1
|
Reynolds M, Windsor F, Perkins S, Cable J. Parasites alter interaction patterns in fish social networks. Proc Biol Sci 2025; 292:20250793. [PMID: 40425167 PMCID: PMC12115853 DOI: 10.1098/rspb.2025.0793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Social networks influence the spread of parasites through populations. Although we know how parasites are transmitted as a product of social interactions, we have a limited understanding of how social networks are affected by parasites over time. Host-parasite interactions and the networks they form, are typically examined as static networks, and while topological descriptions at a specific time point are useful, both behaviour and the infection process are dynamic. By monitoring replicate populations of Trinidadian guppies (Poecilia reticulata) daily before and during infection with the ectoparasite Gyrodactylus turnbulli, we show how parasitism drives social network dynamics. Specifically, infected individuals increased their connections in networks affected by parasitism. In contrast, uninfected control shoals showed no change in network metrics. The structure of subnetworks (motifs) and networks, however, did not change in response to infection status. These findings provide further evidence of reciprocal host behaviour-parasite feedback mechanisms, and highlight that infected fish alter their interactions in order to 'off-load' their parasites. Understanding how these reciprocal interactions affect the structure and function of natural systems, as well as understanding how these interactions may alter with future environmental change, are key areas of future research.
Collapse
Affiliation(s)
| | - Fredric Windsor
- School of Biosciences, Cardiff University, CardiffCF10 3AX, UK
| | - Sarah Perkins
- School of Biosciences, Cardiff University, CardiffCF10 3AX, UK
| | - Joanne Cable
- School of Biosciences, Cardiff University, CardiffCF10 3AX, UK
| |
Collapse
|
2
|
Llopis-Belenguer C, Blasco-Costa I. Tangled communities: links between predation and parasitism through trophically transmitted digeneans in aquatic communities. Int J Parasitol 2025:S0020-7519(25)00069-4. [PMID: 40209890 DOI: 10.1016/j.ijpara.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/12/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Many trophically transmitted digeneans (Platyhelminthes: Trematoda) benefit from prey-predator interactions to complete the last step of their life cycles. These parasites use prey as second intermediate hosts and predators as definitive hosts. We expect a relationship between predation and life-history and community aspects of trophically transmitted digeneans. We hypothesise at species level: (1) host ranges of metacercaria and adult digeneans are positively related; (2) second-intermediate-host range of a digenean relies on prey breadth of its definitive hosts. At community level: (3) digenean species that share second intermediate hosts share definitive hosts; (4) modularity (i.e., community composed of subsets of frequently interacting species) and module affiliation (i.e., tendency of species to share interacting partners across different ecological networks) is high between predator-prey, second intermediate host-metacercaria and definitive host-adult parasite networks. We used data from metacercaria and adult digeneans, their hosts and predation among hosts from nine aquatic locations or replicates. We tested hypotheses (1-3) with richness and Rao diversity dissimilarities (Spearman and Mantel correlations, respectively). For hypothesis (4), we combined the three types of networks to evaluate the multilayer network modularity and module affiliation of the species that participate in different ecological process (predation, metacercaria and/ or adult infection). We found: (1) significant positive correlations between host richness of metacercariae and adults in seven out of nine communities (Spearman correlations p < 0.05). (2) The relationship between the second-intermediate-host range of metacercariae and the diet breadth of their definitive hosts varied between communities and depended on the specialisation degree of the digeneans. (3) Metacercariae sharing second intermediate hosts also shared definitive hosts as adults in seven communities (Mantel correlations p ≤ 0.05). (4) Communities were modular. Module affiliation varied from high to intermediate. Trophic ecology of definitive hosts provides a mechanistic understanding for the second-intermediate-host range and transmission pathways of trophically transmitted parasites.
Collapse
Affiliation(s)
- Cristina Llopis-Belenguer
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, 46071 Valencia, Spain.
| | - Isabel Blasco-Costa
- Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Krasnov BR, Khokhlova IS, Grabovsky VI. Evolutionary history as the main driver of cohesive groups' hierarchical organization in flea-mammal interaction networks. Int J Parasitol 2025:S0020-7519(25)00050-5. [PMID: 40090541 DOI: 10.1016/j.ijpara.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/27/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Cohesive species groups (components, sectors, modules, and subgraphs) represent parts of an ecological network with a substantially higher density of interactions than the surrounding parts. We investigated cohesive groups in 108 flea-mammal networks from all over the world and tested whether these groups are hierarchically organized, that is, whether groups at the higher level are composed of groups at the lower level, thus representing a network structure. We measured congruence between groups, using congruence coefficients, and asked whether the extent of hierarchical organization differs between biogeographic realms, different biomes, and different climatic zones. We also tested whether coefficients of congruence between cohesive groups are affected by environmental variables (amount of green vegetation, precipitation, and air temperature). We found that (i) cohesive groups of species in these networks are hierarchically organized and (ii) the strength of this organization differs significantly between networks from different biogeographic realms but is not generally affected by surrounding environmental conditions such as vegetation type and climate. In other words, the structure of flea-mammal networks, in terms of the hierarchical organization of cohesive groups, seems to be determined, first and foremost, by the evolutionary history of flea-mammal interactions, that is, by processes and events of the past. We conclude that the impact of evolutionary history on the network structure appeared to be stronger than that of the contemporary environment.
Collapse
Affiliation(s)
- Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel.
| | - Irina S Khokhlova
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel
| | - Vasily I Grabovsky
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel
| |
Collapse
|
4
|
Krasnov BR, Shenbrot GI, Khokhlova IS, López Berrizbeitia MF, Matthee S, Sanchez JP, VAN DER Mescht L. Environment and traits affect parasite and host species positions but not roles in flea-mammal networks. Integr Zool 2024; 19:1163-1180. [PMID: 38263720 DOI: 10.1111/1749-4877.12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
We studied spatial variation in the effects of environment and network size on species positions and roles in multiple flea-mammal networks from four biogeographic realms. We asked whether species positions (measured as species strength [SS], the degree of interaction specialization [d'], and the eigenvector centrality [C]) or the roles of fleas and their hosts in the interaction networks: (a) are repeatable/conserved within a flea or a host species; (b) vary in dependence on environmental variables and/or network size; and (c) the effects of environment and network size on species positions or roles in the networks depend on species traits. The repeatability analysis of species position indices for 441 flea and 429 host species, occurring in at least two networks, demonstrated that the repeatability of SS, d', and C within a species was significant, although not especially high, suggesting that the indices' values were affected by local factors. The majority of flea and host species in the majority of networks demonstrated a peripheral role. A value of at least one index of species position was significantly affected by environmental variables or network size in 41 and 36, respectively, of the 52 flea and 52 host species that occurred in multiple networks. In both fleas and hosts, the occurrence of the significant effect of environment or network size on at least one index of species position, but not on a species' role in a network, was associated with some species traits.
Collapse
Affiliation(s)
- Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Georgy I Shenbrot
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Irina S Khokhlova
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - M Fernanda López Berrizbeitia
- Programa de Conservación de los Murciélagos de Argentina (PCMA) and Instituto de Investigaciones de Biodiversidad Argentina (PIDBA)-CCT CONICET Noa Sur (Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Naturales e IML, UNT, and Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
| | - Sonja Matthee
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, South Africa
| | - Juliana P Sanchez
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires-CITNOBA (CONICET-UNNOBA), Pergamino, Argentina
| | - Luther VAN DER Mescht
- Clinvet International (Pty) Ltd, Bloemfontein, South Africa
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
5
|
Martins PM, Poulin R. Universal versus taxon-specific drivers of helminth prevalence and intensity of infection. Proc Biol Sci 2024; 291:20241673. [PMID: 39406343 PMCID: PMC11479760 DOI: 10.1098/rspb.2024.1673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/01/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Two key epidemiological parameters, prevalence and mean intensity of infection, together capture the abundance of macroparasite populations, the strength of density-dependent effects they experience, their potential impact on host population dynamics and the selective pressures they exert on their hosts. Yet, the drivers of the extensive variation observed in prevalence and mean intensity of infection, even among related parasite taxa infecting related hosts, remain mostly unknown. We performed phylogenetically grounded Bayesian modelling across hundreds of amphibian populations to test the effects of various predictors of prevalence and intensity of infection by six families of helminth parasites. We focused on the potential effects of key host traits and environmental factors pertinent to focal host populations, i.e. the local diversity of the amphibian community and local climatic variables. Our analyses revealed several important determinants of prevalence or intensity of infection in various parasite families, but none applying to all families. Our study uncovered no universal driver of parasite infection levels, even among parasite taxa from the same phylum, or with similar life cycles and transmission modes. Although local variables not considered here may have effects extending across taxa, our findings suggest the need for a taxon-specific approach in any attempt to predict disease dynamics and impacts in the face of environmental and climatic changes.
Collapse
Affiliation(s)
- Paulo Mateus Martins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN46556, USA
| | - Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
6
|
Mohapatra SK, Swain A, Ray D, Behera RK, Tripathy B, Seth JK, Mohapatra A. Niche partitioning and host specialisation in fish-parasitising isopods: Trait-dependent patterns from three ecosystems on the east coast of India. Ecol Evol 2024; 14:e70298. [PMID: 39267690 PMCID: PMC11390490 DOI: 10.1002/ece3.70298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Due to their large size and obligate nature, Cymothoid isopods inflict a high degree of tissue damage to fish. Still, they are understudied at an ecosystem level despite their global presence and ecological role. In this work, we collected fish host-isopod parasite data, along with their life history and ecological traits, from the northern part of the east coast of India and investigated patterns in host specialisation and preference of isopod parasites using a trait-based network perspective. We observed that the region of attachment of the parasite (buccal cavity, branchial cavity, and skin) and host fish ecology (schooling behaviour and habitat characteristics) influenced host specialisation and preference. We found that branchial cavity-attaching parasites preferred schooling, pelagic fishes, whereas buccal cavity-attaching parasites preferred mostly non-schooling, demersal fishes. Skin-attaching parasites were found to be generalists and had no preference based on our examined host traits.
Collapse
Affiliation(s)
- Sandeep Kumar Mohapatra
- Estuarine Biology Regional Center, Zoological Survey of India Ganjam India
- Post Graduate Department of Zoology Berhampur University Berhampur India
| | - Anshuman Swain
- Department of Biology University of Maryland College Park Maryland USA
- Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts USA
- Museum of Comparative Zoology Harvard University Cambridge Massachusetts USA
| | - Dipanjan Ray
- Department of Zoology Bajkul Milani Mahavidyalaya Purba Medinipur India
| | | | | | - Jaya Kishor Seth
- Post Graduate Department of Zoology Berhampur University Berhampur India
| | - Anil Mohapatra
- Estuarine Biology Regional Center, Zoological Survey of India Ganjam India
| |
Collapse
|
7
|
Anurogo D, Liu CL, Chang YC, Chang YH, Qiu JT. Discovery of differentially expressed proteins for CAR-T therapy of ovarian cancers with a bioinformatics analysis. Aging (Albany NY) 2024; 16:11409-11433. [PMID: 39033780 PMCID: PMC11315388 DOI: 10.18632/aging.206024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 07/23/2024]
Abstract
Target antigens are crucial for developing chimeric antigen receptor (CAR)-T cells, but their application to ovarian cancers is limited. This study aimed to identify potential genes as CAR-T-cell antigen candidates for ovarian cancers. A differential gene expression analysis was performed on ovarian cancer samples from four datasets obtained from the GEO datasets. Functional annotation, pathway analysis, protein localization, and gene expression analysis were conducted using various datasets and tools. An oncogenicity analysis and network analysis were also performed. In total, 153 differentially expressed genes were identified in ovarian cancer samples, with 60 differentially expressed genes expressing plasma membrane proteins suitable for CAR-T-cell antigens. Among them, 21 plasma membrane proteins were predicted to be oncogenes in ovarian cancers, with nine proteins playing crucial roles in the network. Key genes identified in the oncogenic pathways of ovarian cancers included MUC1, CXCR4, EPCAM, RACGAP1, UBE2C, PRAME, SORT1, JUP, and CLDN3, suggesting them as recommended antigens for CAR-T-cell therapy for ovarian cancers. This study sheds light on potential targets for immunotherapy in ovarian cancers.
Collapse
Affiliation(s)
- Dito Anurogo
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar 90221, Indonesia
| | - Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chu Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsiang Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - J. Timothy Qiu
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
8
|
Rolbiecki L, Izdebska JN. Modern Strategies for Diagnosis and Treatment of Parasitic Diseases. Int J Mol Sci 2024; 25:6373. [PMID: 38928081 PMCID: PMC11204150 DOI: 10.3390/ijms25126373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Parasites are very widely distributed in the environment and form complex relationships with their hosts, forming host-parasite systems [...].
Collapse
Affiliation(s)
- Leszek Rolbiecki
- Department of Invertebrate Zoology and Parasitology, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland;
| | | |
Collapse
|
9
|
Brennan RN, Paulson SL, Escobar LE. Estimating pathogen-spillover risk using host-ectoparasite interactions. Ecol Evol 2024; 14:e11509. [PMID: 38895575 PMCID: PMC11184285 DOI: 10.1002/ece3.11509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Pathogen spillover corresponds to the transmission of a pathogen or parasite from an original host species to a novel host species, preluding disease emergence. Understanding the interacting factors that lead to pathogen transmission in a zoonotic cycle could help identify novel hosts of pathogens and the patterns that lead to disease emergence. We hypothesize that ecological and biogeographic factors drive host encounters, infection susceptibility, and cross-species spillover transmission. Using a rodent-ectoparasite system in the Neotropics, with shared ectoparasite associations as a proxy for ecological interaction between rodent species, we assessed relationships between rodents using geographic range, phylogenetic relatedness, and ectoparasite associations to determine the roles of generalist and specialist hosts in the transmission cycle of hantavirus. A total of 50 rodent species were ranked on their centrality in a network model based on ectoparasites sharing. Geographic proximity and phylogenetic relatedness were predictors for rodents to share ectoparasite species and were associated with shorter network path distance between rodents through shared ectoparasites. The rodent-ectoparasite network model successfully predicted independent data of seven known hantavirus hosts. The model predicted five novel rodent species as potential, unrecognized hantavirus hosts in South America. Findings suggest that ectoparasite data, geographic range, and phylogenetic relatedness of wildlife species could help predict novel hosts susceptible to infection and possible transmission of zoonotic pathogens. Hantavirus is a high-consequence zoonotic pathogen with documented animal-to-animal, animal-to-human, and human-to-human transmission. Predictions of new rodent hosts can guide active epidemiological surveillance in specific areas and wildlife species to mitigate hantavirus spillover transmission risk from rodents to humans. This study supports the idea that ectoparasite relationships among rodents are a proxy of host species interactions and can inform transmission cycles of diverse pathogens circulating in wildlife disease systems, including wildlife viruses with epidemic potential, such as hantavirus.
Collapse
Affiliation(s)
| | | | - Luis E. Escobar
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVirginiaUSA
- Center for Emerging, Zoonotic and Arthropod‐Borne PathogensVirginia TechBlacksburgVirginiaUSA
- Global Change CenterVirginia TechBlacksburgVirginiaUSA
- The Kellogg Center for Philosophy, Politics, and EconomicsVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
10
|
Orlandi Neto A, Franceschini L, Dias JHP, Ribeiro CDS, Ramos IP. Endoparasitic helminth fauna and diet of Geophagus sveni (Pisces) in Upper Paraná River basin. Parasitol Res 2024; 123:208. [PMID: 38724709 DOI: 10.1007/s00436-024-08222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/24/2024] [Indexed: 06/04/2024]
Abstract
In freshwater ecosystems, parasite infection patterns are influenced by factors including spatial-temporal variations, host diet, and habitat. Fish often change diets, affecting their parasite communities. This study focused on non-native host fish Geophagus sveni, aiming to characterize diet and endoparasitic helminth fauna patterns in the invaded area, investigating spatial and seasonal possible differences of endoparasite infections and correlating with host diet, in São José dos Dourados River and Tietê River areas. The host fish were collected in these areas during the dry and rainy season using gillnets. The endoparasites were collected and preserved in alcohol and identified using taxonomic methods, and stomach contents were examined for diet analysis. Parasitism descriptors were calculated and evaluated spatially and seasonally by ANOVA and the Kruskal-Wallis tests. PERMANOVA assessed G. sveni diet differences, and RDA correlated the endohelminth abundance with the host diet. Two endoparasites were recorded: metacercariae of Austrodiplostomum compactum (Trematoda) and larvae and adults of Raphidascaris (Sprentascaris) lanfrediae (Nematoda). Spatial differences were observed for the mean abundance and prevalence of R. (S.) lanfrediae and A. compactum prevalence. Seasonal variations of parasitic descriptors occurred for the nematode in the Tietê River area. The detritus and aquatic insects were the most consumed items by G. sveni. Detritus consumption positively correlates with nematode abundance. The findings indicate that factors such as artificial channels and rainfall, which can influence resource availability, may affect the fish's diet and potentially influence the structure of its endoparasite community. The study emphasizes the importance of understanding trophic chain-transmitted parasites and calls for further research in Neotropical environments.
Collapse
Affiliation(s)
- Aymar Orlandi Neto
- Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil.
| | - Lidiane Franceschini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, Brazil
| | | | | | - Igor Paiva Ramos
- School of Engineering, São Paulo State University (UNESP), Ilha Solteira, Brazil
| |
Collapse
|
11
|
Brian JI, Aldridge DC. Host and parasite identity interact in scale-dependent fashion to determine parasite community structure. Oecologia 2024; 204:199-211. [PMID: 38206416 PMCID: PMC10830602 DOI: 10.1007/s00442-023-05499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 12/10/2023] [Indexed: 01/12/2024]
Abstract
Understanding the ecological assembly of parasite communities is critical to characterise how changing host and environmental landscapes will alter infection dynamics and outcomes. However, studies frequently assume that (a) closely related parasite species or those with identical life-history strategies are functionally equivalent, and (b) the same factors will drive infection dynamics for a single parasite across multiple host species, oversimplifying community assembly patterns. Here, we challenge these two assumptions using a naturally occurring host-parasite system, with the mussel Anodonta anatina infected by the digenean trematode Echinoparyphium recurvatum, and the snail Viviparus viviparus infected by both E. recurvatum and Echinostoma sp. By analysing the impact of temporal parasite dispersal, host species and size, and the impact of coinfection (moving from broader environmental factors to within-host dynamics), we show that neither assumption holds true, but at different ecological scales. The assumption that closely related parasites can be functionally grouped is challenged when considering dispersal to the host (i.e. larger scales), while the assumption that the same factors will drive infection dynamics for a single parasite across multiple host species is challenged when considering within-host interspecific competition (i.e. smaller scales). Our results demonstrate that host identity, parasite identity and ecological scale require simultaneous consideration in studies of parasite community composition and transmission.
Collapse
Affiliation(s)
- Joshua I Brian
- Aquatic Ecology Group, Department of Zoology, University of Cambridge, The David Attenborough Building, Cambridge, CB2 3QZ, UK.
- Department of Geography, Bush House North East, King's College London, London, WC2B 4BG, UK.
| | - David C Aldridge
- Aquatic Ecology Group, Department of Zoology, University of Cambridge, The David Attenborough Building, Cambridge, CB2 3QZ, UK
| |
Collapse
|
12
|
Bellekom B, Lewis OT, Hackett TD. Latitudinal and anthropogenic effects on the structuring of networks linking blood-feeding flies and their vertebrate hosts. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:675-682. [PMID: 37261902 PMCID: PMC10946476 DOI: 10.1111/mve.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/05/2023] [Indexed: 06/03/2023]
Abstract
Biting flies (Diptera) transmit pathogens that cause many important diseases in humans as well as domestic and wild animals. The networks of feeding interactions linking these insects to their hosts, and how they vary geographically and in response to human land-use, are currently poorly documented but are relevant to understanding cross-species disease transmission. We compiled a database of biting Diptera-host interactions from the literature to investigate how key interaction network metrics vary latitudinally and with human land-use. Interaction evenness and H2' (a measure of the degree of network specificity) did not vary significantly with latitude. Compared to near-natural habitats, interaction evenness was significantly lower in agricultural habitats, where networks were dominated by relatively few species pairs, but there was no evidence that the presence of humans and their domesticated animals within networks led to systematic shifts in network structure. We discuss the epidemiological relevance of these results and the implications for predicting and mitigating future spill-over events.
Collapse
Affiliation(s)
- Ben Bellekom
- Department of BiologyUniversity of OxfordOxfordUK
| | | | | |
Collapse
|
13
|
Wilk-da-Silva R, Prist PR, Medeiros-Sousa AR, Laporta GZ, Mucci LF, Marrelli MT. The role of forest fragmentation in yellow fever virus dispersal. Acta Trop 2023:106983. [PMID: 37419378 DOI: 10.1016/j.actatropica.2023.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
The intense process of deforestation in tropical forests poses serious challenges for the survival of biodiversity, as well as for the human species itself. This scenario is supported by the increase in the incidence of epidemics of zoonotic origin observed over the last few decades. In the specific case of sylvatic yellow fever (YF), it has already been shown that an increase in the transmission risk of the causative agent (yellow fever virus - YFV) is associated with areas with a high degree of forest fragmentation, which can facilitate the spread of the virus. In this study we tested the hypothesis that areas with more fragmented landscapes and a higher edge density (ED) but a high degree of connectivity between forest patches favor YFV spread. To this end, we used YF epizootics in non-human primates (NHPs) in the state of São Paulo to build direct networks, and used a multi-selection approach to analyze which landscape features could facilitate YFV spread. Our results showed that municipalities with the potential to spread the virus exhibited a higher amount of forest edge. Additionally, the models with greater empirical support showed a strong association between forest edge density and the risk of occurrence of epizootic diseases, as well as the need for a minimum threshold of native vegetation cover to restrict their transmission. These findings corroborate our hypothesis that more fragmented landscapes with a higher degree of connectivity favor the spread of YFV, while landscapes with fewer connections tend to act as dead zones for the circulation of the virus.
Collapse
Affiliation(s)
- Ramon Wilk-da-Silva
- Institute of Tropical Medicine, University of São Paulo, Av. Dr. Eneas Carvalho de Aguiar 470, São Paulo, SP, Brazil.
| | | | - Antônio Ralph Medeiros-Sousa
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo 715, São Paulo, SP, Brazil
| | - Gabriel Zorello Laporta
- Graduate Studies, Research and Innovation Center, FMABC University Center, ABC Foundation, Av. Laure Gomes, 2000, Santo André, SP, Brazil
| | - Luis Filipe Mucci
- Institute Pasteur, São Paulo State Department of Health, PA. Cal. Victorian 23, Taubaté, SP, Brazil
| | - Mauro Toledo Marrelli
- Institute of Tropical Medicine, University of São Paulo, Av. Dr. Eneas Carvalho de Aguiar 470, São Paulo, SP, Brazil; Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo 715, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Amit G, Bashan A. Top-down identification of keystone taxa in the microbiome. Nat Commun 2023; 14:3951. [PMID: 37402745 DOI: 10.1038/s41467-023-39459-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Keystone taxa in ecological communities are native taxa that play an especially important role in the stability of their ecosystem. However, we still lack an effective framework for identifying these taxa from the available high-throughput sequencing without the notoriously difficult step of reconstructing the detailed network of inter-specific interactions. In addition, while most microbial interaction models assume pair-wise relationships, it is yet unclear whether pair-wise interactions dominate the system, or whether higher-order interactions are relevant. Here we propose a top-down identification framework, which detects keystones by their total influence on the rest of the taxa. Our method does not assume a priori knowledge of pairwise interactions or any specific underlying dynamics and is appropriate to both perturbation experiments and metagenomic cross-sectional surveys. When applied to real high-throughput sequencing of the human gastrointestinal microbiome, we detect a set of candidate keystones and find that they are often part of a keystone module - multiple candidate keystone species with correlated occurrence. The keystone analysis of single-time-point cross-sectional data is also later verified by the evaluation of two-time-points longitudinal sampling. Our framework represents a necessary advancement towards the reliable identification of these key players of complex, real-world microbial communities.
Collapse
Affiliation(s)
- Guy Amit
- Department of Physics, Bar-Ilan University, Ramat-Gan, 590002, Israel
- Department of Natural Sciences, The Open University of Israel, Raanana, 4353701, Israel
| | - Amir Bashan
- Department of Physics, Bar-Ilan University, Ramat-Gan, 590002, Israel.
| |
Collapse
|
15
|
Paula Lula Costa A, Bascompte J, Andrian Padial A. Modularity in host-parasite mixed networks: interaction configuration shifts based on human perturbation and parasitism form. Int J Parasitol 2023:S0020-7519(23)00146-7. [PMID: 37328044 DOI: 10.1016/j.ijpara.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 06/18/2023]
Abstract
Parasitism is an association based on host individual traits and environmental factors. The complexity of this type of interaction is often lost when studying species-by-species interaction networks. Here we analyze changes in modularity - a metric describing groups of nodes interacting much more frequently among themselves than they do with nodes of other modules, considering the host individual variation and the different forms of parasitism: ecto- and endo-parasitism. For this, we studied mixed networks: bipartite networks comprising host individuals and parasite species as two sets of nodes interacting with each other. We used a fish-parasite mixed network from a highly perturbed coastal river to understand how an anthropogenic perturbation gradient influences the modular structure of host-parasite networks. In addition, we tested how host individual traits drove module configuration within host-parasite mixed networks. Our results showed that different forms of parasitism respond differently to the environment: modularity in fish-ectoparasite networks increased with human perturbation, but modularity was not related to human perturbation in fish-endoparasite networks. In addition, mixed network modules were intrinsically related to individual variation, with host intensity of infection being the most important trait, regardless of the parasite's life form. The effect of total abundance over network structure indicates signs of changes in community equilibrium, with an increase in species with opportunistic behaviors. Module composition was also related to host fitness and body size, which were most predictive in more preserved and diverse river sections. Overall, our results indicate that host-parasite networks are sensitive to ecological gradients marked by human perturbation and that host individual fitness helps to determine network structure.
Collapse
Affiliation(s)
- Ana Paula Lula Costa
- Federal University of Paraná - Graduate Program in Ecology and Conservation; Department of Botany, Federal University of Paraná, Coronel Francisco H. dos Santos Avenue, 100 - Paraná, Brazil, 81530-000.
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Andre Andrian Padial
- Department of Botany, Federal University of Paraná, Coronel Francisco H. dos Santos Avenue, 100 - Paraná, Brazil, 81530-000.
| |
Collapse
|
16
|
Bass D, Christison KW, Stentiford GD, Cook LSJ, Hartikainen H. Environmental DNA/RNA for pathogen and parasite detection, surveillance, and ecology. Trends Parasitol 2023; 39:285-304. [PMID: 36759269 DOI: 10.1016/j.pt.2022.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 02/11/2023]
Abstract
Detection of pathogens, parasites, and other symbionts in environmental samples via eDNA/eRNA (collectively eNA) is an increasingly important source of information about their occurrence and activity. There is great potential for using such detections as a proxy for infection of host organisms in connected habitats, for pathogen monitoring and surveillance, and for early warning systems for disease. However, many factors require consideration, and appropriate methods developed and verified, in order that eNA detections can be reliably interpreted and adopted for surveillance and assessment of disease risk, and potentially inclusion in international standards, such as the World Organisation for Animal Health guidelines. Disease manifestation results from host-symbiont-environment interactions between hosts, demanding a multifactorial approach to interpretation of eNA signals.
Collapse
Affiliation(s)
- David Bass
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK.
| | - Kevin W Christison
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa; Department of Forestry, Fisheries and the Environment, Private Bag X2, Vlaeberg, 8012, South Africa
| | - Grant D Stentiford
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK
| | - Lauren S J Cook
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Royal Holloway, University of London, Egham Hill, Egham TW20 0EX, UK
| | - Hanna Hartikainen
- University of Nottingham, School of Life Sciences, University Park, NG7 2RD, Nottingham, UK
| |
Collapse
|
17
|
Rodríguez‐Hernández K, Álvarez‐Mendizábal P, Chapa‐Vargas L, Escobar F, Dáttilo W, Santiago‐Alarcon D. Infection intensity shapes specialization and beta diversity of haemosporidian–bird networks across elevations. Ecosphere 2023. [DOI: 10.1002/ecs2.4481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
18
|
Pilosof S. Conceptualizing microbe-plasmid communities as complex adaptive systems. Trends Microbiol 2023:S0966-842X(23)00025-2. [PMID: 36822952 DOI: 10.1016/j.tim.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023]
Abstract
Plasmids shape microbial communities' diversity, structure, and function. Nevertheless, we lack a mechanistic understanding of how community structure and dynamics emerge from local microbe-plasmid interactions and coevolution. Addressing this gap is challenging because multiple processes operate simultaneously at multiple levels of organization. For example, immunity operates between a plasmid and a cell, but incompatibility mechanisms regulate coexistence between plasmids. Conceptualizing microbe-plasmid communities as complex adaptive systems is a promising approach to overcoming these challenges. I illustrate how agent-based evolutionary modeling, extended by network analysis, can be used to quantify the relative importance of local processes governing community dynamics. These theoretical developments can advance our understanding of plasmid ecology and evolution, especially when combined with empirical data.
Collapse
Affiliation(s)
- Shai Pilosof
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
19
|
Survey on helminths of bats in the Yucatan Peninsula: infection levels, molecular information and host-parasite networks. Parasitology 2023; 150:172-183. [PMID: 36444644 PMCID: PMC10090612 DOI: 10.1017/s0031182022001627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Helminth species of Neotropical bats are poorly known. In Mexico, few studies have been conducted on helminths of bats, especially in regions such as the Yucatan Peninsula where Chiroptera is the mammalian order with the greatest number of species. In this study, we characterized morphologically and molecularly the helminth species of bats and explored their infection levels and parasite–host interactions in the Yucatan Peninsula, Mexico. One hundred and sixty-three bats (representing 21 species) were captured between 2017 and 2022 in 15 sites throughout the Yucatan Peninsula. Conventional morphological techniques and molecular tools were used with the 28S gene to identify the collected helminths. Host–parasite network analyses were carried out to explore interactions by focusing on the level of host species. Helminths were found in 44 (26.9%) bats of 12 species. Twenty helminth taxa were recorded (7 trematodes, 3 cestodes and 10 nematodes), including 4 new host records for the Americas. Prevalence and mean intensity of infection values ranged from 7.1 to 100% and from 1 to 56, respectively. Molecular analyses confirmed the identity of some helminths at species and genus levels; however, some sequences did not correspond to any of the species available on GenBank. The parasite–host network suggests that most of the helminths recorded in bats were host-specific. The highest helminth richness was found in insectivorous bats. This study increases our knowledge of helminths parasitizing Neotropical bats, adding new records and nucleotide sequences.
Collapse
|
20
|
Llopis-Belenguer C, Balbuena JA, Blasco-Costa I, Karvonen A, Sarabeev V, Jokela J. Sensitivity of bipartite network analyses to incomplete sampling and taxonomic uncertainty. Ecology 2023; 104:e3974. [PMID: 36691292 DOI: 10.1002/ecy.3974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 01/25/2023]
Abstract
Bipartite network analysis is a powerful tool to study the processes structuring interactions in ecological communities. In applying the method, it is assumed that the sampled interactions provide an accurate representation of the actual community. However, acquiring a representative sample may be difficult as not all species are equally abundant or easily identifiable. Two potential sampling issues can compromise the conclusions of bipartite network analyses: failure to capture the full range of interactions (sampling completeness) and use of a taxonomic level higher than species to evaluate the network (taxonomic resolution). We asked how commonly used descriptors of bipartite antagonistic communities (modularity, nestedness, connectance, and specialization [H2 ']) are affected by reduced host sampling completeness, parasite taxonomic resolution, and their crossed effect, as they are likely to co-occur. We used a quantitative niche model to generate weighted bipartite networks that resembled natural host-parasite communities. The descriptors were more sensitive to uncertainty in parasite taxonomic resolution than to host sampling completeness. When only 10% of parasite taxonomic resolution was retained, modularity and specialization decreased by ~76% and ~12%, respectively, and nestedness and connectance increased by ~114% and ~345% respectively. The loss of taxonomic resolution led to a wide range of possible communities, which made it difficult to predict its effects on a given network. With regards to host sampling completeness, standardized nestedness, connectance, and specialization were robust, whereas modularity was sensitive (~30% decrease). The combination of both sampling issues had an additive effect on modularity. In communities with low effort for both sampling issues (50%-10% of sampling completeness and taxonomic resolution), estimators of modularity, and nestedness could not be distinguished from those of random assemblages. Thus, the categorical description of communities with low sampling effort (e.g., if a community is modular or not) should be done with caution. We recommend evaluating both sampling completeness and taxonomic certainty when conducting bipartite network analyses. Care should also be exercised when using nonrobust descriptors (the four descriptors for parasite taxonomic resolution; modularity for host sampling completeness) when sampling issues are likely to affect a dataset.
Collapse
Affiliation(s)
- Cristina Llopis-Belenguer
- Institute of Integrative Biology, D-USYS, ETH Zürich, Zürich, Switzerland.,Department of Aquatic Ecology, EAWAG, Dübendorf, Switzerland
| | - Juan Antonio Balbuena
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Isabel Blasco-Costa
- Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland.,Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Anssi Karvonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Volodimir Sarabeev
- Department of Biology, Zaporizhzhia National University, Zaporizhzhia, Ukraine.,Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Jukka Jokela
- Institute of Integrative Biology, D-USYS, ETH Zürich, Zürich, Switzerland.,Department of Aquatic Ecology, EAWAG, Dübendorf, Switzerland
| |
Collapse
|
21
|
Fish-parasite interaction networks reveal latitudinal and taxonomic trends in the structure of host-parasite associations. Parasitology 2022; 149:1815-1821. [PMID: 35768403 PMCID: PMC10090588 DOI: 10.1017/s0031182022000944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent years, treating host–parasite associations as bipartite interaction networks has proven a powerful tool to identify structural patterns and their likely causes in communities of fish and their parasites. Network analysis allows for both community-level properties to be computed and investigated, and species-level roles to be determined. Here, using data from 31 host–parasite interaction networks from local fish communities around the world, we test for latitudinal trends at whole-network level, and taxonomic patterns at individual parasite species level. We found that while controlling for network size (number of species per network), network modularity, or the tendency for the network to be subdivided into groups of species that interact mostly with each other, decreased with increasing latitude. This suggests that tropical fish–parasite networks may be more stable than those from temperate regions in the event of community perturbations, such as species extinction. At the species level, after accounting for the effect of host specificity, we observed no difference in the centrality of parasite species within networks between parasites with different transmission modes. However, species in some taxa, namely branchiurans, acanthocephalans and larval trematodes, generally had higher centrality values than other parasite taxa. Because species with a central position often serve as module connectors, these 3 taxa may play a key role in whole-network cohesion. Our results highlight the usefulness of network analysis to reveal the aspects of fish–parasite community interactions that would otherwise remain hidden and advance our understanding of their evolution.
Collapse
|
22
|
Junker K, Boomker J, Horak IG, Krasnov BR. Impact of host sex and age on the diversity of endoparasites and structure of individual-based host-parasite networks in nyalas (Tragelaphus angasii Angas) from three game reserves in KwaZulu-Natal province, South Africa. Parasitol Res 2022; 121:3249-3267. [PMID: 36071296 DOI: 10.1007/s00436-022-07653-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
In recent years, numerous studies have examined the effect of host sex and age on the structure of parasite communities in several host taxa under various environmental conditions and in different geographic regions. However, the influence of such factors on the structure of host-parasite networks has received less attention, and remarkably few studies have been carried out on large terrestrial mammals. In this study, we investigated the effects of host age and sex on the parasite infra- and component communities of nyalas (Tragelaphus angasii) and on the structure of individual-based nyala-endoparasite networks. We also aimed to evaluate to what extent these effects vary spatially and if they are mediated by conservation management. Based on a data set of internal macroparasites of 74 nyalas from three game reserves in KwaZulu-Natal province, we found that host age strongly influenced parasite community structure as well as the structure of parasite-nyala networks, whereas host sex played a minor role. However, the effects of both host sex and age were mediated by environmental conditions and thus led to different patterns at the three localities. Our findings highlight that host-parasite communities from different localities should not be pooled when conducting host-parasite network and community studies as this may bias results and mask patterns that are typical for a given locality.
Collapse
Affiliation(s)
- Kerstin Junker
- National Collection of Animal Helminths, Epidemiology, Parasites and Vectors Programme, ARC-Onderstepoort Veterinary Institute, Private Bag X05, Onderstepoort, 0110, South Africa.
| | - Joop Boomker
- Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Ivan G Horak
- Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreshet Ben-Gurion, Israel
| |
Collapse
|
23
|
Brown MJF. Complex networks of parasites and pollinators: moving towards a healthy balance. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210161. [PMID: 35491603 DOI: 10.1098/rstb.2021.0161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Parasites are viewed as a major threat to wild pollinator health. While this may be true for epidemics driven by parasite spillover from managed or invasive species, the picture is more complex for endemic parasites. Wild pollinator species host and share a species-rich, generalist parasite community. In contrast to the negative health impacts that these parasites impose on individual hosts, at a community level they may act to reduce competition from common and abundant pollinator species. By providing rare species with space in which to exist, this will act to support and maintain a diverse and thus healthier pollinator community. At this level, and perhaps paraxodically, parasites may be good for pollinators. This stands in clear contrast to the obvious negative impacts of epidemic and spillover parasites on wild pollinator communities. Research into floral resources that control parasites could be best employed to help design landscapes that provide pollinators with the opportunity to moderate their parasite community, rather than attempting to eliminate specific parasites from wild pollinator communities. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
24
|
Liu W, Chen H. Idea paper: Trophic transmission as a potential mechanism underlying the distribution of parasite diversity in food webs. Ecol Res 2022. [DOI: 10.1111/1440-1703.12324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Wei‐Chung Liu
- Institute of Statistical Science Academia Sinica Taipei Taiwan
| | - Hsuan‐Wien Chen
- Department of Biological Resources National Chiayi University Chiayi City Taiwan
| |
Collapse
|
25
|
Krasnov BR, Shenbrot GI, Khokhlova IS. Phylogenetic signals in flea-host interaction networks from four biogeographic realms: differences between interactors and the effects of environmental factors. Int J Parasitol 2022; 52:475-484. [DOI: 10.1016/j.ijpara.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/05/2022]
|
26
|
Manca F, Mulà C, Gustafsson C, Mauri A, Roslin T, Thomas DN, Benedetti-Cecchi L, Norkko A, Strona G. Unveiling the complexity and ecological function of aquatic macrophyte-animal networks in coastal ecosystems. Biol Rev Camb Philos Soc 2022; 97:1306-1324. [PMID: 35174616 PMCID: PMC9544924 DOI: 10.1111/brv.12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
Network theory offers innovative tools to explore the complex ecological mechanisms regulating species associations and interactions. Although interest in ecological networks has grown steadily during the last two decades, the application of network approaches has been unequally distributed across different study systems: while some kinds of interactions (e.g. plant-pollinator and host-parasite) have been extensively investigated, others remain relatively unexplored. Among the latter, aquatic macrophyte-animal associations in coastal environments have been largely neglected, despite their major role in littoral ecosystems. The ubiquity of macrophyte systems, their accessibility and multi-faceted ecological, economical and societal importance make macrophyte-animal systems an ideal subject for ecological network science. In fact, macrophyte-animal networks offer an aquatic counterpart to terrestrial plant-animal networks. In this review, we show how the application of network analysis to aquatic macrophyte-animal associations has the potential to broaden our understanding of how coastal ecosystems function. Network analysis can also provide a key to understanding how such ecosystems will respond to on-going and future threats from anthropogenic disturbance and environmental change. For this, we: (i) identify key issues that have limited the application of network theory and modelling to aquatic animal-macrophyte associations; (ii) illustrate through examples based on empirical data how network analysis can offer new insights on the complexity and functioning of coastal ecosystems; and (iii) provide suggestions for how to design future studies and establish this new research line into network ecology.
Collapse
Affiliation(s)
- Federica Manca
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65 Viikinkaari 1, Helsinki, 00014, Finland
| | - Clelia Mulà
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65 Viikinkaari 1, Helsinki, 00014, Finland
| | - Camilla Gustafsson
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, Hanko, 10900, Finland
| | - Achille Mauri
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65 Viikinkaari 1, Helsinki, 00014, Finland
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, Uppsala, 756 51, Sweden.,Spatial Foodweb Ecology Group, Department of Agricultural Sciences, University of Helsinki, PO Box 27 Latokartanonkaari 5, Helsinki, 00014, Finland
| | - David N Thomas
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, PO Box 65 Viikinkaari 1, Helsinki, 00014, Finland
| | | | - Alf Norkko
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, Hanko, 10900, Finland.,Baltic Sea Centre, Stockholm University, Svante Arrhenius väg 20 F, Stockholm, 106 91, Sweden
| | - Giovanni Strona
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65 Viikinkaari 1, Helsinki, 00014, Finland.,Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65 Viikinkaari 1, Helsinki, 00014, Finland
| |
Collapse
|
27
|
Gleasonian structure in the helminth metacommunity of the opossum Didelphis albiventris in two extremes of the Atlantic Forest. J Helminthol 2022; 96:e7. [PMID: 35086598 DOI: 10.1017/s0022149x21000791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Didelphis albiventris is the opossum with the largest geographic distribution in Brazil and has a wide spectrum of helminth parasites. This study aimed to describe the species composition and analyse the structure of helminth communities of D. albiventris in two extremes of the Atlantic Forest in Brazil. The influence of host sex, body mass, age, helminth species richness and locality on the abundance and prevalence of the most prevalent helminth species was investigated. Ninety-five per cent of the animals were infected with at least one species. Nine helminth species were found: the nematodes Aspidodera raillieti, Cruzia tentaculata, Trichuris didelphis and Trichuris minuta in the large intestine; Turgida turgida in the stomach; Travassostrongylus orloffi and Viannaia hamata; and the trematodes Brachylaima advena and Rhopalias coronatus in the small intestine. Three helminth morphospecies were also recovered: the nematodes Hoineffia sp. and Viannaia sp. and a cestode in the small intestine. Cruzia tentaculata and V. hamata were the species with the highest mean abundances and intensities, while the most prevalent species were A. raillieti, C. tentaculata, T. turgida and V. hamata, forming the central nucleus of the helminth component community. The analysis of the helminth metacommunity structure indicated a Gleasonian pattern for the total set of infracommunities, corroborating the beta diversity indices, which indicated more species replacement than loss between localities and infracommunities, although at a low level. The results indicated a stronger influence of host attributes than geographical distance on the community structure.
Collapse
|
28
|
Alcantara DMC, Graciolli G, Toma R, Souza CS. Sex-biased parasitism, host mass and mutualistic bat flies: an antagonistic individual-based network of bat-bat fly interactions. Int J Parasitol 2021; 52:217-224. [PMID: 34863803 DOI: 10.1016/j.ijpara.2021.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022]
Abstract
Individual-based networks provide the building blocks for community-level networks. However, network studies of bats and their parasites have focused only on the species level. Intrapopulation variation may allow certain host individuals to play important roles in the dynamics of the parasites. Therefore, we evaluated how the variation in host sex, body size, ectoparasite abundance and co-occurrence configure individual-based networks of the lesser bulldog bat Noctilio albiventris and bat flies. We expected bat individuals with greater body mass and forearms acting as the core in the network. We also expected males to play a more important role in the network. We sampled a network of N. albiventris bat individuals and their bat flies to describe the structure of an antagonistic individual-based network. We aimed to identify the most relevant bat individuals in the network, focusing on the implications inherent to each of the following approaches: (i) core-periphery organization; (ii) modularity; (iii) species level metrics; and (iv) the main ecological driver of bat individual roles in the network, using niche-based predictors (body mass, forearm and sex). We showed that a network of N. albiventris individuals and their bat flies had low modularity containing a persistent nucleus of individuals and bat flies with well-established interactions. Male individuals with greater body mass played an important role in the network, while for females neither mass nor forearm length were important predictors of their role in the network. Finally, individuals with a high abundance of Paradyschiria parvula played a core role. These results provide an alternative perspective to understand the patterns and mechanisms of interspecific interactions between parasites on the host, as well as sex-biased parasitism.
Collapse
Affiliation(s)
- Daniel Maximo Correa Alcantara
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; Fundação Oswaldo Cruz de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| | - Gustavo Graciolli
- Setor de Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Ronaldo Toma
- Fundação Oswaldo Cruz de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Camila Silveira Souza
- Departamento de Biologia Geral, Programa de Pós-Graduação em Botânica Aplicada, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
29
|
Llaberia-Robledillo M, Balbuena JA, Sarabeev V, Llopis-Belenguer C. Changes in native and introduced host–parasite networks. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02657-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractIntroduced species can alter the dynamics and structure of a native community. Network analysis provides a tool to study host–parasite interactions that can help to predict the possible impact of biological invasions or other disturbances. In this study, we used weighted bipartite networks to assess differences in the interaction patterns between hosts and helminth parasites of native (Sea of Japan) and invasive (Black Sea and Sea of Azov) populations of Planiliza haematocheilus (Teleostei: Mugilidae). We employed three quantitative network descriptors, connectance, weighted nestedness and modularity, to gain insight into the structure of the host–parasite networks in the native and invaded areas. The role of parasite species in the networks was assessed using the betweenness centrality index. We analyzed networks encompassing the whole helminth community and subsets of species classified by their transmission strategy. The analyses were downscaled to host individual-level to consider intraspecific variation in parasite communities. We found significant differences between networks in the native and invaded areas. The latter presented a higher value of nestedness, which may indicate a co-occurrence between parasite species with many connections in the network and species with fewer interactions within the same individual-host. In addition, modularity was higher in the native area’s networks than those of the invaded area, with subgroups of host individuals that interact more frequently with certain parasite species than with others. Only the networks composed of actively transmitted parasites and ectoparasites did not show significant differences in modularity between the Sea of Azov and the Sea of Japan, which could be due to the introduction of a part of the native community into the invaded environment, with a lower diversity and abundance of species. We show that network analysis provides a valuable tool to illuminate the changes that occur in host–parasite interactions when an invasive species and its parasite community are introduced into a new area.
Collapse
|
30
|
de Angeli Dutra D, Fecchio A, Braga ÉM, Poulin R. Haemosporidian taxonomic composition, network centrality and partner fidelity between resident and migratory avian hosts. Oecologia 2021; 197:501-509. [PMID: 34482439 DOI: 10.1007/s00442-021-05031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Migration can modify interaction dynamics between parasites and their hosts with migrant hosts able to disperse parasites and impact local community transmission. Thus, studying the relationships among migratory hosts and their parasites is fundamental to elucidate how migration shapes host-parasite interactions. Avian haemosporidians are some of the most prevalent and diverse group of wildlife parasites and are also widely studied as models in ecological and evolutionary research. Here, we contrast partner fidelity, network centrality and parasite taxonomic composition among resident and non-resident avian hosts using presence/absence data on haemosporidians parasitic in South American birds as study model. We ran multilevel Bayesian models to assess the role of migration in determining partner fidelity (i.e., normalized degree) and centrality (i.e., weighted closeness) in host-parasite networks of avian hosts and their respective haemosporidian parasites. In addition, to evaluate parasite taxonomic composition, we performed permutational multivariate analyses of variance to quantify dissimilarity in haemosporidian lineages infecting different host migratory categories. We observed similar partner fidelity and parasite taxonomic composition among resident and migratory hosts. Conversely, we demonstrate that migratory hosts play a more central role in host-parasite networks than residents. However, when evaluating partially and fully migratory hosts separately, we observed that only partially migratory species presented higher network centrality when compared to resident birds. Therefore, migration does not lead to differences in both partner fidelity and parasite taxonomic composition. However, migratory behavior is positively associated with network centrality, indicating migratory hosts play more important roles in shaping host-parasite interactions and influence local transmission.
Collapse
Affiliation(s)
| | - Alan Fecchio
- Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT, 78060-900, Brazil
| | - Érika Martins Braga
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
31
|
The rise of ecological parasitology: twelve landmark advances that changed its history. Int J Parasitol 2021; 51:1073-1084. [PMID: 34390744 DOI: 10.1016/j.ijpara.2021.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
In the five decades since the first publication of the International Journal for Parasitology, ecological parasitology has grown from modest beginnings to become a modern discipline with a strong theoretical foundation, a diverse toolkit, and a multidisciplinary approach. In this review, I highlight 12 advances in the field that have spurred its growth over the past 50 years. Where relevant, I identify pivotal contributions that have altered the course of research, as well as the influence of developments in other fields such as mainstream ecology and molecular biology. The 12 key advances discussed are in areas including parasite population dynamics and community assembly, the regulation of host population abundance and food web structure, parasites as agents of natural selection, the impacts of biodiversity and anthropogenic changes on host-parasite interactions, the biogeography of parasite diversity, and the evolutionary genetics of parasites. I conclude by identifying some challenges and opportunities lying ahead, which need to be met for the future growth of ecological research on host-parasite interactions.
Collapse
|
32
|
Cardoso TDS, de Andreazzi CS, Maldonado Junior A, Gentile R. Functional traits shape small mammal-helminth network: patterns and processes in species interactions. Parasitology 2021; 148:947-955. [PMID: 33879271 PMCID: PMC8193565 DOI: 10.1017/s0031182021000640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 01/01/2023]
Abstract
Understanding the role of species traits in mediating ecological interactions and shaping community structure is a key question in ecology. In this sense, parasite population parameters allow us to estimate the functional importance of traits in shaping the strength of interactions among hosts and parasites in a network. The aim of this study was to survey and analyse the small mammal-helminth network in a forest reserve of the Brazilian Atlantic Forest in order to understand (i) how functional traits (type of parasite life cycle, site of infection in their host, host and parasite body length, host diet, host locomotor habit and host activity period) and abundance influence host–parasite interactions, (ii) whether these traits explain species roles, and (iii) if this relationship is consistent across different parasite population parameters (presence and absence, mean abundance and prevalence). Networks were modular and their structural patterns did not vary among the population parameters. Functional traits and abundance shaped the interactions observed between parasites and hosts. Host species abundance, host diet and locomotor habit affected their centrality and/or vulnerability to parasites. For helminths, infection niche was the main trait determining their central roles in the networks.
Collapse
Affiliation(s)
- Thiago dos Santos Cardoso
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, RJ, Brasil
- Programa Fiocruz de Fomento à Inovação – INOVA FIOCRUZ, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, RJ, Brasil
| | - Cecilia Siliansky de Andreazzi
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, RJ, Brasil
| | - Arnaldo Maldonado Junior
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, RJ, Brasil
| | - Rosana Gentile
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, RJ, Brasil
| |
Collapse
|