1
|
Mao Q, Luo Q, Ma SM, Teng M, Luo J. Critical role of ferroptosis in viral infection and host responses. Virology 2025; 606:110485. [PMID: 40086206 DOI: 10.1016/j.virol.2025.110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/07/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death that plays a crucial role in regulating intracellular redox homeostasis and lipid metabolism, and in combating viral infections. Viruses have persistently evolved and adapted synergistically with their hosts over a long period and, to some extent, have been able to utilize ferroptosis to promote viral replication. Herein, we summarize the characteristics, mechanisms, and regulatory networks of ferroptosis and provide an overview of the key regulatory steps of ferroptosis involved in viral infection, together with the changes in host indicators and key regulatory signaling pathways. This study intends to deepen our understanding of the critical role of ferroptosis in viral infection, which will be meaningful for further revealing the mechanisms underlying the occurrence and progression of virus diseases, as well as for the future exploration of anti-viral strategies.
Collapse
Affiliation(s)
- Qian Mao
- Institute for Animal Health & UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China.
| | - Qin Luo
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, People's Republic of China
| | - Sheng-Min Ma
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, People's Republic of China
| | - Man Teng
- Institute for Animal Health & UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Jun Luo
- Institute for Animal Health & UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
| |
Collapse
|
2
|
Liu Y, Tang H, Xu P, Zhou X, Li S. SARS-CoV-2 N protein interacts with SLC7A11 to cause ferroptosis in acute lung injury. Allergol Immunopathol (Madr) 2025; 53:23-30. [PMID: 40342111 DOI: 10.15586/aei.v53i3.1340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/02/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND The nucleocapsid protein (N protein) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is elevated in bodily fluids at the onset of infection and has recently been found to have a direct role in lung damage. However, the exact mode of action of the N protein in acute lung injury is still unknown. METHOD Recombinant N protein was used to treat mice and A549 cells in vivo and in vitro. Enzyme-linked immunosorbent assay and hematoxylin and eosin staining were used to detect the levels of inflammatory factors and lung damage in lung tissue. The total iron and Fe2+ contents and the expression of ferroptosis markers in mouse lung tissues and cells were detected. Co-immunoprecipitation detects the binding of N protein and solute carrier family 7 member 11 (SLC7A11). Replenishment experiments were conducted by activating SLC7A11 to study the effect of SLC7A11 on N protein-induced lung injury. RESULT Recombinant N protein caused acute lung injury and lung inflammation, increased total iron and Fe2+ contents in vivo and in vitro, promoted the expression of ACSL4, inhibited the expression of GPX4 and FTH1, and triggered ferroptosis. Recombinant N protein can interact with SLC7A11, and activating SLC7A11 can reverse N protein-induced ferroptosis and acute lung injury. CONCLUSION SARS-CoV-2 N protein can directly interact with SLC7A11 to cause ferroptosis, which produces a lot of inflammatory factors and results in lung injury in mice.
Collapse
Affiliation(s)
- Yi Liu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Tang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Pan Xu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoqi Zhou
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiying Li
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China;
| |
Collapse
|
3
|
Michalak KP, Michalak AZ, Brenk-Krakowska A. Acute COVID-19 and LongCOVID syndrome - molecular implications for therapeutic strategies - review. Front Immunol 2025; 16:1582783. [PMID: 40313948 PMCID: PMC12043656 DOI: 10.3389/fimmu.2025.1582783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been recognized not only for its acute effects but also for its ability to cause LongCOVID Syndrome (LCS), a condition characterized by persistent symptoms affecting multiple organ systems. This review examines the molecular and immunological mechanisms underlying LCS, with a particular focus on autophagy inhibition, chronic inflammation, oxidative, nitrosative and calcium stress, viral persistence and autoimmunology. Potential pathophysiological mechanisms involved in LCS include (1) autoimmune activation, (2) latent viral persistence, where SARS-CoV-2 continues to influence host metabolism, (3) reactivation of latent pathogens such as Epstein-Barr virus (EBV) or cytomegalovirus (CMV), exacerbating immune and metabolic dysregulation, and (4) possible persistent metabolic and inflammatory dysregulation, where the body fails to restore post-infection homeostasis. The manipulation of cellular pathways by SARS-CoV-2 proteins is a critical aspect of the virus' ability to evade immune clearance and establish long-term dysfunction. Viral proteins such as NSP13, ORF3a and ORF8 have been shown to disrupt autophagy, thereby impairing viral clearance and promoting immune evasion. In addition, mitochondrial dysfunction, dysregulated calcium signaling, oxidative stress, chronic HIF-1α activation and Nrf2 inhibition create a self-sustaining inflammatory feedback loop that contributes to tissue damage and persistent symptoms. Therefore understanding the molecular basis of LCS is critical for the development of effective therapeutic strategies. Targeting autophagy and Nrf2 activation, glycolysis inhibition, and restoration calcium homeostasis may provide novel strategies to mitigate the long-term consequences of SARS-CoV-2 infection. Future research should focus on personalized therapeutic interventions based on the dominant molecular perturbations in individual patients.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Alicja Brenk-Krakowska
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
4
|
Wang F, Amona FM, Pang Y, Zhang Q, Liang Y, Chen X, Ke Y, Chen J, Song C, Wang Y, Li Z, Zhang C, Fang X, Chen X. Porcine reproductive and respiratory syndrome virus nsp5 inhibits the activation of the Nrf2/HO-1 pathway by targeting p62 to antagonize its antiviral activity. J Virol 2025; 99:e0158524. [PMID: 40019253 PMCID: PMC11998497 DOI: 10.1128/jvi.01585-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infections often trigger oxidative stress and cytokine storms, resulting in significant tissue damage that causes fatalities in piglets and reproductive issues in sows. However, it is still unknown how oxidative stress is regulated by viral and host factors in response to PRRSV infection. Here, we found that PRRSV induced cellular oxidative stress by triggering the production of reactive oxygen species and inhibiting the expression of antioxidant enzymes. Although Nrf2 is an important redox regulator that initiates the expression of downstream antioxidant genes, PRRSV can impair the Nrf2/HO-1 pathway. The overexpression of Nrf2 showed a significant anti-PRRSV effect, and inhibiting the expression of Nrf2 promoted the proliferation of PRRSV. Further analysis showed that Nrf2 positively regulated the production of type I interferons and interferon-stimulated genes, which may contribute to its anti-PRRSV effect. By screening the PRRSV-encoded protein, we found that the PRRSV nsp5 protein can degrade Nrf2 at the protein level. Mechanistically, nsp5 promotes Nrf2-Keap1 binding affinity by inhibiting p62-mediated Keap1 sequestration and increasing Keap1 expression. Subsequently, this increased Keap1-mediated degradation of Nrf2 ubiquitination through K48-linked polyubiquitin. Furthermore, we found that the residues Tyr146 and Arg147 of nsp5 are crucial for inhibiting the activation of the p62-mediated Nrf2 antioxidant pathway. Thus, our findings uncover a novel mechanism by which PRRSV disrupts the host antioxidant defense system and highlight the crucial role of the Nrf2/HO-1 antioxidant pathway in host defense against PRRSV.IMPORTANCEOxidative stress-induced redox imbalance is a crucial pathogenic mechanism in viral infections. Nrf2 and its antioxidant genes serve as the main defense pathways against oxidative stress. However, the role of Nrf2 in the context of porcine reproductive and respiratory syndrome virus (PRRSV) infection remains unclear. In this study, we demonstrated that PRRSV infection decreased the expression of antioxidant genes of the Nrf2 signaling pathway and overexpression of Nrf2 triggered a strong anti-PRRSV effect. PRRSV nsp5 enhanced Keap1-dependent degradation of Nrf2 ubiquitination, thereby weakening cellular resistance to oxidative stress and antagonizing the antiviral activity of Nrf2. Our study further revealed a new mechanism by which PRRSV evades host antiviral innate immunity by disturbing cellular redox homeostasis, providing a new target for developing anti-PRRSV drugs.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Fructueux Modeste Amona
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Qiaoya Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yuan Liang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xiaohan Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yongding Ke
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Junhao Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Zongyun Li
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
5
|
Sun P, Liu Q, Yuan S, Wang XT, Qiu Y, Ge XY. SARS-CoV-2 Membrane Protein Induces MARCHF1/GPX4-Mediated Ferroptosis by Promoting Lipid Accumulation. J Med Virol 2025; 97:e70328. [PMID: 40186530 DOI: 10.1002/jmv.70328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/21/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
The membrane protein (M), a key structural protein of SARS-CoV-2 that regulates virus assembly and morphogenesis, is involved in the pathological processes of multiple organ damage and metabolic disorders. This study aims to elucidate the mechanisms of M-mediated host ferroptosis and lipid accumulation during SARS-CoV-2 infection. Here, we detected that M protein enhances cellular sensitivity to ferroptosis. Additionally, we uncovered the pivotal role of perilipin-2 and sterol regulatory element-binding protein 1 in M-induced lipid accumulation. Xanthohumol, a cost-effective and orally available diacylglycerol acyltransferase inhibitor, alleviated triglyceride and total cholesterol accumulation, thereby counteracting the M-induced ferroptosis. Furthermore, we identified that the mitochondrial import inner membrane translocase subunit TIM23 and the mitochondrial import receptor subunit TOM20 homolog contribute to M-induced mitochondrial dysfunction. Notably, inhibiting lipid synthesis effectively reduced mitochondrial reactive oxygen species and transmembrane potential, indicating a cross-talk between lipid and ferro metabolic pathways. Mechanistically, glutathione peroxidase 4 (GPX4) interacts with SARS-CoV-2 M, leading to its subsequent degradation by the Membrane Associated Ring-CH-Type Finger 1 (MARCHF1) ubiquitin ligase. M-GPX4 interaction occurs at the R72 residue, which may represent a potential therapeutic target against SARS-CoV-2 infection. M modulates lipid accumulation and further impairs mitochondrial functions, ultimately resulting in ferroptosis through MARCHF1-GPX4 axis. Disrupting host-virus interactions along this pathway may provide a therapeutic strategy for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Pei Sun
- Department of Biomedical Engineering, Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Qian Liu
- Department of Biomedical Engineering, Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Shuofeng Yuan
- Department of Microbiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xin-Tao Wang
- Department of Biomedical Engineering, Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Ye Qiu
- Department of Biomedical Engineering, Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Xing-Yi Ge
- Department of Biomedical Engineering, Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, Hunan, China
| |
Collapse
|
6
|
Ye ZW, Ong CP, Cao H, Tang K, Gray VS, Hinson Cheung PH, Wang J, Li W, Zhang H, Luo P, Ni T, Chan CP, Zhang M, Zhang Y, Ling GS, Yuan S, Jin DY. A live attenuated SARS-CoV-2 vaccine constructed by dual inactivation of NSP16 and ORF3a. EBioMedicine 2025; 114:105662. [PMID: 40132472 PMCID: PMC11985078 DOI: 10.1016/j.ebiom.2025.105662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/16/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Live attenuated vaccines against SARS-CoV-2 activate all phases of host immunity resembling a natural infection and they block viral transmission more efficiently than existing vaccines in human use. In our prior work, we characterised an attenuated SARS-CoV-2 variant, designated d16, which harbours a D130A mutation in the NSP16 protein, inactivating its 2'-O-methyltransferase function. The d16 variant has demonstrated an ability to induce both mucosal and sterilising immunity in animal models. However, further investigation is required to identify any additional modifications to d16 that could mitigate concerns regarding potential virulence reversion and the suboptimal regulation of the proinflammatory response. METHODS Mutations were introduced into molecular clone of SARS-CoV-2 and live attenuated virus was recovered from cultured cells. Virological, biochemical and immunological assays were performed in vitro and in two animal models to access the protective efficacies of the candidate vaccine strain. FINDINGS Here we describe evaluation of a derivative of d16. We further modified the d16 variant by inverting the open reading frame of the ORF3a accessory protein, resulting in the d16i3a strain. This modification is anticipated to enhance safety and reduce pathogenicity. d16i3a appeared to be further attenuated in hamsters and transgenic mice compared to d16. Intranasal vaccination with d16i3a stimulated humoural, cell-mediated and mucosal immune responses, conferring sterilising protection against SARS-CoV-2 Delta and Omicron variants in animals. A version of d16i3a expressing the XBB.1.16 spike protein further expanded the vaccine's protection spectrum against circulating variants. Notably, this version has demonstrated efficacy as a booster in hamsters, providing protection against Omicron subvariants and achieving inhibition of viral transmission. INTERPRETATION Our work established a platform for generating safe and effective live attenuated vaccines by dual inactivation of NSP16 and ORF3a of SARS-CoV-2. FUNDING This work was supported by National Key Research and Development Program of China (2021YFC0866100, 2023YFC3041600, and 2023YFE0203400), Hong Kong Health and Medical Research Fund (COVID190114, CID-HKU1-9, and 23220712), Hong Kong Research Grants Council (C7142-20GF and T11-709/21-N), Hong Kong Innovation and Technology Commission grant (MHP/128/22), Guangzhou Laboratory (EKPG22-01) and Health@InnoHK (CVVT). Funding sources had no role in the writing of the manuscript or the decision to submit it for publication.
Collapse
Affiliation(s)
- Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Chon Phin Ong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Hehe Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Kaiming Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Victor Sebastien Gray
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Pak-Hin Hinson Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Junjue Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Weixin Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Hongzhuo Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Peng Luo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Tao Ni
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Chi Ping Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Ming Zhang
- State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, 100024, China
| | - Yuntao Zhang
- State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, 100024, China
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China.
| |
Collapse
|
7
|
Hong L, Chen X, Liu Y, Liang H, Zhao Y, Guo P. The relationship between ferroptosis and respiratory infectious diseases: a novel landscape for therapeutic approach. Front Immunol 2025; 16:1550968. [PMID: 40170865 PMCID: PMC11959089 DOI: 10.3389/fimmu.2025.1550968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025] Open
Abstract
Respiratory infectious diseases, particularly those caused by respiratory viruses, have the potential to lead to global pandemics, thereby posing significant threats to public and human health. Historically, the primary treatment for respiratory bacterial infections has been antibiotic therapy, while severe cases of respiratory viral infections have predominantly been managed by controlling inflammatory cytokine storms. Ferroptosis is a novel form of programmed cell death that is distinct from apoptosis and autophagy. In recent years, Recent studies have demonstrated that ferroptosis plays a significant regulatory role in various respiratory infectious diseases, indicating that targeting ferroptosis may represent a novel approach for the treatment of these conditions. This article summarized the toxic mechanisms underlying ferroptosis, its relationship with respiratory infectious diseases, the mechanisms of action, and current treatment strategies. Particular attentions were given to the interplay between ferroptosis and Mycobacterium tuberculosis, Epstein-Barr virus, severe acute respiratory syndrome coronavirus-2, Pseudomonas aeruginosa, dengue virus, influenza virus and herpes simplex virus type1infection. A deeper understanding of the regulatory mechanisms of ferroptosis in respiratory infections will not only advance our knowledge of infection-related pathophysiology but also provide a theoretical foundation for the development of novel therapeutic strategies. Targeting ferroptosis pathways represents a promising therapeutic approach for respiratory infections, with significant clinical and translational implications.
Collapse
Affiliation(s)
- Longyan Hong
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiangyu Chen
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yiming Liu
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Hao Liang
- Department of Health Inspection and Quarantine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yinghui Zhao
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Pengbo Guo
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
8
|
Meza J, Glass E, Sandhu AK, Li Y, Karanika S, Fessler K, Hui Y, Schill C, Wang T, Zhang J, Bates RE, Taylor AD, Kapoor AR, Ayeh SK, Karakousis PC, Markham RB, Gordy JT. Novel Vaccines Targeting the Highly Conserved SARS-CoV-2 ORF3a Ectodomain Elicit Immunogenicity in Mouse Models. Vaccines (Basel) 2025; 13:220. [PMID: 40266087 PMCID: PMC11946519 DOI: 10.3390/vaccines13030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND The majority of antigen-based SARS-CoV-2 (SCV2) vaccines utilized in the clinic have had the Spike protein or domains thereof as the immunogen. While the Spike protein is highly immunogenic, it is also subject to genetic drift over time, which has led to a series of variants of concern that continue to evolve, requiring yearly updates to the vaccine formulations. In this study, we investigate the potential of the N-terminal ectodomain of the ORF3a protein encoded by the orf3a gene of SCV2 to be an evolution-resistant vaccine antigen. This domain is highly conserved over time, and, unlike many other SCV2 conserved proteins, it is present on the exterior of the virion, making it accessible to antibodies. ORF3a is also important for eliciting robust anti-SARS-CoV-2 T-cell responses. METHODS We designed a DNA vaccine by fusing the N-terminal ectodomain of orf3a to macrophage-inflammatory protein 3α (MIP3α), which is a chemokine utilized in our laboratory that enhances vaccine immunogenicity by targeting an antigen to its receptor CCR6 present on immature dendritic cells. The DNA vaccine was tested in mouse immunogenicity studies, vaccinating by intramuscular (IM) electroporation and by intranasal (IN) with CpG adjuvant administrations. We also tested a peptide vaccine fusing amino acids 15-28 of the ectodomain to immunogenic carrier protein KLH, adjuvanted with Addavax. RESULTS The DNA IM route was able to induce 3a-specific splenic T-cell responses, showing proof of principle that the region can be immunogenic. The DNA IN route further showed that we could induce ORF3a-specific T-cell responses in the lung, which are critical for potential disease mitigation. The peptide vaccine elicited a robust anti-ORF3a antibody response systemically, as well as in the mucosa of the lungs and sinus cavity. CONCLUSIONS These studies collectively show that this evolutionarily stable region can be targeted by vaccination strategies, and future work will test if these vaccines, alone or in combination, can result in reduced disease burden in animal challenge models.
Collapse
Affiliation(s)
- Jacob Meza
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Elizabeth Glass
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Avinaash K. Sandhu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Yangchen Li
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Styliani Karanika
- Center for Tuberculosis Research, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.K.); (A.R.K.); (S.K.A.)
| | - Kaitlyn Fessler
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Yinan Hui
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Courtney Schill
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Tianyin Wang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Jiaqi Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Rowan E. Bates
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Alannah D. Taylor
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - Aakanksha R. Kapoor
- Center for Tuberculosis Research, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.K.); (A.R.K.); (S.K.A.)
| | - Samuel K. Ayeh
- Center for Tuberculosis Research, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.K.); (A.R.K.); (S.K.A.)
| | - Petros C. Karakousis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
- Center for Tuberculosis Research, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.K.); (A.R.K.); (S.K.A.)
| | - Richard B. Markham
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| | - James T. Gordy
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.M.); (A.K.S.); (Y.L.); (K.F.); (Y.H.); (C.S.); (T.W.); (J.Z.); (R.E.B.); (A.D.T.); (P.C.K.)
| |
Collapse
|
9
|
Wang Y, Weng L, Wu X, Du B. The role of programmed cell death in organ dysfunction induced by opportunistic pathogens. Crit Care 2025; 29:43. [PMID: 39856779 PMCID: PMC11761187 DOI: 10.1186/s13054-025-05278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Sepsis is a life-threatening condition resulting from pathogen infection and characterized by organ dysfunction. Programmed cell death (PCD) during sepsis has been associated with the development of multiple organ dysfunction syndrome (MODS), impacting various physiological systems including respiratory, cardiovascular, renal, neurological, hematological, hepatic, and intestinal systems. It is well-established that pathogen infections lead to immune dysregulation, which subsequently contributes to MODS in sepsis. However, recent evidence suggests that sepsis-related opportunistic pathogens can directly induce organ failure by promoting PCD in parenchymal cells of each affected organ. This study provides an overview of PCD in damaged organ and the induction of PCD in host parenchymal cells by opportunistic pathogens, proposing innovative strategies for preventing organ failure in sepsis.
Collapse
Affiliation(s)
- Yangyanqiu Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Weng
- State Key Laboratory of Complex Severe and Rare Diseases, Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xunyao Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical and Science Investigation Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Bin Du
- State Key Laboratory of Complex Severe and Rare Diseases, Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical and Science Investigation Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Qin S, Zhu C, Chen C, Sheng Z, Cao Y. An emerging double‑edged sword role of ferroptosis in cardiovascular disease (Review). Int J Mol Med 2025; 55:16. [PMID: 39540363 PMCID: PMC11573318 DOI: 10.3892/ijmm.2024.5457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The pathophysiology of cardiovascular disease (CVD) is complex and presents a serious threat to human health. Cardiomyocyte loss serves a pivotal role in both the onset and progression of CVD. Among various forms of programmed cell death, ferroptosis, along with apoptosis, autophagy and pyroptosis, is closely linked to the advancement of CVD. Ferroptosis, a mechanism of cell death, is driven by the buildup of oxidized lipids and excess iron. This pathway is modulated by lipid, amino acid and iron metabolism. Key characteristics of ferroptosis include disrupted iron homeostasis, increased peroxidation of polyunsaturated fatty acids due to reactive oxygen species, decreased glutathione levels and inactivation of glutathione peroxidase 4. Treatments targeting ferroptosis could potentially prevent or alleviate CVD by inhibiting the ferroptosis pathway. Ferroptosis is integral to the pathogenesis of several types of CVD and inhibiting its occurrence in cardiomyocytes could be a promising therapeutic strategy for the future treatment of CVD. The present review provided an in‑depth analysis of advancements in understanding the mechanisms underlying ferroptosis. The present manuscript summarized the interplay between ferroptosis and CVDs, highlighting its dual roles in these conditions. Additionally, potential therapeutic targets within the ferroptosis pathway were discussed, alongside the current limitations and future directions of these novel treatment strategies. The present review may offer novel insights into preventive and therapeutic approaches for CVDs.
Collapse
Affiliation(s)
- Sirun Qin
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Can Zhu
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Chenyang Chen
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhe Sheng
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu Cao
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
11
|
Walter T, Matteo F, Marta DA, Carolina S, Leonardo S, Elena P, Maria Elena M, Fabio M, Enrica M, Raffaella N, Laura P, Anna Teresa P, Guido A, Alessandra P, Lucia N. NRF2 Antioxidant Response and Interferon-Stimulated Genes Are Differentially Expressed in SARS-CoV-2-Positive Young Subjects. Immun Inflamm Dis 2025; 13:e70109. [PMID: 39810451 PMCID: PMC11733084 DOI: 10.1002/iid3.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Several respiratory viruses, including Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), suppress nuclear factor-E2-related factor-2 (NRF2) antioxidant response, generating oxidative stress conditions to its advantage. NRF2 has also been reported to regulate the innate immune response through the inhibition of the interferon (IFN) pathway. However, its modulation in younger individuals and its correlation with the IFN response remain to be elucidated. METHODS The NRF2 and redox-related genes expression was examined in nasopharyngeal swabs from children attending the pediatric hospital for SARS-CoV-2 molecular testing. Expression levels were analyzed by stratifying the population according to the SARS-CoV-2 positivity, age, or the presence of symptoms. The results were correlated with Types I and III IFN genes and IFN-stimulated genes (ISGs). RESULTS We found that NRF2 expression was markedly diminished in positive patients compared to negative. Moreover, it correlated with higher expression of IFNα2 and IFNλ3, as well as ISG15 and ISG56. Interestingly, symptomatic patients with anosmia/ageusia showed pronounced expression of apurinic/apyrimidinic endonuclease1/redox factor 1 (APE1), together with Type I IFNs, ISG56, and the inflammasome component NLRP3. CONCLUSION The results indicate an interdependence between NRF2 antioxidant pathway and IFN-mediated response during SARS-CoV-2 infection in young subjects.
Collapse
Affiliation(s)
- Toscanelli Walter
- Laboratory Affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti, Department of Public Health and Infectious DiseasesSapienza UniversityRomeItaly
| | - Fracella Matteo
- Laboratory of Virology, Department of Molecular MedicineSapienza UniversityRomeItaly
| | - De Angelis Marta
- Laboratory Affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti, Department of Public Health and Infectious DiseasesSapienza UniversityRomeItaly
- Laboratory of Virology, Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Scagnolari Carolina
- Laboratory of Virology, Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Sorrentino Leonardo
- Laboratory of Virology, Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Piselli Elena
- Laboratory Affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti, Department of Public Health and Infectious DiseasesSapienza UniversityRomeItaly
| | - Marcocci Maria Elena
- Laboratory Affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti, Department of Public Health and Infectious DiseasesSapienza UniversityRomeItaly
| | - Midulla Fabio
- Department of Maternal Infantile and Urological SciencesSapienza UniversityRomeItaly
| | - Mancino Enrica
- Department of Maternal Infantile and Urological SciencesSapienza UniversityRomeItaly
| | - Nenna Raffaella
- Department of Maternal Infantile and Urological SciencesSapienza UniversityRomeItaly
| | - Petrarca Laura
- Department of Maternal Infantile and Urological SciencesSapienza UniversityRomeItaly
| | - Palamara Anna Teresa
- Laboratory Affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti, Department of Public Health and Infectious DiseasesSapienza UniversityRomeItaly
- Department of Infectious DiseasesIstituto Superiore di SanitàRomeItaly
| | - Antonelli Guido
- Laboratory of Virology, Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Pierangeli Alessandra
- Laboratory of Virology, Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Nencioni Lucia
- Laboratory Affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti, Department of Public Health and Infectious DiseasesSapienza UniversityRomeItaly
| |
Collapse
|
12
|
Xu M, Ruan S, Sun J, Li J, Chen D, Ma Y, Qi Y, Liu Z, Ruan Q, Huang Y. Human cytomegalovirus RNA2.7 inhibits ferroptosis by upregulating ferritin and GSH via promoting ZNF395 degradation. PLoS Pathog 2024; 20:e1012815. [PMID: 39724092 PMCID: PMC11709246 DOI: 10.1371/journal.ppat.1012815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/08/2025] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a herpes virus with a long replication cycle. HCMV encoded long non-coding RNA termed RNA2.7 is the dominant transcript with a length of about 2.5kb, accounting for 25% of total viral transcripts. Studies have shown that HCMV RNA2.7 inhibits apoptosis caused by infection. The effect of RNA2.7 on other forms of cell death is still unclear. In this work, we found that RNA2.7 deletion significantly decreased the viability of HCMV-infected cells, while treatment with ferroptosis inhibitor Fer-1 rescued the infection-induced cell death, demonstrating an anti-ferroptosis role of RNA2.7. The results further showed that RNA2.7 inhibited ferroptosis via enhancing Ferritin Heavy Chain 1 (FTH1) and Solute Carrier Family 7 Member 11 (SLC7A11) expression in Erastin treated cells without involving other viral components. Pooled Genome-wide CRISPR screening revealed zinc finger protein 395 (ZNF395) as a new regulator repressing the expression of FTH1 and SLC7A11. HCMV RNA2.7 promoted proteasome-mediated degradation of ZNF395 that resulted in upregulation of FTH1 and SLC7A11 to inhibit ferroptosis, therefore maintain survival in host cells and complete replication of virus.
Collapse
Affiliation(s)
- Mingyi Xu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shan Ruan
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingxuan Sun
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianming Li
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dan Chen
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Gynaecology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yanping Ma
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Obstetrics and Gynecocology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Qi
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Obstetrics and Gynecocology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongyang Liu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Obstetrics and Gynecocology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiang Ruan
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Obstetrics and Gynecocology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yujing Huang
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Obstetrics and Gynecocology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Qi WH, Tang N, Zhao ZJ, Li XQ. Transient receptor potential channels in viral infectious diseases: Biological characteristics and regulatory mechanisms. J Adv Res 2024:S2090-1232(24)00541-1. [PMID: 39551130 DOI: 10.1016/j.jare.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Viral infectious diseases have long posed a challenge to humanity. In recent decades, transient receptor potential (TRP) channels have emerged as newly investigated cation channels. Increasing evidence suggests that TRP channel-mediated Ca2+ homeostasis disruptions, along with associated pathological changes, are critical factors in the onset and progression of viral infectious diseases. However, the precise roles and mechanisms of TRP channels in these diseases remain to be systematically elucidated. AIM OF REVIEW The aim of this review is to systematically summarize recent advances in understanding TRP channels in viral infections, and based on current progress and challenges, propose future directions for research. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the classification and biological functions of the TRP family, explores the mechanisms by which TRP channels contribute to viral infections, and highlights specific mechanisms at three levels: virus, host, and outcome. These include the direct role in viral biology and replication, the indirect role in host immunity and inflammation, and the resulting pathological changes. Additionally, we discuss the potential applications of the TRP family in the treatment of viral infectious diseases and propose future research directions.
Collapse
Affiliation(s)
- Wen-Hui Qi
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, Air Force Medical University, Xi'an, Shaanxi 710032, China; Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Na Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, Air Force Medical University, Xi'an, Shaanxi 710032, China; Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Zhi-Jing Zhao
- Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China; Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Xiao-Qiang Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, Air Force Medical University, Xi'an, Shaanxi 710032, China; Research Institution, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
14
|
Wang M, Bo Z, Zhang C, Guo M, Wu Y, Zhang X. Interaction Network Characterization of Infectious Bronchitis Virus Nsp2 with Host Proteins. Vet Sci 2024; 11:531. [PMID: 39591305 PMCID: PMC11598884 DOI: 10.3390/vetsci11110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Infectious bronchitis (IB) is a highly contagious acute viral disease that leads to substantial economic losses in the poultry industry. Previous research conducted in our laboratory has indicated that Nsp2 may serve as a key virulence factor within the IBV genome, as evidenced by its pronounced divergence between the field strain and its attenuated counterpart. Understanding the interaction between Nsp2 and host proteins is crucial to elucidating the role of the Nsp2 protein in the pathogenesis and proliferation of IBV. Currently, much remains to be uncovered regarding the host proteins that interact with the IBV Nsp2 protein. In this study, 10 host proteins, including COX1, COX3, NFIA, ITGA1, ATP1B1, ATP1B3, ABCB1, ISCA1, DNAJA1, and IREB2, were screened to interact with IBV Nsp2 through yeast two-hybrid experiments and molecular docking simulations. Furthermore, the interaction of Nsp2 with ATP1B3, DNAJA1, and ISCA1 proteins was further validated through co-immunoprecipitation and confocal experiments. The GO, KEGG, and PPI databases revealed that the host proteins interacting with Nsp2 are primarily associated with ATPase activation, Fe-S cluster binding, ion homeostasis, and innate immune regulation. The examination of the expression levels of these Nsp2-interacting host proteins during IBV infection demonstrated the significant downregulation of COX3, COX1, ATP1B1, and ATP1B3, while NFIA, DNAJA1, and IREB2 showed significant upregulation. Moreover, our study identified that IBV enhances viral replication by upregulating DNAJA1 expression, although the underlying mechanism requires further investigation. These findings provide valuable insights into the potential role of the Nsp2 protein in the pathogenesis of IBV.
Collapse
Affiliation(s)
- Mengmeng Wang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
| | - Zongyi Bo
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
| | - Mengjiao Guo
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
| | - Yantao Wu
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
| |
Collapse
|
15
|
Li S, Zhang G, Hu J, Tian Y, Fu X. Ferroptosis at the nexus of metabolism and metabolic diseases. Theranostics 2024; 14:5826-5852. [PMID: 39346540 PMCID: PMC11426249 DOI: 10.7150/thno.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, is emerging as a crucial regulator of human physiology and pathology. Increasing evidence showcases a reciprocal relationship between ferroptosis and dysregulated metabolism, propagating a pathogenic vicious cycle that exacerbates pathology and human diseases, particularly metabolic disorders. Consequently, there is a rapidly growing interest in developing ferroptosis-based therapeutics. Therefore, a comprehensive understanding of the intricate interplay between ferroptosis and metabolism could provide an invaluable resource for mechanistic insight and therapeutic development. In this review, we summarize the important metabolic substances and associated pathways in ferroptosis initiation and progression, outline the cascade responses of ferroptosis in disease development, overview the roles and mechanisms of ferroptosis in metabolic diseases, introduce the methods for ferroptosis detection, and discuss the therapeutic perspectives of ferroptosis, which collectively aim to illustrate a comprehensive view of ferroptosis in basic, translational, and clinical science.
Collapse
Affiliation(s)
- Shuangwen Li
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guixiang Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiankun Hu
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
16
|
Romeo PH, Conquet L, Messiaen S, Pascal Q, Moreno SG, Bravard A, Bernardino-Sgherri J, Dereuddre-Bosquet N, Montagutelli X, Le Grand R, Petit V, Ferri F. Multiple Mechanisms of Action of Sulfodyne ®, a Natural Antioxidant, against Pathogenic Effects of SARS-CoV-2 Infection. Antioxidants (Basel) 2024; 13:1083. [PMID: 39334742 PMCID: PMC11429452 DOI: 10.3390/antiox13091083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Few therapeutic options are available to treat COVID-19. The KEAP1/NRF2 pathway, the major redox-responsive pathway, has emerged as a potential therapeutic target for COVID-19 as it regulates redox homeostasis and inflammation that are altered during SARS-CoV-2 infection. Here, we characterized the effects of NRF2-agonist Sulfodyne®, a stabilized natural Sulforaphane, in cellular and animal models of SARS-CoV-2 infection. In pulmonary or colonic epithelial cell lines, Sulfodyne® elicited a more efficient inhibition of SARS-CoV-2 replication than NRF2-agonists DMF and CDDO. This antiviral activity was not dependent on NRF2 but was associated with the regulation of several metabolic pathways, including the inhibition of ER stress and mTOR signaling, which are activated during SARS-CoV-2 infection. Sulfodyne® also decreased SARS-CoV-2 mediated inflammatory responses by inhibiting the delayed induction of IFNB1 and type I IFN-stimulated genes in infected epithelial cell lines and by reducing the activation of human by-stander monocytes recruited after SARS-CoV-2 infection. In K18-hACE2 mice infected with SARS-CoV-2, Sulfodyne® treatment reduced both early lung viral load and disease severity by fine-tuning IFN-beta levels. Altogether, these results provide evidence for multiple mechanisms that underlie the antiviral and anti-inflammatory activities of Sulfodyne® and pinpoint Sulfodyne® as a potent therapeutic agent against pathogenic effects of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Paul-Henri Romeo
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Laurine Conquet
- Mouse Genetics Laboratory, Université Paris Cité, Institut Pasteur, 75724 Paris, France
| | - Sébastien Messiaen
- Laboratory on Development of the Gonads (LDG/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Development of the Gonads (LDG/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Quentin Pascal
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Stéphanie G Moreno
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Anne Bravard
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Jacqueline Bernardino-Sgherri
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Xavier Montagutelli
- Mouse Genetics Laboratory, Université Paris Cité, Institut Pasteur, 75724 Paris, France
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Vanessa Petit
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Federica Ferri
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| |
Collapse
|
17
|
Kombe Kombe AJ, Fotoohabadi L, Nanduri R, Gerasimova Y, Daskou M, Gain C, Sharma E, Wong M, Kelesidis T. The Role of the Nrf2 Pathway in Airway Tissue Damage Due to Viral Respiratory Infections. Int J Mol Sci 2024; 25:7042. [PMID: 39000157 PMCID: PMC11241721 DOI: 10.3390/ijms25137042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory viruses constitute a significant cause of illness and death worldwide. Respiratory virus-associated injuries include oxidative stress, ferroptosis, inflammation, pyroptosis, apoptosis, fibrosis, autoimmunity, and vascular injury. Several studies have demonstrated the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) in the pathophysiology of viral infection and associated complications. It has thus emerged as a pivotal player in cellular defense mechanisms against such damage. Here, we discuss the impact of Nrf2 activation on airway injuries induced by respiratory viruses, including viruses, coronaviruses, rhinoviruses, and respiratory syncytial viruses. The inhibition or deregulation of Nrf2 pathway activation induces airway tissue damage in the presence of viral respiratory infections. In contrast, Nrf2 pathway activation demonstrates protection against tissue and organ injuries. Clinical trials involving Nrf2 agonists are needed to define the effect of Nrf2 therapeutics on airway tissues and organs damaged by viral respiratory infections.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Leila Fotoohabadi
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Ravikanth Nanduri
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Yulia Gerasimova
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Maria Daskou
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chandrima Gain
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Muzammil K, Sabah Ghnim Z, Saeed Gataa I, Fawzi Al-Hussainy A, Ali Soud N, Adil M, Ali Shallan M, Yasamineh S. NRF2-mediated regulation of lipid pathways in viral infection. Mol Aspects Med 2024; 97:101279. [PMID: 38772081 DOI: 10.1016/j.mam.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
The first line of defense against viral infection of the host cell is the cellular lipid membrane, which is also a crucial first site of contact for viruses. Lipids may sometimes be used as viral receptors by viruses. For effective infection, viruses significantly depend on lipid rafts during the majority of the viral life cycle. It has been discovered that different viruses employ different lipid raft modification methods for attachment, internalization, membrane fusion, genome replication, assembly, and release. To preserve cellular homeostasis, cells have potent antioxidant, detoxifying, and cytoprotective capabilities. Nuclear factor erythroid 2-related factor 2 (NRF2), widely expressed in many tissues and cell types, is one crucial component controlling electrophilic and oxidative stress (OS). NRF2 has recently been given novel tasks, including controlling inflammation and antiviral interferon (IFN) responses. The activation of NRF2 has two effects: it may both promote and prevent the development of viral diseases. NRF2 may also alter the host's metabolism and innate immunity during viral infection. However, its primary function in viral infections is to regulate reactive oxygen species (ROS). In several research, the impact of NRF2 on lipid metabolism has been examined. NRF2 is also involved in the control of lipids during viral infection. We evaluated NRF2's function in controlling viral and lipid infections in this research. We also looked at how lipids function in viral infections. Finally, we investigated the role of NRF2 in lipid modulation during viral infections.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | | | | | | | - Nashat Ali Soud
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
19
|
Qiu B, Zandkarimi F, Saqi A, Castagna C, Tan H, Sekulic M, Miorin L, Hibshoosh H, Toyokuni S, Uchida K, Stockwell BR. Fatal COVID-19 pulmonary disease involves ferroptosis. Nat Commun 2024; 15:3816. [PMID: 38769293 PMCID: PMC11106344 DOI: 10.1038/s41467-024-48055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
SARS-CoV-2 infection causes severe pulmonary manifestations, with poorly understood mechanisms and limited treatment options. Hyperferritinemia and disrupted lung iron homeostasis in COVID-19 patients imply that ferroptosis, an iron-dependent cell death, may occur. Immunostaining and lipidomic analysis in COVID-19 lung autopsies reveal increases in ferroptosis markers, including transferrin receptor 1 and malondialdehyde accumulation in fatal cases. COVID-19 lungs display dysregulation of lipids involved in metabolism and ferroptosis. We find increased ferritin light chain associated with severe COVID-19 lung pathology. Iron overload promotes ferroptosis in both primary cells and cancerous lung epithelial cells. In addition, ferroptosis markers strongly correlate with lung injury severity in a COVID-19 lung disease model using male Syrian hamsters. These results reveal a role for ferroptosis in COVID-19 pulmonary disease; pharmacological ferroptosis inhibition may serve as an adjuvant therapy to prevent lung damage during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Baiyu Qiu
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Fereshteh Zandkarimi
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
- Mass Spectrometry Core Facility, Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Candace Castagna
- Institute of Comparative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Hui Tan
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
20
|
Zhang F, Xiang Y, Ma Q, Guo E, Zeng X. A deep insight into ferroptosis in lung disease: facts and perspectives. Front Oncol 2024; 14:1354859. [PMID: 38562175 PMCID: PMC10982415 DOI: 10.3389/fonc.2024.1354859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
In the last decade, ferroptosis has received much attention from the scientific research community. It differs from other modes of cell death at the morphological, biochemical, and genetic levels. Ferroptosis is mainly characterized by non-apoptotic iron-dependent cell death caused by iron-dependent lipid peroxide excess and is accompanied by abnormal iron metabolism and oxidative stress. In recent years, more and more studies have shown that ferroptosis is closely related to the occurrence and development of lung diseases. COPD, asthma, lung injury, lung fibrosis, lung cancer, lung infection and other respiratory diseases have become the third most common chronic diseases worldwide, bringing serious economic and psychological burden to people around the world. However, the exact mechanism by which ferroptosis is involved in the development and progression of lung diseases has not been fully revealed. In this manuscript, we describe the mechanism of ferroptosis, targeting of ferroptosis related signaling pathways and proteins, summarize the relationship between ferroptosis and respiratory diseases, and explore the intervention and targeted therapy of ferroptosis for respiratory diseases.
Collapse
Affiliation(s)
- Fan Zhang
- Wuhan University of Science and Technology, School of Medicine, Wuhan, China
| | - Yu Xiang
- Wuhan University of Science and Technology, School of Medicine, Wuhan, China
| | - Qiao Ma
- Wuhan University of Science and Technology, School of Medicine, Wuhan, China
| | - E. Guo
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Xiansheng Zeng
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
21
|
Ding L. Ferroptosis in viral infection: a potential therapeutic target. Future Microbiol 2024; 19:519-524. [PMID: 38411103 PMCID: PMC11216501 DOI: 10.2217/fmb-2023-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 02/28/2024] Open
Abstract
Ferroptosis, known as a type of programmed cell death that is iron dependent, is characterized by intracellular iron accumulation, glutathione depletion, glutathione peroxidase inactivation and lipid peroxidation. More and more research in recent years has demonstrated the tight connection between viral infections and ferroptosis. This article reviews the potential role and mechanism of ferroptosis in viral infection, and these findings will help in the prevention and treatment of the virus.
Collapse
Affiliation(s)
- Liqiong Ding
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science & Technology, Xianning, China
| |
Collapse
|
22
|
Deshpande R, Li W, Li T, Fanning KV, Clemens Z, Nyunoya T, Zhang L, Deslouches B, Barchowsky A, Wenzel S, McDyer JF, Zou C. SARS-CoV-2 Accessory Protein Orf7b Induces Lung Injury via c-Myc Mediated Apoptosis and Ferroptosis. Int J Mol Sci 2024; 25:1157. [PMID: 38256231 PMCID: PMC10816122 DOI: 10.3390/ijms25021157] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) has been the foremost modern global public health challenge. The airway is the primary target in severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) infection, with substantial cell death and lung injury being signature hallmarks of exposure. The viral factors that contribute to cell death and lung injury remain incompletely understood. Thus, this study investigated the role of open reading frame 7b (Orf7b), an accessory protein of the virus, in causing lung injury. In screening viral proteins, we identified Orf7b as one of the major viral factors that mediates lung epithelial cell death. Overexpression of Orf7b leads to apoptosis and ferroptosis in lung epithelial cells, and inhibitors of apoptosis and ferroptosis ablate Orf7b-induced cell death. Orf7b upregulates the transcription regulator, c-Myc, which is integral in the activation of lung cell death pathways. Depletion of c-Myc alleviates both apoptotic and ferroptotic cell deaths and lung injury in mouse models. Our study suggests a major role of Orf7b in the cell death and lung injury attributable to COVID-19 exposure, supporting it as a potential therapeutic target.
Collapse
Affiliation(s)
- Rushikesh Deshpande
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
| | - Wangyang Li
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - Tiao Li
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - Kristen V. Fanning
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - Zachary Clemens
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
| | - Toru Nyunoya
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - Lianghui Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Berthony Deslouches
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
| | - Sally Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - John F. McDyer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - Chunbin Zou
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| |
Collapse
|
23
|
Banerjee S, Sarkar R, Mukherjee A, Mitra S, Gope A, Chawla-Sarkar M. Rotavirus-induced lncRNA SLC7A11-AS1 promotes ferroptosis by targeting cystine/glutamate antiporter xCT (SLC7A11) to facilitate virus infection. Virus Res 2024; 339:199261. [PMID: 37923170 PMCID: PMC10684390 DOI: 10.1016/j.virusres.2023.199261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Rotavirus (RV) is the primary etiological agent of virus-associated gastroenteritis in infants, causing 200,000 childhood death annually. Despite the availability of vaccines, rotaviral diarrhea continues to be a severe issue in underdeveloped nations in Asia and Africa. The situation demands continual studies on host-rotavirus interactions to understand disease pathogenesis and develop effective antiviral therapeutics. Long non-coding RNAs (lncRNAs), which are a subset of non-coding RNAs of more than 200 nucleotides in length, are reported to play a regulatory function in numerous viral infections. Virus infection often alters the host transcriptome including lncRNA that are differentially expressed either to play an antiviral role or to be advantageous towards virus propagation. In the current study, qPCR array-based expression profiling of host lncRNAs was performed in rotavirus-infected HT-29 cells that identified the lncRNA SLC7A11-AS1 to be upregulated during RV infection. Knockdown of SLC7A11-AS1 conspicuously reduced RV titers implying its pro-viral significance. RV-induced SLC7A11-AS1 downregulates the gene SLC7A11/xCT that encodes the light chain subunit of the system XC- cystine-glutamate exchange transporter, leading to decrease in intracellular glutathione level and increase in lipid peroxidation, which are signature features of ferroptotic pathway. Ectopic expression of xCT also abrogated RV infection by reversing the virus optimized levels of intracellular GSH and lipid ROS levels. Cumulatively, the study reveals that RV infection triggers ferroptotic cell death via SLC7A11-AS1/xCT axis to facilitate its own propagation.
Collapse
Affiliation(s)
- Shreya Banerjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Rakesh Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Arpita Mukherjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Suvrotoa Mitra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Animesh Gope
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India.
| |
Collapse
|
24
|
Daskou M, Fotooh Abadi L, Gain C, Wong M, Sharma E, Kombe Kombe AJ, Nanduri R, Kelesidis T. The Role of the NRF2 Pathway in the Pathogenesis of Viral Respiratory Infections. Pathogens 2023; 13:39. [PMID: 38251346 PMCID: PMC10819673 DOI: 10.3390/pathogens13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
In humans, acute and chronic respiratory infections caused by viruses are associated with considerable morbidity and mortality. Respiratory viruses infect airway epithelial cells and induce oxidative stress, yet the exact pathogenesis remains unclear. Oxidative stress activates the transcription factor NRF2, which plays a key role in alleviating redox-induced cellular injury. The transcriptional activation of NRF2 has been reported to affect both viral replication and associated inflammation pathways. There is complex bidirectional crosstalk between virus replication and the NRF2 pathway because virus replication directly or indirectly regulates NRF2 expression, and NRF2 activation can reversely hamper viral replication and viral spread across cells and tissues. In this review, we discuss the complex role of the NRF2 pathway in the regulation of the pathogenesis of the main respiratory viruses, including coronaviruses, influenza viruses, respiratory syncytial virus (RSV), and rhinoviruses. We also summarize the scientific evidence regarding the effects of the known NRF2 agonists that can be utilized to alter the NRF2 pathway.
Collapse
Affiliation(s)
- Maria Daskou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leila Fotooh Abadi
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Chandrima Gain
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arnaud John Kombe Kombe
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Ravikanth Nanduri
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| |
Collapse
|
25
|
Zhang Q, Luo Y, Peng L, Rong X, Liu Y, Li J, Luo J. Ferroptosis in cardiovascular diseases: role and mechanism. Cell Biosci 2023; 13:226. [PMID: 38102663 PMCID: PMC10724928 DOI: 10.1186/s13578-023-01169-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
In multicellular organisms, regulatory cell death is a crucial aspect of growth and development. Ferroptosis, which was postulated roughly ten years ago, is a mode of cell death that differs from apoptosis, autophagy, and pyrodeath. This distinct pattern of cell death is triggered by an imbalance between oxidants and antioxidants and strongly associated with the metabolism of iron, lipids, amino acids, and glutathione. A growing body of research has implicated ferroptosis in the incidence and progression of many organ traumas and degenerative diseases. Recently, ferroptosis has gained attention as a crucial regulatory mechanism underlying the initiation and development of a variety of cardiovascular diseases, including myocardial ischemia/reperfusion injury, cardiomyopathy, arrhythmia, chemotherapy, and Corona Virus-2-induced cardiac injury. Pharmacological therapies that inhibit ferroptosis have great potential for the management of cardiovascular disorders. This review discusses the prevalence and regulatory mechanisms of ferroptosis, effect of ferroptosis on the immune system, significance of ferroptosis in cardiovascular diseases, and potential therapeutic value of regulating ferroptosis in a variety of heart diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Rong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yingxue Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiafu Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Collaborative Innovation Centre for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Collaborative Innovation Centre for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.
| |
Collapse
|