social isolation on learning and memory are similar in both sexes or if they persist into adulthood after a period of recovery. We socially isolated male and female 129Sv/Ev mice throughout adolescence (postnatal days 29-56), provided a 2-week resocialization recovery period, and then tested spatial learning and cognitive flexibility in the active place avoidance task. After behavioral testing, mice were injected with 5'-bromo-2'-deoxyuridine (BrdU) so that lasting effects of social isolation on cell proliferation in the dentate gyrus could be examined. Tissue was also stained for doublecortin (DCX). We found that in males, isolation led to a modest impairment in the rate of initial spatial learning, whereas in females, initial learning was unaffected. However, when the location of the shock zone was switched during the conflict variant of the task, cognitive flexibility was impaired in females only. Similarly, social isolation reduced cell proliferation and the number of immature neurons in the ventral dentate gyrus only in females. Together, these findings indicate that social isolation during adolescence differentially impairs spatial processing in males and females, with effects that persist into adulthood.
Collapse
Affiliation(s)
- Sadiyah Hanif
- Psychology Department, Hunter College, City University of New York, New York, New York 10065, USA
| | - Mia Sclar
- Biology Department, Hunter College, City University of New York, New York, New York 10065, USA
| | - Jinah Lee
- Psychology Department, Hunter College, City University of New York, New York, New York 10065, USA
- Psychology Program, The Graduate Center, City University of New York, New York, New York 10016, USA
| | - Caleb Nichols
- Psychology Department, Hunter College, City University of New York, New York, New York 10065, USA
| | - Ekaterina Likhtik
- Biology Department, Hunter College, City University of New York, New York, New York 10065, USA
- Biology Program, The Graduate Center, City University of New York, New York, New York 10016, USA
| | - Nesha S Burghardt
- Psychology Department, Hunter College, City University of New York, New York, New York 10065, USA
- Psychology Program, The Graduate Center, City University of New York, New York, New York 10016, USA
| |
Collapse
|
7
|
Han M, Zeng D, Tan W, Chen X, Bai S, Wu Q, Chen Y, Wei Z, Mei Y, Zeng Y. Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior. Neural Regen Res 2025; 20:159-173. [PMID: 38767484 PMCID: PMC11246125 DOI: 10.4103/nrr.nrr-d-23-01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 05/22/2024] Open
Abstract
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.
Collapse
Affiliation(s)
- Man Han
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Deyang Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuyuan Bai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiong Wu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen Wei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yufei Mei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
8
|
Boldrini M, Xiao Y, Singh T, Zhu C, Jabbi M, Pantazopoulos H, Gürsoy G, Martinowich K, Punzi G, Vallender EJ, Zody M, Berretta S, Hyde TM, Kleinman JE, Marenco S, Roussos P, Lewis DA, Turecki G, Lehner T, Mann JJ. Omics Approaches to Investigate the Pathogenesis of Suicide. Biol Psychiatry 2024; 96:919-928. [PMID: 38821194 PMCID: PMC11563882 DOI: 10.1016/j.biopsych.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Suicide is the second leading cause of death in U.S. adolescents and young adults and is generally associated with a psychiatric disorder. Suicidal behavior has a complex etiology and pathogenesis. Moderate heritability suggests genetic causes. Associations between childhood and recent life adversity indicate contributions from epigenetic factors. Genomic contributions to suicide pathogenesis remain largely unknown. This article is based on a workshop held to design strategies to identify molecular drivers of suicide neurobiology that would be putative new treatment targets. The panel determined that while bulk tissue studies provide comprehensive information, single-nucleus approaches that identify cell type-specific changes are needed. While single-nuclei techniques lack information on cytoplasm, processes, spines, and synapses, spatial multiomic technologies on intact tissue detect cell alterations specific to brain tissue layers and subregions. Because suicide has genetic and environmental drivers, multiomic approaches that combine cell type-specific epigenome, transcriptome, and proteome provide a more complete picture of pathogenesis. To determine the direction of effect of suicide risk gene variants on RNA and protein expression and how these interact with epigenetic marks, single-nuclei and spatial multiomics quantitative trait loci maps should be integrated with whole-genome sequencing and genome-wide association databases. The workshop concluded with a recommendation for the formation of an international suicide biology consortium that will bring together brain banks and investigators with expertise in cutting-edge omics technologies to delineate the biology of suicide and identify novel potential treatment targets to be tested in cellular and animal models for drug and biomarker discovery to guide suicide prevention.
Collapse
Affiliation(s)
- Maura Boldrini
- Department of Psychiatry, Columbia University, New York, New York; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York.
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Tarjinder Singh
- Department of Psychiatry, Columbia University, New York, New York; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York; New York Genome Center, New York, New York
| | - Chenxu Zhu
- New York Genome Center, New York, New York; Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | - Mbemba Jabbi
- Department of Psychiatry and Behavioral Sciences, Mulva Clinics for the Neurosciences, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Gamze Gürsoy
- New York Genome Center, New York, New York; Departments of Biomedical Informatics and Computer Science, Columbia University, New York, New York
| | - Keri Martinowich
- Lieber Institute for Brain Development, Department of Psychiatry and Behavioral Sciences, Baltimore, Maryland
| | - Giovanna Punzi
- Lieber Institute for Brain Development, Department of Psychiatry and Behavioral Sciences, Baltimore, Maryland
| | - Eric J Vallender
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Sabina Berretta
- Department of Psychiatry, Harvard Brain Tissue Resource Center, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Department of Psychiatry and Behavioral Sciences, Baltimore, Maryland
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Department of Psychiatry and Behavioral Sciences, Baltimore, Maryland
| | - Stefano Marenco
- Human Brain Collection Core, National Institute of Mental Health's (NIMH) Division of Intramural Research Programs, Bethesda, Maryland
| | - Panagiotis Roussos
- Center for Precision Medicine and Translational Therapeutics, Mental Illness Research Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, New York
| | - David A Lewis
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gustavo Turecki
- Department of Psychiatry, Douglas Institute, McGill University, Montréal, Québec, Canada
| | | | - J John Mann
- Department of Psychiatry, Columbia University, New York, New York; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York
| |
Collapse
|
9
|
Gobbini RP, Velardo VG, Sokn C, Liberman AC, Arzt E. SUMO regulation of FKBP51 activity and the stress response. J Cell Biochem 2024; 125:e30411. [PMID: 37098699 DOI: 10.1002/jcb.30411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
Glucocorticoids (GCs) actions are mostly mediated by the GC receptor (GR), a member of the nuclear receptor superfamily. Alterations of the GR activity have been associated to different diseases including mood disorders. FKBP51 is a GR chaperone that has gained much attention because it is a strong inhibitor of GR activity. FKBP51 exerts effects on many stress-related pathways and may be an important mediator of emotional behavior. Key proteins involved in the regulation of the stress response and antidepressant action are regulated by SUMOylation, a post-translational modification that has an important role in the regulation of neuronal physiology and disease. In this review, we focus on the role of SUMO-conjugation as a regulator of this pathway.
Collapse
Affiliation(s)
- Romina P Gobbini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
| | - Vanina Giselle Velardo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
| | - Clara Sokn
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
| | - Ana C Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Wei B, Shi Y, Yu X, Cai Y, Zhao Y, Song Y, Zhao Z, Huo M, Li L, Gao Q, Yu D, Wang B, Sun M. GR/P300 Regulates MKP1 Signaling Pathway and Mediates Depression-like Behavior in Prenatally Stressed Offspring. Mol Neurobiol 2024; 61:10613-10628. [PMID: 38769227 DOI: 10.1007/s12035-024-04244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Accumulating evidence suggests that prenatal stress (PNS) increases offspring susceptibility to depression, but the underlying mechanisms remain unclear. We constructed a mouse model of prenatal stress by spatially restraining pregnant mice from 09:00-11:00 daily on Days 5-20 of gestation. In this study, western blot analysis, quantitative real-time PCR (qRT‒PCR), immunofluorescence, immunoprecipitation, chromatin immunoprecipitation (ChIP), and mifepristone rescue assays were used to investigate alterations in the GR/P300-MKP1 and downstream ERK/CREB/TRKB pathways in the brains of prenatally stressed offspring to determine the pathogenesis of the reduced neurogenesis and depression-like behaviors in offspring induced by PNS. We found that prenatal stress leads to reduced hippocampal neurogenesis and depression-like behavior in offspring. Prenatal stress causes high levels of glucocorticoids to enter the fetus and activate the hypothalamic‒pituitary‒adrenal (HPA) axis, resulting in decreased hippocampal glucocorticoid receptor (GR) levels in offspring. Furthermore, the nuclear translocation of GR and P300 (an acetylation modifying enzyme) complex in the hippocampus of PNS offspring increased significantly. This GR/P300 complex upregulates MKP1, which is a negative regulator of the ERK/CREB/TRKB signaling pathway associated with depression. Interestingly, treatment with a GR antagonist (mifepristone, RU486) increased hippocampal GR levels and decreased MKP1 expression, thereby ameliorating abnormal neurogenesis and depression-like behavior in PNS offspring. In conclusion, our study suggested that the regulation of the MKP1 signaling pathway by GR/P300 is involved in depression-like behavior in prenatal stress-exposed offspring and provides new insights and ideas for the fetal hypothesis of mental health.
Collapse
Affiliation(s)
- Bin Wei
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250000, Shandong, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yajun Shi
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Xi Yu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yongle Cai
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yan Zhao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yueyang Song
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Zejun Zhao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Ming Huo
- Reproductive Medicine Center, The First Hospital of Lanzhou University, LanzhouGansu, 730000, China
| | - Lingjun Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Qinqin Gao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250000, Shandong, China
| | - Bin Wang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China.
| |
Collapse
|
11
|
Joodaki M, Radahmadi M, Alaei H. Comparing the Efficacy of Escitalopram with and without Crocin in Restoring I/O Functions and LTP within the Hippocampal CA1 Region of Stressed Rats. Adv Biomed Res 2024; 13:116. [PMID: 39717236 PMCID: PMC11665179 DOI: 10.4103/abr.abr_18_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 12/25/2024] Open
Abstract
Background Escitalopram, a pharmacological compound, and crocin, the active compound of saffron, influence brain functions and serotonin levels. This study examined the efficacy of escitalopram with and without crocin in restoring the input-output (I/O) functions and long-term potentiation (LTP) within the hippocampal cornu ammonis 1 (CA1) region of stressed rats. Materials and Methods Rats were divided into six groups: control (Co), sham (Sh), stress-recovery (St-Rec), stress-escitalopram (St-Esc), stress-crocin (St-Cr), and stress-escitalopram-crocin (St-Esc-Cr) groups. They underwent 14 days of restraint stress (6 h/day). After being subjected to stress, they received 14 days of escitalopram (20 mg/kg) and crocin (30 mg/kg), as well as co-administration of these two compounds during the next 14 days. The field excitatory postsynaptic potential (fEPSP) slope and amplitude were measured using I/O functions and LTP induction in the CA1 region. Corticosterone (CORT) levels were also evaluated. Results The fEPSPs slope and amplitude in the I/O functions and LTP induction significantly decreased in stressed rats without therapeutic intervention. These variables in the I/O functions declined in rats with escitalopram administration alone. All electrophysiological parameters showed an increase in rats treated with crocin alone compared to stressed subjects without any treatment. Serum CORT levels decreased only with crocin treatment for stressed rats. Conclusion Neural excitability and memory within the CA1 region were severely disrupted among stressed rats without any treatment. Furthermore, administering crocin alone improved neural excitability and memory post-chronic stress. Treatment with escitalopram alone also impaired neural excitability within the CA1 region. The use of escitalopram with and without crocin did not enhance memory under chronic stress.
Collapse
Affiliation(s)
- Mehran Joodaki
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Nasereddin L, Alnajjar O, Bashar H, Abuarab SF, Al-Adwan R, Chellappan DK, Barakat M. Corticosteroid-Induced Psychiatric Disorders: Mechanisms, Outcomes, and Clinical Implications. Diseases 2024; 12:300. [PMID: 39727630 DOI: 10.3390/diseases12120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Corticosteroids are extensively used in medicine for their powerful anti-inflammatory and immunosuppressive effects. However, their psychiatric side effects-such as mood disturbances, anxiety, and psychosis-are significant yet often underappreciated. This review provides a comprehensive exploration of corticosteroid-induced psychiatric disorders, with a focus on their underlying mechanisms and clinical implications. We examine how corticosteroids influence the hypothalamic-pituitary-adrenal (HPA) axis, leading to the dysregulation of stress responses and alterations in neurotransmitter levels, particularly dopamine, serotonin, and glutamate. These changes are linked to structural abnormalities in key brain areas such as the hippocampus and amygdala, which are implicated in mood and anxiety disorders, psychosis, and conditions like post-traumatic stress disorder (PTSD) and eating disorders. This review highlights the need for healthcare providers to be vigilant in recognizing and managing corticosteroid-induced psychiatric symptoms, especially in vulnerable populations with pre-existing mental health conditions. The complex relationship between corticosteroid type, dose, duration, and mental health outcomes is explored, emphasizing the importance of personalized treatment approaches to mitigate psychiatric risks. Given the widespread use of corticosteroids, there is an urgent need for more focused research on their psychiatric side effects. This review underscores the importance of patient education and careful monitoring to ensure optimal therapeutic outcomes while minimizing mental health risks associated with corticosteroid therapy.
Collapse
Affiliation(s)
- Lara Nasereddin
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Omar Alnajjar
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Homam Bashar
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | | | - Rahma Al-Adwan
- Department of Pharmaceutical Sciences and Pharmaceutics, Applied Science Private University, Amman 11937, Jordan
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Muna Barakat
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| |
Collapse
|
13
|
Liu Y, Yao Y, Fang W, Wang X, Lu W. Combinatorial therapy with sub-effective Ro25-6981 and ZL006 ameliorates depressive-like behavior in single or combined stressed male mice. Biochem Biophys Res Commun 2024; 730:150385. [PMID: 39002200 DOI: 10.1016/j.bbrc.2024.150385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Major depression is a severe neuropsychiatric disorder that poses a significant challenge to health. However, development of an effective therapy for the disease has long been difficult. Here, we investigate the efficacy of a novel combinatorial treatment employing sub-effective doses of Ro25-6981, an antagonist targeting GluN2B-containing NMDA receptors, in conjunction with ZL006, an inhibitor of the PSD95/nNOS, on mouse models of depression. We employed social isolation, chronic restraint stress, or a combination of both to establish a depressed mouse model. Treatment with the drug combination reduced depressive-like behaviors without affecting locomotor activity in mice subjected to social isolation or chronic restraint stress. Furthermore, the combination therapy ameliorated depressive-like behaviors induced by combined stress of chronic restraint followed by social isolation. Mechanistic studies revealed that the combined treatment downregulated the hippocampal nitric oxide level. However, the therapeutic benefits of this combination were negated by the activation of NMDA receptors with a low dose of NMDA or by increasing nitric oxide levels with l-arginine. Moreover, the combinatorial treatment had negligible effects on object memory and contextual fear memory. Our data establish a combined therapy paradigm, providing a potential strategy targeting major depression.
Collapse
Affiliation(s)
- Yixiu Liu
- Department of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Yilan Yao
- Department of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Weiqing Fang
- Department of Pharmacy, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China.
| | - Xuemeng Wang
- Department of the First Clinical Medicine, Hainan Medical University, Haikou, China
| | - Wen Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
14
|
Kim JS, Kim JH, Eo H, Ju IG, Son SR, Kim JW, Jang DS, Oh MS. Inulae Flos has Anti-Depressive Effects by Suppressing Neuroinflammation and Recovering Dysfunction of HPA-axis. Mol Neurobiol 2024; 61:8038-8050. [PMID: 38457106 DOI: 10.1007/s12035-024-04094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/05/2024] [Indexed: 03/09/2024]
Abstract
Depression is a debilitating mood disorder that causes persistent feelings of sadness, emptiness, and a loss of joy. However, the clinical efficacy of representative drugs for depression, such as selective serotonin reuptake inhibitors, remains controversial. Therefore, there is an urgent need for more effective therapies to treat depression. Neuroinflammation and the hypothalamic-pituitary-adrenal (HPA) axis are pivotal factors in depression. Inulae Flos (IF), the flower of Inula japonica Thunb, is known for its antioxidant and anti-inflammatory effects. This study explored whether IF alleviates depression in both in vitro and in vivo models. For in vitro studies, we treated BV2 and PC12 cells damaged by lipopolysaccharides or corticosterone (CORT) with IF to investigate the mechanisms of depression. For in vivo studies, C57BL/6 mice were exposed to chronic restraint stress and were administered IF at doses of 0, 100, and 300 mg/kg for 2 weeks. IF inhibited pro-inflammatory mediators, such as nitric oxide, inducible nitric oxide synthase, and interleukins in BV2 cells. Moreover, IF increased the viability of CORT-damaged PC12 cells by modulating protein kinase B, a mammalian target of the rapamycin pathway. Behavioral assessments demonstrated that IF reduced depression-like behaviors in mice. We found that IF reduced the activation of microglia and astrocytes, and regulated synapse plasticity in the mice brains. Furthermore, IF lowered elevated CORT levels in the plasma and restored glucocorticoid receptor expression in the hypothalamus. Collectively, these findings suggest that IF can alleviate depression by mitigating neuroinflammation and recovering dysfunction of the HPA-axis.
Collapse
Affiliation(s)
- Jin Se Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Woon Kim
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
15
|
Noor AAM. Exploring the Therapeutic Potential of Terpenoids for Depression and Anxiety. Chem Biodivers 2024; 21:e202400788. [PMID: 38934531 DOI: 10.1002/cbdv.202400788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
This review focus on the terpenoids as potential therapeutic agents for depression and anxiety disorders, which naturally found in a variety of plants and exhibit a wide range of biological activities. Among the terpenoids discussed in this review are α-pinene, β-caryophyllene, α-phellandrene, limonene, β-linalool, 1, 8-cineole, β-pinene, caryophyllene oxide, p-cymene, and eugenol. All of these compounds have been studied extensively regarding their pharmacological properties, such as neuroprotective effect, anti-inflammation, antibacterial, regulation of neurotransmitters and antioxidant effect. Preclinical evidence are reviewed to highlight their diverse mechanisms of action and therapeutic potential to support antidepressant and anxiolytic properties. Additionally, challenges and future directions are also discussed to emphasize therapeutic utility of terpenoids for mental health disorders. Overall, this review provides a promising role of terpenoids as novel therapeutic agents for depression and anxiety, with potential implications for the development of more effective and well-tolerated treatments in the field of psychopharmacology.
Collapse
Affiliation(s)
- Arif Azimi Md Noor
- Harvard Medical School, Department of Biomedical Informatics, 10 Shattuck Street Suite 514, Boston MA, 02115, United States of America
- Eyes Specialist Clinic, Raja Perempuan Zainab 2 Hospital, 15586, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
16
|
Dixon R, Malave L, Thompson R, Wu S, Li Y, Sadik N, Anacker C. Sex-specific and Developmental Effects of Early Life Adversity on Stress Reactivity are Rescued by Postnatal Knockdown of 5-HT 1A Autoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576344. [PMID: 38328253 PMCID: PMC10849559 DOI: 10.1101/2024.01.22.576344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Early Life Adversity (ELA) predisposes to stress hypersensitivity in adulthood, but neurobiological mechanisms that protect from the enduring effects of ELA are poorly understood. Serotonin 1A (5HT 1A ) autoreceptors in the raphé nuclei regulate adult stress vulnerability, but whether 5HT 1A could be targeted to prevent ELA effects on susceptibility to future stressors is unknown. Here, we exposed mice with postnatal knockdown of 5HT 1A autoreceptors to the limited bedding and nesting model of ELA from postnatal day (P)3-10 and tested behavioral, neuroendocrine, neurogenic, and neuroinflammatory responses to an acute swim stress in male and female mice in adolescence (P35) and in adulthood (P56). In females, ELA decreased raphé 5HT neuron activity in adulthood and increased passive coping with the acute swim stress, corticosterone levels, neuronal activity, and corticotropin-releasing factor (CRF) levels in the paraventricular nucleus (PVN) of the hypothalamus. ELA also reduced neurogenesis in the ventral dentate gyrus (vDG) of the hippocampus, an important mediator of individual differences in stress susceptibility, and increased microglia activation in the PVN and vDG. These effects of ELA were specific to females and manifested predominantly in adulthood, but not earlier on in adolescence. Postnatal knockdown of 5HT 1A autoreceptors prevented these effects of ELA on 5HT neuron activity, stress reactivity, neurogenesis, and neuroinflammation in adult female mice. Our findings demonstrate that ELA induces long-lasting and sex-specific impairments in the serotonin system, stress reactivity, and vDG function, and identify 5HT 1A autoreceptors as potential targets to prevent these enduring effects of ELA.
Collapse
|
17
|
Bertollo AG, Galvan ACL, Dallagnol C, Cortez AD, Ignácio ZM. Early Life Stress and Major Depressive Disorder-An Update on Molecular Mechanisms and Synaptic Impairments. Mol Neurobiol 2024; 61:6469-6483. [PMID: 38307968 DOI: 10.1007/s12035-024-03983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Early life stress (ELS), characterized as abuse, neglect, and abandonment, can cause several adverse consequences in the lives of affected individuals. ELS experiences can affect an individual's development in variable ways, persisting in the long term and promoting lasting impacts, considering that early exposure to stressors can be biologically incorporated, as prolonged stimulation of stress response systems affects the development of the brain structure and other body systems, increasing the risk of diseases associated with stress and cognitive impairment. This type of stress increases the risk of developing major depressive disorder (MDD) in a severe form that does not respond adequately to traditional antidepressant treatments. Several alterations are studied as mechanisms that relate ELS with MDD, such as epigenetic alterations, neurotransmitters, and neuronal signaling. This review discusses research that brings evidence about the ELS mechanisms involved in synaptic impairments and MDD. The processes involved in epigenetic changes and the HPA axis are highlighted, as well as changes in neurotransmitters and neuronal signaling mechanisms.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Agatha Carina Leite Galvan
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Claudia Dallagnol
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Arthur Dellazeri Cortez
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
18
|
Krolick KN, Cao J, Gulla EM, Bhardwaj M, Marshall SJ, Zhou EY, Kiss AJ, Choueiry F, Zhu J, Shi H. Subregion-specific transcriptomic profiling of rat brain reveals sex-distinct gene expression impacted by adolescent stress. Neuroscience 2024; 553:19-39. [PMID: 38977070 PMCID: PMC11444371 DOI: 10.1016/j.neuroscience.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Stress during adolescence clearly impacts brain development and function. Sex differences in adolescent stress-induced or exacerbated emotional and metabolic vulnerabilities could be due to sex-distinct gene expression in hypothalamic, limbic, and prefrontal brain regions. However, adolescent stress-induced whole-genome expression changes in key subregions of these brain regions were unclear. In this study, female and male adolescent Sprague Dawley rats received one-hour restraint stress daily from postnatal day (PD) 32 to PD44. Corticosterone levels, body weights, food intake, body composition, and circulating adiposity and sex hormones were measured. On PD44, brain and blood samples were collected. Using RNA-sequencing, sex-specific differences in stress-induced differentially expressed (DE) genes were identified in subregions of the hypothalamus, limbic system, and prefrontal cortex. Canonical pathways reflected well-known sex-distinct maladies and diseases, substantiating the therapeutic potential of the DE genes found in the current study. Thus, we proposed specific sex distinct, adolescent stress-induced transcriptional changes found in the current study as examples of the molecular bases for sex differences witnessed in stress induced or exacerbated emotional and metabolic disorders. Future behavioral studies and single-cell studies are warranted to test the implications of the DE genes identified in this study in sex-distinct stress-induced susceptibilities.
Collapse
Affiliation(s)
| | - Jingyi Cao
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Evelyn M Gulla
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Meeta Bhardwaj
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | | | - Ethan Y Zhou
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Andor J Kiss
- Center for Bioinformatics & Functional Genomics, Miami University, Oxford, OH 45056, USA.
| | - Fouad Choueiry
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
19
|
Hu YY, Souza R, Muthuraman A, Knapp L, McIntyre C, Dussor G. Glucocorticoid signaling mediates stress-induced migraine-like behaviors in a preclinical mouse model. Cephalalgia 2024; 44:3331024241277941. [PMID: 39211943 PMCID: PMC11578425 DOI: 10.1177/03331024241277941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Stress is one of the most common precipitating factors in migraine and is identified as a trigger in nearly 70% of patients. Responses to stress include release of glucocorticoids as an adaptive mechanism, but this may also contribute to migraine attacks. Here, we investigated the role of glucocorticoids on stress-induced migraine-like behaviors. METHODS We have shown previously that repeated stress in mice evokes migraine-like behavioral responses and priming to a nitric oxide donor. Metyrapone, mifepristone, and corticosterone (CORT) were used to investigate whether CORT contributes to the stress-induced effects. Facial mechanical hypersensitivity was evaluated by von Frey testing and grimace scoring assessed the presence of non-evoked pain. We also measured serum CORT levels in control, stress, and daily CORT injected groups of both male and female mice. RESULTS Metyrapone blocked stress-induced responses and priming in male and female mice. However, repeated CORT injections in the absence of stress only led to migraine-like behaviors in females. Both female and male mice showed similar patterns of serum CORT in response to stress or exogenous administration. Finally, administration of mifepristone, the glucocorticoid receptor antagonist, prior to each stress session blocked stress-induced behavioral responses in male and female mice. CONCLUSIONS These findings demonstrate that while CORT synthesis and receptor activation is necessary for the behavioral responses triggered by repeated stress, it is only sufficient in females. Better understanding of how glucocorticoids contribute to migraine may lead to new therapeutic opportunities.
Collapse
Affiliation(s)
- Ya-Yu Hu
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
- The Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
| | - Rimenez Souza
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - Athithyaa Muthuraman
- The Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
- Department of Biological Sciences, School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX, USA
| | - Leela Knapp
- The Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
- Department of Chemistry and Biochemistry, School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX, USA
| | - Christa McIntyre
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Gregory Dussor
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
- The Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
20
|
Beer C, Rae F, Semmler A, Voisey J. Biomarkers in the Diagnosis and Prediction of Medication Response in Depression and the Role of Nutraceuticals. Int J Mol Sci 2024; 25:7992. [PMID: 39063234 PMCID: PMC11277518 DOI: 10.3390/ijms25147992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Depression continues to be a significant and growing public health concern. In clinical practice, it involves a clinical diagnosis. There is currently no defined or agreed upon biomarker/s for depression that can be readily tested. A biomarker is defined as a biological indicator of normal physiological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention that can be objectively measured and evaluated. Thus, as there is no such marker for depression, there is no objective measure of depression in clinical practice. The discovery of such a biomarker/s would greatly assist clinical practice and potentially lead to an earlier diagnosis of depression and therefore treatment. A biomarker for depression may also assist in determining response to medication. This is of particular importance as not all patients prescribed with medication will respond, which is referred to as medication resistance. The advent of pharmacogenomics in recent years holds promise to target treatment in depression, particularly in cases of medication resistance. The role of pharmacogenomics in routine depression management within clinical practice remains to be fully established. Equally so, the use of pharmaceutical grade nutrients known as nutraceuticals in the treatment of depression in the clinical practice setting is largely unknown, albeit frequently self-prescribed by patients. Whether nutraceuticals have a role in not only depression treatment but also in potentially modifying the biomarkers of depression has yet to be proven. The aim of this review is to highlight the potential biomarkers for the diagnosis, prediction, and medication response of depression.
Collapse
Affiliation(s)
- Cristina Beer
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| | - Fiona Rae
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| | - Annalese Semmler
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Joanne Voisey
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| |
Collapse
|
21
|
Xiang X, Palasuberniam P, Pare R. Exploring the Feasibility of Estrogen Replacement Therapy as a Treatment for Perimenopausal Depression: A Comprehensive Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1076. [PMID: 39064505 PMCID: PMC11279181 DOI: 10.3390/medicina60071076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Perimenopausal depression (PMD) is a psychological disorder that occurs in women during perimenopause. In addition to the common clinical symptoms of depression, it often manifests as a perimenopausal complication, and its notable cause is the decline in estrogen levels. Despite numerous studies and trials confirming the benefits of estrogen replacement therapy (ERT) for PMD, ERT remains unapproved for treating PMD. Therefore, we conducted a literature search using selected keywords in PubMed and Google Scholar to write a review discussing the feasibility of using ERT for PMD. This review examines the potential of ERT for PMD in terms of its underlying mechanisms, efficacy, safety, and time window. These four aspects suggest that ERT is a viable option for PMD treatment. However, the risk of thrombosis and stroke with ERT is a matter of contention among medical experts, with a paucity of clinical data. Consequently, further clinical trial data are required to ascertain the safety of ERT.
Collapse
Affiliation(s)
| | | | - Rahmawati Pare
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia (P.P.)
| |
Collapse
|
22
|
Ding W, Wang L, Li L, Li H, Wu J, Zhang J, Wang J. Pathogenesis of depression and the potential for traditional Chinese medicine treatment. Front Pharmacol 2024; 15:1407869. [PMID: 38983910 PMCID: PMC11231087 DOI: 10.3389/fphar.2024.1407869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Depression is a prevalent mental disorder that significantly diminishes quality of life and longevity, ranking as one of the primary causes of disability globally. Contemporary research has explored the potential pathogenesis of depression from various angles, encompassing genetics, neurotransmitter systems, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, inflammation, and intestinal flora, among other contributing factors. In addition, conventional chemical medications are plagued by delayed onset of action, persistent adverse effects, and restricted therapeutic efficacy. In light of these limitations, the therapeutic approach of traditional Chinese medicine (TCM) has gained increasing recognition for its superior effectiveness. Numerous pharmacological and clinical studies have substantiated TCM's capacity to mitigate depressive symptoms through diverse mechanisms. This article attempts to summarize the mechanisms involved in the pathogenesis of depression and to describe the characteristics of herbal medicines (including compounded formulas and active ingredients) for the treatment of depression. It further evaluates their effectiveness by correlating with the multifaceted pathogenesis of depression, thereby furnishing a reference for future research endeavors.
Collapse
Affiliation(s)
- Weixing Ding
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Lulu Wang
- School of Medicine, Changchun Sci-Tech University, Changchun, China
| | - Lei Li
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Hongyan Li
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Jianfa Wu
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Jing Zhang
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, China
| | - Jing Wang
- Jilin Province Faw General Hospital, Changchun, China
| |
Collapse
|
23
|
Wu Y, Wang Y, Lu Y, Yan J, Zhao H, Yang R, Pan J. Research advances in huntingtin-associated protein 1 and its application prospects in diseases. Front Neurosci 2024; 18:1402996. [PMID: 38975245 PMCID: PMC11224548 DOI: 10.3389/fnins.2024.1402996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Huntingtin-associated protein 1 (HAP1) was the first protein discovered to interact with huntingtin. Besides brain, HAP1 is also expressed in the spinal cord, dorsal root ganglion, endocrine, and digestive systems. HAP1 has diverse functions involving in vesicular transport, receptor recycling, gene transcription, and signal transduction. HAP1 is strongly linked to several neurological diseases, including Huntington's disease, Alzheimer's disease, epilepsy, ischemic stroke, and depression. In addition, HAP1 has been proved to participate in cancers and diabetes mellitus. This article provides an overview of HAP1 regarding the tissue distribution, cell localization, functions, and offers fresh perspectives to investigate its role in diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
24
|
Tang M, Zhang L, Zhou Z, Cao L, Gao Y, Wang Y, Li H, Hu X, Bao W, Liang K, Kuang W, Sweeney JA, Gong Q, Huang X. Divergent effects of sex on hippocampal subfield alterations in drug-naive patients with major depressive disorder. J Affect Disord 2024; 354:173-180. [PMID: 38492647 DOI: 10.1016/j.jad.2024.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The hippocampus is a crucial brain structure in etiological models of major depressive disorder (MDD). It remains unclear whether sex differences in the incidence and symptoms of MDD are related to differential illness-associated brain alterations, including alterations in the hippocampus. This study investigated divergent the effects of sex on hippocampal subfield alterations in drug-naive patients with MDD. METHODS High-resolution structural MR images were obtained from 144 drug-naive individuals with MDD early in their illness course and 135 age- and sex-matched healthy controls (HCs). Hippocampal subfields were segmented using FreeSurfer software and analyzed in terms of both histological subfields (CA1-4, dentate gyrus, etc.) and more integrative larger functional subregions (head, body and tail). RESULTS We observed a significant overall reduction in hippocampal volume in MDD patients, with deficits more prominent deficits in the posterior hippocampus. Differences in anatomic alterations between male and female patients were observed in the CA1-head, presubiculum-body and fimbria in the left hemisphere. Exploratory analyses revealed different patterns of clinical and memory function correlations with histological subfields and functional subregions between male and female patients primarily in the hippocampal head and body. LIMITATIONS This cross-sectional study cannot clarify the causality of hippocampal alterations or their association with illness risk or onset. CONCLUSIONS These findings represent the first reported sex-specific alterations in hippocampal histological subfields in patients with MDD early in the illness course prior to treatment. Sex-specific hippocampal alterations may contribute to diverse sex differences in the clinical presentation of MDD.
Collapse
Affiliation(s)
- Mengyue Tang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zilin Zhou
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lingxiao Cao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yingying Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xinyue Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Weijie Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Kaili Liang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - John A Sweeney
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
25
|
Liu Y, Chen L, Lin L, Xu C, Xiong Y, Qiu H, Li X, Li S, Cao H. Unveiling the hidden pathways: Exploring astrocytes as a key target for depression therapy. J Psychiatr Res 2024; 174:101-113. [PMID: 38626560 DOI: 10.1016/j.jpsychires.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Depressive disorders are widely debilitating psychiatric disease. Despite the considerable progress in the field of depression therapy, extensive research spanning many decades has failed to uncover pathogenic pathways that might aid in the creation of long-acting and rapid-acting antidepressants. Consequently, it is imperative to reconsider existing approaches and explore other targets to improve this area of study. In contemporary times, several scholarly investigations have unveiled that persons who have received a diagnosis of depression, as well as animal models employed to study depression, demonstrate a decrease in both the quantity as well as density of astrocytes, accompanied by alterations in gene expression and morphological attributes. Astrocytes rely on a diverse array of channels and receptors to facilitate their neurotransmitter transmission inside tripartite synapses. This study aimed to investigate the potential processes behind the development of depression, specifically focusing on astrocyte-associated neuroinflammation and the involvement of several molecular components such as connexin 43, potassium channel Kir4.1, aquaporin 4, glutamatergic aspartic acid transporter protein, SLC1A2 or GLT-1, glucocorticoid receptors, 5-hydroxytryptamine receptor 2B, and autophagy, that localized on the surface of astrocytes. The study also explores novel approaches in the treatment of depression, with a focus on astrocytes, offering innovative perspectives on potential antidepressant medications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Gastroenterology, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Lin Lin
- Scientific Research Management Department, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Caijuan Xu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Yifan Xiong
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Sixin Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Hui Cao
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| |
Collapse
|
26
|
Kwon D, Knorr DA, Wiley KS, Young SL, Fox MM. Association of pica with cortisol and inflammation among Latina pregnant women. Am J Hum Biol 2024; 36:e24025. [PMID: 38050975 PMCID: PMC11062838 DOI: 10.1002/ajhb.24025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Pica, the urge to consume items generally not considered food, such as dirt, raw starch, and ice, are particularly common among pregnant women. However, the biology of pica in pregnancy is not well understood. Therefore, this study aimed to assess how pica relates to endocrine stress and immune biomarkers in a cohort of pregnant Latina women in Southern California. Thirty-four women completed a structured pica questionnaire. Maternal urinary cortisol and plasma cytokine levels were measured between 21 and 31 weeks' gestation. Associations between pica during pregnancy and biomarkers were assessed using linear regression models adjusting for gestational age. Twelve (35.3%) of the pregnant women reported pica (geophagy and amylophagy) during pregnancy. In multivariate models, those who engaged in pica had higher levels of cortisol (β: 0.37, 95% CI: 0.01, 0.073) and lower levels of IL-1β (β: -0.06, 95% CI: -0.11, -0.02), IL-8 (β: -0.30, 95% CI: -0.56, -0.05), IL-21 (β: -0.35, 95% CI: -0.63, -0.08), and type-1 inflammation composite (β: -0.29, 95% CI: -0.44, -0.14) than women who did not engage in pica. These results suggest that biological stress and immune response differ for women with pica compared to those without. This study suggests novel physiological covariates of pica during pregnancy. Further research is needed to better understand the mechanisms and temporality underlying the observed associations between pica and endocrine and immune biomarkers.
Collapse
Affiliation(s)
- Dayoon Kwon
- Department of Epidemiology, University of California, Los Angles, California, USA
| | - Delaney A Knorr
- Department of Anthropology, University of California, Los Angles, California, USA
| | - Kyle S Wiley
- Department of Anthropology, University of California, Los Angles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angles, California, USA
| | - Sera L Young
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Molly M Fox
- Department of Anthropology, University of California, Los Angles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angles, California, USA
| |
Collapse
|
27
|
Bernardus Saayman JL, Harvey BH, Wegener G, Brink CB. Sildenafil, alone and in combination with imipramine or escitalopram, display antidepressant-like effects in an adrenocorticotropic hormone-induced (ACTH) rodent model of treatment-resistant depression. Eur J Pharmacol 2024; 969:176434. [PMID: 38458412 DOI: 10.1016/j.ejphar.2024.176434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) represents a challenge with high prevalence and limited effectiveness of existing treatments, particularly in cases of treatment-resistant depression (TRD). Innovative strategies and alternative drug targets are therefore necessary. Sildenafil, a selective phosphodiesterase type 5 (PDE5) inhibitor, is known to exert neuroplastic, anti-inflammatory, and antioxidant properties, and is a promising antidepressant drug candidate. AIM To investigate whether sildenafil monotherapy or in combination with a known antidepressant, can elicit antidepressant-like effects in an adrenocorticotropic hormone (ACTH)-induced rodent model of TRD. METHODS ACTH-naïve and ACTH-treated male Sprague-Dawley (SD) rats received various sub-acute drug treatments, followed by behavioural tests and biochemical analyses conversant with antidepressant actions. RESULTS Sub-chronic ACTH treatment induced significant depressive-like behaviour in rats, evidenced by increased immobility during the forced swim test (FST). Sub-acute sildenafil (10 mg/kg) (SIL-10) (but not SIL-3), and combinations of imipramine (15 mg/kg) (IMI-15) and sildenafil (3 mg/kg) (SIL-3) or escitalopram (15 mg/kg) (ESC-15) and SIL-3, exhibited significant antidepressant-like effects. ACTH treatment significantly elevated hippocampal levels of brain-derived neurotrophic factor (BDNF), serotonin, norepinephrine, kynurenic acid (KYNUA), quinolinic acid (QUINA), and glutathione. The various mono- and combined treatments significantly reversed some of these changes, whereas IMI-15 + SIL-10 significantly increased glutathione disulfide levels. ESC-15 + SIL-3 significantly reduced plasma corticosterone levels. CONCLUSION This study suggests that sildenafil shows promise as a treatment for TRD, either as a stand-alone therapy or in combination with a traditional antidepressant. The neurobiological mechanism underlying the antidepressant-like effects of the different sildenafil mono- and combination therapies reflects a multimodal action and cannot be explained in full by changes in the individually measured biomarker levels.
Collapse
Affiliation(s)
- Juandré Lambertus Bernardus Saayman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Brian Herbert Harvey
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa; South African Medical Research Council Unit on Risk and Resilience on Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Rondebosch, 7700, South Africa; The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Gregers Wegener
- Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus N, Denmark
| | - Christiaan Beyers Brink
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
28
|
Akinduko AA, Salawu SO, Akinmoladun AC, Akindahunsi AA, Osemwegie OO. Assessment of the anxiolytic, antidepressant, and antioxidant potential of Parquetina nigrescens (Afzel.) Bullock in Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117597. [PMID: 38128891 DOI: 10.1016/j.jep.2023.117597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The recent growing concerns about the multisystemic nature of mental health conditions in the global population are facilitating a new paradigm involving alternative natural, nutritional, and complementary therapies. Herbal remedies despite accounts in literature of their ethnobotanical as alternative remedies for diverse ailments, remain underexplored for psychiatric disorders like anxiety, depression, and insomnia. AIM OF THE STUDY Hence, the anxiolytic, antidepressant, and antioxidant properties of a hydro-ethanolic leaf extract of Parquetina nigrescens (PN) in male Wistar rats were investigated. MATERIALS AND METHODS The sedative effect was evaluated using the Diazepam sleeping time test while anxiety was induced with a single intraperitoneal injection of 20 mg/kg pentylenetetrazol (PTZ). This was after pre-treatment with 100, 150, and 250 mg/kg of PN or the standard drugs (1 mg/kg diazepam and 30 mg/kg imipramine) for 14 consecutive days. Behavioral tests (Open Field test, Elevated Plus-Maze test, and Forced Swim test) were performed on days 1 and 14, to evaluate the antidepressant and anxiolytic activities of PN. Oxidative stress and neurochemical markers were determined in the brain homogenates of the animals. RESULTS The duration of sleep was significantly (p < 0.001) increased in the PN-administered group compared to the control. The behavioral models showed that PN exhibited antidepressant and anxiolytic properties in PTZ-induced animals. Significant reductions were observed in GSH level and SOD activity while MDA, nitrite, and GPx levels were significantly increased in PTZ-induced rats. However, treatment with PN significantly improved brain antioxidant status by ameliorating the PTZ-induced oxidative stress. Dopamine, cortisol, and acetylcholine esterase activity levels were significantly (p < 0.05) elevated while serotonin and brain-derived neurotrophic factors were reduced in PTZ-induced rats compared with the control. CONCLUSION The PN demonstrated neurotransmitter modulatory ability by ameliorating the PTZ-induced neurochemical dysfunction. Findings from this study showed that PN exhibited sedative, antidepressant, and anxiolytic activities in rats.
Collapse
Affiliation(s)
- Ayokunmi Adebukola Akinduko
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria; Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, Ondo State, Nigeria.
| | - Sule Ola Salawu
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, Ondo State, Nigeria.
| | - Afolabi Clement Akinmoladun
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, Ondo State, Nigeria.
| | | | - Osarenkhoe Omorefosa Osemwegie
- Department of Food Science and Microbiology, College of Pure and Applied Sciences, Landmark University, Omu Aran, Kwara State, Nigeria.
| |
Collapse
|
29
|
Hori H, Yoshida F, Ishida I, Matsuo J, Ogawa S, Hattori K, Kim Y, Kunugi H. Blood mRNA expression levels of glucocorticoid receptors and FKBP5 are associated with depressive disorder and altered HPA axis. J Affect Disord 2024; 349:244-253. [PMID: 38199409 DOI: 10.1016/j.jad.2024.01.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND While depression has been associated with alterations in the hypothalamic-pituitary adrenal (HPA) axis function, there is still controversy regarding the nature and extent of the dysfunction, such as in the debate about hypercortisolism vs. hypocortisolism. It may therefore be necessary to understand whether and how HPA axis function in depression is linked to mRNA expression of key genes regulating this system. METHODS We studied 163 depressed outpatients, most of whom were chronically ill, and 181 healthy controls. Blood mRNA expression levels of NR3C1 (including GRα, GRβ, and GR-P isoforms), FKBP4, and FKBP5 were measured at baseline. HPA axis feedback sensitivity was measured by the dexamethasone (Dex)/corticotropin-releasing hormone (CRH) test. The association between mRNA expression levels and HPA axis feedback sensitivity was examined. RESULTS Compared to controls, patients showed significantly higher expression of GRα and lower expression of FKBP5, and higher post-Dex cortisol levels, even after controlling for age and sex. FKBP5 expression was significantly positively correlated with cortisol levels in patients, while GRα expression was significantly negatively correlated with cortisol levels in controls. LIMITATIONS Most patients were taking psychotropic medications. The large number of correlation tests may have caused type I errors. CONCLUSIONS The tripartite relationship between depression, mRNA expression of GR and FKBP5, and HPA axis function suggests that the altered gene expression affects HPA axis dysregulation and, as a result, impacts the development and/or illness course of depressive disorder. The combination of increased GRα expression and decreased FKBP5 expression may serve as a biomarker for chronic depression.
Collapse
Affiliation(s)
- Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Fuyuko Yoshida
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ikki Ishida
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Junko Matsuo
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shintaro Ogawa
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
30
|
Kouba BR, de Araujo Borba L, Borges de Souza P, Gil-Mohapel J, Rodrigues ALS. Role of Inflammatory Mechanisms in Major Depressive Disorder: From Etiology to Potential Pharmacological Targets. Cells 2024; 13:423. [PMID: 38474387 PMCID: PMC10931285 DOI: 10.3390/cells13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The involvement of central and peripheral inflammation in the pathogenesis and prognosis of major depressive disorder (MDD) has been demonstrated. The increase of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-18, and TNF-α) in individuals with depression may elicit neuroinflammatory processes and peripheral inflammation, mechanisms that, in turn, can contribute to gut microbiota dysbiosis. Together, neuroinflammation and gut dysbiosis induce alterations in tryptophan metabolism, culminating in decreased serotonin synthesis, impairments in neuroplasticity-related mechanisms, and glutamate-mediated excitotoxicity. This review aims to highlight the inflammatory mechanisms (neuroinflammation, peripheral inflammation, and gut dysbiosis) involved in the pathophysiology of MDD and to explore novel anti-inflammatory therapeutic approaches for this psychiatric disturbance. Several lines of evidence have indicated that in addition to antidepressants, physical exercise, probiotics, and nutraceuticals (agmatine, ascorbic acid, and vitamin D) possess anti-inflammatory effects that may contribute to their antidepressant properties. Further studies are necessary to explore the therapeutic benefits of these alternative therapies for MDD.
Collapse
Affiliation(s)
- Bruna R. Kouba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Laura de Araujo Borba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Pedro Borges de Souza
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| |
Collapse
|
31
|
Vyas A, Doshi G. A cross talk on the role of contemporary biomarkers in depression. Biomarkers 2024; 29:18-29. [PMID: 38261718 DOI: 10.1080/1354750x.2024.2308834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Introduction: Biomarkers can be used to identify determinants of response to various treatments of mental disorders. Evidence to date demonstrates that markers of inflammatory, neurotransmitter, neurotrophic, neuroendocrine, and metabolic function can predict the psychological and physical consequences of depression in individuals, allowing for the development of new therapeutic targets with fewer side effects. Extensive research has included hundreds of potential biomarkers of depression, but their roles in depression, abnormal patients, and how bioinformatics can be used to improve diagnosis, treatment, and prognosis have not been determined or defined. To determine which biomarkers can and cannot be used to predict treatment response, classify patients for specific treatments, and develop targets for new interventions, proprietary strategies, and current research projects need to be tailored.Material and Methods: This review article focuses on - biomarker systems that would help in the further development and expansion of newer targets - which holds great promise for reducing the burden of depression.Results and Discussion: Further, this review point to the inflammatory response, metabolic marker, and microribonucleic acids, long non-coding RNAs, HPA axis which are - related to depression and can serve as future targets.
Collapse
Affiliation(s)
- Aditi Vyas
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
32
|
Runyan A, Cassani A, Reyna L, Walsh EC, Hoks RM, Birn RM, Abercrombie HC, Philippi CL. Effects of Cortisol Administration on Resting-State Functional Connectivity in Women with Depression. Psychiatry Res Neuroimaging 2024; 337:111760. [PMID: 38039780 PMCID: PMC10843737 DOI: 10.1016/j.pscychresns.2023.111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Previous resting-state functional connectivity (rsFC) research has identified several brain networks impacted by depression and cortisol, including default mode (DMN), frontoparietal (FPN), and salience networks (SN). In the present study, we examined the effects of cortisol administration on rsFC of these networks in individuals varying in depression history and severity. We collected resting-state fMRI scans and self-reported depression symptom severity for 74 women with and without a history of depression after cortisol and placebo administration using a double-blind, crossover design. We conducted seed-based rsFC analyses for DMN, FPN, and SN seeds to examine rsFC changes after cortisol vs. placebo administration in relation to depression history group and severity. Results revealed a main effect of depression group, with lower left amygdala (SN)-middle temporal gyrus connectivity in women with a history of depression. Cortisol administration increased insula (SN)-inferior frontal gyrus and superior temporal gyrus connectivity. We also found that greater depression severity was associated with increased PCC (DMN)-cerebellum connectivity after cortisol. These results did not survive Bonferroni correction for seed ROIs and should be interpreted with caution. Our findings indicate that acute cortisol elevation may normalize aberrant connectivity of DMN and SN regions, which could help inform clinical treatments for depression.
Collapse
Affiliation(s)
- Adam Runyan
- Department of Psychological Sciences, University of Central Missouri, 116 West S. St., Warrensburg, MO 64093, USA
| | - Alexis Cassani
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA
| | - Leah Reyna
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA
| | - Erin C Walsh
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, CB# 7167, Chapel Hill, NC 27599, USA
| | - Roxanne M Hoks
- Center for Healthy Minds, University of Wisconsin-Madison, 625W. Washington Ave., Madison, WI 53703, USA
| | - Rasmus M Birn
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd., Madison, Wisconsin, 53719, USA
| | - Heather C Abercrombie
- Center for Healthy Minds, University of Wisconsin-Madison, 625W. Washington Ave., Madison, WI 53703, USA
| | - Carissa L Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA.
| |
Collapse
|
33
|
Zeng J, Xie Z, Chen L, Peng X, Luan F, Hu J, Xie H, Liu R, Zeng N. Rosmarinic acid alleviate CORT-induced depressive-like behavior by promoting neurogenesis and regulating BDNF/TrkB/PI3K signaling axis. Biomed Pharmacother 2024; 170:115994. [PMID: 38070249 DOI: 10.1016/j.biopha.2023.115994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Rosmarinic acid (RA), a natural phenolic acid compound with a variety of bioactive properties. However, the antidepressant activity and mechanism of RA remain unclear. The aim of this study is to investigate the effects and potential mechanisms of RA on chronic CORT injection induced depression-like behavior in mice. Male C57BL/6 J mice were intraperitoneally injected with CORT (10 mg/kg) and were orally given RA daily (10 or 20 mg/kg) for 21 consecutive days. In vitro, the HT22 cells were exposed to CORT (200 μM) with RA (12.5, 25 or 50 μM) and LY294002 (a PI3K inhibitor) or ANA-12 (a TrkB inhibitor) treatment. The depression-like behavior and various neurobiological changes in the mice and cell injury and levels of target proteins in vitro were subsequently assessed. Here, RA treatment decreased the expression of p-GR/GR, HSP90, FKBP51, SGK-1 in mice hippocampi. Besides, RA increased the average optical density of Nissl bodies and number of dendritic spines in CA3 region, and enhanced Brdu and DCX expression and synaptic transduction in DG region, as well as up-regulated both the BDNF/TrkB/CREB and PI3K/Akt/mTOR signaling. Moreover, RA reduced structural damage and apoptosis in HT22 cells, increased the differentiation and maturation of them. More importantly, LY294002, but not ANA-12, reversed the effect of RA on GR nuclear translocation. Taken together, RA exerted antidepressant activities by modulating the hippocampal glucocorticoid signaling and hippocampal neurogenesis, which related to the BDNF/TrkB/PI3K signaling axis regulating GR nuclear translocation, provide evidence for the application of RA as a candidate for depression.
Collapse
Affiliation(s)
- Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqiang Xie
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Luan
- School of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
| | - Jingwen Hu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongxiao Xie
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rong Liu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
34
|
Yoon S, Kim YK. Endocrinological Treatment Targets for Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:3-25. [PMID: 39261421 DOI: 10.1007/978-981-97-4402-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Depressive disorder exhibits heterogeneity in clinical presentation, progression, and treatment outcomes. While conventional antidepressants based on the monoamine hypothesis benefit many patients, a significant proportion remains unresponsive or fails to fully recover. An individualized integrative treatment approach, considering diverse pathophysiologies, holds promise for these individuals. The endocrine system, governing physiological regulation and organ homeostasis, plays a pivotal role in central nervous system functions. Dysregulations in endocrine system are major cause of depressive disorder due to other medical conditions. Subtle endocrine abnormalities, such as subclinical hypothyroidism, are associated with depression. Conversely, depressive disorder correlates with endocrine-related biomarkers. Fluctuations in sex hormone levels related to female reproduction, elevate depression risk in susceptible subjects. Consequently, extensive research has explored treatment strategies involving the endocrine system. Treatment guidelines recommend tri-iodothyronine augmentation for resistant depression, while allopregnanolone analogs have gained approval for postpartum depression, with ongoing investigations for broader depressive disorders. This book chapter will introduce the relationship between the endocrine system and depressive disorders, presenting clinical findings on neuroendocrinological treatments for depression.
Collapse
Affiliation(s)
- Seoyoung Yoon
- Department of Psychiatry, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Rowson S, Bekhbat M, Kelly S, Hyer MM, Dyer S, Weinshenker D, Neigh G. Chronic adolescent stress alters GR-FKBP5 interactions in the hippocampus of adult female rats. Stress 2024; 27:2312467. [PMID: 38557197 PMCID: PMC11067065 DOI: 10.1080/10253890.2024.2312467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/25/2024] [Indexed: 04/04/2024] Open
Abstract
Chronic stress exposure during development can have lasting behavioral consequences that differ in males and females. More specifically, increased depressive behaviors in females, but not males, are observed in both humans and rodent models of chronic stress. Despite these known stress-induced outcomes, the molecular consequences of chronic adolescent stress in the adult brain are less clear. The stress hormone corticosterone activates the glucocorticoid receptor, and activity of the receptor is regulated through interactions with co-chaperones-such as the immunophilin FK506 binding proteins 5 (FKBP5). Previously, it has been reported that the adult stress response is modified by a history of chronic stress; therefore, the current study assessed the impact of chronic adolescent stress on the interactions of the glucocorticoid receptor (GR) with its regulatory co-chaperone FKBP5 in response to acute stress in adulthood. Although protein presence for FKBP5 did not differ by group, assessment of GR-FKBP5 interactions demonstrated that adult females with a history of chronic adolescent stress had elevated GR-FKBP5 interactions in the hippocampus following an acute stress challenge which could potentially contribute to a reduced translocation pattern given previous literature describing the impact of FKBP5 on GR activity. Interestingly, the altered co-chaperone interactions of the GR in the stressed female hippocampus were not coupled to an observable difference in transcription of GR-regulated genes. Together, these studies show that chronic adolescent stress causes lasting changes to co-chaperone interactions with the glucocorticoid receptor following stress exposure in adulthood and highlight the potential role that FKBP5 plays in these modifications. Understanding the long-term implications of adolescent stress exposure will provide a mechanistic framework to guide the development of interventions for adult disorders related to early life stress exposures.
Collapse
Affiliation(s)
- Sydney Rowson
- Molecular and Systems Pharmacology Graduate Program, Emory University, Atlanta, GA, USA
| | - Mandakh Bekhbat
- Neuroscience Graduate Program, Emory University, Atlanta, GA, USA
| | - Sean Kelly
- Department of Physiology, Emory University, Atlanta, GA, USA
| | - Molly M. Hyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Samya Dyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gretchen Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
36
|
Mazurka R, Cunningham S, Hassel S, Foster JA, Nogovitsyn N, Fiori LM, Strother SC, Arnott SR, Frey BN, Lam RW, MacQueen GM, Milev RV, Rotzinger S, Turecki G, Kennedy SH, Harkness KL. Relation of hippocampal volume and SGK1 gene expression to treatment remission in major depression is moderated by childhood maltreatment: A CAN-BIND-1 report. Eur Neuropsychopharmacol 2024; 78:71-80. [PMID: 38128154 DOI: 10.1016/j.euroneuro.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Preclinical research implicates stress-induced upregulation of the enzyme, serum- and glucocorticoid-regulated kinase 1 (SGK1), in reduced hippocampal volume. In the current study, we tested the hypothesis that greater SGK1 mRNA expression in humans would be associated with lower hippocampal volume, but only among those with a history of prolonged stress exposure, operationalized as childhood maltreatment (physical, sexual, and/or emotional abuse). Further, we examined whether baseline levels of SGK1 and hippocampal volume, or changes in these markers over the course of antidepressant treatment, would predict treatment outcomes in adults with major depression [MDD]. We assessed SGK1 mRNA expression from peripheral blood, and left and right hippocampal volume at baseline, as well as change in these markers over the first 8 weeks of a 16-week open-label trial of escitalopram as part of the Canadian Biomarker Integration Network in Depression program (MDD [n = 161] and healthy comparison participants [n = 91]). Childhood maltreatment was assessed via contextual interview with standardized ratings. In the full sample at baseline, greater SGK1 expression was associated with lower hippocampal volume, but only among those with more severe childhood maltreatment. In individuals with MDD, decreases in SGK1 expression predicted lower remission rates at week 16, again only among those with more severe maltreatment. Decreases in hippocampal volume predicted lower week 16 remission for those with low childhood maltreatment. These results suggest that both glucocorticoid-related neurobiological mechanisms of the stress response and history of childhood stress exposure may be critical to understanding differential treatment outcomes in MDD. ClinicalTrials.gov: NCT01655706 Canadian Biomarker Integration Network for Depression Study.
Collapse
Affiliation(s)
- Raegan Mazurka
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.
| | | | - Stefanie Hassel
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Nikita Nogovitsyn
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
| | - Laura M Fiori
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Stephen C Strother
- Rotman Research Institute, Baycrest, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | | | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Mood Disorders Program, St. Joseph's Healthcare Hamilton, ON, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Glenda M MacQueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Roumen V Milev
- Departments of Psychiatry and Psychology, And Providence Care Hospital, Queen's University, Kingston, ON, Canada
| | - Susan Rotzinger
- Department of Psychiatry, University of Toronto, Canada; Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
| | - Gustavo Turecki
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, University of Toronto, Canada; Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
| | - Kate L Harkness
- Department of Psychology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
37
|
Diksha, Singh L, Bhatia D. Mechanistic interplay of different mediators involved in mediating the anti-depressant effect of isoflavones. Metab Brain Dis 2024; 39:199-215. [PMID: 37855935 DOI: 10.1007/s11011-023-01302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
Depression is one of the most prevalent severe CNS disorders, which negatively affects social lives, the ability to work, and the health of people. As per the World Health Organisation (WHO), it is a psychological disorder that is estimated to be a leading disease by 2030. Clinically, various medicines have been formulated to treat depression but they are having a setback due to their side effects, slow action, or poor bioavailability. Nowadays, flavonoids are regarded as an essential component in a variety of nutraceutical, pharmaceutical and medicinal. Isoflavones are a distinctive and important subclass of flavonoids that are generally obtained from soybean, chickpeas, and red clover. The molecules of this class have been extensively explored in various CNS disorders including depression and anxiety. Isoflavones such as genistein, daidzein, biochanin-A, formononetin, and glycitein have been reported to exert an anti-depressant effect through the modulation of different mediators. Fatty acid amide hydrolase (FAAH) mediated depletion of anandamide and hypothalamic-pituitary-adrenal (HPA) axis-mediated modulation of brain-derived neurotrophic factor (BDNF), monoamine oxidase (MAO) mediated depletion of biogenic amines and inflammatory signaling are the important underlying pathways leading to depression. Upregulation in the levels of BDNF, anandamide, antioxidants and monoamines, along with inhibition of MAO, FAAH, HPA axis, and inflammatory stress are the major modulations produced by different isoflavones in the observed anti-depressant effect. Therefore, the present review has been designed to explore the mechanistic interplay of various mediators involved in mediating the anti-depressant action of different isoflavones.
Collapse
Affiliation(s)
- Diksha
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Deepika Bhatia
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
38
|
Ngoupaye GT, Mokgokong M, Madlala T, Mabandla MV. Alteration of the α5 GABA receptor and 5HTT lead to cognitive deficits associated with major depressive-like behaviors in a 14-day combined stress rat model. Int J Neurosci 2023; 133:959-976. [PMID: 34937496 DOI: 10.1080/00207454.2021.2019033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 07/13/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Current models used to study the pathophysiology of major depressive disorder (MDD) are laborious and time consuming. This study examined the effect of a 14-day combined stress model (CS; corticosterone injection and restraint stress) in male Sprague-Dawley rats and also compare the effect of CS versus 28-day corticosterone treatment on depressive-like behaviour and cognitive deficits. MATERIEL AND METHODS Depressive-like behaviours and cognitive deficits were assessed in the forced swim test (FST), sucrose preference (SPT), Morris water maze (MWM) and novel object recognition (NORT) tests. Real-time PCR and ELISA were respectively used to detect expression of the serotonin transporter (5-HTT), serotonin 1 A receptor (5-HT1A), α5 GABAA receptor, and the concentrations of corticosterone (plasma), GABA and acetylcholinesterase (AChE) in the hippocampus and Prefrontal cortex (PFC).Results CS group showed increased immobility time in the FST, time to reach the MWM platform, higher corticosterone level, and increased expressions of hippocampal and PFC 5-HT1A and α5 GABAA receptors, and AChE compared to their control groups. In contrast, reductions in SPT ratio, discrimination index in NORT, time in target quadrant, and hippocampal 5-HTT expression was noted relative to their control group. Compared to the 28-day corticosterone only group, PFC 5-HT1A, Hippocampal 5-HTT were reduced, while PFC 5-HTT, Hippocampal α5 GABAA receptors, and AChE concentrations were higher in the CS group. CONCLUSION Our CS model induced depressive-like behaviour with early cognitive deficits in rats affecting both hippocampus and PFC. The CS model may be useful in investigating new and comprehensive treatment strategies for MDD.
Collapse
Affiliation(s)
- Gwladys Temkou Ngoupaye
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Makwena Mokgokong
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thobeka Madlala
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Musa Vuyisile Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
39
|
Ron Mizrachi B, Tendler A, Karin O, Milo T, Haran D, Mayo A, Alon U. Major depressive disorder and bistability in an HPA-CNS toggle switch. PLoS Comput Biol 2023; 19:e1011645. [PMID: 38055769 DOI: 10.1371/journal.pcbi.1011645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023] Open
Abstract
Major depressive disorder (MDD) is the most common psychiatric disorder. It has a complex and heterogeneous etiology. Most treatments take weeks to show effects and work well only for a fraction of the patients. Thus, new concepts are needed to understand MDD and its dynamics. One of the strong correlates of MDD is increased activity and dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis which produces the stress hormone cortisol. Existing mathematical models of the HPA axis describe its operation on the scale of hours, and thus are unable to explore the dynamic on the scale of weeks that characterizes many aspects of MDD. Here, we propose a mathematical model of MDD on the scale of weeks, a timescale provided by the growth of the HPA hormone glands under control of HPA hormones. We add to this the mutual inhibition of the HPA axis and the hippocampus and other regions of the central nervous system (CNS) that forms a toggle switch. The model shows bistability between euthymic and depressed states, with a slow timescale of weeks in its dynamics. It explains why prolonged but not acute stress can trigger a self-sustaining depressive episode that persists even after the stress is removed. The model explains the weeks timescale for drugs to take effect, as well as the dysregulation of the HPA axis in MDD, based on gland mass changes. This understanding of MDD dynamics may help to guide strategies for treatment.
Collapse
Affiliation(s)
- Ben Ron Mizrachi
- Dept. Molecular Cell biology, Weizmann Institute of Science, Rehovot, Israel
| | - Avichai Tendler
- Dept. Molecular Cell biology, Weizmann Institute of Science, Rehovot, Israel
| | - Omer Karin
- Dept. Molecular Cell biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Milo
- Dept. Molecular Cell biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dafna Haran
- Dept. Molecular Cell biology, Weizmann Institute of Science, Rehovot, Israel
| | - Avi Mayo
- Dept. Molecular Cell biology, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Alon
- Dept. Molecular Cell biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
40
|
Chalermwongkul C, Khamphukdee C, Maneenet J, Daodee S, Monthakantirat O, Boonyarat C, Chotritthirong Y, Awale S, Kijjoa A, Chulikhit Y. Antidepressant-like Effect of Oroxylum indicum Seed Extract in Mice Model of Unpredictable Chronic Mild Stress. Nutrients 2023; 15:4742. [PMID: 38004136 PMCID: PMC10675042 DOI: 10.3390/nu15224742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Major depressive disorder (MDD) is one life-threatening disorder that is prevalent worldwide. The evident etiology of this disease is still poorly understood. Currently, herbal medicine is gaining more interest as an alternative antidepressant. Oroxylum indicum, which is used in traditional medicine and contains a potential antidepressive compound, baicalein, could have an antidepressive property. An in vitro monoamine oxidase-A (MAO-A) inhibitory assay was used to preliminarily screening for the antidepressant effect of O. indicum seed (OIS) extract. Mice were subjected to unpredictable chronic mild stress (UCMS) for 6 weeks, and the daily administration of OIS extract started from week 4. The mechanisms involved in the antidepressive activity were investigated. The OIS extract significantly alleviated anhedonia and despair behaviors in the UCMS-induced mouse model via two possible pathways: (i) it normalized the HPA axis function via the restoration of negative feedback (decreased FKBP5 and increased GR expressions) and the reduction in the glucocorticoid-related negative gene (SGK-1), and (ii) it improved neurogenesis via the escalation of BDNF and CREB expressions in the hippocampus and the frontal cortex. In addition, an HPLC analysis of the OIS extract showed the presence of baicalin, baicalein, and chrysin as major constituents. All of the results obtained from this study emphasize the potential of OIS extract containing baicalin and baicalein as an effective and novel alternative treatment for MDD.
Collapse
Affiliation(s)
- Chorpeth Chalermwongkul
- Graduated School of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (C.C.); (Y.C.)
| | - Charinya Khamphukdee
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (C.K.); (A.K.)
| | - Juthamart Maneenet
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (J.M.); (S.D.); (O.M.); (C.B.)
| | - Supawadee Daodee
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (J.M.); (S.D.); (O.M.); (C.B.)
| | - Orawan Monthakantirat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (J.M.); (S.D.); (O.M.); (C.B.)
| | - Chantana Boonyarat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (J.M.); (S.D.); (O.M.); (C.B.)
| | - Yutthana Chotritthirong
- Graduated School of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (C.C.); (Y.C.)
| | - Suresh Awale
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0154, Japan;
| | - Anake Kijjoa
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (C.K.); (A.K.)
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Yaowared Chulikhit
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (J.M.); (S.D.); (O.M.); (C.B.)
| |
Collapse
|
41
|
Park I, Kim J, Kim M, Lim DW, Jung J, Kim MJ, Song J, Cho S, Um MY. Sargassum horneri Extract Attenuates Depressive-like Behaviors in Mice Treated with Stress Hormone. Antioxidants (Basel) 2023; 12:1841. [PMID: 37891920 PMCID: PMC10604295 DOI: 10.3390/antiox12101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Sargassum horneri, a brown seaweed, is known for its various health benefits; however, there are no reports on its effects on depression. This study aimed to investigate the antidepressant effects of S. horneri ethanol extract (SHE) in mice injected with corticosterone (CORT) and to elucidate the underlying molecular mechanisms. Behavioral tests were conducted, and corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and CORT levels were measured. A fluorometric monoamine oxidase (MAO) enzyme inhibition assay was performed. Neurotransmitters like serotonin, dopamine, and norepinephrine levels were determined. Moreover, the ERK-CREB-BDNF signaling pathway in the prefrontal cortex and hippocampus was evaluated. Behavioral tests revealed that SHE has antidepressant effects by reducing immobility time and increasing time spent in open arms. Serum CRH, ACTH, and CORT levels decreased in the mice treated with SHE, as did the glucocorticoid-receptor expression in their brain tissues. SHE inhibited MAO-A and MAO-B activities. In addition, SHE increased levels of neurotransmitters. Furthermore, SHE activated the ERK-CREB-BDNF pathway in the prefrontal cortex and hippocampus. These findings suggest that SHE has antidepressant effects in CORT-injected mice, via the regulation of the hypothalamic-pituitary-adrenal axis and monoaminergic pathway, and through activation of the ERK-CREB-BDNF signaling pathway. Thus, our study suggests that SHE may act as a natural antidepressant.
Collapse
Affiliation(s)
- Inhye Park
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jiwoo Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Minji Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Dong Wook Lim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jonghoon Jung
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Min Jung Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Junho Song
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Min Young Um
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
42
|
Mázala-de-Oliveira T, Silva BT, Campello-Costa P, Carvalho VF. The Role of the Adrenal-Gut-Brain Axis on Comorbid Depressive Disorder Development in Diabetes. Biomolecules 2023; 13:1504. [PMID: 37892186 PMCID: PMC10604999 DOI: 10.3390/biom13101504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetic patients are more affected by depression than non-diabetics, and this is related to greater treatment resistance and associated with poorer outcomes. This increase in the prevalence of depression in diabetics is also related to hyperglycemia and hypercortisolism. In diabetics, the hyperactivity of the HPA axis occurs in parallel to gut dysbiosis, weakness of the intestinal permeability barrier, and high bacterial-product translocation into the bloodstream. Diabetes also induces an increase in the permeability of the blood-brain barrier (BBB) and Toll-like receptor 4 (TLR4) expression in the hippocampus. Furthermore, lipopolysaccharide (LPS)-induced depression behaviors and neuroinflammation are exacerbated in diabetic mice. In this context, we propose here that hypercortisolism, in association with gut dysbiosis, leads to an exacerbation of hippocampal neuroinflammation, glutamatergic transmission, and neuronal apoptosis, leading to the development and aggravation of depression and to resistance to treatment of this mood disorder in diabetic patients.
Collapse
Affiliation(s)
- Thalita Mázala-de-Oliveira
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.M.-d.-O.); (B.T.S.)
| | - Bruna Teixeira Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.M.-d.-O.); (B.T.S.)
- Programa de Pós-Graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil;
| | - Paula Campello-Costa
- Programa de Pós-Graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil;
| | - Vinicius Frias Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.M.-d.-O.); (B.T.S.)
- Programa de Pós-Graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil;
- Laboratório de Inflamação, Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação—INCT-NIM, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| |
Collapse
|
43
|
Cao Y, Song Y, Ding Y, Ni J, Zhu B, Shen J, Miao L. The role of hormones in the pathogenesis and treatment mechanisms of delirium in ICU: The past, the present, and the future. J Steroid Biochem Mol Biol 2023; 233:106356. [PMID: 37385414 DOI: 10.1016/j.jsbmb.2023.106356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Delirium is an acute brain dysfunction. As one of the common psychiatric disorders in ICU, it can seriously affect the prognosis of patients. Hormones are important messenger substances found in the human body that help to regulate and maintain the function and metabolism of various tissues and organs. They are also one of the most commonly used drugs in clinical practice. Recent evidences suggest that aberrant swings in cortisol and non-cortisol hormones might induce severe cognitive impairment, eventually leading to delirium. However, the role of hormones in the pathogenesis of delirium still remains controversial. This article reviews the recent research on risk factors of delirium and the association between several types of hormones and cognitive dysfunction. These mechanisms are expected to offer novel ideas and clinical relevance for the treatment and prevention of delirium.
Collapse
Affiliation(s)
- Yuchun Cao
- Department of Critical Care Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Yuwei Song
- Department of Critical Care Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Yuan Ding
- Department of Critical Care Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Jiayuan Ni
- Department of Critical Care Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Bin Zhu
- Department of Critical Care Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Jianqin Shen
- Department of Blood Purification Center, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China.
| | - Liying Miao
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China.
| |
Collapse
|
44
|
Chen G. Molecular basis of breast cancer with comorbid depression and the mechanistic insights of Xiaoyaosan in treating breast cancer-associated depression. Medicine (Baltimore) 2023; 102:e35157. [PMID: 37747031 PMCID: PMC10519572 DOI: 10.1097/md.0000000000035157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Depression and breast cancer (BC) have been found to have a shared genetic basis, multiple loci of effect, and a presumed causal relationship. The treatment of BC combined with depression poses significant challenges. This study aims to use bioinformatics and network pharmacology to explore the molecular basis of BC combined with depression and to elucidate the potential mechanisms of Xiaoyaosan (XYS) in treating this disease. The molecular background of BC complicated with depression was discovered via data mining and bioinformatics. The molecular mechanism of XYS in the treatment of BC with depression was investigated by network pharmacology. The binding affinity between targets and active compounds was evaluated by molecular docking. The impact of XYS on the gene and protein expression of matrix metallopeptidase 9 (MMP9) in microglial cells was assessed using RT-quantitative PCR and western blot analysis, respectively. Differential expression analysis was conducted to identify genes associated with BC, revealing that 2958 genes were involved, with 277 of these genes also being related to depression. XYS was found to contain 173 active compounds and 342 targets, with 44 of these targets being involved in regulating the progression of BC and depression. Enrichment analysis was performed to identify pathways associated with these targets, revealing that they were related to cell proliferation, catalytic activity, cell communication, and interleukin-18 signaling and LXR/RXR activation. Network analysis was conducted to identify key targets of Xiaoyaosan in treating BC combined with depression, with EGF, interleukin 6, epidermal growth factor receptor, and peroxisome proliferator activated receptor gamma being identified as important targets. Molecular docking was also performed to assess the binding affinity between key targets and active compounds, with puerarin showing the strongest affinity for MMP9. In microglial cells, XYS significantly enhances the gene and protein expression of MMP9. This study elucidated the pharmacological mechanism of co-treatment for BC patients complicated with depression and the pharmacological mechanism of XYS against BC plus depression.
Collapse
Affiliation(s)
- Gang Chen
- Department of Breast Surgery, Hangzhou Fuyang Women and Children Hospital, Hangzhou, China
| |
Collapse
|
45
|
González-Arias C, Sánchez-Ruiz A, Esparza J, Sánchez-Puelles C, Arancibia L, Ramírez-Franco J, Gobbo D, Kirchhoff F, Perea G. Dysfunctional serotonergic neuron-astrocyte signaling in depressive-like states. Mol Psychiatry 2023; 28:3856-3873. [PMID: 37773446 PMCID: PMC10730416 DOI: 10.1038/s41380-023-02269-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
Astrocytes play crucial roles in brain homeostasis and are regulatory elements of neuronal and synaptic physiology. Astrocytic alterations have been found in Major Depressive Disorder (MDD) patients; however, the consequences of astrocyte Ca2+ signaling in MDD are poorly understood. Here, we found that corticosterone-treated juvenile mice (Cort-mice) showed altered astrocytic Ca2+ dynamics in mPFC both in resting conditions and during social interactions, in line with altered mice behavior. Additionally, Cort-mice displayed reduced serotonin (5-HT)-mediated Ca2+ signaling in mPFC astrocytes, and aberrant 5-HT-driven synaptic plasticity in layer 2/3 mPFC neurons. Downregulation of astrocyte Ca2+ signaling in naïve animals mimicked the synaptic deficits found in Cort-mice. Remarkably, boosting astrocyte Ca2+ signaling with Gq-DREADDS restored to the control levels mood and cognitive abilities in Cort-mice. This study highlights the important role of astrocyte Ca2+ signaling for homeostatic control of brain circuits and behavior, but also reveals its potential therapeutic value for depressive-like states.
Collapse
Affiliation(s)
- Candela González-Arias
- Cajal Institute, CSIC, 28002, Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, 28029, Spain
| | - Andrea Sánchez-Ruiz
- Cajal Institute, CSIC, 28002, Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, 28029, Spain
| | | | | | | | - Jorge Ramírez-Franco
- Institut de Neurosciences de la Timone, Aix-Marseille Université (AMU) & CNRS, UMR7289, 13005, Marseille, France
| | - Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421, Homburg, Germany
| | | |
Collapse
|
46
|
Dong H, Tang X, Ye J, Xiao W. 16S rRNA gene sequencing reveals the effect of fluoxetine on gut microbiota in chronic unpredictable stress-induced depressive-like rats. Ann Gen Psychiatry 2023; 22:27. [PMID: 37537583 PMCID: PMC10398965 DOI: 10.1186/s12991-023-00458-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVES Gut microbiota is relevant to the pathogenesis of mental disorders including depression. This study aimed to investigate the influence of fluoxetine (FLX) on the gut microbiota in rats with Chronic Unpredictable Mild Stresses (CUMS)-induced depression. RESULTS We confirmed that the 28-day CUMS-induced depression rat model. Chronic FLX administration weakly improved depressive-like behaviors in rats. Illumina 16S rRNA gene sequencing on rat feces showed CUMS increased the relative abundance of Firmicutes (60.31% vs. 48.09% in Control, p < 0.05) and Lactobacillus genus (21.06% vs. 6.82% in control, p < 0.05); FLX and CUMS increased Bacilli class (20.00% ~ 24.08% vs. 10.31% in control, p < 0.05). CONCLUSION Collectively, our study showed that both CUMS and FLX changed the compositions of gut microbiota in rats. FLX and CUMS distinctly regulated the gut microbiota in depressed rats.
Collapse
Affiliation(s)
- Hui Dong
- Teaching hospital of Yangzhou University, Wutaishan Hospital, Yangzhou, Jiangsu Province, China.
| | - Xiaowei Tang
- Teaching hospital of Yangzhou University, Wutaishan Hospital, Yangzhou, Jiangsu Province, China
| | - Jie Ye
- Teaching hospital of Yangzhou University, Wutaishan Hospital, Yangzhou, Jiangsu Province, China
| | - Wenhuan Xiao
- Teaching hospital of Yangzhou University, Wutaishan Hospital, Yangzhou, Jiangsu Province, China
| |
Collapse
|
47
|
Correia AS, Cardoso A, Vale N. BDNF Unveiled: Exploring Its Role in Major Depression Disorder Serotonergic Imbalance and Associated Stress Conditions. Pharmaceutics 2023; 15:2081. [PMID: 37631295 PMCID: PMC10457827 DOI: 10.3390/pharmaceutics15082081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a significant role in the survival and development of neurons, being involved in several diseases such as Alzheimer's disease and major depression disorder. The association between BDNF and major depressive disorder is the subject of extensive research. Indeed, numerous studies indicate that decreased levels of BDNF are linked to an increased occurrence of depressive symptoms, neuronal loss, and cortical atrophy. Moreover, it has been observed that antidepressive therapy can help restore BDNF levels. In this review, we will focus on the role of BDNF in major depression disorder serotonergic imbalance and associated stress conditions, particularly hypothalamic-pituitary-adrenal (HPA) axis dysregulation and oxidative stress. All of these features are highly connected to BDNF signaling pathways in the context of this disease, and exploring this topic will aim to advance our understanding of the disorder, improve diagnostic and treatment approaches, and potentially identify new therapeutic targets to alleviate the heavy burden of depression on society.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Armando Cardoso
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
48
|
Mayagoitia-Novales L, Cerda-Molina AL, Mendoza-Mojica SA, Borráz-León JI, Hernández-Melesio MA, Saldívar-Hernández GJ. Psychopathology, cortisol and testosterone responses to traumatic images: differences between urban and suburban citizens in a middle-income country. Front Psychol 2023; 14:1187248. [PMID: 37484079 PMCID: PMC10360937 DOI: 10.3389/fpsyg.2023.1187248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background Living in urban places has been associated with a higher risk of psychopathology as well as with altered hypothalamus-pituitary-adrenal (HPA) axis and consequently altered cortisol response, but studies have concentrated mainly in high-income countries population. The role of other hormones such as testosterone, implicated in stress response and with human social behaviors, have not yet been investigated. The aim of this study was to compare symptoms of psychopathology as well as cortisol and testosterone in response to traumatic images between urban and suburban people in a middle-income country. Methods A sample of 67 women and 55 men (N = 122, 18-45 years) from urban and suburban places of Mexico participated in the study. We quantified salivary cortisol and testosterone in response to images with traumatic and violent content (basal, 15, 30, and 45 min after images). Participants answered a general information questionnaire and the Symptom Checklist-90-R to assess their psychopathological traits. We performed Generalized Estimating Equation Models to analyze hormonal levels and MANOVAs to compare differences in participants' psychopathology symptoms. Area under the curve respect to ground (AUCG) of hormonal levels and sex differences were also compared. Results Suburban citizens showed no cortisol response, whereas urban people showed a cortisol peak 15 min after the image's exposure; however, suburban people had higher AUCG and basal levels compared to urban ones. Contrastingly, testosterone levels declined in all participants excepting the urban women, who showed no testosterone response. Although similar testosterone profile, AUCG levels were higher in urban than suburban men. Participants living in suburban areas had higher scores of somatizations, obsessive-compulsive, and interpersonal sensitivity, as well as more sleep disorders than participants living in urban areas. Conclusion This study offers novel evidence about differences in cortisol and testosterone responses to a social stressor and in mental health indicators between a population of urban and suburban citizens, highlighting the impact of urbanization process on physiological and psychological outcomes in a middle-income country.
Collapse
Affiliation(s)
- Lilian Mayagoitia-Novales
- Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico, Mexico
| | - Ana Lilia Cerda-Molina
- Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico, Mexico
| | | | - Javier I. Borráz-León
- Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico, Mexico
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, United States
| | - M. Alejandra Hernández-Melesio
- Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico, Mexico
| | | |
Collapse
|
49
|
Syed SA, Sinha R, Milivojevic V, MacDougall A, LaValle H, Angarita GA, Fox HC. Hypothalamic-pituitary-adrenal and autonomic response to psychological stress in abstinent alcohol use disorder individuals with and without depressive symptomatology. Hum Psychopharmacol 2023; 38:e2867. [PMID: 37165544 DOI: 10.1002/hup.2867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Stress and depression have each been associated with relapse risk. In clinical practice, chronic alcohol use is often accompanied by poor emotional and self-regulatory processes. Tonic and phasic changes in stress responsivity impact an individual's relapse risk to alcohol. A further complicating factor is the pervasive coexistence of depressive symptoms in those with Alcohol Use Disorder (AUD), where the contribution of depressive symptomatology to these processes is not well understood. Individuals with AUD (AD) (21 with and 12 without sub-clinical depressive symptoms) and 37 social drinking controls (16 with and 21 without sub-clinical depressive symptoms) as part of a more extensive study (Fox et al., 2019). All participants were exposed to two 5-min personalized guided imagery conditions (stress and neutral) in a randomized and counterbalanced order across consecutive days. Alcohol craving, negative mood, Stroop performance, and plasma measures (cortisol, adrenocorticotrophic hormone, and salivary alpha-amylase) were collected before and after imagery exposure. RESULTS Elevations in autonomic response (heart rate) to imagery (stress and neutral) were observed as a function of drinking (in both depressed and non-depressed individuals with alcohol use disorder compared with depressed and non-depressed social drinkers). Conversely, suppressed cortisol following stress was observed as a function of depressive symptomatology across both drinking groups. Individuals with comorbid AD and depressive symptoms demonstrated attenuated Adrenocorticotropic Hormone and poor Stroop performance compared with the other groups, indicating an interactive effect between drinking and depression on pituitary and inhibitory systems. CONCLUSION Sub-clinical depressive pathophysiology may be distinct from drinking severity and may alter relapse-related stress adaptations during protracted abstinence from alcohol.
Collapse
Affiliation(s)
- Shariful A Syed
- Department of Psychiatry, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Schizophrenia and Neuropharmacology Research Group, VA Connecticut Health System, West Haven, Connecticut, USA
| | - Rajita Sinha
- Department of Psychiatry, The Yale Stress Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Verica Milivojevic
- Department of Psychiatry, The Yale Stress Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alicia MacDougall
- Department of Psychiatry, The Yale Stress Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Heather LaValle
- Department of Psychiatry, The Yale Stress Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gustavo A Angarita
- Department of Psychiatry, Clinical Neuroscience Research Unit, The Connecticut Mental Health Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Helen C Fox
- Department of Psychiatry, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Department of Psychiatry, The Yale Stress Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
50
|
Mingardi J, Ndoj E, Bonifacino T, Misztak P, Bertoli M, La Via L, Torazza C, Russo I, Milanese M, Bonanno G, Popoli M, Barbon A, Musazzi L. Functional and Molecular Changes in the Prefrontal Cortex of the Chronic Mild Stress Rat Model of Depression and Modulation by Acute Ketamine. Int J Mol Sci 2023; 24:10814. [PMID: 37445990 DOI: 10.3390/ijms241310814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Stress is a primary risk factor in the onset of neuropsychiatric disorders, including major depressive disorder (MDD). We have previously used the chronic mild stress (CMS) model of depression in male rats to show that CMS induces morphological, functional, and molecular changes in the hippocampus of vulnerable animals, the majority of which were recovered using acute subanesthetic ketamine in just 24 h. Here, we focused our attention on the medial prefrontal cortex (mPFC), a brain area regulating emotional and cognitive functions, and asked whether vulnerability/resilience to CMS and ketamine antidepressant effects were associated with molecular and functional changes in the mPFC of rats. We found that most alterations induced by CMS in the mPFC were selectively observed in stress-vulnerable animals and were rescued by acute subanesthetic ketamine, while others were found only in resilient animals or were induced by ketamine treatment. Importantly, only a few of these modifications were also previously demonstrated in the hippocampus, while most are specific to mPFC. Overall, our results suggest that acute antidepressant ketamine rescues brain-area-specific glutamatergic changes induced by chronic stress.
Collapse
Affiliation(s)
- Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Elona Ndoj
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Paulina Misztak
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Matteo Bertoli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Carola Torazza
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy
| | - Isabella Russo
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy
| | - Maurizio Popoli
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, 20133 Milano, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|