1
|
Guan L, Li X, Chen J, Wang L, Zhang X, Sun H, Li Y, Yang M, Qin Q, Wang S. Co-infection of nervous necrosis virus and Vibrio harveyi increased mortality and worsened the disease severity in the orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110117. [PMID: 39793911 DOI: 10.1016/j.fsi.2025.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Co-infections of different pathogenic microorganisms usually cause complex effects, and receive more attention. Red-grouper nervous necrosis virus (RGNNV) and Vibrio are the common viral and bacterial pathogens of fish, and are often detected simultaneously in diseased fish. However, the understanding of co-infection of RGNNV and Vibrio is still unclear. In this study, we have established a grouper (Epinephelus coioides) model of the co-infection of RGNNV and Vibrio harveyi (V. harveyi). Compared with single pathogen infection, co-infection of RGNNV and V. harveyi significantly caused more severe pathologic changes with higher mortality (P < 0.05), and promoted the proliferation of the pathogens by RNA-FISH and qRT-PCR (P < 0.05), demonstrating a synergistic effect of RGNNV and V. harveyi in grouper. Furthermore, we found that V. harveyi inhibited the induction and migration of neutrophils by RGNNV, resulting the obviously reduced neutrophils of co-infection groups (P < 0.05). In addition, transcriptome analysis showed that differentially expressed genes (DEGs) of brain tissues of different experimental groups were enriched in immune signaling pathways, such as JAK-STAT signaling, NF-κB signaling and TNF signaling pathways. For the liver and spleen tissues, the DEGs of different experimental groups were enriched in metabolism-related pathways, such as glycolysis/gluconeogenesis and glycerolipid metabolism. Further analysis of the selected DEGs, co-infection of RGNNV and V. harveyi significantly suppressed the host immune response and up-regulated host glucose and lipid metabolism, compared with single-pathogen infection. Taken together, the RGNNV and V. harveyi make synergic reaction in grouper, possibly due to the down regulation of host immune response and up regulation of metabolism to facilitate the replication of both pathogens. These results provide new insights into the pathogenesis of multiple pathogens, and contribute to develop new therapies.
Collapse
Affiliation(s)
- Lingfeng Guan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xinshuai Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jinpeng Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Liqun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xinyue Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Hongyan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yanwei Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Min Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, PR China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, PR China.
| | - Shaowen Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
2
|
Diniz MES, Alves FT, Jesus BCG, Luz LC, Franco PS, Ribeiro VDS, Barbosa BF, Gonzaga HT. Taenia crassiceps cysticerci antigenic extract controls Toxoplasma gondii proliferation in human trophoblast cells and upregulates IL-10 production. Microb Pathog 2025; 200:107353. [PMID: 39892833 DOI: 10.1016/j.micpath.2025.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Neglected tropical diseases caused by helminths such as strongyloidiasis and those caused by protozoa such as toxoplasmosis are public health problems, especially in poorer countries. Considering that helminthic infections can alter susceptibility to other parasites, it is important to study the impact of this interaction in different scenarios/models, such as the maternal-fetal interface. This research aims to evaluate the role of saline extract (SE) of Taenia crassiceps cysticerci during Toxoplasma gondii infection in human villous trophoblastic cells of the BeWo lineage. The saline extract was obtained from T. crassiceps cysticerci and used in BeWo cells at different concentrations (64; 32; 16; 8;4; 2;1; 0.5; 0.25 and 0.125 μg/ml). The following parameters were evaluated: (a) cell viability using the MTT method, (b) the effect of ES on parasite proliferation, assessed via the β-galactosidase reaction, and (c) cytokine secretion (IL-6, IL-8, IL-10, and MIF) in culture supernatants, measured by the immunoenzymatic ELISA assay, after stimulation with ES, with or without T. gondii infection. SE did not affect the viability of BeWo cells. In the proliferation assay, at concentrations tested (32 and 8 μg/mL), there was a reduction in the number of T. gondii, similar to the effect observed with sulfadiazine and pyrimethamine treatment. Regarding cytokines, IL-10 production increased after SE stimulation, at the same concentrations where parasitism control was observed. This finding contributes to the understanding of co-infection with Taenia sp. and T. gondii. Taenia may potentially influence drug interactions during treatment and impact the outcome of vertical transmission of toxoplasmosis.
Collapse
Affiliation(s)
- Maria Eduarda Silva Diniz
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Fabíola Teixeira Alves
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | | | - Luana Carvalho Luz
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Priscila Silva Franco
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Vanessa da Silva Ribeiro
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Bellisa Freitas Barbosa
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Henrique Tomaz Gonzaga
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Ibrahim D, Shahin SE, Elnahriry SS, El-Badry SM, Eltarabili RM, Elazab ST, Ismail TA, Abd El-Hamid MI. Liposome encapsulating pine bark extract in Nile tilapia: Targeting interrelated immune and antioxidant defense to combat coinfection with Aeromonas hydrophila and Enterococcus faecalis. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110031. [PMID: 39566669 DOI: 10.1016/j.fsi.2024.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/27/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Application of smart delivery systems for encapsulation of natural ingredients provides novel avenues and is being frequently developed. Thus, we aimed to highlight the effects of cyclosome liposomal pine bark extract (CL-PBE) on Nile tilapia growth, immunomodulation, antioxidant capacity and resistance against coinfection with Aeromonas hydrophila and Enterococcus faecalis and their associated virulence genes. The experiment was conducted on four fish groups receiving a control diet (control) along with three baseline meals supplemented with 200, 400 and 600 mg/kg diet of CL-PBE (CL-PBE 200, 400 and 600, respectively). At the end of the 12-weeks feeding trial, the tilapias were intraperitoneally challenged with virulent A. hydrophila strain and five days later, E. faecalis challenge was carried out. The results revealed that tilapias fed diets fortified with CL-PBE displayed significantly enhanced growth rate and feed conversion ratio in a dose-dependent manner. Moreover, we demonstrated that CL-PBE had potent antioxidant property presented by modulation of several markers of oxidative stress; substantial reductions in reactive oxygen species, hydrogen peroxide and malondialdehyde levels, an elevation in total antioxidant capacity and boosting glutathione peroxidase (GSH-Px), catalase (CAT) and superoxide dismutase (SOD) activities in fish serum and muscle tissues. This was also correlated with augmenting the expression of CAT, SOD, GSH-Px, Nrf2 and caspase-1 genes alongside reducing those of COX-2, HSP70 and iNOS genes in response to CL-PBE. Our data demonstrated that CL-PBE fortification counteracted the overly pronounced inflammatory response-mediated induction of IL-1β, TNF-α, MHCII and TLR2 genes at the transcriptional levels post coinfection together with promotion in MUC2 and IL-10 genes expression. Notably, our findings displayed optimal well-functioning fish immune system post dietary supplementation of CL-PBE for the protection against coinfection with A. hydrophila and E. faecalis. This was evident from the decline of their counts and hence encompassing the capacity to reduce cumulative mortality percentage in conjunction with interference with their virulence via the significant downregulatory effects of CL-PBE on E. faecalis esp and gelE and A. hydrophila act and fla virulence genes. Taken together, our study strongly suggested dietary inclusion of CL-PBE for Nile tilapias with superior growth performance and significant economic benefits coupled with potent stimulatory effects on antioxidant capacity and immune response expediting our detailed understanding of how coinfection with A. hydrophila and E. faecalis was controlled.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Sara E Shahin
- Department of Animal Wealth Development, Veterinary Economics and Farm Management, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Shimaa S Elnahriry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| | - Sara M El-Badry
- Department of Animal Wealth Development, Veterinary Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44519, Egypt.
| | - Reham M Eltarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
4
|
Balingit AK, Grande PG, Nicolasora AD, Polotan FG, Pantoni RA, Abulencia MF, Chu MYJ, Rivera N, Oblepias MS, Garcia J. Clinical presentation and molecular diagnosis of a possible Mpox virus and Varicella zoster virus co-infection in an adult immunocompetent Filipino: a case report. Front Public Health 2024; 12:1387636. [PMID: 39639912 PMCID: PMC11617555 DOI: 10.3389/fpubh.2024.1387636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
We report the first travel-related case of a possible Mpox-Varicella zoster virus (VZV) co-infection in the Philippines, a country that is endemic for Varicella but non-endemic for Mpox. A 29-year-old Filipino, female, with a travel history to Switzerland and with no prior history of VZV infection sought consultation due to rashes. She presented with multiple papular, pustular, and vesicular skin lesions, some with umbilication and with irregular borders, on the face, neck, trunk, inguinal area, upper extremities, and right leg. She also had bilateral submandibular and post-auricular lymphadenopathies. Tzanck smear exhibited viral cytopathic effects. She tested positive for Mpox infection (Clade II) and Varicella infection via quantitative real-time polymerase chain reaction (qPCR) tests but with a high CT value obtained from the Mpox PCR. Shotgun metagenomic sequencing (mNGS) successfully recovered sequences from the Varicella zoster virus which corroborated with the high viral load detected using qPCR. In contrast, shotgun mNGS was not able to generate a Mpox consensus sequence due to very few reads mapped to the Mpox virus reference sequence, which raised the question if there was the presence of a true Mpox-Varicella co-infection in our patient. Nevertheless, systemic and topical acyclovir was given to the patient. She was discharged and continued home isolation for 30 days from the rash onset. Strategies have been formed by the country's healthcare facilities to properly identify Mpox infection. However, Mpox co-infection with other viral diseases presented a challenge in the proper diagnosis of our patient. This prompted a high index of suspicion and the usage of suitable diagnostic tests. With proper clinical evaluation and utilization of appropriate diagnostic tests, we were able to diagnose the first Filipino patient with a possible Mpox and Varicella zoster virus co-infection.
Collapse
|
5
|
Szabo EK, Bowhay C, Forrester E, Liu H, Dong B, Coria AL, Perera S, Fung B, Badawadagi N, Gaio C, Bailey K, Ritz M, Bowron J, Ariyaratne A, Finney CAM. Heligmosomoides bakeri and Toxoplasma gondii co-infection leads to increased mortality associated with changes in immune resistance in the lymphoid compartment and disease pathology. PLoS One 2024; 19:e0292408. [PMID: 38950025 PMCID: PMC11216590 DOI: 10.1371/journal.pone.0292408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/14/2024] [Indexed: 07/03/2024] Open
Abstract
Co-infections are a common reality but understanding how the immune system responds in this context is complex and can be unpredictable. Heligmosomoides bakeri (parasitic roundworm, previously Heligmosomoides polygyrus) and Toxoplasma gondii (protozoan parasite) are well studied organisms that stimulate a characteristic Th2 and Th1 response, respectively. Several studies have demonstrated reduced inflammatory cytokine responses in animals co-infected with such organisms. However, while general cytokine signatures have been examined, the impact of the different cytokine producing lymphocytes on parasite control/clearance is not fully understood. We investigated five different lymphocyte populations (NK, NKT, γδ T, CD4+ T and CD8+ T cells), five organs (small intestine, Peyer's patches, mesenteric lymph nodes, spleen and liver), and 4 cytokines (IFN©, IL-4, IL-10 and IL-13) at two different time points (days 5 and 10 post T. gondii infection). We found that co-infected animals had significantly higher mortality than either single infection. This was accompanied by transient and local changes in parasite loads and cytokine profiles. Despite the early changes in lymphocyte and cytokine profiles, severe intestinal pathology in co-infected mice likely contributed to early mortality due to significant damage by both parasites in the small intestine. Our work demonstrates the importance of taking a broad view during infection research, studying multiple cell types, organs/tissues and time points to link and/or uncouple immunological from pathological findings. Our results provide insights into how co-infection with parasites stimulating different arms of the immune system can lead to drastic changes in infection dynamics.
Collapse
Affiliation(s)
- Edina K. Szabo
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Christina Bowhay
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Emma Forrester
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Holly Liu
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Beverly Dong
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Aralia Leon Coria
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Shashini Perera
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Beatrice Fung
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Namratha Badawadagi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Camila Gaio
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Kayla Bailey
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Manfred Ritz
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Joel Bowron
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Anupama Ariyaratne
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Constance A. M. Finney
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Vanalli C, Mari L, Casagrandi R, Gatto M, Cattadori IM. Helminth ecological requirements shape the impact of climate change on the hazard of infection. Ecol Lett 2024; 27:e14386. [PMID: 38403295 DOI: 10.1111/ele.14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
Outbreaks and spread of infectious diseases are often associated with seasonality and environmental changes, including global warming. Free-living stages of soil-transmitted helminths are highly susceptible to climatic drivers; however, how multiple climatic variables affect helminth species, and the long-term consequences of these interactions, is poorly understood. We used experiments on nine trichostrongylid species of herbivores to develop a temperature- and humidity-dependent model of infection hazard, which was then implemented at the European scale under climate change scenarios. Intestinal and stomach helminths exhibited contrasting climatic responses, with the former group strongly affected by temperature while the latter primarily impacted by humidity. Among the demographic traits, larval survival heavily modulated the infection hazard. According to the specific climatic responses of the two groups, climate change is expected to generate differences in the seasonal and spatial shifts of the infection hazard and group co-circulation. In the future, an intensification of these trends could create new opportunities for species range expansion and co-occurrence at European central-northern latitudes.
Collapse
Affiliation(s)
- Chiara Vanalli
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lorenzo Mari
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Renato Casagrandi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Marino Gatto
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Isabella M Cattadori
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
7
|
Okon EM, Okocha RC, Taiwo AB, Michael FB, Bolanle AM. Dynamics of co-infection in fish: A review of pathogen-host interaction and clinical outcome. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100096. [PMID: 37250211 PMCID: PMC10213192 DOI: 10.1016/j.fsirep.2023.100096] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/09/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Co-infections can affect the transmission of a pathogen within a population and the pathogen's virulence, ultimately affecting the disease's dynamics. In addition, co-infections can potentially affect the host's immunological responses, clinical outcomes, survival, and disease control efficacy. Co-infections significantly impact fish production and can change several fish diseases' progression and severity. However, the effect of co-infection has only recently garnered limited attention in aquatic animals such as fish, and there is currently a dearth of studies on this topic. This study, therefore, presents an in-depth summary of the dynamics of co-infection in fish. This study reviewed the co-infection of fish pathogens, the interaction of pathogens and fish, clinical outcomes and impacts on fish immune responses, and fish survival. Most studies described the prevalence of co-infections in fish, with various parameters influencing their outcomes. Bacterial co-infection increased fish mortality, ulcerative dermatitis, and intestinal haemorrhage. Viral co-infection resulted in osmoregulatory effects, increased mortality and cytopathic effect (CPE). More severe histological alterations and clinical symptoms were related to the co-infection of fish than in single-infected fish. In parasitic co-infection, there was increased mortality, high kidney swelling index, and severe necrotic alterations in the kidney, liver, and spleen. In other cases, there were more severe kidney lesions, cartilage destruction and displacement. There was a dearth of information on mitigating co-infections in fish. Therefore, further studies on the mitigation strategies of co-infections in fish will provide valuable insights into this research area. Also, more research on the immunology of co-infection specific to each fish pathogen class (bacteria, viruses, fungi, and parasites) is imperative. The findings from such studies would provide valuable information on the relationship between fish immune systems and targeted responses.
Collapse
Affiliation(s)
| | - Reuben Chukwuka Okocha
- Department of Animal Science, College of Agricultural Sciences, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
- Climate Action Research Group, Landmark University SDG 13, Nigeria
| | | | - Falana Babatunde Michael
- Department of Animal Science, College of Agricultural Sciences, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
- Life Below Water Research Group, Landmark University SDG 14, Nigeria
| | - Adeniran Moji Bolanle
- Department of Animal Science, College of Agricultural Sciences, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
| |
Collapse
|
8
|
Vanalli C, Mari L, Casagrandi R, Boag B, Gatto M, Cattadori IM. Modeling the contribution of antibody attack rates to single and dual helminth infections in a natural system. Math Biosci 2023; 360:109010. [PMID: 37088125 DOI: 10.1016/j.mbs.2023.109010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Within-host models of infection can provide important insights into the processes that affect parasite spread and persistence in host populations. However, modeling can be limited by the availability of empirical data, a problem commonly encountered in natural systems. Here, we used six years of immune-infection observations of two gastrointestinal helminths (Trichostrongylus retortaeformis and Graphidium strigosum) from a population of European rabbits (Oryctolagus cuniculus) to develop an age-dependent, mathematical model that explicitly included species-specific and cross-reacting antibody (IgA and IgG) responses to each helminth in hosts with single or dual infections. Different models of single infection were formally compared to test alternative mechanisms of parasite regulation. The two models that best described single infections of each helminth species were then coupled through antibody cross-immunity to examine how the presence of one species could alter the host immune response to, and the within-host dynamics of, the other species. For both single infections, model selection suggested that either IgA or IgG responses could equally explain the observed parasite intensities by host age. However, the antibody attack rate and affinity level changed between the two helminths, it was stronger against T. retortaeformis than against G. strigosum and caused contrasting age-intensity profiles. When the two helminths coinfect the same host, we found variation of the species-specific antibody response to both species together with an asymmetric cross-immune response driven by IgG. Lower attack rate and affinity of antibodies in dual than single infections contributed to the significant increase of both helminth intensities. By combining mathematical modeling with immuno-infection data, our work provides a tractable model framework for disentangling some of the complexities generated by host-parasite and parasite-parasite interactions in natural systems.
Collapse
Affiliation(s)
- Chiara Vanalli
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, 16802 PA, USA.
| | - Lorenzo Mari
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
| | - Renato Casagrandi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
| | - Brian Boag
- The James Hutton Institute, DD2 5DA Invergowrie, UK
| | - Marino Gatto
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
| | - Isabella M Cattadori
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, 16802 PA, USA
| |
Collapse
|
9
|
Hatami H, Jamshidi P, Arbabi M, Safavi-Naini SAA, Farokh P, Izadi-Jorshari G, Mohammadzadeh B, Nasiri MJ, Zandi M, Nayebzade A, Sechi LA. Demographic, Epidemiologic, and Clinical Characteristics of Human Monkeypox Disease Pre- and Post-2022 Outbreaks: A Systematic Review and Meta-Analysis. Biomedicines 2023; 11:957. [PMID: 36979936 PMCID: PMC10045775 DOI: 10.3390/biomedicines11030957] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
(1) Background: In early May 2022, an increasing number of human monkeypox (mpox) cases were reported in non-endemic disparate regions of the world, which raised concerns. Here, we provide a systematic review and meta-analysis of mpox-confirmed patients presented in peer-reviewed publications over the 10 years before and during the 2022 outbreak from demographic, epidemiological, and clinical perspectives. (2) Methods: A systematic search was performed for relevant studies published in Pubmed/Medline, Embase, Scopus, and Google Scholar from 1 January 2012 up to 15 February 2023. Pooled frequencies with 95% confidence intervals (CIs) were assessed using the random or fixed effect model due to the estimated heterogeneity of the true effect sizes. (3) Results: Out of 10,163 articles, 67 met the inclusion criteria, and 31 cross-sectional studies were included for meta-analysis. Animal-to-human transmission was dominant in pre-2022 cases (61.64%), but almost all post-2022 reported cases had a history of human contact, especially sexual contact. The pooled frequency of MSM individuals was 93.5% (95% CI 91.0-95.4, I2: 86.60%) and was reported only in post-2022 included studies. The male gender was predominant in both pre- and post-2022 outbreaks, and the mean age of confirmed cases was 29.92 years (5.77-41, SD: 9.38). The most common clinical manifestations were rash, fever, lymphadenopathy, and malaise/fatigue. Proctalgia/proctitis (16.6%, 95% CI 10.3-25.6, I2: 97.76) and anal/perianal lesions (39.8%, 95% CI 30.4-49.9, I2: 98.10) were the unprecedented clinical manifestations during the 2022 outbreak, which were not described before. Genitalia involvement was more common in post-2022 mpox patients (55.6%, 95% CI 51.7-59.4, I2: 88.11). (4) Conclusions: There are speculations about the possibility of changes in the pathogenic properties of the virus. It seems that post-2022 mpox cases experience a milder disease with fewer rashes and lower mortality rates. Moreover, the vast majority of post-2022 cases are managed on an outpatient basis. Our study could serve as a basis for ongoing investigations to identify the different aspects of previous mpox outbreaks and compare them with the current ones.
Collapse
Affiliation(s)
- Hossein Hatami
- Department of Public Health, School of Public Health and Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Parnian Jamshidi
- Department of Public Health, School of Public Health and Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.A.); (P.F.); (B.M.); (M.J.N.)
| | - Mahta Arbabi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.A.); (P.F.); (B.M.); (M.J.N.)
| | - Seyed Amir Ahmad Safavi-Naini
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Parisa Farokh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.A.); (P.F.); (B.M.); (M.J.N.)
| | - Ghazal Izadi-Jorshari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Benyamin Mohammadzadeh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.A.); (P.F.); (B.M.); (M.J.N.)
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.A.); (P.F.); (B.M.); (M.J.N.)
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Amirhossein Nayebzade
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- SC Microbiologia e Virologia, Azienda Ospedaliera Universitaria, 07100 Sassari, Italy
| |
Collapse
|
10
|
Nguyen NTD, Pathak AK, Cattadori IM. Gastrointestinal helminths increase Bordetella bronchiseptica shedding and host variation in supershedding. eLife 2022; 11:e70347. [PMID: 36346138 PMCID: PMC9642997 DOI: 10.7554/elife.70347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Co-infected hosts, individuals that carry more than one infectious agent at any one time, have been suggested to facilitate pathogen transmission, including the emergence of supershedding events. However, how the host immune response mediates the interactions between co-infecting pathogens and how these affect the dynamics of shedding remains largely unclear. We used laboratory experiments and a modeling approach to examine temporal changes in the shedding of the respiratory bacterium Bordetella bronchiseptica in rabbits with one or two gastrointestinal helminth species. Experimental data showed that rabbits co-infected with one or both helminths shed significantly more B. bronchiseptica, by direct contact with an agar petri dish, than rabbits with bacteria alone. Co-infected hosts generated supershedding events of higher intensity and more frequently than hosts with no helminths. To explain this variation in shedding an infection-immune model was developed and fitted to rabbits of each group. Simulations suggested that differences in the magnitude and duration of shedding could be explained by the effect of the two helminths on the relative contribution of neutrophils and specific IgA and IgG to B. bronchiseptica neutralization in the respiratory tract. However, the interactions between infection and immune response at the scale of analysis that we used could not capture the rapid variation in the intensity of shedding of every rabbit. We suggest that fast and local changes at the level of respiratory tissue probably played a more important role. This study indicates that co-infected hosts are important source of variation in shedding, and provides a quantitative explanation into the role of helminths to the dynamics of respiratory bacterial infections.
Collapse
Affiliation(s)
- Nhat TD Nguyen
- Center for Infectious Disease Dynamics, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Ashutosh K Pathak
- Center for Infectious Disease Dynamics, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Infectious Diseases, University of GeorgiaAthensUnited States
| | - Isabella M Cattadori
- Center for Infectious Disease Dynamics, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
11
|
Early or Simultaneous Infection with Infectious Pancreatic Necrosis Virus Inhibits Infectious Hematopoietic Necrosis Virus Replication and Induces a Stronger Antiviral Response during Co-infection in Rainbow Trout ( Oncorhynchus mykiss). Viruses 2022; 14:v14081732. [PMID: 36016354 PMCID: PMC9414607 DOI: 10.3390/v14081732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Infectious hematopoietic necrosis (IHN) and infectious pancreatic necrosis (IPN) are the most common viral diseases of salmon in aquaculture worldwide. The co-infection of rainbow trout (Oncorhynchus mykiss) with IHN virus (IHNV) and IPN virus (IPNV) is known to occur. To determine the influence of IPNV on IHNV in co-infection, rainbow trout were intraperitoneally (i.p.) injected with IPNV at different time intervals prior to, simultaneously to, or after IHNV infection. The replication of IHNV in the brain, gill, heart, liver, spleen, and head kidney was detected by real-time quantitative polymerase chain reaction (qRT-PCR). The results showed that when rainbow trout were i.p. injected with IPNV prior to, simultaneously to, or after IHNV on 2 day (d), IHNV replication was inhibited (p < 0.05) in all collected tissues. Nevertheless, when rainbow trout were i.p. injected with IPNV after IHNV on 7 d (H7P), IHNV replication was only inhibited (p < 0.05) in the liver 14 d post-IHNV infection. Moreover, stronger antiviral responses occurred in all challenge groups. Our results suggest that IPNV can inhibit IHNV replication before or simultaneously with IHNV infection, and induce a stronger antiviral response, and that this inhibition is most sensitive in the liver. Early i.p. injection of IPNV can significantly reduce the mortality of rainbow trout, compared with the group only injected with IHNV.
Collapse
|
12
|
Stewart Merrill TE, Rapti Z, Cáceres CE. Host Controls of Within-Host Disease Dynamics: Insight from an Invertebrate System. Am Nat 2021; 198:317-332. [PMID: 34403315 DOI: 10.1086/715355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractWithin-host processes (representing the entry, establishment, growth, and development of a parasite inside its host) may play a key role in parasite transmission but remain challenging to observe and quantify. We develop a general model for measuring host defenses and within-host disease dynamics. Our stochastic model breaks the infection process down into the stages of parasite exposure, entry, and establishment and provides associated probabilities for a host's ability to resist infections with barriers and clear internal infections. We tested our model on Daphnia dentifera and the parasitic fungus Metschnikowia bicuspidata and found that when faced with identical levels of parasite exposure, Daphnia patent (transmitting) infections depended on the strength of internal clearance. Applying a Gillespie algorithm to the model-estimated probabilities allowed us to visualize within-host dynamics, within which signatures of host defense could be clearly observed. We also found that early within-host stages were the most vulnerable to internal clearance, suggesting that hosts have a limited window during which recovery can occur. Our study demonstrates how pairing longitudinal infection data with a simple model can reveal new insight into within-host dynamics and mechanisms of host defense. Our model and methodological approach may be a powerful tool for exploring these properties in understudied host-parasite interactions.
Collapse
|
13
|
Herczeg D, Ujszegi J, Kásler A, Holly D, Hettyey A. Host-multiparasite interactions in amphibians: a review. Parasit Vectors 2021; 14:296. [PMID: 34082796 PMCID: PMC8173923 DOI: 10.1186/s13071-021-04796-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/20/2021] [Indexed: 01/15/2023] Open
Abstract
Parasites, including viruses, bacteria, fungi, protists, helminths, and arthropods, are ubiquitous in the animal kingdom. Consequently, hosts are frequently infected with more than one parasite species simultaneously. The assessment of such co-infections is of fundamental importance for disease ecology, but relevant studies involving non-domesticated animals have remained scarce. Many amphibians are in decline, and they generally have a highly diverse parasitic fauna. Here we review the literature reporting on field surveys, veterinary case studies, and laboratory experiments on co-infections in amphibians, and we summarize what is known about within-host interactions among parasites, which environmental and intrinsic factors influence the outcomes of these interactions, and what effects co-infections have on hosts. The available literature is piecemeal, and patterns are highly diverse, so that identifying general trends that would fit most host–multiparasite systems in amphibians is difficult. Several examples of additive, antagonistic, neutral, and synergistic effects among different parasites are known, but whether members of some higher taxa usually outcompete and override the effects of others remains unclear. The arrival order of different parasites and the time lag between exposures appear in many cases to fundamentally shape competition and disease progression. The first parasite to arrive can gain a marked reproductive advantage or induce cross-reaction immunity, but by disrupting the skin and associated defences (i.e., skin secretions, skin microbiome) and by immunosuppression, it can also pave the way for subsequent infections. Although there are exceptions, detrimental effects to the host are generally aggravated with increasing numbers of co-infecting parasite species. Finally, because amphibians are ectothermic animals, temperature appears to be the most critical environmental factor that affects co-infections, partly via its influence on amphibian immune function, partly due to its direct effect on the survival and growth of parasites. Besides their importance for our understanding of ecological patterns and processes, detailed knowledge about co-infections is also crucial for the design and implementation of effective wildlife disease management, so that studies concentrating on the identified gaps in our understanding represent rewarding research avenues. ![]()
Collapse
Affiliation(s)
- Dávid Herczeg
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary.
| | - János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary
| | - Andrea Kásler
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary.,Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Dóra Holly
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary.,Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary.,Department of Ecology, Institute for Biology, University of Veterinary Medicine, Rottenbiller utca 50, Budapest, 1077, Hungary
| |
Collapse
|
14
|
Santos FM, de Sousa KCM, Sano NY, Nantes WAG, Liberal SC, Machado RZ, André MR, Herrera HM. Relationships between vector-borne parasites and free-living mammals at the Brazilian Pantanal. Parasitol Res 2021; 120:1003-1010. [PMID: 33420620 DOI: 10.1007/s00436-020-07028-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/20/2020] [Indexed: 11/29/2022]
Abstract
In nature, parasitic infections must be addressed as complex systems involving parasite-host relationships on a temporal and spatial scale. Since the parasites cover a great biological diversity, we can expect that wildlife are exposed simultaneously to different parasites. In this sense, the objective of this work was to determine the relationships between free-living mammals and their associated hemoparasites in the Brazilian Pantanal. We used the data published during 2017 and 2018 by de Sousa et al. regarding the detection of vector-borne pathogens (VBP), namely Anaplasma, Babesia, Bartonella, Cytauxzoon, Ehrlichia, Hepatozoon, Mycoplasma, and Theileria, in nine species of free-living mammals belonging to orders Carnivora, Rodentia, and Didelphimorphia. We assume as infected an individual positive on any of parasitological, molecular, and/or serological tests. We observed a strong association between the wild felid Leopardus pardalis with Cytauxzoon, the wild canid Cerdocyon thous with Hepatozoon, the small rodent Thrichomys fosteri with Bartonella, and the procyonid Nasua nasua with Mycoplasma and Theileria. Therefore, N. nasua, C. thous, T. fosteri, and the small rodent Oecomys mamorae can be considered key species for the maintenance of selected VBP in the Pantanal region, because they showed a high number of single and coinfections. Together, our results highlighted the importance of coinfection as a common phenomenon in nature.
Collapse
Affiliation(s)
- Filipe Martins Santos
- Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário -, Campo Grande, MS, 79117-900, Brazil.
| | - Keyla Carstens Marques de Sousa
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Nayara Yoshie Sano
- Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Wesley Arruda Gimenes Nantes
- Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário -, Campo Grande, MS, 79117-900, Brazil
| | - Sany Caroline Liberal
- Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rosangela Zacarias Machado
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Marcos Rogério André
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Heitor Miraglia Herrera
- Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário -, Campo Grande, MS, 79117-900, Brazil.,Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.,Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
15
|
Siroski PA, María Soledad MB. Review of the Recent Knowledge on the Crocodilian Immune System. SOUTH AMERICAN JOURNAL OF HERPETOLOGY 2020. [DOI: 10.2994/sajh-d-19-00093.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Pablo A. Siroski
- Laboratorio de Zoología Aplicada: Anexo Vertebrados, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ministerio de Medio Ambiente y Cambio Climático, Santa Fe, Argentina
| | - Moleón Barsani María Soledad
- Laboratorio de Zoología Aplicada: Anexo Vertebrados, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ministerio de Medio Ambiente y Cambio Climático, Santa Fe, Argentina
| |
Collapse
|
16
|
Hoarau AOG, Mavingui P, Lebarbenchon C. Coinfections in wildlife: Focus on a neglected aspect of infectious disease epidemiology. PLoS Pathog 2020; 16:e1008790. [PMID: 32881983 PMCID: PMC7470396 DOI: 10.1371/journal.ppat.1008790] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Axel O. G. Hoarau
- Université de La Réunion, Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Saint Denis, Réunion Island, France
- * E-mail:
| | - Patrick Mavingui
- Université de La Réunion, Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Saint Denis, Réunion Island, France
| | - Camille Lebarbenchon
- Université de La Réunion, Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Saint Denis, Réunion Island, France
| |
Collapse
|
17
|
West Nile Virus: An Update on Pathobiology, Epidemiology, Diagnostics, Control and "One Health" Implications. Pathogens 2020; 9:pathogens9070589. [PMID: 32707644 PMCID: PMC7400489 DOI: 10.3390/pathogens9070589] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is an important zoonotic flavivirus responsible for mild fever to severe, lethal neuroinvasive disease in humans, horses, birds, and other wildlife species. Since its discovery, WNV has caused multiple human and animal disease outbreaks in all continents, except Antarctica. Infections are associated with economic losses, mainly due to the cost of treatment of infected patients, control programmes, and loss of animals and animal products. The pathogenesis of WNV has been extensively investigated in natural hosts as well as in several animal models, including rodents, lagomorphs, birds, and reptiles. However, most of the proposed pathogenesis hypotheses remain contentious, and much remains to be elucidated. At the same time, the unavailability of specific antiviral treatment or effective and safe vaccines contribute to the perpetuation of the disease and regular occurrence of outbreaks in both endemic and non-endemic areas. Moreover, globalisation and climate change are also important drivers of the emergence and re-emergence of the virus and disease. Here, we give an update of the pathobiology, epidemiology, diagnostics, control, and “One Health” implications of WNV infection and disease.
Collapse
|
18
|
Sasaki K, Bruder D, Hernandez-Vargas EA. Topological data analysis to model the shape of immune responses during co-infections. COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION 2020; 85:105228. [PMID: 32288422 PMCID: PMC7129978 DOI: 10.1016/j.cnsns.2020.105228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/17/2020] [Accepted: 02/11/2020] [Indexed: 05/23/2023]
Abstract
Co-infections by multiple pathogens have important implications in many aspects of health, epidemiology and evolution. However, how to disentangle the non-linear dynamics of the immune response when two infections take place at the same time is largely unexplored. Using data sets of the immune response during influenza-pneumococcal co-infection in mice, we employ here topological data analysis to simplify and visualise high dimensional data sets. We identified persistent shapes of the simplicial complexes of the data in the three infection scenarios: single viral infection, single bacterial infection, and co-infection. The immune response was found to be distinct for each of the infection scenarios and we uncovered that the immune response during the co-infection has three phases and two transition points. During the first phase, its dynamics is inherited from its response to the primary (viral) infection. The immune response has an early shift (few hours post co-infection) and then modulates its response to react against the secondary (bacterial) infection. Between 18 and 26 h post co-infection the nature of the immune response changes again and does no longer resembles either of the single infection scenarios.
Collapse
Affiliation(s)
- Karin Sasaki
- Frankfurt Institute for Advanced Studies, Frankfurt am Main 60438, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Prevention and Control, Health Campus Immunology, Infectiology and Inflammation Otto-von-Guericke University Magdeburg, Germany
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Esteban A Hernandez-Vargas
- Frankfurt Institute for Advanced Studies, Frankfurt am Main 60438, Germany
- Instituto de Matematicas, UNAM, Unidad Juriquilla, Blvd. Juriquilla 3001, Queretaro C.P. 76230, Mexico
- Xidian-FIAS Joint Research Center, Germany-China
| |
Collapse
|
19
|
Abdel-Latif HMR, Dawood MAO, Menanteau-Ledouble S, El-Matbouli M. The nature and consequences of co-infections in tilapia: A review. JOURNAL OF FISH DISEASES 2020; 43:651-664. [PMID: 32315088 DOI: 10.1111/jfd.13164] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Co-infections commonly arise when two or multiple different pathogens infect the same host, either as simultaneous or as secondary concurrent infection. This potentiates their pathogenic effects and leads to serious negative consequences on the exposed host. Numerous studies on the occurrence of the bacterial, parasitic, fungal and viral co-infections were conducted in various tilapia species. Co-infections have been associated with serious negative impacts on susceptible fish because they increase the fish susceptibility to diseases and the likelihood of outbreaks in the affected fish. Co-infections can alter the disease course and increase the severity of disease through synergistic and, more rarely, antagonistic interactions. In this review, reports on the synergistic co-infections and their impacts on the affected tilapia species are highlighted. Additionally, their pathogenic mechanisms are briefly discussed. Tilapia producers should be aware of the possible occurrence of co-infections and their effects on the affected tilapia species and in particular of the clinical signs and course of the disease. To date, there is still limited information regarding the pathogenicity mechanisms and pathogen interactions during these co-infections. This is generally due to low awareness regarding co-infections, and in many cases, a dominant pathogen is perceived to be of vital importance and hence becomes the target of treatment while the treatment of the co-infectious agents is neglected. This review article aimed at raising awareness regarding co-infections and helping researchers and fish health specialists pay greater attention to these natural cases, leading to increased research and more consistent diagnosis of co-infectious outbreaks in order to improve control strategies to protect tilapia when infected with multiple pathogens.
Collapse
Affiliation(s)
- Hany M R Abdel-Latif
- Department of Poultry and Fish diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
20
|
|
21
|
Rynkiewicz EC, Clerc M, Babayan SA, Pedersen AB. Variation in Local and Systemic Pro-Inflammatory Immune Markers of Wild Wood Mice after Anthelmintic Treatment. Integr Comp Biol 2020; 59:1190-1202. [PMID: 31368489 PMCID: PMC6863754 DOI: 10.1093/icb/icz136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The immune system represents a host's main defense against infection to parasites and pathogens. In the wild, a host's response to immune challenges can vary due to physiological condition, demography (age, sex), and coinfection by other parasites or pathogens. These sources of variation, which are intrinsic to natural populations, can significantly impact the strength and type of immune responses elicited after parasite exposure and infection. Importantly, but often neglected, a host's immune response can also vary within the individual, across tissues and between local and systemic scales. Consequently, how a host responds at each scale may impact its susceptibility to concurrent and subsequent infections. Here we analyzed how characteristics of hosts and their parasite infections drive variation in the pro-inflammatory immune response in wild wood mice (Apodemus sylvaticus) at both the local and systemic scale by experimentally manipulating within-host parasite communities through anthelmintic drug treatment. We measured concentrations of the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) produced in vitro in response to a panel of toll-like receptor agonists at the local (mesenteric lymph nodes [MLNs]) and systemic (spleen) scales of individuals naturally infected with two gastrointestinal parasites, the nematode Heligmosomoides polygyrus and the protozoan Eimeria hungaryensis. Anthelmintic-treated mice had a 20-fold lower worm burden compared to control mice, as well as a four-fold higher intensity of the non-drug targeted parasite E. hungaryensis. Anthelmintic treatment differentially impacted levels of TNF-α expression in males and females at the systemic and local scales, with treated males producing higher, and treated females lower, levels of TNF-α, compared to control mice. Also, TNF-α was affected by host age, at the local scale, with MLN cells of young, treated mice producing higher levels of TNF-α than those of old, treated mice. Using complementary, but distinct, measures of inflammation measured across within-host scales allowed us to better assess the wood mouse immune response to changes in parasite infection dynamics after anthelmintic treatment. This same approach could be used to understand helminth infections and responses to parasite control measures in other systems in order to gain a broader view of how variation impacts the immune response.
Collapse
Affiliation(s)
- Evelyn C Rynkiewicz
- Fashion Institute of Technology, State University of New York, New York, NY 10001, USA
| | - Melanie Clerc
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Simon A Babayan
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Amy B Pedersen
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|
22
|
Rynkiewicz EC, Fenton A, Pedersen AB. Linking community assembly and structure across scales in a wild mouse parasite community. Ecol Evol 2019; 9:13752-13763. [PMID: 31938479 PMCID: PMC6953566 DOI: 10.1002/ece3.5785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/23/2019] [Accepted: 09/21/2019] [Indexed: 01/03/2023] Open
Abstract
Understanding what processes drive community structure is fundamental to ecology. Many wild animals are simultaneously infected by multiple parasite species, so host-parasite communities can be valuable tools for investigating connections between community structures at multiple scales, as each host can be considered a replicate parasite community. Like free-living communities, within-host-parasite communities are hierarchical; ecological interactions between hosts and parasites can occur at multiple scales (e.g., host community, host population, parasite community within the host), therefore, both extrinsic and intrinsic processes can determine parasite community structure. We combine analyses of community structure and assembly at both the host population and individual scales using extensive datasets on wild wood mice (Apodemus sylvaticus) and their parasite community. An analysis of parasite community nestedness at the host population scale provided predictions about the order of infection at the individual scale, which were then tested using parasite community assembly data from individual hosts from the same populations. Nestedness analyses revealed parasite communities were significantly more structured than random. However, observed nestedness did not differ from null models in which parasite species abundance was kept constant. We did not find consistency between observed community structure at the host population scale and within-host order of infection. Multi-state Markov models of parasite community assembly showed that a host's likelihood of infection with one parasite did not consistently follow previous infection by a different parasite species, suggesting there is not a deterministic order of infection among the species we investigated in wild wood mice. Our results demonstrate that patterns at one scale (i.e., host population) do not reliably predict processes at another scale (i.e., individual host), and that neutral or stochastic processes may be driving the patterns of nestedness observed in these communities. We suggest that experimental approaches that manipulate parasite communities are needed to better link processes at multiple ecological scales.
Collapse
Affiliation(s)
- Evelyn C. Rynkiewicz
- Department of Science and MathematicsFashion Institute of TechnologyState University of New YorkNew YorkNYUSA
- Institute of Evolutionary Biology & Centre for Immunity, Infection and EvolutionSchool of Biological ScienceUniversity of EdinburghEdinburghUK
| | - Andy Fenton
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Amy B. Pedersen
- Institute of Evolutionary Biology & Centre for Immunity, Infection and EvolutionSchool of Biological ScienceUniversity of EdinburghEdinburghUK
| |
Collapse
|
23
|
Childs LM, El Moustaid F, Gajewski Z, Kadelka S, Nikin-Beers R, Smith JW, Walker M, Johnson LR. Linked within-host and between-host models and data for infectious diseases: a systematic review. PeerJ 2019; 7:e7057. [PMID: 31249734 PMCID: PMC6589080 DOI: 10.7717/peerj.7057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022] Open
Abstract
The observed dynamics of infectious diseases are driven by processes across multiple scales. Here we focus on two: within-host, that is, how an infection progresses inside a single individual (for instance viral and immune dynamics), and between-host, that is, how the infection is transmitted between multiple individuals of a host population. The dynamics of each of these may be influenced by the other, particularly across evolutionary time. Thus understanding each of these scales, and the links between them, is necessary for a holistic understanding of the spread of infectious diseases. One approach to combining these scales is through mathematical modeling. We conducted a systematic review of the published literature on multi-scale mathematical models of disease transmission (as defined by combining within-host and between-host scales) to determine the extent to which mathematical models are being used to understand across-scale transmission, and the extent to which these models are being confronted with data. Following the PRISMA guidelines for systematic reviews, we identified 24 of 197 qualifying papers across 30 years that include both linked models at the within and between host scales and that used data to parameterize/calibrate models. We find that the approach that incorporates both modeling with data is under-utilized, if increasing. This highlights the need for better communication and collaboration between modelers and empiricists to build well-calibrated models that both improve understanding and may be used for prediction.
Collapse
Affiliation(s)
- Lauren M Childs
- Department of Mathematics, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Fadoua El Moustaid
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.,Global Change Center, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Zachary Gajewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.,Global Change Center, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.,Department of Statistics, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Sarah Kadelka
- Department of Mathematics, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Ryan Nikin-Beers
- Department of Mathematics, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.,Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - John W Smith
- Department of Statistics, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Melody Walker
- Department of Mathematics, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Leah R Johnson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.,Global Change Center, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.,Department of Statistics, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.,Computational Modeling and Data Analytics, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| |
Collapse
|
24
|
Behdenna A, Lembo T, Calatayud O, Cleaveland S, Halliday JEB, Packer C, Lankester F, Hampson K, Craft ME, Czupryna A, Dobson AP, Dubovi EJ, Ernest E, Fyumagwa R, Hopcraft JGC, Mentzel C, Mzimbiri I, Sutton D, Willett B, Haydon DT, Viana M. Transmission ecology of canine parvovirus in a multi-host, multi-pathogen system. Proc Biol Sci 2019; 286:20182772. [PMID: 30914008 PMCID: PMC6452066 DOI: 10.1098/rspb.2018.2772] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/27/2019] [Indexed: 12/25/2022] Open
Abstract
Understanding multi-host pathogen maintenance and transmission dynamics is critical for disease control. However, transmission dynamics remain enigmatic largely because they are difficult to observe directly, particularly in wildlife. Here, we investigate the transmission dynamics of canine parvovirus (CPV) using state-space modelling of 20 years of CPV serology data from domestic dogs and African lions in the Serengeti ecosystem. We show that, although vaccination reduces the probability of infection in dogs, and despite indirect enhancement of population seropositivity as a result of vaccine shedding, the vaccination coverage achieved has been insufficient to prevent CPV from becoming widespread. CPV is maintained by the dog population and has become endemic with approximately 3.5-year cycles and prevalence reaching approximately 80%. While the estimated prevalence in lions is lower, peaks of infection consistently follow those in dogs. Dogs exposed to CPV are also more likely to become infected with a second multi-host pathogen, canine distemper virus. However, vaccination can weaken this coupling, raising questions about the value of monovalent versus polyvalent vaccines against these two pathogens. Our findings highlight the need to consider both pathogen- and host-level community interactions when seeking to understand the dynamics of multi-host pathogens and their implications for conservation, disease surveillance and control programmes.
Collapse
Affiliation(s)
- Abdelkader Behdenna
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tiziana Lembo
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Sarah Cleaveland
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jo E. B. Halliday
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Craig Packer
- Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Felix Lankester
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - Katie Hampson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Meggan E. Craft
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Anna Czupryna
- Lincoln Park Zoo, Chicago, IL 60614, USA
- Department of Ecology and Evolution, University of Illinois, Chicago, IL 60607, USA
| | - Andrew P. Dobson
- Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Edward J. Dubovi
- Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14851, USA
| | - Eblate Ernest
- Tanzania Wildlife Research Institute, Arusha, Tanzania
| | - Robert Fyumagwa
- Conservation Areas and Species Diversity Programme, South Africa Country Office, International Union for the Conservation of Nature, Pretoria, South Africa
| | - J. Grant C. Hopcraft
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christine Mentzel
- Conservation Areas and Species Diversity Programme, South Africa Country Office, International Union for the Conservation of Nature, Pretoria, South Africa
| | | | - David Sutton
- MSD Animal Health, Walton Manor, Walton, Milton Keynes MK7 7AJ, UK
| | - Brian Willett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G6 1QH, UK
| | - Daniel T. Haydon
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mafalda Viana
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
25
|
Cotterill GG, Cross PC, Cole EK, Fuda RK, Rogerson JD, Scurlock BM, du Toit JT. Winter feeding of elk in the Greater Yellowstone Ecosystem and its effects on disease dynamics. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531148 PMCID: PMC5882999 DOI: 10.1098/rstb.2017.0093] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Providing food to wildlife during periods when natural food is limited results in aggregations that may facilitate disease transmission. This is exemplified in western Wyoming where institutional feeding over the past century has aimed to mitigate wildlife–livestock conflict and minimize winter mortality of elk (Cervus canadensis). Here we review research across 23 winter feedgrounds where the most studied disease is brucellosis, caused by the bacterium Brucella abortus. Traditional veterinary practices (vaccination, test-and-slaughter) have thus far been unable to control this disease in elk, which can spill over to cattle. Current disease-reduction efforts are being guided by ecological research on elk movement and density, reproduction, stress, co-infections and scavengers. Given the right tools, feedgrounds could provide opportunities for adaptive management of brucellosis through regular animal testing and population-level manipulations. Our analyses of several such manipulations highlight the value of a research–management partnership guided by hypothesis testing, despite the constraints of the sociopolitical environment. However, brucellosis is now spreading in unfed elk herds, while other diseases (e.g. chronic wasting disease) are of increasing concern at feedgrounds. Therefore experimental closures of feedgrounds, reduced feeding and lower elk populations merit consideration. This article is part of the theme issue ‘Anthropogenic resource subsidies and host–parasite dynamics in wildlife’.
Collapse
Affiliation(s)
- Gavin G Cotterill
- Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT 84322, USA
| | - Paul C Cross
- U.S. Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way, Suite 2, Bozeman, MT 59715, USA
| | - Eric K Cole
- U.S. Fish and Wildlife Service, National Elk Refuge, PO Box 510, Jackson, WY 83001, USA
| | - Rebecca K Fuda
- Wyoming Game and Fish Department, 432 Mill Street, Pinedale, WY 82941, USA
| | - Jared D Rogerson
- Wyoming Game and Fish Department, 432 Mill Street, Pinedale, WY 82941, USA
| | - Brandon M Scurlock
- Wyoming Game and Fish Department, 432 Mill Street, Pinedale, WY 82941, USA
| | - Johan T du Toit
- Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT 84322, USA
| |
Collapse
|
26
|
Endocrine and immune responses of larval amphibians to trematode exposure. Parasitol Res 2018; 118:275-288. [DOI: 10.1007/s00436-018-6154-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/12/2018] [Indexed: 11/26/2022]
|
27
|
Taylor CH, Wanelik KM, Friberg IM, Lowe A, Hall AJ, Ralli C, Birtles RJ, Begon M, Paterson S, Jackson JA, Bradley JE. Physiological, but not fitness, effects of two interacting haemoparasitic infections in a wild rodent. Int J Parasitol 2018; 48:463-471. [PMID: 29476867 DOI: 10.1016/j.ijpara.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
In contrast to the conditions in most laboratory studies, wild animals are routinely challenged by multiple infections simultaneously, and these infections can interact in complex ways. This means that the impact of a parasite on its host's physiology and fitness cannot be fully assessed in isolation, and requires consideration of the interactions with other co-infections. Here we examine the impact of two common blood parasites in the field vole (Microtus agrestis): Babesia microti and Bartonella spp., both of which have zoonotic potential. We collected longitudinal and cross-sectional data from four populations of individually tagged wild field voles. This included data on biometrics, life history, ectoparasite counts, presence/absence of microparasites, immune markers and, for a subset of voles, more detailed physiological and immunological measurements. This allowed us to monitor infections over time and to estimate components of survival and fecundity. We confirm, as reported previously, that B. microti has a preventative effect on infection with Bartonella spp., but that the reverse is not true. We observed gross splenomegaly following B. microti infection, and an increase in IL-10 production together with some weight loss following Bartonella spp. infection. However, these animals appeared otherwise healthy and we detected no impact of infection on survival or fecundity due to the two haemoparasite taxa. This is particularly remarkable in the case of B. microti which induces apparently drastic long-term changes to spleen sizes, but without major adverse effects. Our work sheds light on the ecologies of these important zoonotic agents, and more generally on the influence that interactions among multiple parasites have on their hosts in the wild.
Collapse
Affiliation(s)
| | - Klara M Wanelik
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Ida M Friberg
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
| | - Ann Lowe
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Amy J Hall
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Catriona Ralli
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Richard J Birtles
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
| | - Mike Begon
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Joseph A Jackson
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
| | - Janette E Bradley
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
28
|
Beechler BR, Jolles AE, Budischak SA, Corstjens PLAM, Ezenwa VO, Smith M, Spaan RS, van Dam GJ, Steinauer ML. Host immunity, nutrition and coinfection alter longitudinal infection patterns of schistosomes in a free ranging African buffalo population. PLoS Negl Trop Dis 2017; 11:e0006122. [PMID: 29253882 PMCID: PMC5755937 DOI: 10.1371/journal.pntd.0006122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/05/2018] [Accepted: 11/20/2017] [Indexed: 11/19/2022] Open
Abstract
Schistosomes are trematode parasites of global importance, causing infections in millions of people, livestock, and wildlife. Most studies on schistosomiasis, involve human subjects; as such, there is a paucity of longitudinal studies investigating parasite dynamics in the absence of intervention. As a consequence, despite decades of research on schistosomiasis, our understanding of its ecology in natural host populations is centered around how environmental exposure and acquired immunity influence acquisition of parasites, while very little is known about the influence of host physiology, coinfection and clearance in the absence of drug treatment. We used a 4-year study in free-ranging African buffalo to investigate natural schistosome dynamics. We asked (i) what are the spatial and temporal patterns of schistosome infections; (ii) how do parasite burdens vary over time within individual hosts; and (iii) what host factors (immunological, physiological, co-infection) and environmental factors (season, location) explain patterns of schistosome acquisition and loss in buffalo? Schistosome infections were common among buffalo. Microgeographic structure explained some variation in parasite burdens among hosts, indicating transmission hotspots. Overall, parasite burdens ratcheted up over time; however, gains in schistosome abundance in the dry season were partially offset by losses in the wet season, with some hosts demonstrating complete clearance of infection. Variation among buffalo in schistosome loss was associated with immunologic and nutritional factors, as well as co-infection by the gastrointestinal helminth Cooperia fuelleborni. Our results demonstrate that schistosome infections are surprisingly dynamic in a free-living mammalian host population, and point to a role for host factors in driving variation in parasite clearance, but not parasite acquisition which is driven by seasonal changes and spatial habitat utilization. Our study illustrates the power of longitudinal studies for discovering mechanisms underlying parasite dynamics in individual animals and populations.
Collapse
Affiliation(s)
- Brianna R. Beechler
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
| | - Anna E. Jolles
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| | - Sarah A. Budischak
- Odum School of Ecology, University of Georgia, Athens, GA, United States of America
| | - Paul L. A. M. Corstjens
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vanessa O. Ezenwa
- Odum School of Ecology, University of Georgia, Athens, GA, United States of America
- College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Mireya Smith
- College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Robert S. Spaan
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, United States of America
| | - Govert J. van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michelle L. Steinauer
- College of Osteopathic Medicine of the PNW, Western University of Health Sciences, Lebanon, OR, United States of America
| |
Collapse
|
29
|
Kendig AE, Borer ET, Mitchell CE, Power AG, Seabloom EW. Characteristics and drivers of plant virus community spatial patterns in US west coast grasslands. OIKOS 2017. [DOI: 10.1111/oik.04178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amy E. Kendig
- Dept of Ecology; Evolution and Behavior, Univ. of Minnesota; St. Paul MN 55108 USA
| | - Elizabeth T. Borer
- Dept of Ecology; Evolution and Behavior, Univ. of Minnesota; St. Paul MN 55108 USA
| | - Charles E. Mitchell
- Curriculum for the Environment and Ecology and Dept of Biology; Univ. of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Alison G. Power
- Dept of Ecology and Evolutionary Biology; Cornell Univ.; Ithaca NY USA
| | - Eric W. Seabloom
- Dept of Ecology; Evolution and Behavior, Univ. of Minnesota; St. Paul MN 55108 USA
| |
Collapse
|
30
|
Hoff NA, Morier DS, Kisalu NK, Johnston SC, Doshi RH, Hensley LE, Okitolonda-Wemakoy E, Muyembe-Tamfum JJ, Lloyd-Smith JO, Rimoin AW. Varicella Coinfection in Patients with Active Monkeypox in the Democratic Republic of the Congo. ECOHEALTH 2017; 14:564-574. [PMID: 28894977 DOI: 10.1007/s10393-017-1266-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 05/25/2023]
Abstract
From 2006 to 2007, an active surveillance program for human monkeypox (MPX) in the Democratic Republic of the Congo identified 151 cases of coinfection with monkeypox virus and varicella zoster virus from 1158 suspected cases of human MPX (13%). Using clinical and socio-demographic data collected with standardized instruments by trained, local nurse supervisors, we examined a variety of hypotheses to explain the unexpectedly high proportion of coinfections among the sample, including the hypothesis that the two viruses occur independently. The probabilities of disease incidence and selection necessary to yield the observed sample proportion of coinfections under an assumption of independence are plausible given what is known and assumed about human MPX incidence. Cases of human MPX are expected to be underreported, and more coinfections are expected with improved surveillance.
Collapse
Affiliation(s)
- Nicole A Hoff
- UCLA Fielding School of Public Health, 41-275 CHS, 650 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| | - Douglas S Morier
- UCLA Fielding School of Public Health, 41-275 CHS, 650 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Neville K Kisalu
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Sara C Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Reena H Doshi
- UCLA Fielding School of Public Health, 41-275 CHS, 650 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Lisa E Hensley
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | | | | | - James O Lloyd-Smith
- UCLA Fielding School of Public Health, 41-275 CHS, 650 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Anne W Rimoin
- UCLA Fielding School of Public Health, 41-275 CHS, 650 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| |
Collapse
|
31
|
Wuerthner VP, Hua J, Hoverman JT. The benefits of coinfection: trematodes alter disease outcomes associated with virus infection. J Anim Ecol 2017; 86:921-931. [PMID: 28317105 DOI: 10.1111/1365-2656.12665] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 02/18/2017] [Indexed: 11/30/2022]
Abstract
Coinfections are increasingly recognized as important drivers of disease dynamics. Consequently, greater emphasis has been placed on integrating principles from community ecology with disease ecology to understand within-host interactions among parasites. Using larval amphibians and two amphibian parasites (ranaviruses and the trematode Echinoparyphium sp.), we examined the influence of coinfection on disease outcomes. Our first objective was to examine how priority effects (the timing and sequence of parasite exposure) influence infection and disease outcomes in the laboratory. We found that interactions between the parasites were asymmetric; prior infection with Echinoparyphium reduced ranaviral loads by 9% but there was no reciprocal effect of prior ranavirus infection on Echinoparyphium load. Additionally, survival rates of hosts (larval gray treefrogs; Hyla versicolor) infected with Echinoparyphium 10 days prior to virus exposure were 25% greater compared to hosts only exposed to virus. Our second objective was to determine whether these patterns were generalizable to multiple amphibian species under more natural conditions. We conducted a semi-natural mesocosm experiment consisting of four larval amphibian hosts [gray treefrogs, American toads (Anaxyrus americanus), leopard frogs (Lithobates pipiens) and spring peepers (Pseudacris crucifer)] to examine how prior Echinoparyphium infection influenced ranavirus transmission within the community, using ranavirus-infected larval wood frogs (Lithobates sylvaticus) as source of ranavirus. Consistent with the laboratory experiment, we found that prior Echinoparyphium infection reduced ranaviral loads by 19 to 28% in three of the four species. Collectively, these results suggest that macroparasite infection can reduce microparasite replication rates across multiple amphibian species, possibly through cross-reactive immunity. Although the immunological mechanisms driving this outcome are in need of further study, trematode infections appear to benefit hosts that are exposed to ranaviruses. Additionally, these results suggest that consideration of priority effects and timing of exposure are vital for understanding parasite interactions within hosts and disease outcomes.
Collapse
Affiliation(s)
- Vanessa P Wuerthner
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA
| | - Jessica Hua
- Biological Sciences Department, Binghamton University, Binghamton, NY, 13902, USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
32
|
Kotob MH, Menanteau-Ledouble S, Kumar G, Abdelzaher M, El-Matbouli M. The impact of co-infections on fish: a review. Vet Res 2016; 47:98. [PMID: 27716438 PMCID: PMC5050641 DOI: 10.1186/s13567-016-0383-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/23/2016] [Indexed: 11/30/2022] Open
Abstract
Co-infections are very common in nature and occur when hosts are infected by two or more different pathogens either by simultaneous or secondary infections so that two or more infectious agents are active together in the same host. Co-infections have a fundamental effect and can alter the course and the severity of different fish diseases. However, co-infection effect has still received limited scrutiny in aquatic animals like fish and available data on this subject is still scarce. The susceptibility of fish to different pathogens could be changed during mixed infections causing the appearance of sudden fish outbreaks. In this review, we focus on the synergistic and antagonistic interactions occurring during co-infections by homologous or heterologous pathogens. We present a concise summary about the present knowledge regarding co-infections in fish. More research is needed to better understand the immune response of fish during mixed infections as these could have an important impact on the development of new strategies for disease control programs and vaccination in fish.
Collapse
Affiliation(s)
- Mohamed H. Kotob
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Asyut, Egypt
| | - Simon Menanteau-Ledouble
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Mahmoud Abdelzaher
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Asyut, Egypt
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
33
|
Enriquez GF, Garbossa G, Macchiaverna NP, Argibay HD, Bua J, Gürtler RE, Cardinal MV. Is the infectiousness of dogs naturally infected with Trypanosoma cruzi associated with poly-parasitism? Vet Parasitol 2016; 223:186-94. [PMID: 27198799 DOI: 10.1016/j.vetpar.2016.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 12/11/2022]
Abstract
Interactions among different species of parasites co-infecting the same host could be synergistic or antagonistic. These interactions may modify both the frequency of infected hosts and their infectiousness, and therefore impact on transmission dynamics. This study determined the infectiousness of Trypanosoma cruzi-seropositive dogs (using xenodiagnosis) and their parasite load (quantified by qPCR), and tested the association between both variables and the presence of concomitant endoparasites. A cross-sectional serosurvey conducted in eight rural villages from Pampa del Indio and neighboring municipalities (northeastern Argentina) detected 32 T. cruzi-seropositive dogs out of 217 individuals examined for infection. Both the infectiousness to the vector Triatoma infestans and parasite load of T. cruzi-seropositive dogs examined were heterogeneous. A statistically significant, nine-fold higher mean infectiousness was registered in T. cruzi-seropositive dogs co-infected with Ancylostoma caninum and a trematode than in T. cruzi-seropositive dogs without these infections. The median parasite load of T. cruzi was also significantly higher in dogs co-infected with these helminths. An opposite trend was observed in T. cruzi-seropositive dogs that were serologically positive to Toxoplasma gondii or Neospora caninum relative to dogs seronegative for these parasites. Using multiple logistic regression analysis with random effects, we found a positive and significant association between the infectiousness of T. cruzi-seropositive dogs and co-infections with A. caninum and a trematode. Our results suggest that co-infections may be a modifier of host infectiousness in dogs naturally infected with T. cruzi.
Collapse
Affiliation(s)
- G F Enriquez
- Laboratory of Eco-Epidemiology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina; Institute of Ecology, Genetics and Evolution of Buenos Aires (UBA-CONICET), Argentina
| | - G Garbossa
- Laboratory of Clinical and Environmental Parasitology, Faculty of Exact and Natural Sciences, University of Buenos Aires, (IQUIBICEN-CONICET-UBA), Public Health Research Institute, Argentina
| | - N P Macchiaverna
- Laboratory of Eco-Epidemiology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina; Institute of Ecology, Genetics and Evolution of Buenos Aires (UBA-CONICET), Argentina
| | - H D Argibay
- Laboratory of Eco-Epidemiology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina; Institute of Ecology, Genetics and Evolution of Buenos Aires (UBA-CONICET), Argentina
| | - J Bua
- National Institute of Parasitology Dr. M. Fatala Chaben, National Administration of Laboratories and Institutes of Health Dr. C.G. Malbrán, Buenos Aires, Argentina
| | - R E Gürtler
- Laboratory of Eco-Epidemiology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina; Institute of Ecology, Genetics and Evolution of Buenos Aires (UBA-CONICET), Argentina
| | - M V Cardinal
- Laboratory of Eco-Epidemiology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina; Institute of Ecology, Genetics and Evolution of Buenos Aires (UBA-CONICET), Argentina.
| |
Collapse
|
34
|
Asif AR, Qadri S, Ijaz N, Javed R, Ansari AR, Awais M, Younus M, Riaz H, Du X. Genetic signature of strong recent positive selection at interleukin-32 gene in goat. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:912-919. [PMID: 27165029 PMCID: PMC5495668 DOI: 10.5713/ajas.15.0941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/06/2016] [Accepted: 03/25/2016] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Identification of the candidate genes that play key roles in phenotypic variations can provide new information about evolution and positive selection. Interleukin (IL)-32 is involved in many biological processes, however, its role for the immune response against various diseases in mammals is poorly understood. Therefore, the current investigation was performed for the better understanding of the molecular evolution and the positive selection of single nucleotide polymorphisms in IL-32 gene. METHODS By using fixation index (FST ) based method, IL-32 (9375) gene was found to be outlier and under significant positive selection with the provisional combined allocation of mean heterozygosity and FST . Using nucleotide sequences of 11 mammalian species from National Center for Biotechnology Information database, the evolutionary selection of IL-32 gene was determined using Maximum likelihood model method, through four models (M1a, M2a, M7, and M8) in Codeml program of phylogenetic analysis by maximum liklihood. RESULTS IL-32 is detected under positive selection using the FST simulations method. The phylogenetic tree revealed that goat IL-32 was in close resemblance with sheep IL-32. The coding nucleotide sequences were compared among 11 species and it was found that the goat IL-32 gene shared identity with sheep (96.54%), bison (91.97%), camel (58.39%), cat (56.59%), buffalo (56.50%), human (56.13%), dog (50.97%), horse (54.04%), and rabbit (53.41%) respectively. CONCLUSION This study provides evidence for IL-32 gene as under significant positive selection in goat.
Collapse
Affiliation(s)
- Akhtar Rasool Asif
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.,Theriogenology Department, College of Veterinary and Animal Science, Jhang, Sub campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Sumayyah Qadri
- Theriogenology Department, College of Veterinary and Animal Science, Jhang, Sub campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Nabeel Ijaz
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruheena Javed
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Abdur Rahman Ansari
- Theriogenology Department, College of Veterinary and Animal Science, Jhang, Sub campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.,Department of Anatomy, Histology and Embryology, College of Animal and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammd Awais
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Younus
- Theriogenology Department, College of Veterinary and Animal Science, Jhang, Sub campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Hasan Riaz
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal 57000, Pakistan
| | - Xiaoyong Du
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan China
| |
Collapse
|
35
|
Drame PM, Montavon C, Pion SD, Kubofcik J, Fay MP, Nutman TB. Molecular Epidemiology of Blood-Borne Human Parasites in a Loa loa-, Mansonella perstans-, and Plasmodium falciparum-Endemic Region of Cameroon. Am J Trop Med Hyg 2016; 94:1301-1308. [PMID: 27044568 PMCID: PMC4889748 DOI: 10.4269/ajtmh.15-0746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
The study of the interactions among parasites within their hosts is crucial to the understanding of epidemiology of disease and for the design of effective control strategies. We have conducted an assessment of infections with Loa loa, Mansonella perstans, Wuchereria bancrofti, and Plasmodium falciparum in eastern Cameroon using a highly sensitive and specific quantitative polymerase chain reaction assay using archived dried whole blood spots. The resident population (N = 1,085) was parasitized with M. perstans (76%), L. loa (39%), and P. falciparum (33%), but not with W. bancrofti Compared with single infections (40.1%), coinfection was more common (48.8%): 21.0% had L. loa-M. perstans (Ll(+)/Mp(+)/Pf(-)), 2.7% had L. loa-P. falciparum (Ll(+)/Pf(+)/Mp(-)), 15.1% had M. perstans-P. falciparum (Mp(+)/Pf(+)/Ll(-)), and 10.0% had L. loa-M. perstans-P. falciparum (Ll(+)/Mp(+)/Pf(+)). Interestingly, those with all three infections (Ll(+)/Mp(+)/Pf(+)) had significantly higher L. loa microfilaria (mf) counts than either single Ll(+) (P = 0.004) or double Ll(+)/Mp(+) (P = 0.024) infected individuals. Of those infected with L. loa, the mean estimated counts of L. loa mf varied based on location and were positively correlated with estimated intensities of M. perstans mf. Finally, at a community level, heavy L. loa infections were concentrated in a few individuals whereby they were likely the major reservoir for infection.
Collapse
Affiliation(s)
- Papa M. Drame
- *Address correspondence to Papa M. Drame, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Bethesda, MD 20892. E-mail:
| | | | | | | | | | | |
Collapse
|
36
|
Infracommunity crowding as an individual measure of interactive-isolationist degree of parasite communities: disclosing the effects of extrinsic and host factors. Parasit Vectors 2016; 9:88. [PMID: 26883828 PMCID: PMC4756465 DOI: 10.1186/s13071-016-1371-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/10/2016] [Indexed: 11/28/2022] Open
Abstract
Background Interactions between parasite species within a host play a fundamental role in shaping parasite communities that have been classified within a continuum between interactive and isolationist. Interactive communities are principally structured by interactions between parasite species, while isolationist communities are structured by processes independent of the presence of other parasite species. Assessing whether, and to what extent, parasite communities exist along this continuum has been challenging due to a lack of an index that quantifies the degree of interactivity. Moreover, the absence of an index at the individual host level has made it unfeasible to identify host and extrinsic factors that may influence the degree of interactivity of a parasite community. Methods Here we propose an infracommunity crowding index that can reflect the degree of interactivity of a parasite community within each individual. This index quantifies the mean number of parasites that the average parasite within a community is exposed to, including the different aspects of parasite communities important in determining the level of interactivity, i.e. total abundance, species richness and evenness. We applied this analytical approach to the abomasal parasite communities of three alpine ruminant species that are traditionally viewed as isolationist. Results The application of our index to abomasal parasite communities shows that the majority of parasites live in highly crowded communities, suggesting that these host species harbour interactive parasite communities. In addition, the infracommunity crowding was highly variable and influenced by the host species, as well as by the timing of sampling and host age and sex. Conclusions Despite increasing evidence on the influence of interactions between parasite species in shaping infections, an analytical measure to quantify the degree of interactivity of parasite communities is lacking. Here we present a new analytical approach which, when applied to parasite communities, appears to be sensitive to both extrinsic and host factors, highlighting that the degree of interactivity is not a static and specific feature of host species, but rather a dynamical process that keeps evolving during host’s life. The new index provides opportunities for further investigations aimed at revealing the determinants of parasite interactivity.
Collapse
|
37
|
Metcalf CJE, Graham AL, Martinez-Bakker M, Childs DZ. Opportunities and challenges of Integral Projection Models for modelling host-parasite dynamics. J Anim Ecol 2015; 85:343-55. [PMID: 26620440 PMCID: PMC4991293 DOI: 10.1111/1365-2656.12456] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/29/2015] [Indexed: 11/28/2022]
Abstract
Epidemiological dynamics are shaped by and may in turn shape host demography. These feedbacks can result in hard to predict patterns of disease incidence. Mathematical models that integrate infection and demography are consequently a key tool for informing expectations for disease burden and identifying effective measures for control. A major challenge is capturing the details of infection within individuals and quantifying their downstream impacts to understand population‐scale outcomes. For example, parasite loads and antibody titres may vary over the course of an infection and contribute to differences in transmission at the scale of the population. To date, to capture these subtleties, models have mostly relied on complex mechanistic frameworks, discrete categorization and/or agent‐based approaches. Integral Projection Models (IPMs) allow variance in individual trajectories of quantitative traits and their population‐level outcomes to be captured in ways that directly reflect statistical models of trait–fate relationships. Given increasing data availability, and advances in modelling, there is considerable potential for extending this framework to traits of relevance for infectious disease dynamics. Here, we provide an overview of host and parasite natural history contexts where IPMs could strengthen inference of population dynamics, with examples of host species ranging from mice to sheep to humans, and parasites ranging from viruses to worms. We discuss models of both parasite and host traits, provide two case studies and conclude by reviewing potential for both ecological and evolutionary research.
Collapse
Affiliation(s)
- C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Office of Population Research, The Woodrow Wilson School, Princeton University, Princeton, NJ, USA
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | | - Dylan Z Childs
- Department of Animal and Plant Sciences, Sheffield University, Sheffield, UK
| |
Collapse
|
38
|
Beechler BR, Manore CA, Reininghaus B, O'Neal D, Gorsich EE, Ezenwa VO, Jolles AE. Enemies and turncoats: bovine tuberculosis exposes pathogenic potential of Rift Valley fever virus in a common host, African buffalo (Syncerus caffer). Proc Biol Sci 2015; 282:rspb.2014.2942. [PMID: 25788592 DOI: 10.1098/rspb.2014.2942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The ubiquity and importance of parasite co-infections in populations of free-living animals is beginning to be recognized, but few studies have demonstrated differential fitness effects of single infection versus co-infection in free-living populations. We investigated interactions between the emerging bacterial disease bovine tuberculosis (BTB) and the previously existing viral disease Rift Valley fever (RVF) in a competent reservoir host, African buffalo, combining data from a natural outbreak of RVF in captive buffalo at a buffalo breeding facility in 2008 with data collected from a neighbouring free-living herd of African buffalo in Kruger National Park. RVF infection was twice as likely in individual BTB+ buffalo as in BTB- buffalo, which, according to a mathematical model, may increase RVF outbreak size at the population level. In addition, co-infection was associated with a far higher rate of fetal abortion than other infection states. Immune interactions between BTB and RVF may underlie both of these interactions, since animals with BTB had decreased innate immunity and increased pro-inflammatory immune responses. This study is one of the first to demonstrate how the consequences of emerging infections extend beyond direct effects on host health, potentially altering the dynamics and fitness effects of infectious diseases that had previously existed in the ecosystem on free-ranging wildlife populations.
Collapse
Affiliation(s)
- B R Beechler
- College of Veterinary Medicine, Oregon State University, Dryden Hall, Corvallis, OR, USA
| | - C A Manore
- Center for Computational Science, Tulane University, Tulane, LA, USA
| | - B Reininghaus
- Mpumalanga State Veterinary Services, Nelspruit, Mpumalanga, South Africa
| | - D O'Neal
- Odum School of Ecology and Department of Infectious Disease, University of Georgia, Athens, GA, USA
| | - E E Gorsich
- Environmental Sciences, Oregon State University, OR, USA
| | - V O Ezenwa
- Odum School of Ecology and Department of Infectious Disease, University of Georgia, Athens, GA, USA
| | - A E Jolles
- College of Veterinary Medicine, Oregon State University, Dryden Hall, Corvallis, OR, USA
| |
Collapse
|
39
|
Gelling M, Zochowski W, Macdonald DW, Johnson A, Palmer M, Mathews F. Leptospirosis acquisition following the reintroduction of wildlife. Vet Rec 2015; 177:440. [PMID: 26483277 DOI: 10.1136/vr.103160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2015] [Indexed: 11/04/2022]
Abstract
Potential risks posed to domestic animals and human beings by zoonotic diseases in reintroduced animals can reduce the acceptability of reintroductions. The authors investigated the role of endangered water voles, Arvicola amphibius, as a host for leptospirosis, a waterborne zoonosis affecting a range of mammals. Based on samples from 112 individuals from across the UK, a 6.2 per cent exposure rate was found (7 animals were microscopic agglutination test (MAT) positive for serum antibodies), with 4 of 11 sites having positive animals. No individual was actively excreting leptospires in urine (PCR urine test, 0 per cent positive). The acquisition of Leptospira species by a cohort of 'clean' captive-bred voles reintroduced to one site in the wild was then examined. By four months postrelease the maximum exposure prevalence (by either MAT or culture) was 42.9 per cent. Thirty-five per cent were actively excreting leptospires. The rapidity of leptospire acquisition and comparatively high prevalence of infectious individuals is notable, exceeding expectation based on wild voles. One possible explanation is a lack of immunocompetence in reintroduced voles. Analyses of haematological parameters from reintroduced voles suggest a link between prior condition and disease acquisition. There may be potential to select the fittest animals before release to maximise reintroduction success.
Collapse
Affiliation(s)
- M Gelling
- WildCRU, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Oxon, Oxford OX13 5QL, UK
| | - W Zochowski
- Leptospira Reference Unit, Department of Microbiology and Immunology, County Hospital, Stonebow Road, Hereford HR1 2ER, UK
| | - D W Macdonald
- WildCRU, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Oxon, Oxford OX13 5QL, UK
| | - A Johnson
- Leptospira Reference Unit, Department of Microbiology and Immunology, County Hospital, Stonebow Road, Hereford HR1 2ER, UK
| | - M Palmer
- Leptospira Reference Unit, Department of Microbiology and Immunology, County Hospital, Stonebow Road, Hereford HR1 2ER, UK
| | - F Mathews
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Hatherley Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK
| |
Collapse
|
40
|
Finney C, Serghides L. An In Vitro Model for Measuring Immune Responses to Malaria in the Context of HIV Co-infection. J Vis Exp 2015. [PMID: 26485041 DOI: 10.3791/52969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Malaria and HIV co-infection is a growing health priority. However, most research on malaria or HIV currently focuses on each infection individually. Although understanding the disease dynamics for each of these pathogens independently is vital, it is also important that the interactions between these pathogens are investigated and understood. We have developed a versatile in vitro model of HIV-malaria co-infection to study host immune responses to malaria in the context of HIV infection. Our model allows the study of secreted factors in cellular supernatants, cell surface and intracellular protein markers, as well as RNA expression levels. The experimental design and methods used limit variability and promote data reliability and reproducibility. All pathogens used in this model are natural human pathogens (Plasmodium falciparum and HIV-1), and all infected cells are naturally infected and used fresh. We use human erythrocytes parasitized with P. falciparum and maintained in continuous in vitro culture. We obtain freshly isolated peripheral blood mononuclear cells from chronically HIV-infected volunteers. Every condition used has an appropriate control (P. falciparum parasitized vs. normal erythrocytes), and every HIV-infected donor has an HIV uninfected control, from which cells are harvested on the same day. This model provides a realistic environment to study the interactions between malaria parasites and human immune cells in the context of HIV infection.
Collapse
Affiliation(s)
| | - Lena Serghides
- Toronto General Research Institute, University Health Network;
| |
Collapse
|
41
|
The Implications of HIV Treatment on the HIV-Malaria Coinfection Dynamics: A Modeling Perspective. BIOMED RESEARCH INTERNATIONAL 2015; 2015:659651. [PMID: 26425549 PMCID: PMC4575722 DOI: 10.1155/2015/659651] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 11/17/2022]
Abstract
Most hosts harbor multiple pathogens at the same time in disease epidemiology. Multiple pathogens have the potential for interaction resulting in negative impacts on host fitness or alterations in pathogen transmission dynamics. In this paper we develop a mathematical model describing the dynamics of HIV-malaria coinfection. Additionally, we extended our model to examine the role treatment (of malaria and HIV) plays in altering populations' dynamics. Our model consists of 13 interlinked equations which allow us to explore multiple aspects of HIV-malaria transmission and treatment. We perform qualitative analysis of the model that includes positivity and boundedness of solutions. Furthermore, we evaluate the reproductive numbers corresponding to the submodels and investigate the long term behavior of the submodels. We also consider the qualitative dynamics of the full model. Sensitivity analysis is done to determine the impact of some chosen parameters on the dynamics of malaria. Finally, numerical simulations illustrate the potential impact of the treatment scenarios and confirm our analytical results.
Collapse
|
42
|
Jackson JA. Immunology in wild nonmodel rodents: an ecological context for studies of health and disease. Parasite Immunol 2015; 37:220-32. [PMID: 25689683 PMCID: PMC7167918 DOI: 10.1111/pim.12180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/04/2015] [Indexed: 12/16/2022]
Abstract
Transcriptomic methods are set to revolutionize the study of the immune system in naturally occurring nonmodel organisms. With this in mind, the present article focuses on ways in which the use of 'nonmodel' rodents (not the familiar laboratory species) can advance studies into the classical, but ever relevant, epidemiologic triad of immune defence, infectious disease and environment. For example, naturally occurring rodents are an interesting system in which to study the environmental stimuli that drive the development and homeostasis of the immune system and, by extension, to identify where these stimuli are altered in anthropogenic environments leading to the formation of immunopathological phenotypes. Measurement of immune expression may help define individual heterogeneity in infectious disease susceptibility and transmission and facilitate our understanding of infection dynamics and risk in the natural environment; furthermore, it may provide a means of surveillance that can filter individuals carrying previously unknown acute infections of potential ecological or zoonotic importance. Finally, the study of immunology in wild animals may reveal interactions within the immune system and between immunity and other organismal traits that are not observable under restricted laboratory conditions. Potentiating much of this is the possibility of combining gene expression profiles with analytical tools derived from ecology and systems biology to reverse engineer interaction networks between immune responses, other organismal traits and the environment (including symbiont exposures), revealing regulatory architecture. Such holistic studies promise to link ecology, epidemiology and immunology in natural systems in a unified approach that can illuminate important problems relevant to human health and animal welfare and production.
Collapse
Affiliation(s)
- J A Jackson
- IBERS, Aberystwyth University, Aberystwyth, Ceredigion, UK
| |
Collapse
|
43
|
Prager SM, Wallis C, Trumble JT. Indirect Effects of One Plant Pathogen on the Transmission of a Second Pathogen and the Behavior of its Potato Psyllid Vector. ENVIRONMENTAL ENTOMOLOGY 2015; 44:1065-1075. [PMID: 26314051 DOI: 10.1093/ee/nvv081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/01/2015] [Indexed: 06/04/2023]
Abstract
Plant pathogens can influence the behavior and performance of insect herbivores. Studies of these associations typically focus on tripartite interactions between a plant host, a plant pathogen, and its insect vector. An unrelated herbivore or pathogen might influence such interactions. This study used a model system consisting of Tobacco mosaic virus (TMV), the psyllid Bactericera cockerelli Sulc, and tomatoes to investigate multipartite interactions among a pathogen, a nonvector, and a plant host, and determine whether shifts in host physiology were behind potential interactions. Additionally, the ability of TMV to affect the success of another pathogen, 'Candidatus Liberibacter solanacearum,' which is transmitted by the psyllid, was studied. In choice trials, psyllids preferred nearly fourfold noninfected plants to TMV-infected plants. No-choice bioassays demonstrated that there was no difference in psyllid development between TMV-infected and control plants; oviposition was twice as high on control plants. Following inoculation by psyllids, 'Candidatus Liberibacter solanacearum' titers were lower in TMV-infected plants than control plants. TMV-infected plants had lower levels of amino acids and sugars but little differences in phenolics and terpenoids, relative to control plants. Possibly, these changes in sugars are associated with a reduction in psyllid attractiveness in TMV-infected tomatoes resulting in decreased infection of 'Candidatus Liberibacter solanacearum.'
Collapse
Affiliation(s)
- Sean M Prager
- Department of Entomology, University of California, Riverside, Riverside, CA.
| | | | - John T Trumble
- Department of Entomology, University of California, Riverside, Riverside, CA
| |
Collapse
|
44
|
Mordecai EA, Hindenlang M, Mitchell CE. Differential Impacts of Virus Diversity on Biomass Production of a Native and an Exotic Grass Host. PLoS One 2015; 10:e0134355. [PMID: 26230720 PMCID: PMC4521826 DOI: 10.1371/journal.pone.0134355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
Pathogens are common and diverse in natural communities and have been implicated in the success of host invasions. Yet few studies have experimentally measured how pathogens impact native versus exotic hosts, particularly when individual hosts are simultaneously coinfected by diverse pathogens. To estimate effects of interactions among multiple pathogens within host individuals on both transmission of pathogens and fitness consequences for hosts, we conducted a greenhouse experiment using California grassland species: the native perennial grass Nassella (Stipa) pulchra, the exotic annual grass Bromus hordeaceus, and three virus species, Barley yellow dwarf virus-PAV, Barley yellow dwarf virus-MAV, and Cereal yellow dwarf virus-RPV. In terms of virus transmission, the native host was less susceptible than the exotic host to MAV. Coinfection of PAV and MAV did not occur in any of the 157 co-inoculated native host plants. In the exotic host, PAV infection most strongly reduced root and shoot biomass, and coinfections that included PAV severely reduced biomass. Infection with single or multiple viruses did not affect biomass in the native host. However, in this species the most potentially pathogenic coinfections (PAV + MAV and PAV + MAV + RPV) did not occur. Together, these results suggest that interactions among multiple pathogens can have important consequences for host health, which may not be predictable from interactions between hosts and individual pathogens. This work addresses a key empirical gap in understanding the impact of multiple generalist pathogens on competing host species, with potential implications for population and community dynamics of native and exotic species. It also demonstrates how pathogens with relatively mild impacts independently can more substantially reduce host performance in coinfection.
Collapse
Affiliation(s)
- Erin A. Mordecai
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Madeleine Hindenlang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charles E. Mitchell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
45
|
Abstract
In wild rabbits (Oryctolagus cuniculus) on an estate in Perthshire, central Scotland, the seroprevalence of Toxoplasma gondii was 18/548 (3·3%). The wild rabbit could be a T. gondii reservoir and it has potential value as a sentinel of T. gondii in environmental substrates. Toxoplasma gondii was associated with female sex (P < 0·001) and with relatively heavy infections by Eimeria stiedae (P = 0·036). It was not associated with the intensity of coccidial oocysts, the severity of myxomatosis caused by the virus Myxomatosis cuniculi, the intensity of roundworm eggs, the year or season, rabbit age or distance from farm buildings. Coinfections could have been affected by gestational down regulation of type 1 T helper cells. A sudden influx or release of T. gondii oocysts might have occurred. This is the first report of T. gondii in any wild herbivore in Scotland and also the first report of lapine T. gondii as a coinfection with E. stiedae, M. cuniculi and helminths.
Collapse
|
46
|
González-Fernández D, Koski KG, Sinisterra OT, Del Carmen Pons E, Murillo E, Scott ME. Interactions among urogenital, intestinal, skin, and oral infections in pregnant and lactating Panamanian Ngäbe women: a neglected public health challenge. Am J Trop Med Hyg 2015; 92:1100-10. [PMID: 25825387 PMCID: PMC4458810 DOI: 10.4269/ajtmh.14-0547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 02/21/2015] [Indexed: 01/09/2023] Open
Abstract
Interrelationships among bacteria, protozoa, helminths, and ectoparasites were explored in a cross-sectional survey of 213 pregnant and 99 lactating indigenous women. Prevalences in pregnancy and lactation, respectively, were: vaginitis (89.2%; 46.8%), vaginal trichomoniasis (75.3%; 91.1%), bacterial vaginosis (BV; 60.6%; 63.3%), hookworm (56.6%; 47.8%), asymptomatic bacteriuria/urinary tract infection (AB/UTI; 56.2%; 36.2%), cervicitis (33.3%; 6.3%), vaginal yeast (24.9%; 11.4%), Ascaris (32.5%; 17.4%), vaginal diplococci (20.4%; 31.6%), caries (19.7%; 18.2%), scabies (17.4%; 8.1%), and Trichuris (12.5%; 8.7%). Multiple regressions revealed positive associations during pregnancy (trichomoniasis and AB/UTI; diplococci and Ascaris) and lactation (yeast and scabies). Negative associations were detected in pregnancy (BV and trichomoniasis; hookworm and diplococci) and lactation (BV and yeast). Vaginal Lactobacillus reduced odds of diplococci in pregnancy and lactation, but increased Ascaris eggs per gram (epg) and odds of trichomoniasis in pregnancy and yeast in lactation. These associations raised a concern that treatment of one condition may increase the risk of another.
Collapse
Affiliation(s)
- Doris González-Fernández
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne de Bellevue, Quebec, Canada; School of Dietetics and Human Nutrition, McGill University, Ste-Anne de Bellevue, Quebec, Canada; Department of Biochemistry, University of Panamá, Panamá City, Panamá; Department of Nutritional Health, Ministry of Health, Panamá City, Panamá
| | - Kristine G Koski
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne de Bellevue, Quebec, Canada; School of Dietetics and Human Nutrition, McGill University, Ste-Anne de Bellevue, Quebec, Canada; Department of Biochemistry, University of Panamá, Panamá City, Panamá; Department of Nutritional Health, Ministry of Health, Panamá City, Panamá
| | - Odalis Teresa Sinisterra
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne de Bellevue, Quebec, Canada; School of Dietetics and Human Nutrition, McGill University, Ste-Anne de Bellevue, Quebec, Canada; Department of Biochemistry, University of Panamá, Panamá City, Panamá; Department of Nutritional Health, Ministry of Health, Panamá City, Panamá
| | - Emérita Del Carmen Pons
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne de Bellevue, Quebec, Canada; School of Dietetics and Human Nutrition, McGill University, Ste-Anne de Bellevue, Quebec, Canada; Department of Biochemistry, University of Panamá, Panamá City, Panamá; Department of Nutritional Health, Ministry of Health, Panamá City, Panamá
| | - Enrique Murillo
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne de Bellevue, Quebec, Canada; School of Dietetics and Human Nutrition, McGill University, Ste-Anne de Bellevue, Quebec, Canada; Department of Biochemistry, University of Panamá, Panamá City, Panamá; Department of Nutritional Health, Ministry of Health, Panamá City, Panamá
| | - Marilyn E Scott
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne de Bellevue, Quebec, Canada; School of Dietetics and Human Nutrition, McGill University, Ste-Anne de Bellevue, Quebec, Canada; Department of Biochemistry, University of Panamá, Panamá City, Panamá; Department of Nutritional Health, Ministry of Health, Panamá City, Panamá
| |
Collapse
|
47
|
Craft ME. Infectious disease transmission and contact networks in wildlife and livestock. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140107. [PMID: 25870393 PMCID: PMC4410373 DOI: 10.1098/rstb.2014.0107] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 12/26/2022] Open
Abstract
The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools.
Collapse
Affiliation(s)
- Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
48
|
Rynkiewicz EC, Pedersen AB, Fenton A. An ecosystem approach to understanding and managing within-host parasite community dynamics. Trends Parasitol 2015; 31:212-21. [PMID: 25814004 DOI: 10.1016/j.pt.2015.02.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
Hosts are typically coinfected by multiple parasite species, resulting in potentially overwhelming levels of complexity. We argue that an individual host can be considered to be an ecosystem in that it is an environment containing a diversity of entities (e.g., parasitic organisms, commensal symbionts, host immune components) that interact with each other, potentially competing for space, energy, and resources, ultimately influencing the condition of the host. Tools and concepts from ecosystem ecology can be applied to better understand the dynamics and responses of within-individual host-parasite ecosystems. Examples from both wildlife and human systems demonstrate how this framework is useful in breaking down complex interactions into components that can be monitored, measured, and managed to inform the design of better disease-management strategies.
Collapse
Affiliation(s)
- Evelyn C Rynkiewicz
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, Kings Buildings, Ashworth Laboratories, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Amy B Pedersen
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, Kings Buildings, Ashworth Laboratories, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Andy Fenton
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
49
|
Abstract
Cross-species infection among humans, chimpanzees (Pan troglodytes) and baboons (Papio spp.) is potentially a significant public health issue in Africa, and of concern in the conservation of P. troglodytes. However, to date, no statistical comparisons have been made between the prevalence, richness and composition of parasite communities in sympatric populations of baboons and P. troglodytes. We compared parasite communities in sympatric P. troglodytes and Papio papio living in a wilderness site, in the Republic of Senegal, West Africa. We asked whether, in the absence of humans, there are significant differences between these hosts in their interactions with gastrointestinal parasites. We tested whether host, location, or time of collection accounted for variation in prevalence, richness and community composition, and compared prevalence across six studies. We concluded that, despite being closely related, there are significant differences between these two hosts with respect to their parasite communities. At our study site, prevalence of Balantidium, Trichuris and Watsonius was higher in P. papio. Papio papio harboured more parasites per host, and we found evidence of a positive association between Trichuris and Balantidium in P. troglodytes but not P. papio.
Collapse
|
50
|
Faure E. Malarial pathocoenosis: beneficial and deleterious interactions between malaria and other human diseases. Front Physiol 2014; 5:441. [PMID: 25484866 PMCID: PMC4240042 DOI: 10.3389/fphys.2014.00441] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/28/2014] [Indexed: 11/28/2022] Open
Abstract
In nature, organisms are commonly infected by an assemblage of different parasite species or by genetically distinct parasite strains that interact in complex ways. Linked to co-infections, pathocoenosis, a term proposed by M. Grmek in 1969, refers to a pathological state arising from the interactions of diseases within a population and to the temporal and spatial dynamics of all of the diseases. In the long run, malaria was certainly one of the most important component of past pathocoenoses. Today this disease, which affects hundreds of millions of individuals and results in approximately one million deaths each year, is always highly endemic in over 20% of the world and is thus co-endemic with many other diseases. Therefore, the incidences of co-infections and possible direct and indirect interactions with Plasmodium parasites are very high. Both positive and negative interactions between malaria and other diseases caused by parasites belonging to numerous taxa have been described and in some cases, malaria may modify the process of another disease without being affected itself. Interactions include those observed during voluntary malarial infections intended to cure neuro-syphilis or during the enhanced activations of bacterial gastro-intestinal diseases and HIV infections. Complex relationships with multiple effects should also be considered, such as those observed during helminth infections. Moreover, reports dating back over 2000 years suggested that co- and multiple infections have generally deleterious consequences and analyses of historical texts indicated that malaria might exacerbate both plague and cholera, among other diseases. Possible biases affecting the research of etiological agents caused by the protean manifestations of malaria are discussed. A better understanding of the manner by which pathogens, particularly Plasmodium, modulate immune responses is particularly important for the diagnosis, cure, and control of diseases in human populations.
Collapse
Affiliation(s)
- Eric Faure
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, I2M, UMR 7373Marseille, France
| |
Collapse
|