1
|
Atnafu TA, Usman AW, Azerefegne EF, Shemsu ES. Giardiasis: Report of a Case Refractory to Treatment. Clin Case Rep 2025; 13:e70109. [PMID: 39931719 PMCID: PMC11808046 DOI: 10.1002/ccr3.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
Giardiasis, an intestinal infection caused by Giardia duodenalis, remains a significant global health concern. Although standard treatments such as metronidazole are typically effective, there are increasing reports of treatment resistance, highlighting the need for alternative therapeutic strategies for which established guidelines do not exist. This case report illustrates the challenges in diagnosing and managing treatment-refractory giardiasis. A 32-year-old male presented with chronic symptoms of watery diarrhea, abdominal pain, and significant weight loss, despite multiple rounds of standard therapies, including metronidazole and albendazole. The persistent presence of Giardia lamblia in stool samples despite appropriate treatments, underscores the necessity for clinicians to recognize treatment failures and explore alternative strategies in the absence of standard protocols. This instance, prolonged combination therapy with metronidazole and albendazole proved effective after previous treatment failures, resulting in symptom resolution and negative stool tests. Clinicians should consider treatment-refractory giardiasis as a differential diagnosis in patients with chronic gastrointestinal complaints and a history of giardiasis treatment, enabling earlier diagnosis and intervention. This case emphasizes the need for ongoing monitoring of treatment-refractory giardiasis and calls for further study of resistant strains. It also provides an effective approach for managing cases of treatment-resistant giardiasis.
Collapse
Affiliation(s)
- Thomas Asfaw Atnafu
- Department of Internal MedicineCollege of Health Sciences, Addis Ababa UniversityAddis AbabaEthiopia
| | | | - Eskedar Ferdu Azerefegne
- Infectious Unit, Department of Internal MedicineCollege of Health Sciences, Addis Ababa UniversityAddis AbabaEthiopia
| | - Elham Sany Shemsu
- Infectious Unit, Department of Internal MedicineCollege of Health Sciences, Addis Ababa UniversityAddis AbabaEthiopia
| |
Collapse
|
2
|
Huang SX, Hu K, Fu PF, Li SA, Liu Y, Niu Z, Zhou DH. Occurrence and Multi-Locus Genotyping of Giardia duodenalis in Black Goats from Fujian Province, China. Animals (Basel) 2025; 15:199. [PMID: 39858199 PMCID: PMC11758307 DOI: 10.3390/ani15020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/29/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Giardia duodenalis is a zoonotic parasite that causes gastrointestinal diseases in both humans and animals. To evaluate the prevalence and genetic diversity of G. duodenalis in black goats, we collected 539 fecal samples from nine districts in Fujian Province, China. The presence of G. duodenalis was confirmed through nested PCR targeting the SSU rRNA gene, and genotyping was performed at the beta-giardin, glutamate dehydrogenase, and triosephosphate isomerase loci. Among the samples, 115 tested positive, yielding an overall infection rate of 21.34%. Assemblages A and E were identified, with assemblage E being predominant. Statistical analysis revealed significant regional differences in infection rates (p < 0.01), with Zhangzhou exhibiting the highest infection rate (39%) and Fuzhou the lowest (3.13%). No significant differences in infection rates were observed based on age: 24.56% (56/228) for goats <1 year, 14.92% (27/181) for goats 1-2 years, 26.8% (26/97) for goats 2-3 years, and 18.18% (6/33) for goats ≥ 3 years. Similarly, no significant differences were found between sexes: 24.84% (40/161) for males and 19.84% (75/378) for females. Notably, assemblage A, a zoonotic genotype, was detected, indicating a potential risk of cross-species transmission. This study contributes to a deeper understanding of G. duodenalis in black goats and provides critical data for the development of targeted control strategies in Fujian Province.
Collapse
Affiliation(s)
- Shou-Xiao Huang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.-X.H.); (K.H.); (P.-F.F.); (S.-A.L.); (Y.L.)
| | - Kai Hu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.-X.H.); (K.H.); (P.-F.F.); (S.-A.L.); (Y.L.)
- Fujian Zhuyian Agriculture Development Co., Ltd., Fuzhou 350000, China
| | - Peng-Fei Fu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.-X.H.); (K.H.); (P.-F.F.); (S.-A.L.); (Y.L.)
| | - Si-Ang Li
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.-X.H.); (K.H.); (P.-F.F.); (S.-A.L.); (Y.L.)
| | - Yang Liu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.-X.H.); (K.H.); (P.-F.F.); (S.-A.L.); (Y.L.)
| | - Zhipeng Niu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.-X.H.); (K.H.); (P.-F.F.); (S.-A.L.); (Y.L.)
| | - Dong-Hui Zhou
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.-X.H.); (K.H.); (P.-F.F.); (S.-A.L.); (Y.L.)
| |
Collapse
|
3
|
Díaz-Pérez L, Salusso A, Patolsky R, Mayol G, Quassollo G, Feliziani C, Touz MC, Rópolo AS. Lysine methyltransferase 2 plays a key role in the encystation process in the parasite Giardia lamblia. Acta Trop 2024; 257:107295. [PMID: 38906362 DOI: 10.1016/j.actatropica.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Histone post-translational modifications are extensively studied for their role in regulating gene transcription and cellular environmental adaptation. Research into these modifications has recently begun in the protozoan parasite Giardia lamblia, focusing on histone-modifying enzymes and specific post-translational changes. In the transformation from the trophozoite to the cyst form in the life cycle of this parasite, significant morphological and genetic alterations occur, culminating in the synthesis of cyst wall proteins responsible for forming the protective cyst wall. It has been previously demonstrated that histone deacetylation is required during encystation and that the enzyme lysine methyltransferase 1 is involved in the upregulation of encystation. Our study aims to extend the analysis to lysine methyltransferase 2 (GlKMT2) function. For this, two constructs were generated: one that downregulate the expression of GLKMT2 via antisense (glkmt2-as transgenic cells) and the other overexpressing GlKMT2 (glkmt2-ha transgenic cells). We found that the glktm2-as transgenic cells showed an arrest in progress at the late encystation stage. Consequently, the number of cysts produced was lower than that of the control cells. On the other hand, we found that the overexpression of GlKMT2 acts as a negative mutant of the enzyme. In this way, these glktm2-ha transgenic cells showed the same behavior during growth and encystation as glkmt2-as transgenic cells. This interplay between different enzymes acting during encystation reveals the complex process behind the differentiation of the parasite. Understanding how these enzymes play their role during the encystation of the parasite would allow the design of inhibitors to control the parasite.
Collapse
Affiliation(s)
- Luciano Díaz-Pérez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Agostina Salusso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rocío Patolsky
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gonzalo Mayol
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) - Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gonzalo Quassollo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Carolina Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea S Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
4
|
Alkholy UM, El Gebaly SM, Morsi WEMA, Elawamy WE, Etewa SE, Yousef AM. The Impact of Parasitic Infestation on Nutritional Status and Micronutrients among Children. J Parasitol Res 2024; 2024:6996968. [PMID: 38576864 PMCID: PMC10994709 DOI: 10.1155/2024/6996968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
Background Micronutrient deficiency is a great problem that is augmented by infection and poor nutrition. Iron, zinc, and selenium are trace elements needed for human growth. Objective To investigate the impact of parasitic infection on nutritional status and serum iron, zinc, and selenium in children attending Pediatrics Outpatient Clinic of Zagazig University Hospitals. Subjects and Methods. A case-control study included 140 parasitic infected children and one hundred age- and sex-matched controls. Anthropometric measures were evaluated using specific Egyptian growth charts. Parasites were detected in stool specimens using standard microscopic methods. Atomic absorption spectrophotometer was used for the detection of serum iron, zinc, and selenium. To examine the statistical relationship between intestinal parasitic infection and the relevant variables (gender, residence, socioeconomic status, and age group), the nonparametric chi-square (χ2) test was used. Data were analyzed statistically using SPSS version 25. Results Parasitic infected children showed a statistically significant low weight for age, height for age, and BMI. Serum iron, zinc, and selenium were significantly lower in parasitic infected children than controls. Serum iron, zinc, and selenium have significant positive correlations with weight, height, and BMI, respectively. Conclusion Studied serum micronutrients especially zinc and iron and anthropometric indices were significantly lower in parasitically infected children.
Collapse
Affiliation(s)
- Usama M. Alkholy
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig 44511, Sharqyia, Egypt
| | - Sherief M. El Gebaly
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig 44511, Sharqyia, Egypt
| | - Walaa E. M. A. Morsi
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Giza, Egypt
| | - Waleed E. Elawamy
- Department of Medical Parasitology, Faculty of Medicine, Benha University, Benha 13512, Qalioubyia, Egypt
| | - Samia E. Etewa
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Asmaa M. Yousef
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
5
|
Kuzi S, Zgairy S, Byrne BA, Suchodolski J, Turjeman SC, Park SY, Aroch I, Hong M, Koren O, Lavy E. Giardiasis and diarrhea in dogs: Does the microbiome matter? J Vet Intern Med 2024; 38:152-160. [PMID: 37890857 PMCID: PMC10800182 DOI: 10.1111/jvim.16894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Giardia duodenalis (Gd) causes intestinal parasitosis. The involvement of the intestinal microbiome in determining the infection's clinical phenotype is unknown. OBJECTIVE Investigate the fecal microbiome features in dogs with giardiasis. ANIMALS AND METHODS Cross-sectional study, including fecal samples of kenneled dogs with Gd diagnosed by fecal Giardia antigen dot ELISA. The fecal microbial compositional characteristics and dysbiosis index (DI) were compared between diarrheic and nondiarrheic dogs. RESULTS Fecal samples of 38 Gd-infected dogs (diarrheic, 21; nondiarrheic, 17) were included. No differences were found in Faith's phylogenic diversity and beta diversity (weighted UniFrac distances) and in specific taxa abundances at the phylum, genus, and species levels, as well as in alpha and beta diversities between diarrheic and nondiarrheic dogs, and also when divided by sex or age. Among diarrheic dogs, alpha diversity was higher in males than in females (pairwise Kruskal-Wallis, q = 0.01). Among males, fecal abundances of the genus Clostridium (W = 19) and Clostridium spiroforme species (W = 33) were higher in diarrheic compared to nondiarrheic dogs. In diarrheic dog fecal samples, Proteobacteria were more prevalent (W = 1), whereas Verrucomicrobia were less prevalent in dogs <1 year of age than in older dogs. The fecal sample DI of 19 diarrheic and 19 nondiarrheic dogs was similar (median, -0.2; range, -4.3 to 4.5 and median, -1.0; range, -4.3 to 5.8, respectively). CONCLUSIONS The fecal microbial composition of symptomatic and asymptomatic dogs with giardiasis is similar. Based on fecal DI, giardiasis is not characterized by prominent dysbiosis. Other host and parasite characteristics might determine the severity of giardiasis in dogs.
Collapse
Affiliation(s)
- Sharon Kuzi
- Hebrew University Veterinary Teaching Hospital and Koret School of Veterinary Medicine, Robert H. Smith Faculty of AgricultureFood and Environment Hebrew University of JerusalemRehovotIsrael
| | - Soha Zgairy
- Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Barbara A. Byrne
- Department of Pathology, Microbiology, and ImmunologyUniversity of California—DavisDavisCaliforniaUSA
| | - Jan Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical SciencesTexas A&M UniversityCollege StationTexasUSA
| | | | - So Young Park
- Gastrointestinal Laboratory, Department of Small Animal Clinical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Itamar Aroch
- Hebrew University Veterinary Teaching Hospital and Koret School of Veterinary Medicine, Robert H. Smith Faculty of AgricultureFood and Environment Hebrew University of JerusalemRehovotIsrael
| | - Mike Hong
- Gastrointestinal Laboratory, Department of Small Animal Clinical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Omry Koren
- Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Eran Lavy
- Hebrew University Veterinary Teaching Hospital and Koret School of Veterinary Medicine, Robert H. Smith Faculty of AgricultureFood and Environment Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
6
|
Kanski S, Weber K, Busch K. [Feline and canine giardiosis: An Update]. TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2023; 51:411-421. [PMID: 38056479 DOI: 10.1055/a-2191-1723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Giardia duodenalis is a facultative pathogenic intestinal parasite. Giardiosis in dogs and cats may appear with or without clinical signs. Typical signs include diarrhea with or without vomiting. The prevalence in young animals is high and may amount to up to 50%. There are 8 different genotypes (A - H), which are called assemblages. Assemblages C and D are most common in dogs and assemblage F most frequent in cats. However, animals may also be infected with the zoonotically effective assemblages A and B or exhibit mixed infections. The immunofluorescence test (IFA), the enzyme-linked immunosorbent assay (ELISA) and fecal centrifugation using zinc sulphate solution are currently recommended as diagnostic methods. Polymerase chain reaction (PCR) may be used to determine the corresponding assemblage. Approved treatments for giardiosis include fenbendazole and metronidazole. In addition, undertaking specific hygiene measures is warranted. Only animals showing clinical signs or those living in the same household with high-risk patients (e. g. immunosuppressed humans) are recommended to receive medication. The aim of treatment is clinical improvement of the diseased dogs and cats. Frequently, complete elimination of Giardia is not attained.
Collapse
Affiliation(s)
- Sabrina Kanski
- Medizinische Kleintierklinik, Ludwig-Maximilians-Universität München
| | - Karin Weber
- Medizinische Kleintierklinik, Ludwig-Maximilians-Universität München
| | - Kathrin Busch
- Medizinische Kleintierklinik, Ludwig-Maximilians-Universität München
| |
Collapse
|
7
|
Ranasinghe S, Armson A, Lymbery AJ, Zahedi A, Ash A. Medicinal plants as a source of antiparasitics: an overview of experimental studies. Pathog Glob Health 2023; 117:535-553. [PMID: 36805662 PMCID: PMC10392325 DOI: 10.1080/20477724.2023.2179454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Despite advances in modern human and veterinary medicine, gastrointestinal (GI) parasitic infections remain a significant health issue worldwide, mainly in developing countries. Increasing evidence of the multi-drug resistance of these parasites and the side effects of currently available synthetic drugs have led to increased research on alternative medicines to treat parasitic infections. The exploration of potential botanical antiparasitics, which are inexpensive and abundant, may be a promising alternative in this context. This study summarizes the in vitro/in vivo antiparasitic efficacy of different medicinal plants and their components against GI parasites. Published literature from 1990-2020 was retrieved from Google Scholar, Web of Science, PubMed and Scopus. A total of 68 plant species belonging to 32 families have been evaluated as antiparasitic agents against GI parasites worldwide. The majority of studies (70%) were conducted in vitro. Most plants were from the Fabaceae family (53%, n = 18). Methanol (37%, n = 35) was the most used solvent. Leaf (22%, n = 16) was the most used plant part, followed by seed and rhizome (each 12%, n = 9). These studies suggest that herbal medicines hold a great scope for new drug discoveries against parasitic diseases and that the derivatives of these plants are useful structures for drug synthesis and bioactivity optimization.
Collapse
Affiliation(s)
- Sandamalie Ranasinghe
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Anthony Armson
- Exercise Science and Chiropractic, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Alan J. Lymbery
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Alireza Zahedi
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Amanda Ash
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Kizilbash N, Suhail N, Alzahrani AK, Basha WJ, Soliman M. Natural regulatory T cells increase significantly in pediatric patients with parasitic infections: Flow cytometry study. INDIAN J PATHOL MICR 2023; 66:556-559. [PMID: 37530338 DOI: 10.4103/ijpm.ijpm_1262_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Background The most accepted definition of regulatory T cells (Tregs) relies on the expression of several biomarkers, including CD4, CD25, and transcription factor, Foxp3. The Tregs maintain tolerance to self-antigens and prevent autoimmune diseases. Aim The purpose of this study was to determine the difference in natural Treg levels in Entamoeba histolytica, Schistosoma mansoni, Giardia lamblia, Enterobius vermicularis, and Hymenolepis nana infected patients. Setting and Design Fifty-one pediatric subjects (29 males and 22 females) were recruited from a tertiary care hospital, and were divided into infected and non-infected (control) groups. The mean age of the subjects was 8.7 years. Materials and Methods Blood samples were collected from infected and non-infected groups, and change in the level of Tregs in these subjects was investigated by flow cytometry. Statistical Analysis Used The statistical analysis of data was performed by SPSS software. Quantitative data used in this study included mean and standard deviation. Data from the two groups were compared by the Student's t-test. The age of the patient and infection status were used for multivariate logistic regression analysis. Odds ratios (ORs) were estimated within a 95% confidence interval, and a P value of <0.05 was considered significant. Results and Conclusions The levels of natural regulatory T cells, indicated by the biomarkers, CD4+, CD25+, and Foxp3+, increase significantly in patients infected by Entamoeba histolytica, Schistosoma mansoni, Giardia lamblia, Enterobius vermicularis, and Hymenolepis nana as compared to controls. They also increase in cases of mixed infection as compared to infection by a single parasite.
Collapse
Affiliation(s)
- Nadeem Kizilbash
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - Nida Suhail
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - W Jamith Basha
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - Mohamed Soliman
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
9
|
Zoghroban HS, Ibrahim FMK, Nasef NA, Saad AE. The impact of L-citrulline on murine intestinal cell integrity, immune response, and arginine metabolism in the face of Giardia lamblia infection. Acta Trop 2022; 237:106748. [DOI: 10.1016/j.actatropica.2022.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
10
|
Dougherty M, Bartelt LA. Giardia and growth impairment in children in high-prevalence settings: consequence or co-incidence? Curr Opin Infect Dis 2022; 35:417-423. [PMID: 35980005 PMCID: PMC10373467 DOI: 10.1097/qco.0000000000000877] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW Giardia is a common intestinal parasite worldwide, and infection can be associated with clear, and sometimes persistent symptomatology. However, in children in high-prevalence settings, it is most often not associated with or is perhaps even protective against acute diarrhea. Nonetheless, recent longitudinal studies in high-prevalence settings increasingly identify an association with long-term outcomes that has been difficult to discern. RECENT FINDINGS Recent studies have made progress in disentangling this apparent paradox. First, prospective, well characterized cohort studies have repeatedly identified associations between Giardia infection, gut function, and child growth. Second, experimental animal and in-vitro models have further characterized the biological plausibility that Giardia could impair intestinal function and subsequently child development through different pathways, depending upon biological and environmental factors. Finally, new work has shed light on the potential for Giardia conspiring with specific other gut microbes, which may explain discrepant findings in the literature, help guide future higher resolution analyses of this pathogen, and inform new opportunities for intervention. SUMMARY Recent prospective studies have confirmed a high, if not universal, prevalence of persistent Giardia infections in low-and-middle income countries associated with child-growth shortfalls and altered gut permeability. However, the predominance of subclinical infections limits understanding of the true clinical impact of endemic pediatric giardiasis, and global disease burdens remain uncalculated. Integrating the role of Giardia in multipathogen enteropathies and how nutritional, microbial, metabolic, and pathogen-strain variables influence Giardia infection outcomes could sharpen delineations between pathogenic and potentially beneficial attributes of this enigmatic parasite.
Collapse
Affiliation(s)
- Michael Dougherty
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill
- Rex Digestive Healthcare, UNC REX Healthcare, Raleigh
| | - Luther A. Bartelt
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Grajeda BI, De Chatterjee A, Villalobos CM, Pence BC, Ellis CC, Enriquez V, Roy S, Roychowdhury S, Neumann AK, Almeida IC, Patterson SE, Das S. Giardial lipid rafts share virulence factors with secreted vesicles and participate in parasitic infection in mice. Front Cell Infect Microbiol 2022; 12:974200. [PMID: 36081774 PMCID: PMC9445159 DOI: 10.3389/fcimb.2022.974200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Giardia lamblia, a protozoan parasite, is a major cause of waterborne infection, worldwide. While the trophozoite form of this parasite induces pathological symptoms in the gut, the cyst form transmits the infection. Since Giardia is a noninvasive parasite, the actual mechanism by which it causes disease remains elusive. We have previously reported that Giardia assembles cholesterol and GM1 glycosphingolipid-enriched lipid rafts (LRs) that participate in encystation and cyst production. To further delineate the role of LRs in pathogenesis, we isolated LRs from Giardia and subjected them to proteomic analysis. Various cellular proteins including potential virulence factors-e.g., giardins, variant surface proteins, arginine deaminases, elongation factors, ornithine carbomyltransferases, and high cysteine-rich membrane proteins-were found to be present in LRs. Since Giardia secretes virulence factors encapsulated in extracellular vesicles (EVs) that induce proinflammatory responses in hosts, EVs released by the parasite were isolated and subjected to nanoparticle tracking and proteomic analysis. Two types of EV-i.e., small vesicles (SVs; <100 nm, exosome-like particles) and large vesicles (LVs; 100-400 nm, microvesicle-like particles)-were identified and found to contain a diverse group of proteins including above potential virulence factors. Although pretreatment of the parasite with two giardial lipid raft (gLR) disruptors, nystatin (27 μM) and oseltamivir (20 μM), altered the expression profiles of virulence factors in LVs and SVs, the effects were more robust in the case of SVs. To examine the potential role of rafts and vesicles in pathogenicity, Giardia-infected mice were treated with oseltamivir (1.5 and 3.0 mg/kg), and the shedding of cysts were monitored. We observed that this drug significantly reduced the parasite load in mice. Taken together, our results suggest that virulence factors partitioning in gLRs, released into the extracellular milieu via SVs and LVs, participate in spread of giardiasis and could be targeted for future drug development.
Collapse
Affiliation(s)
- Brian I. Grajeda
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Atasi De Chatterjee
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Carmen M. Villalobos
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Breanna C. Pence
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Cameron C. Ellis
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Vanessa Enriquez
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sourav Roy
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sukla Roychowdhury
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Aaron K. Neumann
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Igor C. Almeida
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Steven E. Patterson
- Center for Drug Design, University of Minnesota, Minneapolis, MN, United States
| | - Siddhartha Das
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
12
|
Ibrahim HS, Salem AI, Ahmed NMAER, El-Taweel HA. Pre-and post-treatment evaluation of intestinal inflammation in Giardia and Blastocystis infected children: a community-based study. J Parasit Dis 2021; 45:1026-1033. [PMID: 34789986 DOI: 10.1007/s12639-021-01398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022] Open
Abstract
Giardia intestinalis and Blastocystis hominis cause frequent infections in children in developing countries. However, the role of intestinal inflammation in their pathogenesis is still poorly understood. Faecal calprotectin (FC) level is used as an indicator of intestinal inflammation and neutrophil migration in the intestinal tract. The present study aimed to evaluate intestinal inflammation by measuring FC level among children infected with either G. intestinalis or B. hominis before and after treatment. Stool samples were collected from 282 children inhabiting a rural area in Egypt and examined microscopically for intestinal parasites. FC level was estimated in a group of children infected with G. intestinalis (n = 12) or B. hominis (n = 12) before and 3 weeks after receiving nitazoxanide (200 mg twice daily for 3 days) and compared to a control group (n = 18) of parasite-free children. Cases of mixed infection were excluded. Nitazoxanide cure rate was 83% in both infections with a remarkable reduction of infection intensity in uncured children. The difference in FC levels between infected children and controls was not statistically significant. Also, the difference between the pre- and post-treatment estimations was not statistically significant. Elevated levels were observed before treatment in three children (two infected with G. intestinalis and one with B. hominis) who displayed normal post-treatment levels. Although G. intestinalis and B. hominis infections appear to cause no remarkable intestinal inflammation, they may induce abnormally elevated FC levels in a subset of children.
Collapse
Affiliation(s)
- Heba Said Ibrahim
- Parasitology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Aziza Ibrahim Salem
- Parasitology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Hend Aly El-Taweel
- Parasitology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
13
|
Brune MW, França EL, Moraes LCA, Ribeiro VP, Gomes MA, Honorio-França AC. Effects of Cytokines IFN-γ and TGF-β on the Functional Activity of Blood Mononuclear Cells against Giardia lamblia. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:209-218. [PMID: 34557235 PMCID: PMC8418650 DOI: 10.18502/ijpa.v16i2.6269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022]
Abstract
Background: This study aimed to analyze cultures of mononuclear (MN) cells with Giardia lamblia to determine the levels of the cytokines IFN-γ and TGF-β and the functional activity of MN cells after incubation with cytokines. Methods: This study was conducted in 2018 in Barra do Garças, Mato Grosso State, Brazil. Blood samples were collected from 60 healthy volunteer donors to obtain leukocytes. The levels of IFN-γ and TGF-β were quantified in trophozoite cell culture supernatants. Superoxide release, phagocytosis, microbicidal activity, apoptosis and intracellular calcium release were analyzed. Results: The cytokines evaluated were detected in the culture supernatant of MN cells and G. lamblia. Regardless of the type of cytokine, MN cells increased superoxide release in the presence of G. lamblia. Phagocytosis, microbicidal activity and apoptosis were higher when MN phagocytes were treated with cytokines. The highest microbicidal activity and apoptosis rates were observed in MN cells cultured with TGF-β. IFN-γ increased the release of intracellular calcium by MN phagocytes. Conclusion: Cytokines play a beneficial role in the host by activating MN cells against G. lamblia. In addition, phagocytosis causes G. lamblia death and that the modulation of the functional activity of blood MN phagocytes by cytokines is an alternative mechanism for eliminating G. lamblia.
Collapse
Affiliation(s)
- Maximilian Wilhelm Brune
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil.,Department of Parasitology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Luzía França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | | | - Victor Pena Ribeiro
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Maria Aparecida Gomes
- Department of Parasitology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
14
|
Pu X, Li X, Cao L, Yue K, Zhao P, Wang X, Li J, Zhang X, Zhang N, Zhao Z, Liang M, Gong P. Giardia duodenalis Induces Proinflammatory Cytokine Production in Mouse Macrophages via TLR9-Mediated p38 and ERK Signaling Pathways. Front Cell Dev Biol 2021; 9:694675. [PMID: 34336841 PMCID: PMC8319647 DOI: 10.3389/fcell.2021.694675] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Giardia duodenalis, also known as Giardia lamblia or Giardia intestinalis, is an important opportunistic, pathogenic, zoonotic, protozoan parasite that infects the small intestines of humans and animals, causing giardiasis. Several studies have demonstrated that innate immunity-associated Toll-like receptors (TLRs) are critical for the elimination of G. duodenalis; however, whether TLR9 has a role in innate immune responses against Giardia infection remains unknown. In the present study, various methods, including reverse transcriptase–quantitative polymerase chain reaction, Western blot, enzyme-linked immunosorbent assay, immunofluorescence, inhibitor assays, and small-interfering RNA interference, were utilized to probe the role of TLR9 in mouse macrophage-mediated defenses against G. lamblia virus (GLV)–free or GLV-containing Giardia trophozoites. The results revealed that in G. duodenalis–stimulated mouse macrophages, the secretion of proinflammatory cytokines, including interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and IL-12 p40, was enhanced, concomitant with the significant activation of TLR9, whereas silencing TLR9 attenuated the host inflammatory response. Notably, the presence of GLV exacerbated the secretion of host proinflammatory cytokines. Moreover, G. duodenalis stimulation activated multiple signaling pathways, including the nuclear factor κB p65 (NF-κB p65), p38, ERK, and AKT pathways, the latter three in a TLR9-dependent manner. Additionally, inhibiting the p38 or ERK pathway downregulated the G. duodenalis–induced inflammatory response, whereas AKT inhibition aggravated this process. Taken together, these results indicated that G. duodenalis may induce the secretion of proinflammatory cytokines by activating the p38 and ERK signaling pathways in a TLR9-dependent manner in mouse macrophages. Our in vitro findings on the mechanism underlying the TLR9-mediated host inflammatory response may help establish the foundation for an in-depth investigation of the role of TLR9 in the pathogenicity of G. duodenalis.
Collapse
Affiliation(s)
- Xudong Pu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lili Cao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.,Department of Parasite, Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, China
| | - Kaiming Yue
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Panpan Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhiteng Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Min Liang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
15
|
Li Z, Peirasmaki D, Svärd S, Åbrink M. Serglycin-Deficiency Causes Reduced Weight Gain and Changed Intestinal Cytokine Responses in Mice Infected With Giardia intestinalis. Front Immunol 2021; 12:677722. [PMID: 34335577 PMCID: PMC8316049 DOI: 10.3389/fimmu.2021.677722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
The proteoglycan serglycin (SG) is expressed by different innate and adaptive immune cells, e.g. mast cells, macrophages, neutrophils, and cytotoxic T lymphocytes, where SG contributes to correct granule storage and extracellular activity of inflammatory mediators. Here the serglycin-deficient (SG-/-) mouse strain was used to investigate the impact of SG on intestinal immune responses during infection with the non-invasive protozoan parasite Giardia intestinalis. Young (≈11 weeks old) oral gavage-infected congenic SG-/- mice showed reduced weight gain as compared with the infected SG+/+ littermate mice and the PBS-challenged SG-/- and SG+/+ littermate mice. The infection caused no major morphological changes in the small intestine. However, a SG-independent increased goblet cell and granulocyte cell count was observed, which did not correlate with an increased myeloperoxidase or neutrophil elastase activity. Furthermore, infected mice showed increased serum IL-6 levels, with significantly reduced serum IL-6 levels in infected SG-deficient mice and decreased intestinal expression levels of IL-6 in the infected SG-deficient mice. In infected mice the qPCR analysis of alarmins, chemokines, cytokines, and nitric oxide synthases (NOS), showed that the SG-deficiency caused reduced intestinal expression levels of TNF-α and CXCL2, and increased IFN-γ, CXCL1, and NOS1 levels as compared with SG-competent mice. This study shows that SG plays a regulatory role in intestinal immune responses, reflected by changes in chemokine and cytokine expression levels and a delayed weight gain in young SG-/- mice infected with G. intestinalis.
Collapse
Affiliation(s)
- Zhiqiang Li
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang, China.,Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dimitra Peirasmaki
- SciLifeLab, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Staffan Svärd
- SciLifeLab, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
16
|
Fink MY, Shapiro D, Singer SM. Giardia lamblia: Laboratory Maintenance, Lifecycle Induction, and Infection of Murine Models. ACTA ACUST UNITED AC 2021; 57:e102. [PMID: 32515871 DOI: 10.1002/cpmc.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Giardia lamblia is a protozoan parasite that is found ubiquitously throughout the world and is a major contributor to diarrheal disease. Giardia exhibits a biphasic lifestyle existing as either a dormant cyst or a vegetative trophozoite. Infections are typically initiated through the consumption of cyst-contaminated water or food. Giardia was first axenized in the 1970s and can be readily maintained in a laboratory setting. Additionally, Giardia is one of the few protozoans that can be induced to complete its complete lifecycle using laboratory methods. In this article, we outline protocols to maintain Giardia and induce passage through its lifecycle. We also provide protocols for infecting and quantifying parasites in an animal infection model. © 2020 Wiley Periodicals LLC. Basic Protocol 1: In vitro maintenance and growth of Giardia trophozoites Basic Protocol 2: In vitro encystation of Giardia cysts Basic Protocol 3: In vivo infections using Giardia trophozoites.
Collapse
Affiliation(s)
- Marc Y Fink
- Department of Biology, Georgetown University, Washington, District of Columbia.,Center for Vascular and Inflammatory Diseases, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Danielle Shapiro
- Department of Biology, Georgetown University, Washington, District of Columbia
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, District of Columbia
| |
Collapse
|
17
|
Belkessa S, Ait-Salem E, Laatamna A, Houali K, Sönksen UW, Hakem A, Bouchene Z, Ghalmi F, Stensvold CR. Prevalence and Clinical Manifestations of Giardia intestinalis and Other Intestinal Parasites in Children and Adults in Algeria. Am J Trop Med Hyg 2021; 104:910-916. [PMID: 33534771 DOI: 10.4269/ajtmh.20-0187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/06/2020] [Indexed: 11/07/2022] Open
Abstract
Giardia intestinalis is one of the most common causes of parasite-induced diarrhea, abdominal pain, flatulence, and malabsorption. Yet, data on the epidemiology of G. intestinalis infections in North Africa are limited. The purpose of this study was to carry out a retrospective survey on the level of intestinal parasitism with a particular emphasis on G. intestinalis in children and adults in Algiers, Algeria. A total of 2,054 individuals from outpatient clinics or hospitalized at Beni-Messous University Hospital of Algiers undergoing stool microscopy for ova and parasites were included. The overall parasite infection rate was 28%. In the 567 parasite-positive samples, Blastocystis was found most frequently (57.3%), followed in frequency by Endolimax nana (41.0%), Entamoeba histolytica/dispar (19.6%), G. intestinalis (17.1%), Entamoeba coli (13.9%), Chilomastix mesnili (1.0%), Iodamoeba bütschlii (0.7%), Entamoeba hartmanni (0.5%), and Cryptosporidium spp. (0.2%). Intestinal parasites were generally more common in adults than in children, except for Giardia, which was more common in children (P = 0.0001). Giardia infection was independent of gender (P = 0.94). Compared with other intestinal parasitic infections, clinical manifestations, such as abdominal pain (P = 0.28) and diarrhea (P = 0.82), were found not to be significantly linked to Giardia infection. In conclusion, G. intestinalis is common in individuals referred to the University Hospital of Beni-Messous with digestive symptoms, particularly so in children. However, in our study, intestinal symptoms appeared not to be more linked to Giardia than to other intestinal parasites.
Collapse
Affiliation(s)
- Salem Belkessa
- 1Department of Biochemistry and Microbiology, Laboratory of Analytical Biochemistry and Biotechnology (LABAB), Faculty of Biological and Agronomic Sciences, Mouloud Mammeri University of Tizi Ouzou, Tizi Ouzou, Algeria.,2Department of Natural and Life Sciences, Faculty of Exact Sciences and Natural and Life Sciences, Mohamed Khider University of Biskra, Biskra, Algeria.,3Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Elhosseyn Ait-Salem
- 1Department of Biochemistry and Microbiology, Laboratory of Analytical Biochemistry and Biotechnology (LABAB), Faculty of Biological and Agronomic Sciences, Mouloud Mammeri University of Tizi Ouzou, Tizi Ouzou, Algeria
| | - AbdElkarim Laatamna
- 4Laboratory of Exploration and Valorisation of Steppe Ecosystems, Faculty of Nature and Life Sciences, University of Djelfa, Djelfa, Algeria
| | - Karim Houali
- 1Department of Biochemistry and Microbiology, Laboratory of Analytical Biochemistry and Biotechnology (LABAB), Faculty of Biological and Agronomic Sciences, Mouloud Mammeri University of Tizi Ouzou, Tizi Ouzou, Algeria
| | - Ute Wolff Sönksen
- 3Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Ahcene Hakem
- 4Laboratory of Exploration and Valorisation of Steppe Ecosystems, Faculty of Nature and Life Sciences, University of Djelfa, Djelfa, Algeria.,5Center Research in Agropastoralism, Djelfa, Algeria
| | - Zahida Bouchene
- 6Faculty of Medicine, University of Algiers, Algiers, Algeria
| | - Farida Ghalmi
- 7Higher National Veterinary School of Algiers, Algiers, Algeria
| | | |
Collapse
|
18
|
Natural Infection with Giardia Is Associated with Altered Community Structure of the Human and Canine Gut Microbiome. mSphere 2020; 5:5/4/e00670-20. [PMID: 32759335 PMCID: PMC7407069 DOI: 10.1128/msphere.00670-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While enteric parasitic infections are among the most important infections in lower- and middle-income countries, their impact on gut microbiota is poorly understood. We reasoned that clinical symptoms associated with these infections may be influenced by alterations of the microbiome that occur during infection. To explore this notion, we took a two-pronged approach. First, we studied a cohort of dogs naturally infected with various enteric parasites and found a strong association between parasite infection and altered gut microbiota composition. Giardia, one of the most prevalent parasite infections globally, had a particularly large impact on the microbiome. Second, we took a database-driven strategy to integrate microbiome data with clinical data from large human field studies and found that Giardia infection is also associated with marked alteration of the gut microbiome of children, suggesting a possible explanation for why Giardia has been reported to be associated with protection from moderate to severe diarrhea. Enteric parasitic infections are among the most prevalent infections in lower- and middle-income countries (LMICs) and have a profound impact on global public health. While the microbiome is increasingly recognized as a key determinant of gut health and human development, the impact of naturally acquired parasite infections on microbial community structure in the gut, and the extent to which parasite-induced changes in the microbiome may contribute to gastrointestinal symptoms, is poorly understood. Enteric parasites are routinely identified in companion animals in the United States, presenting a unique opportunity to leverage this animal model to investigate the impact of naturally acquired parasite infections on the microbiome. Clinical, parasitological, and microbiome profiling of a cohort of 258 dogs revealed a significant correlation between parasite infection and composition of the bacterial community in the gut. Relative to other enteric parasites, Giardia was associated with a more pronounced perturbation of the microbiome. To compare our findings to large-scale epidemiological studies of enteric diseases in humans, a database mining approach was employed to integrate clinical and microbiome data. Substantial and consistent alterations to microbiome structure were observed in Giardia-infected children. Importantly, infection was associated with a reduction in the relative abundance of potential pathobionts, including Gammaproteobacteria, and an increase in Prevotella—a profile often associated with gut health. Taken together, these data show that widespread Giardia infection in young animals and humans is associated with significant remodeling of the gut microbiome and provide a possible explanation for the high prevalence of asymptomatic Giardia infections observed across host species. IMPORTANCE While enteric parasitic infections are among the most important infections in lower- and middle-income countries, their impact on gut microbiota is poorly understood. We reasoned that clinical symptoms associated with these infections may be influenced by alterations of the microbiome that occur during infection. To explore this notion, we took a two-pronged approach. First, we studied a cohort of dogs naturally infected with various enteric parasites and found a strong association between parasite infection and altered gut microbiota composition. Giardia, one of the most prevalent parasite infections globally, had a particularly large impact on the microbiome. Second, we took a database-driven strategy to integrate microbiome data with clinical data from large human field studies and found that Giardia infection is also associated with marked alteration of the gut microbiome of children, suggesting a possible explanation for why Giardia has been reported to be associated with protection from moderate to severe diarrhea.
Collapse
|
19
|
Jangra M, Dutta U, Shah J, Thapa BR, Nada R, Gupta N, Sehgal R, Sharma V, Khurana S. Role of Polymerase Chain Reaction in Stool and Duodenal Biopsy for Diagnosis of Giardiasis in Patients with Persistent/Chronic Diarrhea. Dig Dis Sci 2020; 65:2345-2353. [PMID: 31955285 DOI: 10.1007/s10620-019-06042-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/31/2019] [Indexed: 12/09/2022]
Abstract
BACKGROUND Giardia duodenalis is a common cause of chronic diarrhea especially in tropical countries. Diagnosis is based on microscopy (three stool samples) for trophozoites/cysts. Role of stool or duodenal biopsy PCR as a diagnostic method needs to be defined. We conducted a prospective study to determine the diagnostic characteristics of G. duodenalis stool and duodenal biopsy PCR in comparison to stool microscopy (reference standard). Later, we compared other techniques with stool PCR, considering it as new reference standard and characterized the type of Giardia assemblage. METHODS G. duodenalis stool nested PCR was first evaluated using 40 positive controls and 50 negative controls considering stool microscopy as reference standard. Patients with chronic diarrhea (n = 100) were evaluated by stool microscopy and nested PCR. In 30 patients in whom upper gastrointestinal endoscopy was performed, duodenal biopsy samples were obtained and evaluated by histopathology, imprint cytology, and nested PCR. The type of Giardia assemblage was detected by assemblage-specific PCR. RESULTS Stool nested PCR was found to have sensitivity and specificity of 100% and 94%, respectively, compared to stool microscopy. In patients with chronic diarrhea, 48% had evidence of Giardia infection. Stool microscopy detected 65%, stool PCR detected an additional 27%, and duodenal biopsy PCR detected an additional 8% of cases. The commonest assemblage found was assemblage B. Clinical and demographic characteristics were similar in patients harboring either assemblage A or B. CONCLUSION Stool PCR is more sensitive than stool microscopy. By utilizing stool microscopy, stool nested PCR, and duodenal biopsy PCR in sequential manner, diagnostic yield can be increased.
Collapse
Affiliation(s)
- Monika Jangra
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Usha Dutta
- Gastroenterology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jimil Shah
- Gastroenterology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - B R Thapa
- Gastroenterology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ritambhra Nada
- Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Nalini Gupta
- Cytological and Gynaecological Pathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Vishal Sharma
- Gastroenterology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sumeeta Khurana
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India.
| |
Collapse
|
20
|
Faria CP, Neves BM, Lourenço Á, Cruz MT, Martins JD, Silva A, Pereira S, Sousa MDC. Giardia lamblia Decreases NF-κB p65 RelA Protein Levels and Modulates LPS-Induced Pro-Inflammatory Response in Macrophages. Sci Rep 2020; 10:6234. [PMID: 32277133 PMCID: PMC7148380 DOI: 10.1038/s41598-020-63231-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/20/2020] [Indexed: 11/09/2022] Open
Abstract
The protozoan Giardia lamblia is the most common cause of parasitic gastrointestinal infection worldwide. The parasite developed sophisticated, yet not completely disclosed, mechanisms to escape immune system and growth in the intestine. To further understand the interaction of G. lamblia with host immune cells, we investigated the ability of parasites to modulate the canonical activation of mouse macrophages (Raw 264.7 cell line) and human monocyte-derived macrophages triggered by the TLR4 agonist, lipopolysaccharide (LPS). We observed that G. lamblia impairs LPS-evoked pro-inflammatory status in these macrophage-like cells through inhibition of cyclooxygenase-2 and inducible nitric oxide synthase expression and subsequent NO production. This effect was in part due to the activity of three G. lamblia proteases, a 135 kDa metalloprotease and two cysteine proteases with 75 and 63 kDa, that cleave the p65RelA subunit of the nuclear factor-kappa B (NF-κB). Moreover, Tnf and Ccl4 transcription was increased in the presence of the parasite. Overall, our data indicates that G. lamblia modulates macrophages inflammatory response through impairment of the NF-κB, thus silencing a crucial signaling pathway of the host innate immune response.
Collapse
Affiliation(s)
- Clarissa Perez Faria
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ágata Lourenço
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João D Martins
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sónia Pereira
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria do Céu Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal. .,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
21
|
The Chymase Mouse Mast Cell Protease-4 Regulates Intestinal Cytokine Expression in Mature Adult Mice Infected with Giardia intestinalis. Cells 2020; 9:cells9040925. [PMID: 32283818 PMCID: PMC7226739 DOI: 10.3390/cells9040925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Mast cells have been shown to affect the control of infections with the protozoan parasite Giardia intestinalis. Recently, we demonstrated that Giardia excretory-secretory proteins inhibited the activity of the connective tissue mast cell-specific protease chymase. To study the potential role of the chymase mouse mast cell protease (mMCP)-4 during infections with Giardia, mMCP-4+/+ and mMCP-4−/− littermate mice were gavage-infected with G. intestinalis trophozoites of the human assemblage B isolate GS. No significant changes in weight gain was observed in infected young (≈10 weeks old) mMCP-4−/− and mMCP-4+/+ littermate mice. In contrast, infections of mature adult mice (>18 weeks old) caused significant weight loss as compared to uninfected control mice. We detected a more rapid weight loss in mMCP-4−/− mice as compared to littermate mMCP-4+/+ mice. Submucosal mast cell and granulocyte counts in jejunum increased in the infected adult mMCP-4−/− and mMCP-4+/+ mice. This increase was correlated with an augmented intestinal trypsin-like and chymotrypsin-like activity, but the myeloperoxidase activity was constant. Infected mice showed a significantly lower intestinal neutrophil elastase (NE) activity, and in vitro, soluble Giardia proteins inhibited human recombinant NE. Serum levels of IL-6 were significantly increased eight and 13 days post infection (dpi), while intestinal IL-6 levels showed a trend to significant increase 8 dpi. Strikingly, the lack of mMCP-4 resulted in significantly less intestinal transcriptional upregulation of IL-6, TNF-α, IL-25, CXCL2, IL-2, IL-4, IL-5, and IL-10 in the Giardia-infected mature adult mice, suggesting that chymase may play a regulatory role in intestinal cytokine responses.
Collapse
|
22
|
Perrucci S, Berrilli F, Procopio C, Di Filippo MM, Pierini A, Marchetti V. Giardia duodenalis infection in dogs affected by primary chronic enteropathy. Open Vet J 2020; 10:74-79. [PMID: 32426260 PMCID: PMC7193877 DOI: 10.4314/ovj.v10i1.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/05/2020] [Indexed: 11/23/2022] Open
Abstract
Background: Canine primary chronic enteropathy (CE) includes a heterogeneous group of diseases characterized by chronic gastrointestinal signs. Aim: This study evaluated the occurrence of Giardia duodenalis infection in primary CE-affected dogs. Methods: Forty-seven CE-affected dogs of different age and sex were enrolled in the study. For each dog, frequency of defecation, fecal consistency, and eventual fecal abnormalities were evaluated. A clinical scoring index of CE severity (clinical chronic enteropathy activity index) was also assessed, and the type of enteropathy was retrospectively classified. For parasitological analysis, fresh fecal samples collected from each dog were examined by fresh and Lugol stained smears, flotation test, and a rapid immunoassay. Giardia duodenalis genotypes were identified by molecular analysis. Differences of clinical parameters between G. duodenalis positive and G. duodenalis negative dogs were statistically evaluated. Results: Among the CE canine patients, 16 out of 47 (34%) dogs were found positive for G. duodenalis and assemblages C and D were identified. No statistical differences emerged according to the types of CE between G. duodenalis-positive and G. duodenalis-negative dog groups. The clinical index of CE severity was indicative of significant less severe clinical forms in G. duodenalis-positive dogs (p = 0.037). Conclusion: Results here obtained shows how G. duodenalis may be present in primary CE-affected dogs and further investigations are needed to clarify the real significance of mild clinical presentation in G. duodenalis-positive dogs affected by CE.
Collapse
Affiliation(s)
| | - Federica Berrilli
- Department of Clinical Science and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | | | - Alessio Pierini
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | |
Collapse
|
23
|
Hagen KD, McInally SG, Hilton ND, Dawson SC. Microtubule organelles in Giardia. ADVANCES IN PARASITOLOGY 2020; 107:25-96. [PMID: 32122531 DOI: 10.1016/bs.apar.2019.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Giardia lamblia is a widespread parasitic protist with a complex MT cytoskeleton that is critical for motility, attachment, mitosis and cell division, and transitions between its two life cycle stages-the infectious cyst and flagellated trophozoite. Giardia trophozoites have both highly dynamic and highly stable MT organelles, including the ventral disc, eight flagella, the median body and the funis. The ventral disc, an elaborate MT organelle, is essential for the parasite's attachment to the intestinal villi to avoid peristalsis. Giardia's four flagellar pairs enable swimming motility and may also promote attachment. They are maintained at different equilibrium lengths and are distinguished by their long cytoplasmic regions and novel extra-axonemal structures. The functions of the median body and funis, MT organelles unique to Giardia, remain less understood. In addition to conserved MT-associated proteins, the genome is enriched in ankyrins, NEKs, and novel hypothetical proteins that also associate with the MT cytoskeleton. High-resolution ultrastructural imaging and a current inventory of more than 300 proteins associated with Giardia's MT cytoskeleton lay the groundwork for future mechanistic analyses of parasite attachment to the host, motility, cell division, and encystation/excystation. Giardia's unique MT organelles exemplify the capacity of MT polymers to generate intricate structures that are diverse in both form and function. Thus, beyond its relevance to pathogenesis, the study of Giardia's MT cytoskeleton informs basic cytoskeletal biology and cellular evolution. With the availability of new molecular genetic tools to disrupt gene function, we anticipate a new era of cytoskeletal discovery in Giardia.
Collapse
Affiliation(s)
- Kari D Hagen
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, CA, United States
| | - Shane G McInally
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, CA, United States
| | - Nicholas D Hilton
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, CA, United States
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, CA, United States.
| |
Collapse
|
24
|
Allain T, Buret AG. Pathogenesis and post-infectious complications in giardiasis. ADVANCES IN PARASITOLOGY 2019; 107:173-199. [PMID: 32122529 DOI: 10.1016/bs.apar.2019.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Giardia is an important cause of diarrhoea, and results in post-infectious and extra-intestinal complications. This chapter presents a state-of-the art of our understanding of how this parasite may cause such abnormalities, which appear to develop at least in part in Assemblage-dependent manner. Findings from prospective longitudinal cohort studies indicate that Giardia is one of the four most prevalent enteropathogens in early life, and represents a risk factor for stunting at 2 years of age. This may occur independently of diarrheal disease, in strong support of the pathophysiological significance of the intestinal abnormalities induced by this parasite. These include epithelial malabsorption and maldigestion, increased transit, mucus depletion, and disruptions of the commensal microbiota. Giardia increases epithelial permeability and facilitates the invasion of gut bacteria. Loss of intestinal barrier function is at the core of the acute and post-infectious complications associated with this infection. Recent findings demonstrate that the majority of the pathophysiological responses triggered by this parasite can be recapitulated by the effects of its membrane-bound and secreted cysteine proteases.
Collapse
Affiliation(s)
- Thibault Allain
- University of Calgary, Host-Parasite Interactions Program, Inflammation Research Network, Department of Biological Sciences, Calgary, Canada
| | - André G Buret
- University of Calgary, Host-Parasite Interactions Program, Inflammation Research Network, Department of Biological Sciences, Calgary, Canada.
| |
Collapse
|
25
|
Shukla G, Sharma A, Bhatia R, Sharma M. Prophylactic Potential of Synbiotic (Lactobacillus casei and Inulin) in Malnourished Murine Giardiasis: an Immunological and Ultrastructural Study. Probiotics Antimicrob Proteins 2019; 11:165-174. [PMID: 29260483 DOI: 10.1007/s12602-017-9368-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Giardiasis is a re-emerging infectious disease with outbreaks reported globally specially in children and malnourished individuals leading to malabsorption, growth retardation, and severe diarrhea. Thus, in the present study, prophylactic administration of synbiotic as the functional food was used to assess its antigiardial potential in malnourished murine giardiasis. Interestingly, prior administration of synbiotic (Lactobacillus casei + inulin) even to malnourished-Giardia-infected mice led to increased body mass, small intestine mass, lactobacilli counts, and reduced severity of giardiasis as evident by decreased cyst and trophozoite counts. Synbiotic therapy further boosted the innate and acquired immune response resulting into increase in nitric oxide, antigiardial secretory IgA and IgG antibody levels along with IL-6 and IL-10 cytokines, and decreased levels of inflammatory TNF-α cytokine in both serum and intestinal fluid in malnourished-synbiotic-Giardia-infected mice compared with malnourished-Giardia-infected mice. More specifically, histopathological and scanning electron microscopy analysis of the small intestine also confirmed the modulatory potentials of synbiotic in malnourished-synbiotic-Giardia mice which had less cellular and mucosal damage compared with severely damaged, mummified, and blunted villi in malnourished-Giardia-infected mice. Taken together, this is the first experimental study to report that prior supplementation of synbiotic restored the gut morphology and improved the immune status of the malnourished-Giardia-infected mice, and could be considered as the prophylactic adjunct therapy for malnourished individuals.
Collapse
Affiliation(s)
- Geeta Shukla
- Department of Microbiology, Basic Medical Sciences (Block-1), South Campus, Panjab University, Chandigarh, 160014, India.
| | - Anuj Sharma
- Department of Microbiology, Basic Medical Sciences (Block-1), South Campus, Panjab University, Chandigarh, 160014, India
| | - Ruchika Bhatia
- Department of Microbiology, Basic Medical Sciences (Block-1), South Campus, Panjab University, Chandigarh, 160014, India
| | - Mridul Sharma
- Department of Microbiology, Basic Medical Sciences (Block-1), South Campus, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
26
|
Dirani G, Zannoli S, Paesini E, Farabegoli P, Dalmo B, Vocale C, Liguori G, Varani S, Sambri V. Easyscreen™ Enteric Protozoa Assay for the Detection of Intestinal Parasites: A Retrospective Bi-Center Study. J Parasitol 2019. [DOI: 10.1645/18-52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Giorgio Dirani
- Unit of Microbiology, The Great Romagna Area Hub Laboratory, Piazzale della Liberazione 60, 47522 Pi
| | - Silvia Zannoli
- Unit of Microbiology, The Great Romagna Area Hub Laboratory, Piazzale della Liberazione 60, 47522 Pi
| | - Elena Paesini
- Unit of Microbiology, The Great Romagna Area Hub Laboratory, Piazzale della Liberazione 60, 47522 Pi
| | - Patrizia Farabegoli
- Unit of Microbiology, The Great Romagna Area Hub Laboratory, Piazzale della Liberazione 60, 47522 Pi
| | - Barbara Dalmo
- Unit of Microbiology, The Great Romagna Area Hub Laboratory, Piazzale della Liberazione 60, 47522 Pi
| | - Caterina Vocale
- Regional Reference Center for Microbiological Emergencies (CRREM), Unit of Microbiology, St. Orsola
| | - Giovanna Liguori
- Regional Reference Center for Microbiological Emergencies (CRREM), Unit of Microbiology, St. Orsola
| | - Stefania Varani
- Regional Reference Center for Microbiological Emergencies (CRREM), Unit of Microbiology, St. Orsola
| | - Vittorio Sambri
- Unit of Microbiology, The Great Romagna Area Hub Laboratory, Piazzale della Liberazione 60, 47522 Pi
| |
Collapse
|
27
|
Shukla G, Kamboj S, Sharma B. Comparative Analysis of Antigiardial Potential of Heat Inactivated and Probiotic Protein of Probiotic Lactobacillus rhamnosus GG in Murine Giardiasis. Probiotics Antimicrob Proteins 2019; 12:271-279. [DOI: 10.1007/s12602-018-9506-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Abstract
Protein-losing enteropathy may develop as a complication of a wide spectrum of diseases. Three cases of giardiasis that presented with acute onset of hypoalbuminemia were documented, and resolution of protein loss after treatment was also confirmed. Thus, chronic enteric infections should be considered as an etiology of severe intestinal protein loss, particularly in children.
Collapse
|
29
|
Dubourg A, Xia D, Winpenny JP, Al Naimi S, Bouzid M, Sexton DW, Wastling JM, Hunter PR, Tyler KM. Giardia secretome highlights secreted tenascins as a key component of pathogenesis. Gigascience 2018; 7:1-13. [PMID: 29385462 PMCID: PMC5887430 DOI: 10.1093/gigascience/giy003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Background Giardia is a protozoan parasite of public health relevance that causes gastroenteritis in a wide range of hosts. Two genetically distinct lineages (assemblages A and B) are responsible for the human disease. Although it is clear that differences in virulence occur, the pathogenesis and virulence of Giardia remain poorly understood. Results The genome of Giardia is believed to contain open reading frames that could encode as many as 6000 proteins. By successfully applying quantitative proteomic analyses to the whole parasite and to the supernatants derived from parasite culture of assemblages A and B, we confirm expression of ∼1600 proteins from each assemblage, the vast majority of which are common to both lineages. To look for signature enrichment of secreted proteins, we considered the ratio of proteins in the supernatant compared with the pellet, which defined a small group of enriched proteins, putatively secreted at a steady state by cultured growing trophozoites of both assemblages. This secretome is enriched with proteins annotated to have N-terminal signal peptide. The most abundant secreted proteins include known virulence factors such as cathepsin B cysteine proteases and members of a Giardia superfamily of cysteine-rich proteins that comprise variant surface proteins, high-cysteine membrane proteins, and a new class of virulence factors, the Giardia tenascins. We demonstrate that physiological function of human enteric epithelial cells is disrupted by such soluble factors even in the absence of the trophozoites. Conclusions We are able to propose a straightforward model of Giardia pathogenesis incorporating key roles for the major Giardia-derived soluble mediators.
Collapse
Affiliation(s)
- Audrey Dubourg
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Dong Xia
- Department of Infection Biology, Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool, L3 5RF, UK.,Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, University of London, London, NW1 0TU, UK
| | - John P Winpenny
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Suha Al Naimi
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Science and Technology, Faculty of Health and Science, James Hehir Building, Neptune Quay, University of Suffolk, Ipswich, IP4 1QJ, UK
| | - Maha Bouzid
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Darren W Sexton
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Jonathan M Wastling
- Department of Infection Biology, Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool, L3 5RF, UK.,Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Paul R Hunter
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Kevin M Tyler
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
30
|
Li L, Li X, Li G, Gong P, Zhang X, Yang Z, Yang J, Li J. Mouse macrophages capture and kill Giardia lamblia by means of releasing extracellular trap. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:206-212. [PMID: 30048699 DOI: 10.1016/j.dci.2018.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/21/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
Giardia lamblia is one of the most prevalent parasites residing in the duodenum of human and many other mammals throughout the world which is transmitted via ingested cysts through contaminated food or water. The severity of disease may depend on multiple parasite and host factors. Commonly, children and immunologically compromised persons like AIDS patient exhibit severe diarrhea, malabsorption and weight loss, however, there are also some infected people who are asymptomatic or only exhibit mild clinical symptoms and can shed the Giardia cysts in the environment. Although many studies have indicated that the innate immune system is important for Giardia defense, however, whether the innate immune responses such extracellular traps (ETs) could be induced by G. lamblia is still unclear. In recent years, macrophage extracellular traps (METs) have been described as an effective defense mechanism against invading microorganisms. In the present study, the formation of METs triggered by G. lamblia trophozoites was investigated. The formation of METs induced by G. lamblia trophozoites of mouse macrophage was observed with Scanning Electron Microscopy (SEM). The main components DNA, H3 histone and MPO were confirmed by Sytox orange staining, DNase1 digestion, immunofluorescence staining and fluorescence confocal microscopy. Inhibitor assays suggested that G. lamblia trophozoites triggered METs formation through ERK1/2 and p38 MAPK signal pathways and was Store-operated Ca2+ entry (SOCE) dependent. In addition, the process of METs formation triggered by G. lamblia trophozoites was also time and dose-dependent. Furthermore, the production of Reactive Oxygen Species (ROS) in macrophages stimulated with G. lamblia trophozoites significantly increased whereas no significant changes were observed about LDH activity.
Collapse
Affiliation(s)
- Ling Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Xin Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Guojiang Li
- Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Zhengtao Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Ju Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Jianhua Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun 130062, China; Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China.
| |
Collapse
|
31
|
Giardia duodenalis in the UK: current knowledge of risk factors and public health implications. Parasitology 2018; 146:413-424. [PMID: 30318029 DOI: 10.1017/s0031182018001683] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Giardia duodenalis is a ubiquitous flagellated protozoan parasite known to cause giardiasis throughout the world. Potential transmission vehicles for this zoonotic parasite are both water and food sources. As such consumption of water contaminated by feces, or food sources washed in contaminated water containing parasite cysts, may result in outbreaks. This creates local public health risks which can potentially cause widespread infection and long-term post-infection sequelae. This paper provides an up-to-date overview of G. duodenalis assemblages, sub-assemblages, hosts and locations identified. It also summarizes knowledge of potential infection/transmission routes covering water, food, person-to-person infection and zoonotic transmission from livestock and companion animals. Public health implications focused within the UK, based on epidemiological data, are discussed and recommendations for essential Giardia developments are highlighted.
Collapse
|
32
|
Ma'ayeh SY, Knörr L, Sköld K, Garnham A, Ansell BRE, Jex AR, Svärd SG. Responses of the Differentiated Intestinal Epithelial Cell Line Caco-2 to Infection With the Giardia intestinalis GS Isolate. Front Cell Infect Microbiol 2018; 8:244. [PMID: 30062089 PMCID: PMC6055019 DOI: 10.3389/fcimb.2018.00244] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
Giardia intestinalis is a parasitic protist that causes diarrhea in humans, affecting mainly children of the developing world, elderly and immunocompromised individuals. Humans are infected by two major Giardia assemblages (i.e. genetic subtypes), A and B, with the latter being the most common. So far, there is little information on molecular or cellular changes during infections with assemblage B. Here, we used RNA sequencing to study transcriptional changes in Caco-2 intestinal epithelial cells (IECs) co-incubated with assemblage B (GS isolate) trophozoites for 1.5, 3, and 4.5 h. We aimed to identify early molecular events associated with the establishment of infection and followed cellular protein changes up to 10 h. IEC transcriptomes showed a dominance of immediate early response genes which was sustained across all time points. Transcription of inflammatory cytokines (e.g., cxcl1-3, ccl2, 1l1a, and il1b) peaked at 1.5 and 3 h of infection. Compared to co-incubation with assemblage A Giardia, we identified the induction of novel cytokines (cxcl8, cxcl10, csf1, cx3cl1, il12a, il11) and showed that inflammatory signaling is mediated by Erk1/2 phosphorylation (mitogen activated protein kinase, MAPK), nuclear factor kappa B (NFκB) and adaptor protein-1 (AP-1). We also showed that GS trophozoites attenuate P38 (MAPK) phosphorylation in IECs. Low amounts of IL-8, CXCL1 and CCL20 proteins were measured in the interaction medium, which was attributed to cytokine degradation by trophozoite secreted proteases. Based on the transcriptome, the decay of cytokines mRNA mediated by zinc finger protein 36 might be another mechanism controlling cytokine levels at later time points. IEC transcriptomes suggested homeostatic responses to counter oxidative stress, glucose starvation, and disturbances in amino acid and lipid metabolism. A large group of differentially transcribed genes were associated with cell cycle arrest and induction of apoptosis, which was validated at protein level. IEC transcriptomes also suggested changes in tight junction's integrity, microvilli structure and the extracellular mucin layer. This is the first study to illuminate transcriptional and protein regulatory events underlying IECs responses and pathogenesis during Giardia assemblage B infection. It highlights differences compared to assemblage A infections which might account for the differences observed in human infections with the two assemblages.
Collapse
Affiliation(s)
- Showgy Y Ma'ayeh
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Livia Knörr
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Karin Sköld
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Alexandra Garnham
- Population Health & Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Brendan R E Ansell
- Population Health & Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Faculty of Veterinary Science, The University of Melbourne, Parkville, VIC, Australia
| | - Aaron R Jex
- Population Health & Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Faculty of Veterinary Science, The University of Melbourne, Parkville, VIC, Australia
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Cytokines, Antibodies, and Histopathological Profiles during Giardia Infection and Variant-Specific Surface Protein-Based Vaccination. Infect Immun 2018; 86:IAI.00773-17. [PMID: 29555679 DOI: 10.1128/iai.00773-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/10/2018] [Indexed: 12/13/2022] Open
Abstract
Giardiasis is one of the most common human intestinal diseases worldwide. Several experimental animal models have been used to evaluate Giardia infections, with gerbils (Meriones unguiculatus) being the most valuable model due to their high susceptibility to Giardia infection, abundant shedding of cysts, and pathophysiological alterations and signs of disease similar to those observed in humans. Here, we report cytokine and antibody profiles both during the course of Giardia infection in gerbils and after immunization with a novel oral vaccine comprising a mixture of purified variant-specific surface proteins (VSPs). Transcript levels of representative cytokines of different immune profiles as well as macro- and microtissue alterations were assessed in Peyer's patches, mesenteric lymph nodes, and spleens. During infection, cytokine responses showed a biphasic profile: an early induction of Th1 (gamma interferon [IFN-γ], interleukin-1β [IL-1β], IL-6, and tumor necrosis factor [TNF]), Th17 (IL-17), and Th2 (IL-4) cytokines, together with intestinal alterations typical of inflammation, followed by a shift toward a predominant Th2 (IL-5) response, likely associated with a counterregulatory mechanism. Conversely, immunization with an oral vaccine comprising the entire repertoire of VSPs specifically showed high levels of IL-17, IL-6, IL-4, and IL-5, without obvious signs of inflammation. Both immunized and infected animals developed local (intestinal secretory IgA [S-IgA]) and systemic (serum IgG) humoral immune responses against VSPs; however, only infected animals showed evident signs of giardiasis. This is the first comprehensive report of cytokine expression and anti-Giardia antibody production during infection and VSP vaccination in gerbils, a reliable model of the human disease.
Collapse
|
34
|
Allain T, Chaouch S, Thomas M, Travers MA, Valle I, Langella P, Grellier P, Polack B, Florent I, Bermúdez-Humarán LG. Bile Salt Hydrolase Activities: A Novel Target to Screen Anti- Giardia Lactobacilli? Front Microbiol 2018; 9:89. [PMID: 29472903 PMCID: PMC5809405 DOI: 10.3389/fmicb.2018.00089] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/15/2018] [Indexed: 01/23/2023] Open
Abstract
Giardia duodenalis is a protozoan parasite responsible for giardiasis, a disease characterized by intestinal malabsorption, diarrhea and abdominal pain in a large number of mammal species. Giardiasis is one of the most common intestinal parasitic diseases in the world and thus a high veterinary, and public health concern. It is well-established that some probiotic bacteria may confer protection against this parasite in vitro and in vivo and we recently documented the implication of bile-salt hydrolase (BSH)-like activities from strain La1 of Lactobacillus johnsonii as mediators of these effects in vitro. We showed that these activities were able to generate deconjugated bile salts that were toxic to the parasite. In the present study, a wide collection of lactobacilli strains from different ecological origins was screened to assay their anti-giardial effects. Our results revealed that the anti-parasitic effects of some of the strains tested were well-correlated with the expression of BSH-like activities. The two most active strains in vitro, La1 and Lactobacillus gasseri CNCM I-4884, were then tested for their capacity to influence G. duodenalis infection in a suckling mice model. Strikingly, only L. gasseri CNCM I-4884 strain was able to significantly antagonize parasite growth with a dramatic reduction of the trophozoites load in the small intestine. Moreover, this strain also significantly reduced the fecal excretion of Giardia cysts after 5 days of treatment, which could contribute to blocking the transmission of the parasite, in contrast of La1 where no effect was observed. This study represents a step toward the development of new prophylactic strategies to combat G. duodenalis infection in both humans and animals.
Collapse
Affiliation(s)
- Thibault Allain
- INRA, Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, AgroParisTech, Paris, France.,UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Soraya Chaouch
- UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Myriam Thomas
- INRA, Ecole Nationale Vétérinaire d'Alfort, BIPAR, ENVA, ANSES, UMR, Université Paris-Est, Champs-sur-Marne, France.,INRA, Laboratoire de Santé Animale, BIPAR, ENVA, ANSES, UMR, Maisons-Alfort, France
| | - Marie-Agnès Travers
- UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Isabelle Valle
- INRA, Ecole Nationale Vétérinaire d'Alfort, BIPAR, ENVA, ANSES, UMR, Université Paris-Est, Champs-sur-Marne, France.,INRA, Laboratoire de Santé Animale, BIPAR, ENVA, ANSES, UMR, Maisons-Alfort, France
| | - Philippe Langella
- INRA, Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, AgroParisTech, Paris, France
| | - Philippe Grellier
- UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Bruno Polack
- INRA, Ecole Nationale Vétérinaire d'Alfort, BIPAR, ENVA, ANSES, UMR, Université Paris-Est, Champs-sur-Marne, France.,INRA, Laboratoire de Santé Animale, BIPAR, ENVA, ANSES, UMR, Maisons-Alfort, France
| | - Isabelle Florent
- UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Luis G Bermúdez-Humarán
- INRA, Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, AgroParisTech, Paris, France
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Giardia is a common intestinal parasite worldwide, and infection can be associated with clear and sometimes persistent symptomatology. However, in children in high-prevalence settings, it is not associated with or is perhaps even protective against acute diarrhea, and the association with long-term outcomes has been difficult to discern. RECENT FINDINGS Recent studies have made progress in helping us disentangle this apparent paradox. First, prospective, well-characterized cohort studies have added to the data on the association between Giardia and diarrhea in these settings and have further characterized associations between Giardia infection and nutrition, gut function, and growth. Second, animal models have further characterized the host response to Giardia and helped elucidate mechanisms by which Giardia could impair child development. Finally, new work has shed light on the heterogeneity of human Giardia strains, which may both explain discrepant findings in the literature and help guide higher-resolution analyses of this pathogen in the future. SUMMARY The true clinical impact of endemic pediatric giardiasis remains unclear, but recent prospective studies have confirmed a high prevalence of persistent, subclinical Giardia infections and associated growth shortfalls. Integrating how nutritional, microbial, metabolic, and pathogen-strain variables influence these outcomes could sharpen delineations between pathogenic and potentially beneficial attributes of this enigmatic parasite.
Collapse
|
36
|
Fink MY, Singer SM. The Intersection of Immune Responses, Microbiota, and Pathogenesis in Giardiasis. Trends Parasitol 2017; 33:901-913. [PMID: 28830665 DOI: 10.1016/j.pt.2017.08.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023]
Abstract
Giardia lamblia is one of the most common infectious protozoans in the world. Giardia rarely causes severe life-threatening diarrhea, and may even have a slight protective effect in this regard, but it is a major contributor to malnutrition and growth faltering in children in the developing world. Giardia infection also appears to be a significant risk factor for postinfectious irritable bowel and chronic fatigue syndromes. In this review we highlight recent work focused on the impact of giardiasis and the mechanisms that contribute to the various outcomes of this infection, including changes in the composition of the microbiota, activation of immune responses, and immunopathology.
Collapse
Affiliation(s)
- Marc Y Fink
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|
37
|
Requena-Méndez A, Goñi P, Rubio E, Pou D, Fumadó V, Lóbez S, Aldasoro E, Cabezos J, Valls ME, Treviño B, Martínez Montseny AF, Clavel A, Gascon J, Muñoz J. The Use of Quinacrine in Nitroimidazole-resistant Giardia Duodenalis: An Old Drug for an Emerging Problem. J Infect Dis 2017; 215:946-953. [PMID: 28453841 DOI: 10.1093/infdis/jix066] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/27/2017] [Indexed: 11/13/2022] Open
Abstract
Background There is little evidence regarding the management of refractory giardiasis after treatment with nitroimidazoles. This study estimates the proportion of persistent giardiasis in 3 hospitals in Barcelona, describes associated risk factors and genotype, and evaluates the efficacy rate of quinacrine in those with persistent giardiasis. Methods A clinical, prospective, observational study was conducted in patients with giardiasis treated with nitroimidazoles. Those with persistent giardiasis were provided quinacrine. Molecular characterization of Giardia isolates was performed by polymerase chain reaction amplification of a fragment of tpi and bg genes. Results Seventy-seven patients were recruited and treated with nitroimidazoles, and in 14 of 71 (20%) of patients followed up, Giardia persisted. Refractory giardiasis was associated with malaise (P = .007) and anorexia (P = .02), with previous giardiasis (P = .03), and with previous antibiotic (P = .02) or antiparasitic(P = .04) use. Quinacrine had an effectiveness rate of 100% in refractory giardiasis (n = 13; 95% confidence interval = 75-100). Molecular characterization showed that 17 (25%) Giardia isolates belonged to assemblage A, and 31 (43%) belonged to assemblage B. In refractory giardiasis, assemblage A and B were found responsible in 4 and 6 cases, respectively. Conclusions Almost 20% of patients presented persistent giardiasis, belonging to both assemblages A and B, after nitroimidazole. Short course of quinacrine was effective in treating refractory cases. Further controlled studies should evaluate its efficacy and safety.
Collapse
Affiliation(s)
- Ana Requena-Méndez
- Barcelona Institute for Global Health, ISGlobal-CRESIB, Universitat de Barcelona, Barcelona , Spain
| | - Pilar Goñi
- Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Spain
| | - Encarnación Rubio
- Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Spain
| | - Diana Pou
- Unidad de Salud Internacional Drassanes-Hospital Universitario Vall d'Hebron, PROSICS, Barcelona
| | - Victoria Fumadó
- Unitat de Malalties Infeccioses i Importades, Servei de Pediatría, Infectious and Imported Diseases, Pediatric Unit, Hospital Universitari Sant Joan de Deú, Barcelona, Spain
| | - Silvia Lóbez
- Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Spain
| | - Edelweiss Aldasoro
- Barcelona Institute for Global Health, ISGlobal-CRESIB, Universitat de Barcelona, Barcelona , Spain
| | - Juan Cabezos
- Unidad de Salud Internacional Drassanes-Hospital Universitario Vall d'Hebron, PROSICS, Barcelona
| | | | - Begoña Treviño
- Unidad de Salud Internacional Drassanes-Hospital Universitario Vall d'Hebron, PROSICS, Barcelona
| | - Antonio Federico Martínez Montseny
- Unitat de Malalties Infeccioses i Importades, Servei de Pediatría, Infectious and Imported Diseases, Pediatric Unit, Hospital Universitari Sant Joan de Deú, Barcelona, Spain
| | - Antonio Clavel
- Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Spain
| | - Joaquim Gascon
- Barcelona Institute for Global Health, ISGlobal-CRESIB, Universitat de Barcelona, Barcelona , Spain
| | - José Muñoz
- Barcelona Institute for Global Health, ISGlobal-CRESIB, Universitat de Barcelona, Barcelona , Spain
| |
Collapse
|
38
|
Giardia Colonizes and Encysts in High-Density Foci in the Murine Small Intestine. mSphere 2017; 2:mSphere00343-16. [PMID: 28656177 PMCID: PMC5480036 DOI: 10.1128/msphere.00343-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 04/21/2017] [Indexed: 01/28/2023] Open
Abstract
Giardia is a single-celled parasite causing significant diarrheal disease in several hundred million people worldwide. Due to limited access to the site of infection in the gastrointestinal tract, our understanding of the dynamics of Giardia infections in the host has remained limited and largely inferred from laboratory culture. To better understand Giardia physiology and colonization in the host, we developed imaging methods to quantify Giardia expressing bioluminescent physiological reporters in two relevant animal models. We discovered that parasites primarily colonize and encyst in the proximal small intestine in discrete, high-density foci. We also show that high parasite density contributes to encystation initiation. Giardia lamblia is a highly prevalent yet understudied protistan parasite causing significant diarrheal disease worldwide. Hosts ingest Giardia cysts from contaminated sources. In the gastrointestinal tract, cysts excyst to become motile trophozoites, colonizing and attaching to the gut epithelium. Trophozoites later differentiate into infectious cysts that are excreted and contaminate the environment. Due to the limited accessibility of the gut, the temporospatial dynamics of giardiasis in the host are largely inferred from laboratory culture and thus may not mirror Giardia physiology in the host. Here, we have developed bioluminescent imaging (BLI) to directly interrogate and quantify the in vivo temporospatial dynamics of Giardia infection, thereby providing an improved murine model to evaluate anti-Giardia drugs. Using BLI, we determined that parasites primarily colonize the proximal small intestine nonuniformly in high-density foci. By imaging encystation-specific bioreporters, we show that encystation initiates shortly after inoculation and continues throughout the duration of infection. Encystation also initiates in high-density foci in the proximal small intestine, and high density contributes to the initiation of encystation in laboratory culture. We suggest that these high-density in vivo foci of colonizing and encysting Giardia likely result in localized disruption to the epithelium. This more accurate visualization of giardiasis redefines the dynamics of the in vivo Giardia life cycle, paving the way for future mechanistic studies of density-dependent parasitic processes in the host. IMPORTANCEGiardia is a single-celled parasite causing significant diarrheal disease in several hundred million people worldwide. Due to limited access to the site of infection in the gastrointestinal tract, our understanding of the dynamics of Giardia infections in the host has remained limited and largely inferred from laboratory culture. To better understand Giardia physiology and colonization in the host, we developed imaging methods to quantify Giardia expressing bioluminescent physiological reporters in two relevant animal models. We discovered that parasites primarily colonize and encyst in the proximal small intestine in discrete, high-density foci. We also show that high parasite density contributes to encystation initiation.
Collapse
|
39
|
Quintero J, Valdez A, Samaniego B, Lopez-Romero G, Astiazaran-Garcia H, Rascon L, Breci L, Garibay-Escobar A, Robles-Zepeda R, Velazquez C. Isolation and partial characterization of an immunogenic antigen of Giardia lamblia. Parasitol Int 2017; 66:324-330. [DOI: 10.1016/j.parint.2017.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/26/2016] [Accepted: 01/13/2017] [Indexed: 11/26/2022]
|
40
|
Garzón M, Pereira-da-Silva L, Seixas J, Papoila AL, Alves M, Ferreira F, Reis A. Association of enteric parasitic infections with intestinal inflammation and permeability in asymptomatic infants of São Tomé Island. Pathog Glob Health 2017; 111:116-127. [PMID: 28279129 PMCID: PMC5445637 DOI: 10.1080/20477724.2017.1299831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cumulative effect of repeated asymptomatic enteric infections on intestinal barrier is not fully understood in infants. We aimed to evaluate the association between previous enteric parasitic infections and intestinal inflammation and permeability at 24-months of age, in asymptomatic infants of São Tomé Island. A subset of infants from a birth cohort, with intestinal parasite evaluations in at least four points of assessment, was eligible. Intestinal inflammatory response and permeability were assessed using fecal S100A12 and alpha-1-antitrypsin (A1AT), respectively. The cutoff <-1SD for weight-for-length and length-for-age was used to define wasting and stunting. Multivariable linear regression analysis explored if cumulative enteric parasitic infections explained variability of fecal biomarkers, after adjusting for potential confounders. Eighty infants were included. Giardia duodenalis and soil-transmitted helminths (STH) were the most frequent parasites. The median (interquartile range) levels were 2.87 μg/g (2.41-3.92) for S100A12 and 165.1 μg/g (66.0-275.6) for A1AT. Weak evidence of association was found between S100A12 levels and G. duodenalis (p = 0.080) and STH infections (p = 0.089), and between A1AT levels and parasitic infection of any etiology (p = 0.089), at 24-months of age. Significant associations between A1AT levels and wasting (p = 0.006) and stunting (p = 0.044) were found. Previous parasitic infections were not associated with fecal biomarkers at 24 months of age. To summarize, previous asymptomatic parasitic infections showed no association with intestinal barrier dysfunction. Notwithstanding, a tendency toward increased levels of the inflammatory biomarker was observed for current G. duodenalis and STH infections, and increased levels of the permeability biomarker were significantly associated with stunting and wasting.
Collapse
Affiliation(s)
- Marisol Garzón
- Tropical Clinic Teaching and Research Unit, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Luis Pereira-da-Silva
- Research Unit, Centro Hospitalar de Lisboa Central, Lisboa, Portugal
- Woman, Children and Adolescent’s Medicine Teaching and Research Area, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jorge Seixas
- Tropical Clinic Teaching and Research Unit, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ana Luísa Papoila
- Research Unit, Centro Hospitalar de Lisboa Central, Lisboa, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Marta Alves
- Research Unit, Centro Hospitalar de Lisboa Central, Lisboa, Portugal
| | - Filipa Ferreira
- Tropical Clinic Teaching and Research Unit, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ana Reis
- Tropical Clinic Teaching and Research Unit, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
41
|
Al-Megrin WA. In vivo study of pomegranate (Punica granatum) peel extract efficacy against Giardia lamblia in infected experimental mice. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2016.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
Aguilar-Diaz H, Canizalez-Roman A, Nepomuceno-Mejia T, Gallardo-Vera F, Hornelas-Orozco Y, Nazmi K, Bolscher JGM, Carrero JC, Leon-Sicairos C, Leon-Sicairos N. Parasiticidal effect of synthetic bovine lactoferrin peptides on the enteric parasite Giardia intestinalis. Biochem Cell Biol 2016; 95:82-90. [PMID: 28165283 DOI: 10.1139/bcb-2016-0079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Giardia intestinalis is the most common infectious protozoan parasite in children. Despite the effectiveness of some drugs, the disease remains a major worldwide problem. Consequently, the search for new treatments is important for disease eradication. Biological molecules with antimicrobial properties represent a promising alternative to combat pathogens. Bovine lactoferrin (bLF) is a key component of the innate host defense system, and its peptides have exhibited strong antimicrobial activity. Based on these properties, we evaluated the parasiticidal activity of these peptides on G. intestinalis. Trophozoites were incubated with different peptide concentrations for different periods of time, and the growth or viability was determined by carboxyfluorescein-succinimidyl-diacetate-ester (CFDA) and propidium iodide (PI) staining. Endocytosis of peptides was investigated by confocal microscopy, damage was analyzed by transmission and scanning electron microscopy, and the type of programmed cell death was analyzed by flow cytometry. Our results showed that the LF peptides had giardicidal activity. The LF peptides interacted with G. intestinalis and exposure to LF peptides correlated with an increase in the granularity and vacuolization of the cytoplasm. Additionally, the formation of pores, extensive membrane disruption, and programmed cell death was observed in trophozoites treated with LF peptides. Our results demonstrate that LF peptides exhibit potent in vitro antigiardial activity.
Collapse
Affiliation(s)
- Hugo Aguilar-Diaz
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa. Cedros y Sauces, Fracc. Fresnos Culiacán 80246, Sinaloa, México
| | - Adrian Canizalez-Roman
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa. Cedros y Sauces, Fracc. Fresnos Culiacán 80246, Sinaloa, México.,b Departamento de Investigación, Hospital de la Mujer, Boulevard Miguel Tamayo Espinoza de los Monteros S/N, Col. Desarrollo Urbano Tres Ríos, Culiacán 80020, Sinaloa, México
| | - Tomas Nepomuceno-Mejia
- c Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Calle 4a, Avenida Norte esquina con Calle 19 Pte S/N, Centro, Tapachula 30700, Chiapas, Mexico
| | - Francisco Gallardo-Vera
- d Laboratorio Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad Universitaria, México DF 04510, México
| | - Yolanda Hornelas-Orozco
- e Servicio Académico de Microscopía Electrónica de Barrido, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, México, D. F. 04510, México
| | - Kamran Nazmi
- f Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, 1081 LA, Amsterdam, the Netherlands
| | - Jan G M Bolscher
- f Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, 1081 LA, Amsterdam, the Netherlands
| | - Julio Cesar Carrero
- g Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, DF 04510, México
| | - Claudia Leon-Sicairos
- h Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Avenida de las Américas y Josefa Ortiz (Ciudad Universitaria), Culiacán 80030, Sinaloa, México
| | - Nidia Leon-Sicairos
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa. Cedros y Sauces, Fracc. Fresnos Culiacán 80246, Sinaloa, México.,i Departamento de Investigación, Hospital Pediátrico de Sinaloa, Boulevard Constitución S/N, Col. Jorge Almada, Culiacan 80200, Sinaloa, México
| |
Collapse
|
43
|
Immune Profile of Honduran Schoolchildren with Intestinal Parasites: The Skewed Response against Geohelminths. J Parasitol Res 2016; 2016:1769585. [PMID: 27882241 PMCID: PMC5108857 DOI: 10.1155/2016/1769585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/10/2016] [Indexed: 01/18/2023] Open
Abstract
Soil-transmitted helminth infections typically induce a type-2 immune response (Th2), but no immunoepidemiological studies have been undertaken in Honduras, an endemic country where the main control strategy is children's annual deworming. We aimed to characterize the immune profile of Honduran schoolchildren harbouring these parasitoses. Demographic and epidemiological data were obtained through a survey; nutritional status was assessed through anthropometry; intestinal parasites were diagnosed by formol-ether and Kato-Katz; and blood samples were collected to determine immunological markers including Th1/Th2 cytokines, IgE, and eosinophil levels. A total of 225 children participated in the study, all of whom had received deworming during the national campaign five months prior to the study. Trichuriasis and ascariasis prevalence were 22.2% and 20.4%, respectively. Stunting was associated with both age and trichuriasis, whereas ascariasis was associated with sex and household conditions. Helminth infections were strongly associated with eosinophilia and hyper-IgE as well as with a Th2-polarized response (increased levels of IL-13, IL-10, and IL4/IFN-γ ratios and decreased levels of IFN-γ). Pathogenic protozoa infections were associated with a Th1 response characterized by elevated levels of IFN-γ and decreased IL10/IFN-γ ratios. Even at low prevalence levels, STH infections affect children's nutrition and play a polarizing role in their immune system.
Collapse
|
44
|
Adaptive immune response in symptomatic and asymptomatic enteric protozoal infection: evidence for a determining role of parasite genetic heterogeneity in host immunity to human giardiasis. Microbes Infect 2016; 18:687-695. [PMID: 27401766 DOI: 10.1016/j.micinf.2016.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 11/23/2022]
Abstract
The genetic basis of the ultimate clinical outcomes of human giardiasis has been the subject of numerous investigations. We previously demonstrated roles for both host and parasite factors in determining the outcome of enteric infection in a murine model of Giardia duodenalis infection. In the current study, fecal and serum specimens from healthy controls and human subjects infected with the intestinal parasite G. duodenalis were assessed. Using a semi-nested PCR method, clinical isolates were genetically characterized based on the gdh and tpi loci, and the phylogenetic trees were constructed. Using a sandwich ELISA method, the serum levels of representative TH1 and TH2 cytokines were measured in infected human subjects and healthy controls. Here we showed that symptomatic human giardiasis was characterized by significantly elevated serum levels of the TH1 cytokine IFN-γ compared to healthy controls, whereas asymptomatic human subjects and healthy controls had comparable levels of serum IFN-γ. Further analyses showed that human subjects infected with G. duodenalis genotype AI had significantly elevated levels of serum IFN-γ and IL-10, but not IL-5, whereas human subjects infected with AII had similar levels of those cytokines compared to healthy controls. These data demonstrate roles for both host and parasite factors in the determination of the outcome of enteric infections and may further broaden our understanding of host-parasite interaction during enteric protozoal infections.
Collapse
|
45
|
Halliez MCM, Motta JP, Feener TD, Guérin G, LeGoff L, François A, Colasse E, Favennec L, Gargala G, Lapointe TK, Altier C, Buret AG. Giardia duodenalis induces paracellular bacterial translocation and causes postinfectious visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 2016; 310:G574-85. [PMID: 26744469 PMCID: PMC4836132 DOI: 10.1152/ajpgi.00144.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023]
Abstract
Irritable bowel syndrome (IBS) is the most frequent functional gastrointestinal disorder. It is characterized by abdominal hypersensitivity, leading to discomfort and pain, as well as altered bowel habits. While it is common for IBS to develop following the resolution of infectious gastroenteritis [then termed postinfectious IBS (PI-IBS)], the mechanisms remain incompletely understood. Giardia duodenalis is a cosmopolitan water-borne enteropathogen that causes intestinal malabsorption, diarrhea, and postinfectious complications. Cause-and-effect studies using a human enteropathogen to help investigate the mechanisms of PI-IBS are sorely lacking. In an attempt to establish causality between giardiasis and postinfectious visceral hypersensitivity, this study describes a new model of PI-IBS in neonatal rats infected with G. duodenalis At 50 days postinfection with G. duodenalis (assemblage A or B), long after the parasite was cleared, rats developed visceral hypersensitivity to luminal balloon distension in the jejunum and rectum, activation of the nociceptive signaling pathway (increased c-fos expression), histological modifications (villus atrophy and crypt hyperplasia), and proliferation of mucosal intraepithelial lymphocytes and mast cells in the jejunum, but not in the rectum. G. duodenalis infection also disrupted the intestinal barrier, in vivo and in vitro, which in turn promoted the translocation of commensal bacteria. Giardia-induced bacterial paracellular translocation in vitro correlated with degradation of the tight junction proteins occludin and claudin-4. The extensive observations associated with gut hypersensitivity described here demonstrate that, indeed, in this new model of postgiardiasis IBS, alterations to the gut mucosa and c-fos are consistent with those associated with PI-IBS and, hence, offer avenues for new mechanistic research in the field.
Collapse
Affiliation(s)
- Marie C. M. Halliez
- 1Protozooses transmises par l'alimentation, Rouen University Hospital, University of Rouen and University of Reims Champagne-Ardennes, and Institute for Biomedical Research, Rouen and Reims, France; ,2Department of Biological Sciences, Inflammation Research Network, Host-Parasite Interaction NSERC-CREATE, University of Calgary, Calgary, Alberta, Canada;
| | - Jean-Paul Motta
- 2Department of Biological Sciences, Inflammation Research Network, Host-Parasite Interaction NSERC-CREATE, University of Calgary, Calgary, Alberta, Canada;
| | - Troy D. Feener
- 2Department of Biological Sciences, Inflammation Research Network, Host-Parasite Interaction NSERC-CREATE, University of Calgary, Calgary, Alberta, Canada;
| | - Gaetan Guérin
- 1Protozooses transmises par l'alimentation, Rouen University Hospital, University of Rouen and University of Reims Champagne-Ardennes, and Institute for Biomedical Research, Rouen and Reims, France;
| | - Laetitia LeGoff
- 1Protozooses transmises par l'alimentation, Rouen University Hospital, University of Rouen and University of Reims Champagne-Ardennes, and Institute for Biomedical Research, Rouen and Reims, France;
| | - Arnaud François
- 1Protozooses transmises par l'alimentation, Rouen University Hospital, University of Rouen and University of Reims Champagne-Ardennes, and Institute for Biomedical Research, Rouen and Reims, France; ,3Service d'Anatomie et de Cytologie Pathologique CHU Rouen, Rouen cedex, France; and
| | - Elodie Colasse
- 3Service d'Anatomie et de Cytologie Pathologique CHU Rouen, Rouen cedex, France; and
| | - Loic Favennec
- 1Protozooses transmises par l'alimentation, Rouen University Hospital, University of Rouen and University of Reims Champagne-Ardennes, and Institute for Biomedical Research, Rouen and Reims, France;
| | - Gilles Gargala
- 1Protozooses transmises par l'alimentation, Rouen University Hospital, University of Rouen and University of Reims Champagne-Ardennes, and Institute for Biomedical Research, Rouen and Reims, France;
| | - Tamia K. Lapointe
- 4Snyder Institute for Chronic Diseases, Inflammation Research Network, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Christophe Altier
- 4Snyder Institute for Chronic Diseases, Inflammation Research Network, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - André G. Buret
- 2Department of Biological Sciences, Inflammation Research Network, Host-Parasite Interaction NSERC-CREATE, University of Calgary, Calgary, Alberta, Canada;
| |
Collapse
|
46
|
Emery SJ, Mirzaei M, Vuong D, Pascovici D, Chick JM, Lacey E, Haynes PA. Induction of virulence factors in Giardia duodenalis independent of host attachment. Sci Rep 2016; 6:20765. [PMID: 26867958 PMCID: PMC4751611 DOI: 10.1038/srep20765] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Giardia duodenalis is responsible for the majority of parasitic gastroenteritis in humans worldwide. Host-parasite interaction models in vitro provide insights into disease and virulence and help us to understand pathogenesis. Using HT-29 intestinal epithelial cells (IEC) as a model we have demonstrated that initial sensitisation by host secretions reduces proclivity for trophozoite attachment, while inducing virulence factors. Host soluble factors triggered up-regulation of membrane and secreted proteins, including Tenascins, Cathepsin-B precursor, cystatin, and numerous Variant-specific Surface Proteins (VSPs). By comparison, host-cell attached trophozoites up-regulated intracellular pathways for ubiquitination, reactive oxygen species (ROS) detoxification and production of pyridoxal phosphate (PLP). We reason that these results demonstrate early pathogenesis in Giardia involves two independent host-parasite interactions. Motile trophozoites respond to soluble secreted signals, which deter attachment and induce expression of virulence factors. Trophozoites attached to host cells, in contrast, respond by up-regulating intracellular pathways involved in clearance of ROS, thus anticipating the host defence response.
Collapse
Affiliation(s)
- Samantha J Emery
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Pty, Ltd, Smithfield, NSW 2165, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW, 2109, Australia
| | - Joel M Chick
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ernest Lacey
- Microbial Screening Technologies, Pty, Ltd, Smithfield, NSW 2165, Australia
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
47
|
Brown JR, Schwartz CL, Heumann JM, Dawson SC, Hoenger A. A detailed look at the cytoskeletal architecture of the Giardia lamblia ventral disc. J Struct Biol 2016; 194:38-48. [PMID: 26821343 DOI: 10.1016/j.jsb.2016.01.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 11/16/2022]
Abstract
Giardia lamblia is a protistan parasite that infects and colonizes the small intestine of mammals. It is widespread and particularly endemic in the developing world. Here we present a detailed structural study by 3-D negative staining and cryo-electron tomography of a unique Giardia organelle, the ventral disc. The disc is composed of a regular array of microtubules and associated sheets, called microribbons that form a large spiral, held together by a myriad of mostly unknown associated proteins. In a previous study we analyzed by cryo-electron tomography the central microtubule portion (here called disc body) of the ventral disc and found a large portion of microtubule associated inner (MIPs) and outer proteins (MAPs) that render these microtubules hyper-stable. With this follow-up study we expanded our 3-D analysis to different parts of the disc such as the ventral and dorsal areas of the overlap zone, as well as the outer disc margin. There are intrinsic location-specific characteristics in the composition of microtubule-associated proteins between these regions, as well as large differences between the overall architecture of microtubules and microribbons. The lateral packing of microtubule-microribbon complexes varies substantially, and closer packing often comes with contracted lateral tethers that seem to hold the disc together. It appears that the marginal microtubule-microribbon complexes function as outer, laterally contractible lids that may help the cell to clamp onto the intestinal microvilli. Furthermore, we analyzed length, quantity, curvature and distribution between different zones of the disc, which we found to differ from previous publications.
Collapse
Affiliation(s)
- Joanna R Brown
- University of Colorado, Dept. MCD Biology, Boulder, CO 80309, USA
| | - Cindi L Schwartz
- University of Colorado, Dept. MCD Biology, Boulder, CO 80309, USA
| | - John M Heumann
- University of Colorado, Dept. MCD Biology, Boulder, CO 80309, USA
| | - Scott C Dawson
- University of California Davis, Dept. Microbiology and Molecular Genetics, Davis, CA 95616, USA
| | - Andreas Hoenger
- University of Colorado, Dept. MCD Biology, Boulder, CO 80309, USA.
| |
Collapse
|
48
|
The Biological Fight Against Pathogenic Bacteria and Protozoa. NEW WEAPONS TO CONTROL BACTERIAL GROWTH 2016. [PMCID: PMC7123701 DOI: 10.1007/978-3-319-28368-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The animal gastrointestinal tract is a tube with two open ends; hence, from the microbial point of view it constitutes an open system, as opposed to the circulatory system that must be a tightly closed microbial-free environment. In particular, the human intestine spans ca. 200 m2 and represents a massive absorptive surface composed of a layer of epithelial cells as well as a paracellular barrier. The permeability of this paracellular barrier is regulated by transmembrane proteins known as claudins that play a critical role in tight junctions.
Collapse
|
49
|
Biomarkers of Gastrointestinal Host Responses to Microbial Infections. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Halliez MCM, Buret AG. Gastrointestinal Parasites and the Neural Control of Gut Functions. Front Cell Neurosci 2015; 9:452. [PMID: 26635531 PMCID: PMC4658430 DOI: 10.3389/fncel.2015.00452] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/02/2015] [Indexed: 12/30/2022] Open
Abstract
Gastrointestinal motility and transport of water and electrolytes play key roles in the pathophysiology of diarrhea upon exposure to enteric parasites. These processes are actively modulated by the enteric nervous system (ENS), which includes efferent, and afferent neurons, as well as interneurons. ENS integrity is essential to the maintenance of homeostatic gut responses. A number of gastrointestinal parasites are known to cause disease by altering the ENS. The mechanisms remain incompletely understood. Cryptosporidium parvum, Giardia duodenalis (syn. Giardia intestinalis, Giardia lamblia), Trypanosoma cruzi, Schistosoma species and others alter gastrointestinal motility, absorption, or secretion at least in part via effects on the ENS. Recent findings also implicate enteric parasites such as C. parvum and G. duodenalis in the development of post-infectious complications such as irritable bowel syndrome, which further underscores their effects on the gut-brain axis. This article critically reviews recent advances and the current state of knowledge on the impact of enteric parasitism on the neural control of gut functions, and provides insights into mechanisms underlying these abnormalities.
Collapse
Affiliation(s)
- Marie C M Halliez
- Department of Biological Sciences, Inflammation Research Network, Host-Parasite Interaction NSERC-CREATE, University of Calgary Calgary, AB, Canada ; Protozooses transmises par l'alimentation, Rouen University Hospital, University of Rouen and Institute for Biomedical Research, University of Reims Champagne-Ardennes Rouen and Reims, France
| | - André G Buret
- Department of Biological Sciences, Inflammation Research Network, Host-Parasite Interaction NSERC-CREATE, University of Calgary Calgary, AB, Canada
| |
Collapse
|