1
|
Dong B, Zhong H, Zhu D, Wu L, Wang J, Li H, Jin Y. Antibody Responses and the Vaccine Efficacy of Recombinant Glycosyltransferase and Nicastrin Against Schistosoma japonicum. Pathogens 2025; 14:70. [PMID: 39861031 PMCID: PMC11768875 DOI: 10.3390/pathogens14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Schistosomiasis is a neglected tropical disease and the second most common parasitic disease after malaria. While praziquantel remains the primary treatment, concerns about drug resistance highlight the urgent need for new drugs and effective vaccines to achieve sustainable control. Previous proteomic studies from our group revealed that the expression of Schistosoma japonicum glycosyltransferase and nicastrin as proteins was higher in single-sex males than mated males, suggesting their critical roles in parasite reproduction and their potential as vaccine candidates. In this study, bioinformatic tools were employed to analyze the structural and functional properties of these proteins, including their signal peptide regions, transmembrane domains, tertiary structures, and protein interaction networks. Recombinant forms of glycosyltransferase and nicastrin were expressed and purified, followed by immunization experiments in BALB/c mice. Immunized mice exhibited significantly elevated specific IgG antibody levels after three immunizations compared to adjuvant and PBS controls. Furthermore, immunization with recombinant glycosyltransferase and nicastrin significantly reduced the reproductive capacity of female worms and liver egg burden, though egg hatchability and adult worm survival were unaffected. These findings demonstrate that recombinant glycosyltransferase and nicastrin are immunogenic and reduce female worm fecundity, supporting their potential as vaccine candidates against schistosomiasis.
Collapse
Affiliation(s)
- Bowen Dong
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (B.D.); (H.Z.); (D.Z.); (H.L.)
| | - Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (B.D.); (H.Z.); (D.Z.); (H.L.)
| | - Danlin Zhu
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (B.D.); (H.Z.); (D.Z.); (H.L.)
| | - Luobin Wu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China;
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Hao Li
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (B.D.); (H.Z.); (D.Z.); (H.L.)
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (B.D.); (H.Z.); (D.Z.); (H.L.)
| |
Collapse
|
2
|
R LC, P.F. CM, M UE, V.J. BB. Hepatic schistosomiasis as a determining factor in the development of hepatic granulomas and liver fibrosis: a review of the current literature. Pathog Glob Health 2024; 118:529-537. [PMID: 39268619 PMCID: PMC11892069 DOI: 10.1080/20477724.2024.2400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024] Open
Abstract
Hepatic schistosomiasis is a neglected parasitosis that affects millions of people each year worldwide and leads to high healthcare costs and increased morbidity and mortality in infected humans. It is a disease that has been widely studied in terms of its pathophysiology; therefore, the signaling pathways that lead to liver damage, with the consequent development of liver fibrosis, are now better understood. Research has elucidated the role of soluble egg antigen in the development of hepatic granulomas and liver fibrosis, the signal transducer and activator of transcription 3 and its participation in liver damage, the role of heat shock protein 47 and its involvement in liver fibrosis, the anti-inflammatory effects caused by interleukin-37, and the role of natural killer and natural killer T cells in the development of the disease. Hepatic schistosomiasis can range from simple hepatomegaly to the development of portal hypertension combined with hepatic fibrosis. For diagnostic purposes, a microscopic examination of excreta remains the gold standard; however, abdominal ultrasound has recently taken on an important role in the assessment of liver lesions produced by the parasite. Praziquantel is considered the management drug of choice, and has been associated with a potential preventive antifibrotic effect.
Collapse
Affiliation(s)
- Lara-Cano R
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Benemérita Universidad Autónoma de Puebla, Mexico City, Mexico
| | | | - Uribe-Esquivel M
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Barbero-Becerra V.J.
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
3
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Motlhatlhedi K, Pilusa NB, Ndaba T, George M, Masamba P, Kappo AP. Therapeutic and vaccinomic potential of moonlighting proteins for the discovery and design of drugs and vaccines against schistosomiasis. Am J Transl Res 2024; 16:4279-4300. [PMID: 39398578 PMCID: PMC11470331 DOI: 10.62347/bxrt7210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/15/2024] [Indexed: 10/15/2024]
Abstract
Despite significant and coordinated efforts to combat schistosomiasis, such as providing clean water, sanitation, hygiene, and snail control, these strategies still fall short, as regions previously thought to be disease-free have shown active schistosomiasis transmission. Therefore, it is necessary to implement integrated control methods, emphasizing vaccine development for sustainable control of schistosomiasis. Vaccination has significantly contributed to global healthcare and has been the most economically friendly method for avoiding pathogenic infections. Over the years, different vaccine candidates for schistosomiasis have been investigated with varying degrees of success in clinical trials with many not proceeding past the early clinical phase. Recently, proteins have been mentioned as targets for drug discovery and vaccine development, especially those with multiple functions in schistosomes. Moonlighting proteins are a class of proteins that can perform several functions besides their known functions. This multifunctional property is believed to have been expressed through evolution, where the polypeptide chain gained the ability to perform other tasks without undergoing any structural changes. Since proteins have gained more traction as drug targets, multifunctional proteins have thus become attractive for discovering and developing novel drugs since the drug can target more than one function. Moonlighting proteins are promising drug and vaccine candidates for diseases such as schistosomiasis, since they aid in disease promotion in the human host. This manuscript elucidates vital moonlighting proteins used by schistosomes to drive their life cycle and to ensure their survival in the human host, which can be used to develop anti-schistosomal therapeutics and vaccinomics.
Collapse
Affiliation(s)
- Kagiso Motlhatlhedi
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Naledi Beatrice Pilusa
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Tshepang Ndaba
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Mary George
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| |
Collapse
|
5
|
Kim J, Davis J, Lee J, Cho SN, Yang K, Yang J, Bae S, Son J, Kim B, Whittington D, Siddiqui AA, Carter D, Gray SA. An assessment of a GMP schistosomiasis vaccine (SchistoShield ®). FRONTIERS IN TROPICAL DISEASES 2024; 5:1404943. [PMID: 39483645 PMCID: PMC11525685 DOI: 10.3389/fitd.2024.1404943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Introduction Schistosomiasis is a neglected tropical disease that puts over 200 million people at risk, and prevention options are sparse with no approved vaccine. Our vaccine candidate, SchistoShield®, is based on an approximately 87 kDa large subunit of calcium activated neutral protease - termed Sm-p80 - combined with a potent TLR4 agonist-based adjuvant. SchistoShield® has been shown to prevent disease throughout the parasitic life cycle - including egg, juvenile, and adult worm stages - in numerous animal models up to and including baboons. SchistoShield® has been shown safe in both preclinical toxicology studies in rabbits and in a Phase 1 clinical trial in the USA. A Phase 1b trial was initiated in 2023 in endemic regions of Africa, and to date no serious safety signals have been reported. Methods In preparation for large-scale Phase 2 clinical trials and eventual vaccine deployment, the Sm-p80 antigen production process has been transferred to a manufacturing organization, Quratis Corporation in South Korea, which specializes in preparation of vaccines for large-scale European and African trials. The process of scaling from our current production level of ~2000 vaccine doses, to a process that will generate more than 100 million doses has required multiple improvement steps in the process including fermentation, downstream purification of the protein antigen, lyophilization, and fill and finish. Results In this study, we detail the large-scale production process of the SchistoShield® protein product by Quratis. In addition, an effort was made to analyze and compare the Quratis-made lot of Sm-p80, referred to as QTP-105, to the cGMP lot of Sm-p80 which is in use in human trials in the USA and Africa, referred to as Sm-p80 DP (made in USA). We show that QTP-105 demonstrates excellent potency, purity, identity, and endotoxin levels compared to our Phase 1 Sm-p80 DP and is suitable for use in Phase 2 studies and beyond.
Collapse
Affiliation(s)
- Jiho Kim
- PAI Life Sciences, Seattle, WA, United States
| | - Jenn Davis
- PAI Life Sciences, Seattle, WA, United States
| | - Jinhee Lee
- Quratis Corp, Cheongju, Republic of Korea
| | - Sang-Nae Cho
- Quratis Corp, Cheongju, Republic of Korea
- Department of Microbiology, Yonsei University, Seoul, Republic of Korea
| | | | | | | | - Joohee Son
- Quratis Corp, Cheongju, Republic of Korea
| | | | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
| | - Afzal A. Siddiqui
- Department of Immunology & Molecular Microbiology, Center for Tropical Medicine & Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Darrick Carter
- PAI Life Sciences, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Sean A. Gray
- PAI Life Sciences, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Zumuk CP, Jones MK, Navarro S, Gray DJ, You H. Transmission-Blocking Vaccines against Schistosomiasis Japonica. Int J Mol Sci 2024; 25:1707. [PMID: 38338980 PMCID: PMC10855202 DOI: 10.3390/ijms25031707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Control of schistosomiasis japonica, endemic in Asia, including the Philippines, China, and Indonesia, is extremely challenging. Schistosoma japonicum is a highly pathogenic helminth parasite, with disease arising predominantly from an immune reaction to entrapped parasite eggs in tissues. Females of this species can generate 1000-2200 eggs per day, which is about 3- to 15-fold greater than the egg output of other schistosome species. Bovines (water buffalo and cattle) are the predominant definitive hosts and are estimated to generate up to 90% of parasite eggs released into the environment in rural endemic areas where these hosts and humans are present. Here, we highlight the necessity of developing veterinary transmission-blocking vaccines for bovines to better control the disease and review potential vaccine candidates. We also point out that the approach to producing efficacious transmission-blocking animal-based vaccines before moving on to human vaccines is crucial. This will result in effective and feasible public health outcomes in agreement with the One Health concept to achieve optimum health for people, animals, and the environment. Indeed, incorporating a veterinary-based transmission vaccine, coupled with interventions such as human mass drug administration, improved sanitation and hygiene, health education, and snail control, would be invaluable to eliminating zoonotic schistosomiasis.
Collapse
Affiliation(s)
- Chika P. Zumuk
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Malcolm K. Jones
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Severine Navarro
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Centre for Childhood Nutrition Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Darren J. Gray
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
7
|
Piao X, Jiang N, Liu S, Duan J, Dai H, Hou N, Chen Q. Schistosoma japonicum EKLF/KLF1 is a potential immune target to tackle schistosomiasis. Parasit Vectors 2023; 16:334. [PMID: 37742024 PMCID: PMC10517563 DOI: 10.1186/s13071-023-05947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/26/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Interruption of parasite reproduction by targeting migrating schistosomula is a promising strategy for managing schistosomiasis. Hepatic schistosomula proteins previously identified based on second-generation schistosome DNA sequencing were found to hold excellent potential for schistosomiasis japonica diagnosis and as vaccine candidates. However, there are still many unknown schistosomula proteins that warrant further investigations. Herein, a novel schistosomula protein, the Schistosoma japonicum erythroid Krüppel-like factor (SjEKLF/KLF1), was explored. METHODS Sequence alignment was carried out to detect the amino acid sequence characteristics of SjEKLF. The expression profile of SjEKLF was determined by western blot and immunofluorescence analysis. Enzyme-linked immunosorbent assay was used to determine the antigenicity of SjEKLF in hosts. Mice immunised with recombinant SjEKLF were challenged to test the potential value of the protein as an immunoprotective target. RESULTS SjEKLF is defined as EKLF/KLF1 for its C-terminal DNA-binding domain. SjEKLF is mainly expressed in hepatic schistosomula and male adults and located within the intestinal intima of the parasites. Notably, high levels of SjEKLF-specific antibodies were detected in host sera and SjEKLF exhibited outstanding sensitivity and specificity for schistosomiasis japonica immunodiagnosis but failed to distinguish between ongoing infection and previous exposure. In addition, SjEKLF immunisation reduced the infection in vivo, resulting in decreased worm and egg counts, and alleviated body weight loss and hepatomegaly in infected mice. CONCLUSIONS Overall, these findings demonstrate that SjEKLF is critical for the infection of S. japonicum and may be a potential target to help control S. japonicum infection and transmission.
Collapse
Affiliation(s)
- Xianyu Piao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Shuai Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiamei Duan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hang Dai
- Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Nan Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Qijun Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China.
| |
Collapse
|
8
|
Abaasa A, Egesa M, Driciru E, Koopman JPR, Kiyemba R, Sanya RE, Nassuuna J, Ssali A, Kimbugwe G, Wajja A, van Dam GJ, Corstjens PLAM, Cose S, Seeley J, Kamuya D, Webb EL, Yazdanbakhsh M, Kaleebu P, Siddiqui AA, Kabatereine N, Tukahebwa E, Roestenberg M, Elliott AM. Establishing a single-sex controlled human Schistosoma mansoni infection model for Uganda: protocol for safety and dose-finding trial. IMMUNOTHERAPY ADVANCES 2023; 3:ltad010. [PMID: 37538934 PMCID: PMC10396375 DOI: 10.1093/immadv/ltad010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Control of schistosomiasis depends on a single drug, praziquantel, with variable cure rates, high reinfection rates, and risk of drug resistance. A vaccine could transform schistosomiasis control. Preclinical data show that vaccine development is possible, but conventional vaccine efficacy trials require high incidence, long-term follow-up, and large sample size. Controlled human infection studies (CHI) can provide early efficacy data, allowing the selection of optimal candidates for further trials. A Schistosoma CHI has been established in the Netherlands but responses to infection and vaccines differ in target populations in endemic countries. We aim to develop a CHI for Schistosoma mansoni in Uganda to test candidate vaccines in an endemic setting. This is an open-label, dose-escalation trial in two populations: minimal, or intense, prior Schistosoma exposure. In each population, participants will be enrolled in sequential dose-escalating groups. Initially, three volunteers will be exposed to 10 cercariae. If all show infection, seven more will be exposed to the same dose. If not, three volunteers in subsequent groups will be exposed to higher doses (20 or 30 cercariae) following the same algorithm, until all 10 volunteers receiving a particular dose become infected, at which point the study will be stopped for that population. Volunteers will be followed weekly after infection until CAA positivity or to 12 weeks. Once positive, they will be treated with praziquantel and followed for one year. The trial registry number is ISRCTN14033813 and all approvals have been obtained. The trial will be subjected to monitoring, inspection, and/or audits.
Collapse
Affiliation(s)
- Andrew Abaasa
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, UK
| | - Moses Egesa
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, UK
| | | | | | | | - Richard E Sanya
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- African Population and Health Research Center, Nairobi, Kenya
| | | | - Agnes Ssali
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, UK
| | | | - Anne Wajja
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
| | | | | | - Stephen Cose
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, UK
| | - Janet Seeley
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, UK
| | - Dorcas Kamuya
- Kenya Medical Research Institute (KEMRI), Kilifi, Kenya
| | - Emily L Webb
- London School of Hygiene & Tropical Medicine, London, UK
| | | | - Pontiano Kaleebu
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, UK
| | | | | | | | | | - Alison M Elliott
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
9
|
Doolan R, Putananickal N, Tritten L, Bouchery T. How to train your myeloid cells: a way forward for helminth vaccines? Front Immunol 2023; 14:1163364. [PMID: 37325618 PMCID: PMC10266106 DOI: 10.3389/fimmu.2023.1163364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Soil-transmitted helminths affect approximately 1.5 billion people worldwide. However, as no vaccine is currently available for humans, the current strategy for elimination as a public health problem relies on preventive chemotherapy. Despite more than 20 years of intense research effort, the development of human helminth vaccines (HHVs) has not yet come to fruition. Current vaccine development focuses on peptide antigens that trigger strong humoral immunity, with the goal of generating neutralizing antibodies against key parasite molecules. Notably, this approach aims to reduce the pathology of infection, not worm burden, with only partial protection observed in laboratory models. In addition to the typical translational hurdles that vaccines struggle to overcome, HHVs face several challenges (1): helminth infections have been associated with poor vaccine responses in endemic countries, probably due to the strong immunomodulation caused by these parasites, and (2) the target population displays pre-existing type 2 immune responses to helminth products, increasing the likelihood of adverse events such as allergy or anaphylaxis. We argue that such traditional vaccines are unlikely to be successful on their own and that, based on laboratory models, mucosal and cellular-based vaccines could be a way to move forward in the fight against helminth infection. Here, we review the evidence for the role of innate immune cells, specifically the myeloid compartment, in controlling helminth infections. We explore how the parasite may reprogram myeloid cells to avoid killing, notably using excretory/secretory (ES) proteins and extracellular vesicles (EVs). Finally, learning from the field of tuberculosis, we will discuss how anti-helminth innate memory could be harnessed in a mucosal-trained immunity-based vaccine.
Collapse
Affiliation(s)
- Rory Doolan
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Namitha Putananickal
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucienne Tritten
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tiffany Bouchery
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Prasanphanich NS, Leon K, Secor WE, Shoemaker CB, Heimburg-Molinaro J, Cummings RD. Anti-schistosomal immunity to core xylose/fucose in N-glycans. Front Mol Biosci 2023; 10:1142620. [PMID: 37081851 PMCID: PMC10110957 DOI: 10.3389/fmolb.2023.1142620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Schistosomiasis is a globally prevalent, debilitating disease that is poorly controlled by chemotherapy and for which no vaccine exists. While partial resistance in people may develop over time with repeated infections and treatments, some animals, including the brown rat (Rattus norvegicus), are only semi-permissive and have natural protection. To understand the basis of this protection, we explored the nature of the immune response in the brown rat to infection by Schistosoma mansoni. Infection leads to production of IgG to Infection leads to production of IgG to parasite glycoproteins parasite glycoproteins with complex-type N-glycans that contain a non-mammalian-type modification by core α2-Xylose and core α3-Fucose (core Xyl/Fuc). These epitopes are expressed on the surfaces of schistosomula and adult worms. Importantly, IgG to these epitopes can kill schistosomula by a complement-dependent process in vitro. Additionally, sera from both infected rhesus monkey and infected brown rat were capable of killing schistosomula in a manner inhibited by glycopeptides containing core Xyl/Fuc. These results demonstrate that protective antibodies to schistosome infections in brown rats and rhesus monkeys include IgG responses to the core Xyl/Fuc epitopes in surface-expressed N-glycans, and raise the potential of novel glyco-based vaccines that might be developed to combat this disease.
Collapse
Affiliation(s)
| | - Kristoffer Leon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - W. Evan Secor
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, United States
| | - Jamie Heimburg-Molinaro
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Richard D. Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- *Correspondence: Richard D. Cummings,
| |
Collapse
|
11
|
Siddiqui AJ, Bhardwaj J, Saxena J, Jahan S, Snoussi M, Bardakci F, Badraoui R, Adnan M. A Critical Review on Human Malaria and Schistosomiasis Vaccines: Current State, Recent Advancements, and Developments. Vaccines (Basel) 2023; 11:vaccines11040792. [PMID: 37112704 PMCID: PMC10146311 DOI: 10.3390/vaccines11040792] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
Malaria and schistosomiasis are two major parasitic diseases that remain leading causes of morbidity and mortality worldwide. Co-infections of these two parasites are common in the tropics, where both diseases are endemic. The clinical consequences of schistosomiasis and malaria are determined by a variety of host, parasitic, and environmental variables. Chronic schistosomiasis causes malnutrition and cognitive impairments in children, while malaria can cause fatal acute infections. There are effective drugs available to treat malaria and schistosomiasis. However, the occurrence of allelic polymorphisms and the rapid selection of parasites with genetic mutations can confer reduced susceptibility and lead to the emergence of drug resistance. Moreover, the successful elimination and complete management of these parasites are difficult due to the lack of effective vaccines against Plasmodium and Schistosoma infections. Therefore, it is important to highlight all current vaccine candidates undergoing clinical trials, such as pre-erythrocytic and erythrocytic stage malaria, as well as a next-generation RTS,S-like vaccine, the R21/Matrix-M vaccine, that conferred 77% protection against clinical malaria in a Phase 2b trial. Moreover, this review also discusses the progress and development of schistosomiasis vaccines. Furthermore, significant information is provided through this review on the effectiveness and progress of schistosomiasis vaccines currently under clinical trials, such as Sh28GST, Sm-14, and Sm-p80. Overall, this review provides insights into recent progress in malarial and schistosomiasis vaccines and their developmental approaches.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Jyoti Bhardwaj
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Juhi Saxena
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, NH-95, Ludhiana—Chandigarh State Hwy, Mohali 140413, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaharHaddas BP74, Monastir 5000, Tunisia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, Tunis 1017, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| |
Collapse
|
12
|
You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023; 36:e0024121. [PMID: 36625671 PMCID: PMC10035331 DOI: 10.1128/cmr.00241-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.
Collapse
Affiliation(s)
- Hong You
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Catherine A. Gordon
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexa E. Arganda
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pengfei Cai
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Harry Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Donald P. McManus
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
13
|
Peterkova K, Vorel J, Ilgova J, Ostasov P, Fajtova P, Konecny L, Chanova M, Kasny M, Horn M, Dvorak J. Proteases and their inhibitors involved in Schistosoma mansoni egg-host interaction revealed by comparative transcriptomics with Fasciola hepatica eggs. Int J Parasitol 2023; 53:253-263. [PMID: 36754342 DOI: 10.1016/j.ijpara.2022.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 02/08/2023]
Abstract
Schistosoma mansoni eggs are the main causative agents of the pathological manifestations of schistosomiasis. The eggs are laid in the host bloodstream, then they migrate through the intestinal wall into the lumen. However, a significant proportion of the eggs become lodged in the liver, where they cause inflammation and fibrosis. In this study, we focus on a specific group of proteins expressed by the egg, namely proteases and their inhibitors. These molecules are often involved in schistosome-host interactions, but are still unexplored in the egg stage. Using RNA-seq and comparative transcriptomics of immature and mature S. mansoni eggs, we mapped the portfolio of proteases and their inhibitors, and determined their gene expression levels. In addition, we compared these data with gene expression of proteases and their inhibitors in Fasciola hepatica eggs. Fasciola hepatica eggs served as a useful comparative model, as they do not migrate through tissues and inflict pathology. We detected transcription of 135 and 117 proteases in S. mansoni and F. hepatica eggs, respectively, with 87 identified as orthologous between the two species. In contrast, we observed only four orthologous inhibitors out of 21 and 16 identified in S. mansoni and F. hepatica eggs, respectively. Among others, we measured high and developmentally regulated levels of expression of metalloproteases in S. mansoni eggs, specifically aminopeptidase N1, endothelin-converting enzyme 1, and several leishmanolysin-like peptidases. We identified highly transcribed protease inhibitors serpin and alpha-2-macroglobulin that are unique to S. mansoni eggs, and antistasin-like inhibitor in F. hepatica eggs. This study provides new insights into the portfolio of proteases and inhibitors expressed by S. mansoni with potential roles in egg tissue migration, stimulation of angiogenesis, and interaction with host blood and immunity.
Collapse
Affiliation(s)
- Kristyna Peterkova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia; Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Czech University of Life Sciences, Prague, Czechia.
| | - Jiri Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jana Ilgova
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Pavel Ostasov
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Czechia
| | - Pavla Fajtova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Lukas Konecny
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia; Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Czech University of Life Sciences, Prague, Czechia
| | - Marta Chanova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czechia
| | - Martin Kasny
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Jan Dvorak
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Czech University of Life Sciences, Prague, Czechia; Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia; Faculty of Environmental Sciences, Center of Infectious Animal Diseases, Czech University of Life Sciences in Prague, Czechia
| |
Collapse
|
14
|
Evaluation of calpain T-cell epitopes as vaccine candidates against experimental Leishmania major infection: a pilot study. Parasitol Res 2022; 121:3275-3285. [PMID: 36102970 PMCID: PMC9471026 DOI: 10.1007/s00436-022-07657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/01/2022] [Indexed: 10/24/2022]
|
15
|
Abou-El-Naga IF. Emerging roles for extracellular vesicles in Schistosoma infection. Acta Trop 2022; 232:106467. [PMID: 35427535 DOI: 10.1016/j.actatropica.2022.106467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/05/2022] [Accepted: 04/11/2022] [Indexed: 11/01/2022]
Abstract
The co-evolution of Schistosoma and its host necessitates the use of extracellular vesicles (EVs) generated by different lifecycle stages to manipulate the host immune system to achieve a delicate balance between the survival of the parasite and the limited pathology of the host. EVs are phospholipid bilayer membrane-enclosed vesicles capable of transferring a complex mixture of proteins, lipids, and genetic materials to the host. They are nano-scale-sized vesicles involved in cellular communication. In this review, the author summarized the proteins involved in the biogenesis of schistosome-derived EVs and their cargo load. miRNAs are one cargo molecule that can underpin EVs functions and significantly affect parasite/host interactions and immune modulation. They skew macrophage polarization towards the M1 phenotype and downregulate Th2 immunity. Schistosoma can evade the host immune system's harmful effects by utilizing this strategy. In order to compromise the protective effect of Th2, EVs upregulate T regulatory cells and activate eosinophils, which contribute to granuloma formation. Schistosomal EVs also affect fibrosis by acting on non-immune cells such as hepatic stellate cells. These vesicles drew attention to translational applications in diagnosis, immunotherapy, and potential vaccines. A deep understanding of the interaction of schistosome-derived EVs with host cells will significantly increase our knowledge about the dynamics between the host and the worm that may aid in controlling this debilitating disease.
Collapse
|
16
|
Alzain AA, Elbadwi FA. De Novo Design of Cathepsin B1 Inhibitors as Potential Anti-Schistosomal Agents Using Computational Studies. ADVANCES AND APPLICATIONS IN BIOINFORMATICS AND CHEMISTRY 2022; 15:29-41. [PMID: 35935393 PMCID: PMC9355347 DOI: 10.2147/aabc.s361626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
Background Schistosomiasis is the world’s second most devastating disease after malaria and the leading cause of disease and mortality for more than 200 million people in developing countries. Cysteine proteases, in particular SmCB1, are the most well-researched biological targets for this disorder. Objective To apply computational techniques to design new antischistosomal agents against SmCB1 protein with favorable pharmacokinetic properties. Methods The smCB1 receptor-based pharmacophore model was created and used to screen 567,000 fragments from the Enamine library. The best scoring fragments have been linked to build novel compounds that were subjected to molecular docking, MM-GBSA free energy estimation, ADME prediction, and molecular dynamics. Results A seven-point pharmacophore hypothesis ADDDRRR was created. The developed hypothesis was used to screen 1.3 M fragment conformations. Among them, 23,732 fragments matched the hypothesis and screened against the protein. The top 50 fragments were used to design new 7745 compounds using the Breed ligand panel which were subjected to docking and MMGBSA binding energy. This led to the identification of 10 compounds with better docking scores (−8.033– −7.483 kcal/mol) and lower-bound free energies (−58.49 – −40.02 kcal/mol) compared to the reference bound ligand. Most of the designed compounds demonstrated good drug-like properties. Concerning Molecular dynamics (MD) simulation results, a low root mean square deviation (RMSD) range (0.25–1.2 Å) was found for the top 3 complexes which indicated their stability. Conclusion We identified compounds that could be potential candidates in the search for novel Schistosoma mansoni inhibitors by targeting SmCB1 utilizing various computational tools. Three newly designed compounds namely breed 1, 2, and 3 showed promising affinity to the target as well as favorable drug-like properties which might be considered potential anti-schistosomal agents.
Collapse
Affiliation(s)
- Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
- Correspondence: Abdulrahim A Alzain, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan, Tel +249-511854501, Fax +249-511861180, Email
| | - Fatima A Elbadwi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
17
|
Vaccines for Human Schistosomiasis: Recent Progress, New Developments and Future Prospects. Int J Mol Sci 2022; 23:ijms23042255. [PMID: 35216369 PMCID: PMC8879820 DOI: 10.3390/ijms23042255] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022] Open
Abstract
Schistosomiasis, caused by human trematode blood flukes (schistosomes), remains one of the most prevalent and serious of the neglected tropical parasitic diseases. Currently, treatment of schistosomiasis relies solely on a single drug, the anthelmintic praziquantel, and with increased usage in mass drug administration control programs for the disease, the specter of drug resistance developing is a constant threat. Vaccination is recognized as one of the most sustainable options for the control of any pathogen, but despite the discovery and reporting of numerous potentially promising schistosome vaccine antigens, to date, no schistosomiasis vaccine for human or animal deployment is available. This is despite the fact that Science ranked such an intervention as one of the top 10 vaccines that need to be urgently developed to improve public health globally. This review summarizes current progress of schistosomiasis vaccines under clinical development and advocates the urgent need for the establishment of a revolutionary and effective anti-schistosome vaccine pipeline utilizing cutting-edge technologies (including developing mRNA vaccines and exploiting CRISPR-based technologies) to provide novel insight into future vaccine discovery, design, manufacture and deployment.
Collapse
|
18
|
Shams M, Khazaei S, Ghasemi E, Nazari N, Javanmardi E, Majidiani H, Bahadory S, Anvari D, Fatollahzadeh M, Nemati T, Asghari A. Prevalence of urinary schistosomiasis in women: a systematic review and meta-analysis of recently published literature (2016-2020). Trop Med Health 2022; 50:12. [PMID: 35093180 PMCID: PMC8800356 DOI: 10.1186/s41182-022-00402-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Urinary schistosomiasis is a serious threat in endemic territories of Africa and the Middle East. The status of female urinary schistosomiasis (FUS) in published literature between 2016 and 2020 was investigated. METHODS A systematic search in PubMed, Scopus, Google Scholar, and Web of Science, based on the 'Preferred Reporting Items for Systematic Reviews and Meta-analyses' checklist, and a meta-analysis using random-effects model to calculate the weighted estimates and 95% confidence intervals (95% CIs) were done. RESULTS Totally, 113 datasets reported data on 40,531 women from 21 African countries, showing a pooled prevalence of 17.5% (95% CI: 14.8-20.5%). Most studies (73) were performed in Nigeria, while highest prevalence was detected in Mozambique 58% (95% CI: 56.9-59.1%) (one study). By sample type and symptoms, vaginal lavage [25.0% (95% CI: 11.4-46.1%)] and hematuria 19.4% (95% CI: 12.2-29.4%) showed higher FUS frequency. Studies using direct microscopy diagnosed a 17.1% (95% CI: 14.5-20.1%) prevalence rate, higher than PCR-based studies 15.3% (95% CI: 6.1-33.2%). Except for sample type, all other variables had significant association with the overall prevalence of FUS. CONCLUSIONS More studies are needed to evaluate the true epidemiology of FUS throughout endemic regions.
Collapse
Affiliation(s)
- Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Sasan Khazaei
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ezatollah Ghasemi
- Department of Medical Parasitology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Naser Nazari
- Department of Parasitology and Mycology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Erfan Javanmardi
- Clinical Research Development Center, "The Persian Gulf Martyrs" Hospital of Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamidreza Majidiani
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Saeed Bahadory
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Davood Anvari
- Department of Parasitology, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mohammad Fatollahzadeh
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Taher Nemati
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Asghari
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Kura K, Hardwick RJ, Truscott JE, Anderson RM. What is the impact of acquired immunity on the transmission of schistosomiasis and the efficacy of current and planned mass drug administration programmes? PLoS Negl Trop Dis 2021; 15:e0009946. [PMID: 34851952 PMCID: PMC8635407 DOI: 10.1371/journal.pntd.0009946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 10/23/2021] [Indexed: 11/18/2022] Open
Abstract
Schistosomiasis causes severe morbidity in many countries with endemic infection with the schistosome digenean parasites in Africa and Asia. To control and eliminate the disease resulting from infection, regular mass drug administration (MDA) is used, with a focus on school-aged children (SAC; 5-14 years of age). In some high transmission settings, the World Health Organization (WHO) also recommends the inclusion of at-risk adults in MDA treatment programmes. The question of whether ecology (age-dependant exposure) or immunity (resistance to reinfection), or some combination of both, determines the form of observed convex age-intensity profile is still unresolved, but there is a growing body of evidence that the human hosts acquire some partial level of immunity after a long period of repeated exposure to infection. In the majority of past research modelling schistosome transmission and the impact of MDA programmes, the effect of acquired immunity has not been taken into account. Past work has been based on the assumption that age-related contact rates generate convex horizontal age-intensity profiles. In this paper, we use an individual based stochastic model of transmission and MDA impact to explore the effect of acquired immunity in defined MDA programmes. Compared with scenarios with no immunity, we find that acquired immunity makes the MDA programme less effective with a slower decrease in the prevalence of infection. Therefore, the time to achieve morbidity control and elimination as a public health problem is longer than predicted by models with just age-related exposure and no build-up of immunity. The level of impact depends on the baseline prevalence prior to treatment (the magnitude of the basic reproductive number R0) and the treatment frequency, among other factors. We find that immunity has a larger impact within moderate to high transmission settings such that it is very unlikely to achieve morbidity and transmission control employing current MDA programmes.
Collapse
Affiliation(s)
- Klodeta Kura
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, London, United Kingdom
| | - Robert J. Hardwick
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, London, United Kingdom
- The DeWorm3 Project, The Natural History Museum of London, London, United Kingdom
| | - James E. Truscott
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, London, United Kingdom
- The DeWorm3 Project, The Natural History Museum of London, London, United Kingdom
| | - Roy M. Anderson
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, London, United Kingdom
- The DeWorm3 Project, The Natural History Museum of London, London, United Kingdom
| |
Collapse
|
20
|
Anderson RM. An urgent need: vaccines for neglected tropical diseases. THE LANCET INFECTIOUS DISEASES 2021; 21:1621-1623. [PMID: 34419210 PMCID: PMC8376208 DOI: 10.1016/s1473-3099(21)00260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022]
|
21
|
Excretion patterns of Schistosoma mansoni antigens CCA and CAA by adult male and female worms, using a mouse model and ex vivo parasite cultures. Parasitology 2021; 149:306-313. [PMID: 34736550 PMCID: PMC10097511 DOI: 10.1017/s0031182021001839] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Assays which enable the detection of schistosome gut-associated circulating anodic (CAA) and cathodic (CCA) antigen in serum or urine are increasingly used as a diagnostic tool for schistosome infection. However, little is known about the production and clearance of these circulating antigens in relation to the sex and reproductive maturity of the parasite. Here we describe CAA and CCA excretion patterns by exploring a mouse model after exposure to 36 male-only, female-only and mixed (male/female) Schistosoma mansoni cercariae. We found that serum and urine CAA levels, analysed at 3 weeks intervals, peaked at 6 weeks post-infection. Worms recovered after perfusion at 14 weeks were cultured ex vivo. Male parasites excreted more circulating antigens than females, in the mouse model as well as ex vivo. In mixed infections (supporting egg production), serum CAA levels correlated to the number of recovered worms, whereas faecal egg counts or Schistosoma DNA in stool did not. No viable eggs and no inflammation were seen in the livers from mice infected with female worms only. Ex vivo, CAA levels were higher than CCA levels. Our study confirms that CAA levels reflect worm burden and allows detection of low-level single-sex infections.
Collapse
|
22
|
Amaral MS, Santos DW, Pereira ASA, Tahira AC, Malvezzi JVM, Miyasato PA, Freitas RDP, Kalil J, Tjon Kon Fat EM, de Dood CJ, Corstjens PLAM, van Dam GJ, Nakano E, Castro SDO, Mattaraia VGDM, Augusto RDC, Grunau C, Wilson RA, Verjovski-Almeida S. Rhesus macaques self-curing from a schistosome infection can display complete immunity to challenge. Nat Commun 2021; 12:6181. [PMID: 34702841 PMCID: PMC8548296 DOI: 10.1038/s41467-021-26497-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
The rhesus macaque provides a unique model of acquired immunity against schistosomes, which afflict >200 million people worldwide. By monitoring bloodstream levels of parasite-gut-derived antigen, we show that from week 10 onwards an established infection with Schistosoma mansoni is cleared in an exponential manner, eliciting resistance to reinfection. Secondary challenge at week 42 demonstrates that protection is strong in all animals and complete in some. Antibody profiles suggest that antigens mediating protection are the released products of developing schistosomula. In culture they are killed by addition of rhesus plasma, collected from week 8 post-infection onwards, and even more efficiently with post-challenge plasma. Furthermore, cultured schistosomula lose chromatin activating marks at the transcription start site of genes related to worm development and show decreased expression of genes related to lysosomes and lytic vacuoles involved with autophagy. Overall, our results indicate that enhanced antibody responses against the challenge migrating larvae mediate the naturally acquired protective immunity and will inform the route to an effective vaccine. To date there is only one single drug with modest efficacy and no vaccine available to protect from schistosomiasis. Here, Amaral et al. characterize the self-cure process of rhesus macaques following primary infection and secondary challenge with Schistosoma mansoni to inform future vaccine development studies.
Collapse
Affiliation(s)
| | - Daisy Woellner Santos
- Laboratório de Parasitologia, Instituto Butantan, Sao Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Adriana S A Pereira
- Laboratório de Parasitologia, Instituto Butantan, Sao Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | - Jorge Kalil
- Heart Institute, Faculty of Medicine, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Elisa M Tjon Kon Fat
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Claudia J de Dood
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul L A M Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Govert J van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eliana Nakano
- Laboratório de Parasitologia, Instituto Butantan, Sao Paulo, Brazil
| | | | | | - Ronaldo de Carvalho Augusto
- LBMC, Laboratoire de Biologie et Modélisation de la Cellule Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1210, Lyon, France.,IHPE, Univ. Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France
| | - Christoph Grunau
- IHPE, Univ. Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France
| | - R Alan Wilson
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Sergio Verjovski-Almeida
- Laboratório de Parasitologia, Instituto Butantan, Sao Paulo, Brazil. .,Departamento de Bioquímica, Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
23
|
Panzner U, Excler JL, Kim JH, Marks F, Carter D, Siddiqui AA. Recent Advances and Methodological Considerations on Vaccine Candidates for Human Schistosomiasis. FRONTIERS IN TROPICAL DISEASES 2021; 2:719369. [PMID: 39280170 PMCID: PMC11392908 DOI: 10.3389/fitd.2021.719369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Schistosomiasis remains a neglected tropical disease of major public health concern with high levels of morbidity in various parts of the world. Although considerable efforts in implementing mass drug administration programs utilizing praziquantel have been deployed, schistosomiasis is still not contained. A vaccine may therefore be an essential part of multifaceted prevention control efforts. In the 1990s, a joint United Nations committee promoting parasite vaccines shortlisted promising candidates including for schistosomiasis discussed below. After examining the complexity of immune responses in human hosts infected with schistosomes, we review and discuss the antigen design and preclinical and clinical development of the four leading vaccine candidates: Sm-TSP-2 in Phase 1b/2b, Sm14 in Phase 2a/2b, Sm-p80 in Phase 1 preparation, and Sh28GST in Phase 3. Our assessment of currently leading vaccine candidates revealed some methodological issues that preclude a fair comparison between candidates and the rationale to advance in clinical development. These include (1) variability in animal models - in particular non-human primate studies - and predictive values of each for protection in humans; (2) lack of consensus on the assessment of parasitological and immunological parameters; (3) absence of reliable surrogate markers of protection; (4) lack of well-designed parasitological and immunological natural history studies in the context of mass drug administration with praziquantel. The controlled human infection model - while promising and unique - requires validation against efficacy outcomes in endemic settings. Further research is also needed on the impact of advanced adjuvants targeting specific parts of the innate immune system that may induce potent, protective and durable immune responses with the ultimate goal of achieving meaningful worm reduction.
Collapse
Affiliation(s)
- Ursula Panzner
- International Vaccine Institute, Seoul, South Korea
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | - Florian Marks
- International Vaccine Institute, Seoul, South Korea
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- University of Antananarivo, Antananarivo, Madagascar
| | | | - Afzal A. Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
24
|
Qokoyi NK, Masamba P, Kappo AP. Proteins as Targets in Anti-Schistosomal Drug Discovery and Vaccine Development. Vaccines (Basel) 2021; 9:762. [PMID: 34358178 PMCID: PMC8310332 DOI: 10.3390/vaccines9070762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/23/2023] Open
Abstract
Proteins hardly function in isolation; they form complexes with other proteins or molecules to mediate cell signaling and control cellular processes in various organisms. Protein interactions control mechanisms that lead to normal and/or disease states. The use of competitive small molecule inhibitors to disrupt disease-relevant protein-protein interactions (PPIs) holds great promise for the development of new drugs. Schistosome invasion of the human host involves a variety of cross-species protein interactions. The pathogen expresses specific proteins that not only facilitate the breach of physical and biochemical barriers present in skin, but also evade the immune system and digestion of human hemoglobin, allowing for survival in the host for years. However, only a small number of specific protein interactions between the host and parasite have been functionally characterized; thus, in-depth understanding of the molecular mechanisms of these interactions is a key component in the development of new treatment methods. Efforts are now focused on developing a schistosomiasis vaccine, as a proposed better strategy used either alone or in combination with Praziquantel to control and eliminate this disease. This review will highlight protein interactions in schistosomes that can be targeted by specific PPI inhibitors for the design of an alternative treatment to Praziquantel.
Collapse
Affiliation(s)
| | | | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Kingsway Campus, University of Johannesburg, Auckland Park 2006, South Africa; (N.K.Q.); (P.M.)
| |
Collapse
|
25
|
Al-Naseri A, Al-Absi S, El Ridi R, Mahana N. A comprehensive and critical overview of schistosomiasis vaccine candidates. J Parasit Dis 2021; 45:557-580. [PMID: 33935395 PMCID: PMC8068781 DOI: 10.1007/s12639-021-01387-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
A digenetic platyhelminth Schistosoma is the causative agent of schistosomiasis, one of the neglected tropical diseases that affect humans and animals in numerous countries in the Middle East, sub-Saharan Africa, South America and China. Several control methods were used for prevention of infection or treatment of acute and chronic disease. Mass drug administration led to reduction in heavy-intensity infections and morbidity, but failed to decrease schistosomiasis prevalence and eliminate transmission, indicating the need to develop anti-schistosome vaccine to prevent infection and parasite transmission. This review summarizes the efficacy and protective capacity of available schistosomiasis vaccine candidates with some insights and future prospects.
Collapse
Affiliation(s)
- Aya Al-Naseri
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Samar Al-Absi
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Noha Mahana
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| |
Collapse
|
26
|
Abstract
Vaccination has greatly reduced the burden of human diseases caused by infectious pathogens. Systematic development of vaccine targets requires established protocols to assess immunogenicity and efficacy of such vaccine candidates. Using a leading schistosomiasis vaccine candidate, Sm-p80, as an example, we describe standardized approaches for testing the immunogenicity and efficacy of Schistosoma mansoni vaccine targets. Unlike other parasite systems in which sterile immunity is required, the goal of S. mansoni vaccine targets is overall reduction in morbidity. Methods related to the parasitological parameters described in this chapter allow for the testing of the prophylactic (reduction in adult worm burden), anti-pathology (liver and intestine egg retention), and transmission blocking (fecal egg expulsion and egg hatching rates) efficacies for the vaccine target. The RNA sequencing approaches provide basis for identification of molecular signatures predictive of desirable outcomes for schistosomiasis vaccines.
Collapse
|
27
|
Molehin AJ, Gray SA, Turner C, Davis J, Zhang W, Khatoon S, Rattan M, Kernen R, Peterson C, Sennoune SR, Carter D, Siddiqui AA. Process Development of Sj-p80: A Low-Cost Transmission-Blocking Veterinary Vaccine for Asiatic Schistosomiasis. Front Immunol 2021; 11:578715. [PMID: 33732227 PMCID: PMC7959798 DOI: 10.3389/fimmu.2020.578715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
Asiatic schistosomiasis caused by Schistosoma japonicum is a neglected tropical disease resulting in significant morbidity to both humans and animals - particularly bovines - in endemic areas. Infection with this parasite leads to less healthy herds, causing problems in communities which rely on bovines for farming, milk and meat production. Additionally, excretion of parasite eggs in feces perpetuates the life cycle and can lead to human infection. We endeavored to develop a minimally purified, inexpensive, and effective vaccine based on the 80 kDa large subunit of the calcium activated neutral protease (calpain) from S. japonicum (Sj-p80). Here we describe the production of veterinary vaccine-grade Sj-p80 at four levels of purity and demonstrate in a pilot study that minimally purified antigen provides protection against infection in mice when paired with a low-cost veterinary adjuvant, Montanide™ ISA61 VG. Preliminary data demonstrate that the vaccine is immunogenic with robust antibody titers following immunization, and vaccination resulted in a reduction of parasite eggs being deposited in the liver (23.4-51.4%) and intestines (1.9-55.1%) depending on antigen purity as well as reducing the ability of these eggs to hatch into miracidia by up to 31.6%. We therefore present Sj-p80 as a candidate vaccine antigen for Asiatic schistosomiasis which is now primed for continued development and testing in bovines in endemic areas. A successful bovine vaccine could play a major role in reducing pathogen transmission to humans by interrupting the parasitic life cycle and improving quality of life for people living in endemic countries.
Collapse
Affiliation(s)
- Adebayo J. Molehin
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sean A. Gray
- PAI Life Sciences Inc, Seattle, WA, United States
| | - Cheri Turner
- PAI Life Sciences Inc, Seattle, WA, United States
| | | | - Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sabiha Khatoon
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Madison Rattan
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Rebecca Kernen
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Christopher Peterson
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Souad R. Sennoune
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Afzal A. Siddiqui
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
28
|
Luna EJDA, Campos SRDSLDC. Vaccine development against neglected tropical diseases. CAD SAUDE PUBLICA 2020; 36Suppl 2:e00215720. [PMID: 33237199 DOI: 10.1590/0102-311x00215720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Neglected tropical diseases constitute a heterogeneous group of diseases that have as a common characteristic to affect poor and unassisted populations with little vocalization capacity and political power. As a result, they receive little attention from the pharmaceutical industry and academia. The present study aimed to summarize the state of the art regarding vaccine development for three relevant neglected tropical diseases in Brazil: Chagas disease, schistosomiasis (Schistosoma mansoni), and leishmaniasis. To this end, we conducted a narrative review of the scientific literature, including publications that allowed us to outline a current overview on the vaccine development for the three diseases. Vaccines against the three diseases are in different stages of development. Vaccine development projects against American trypanosomiasis have yet to reach the clinical evaluation phase. For schistosomiasis, we have candidates for the vaccine in the advanced phase of clinical evaluation. For leishmaniasis, there are already licensed veterinary vaccines, and product candidates for human vaccine in the intermediate stage of clinical evaluation. The reduced funding for these projects has contributed to slow product development.
Collapse
|
29
|
Perera DJ, Hassan AS, Jia Y, Ricciardi A, McCluskie MJ, Weeratna RD, Ndao M. Adjuvanted Schistosoma mansoni-Cathepsin B With Sulfated Lactosyl Archaeol Archaeosomes or AddaVax™ Provides Protection in a Pre-Clinical Schistosomiasis Model. Front Immunol 2020; 11:605288. [PMID: 33304354 PMCID: PMC7701121 DOI: 10.3389/fimmu.2020.605288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
Schistosomiasis threatens 800 million people worldwide. Chronic pathology manifests as hepatosplenomegaly, and intestinal schistosomiasis caused by Schistosoma mansoni can lead to liver fibrosis, cirrhosis, and blood in the stool. To assist the only FDA-approved drug, praziquantel, in parasite elimination, the development of a vaccine would be of high value. S. mansoni Cathepsin B (SmCB) is a well-documented vaccine target for intestinal schistosomiasis. Herein, we test the increased efficacy and immunogenicity of SmCB when combined with sulfated lactosyl archaeol (SLA) archaeosomes or AddaVax™ (a squalene based oil-in-water emulsion). Both vaccine formulations resulted in robust humoral and cell mediated immune responses. Impressively, both formulations were able to reduce parasite burden greater than 40% (WHO standard), with AddaVax™ reaching 86.8%. Additionally, SmCB with both adjuvants were able to reduce granuloma size and the amount of larval parasite hatched from feces, which would reduce transmission. Our data support SmCB as a target for S. mansoni vaccination; especially when used in an adjuvanted formulation.
Collapse
Affiliation(s)
- Dilhan J Perera
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Adam S Hassan
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Yimei Jia
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Alessandra Ricciardi
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Michael J McCluskie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Risini D Weeratna
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Momar Ndao
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,National Reference Center for Parasitology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
30
|
Molehin AJ. Current Understanding of Immunity Against Schistosomiasis: Impact on Vaccine and Drug Development. Res Rep Trop Med 2020; 11:119-128. [PMID: 33173371 PMCID: PMC7646453 DOI: 10.2147/rrtm.s274518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease inflicting significant morbidity in humans worldwide. The disease is caused by infections with a parasitic trematode belonging to the genus Schistosoma. Over 250 million people are currently infected globally, with an estimated disability-adjusted life-years of 1.9 million attributed to the disease. Current understanding, based on several immunological studies using experimental and human models of schistosomiasis, reveals that complex immune mechanisms play off each other in the acquisition of immune resistance to infection/reinfection. Nevertheless, the precise characteristics of these responses, the specific antigens against which they are elicited, and how these responses are intricately regulated are still being investigated. What is apparent is that immunity to schistosome infections develops slowly and over a prolonged period of time, augmented by the death of adult worms occurring naturally or by praziquantel therapy. In this review, aspects of immunity to schistosomiasis, host–parasite interactions and their impact on schistosomiasis vaccine development are discussed.
Collapse
Affiliation(s)
- Adebayo J Molehin
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.,Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
31
|
Current status and future prospects of protein vaccine candidates against Schistosoma mansoni infection. Parasite Epidemiol Control 2020; 11:e00176. [PMID: 32923703 PMCID: PMC7475110 DOI: 10.1016/j.parepi.2020.e00176] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/04/2020] [Accepted: 08/16/2020] [Indexed: 12/30/2022] Open
Abstract
Schistosomiasis is an acute and chronic tropical parasitic disease caused by blood dwelling worm of the genus Schistosoma. It is the most destructive disease globally and is a major cause of morbidity and mortality for developing countries. Three main species of schistosomes infect human beings from which S. mansoni is the most common and widespread. Over the last several decades, chemotherapy using praziquantel has been a commonly used strategy for the treatment and control of schistosomiasis. However, control programs focused exclusively on chemotherapy have been challenging because of the frequency and rapidity of reinfection and these programs were expensive. Thus, new schistosomiasis control strategies will be needed. Vaccination strategy would be an ideal tool for a significant and sustainable reduction in the transmission and disease burden of schistosomiasis. An effective anti schistosome vaccine would greatly contribute to decreasing schistosomiasis-associated morbidity via protective immune responses leading to reduced worm burdens and decreased egg production. Vaccine development is a long process that can take decades. There have been three candidate vaccines that have been produced by Good Manufacturing Procedure and entered human clinical trials for S. mansoni are Sm14, SmTSP-2, and Sm-p80. Other candidates that are in pre-clinical trials at various stages include paramyosin, Sm29, SmKI-1, and Sm23. Since the growth of several new technologies, including genomics, transcriptomics, microarrays, immunomic profiling, and proteomics, have helped in the identification of promising new target schistosome antigens. Therefore, this review considers the present status of protein vaccine candidates against Schistosoma mansoni and provides some insight on prospects vaccine design and discovery.
Collapse
Key Words
- AE, Asparaginyl Endopeptidase
- Ab, Antibody
- Ag, Antigen
- CB, Cathepsin B
- CD, Cathepsin D
- CL3, Cathepsin L3
- DNA, Deoxyribonucleic Acid
- FA, Fatty Acid
- FABP, Fatty Acid Binding Protein
- GLA-Alum, Glucopyranosyl Lipid A Formulated in Aluminum
- GLA-SE, Glucopyranosyl Lipid Adjuvant Stable Emulsion
- IFN-γ, Interferon Gamma
- IL, Interleukin
- Ig, Immunoglobulin
- KI, Kunitz Type Protease Inhibitor
- LcP, Lipid Core Peptide
- Pmy, Paramyosin
- Protein vaccine
- Schistosoma mansoni
- Schistosomiasis
- Sm, Schistosoma mansoni
- TSP, Tetraspanins
- Th, T-helper Cells
- Vaccine candidates
- WHO, World Health Organization
Collapse
|
32
|
Drurey C, Coakley G, Maizels RM. Extracellular vesicles: new targets for vaccines against helminth parasites. Int J Parasitol 2020; 50:623-633. [PMID: 32659278 PMCID: PMC8313431 DOI: 10.1016/j.ijpara.2020.04.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022]
Abstract
The hunt for effective vaccines against the major helminth diseases of humans has yet to bear fruit despite much effort over several decades. No individual parasite antigen has proved to elicit full protective immunity, suggesting that combinatorial strategies may be required. Recently it has been discovered that extracellular vesicles released by parasitic helminths contain multiple potential immune modulators, which could together be targeted by a future vaccine. Increasing knowledge of helminth extracellular vesicle components, both enclosed by and exposed on the membrane, will open up a new field of targets for an effective vaccine. This review discusses the interactions between helminth extracellular vesicles and the immune system discovered thus far, and the advantages of targeting these lipid-bound packages with a vaccine. In addition, we also comment upon specific antigens that may be the best targets for an anti-helminth vaccine. In the future, extensive knowledge of the parasites' full arsenal in controlling their host may finally provide us with the ideal target for a fully effective vaccine.
Collapse
Affiliation(s)
- Claire Drurey
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, Monash University, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
33
|
Zhang W, Le L, Ahmad G, Molehin AJ, Siddiqui AJ, Torben W, Karmakar S, Rojo JU, Sennoune S, Lazarus S, Khatoon S, Freeborn J, Sudduth J, Rezk AF, Carey D, Wolf RF, Papin JF, Damian R, Gray SA, Marks F, Carter D, Siddiqui AA. Fifteen Years of Sm-p80-Based Vaccine Trials in Nonhuman Primates: Antibodies From Vaccinated Baboons Confer Protection in vivo and in vitro From Schistosoma mansoni and Identification of Putative Correlative Markers of Protection. Front Immunol 2020; 11:1246. [PMID: 32636844 PMCID: PMC7318103 DOI: 10.3389/fimmu.2020.01246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in systems biology have shifted vaccine development from a largely trial-and-error approach to an approach that promote rational design through the search for immune signatures and predictive correlates of protection. These advances will doubtlessly accelerate the development of a vaccine for schistosomiasis, a neglected tropical disease that currently affects over 250 million people. For over 15 years and with contributions of over 120 people, we have endeavored to test and optimize Sm-p80-based vaccines in the non-human primate model of schistosomiasis. Using RNA-sequencing on eight different Sm-p80-based vaccine strategies, we sought to elucidate immune signatures correlated with experimental protective efficacy. Furthermore, we aimed to explore the role of antibodies through in vivo passive transfer of IgG obtained from immunized baboons and in vitro killing of schistosomula using Sm-p80-specific antibodies. We report that passive transfer of IgG from Sm-p80-immunized baboons led to significant worm burden reduction, egg reduction in liver, and reduced egg hatching percentages from tissues in mice compared to controls. In addition, we observed that sera from Sm-p80-immunized baboons were able to kill a significant percent of schistosomula and that this effect was complement-dependent. While we did not find a universal signature of immunity, the large datasets generated by this study will serve as a substantial resource for further efforts to develop vaccine or therapeutics for schistosomiasis.
Collapse
Affiliation(s)
- Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Loc Le
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Gul Ahmad
- Department of Natural Sciences, Peru State College, Peru, NE, United States
| | - Adebayo J. Molehin
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Workineh Torben
- Department of Biological Sciences, Louisiana State University of Alexandria, Alexandria, LA, United States
| | - Souvik Karmakar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Juan U. Rojo
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Souad Sennoune
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Samara Lazarus
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sabiha Khatoon
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jasmin Freeborn
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Justin Sudduth
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Ashraf F. Rezk
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - David Carey
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Roman F. Wolf
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma City VA Health Care System, Oklahoma City, OK, United States
| | - James F. Papin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ray Damian
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | | | - Florian Marks
- International Vaccine Institute, SNU Research Park, Seoul, South Korea
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Darrick Carter
- PAI Life Sciences, Seattle, WA, United States
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Afzal A. Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
34
|
Kura K, Collyer BS, Toor J, Truscott JE, Hollingsworth TD, Keeling MJ, Anderson RM. Policy implications of the potential use of a novel vaccine to prevent infection with Schistosoma mansoni with or without mass drug administration. Vaccine 2020; 38:4379-4386. [PMID: 32418795 PMCID: PMC7273196 DOI: 10.1016/j.vaccine.2020.04.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Schistosomiasis is one of the most important neglected tropical diseases (NTDs) affecting millions of people in 79 different countries. The World Health Organization (WHO) has specified two control goals to be achieved by 2020 and 2025 - morbidity control and elimination as a public health problem (EPHP). Mass drug administration (MDA) is the main method for schistosomiasis control but it has sometimes proved difficult to both secure adequate supplies of the most efficacious drug praziquantel to treat the millions infected either annually or biannually, and to achieve high treatment coverage in targeted communities in regions of endemic infection. The development of alternative control methods remains a priority. In this paper, using stochastic individual-based models, we analyze whether the addition of a novel vaccine alone or in combination with drug treatment, is a more effective control strategy, in terms of achieving the WHO goals, as well as the time and costs to achieve these goals when compared to MDA alone. The key objective of our analyses is to help facilitate decision making for moving a promising candidate vaccine through the phase I, II and III trials in humans to a final product for use in resource poor settings. We find that in low to moderate transmission settings, both vaccination and MDA are highly likely to achieve the WHO goals within 15 years and are likely to be cost-effective. In high transmission settings, MDA alone is unable to achieve the goals, whereas vaccination is able to achieve both goals in combination with MDA. In these settings Vaccination is cost-effective, even for short duration vaccines, so long as vaccination costs up to US$7.60 per full course of vaccination. The public health value of the vaccine depends on the duration of vaccine protection, the baseline prevalence prior to vaccination and the WHO goal.
Collapse
Affiliation(s)
- Klodeta Kura
- London Centre for Neglected Tropical Disease Research, London, United Kingdom; Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary's Campus, Imperial College London, London, United Kingdom.; MRC Centre for Global Infectious Disease Analysis, United Kingdom.
| | - Benjamin S Collyer
- Mathematics Institute, University of Warwick, United Kingdom; School of Life Sciences, University of Warwick, United Kingdom
| | - Jaspreet Toor
- London Centre for Neglected Tropical Disease Research, London, United Kingdom; Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary's Campus, Imperial College London, London, United Kingdom.; MRC Centre for Global Infectious Disease Analysis, United Kingdom
| | - James E Truscott
- London Centre for Neglected Tropical Disease Research, London, United Kingdom; Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary's Campus, Imperial College London, London, United Kingdom.; MRC Centre for Global Infectious Disease Analysis, United Kingdom; The DeWorm3 Project, The Natural History Museum of London, London, United Kingdom
| | - T Deirdre Hollingsworth
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Matt J Keeling
- Mathematics Institute, University of Warwick, United Kingdom; School of Life Sciences, University of Warwick, United Kingdom
| | - Roy M Anderson
- London Centre for Neglected Tropical Disease Research, London, United Kingdom; Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary's Campus, Imperial College London, London, United Kingdom.; MRC Centre for Global Infectious Disease Analysis, United Kingdom; The DeWorm3 Project, The Natural History Museum of London, London, United Kingdom
| |
Collapse
|
35
|
Sepúlveda-Crespo D, Reguera RM, Rojo-Vázquez F, Balaña-Fouce R, Martínez-Valladares M. Drug discovery technologies: Caenorhabditis elegans as a model for anthelmintic therapeutics. Med Res Rev 2020; 40:1715-1753. [PMID: 32166776 DOI: 10.1002/med.21668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/10/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
Abstract
Helminthiasis is one of the gravest problems worldwide. There is a growing concern on less available anthelmintics and the emergence of resistance creating a major threat to human and livestock health resources. Novel and broad-spectrum anthelmintics are urgently needed. The free-living nematode Caenorhabditis elegans could address this issue through automated high-throughput technologies for the screening of large chemical libraries. This review discusses the strong advantages and limitations for using C elegans as a screening method for anthelmintic drug discovery. C elegans is the best model available for the validation of novel effective drugs in treating most, if not all, helminth infections, and for the elucidation the mode of action of anthelmintic candidates. This review also focuses on available technologies in the discovery of anthelmintics published over the last 15 years with particular attention to high-throughput technologies over conventional screens. On the other hand, this review highlights how combinatorial and nanomedicine strategies could prolong the use of anthelmintics and control resistance problems.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Francisco Rojo-Vázquez
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
36
|
Le L, Khatoon S, Jiménez P, Peterson C, Kernen R, Zhang W, Molehin AJ, Lazarus S, Sudduth J, May J, Karmakar S, Rojo JU, Ahmad G, Torben W, Carey D, Wolf RF, Papin JF, Siddiqui AA. Chronic whipworm infection exacerbates Schistosoma mansoni egg-induced hepatopathology in non-human primates. Parasit Vectors 2020; 13:109. [PMID: 32111243 PMCID: PMC7048111 DOI: 10.1186/s13071-020-3980-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schistosomiasis continues to inflict significant morbidity and mortality in the tropical and subtropical regions of the world. The disease endemicity overlaps with the transmission of other parasitic diseases. Despite the ubiquity of polyparasitism in tropical regions, particularly in rural communities, little is known about the impact of multiple helminth infections on disease progression. In this pilot study, we describe the influence of chronic Trichuris trichiura infection on Schistosoma mansoni egg-induced hepatopathology in infected baboons. METHODS Baboons with or without underlying whipworm infection were challenged with S. mansoni cercariae to establish schistosomiasis. Adult S. mansoni worms were recovered by perfusion and enumerated, hepatic granulomas were quantified via light microscopy, and transcriptional profiling of tissues were completed using RNA sequencing technologies. RESULTS Co-infection with both S. mansoni and T. trichiura resulted in higher female schistosome worm burden and significantly larger liver granuloma sizes. Systems biology analyses of peripheral blood mononuclear cells (PBMC) revealed pathways associated with increased liver damage in co-infected baboons. CONCLUSIONS Underlying chronic whipworm infection intensified schistosome egg-induced liver pathology in infected baboons. RNA-Seq analysis provided insight into pathways associated with increased liver damage, corroborating histological findings.
Collapse
Affiliation(s)
- Loc Le
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sabiha Khatoon
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Paola Jiménez
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Christopher Peterson
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Rebecca Kernen
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Adebayo J Molehin
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Samra Lazarus
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Justin Sudduth
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jordan May
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Souvik Karmakar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Juan U Rojo
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Gul Ahmad
- Department of Natural Sciences, Peru State College, Peru, NE, USA
| | - Workineh Torben
- Department of Biological Sciences, Louisiana State University, Alexandria, LA, USA
| | - David Carey
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roman F Wolf
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Oklahoma City VA Health Care System, Oklahoma City, OK, USA
| | - James F Papin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, USA. .,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
37
|
Li XH, Vance GM, Cartwright J, Cao JP, Wilson RA, Castro-Borges W. Mapping the epitopes of Schistosoma japonicum esophageal gland proteins for incorporation into vaccine constructs. PLoS One 2020; 15:e0229542. [PMID: 32107503 PMCID: PMC7046203 DOI: 10.1371/journal.pone.0229542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/07/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The development of a schistosome vaccine has proved challenging but we have suggested that characterisation of the self-cure mechanism in rhesus macaques might provide a route to an effective product. The schistosome esophagus is a complex structure where blood processing is initiated by secretions from anterior and posterior glands, achieved by a mixture of ~40 unique proteins. The mechanism of self-cure in macaques involves cessation of feeding, after which worms slowly starve to death. Antibody coats the esophagus lumen and disrupts the secretory processes from the glands, potentially making their secretions ideal vaccine targets. METHODOLOGY/PRINCIPAL FINDINGS We have designed three peptide arrays comprising overlapping 15-mer peptides encompassing 32 esophageal gland proteins, and screened them for reactivity against 22-week infection serum from macaques versus permissive rabbit and mouse hosts. There was considerable intra- and inter-species variation in response and no obvious unique target was associated with self-cure status, which suggests that self-cure is achieved by antibodies reacting with multiple targets. Some immuno-dominant sequences/regions were evident across species, notably including: MEGs 4.1C, 4.2, and 11 (Array 1); MEG-12 and Aspartyl protease (Array 2); a Tetraspanin 1 loop and MEG-n2 (Array 3). Responses to MEGs 8.1C and 8.2C were largely confined to macaques. As proof of principle, three synthetic genes were designed, comprising several key targets from each array. One of these was expressed as a recombinant protein and used to vaccinate rabbits. Higher antibody titres were obtained to the majority of reactive regions than those elicited after prolonged infection. CONCLUSIONS/SIGNIFICANCE It is feasible to test simultaneously the additive potential of multiple esophageal proteins to induce protection by combining their most reactive regions in artificial constructs that can be used to vaccinate suitable hosts. The efficacy of the approach to disrupt esophageal function now needs to be tested by a parasite challenge.
Collapse
Affiliation(s)
- Xiao-Hong Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Gillian M. Vance
- Centre for Immunology and Infection, Department of Biology, University of York, York, England, United Kingdom
| | - Jared Cartwright
- Protein Production Laboratory, Department of Biology, University of York, York, England, United Kingdom
| | - Jian-Ping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - R Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, York, England, United Kingdom
| | - William Castro-Borges
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brasil
| |
Collapse
|
38
|
Melkus MW, Le L, Siddiqui AJ, Molehin AJ, Zhang W, Lazarus S, Siddiqui AA. Elucidation of Cellular Responses in Non-human Primates With Chronic Schistosomiasis Followed by Praziquantel Treatment. Front Cell Infect Microbiol 2020; 10:57. [PMID: 32154190 PMCID: PMC7050631 DOI: 10.3389/fcimb.2020.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
For decades, mass drug treatment with praziquantel (PZQ) has been utilized to treat schistosomiasis, yet reinfection and the risk of drug resistance are among the various factors precluding successful elimination of schistosomiasis. Tractable models that replicate "real world" field conditions are crucial to effectively evaluate putative schistosomiasis vaccines. Herein, we describe the cellular immune responses and cytokine expression profiles under field conditions that include prior infection with schistosomes followed by treatment with PZQ. Baboons were exposed to Schistosoma mansoni cercariae through trickle infection over 5 weeks, allowed for chronic disease to develop, and then treated with PZQ. Peripheral blood mononuclear cells (PBMCs) were monitored for cellular immune response(s) at each disease stage and PZQ therapy. After initial infection and during chronic disease, there was an increase in non-classical monocytes, NK and NKT cells while the CD4:CD8 T cell ratio inverted from a 2:1 to 1:2.5. The cytokine expressions of PBMCs after trickle infections were polarized more toward a Th2 response with a gradual increase in Th1 cytokine expression at chronic disease stage. Following PZQ treatment, with the exception of an increase in B cells, immune cell populations reverted back toward naïve levels; however, expression of almost all Th1, Th2, and Th17 cytokines was significantly increased. This preliminary study is the first to follow the cellular immune response and cytokine expression profiles in a non-human primate model simulating field conditions of schistosomiasis and PZQ therapy, providing a promising reference in predicting the immune response to future vaccines for schistosomiasis.
Collapse
Affiliation(s)
- Michael W Melkus
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Loc Le
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Arif J Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Biology, University of Hail, Hail, Saudi Arabia
| | - Adebayo J Molehin
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Samra Lazarus
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
39
|
Molehin AJ. Schistosomiasis vaccine development: update on human clinical trials. J Biomed Sci 2020; 27:28. [PMID: 31969170 PMCID: PMC6977295 DOI: 10.1186/s12929-020-0621-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/16/2020] [Indexed: 01/13/2023] Open
Abstract
Schistosomiasis causes significant levels of morbidity and mortality in many geographical regions of the world. The disease is caused by infections with parasitic blood flukes known as schistosomes. The control of schistosomiasis over the last several decades has been centered on the mass drug administration (MDA) of praziquantel (PZQ), which is the only drug currently available for treatment. Despite the concerted efforts of MDA programs, the prevalence and transmission of schistosomiasis has remained largely unchecked due to the fact that PZQ is ineffective against juvenile schistosomes, does not prevent re-infection and the emergence of PZQ-resistant parasites. In addition, other measures such as the water, sanitation and hygiene programs and snail intermediate hosts control have had little to no impact. These drawbacks indicate that the current control strategies are severely inadequate at interrupting transmission and therefore, implementation of other control strategies are required. Ideally, an efficient vaccine is what is needed for long term protection thereby eliminating the current efforts of repeated mass drug administration. However, the general consensus in the field is that the integration of a viable vaccine with MDA and other control measures offer the best chance of achieving the goal of schistosomiasis elimination. This review focuses on the present status of schistosomiasis vaccine candidates in different phases of human clinical trials and provide some insight into future vaccine discovery and design.
Collapse
Affiliation(s)
- Adebayo J Molehin
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA. .,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
| |
Collapse
|
40
|
Schistosomiasis and hookworm infection in humans: Disease burden, pathobiology and anthelmintic vaccines. Parasitol Int 2020; 75:102051. [PMID: 31911156 DOI: 10.1016/j.parint.2020.102051] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 11/01/2019] [Accepted: 01/01/2020] [Indexed: 12/12/2022]
Abstract
Helminth diseases are the ancient scourges of humans and their damages are 'silent and insidious'. Of the helminth infections, schistosomiasis and hookworm infection have a great impact. This review covers information regarding vaccine candidates against schistosomiasis and hookworms that reached at least up to the phase-1 trial and literatures regarding other vaccine candidates have been excluded. For clinical manifestations, all available literatures were included, and for epidemiology and global burden of the diseases (GBD), literatures only within 2000-2019 were included. Literatures were searched surfing various databases including PubMED, Google Scholar, and Science Direct and overall over 150 literatures were identified. Globally ~250 million people are suffering from schistosomiasis, resulting 1430 thousand DALY (disability adjusted life year) per year. On the other hand, about 1.3 billion people are infected with hookworm (HW), and according to WHO, ~878 million school-age children (SAC) are at risk. HW is estimated to cause 65,000 deaths annually, accounts for 845 thousand DALYs as well as to cause 6-35.3% loss in productivity. Despite tremendous efforts, very few anthelmintic vaccine candidates such as Na-GST-1, Na-APR-1 and Na-ASP-2 against HW, and Sm28GST/Sh28GST, Sm-p80, Sm14 and Sm-TSP-1/SmTSP-2 against schistosomiasis reached up to the clinical trials. More efforts are needed to achieve the WHO targets taken against the maladies.
Collapse
|
41
|
Crosnier C, Brandt C, Rinaldi G, McCarthy C, Barker C, Clare S, Berriman M, Wright GJ. Systematic screening of 96 Schistosoma mansoni cell-surface and secreted antigens does not identify any strongly protective vaccine candidates in a mouse model of infection. Wellcome Open Res 2019; 4:159. [PMID: 31728414 PMCID: PMC6833992 DOI: 10.12688/wellcomeopenres.15487.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Schistosomiasis is a major parasitic disease affecting people living in tropical and sup-tropical areas. Transmission of the parasite has been reported in 78 countries, causing significant morbidity and around 200,000 deaths per year in endemic regions. The disease is currently managed by the mass-administration of praziquantel to populations at risk of infection; however, the reliance on a single drug raises the prospect of parasite resistance to the only treatment widely available. The development of an effective vaccine would be a more powerful method of control, but none currently exists and the identification of new immunogens that can elicit protective immune responses therefore remains a priority. Because of the complex nature of the parasite life cycle, identification of new vaccine candidates has mostly relied on the use of animal models and on a limited set of recombinant proteins. Methods: In this study, we have established an infrastructure for testing a large number of vaccine candidates in mice and used it to screen 96 cell-surface and secreted recombinant proteins from Schistosoma mansoni. This approach, using standardised immunisation and percutaneous infection protocols, allowed us to compare an extensive set of antigens in a systematic manner. Results: Although some vaccine candidates were associated with a statistically significant reduction in the number of eggs in the initial screens, these observations could not be repeated in subsequent challenges and none of the proteins studied were associated with a strongly protective effect against infection. Conclusions: Although no antigens individually induced reproducible and strongly protective effects using our vaccination regime, we have established the experimental infrastructures to facilitate large-scale systematic subunit vaccine testing for schistosomiasis in a murine infection model.
Collapse
Affiliation(s)
| | | | | | | | - Colin Barker
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Simon Clare
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | | | | |
Collapse
|
42
|
Janse JJ, Langenberg MCC, Kos-Van Oosterhoud J, Ozir-Fazalalikhan A, Brienen EAT, Winkel BMF, Erkens MAA, van der Beek MT, van Lieshout L, Smits HH, Webster BL, Zandvliet ML, Verbeek R, Westra IM, Meij P, Visser LG, van Diepen A, Hokke CH, Yazdanbakhsh M, Roestenberg M. Establishing the Production of Male Schistosoma mansoni Cercariae for a Controlled Human Infection Model. J Infect Dis 2019; 218:1142-1146. [PMID: 29905805 DOI: 10.1093/infdis/jiy275] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/07/2018] [Indexed: 11/14/2022] Open
Abstract
To accelerate the development of novel vaccines for schistosomiasis, we set out to develop a human model for Schistosoma mansoni infection in healthy volunteers. During natural infections, female schistosomes produce eggs that give rise to morbidity. Therefore, we produced single-sex, male Schistosoma mansoni cercariae for human infection without egg production and associated pathology. Cercariae were produced in their intermediate snail hosts in accordance with the principles of good manufacturing practice (GMP). The application of GMP principles to an unconventional production process is a showcase for the controlled production of complex live challenge material in the European Union or under Food and Drug Administration guidance.
Collapse
Affiliation(s)
- Jacqueline J Janse
- Department of Parasitology, Leiden University Medical Center, the Netherlands
| | | | | | | | - Eric A T Brienen
- Department of Parasitology, Leiden University Medical Center, the Netherlands
| | - Béatrice M F Winkel
- Department of Parasitology, Leiden University Medical Center, the Netherlands
| | - Marianne A A Erkens
- Department of Medical Microbiology, Leiden University Medical Center, the Netherlands
| | - Martha T van der Beek
- Department of Medical Microbiology, Leiden University Medical Center, the Netherlands
| | | | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, the Netherlands
| | - Bonnie L Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, London, United Kingdom
| | - Maarten L Zandvliet
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, the Netherlands
| | - Richard Verbeek
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, the Netherlands
| | - Inge M Westra
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, the Netherlands
| | - Pauline Meij
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, the Netherlands
| | - Leo G Visser
- Department of Infectious Diseases, Leiden University Medical Center, the Netherlands
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, the Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, the Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, the Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, the Netherlands.,Department of Infectious Diseases, Leiden University Medical Center, the Netherlands
| |
Collapse
|
43
|
Abstract
AbstractThere are many tropical parasitic infections that are still present public health problem in tropical medicine. Of interest, some diseases are proved for the relationship with carcinogenesis. Many cancers are proved for the etiopathogenesis due to parasitic infections. The well-known tropical parasitic infections that can induce carcinogenesis are opisthorchiasis, clonorchiasis, and schistosomiasis. To prevent parasitic infection related cancer is an important consideration in clinical oncology. The standard practice is the prevention of the infection, but the hope is the development of the new vaccines for cancer prevention. Here, the authors briefly review on the current status on the cancer vaccines against the three important tropical diseases that can result in cancers, opisthorchiasis, clonorchiasis, and schistosomiasis.
Collapse
Affiliation(s)
- Yasr Sora
- KMT Primary Care Center, Bangkok, Thailand
| | - Viroj Wiwanitkit
- Department of Tropical Medicine, Hainan Medical University, Haikou, China
| |
Collapse
|
44
|
Immunization with adult Schistosoma mansoni tegument, treated with sub-curative praziquantel, partially protects mice against the infection. J Helminthol 2019; 94:e26. [PMID: 30702051 DOI: 10.1017/s0022149x18001207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The tegument of schistosomes is a source of many potential anti-Schistosoma vaccine molecules. This work aimed to assess the protective effects of the adult Schistosoma mansoni tegument treated (TT) with sub-curative praziquantel (PZQ), whether in vivo (in vivo TT) or in vitro (in vitro TT), in murine schistosomiasis. In vitro TT and in vivo TT showed great similarity, and they differed from untreated tegument antigen (Teg) in terms of quantity and quality of protein bands on SDS-PAGE. Two immunization trials were performed, each with 50 mice, divided randomly into five groups of 10 mice each: (1) uninfected control mice (UC), (2) infected mice given phosphate buffer saline + adjuvant (PBS + adjuvant), (3) infected, Teg vaccinated, (4) infected, in vivo TT vaccinated, and (5) infected, in vitro TT vaccinated. All the immunizations with antigens induced mixed Th1/Th2 immune responses, as indicated by significantly high (P < 0.001) specific IgG2a and IgG1 levels, with Th1 predominating, as shown by a diminished IgG1/IgG2a ratio, as well as a high serum concentration of IFN-γ, an absence of IL-4 and increased IL-10. In vitro TT gave the most pronounced response. With respect to reduction of total worm burden, relative to PBS + adjuvant mice, in vitro TT achieved the highest significant (P < 0.001) results, followed by in vivo TT and Teg (51.8-57.04%, 44.6-50.2% and 35.2-39.3%, respectively). In scanning electron microscopy studies, all the tested antigens caused tegumental changes in adult worms, with the worst occurring with in vitro TT, such as retracted ventral sucker, an effect on the gynaecophoric canal, and changes to tubercles. In conclusion, in vitro TT, which is cheap to prepare, could be a potential vaccine against S. mansoni.
Collapse
|
45
|
Weber CJ, Hargan-Calvopiña J, Graef KM, Manner CK, Dent J. WIPO Re:Search-A Platform for Product-Centered Cross-Sector Partnerships for the Elimination of Schistosomiasis. Trop Med Infect Dis 2019; 4:E11. [PMID: 30634429 PMCID: PMC6473617 DOI: 10.3390/tropicalmed4010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/26/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Schistosomiasis is an acute and chronic disease that affects over 200 million people worldwide, and with over 700 million people estimated to be at risk of contracting this disease, it is a pressing issue in global health. However, research and development (R&D) to develop new approaches to preventing, diagnosing, and treating schistosomiasis has been relatively limited. Praziquantel, a drug developed in the 1970s, is the only agent used in schistosomiasis mass drug administration (MDA) campaigns, indicating a critical need for a diversified therapeutic pipeline. Further, gaps in the vaccine and diagnostic pipelines demonstrate a need for early-stage innovation in all areas of schistosomiasis product R&D. As a platform for public-private partnerships (PPPs), the WIPO Re:Search consortium engages the private sector in early-stage R&D for neglected diseases by forging mutually beneficial collaborations and facilitating the sharing of intellectual property (IP) assets between the for-profit and academic/non-profit sectors. The Consortium connects people, resources, and ideas to fill gaps in neglected disease product development pipelines by leveraging the strengths of these two sectors. Using WIPO Re:Search as an example, this article highlights the opportunities for the PPP model to play a key role in the elimination of schistosomiasis.
Collapse
Affiliation(s)
- Callie J Weber
- BIO Ventures for Global Health, 2101 Fourth Avenue, Suite 1950, Seattle, WA 98121, USA.
| | | | - Katy M Graef
- BIO Ventures for Global Health, 2101 Fourth Avenue, Suite 1950, Seattle, WA 98121, USA.
| | - Cathyryne K Manner
- BIO Ventures for Global Health, 2101 Fourth Avenue, Suite 1950, Seattle, WA 98121, USA.
| | - Jennifer Dent
- BIO Ventures for Global Health, 2101 Fourth Avenue, Suite 1950, Seattle, WA 98121, USA.
| |
Collapse
|
46
|
Hotez PJ, Bottazzi ME, Bethony J, Diemert DD. Advancing the Development of a Human Schistosomiasis Vaccine. Trends Parasitol 2018; 35:104-108. [PMID: 30455112 DOI: 10.1016/j.pt.2018.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 01/24/2023]
Abstract
Three vaccines against human schistosomiasis are in different phases of clinical development, and a fourth is expected to enter the clinic soon. Successful introduction of an efficacious preventive human schistosomiasis vaccine will require integration into existing health systems such as those that deliver childhood vaccines or mass drug administration programs.
Collapse
Affiliation(s)
- Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Biology, Baylor University, Waco, TX, USA; James A. Baker III Institute of Public Policy, Rice University, Houston, TX, USA.
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Biology, Baylor University, Waco, TX, USA
| | - Jeffrey Bethony
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - David D Diemert
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| |
Collapse
|
47
|
Zhang W, Molehin AJ, Rojo JU, Sudduth J, Ganapathy PK, Kim E, Siddiqui AJ, Freeborn J, Sennoune SR, May J, Lazarus S, Nguyen C, Redman WK, Ahmad G, Torben W, Karmakar S, Le L, Kottapalli KR, Kottapalli P, Wolf RF, Papin JF, Carey D, Gray SA, Bergthold JD, Damian RT, Mayer BT, Marks F, Reed SG, Carter D, Siddiqui AA. Sm-p80-based schistosomiasis vaccine: double-blind preclinical trial in baboons demonstrates comprehensive prophylactic and parasite transmission-blocking efficacy. Ann N Y Acad Sci 2018; 1425:38-51. [PMID: 30133707 PMCID: PMC6110104 DOI: 10.1111/nyas.13942] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023]
Abstract
Schistosomiasis is of public health importance to an estimated one billion people in 79 countries. A vaccine is urgently needed. Here, we report the results of four independent, double-blind studies of an Sm-p80-based vaccine in baboons. The vaccine exhibited potent prophylactic efficacy against transmission of Schistosoma mansoni infection and was associated with significantly less egg-induced pathology, compared with unvaccinated control animals. Specifically, the vaccine resulted in a 93.45% reduction of pathology-producing female worms and significantly resolved the major clinical manifestations of hepatic/intestinal schistosomiasis by reducing the tissue egg-load by 89.95%. A 35-fold decrease in fecal egg excretion in vaccinated animals, combined with an 81.51% reduction in hatching of eggs into the snail-infective stage (miracidia), demonstrates the parasite transmission-blocking potential of the vaccine. Substantially higher Sm-p80 expression in female worms and Sm-p80-specific antibodies in vaccinated baboons appear to play an important role in vaccine-mediated protection. Preliminary analyses of RNA sequencing revealed distinct molecular signatures of vaccine-induced effects in baboon immune effector cells. This study provides comprehensive evidence for the effectiveness of an Sm-p80-based vaccine for schistosomiasis.
Collapse
Affiliation(s)
- Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Adebayo J. Molehin
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Juan U. Rojo
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH
| | - Justin Sudduth
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Pramodh K. Ganapathy
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Eunjee Kim
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Arif J. Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Jasmin Freeborn
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Souad R. Sennoune
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Jordan May
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Samra Lazarus
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Catherine Nguyen
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Whitni K. Redman
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Gul Ahmad
- Department of Natural Sciences, Peru State College, Peru, NE
| | | | - Souvik Karmakar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Loc Le
- Biomedical Research Institute, Rockville, MD
| | | | | | - Roman F. Wolf
- Oklahoma City VA Health Care System, Oklahoma City, OK
| | - James F. Papin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - David Carey
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | | | - Raymond T. Damian
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - Bryan T. Mayer
- Vaccine Immunology Statistical Center, Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Florian Marks
- International Vaccine Institute SNU Research Park, Seoul, South Korea
- The Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Darrick Carter
- PAI Life Sciences, Seattle, Washington, WA
- Infectious Disease Research Institute, Seattle, WA
| | - Afzal A. Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
48
|
Zhang W, Ahmad G, Molehin AJ, Torben W, Le L, Kim E, Lazarus S, Siddiqui AJ, Carter D, Siddiqui AA. Schistosoma mansoni antigen Sm-p80: prophylactic efficacy using TLR4 agonist vaccine adjuvant glucopyranosyl lipid A-Alum in murine and non-human primate models. J Investig Med 2018; 66:1124-1132. [PMID: 29997146 PMCID: PMC6288690 DOI: 10.1136/jim-2018-000786] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2018] [Indexed: 01/06/2023]
Abstract
Sm-p80, the large subunit of Schistosoma mansoni calpain, is a leading candidate for a schistosomiasis vaccine. The prophylactic and antifecundity efficacy of Sm-p80 has been tested in three animal models (mouse, hamster and baboon) using a multitude of vaccine formulations and approaches. In our continual effort to enhance the vaccine efficacy, in this study, we have utilized the adjuvant, synthetic hexa-acylated lipid A derivative, glucopyranosyl lipid A (GLA) formulated in aluminum (GLA-Alum) with recombinant Sm-p80. The rSm-p80+GLA-Alum immunization regimen provided 33.33%–53.13% reduction in worm burden in the mouse model and 38% worm burden reduction in vaccinated baboons. Robust Sm-p80-specific immunoglobulin (Ig)G, IgG1, IgG2a and IgM responses were observed in all immunized animals. The rSm-p80+GLA-Alum coadministration induced a mix of T-helper (Th) cells (Th1, Th2 and Th17) responses as determined via the release of interleukin (IL)-2, IL-4, IL-18, IL-21, IL-22 and interferon-γ.
Collapse
Affiliation(s)
- Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Gul Ahmad
- Department of Natural Sciences, School of Arts & Sciences, Peru State College, Peru, Nebraska, USA
| | - Adebayo J Molehin
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Workineh Torben
- Comparative Pathology/Immunology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Loc Le
- Bladder Immunology Group, Biomedical Research Institute, Rockville, Maryland, USA
| | - Eunjee Kim
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Samra Lazarus
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Arif J Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | | | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
49
|
Siddiqui AJ, Molehin AJ, Zhang W, Ganapathy PK, Kim E, Rojo JU, Redman WK, Sennoune SR, Sudduth J, Freeborn J, Hunter D, Kottapalli KR, Kottapalli P, Wettashinghe R, van Dam GJ, Corstjens PLAM, Papin JF, Carey D, Torben W, Ahmad G, Siddiqui AA. Sm-p80-based vaccine trial in baboons: efficacy when mimicking natural conditions of chronic disease, praziquantel therapy, immunization, and Schistosoma mansoni re-encounter. Ann N Y Acad Sci 2018; 1425:19-37. [PMID: 29888790 DOI: 10.1111/nyas.13866] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 11/28/2022]
Abstract
Sm-p80-based vaccine efficacy for Schistosoma mansoni was evaluated in a baboon model of infection and disease. The study was designed to replicate a human vaccine implementation scenario for endemic regions in which vaccine would be administered following drug treatment of infected individuals. In our study, the Sm-p80-based vaccine reduced principal pathology producing hepatic egg burdens by 38.0% and egg load in small and large intestines by 72.2% and 49.4%, respectively, in baboons. Notably, hatching rates of eggs recovered from liver and small and large intestine of vaccinated animals were significantly reduced, by 60.4%, 48.6%, and 82.3%, respectively. Observed reduction in egg maturation/hatching rates was supported by immunofluorescence and confocal microscopy showing unique differences in Sm-p80 expression in worms of both sexes and matured eggs. Vaccinated baboons had a 64.5% reduction in urine schistosome circulating anodic antigen, a parameter that reflects worm numbers/health status in infected hosts. Preliminary analyses of RNA sequencing revealed unique genes and canonical pathways associated with establishment of chronic disease, praziquantel-mediated parasite killing, and Sm-p80-mediated protection in vaccinated baboons. Overall, our study demonstrated efficacy of the Sm-p80 vaccine and provides insight into some of the epistatic interactions associated with protection.
Collapse
Affiliation(s)
- Arif J Siddiqui
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Adebayo J Molehin
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Weidong Zhang
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Pramodh K Ganapathy
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Eunjee Kim
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Juan U Rojo
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Whitni K Redman
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Souad R Sennoune
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Justin Sudduth
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jasmin Freeborn
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Derick Hunter
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | | | - Pratibha Kottapalli
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas
| | | | - Govert J van Dam
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul L A M Corstjens
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - James F Papin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - David Carey
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Workineh Torben
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana
| | - Gul Ahmad
- Department of Biology, School of Arts & Sciences, Peru State College, Peru, Nebraska
| | - Afzal A Siddiqui
- School of Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
50
|
Schistosoma egg-induced liver pathology resolution by Sm-p80-based schistosomiasis vaccine in baboons. Pathology 2018; 50:442-449. [PMID: 29739616 DOI: 10.1016/j.pathol.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 01/20/2023]
Abstract
Schistosomiasis remains a serious chronic debilitating hepato-intestinal disease. Current control measures based on mass drug administration are inadequate due to sustained re-infection rates, low treatment coverage and emergence of drug resistance. Hence, there is an urgent need for a schistosomiasis vaccine for disease control. In this study, we assessed the anti-pathology efficacy of Schistosoma mansoni large subunit of calpain (Sm-p80)-based vaccine against schistosomiasis caused by infections with Schistosoma mansoni in baboons. We also evaluated the disease transmission-blocking potential of Sm-p80 vaccine. Immunisations with Sm-p80-based vaccine resulted in significant reduction of hepatic egg load in vaccinated baboons (67.7% reduction, p = 0.0032) when compared to the control animals, indicative of reduction in pathology. There was also a significant reduction in sizes of egg-induced granulomas in baboons immunised with Sm-p80 vaccine compared to their control counterparts. Egg hatching rate analysis revealed an overall 85.6% reduction (p = 0.0018) in vaccinated animals compared to the controls, highlighting the potential role of Sm-p80 vaccine in disease transmission. The findings on anti-pathology efficacy and transmission-blocking potential presented in this study have formed the basis for a large-scale double-blinded baboon experiment that is currently underway.
Collapse
|