1
|
Bibha K, Akhigbe TM, Hamed MA, Akhigbe RE. Metabolic Derangement by Arsenic: a Review of the Mechanisms. Biol Trace Elem Res 2024; 202:1972-1982. [PMID: 37670201 DOI: 10.1007/s12011-023-03828-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Studies have implicated arsenic exposure in various pathological conditions, including metabolic disorders, which have become a global phenomenon, affecting developed, developing, and under-developed nations. Despite the huge risks associated with arsenic exposure, humans remain constantly exposed to it, especially through the consumption of contaminated water and food. This present study provides an in-depth insight into the mechanistic pathways involved in the metabolic derangement by arsenic. Compelling pieces of evidence demonstrate that arsenic induces metabolic disorders via multiple pathways. Apart from the initiation of oxidative stress and inflammation, arsenic prevents the phosphorylation of Akt at Ser473 and Thr308, leading to the inhibition of PDK-1/Akt insulin signaling, thereby reducing GLUT4 translocation through the activation of Nrf2. Also, arsenic downregulates mitochondrial deacetylase Sirt3, decreasing the ability of its associated transcription factor, FOXO3a, to bind to the agents that support the genes for manganese superoxide dismutase and PPARg co-activator (PGC)-1a. In addition, arsenic activates MAPKs, modulates p53/ Bcl-2 signaling, suppresses Mdm-2 and PARP, activates NLRP3 inflammasome and caspase-mediated apoptosis, and induces ER stress, and ox-mtDNA-dependent mitophagy and autophagy. More so, arsenic alters lipid metabolism by decreasing the presence of 3-hydroxy-e-methylglutaryl-CoA synthase 1 and carnitine O-octanoyl transferase (Crot) and increasing the presence of fatty acid-binding protein-3 mRNA. Furthermore, arsenic promotes atherosclerosis by inducing endothelial damage. This cascade of pathophysiological events promotes metabolic derangement. Although the pieces of evidence provided by this study are convincing, future studies evaluating the involvement of other likely mechanisms are important. Also, epidemiological studies might be necessary for the translation of most of the findings in animal models to humans.
Collapse
Affiliation(s)
- K Bibha
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - T M Akhigbe
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M A Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.
| |
Collapse
|
2
|
Han Y, Gao T, Li X, Wāng Y. Didactical approaches and insights into environmental processes and cardiovascular hazards of arsenic contaminants. CHEMOSPHERE 2024; 352:141381. [PMID: 38360414 DOI: 10.1016/j.chemosphere.2024.141381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Arsenic, as a metalloid, has the ability to move and transform in different environmental media. Its widespread contamination has become a significant environmental problem and public concern. Arsenic can jeopardize multiple organs through various pathways, influenced by environmental bioprocesses. This article provides a comprehensive overview of current research on the cardiovascular hazards of arsenic. A bibliometric analysis revealed that there are 376 papers published in 145 journals, involving 40 countries, 631 institutions, and 2093 authors, all focused on arsenic-related concerns regarding cardiovascular health. China and the U.S. have emerged as the central hubs of collaborative relationships and have the highest number of publications. Hypertension and atherosclerosis are the most extensively studied topics, with redox imbalance, apoptosis, and methylation being the primary mechanistic clues. Cardiovascular damage caused by arsenic includes arrhythmia, cardiac remodeling, vascular leakage, and abnormal angiogenesis. However, the current understanding is still inadequate over cardiovascular impairments, underlying mechanisms, and precautionary methods of arsenic, thus calling an urgent need for further studies to bridge the gap between environmental processes and arsenic hazards.
Collapse
Affiliation(s)
- Yapeng Han
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Tiantian Gao
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiaozhi Li
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yán Wāng
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
3
|
Kaur G, Desai KP, Chang IY, Newman JD, Mathew RO, Bangalore S, Venditti FJ, Sidhu MS. A Clinical Perspective on Arsenic Exposure and Development of Atherosclerotic Cardiovascular Disease. Cardiovasc Drugs Ther 2023; 37:1167-1174. [PMID: 35029799 PMCID: PMC12117844 DOI: 10.1007/s10557-021-07313-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 11/03/2022]
Abstract
Cardiovascular risk has traditionally been defined by modifiable and non-modifiable risk factors, such as tobacco use, hyperlipidemia, and family history. However, chemicals and pollutants may also play a role in cardiovascular disease (CVD) risk. Arsenic is a naturally occurring element that is widely distributed in the Earth's crust. Inorganic arsenic (iAs) has been implicated in the pathogenesis of atherosclerosis, with chronic high-dose exposure to iAs (> 100 µg/L) being linked to CVD; however, whether low-to-moderate dose exposures of iAs (< 100 µg/L) are associated with the development of CVD is unclear. Due to limitations of the existing literature, it is difficult to define a threshold for iAs toxicity. Studies demonstrate that the effect of iAs on CVD is far more complex with influences from several factors, including diet, genetics, metabolism, and traditional risk factors such as hypertension and smoking. In this article, we review the existing data of low-to-moderate dose iAs exposure and its effect on CVD, along with highlighting the potential mechanisms of action.
Collapse
Affiliation(s)
- Gurleen Kaur
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Karan P Desai
- Division of Cardiovascular Medicine, University of Maryland, Baltimore, MD, USA
| | | | - Jonathan D Newman
- Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | - Roy O Mathew
- Division of Nephrology, Loma Linda VA Health Care System, Loma Linda, CA, USA
| | - Sripal Bangalore
- Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | - Ferdinand J Venditti
- Division of Cardiology, Department of Medicine, Albany Medical College and Albany Medical Center, Albany, NY, USA
| | - Mandeep S Sidhu
- Division of Cardiology, Department of Medicine, Albany Medical College and Albany Medical Center, Albany, NY, USA.
| |
Collapse
|
4
|
Rychlik KA, Illingworth EJ, Sanchez IF, Attreed SE, Sinha P, Casin KM, Taube N, Loube J, Tasneen R, Kabir R, Nuermberger E, Mitzner W, Kohr MJ, Sillé FCM. Long-term effects of prenatal arsenic exposure from gestational day 9 to birth on lung, heart, and immune outcomes in the C57BL/6 mouse model. Toxicol Lett 2023; 383:17-32. [PMID: 37244563 PMCID: PMC10527152 DOI: 10.1016/j.toxlet.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Prenatal arsenic exposure is a major public health concern, associated with altered birth outcomes and increased respiratory disease risk. However, characterization of the long-term effects of mid-pregnancy (second trimester) arsenic exposure on multiple organ systems is scant. This study aimed to characterize the long-term impact of mid-pregnancy inorganic arsenic exposure on the lung, heart, and immune system, including infectious disease response using the C57BL/6 mouse model. Mice were exposed from gestational day 9 till birth to either 0 or 1000 µg/L sodium (meta)arsenite in drinking water. Male and female offspring assessed at adulthood (10-12 weeks of age) did not show significant effects on recovery outcomes after ischemia reperfusion injury but did exhibit increased airway hyperresponsiveness compared to controls. Flow cytometric analysis revealed significantly greater total numbers of cells in arsenic-exposed lungs, lower MHCII expression in natural killer cells, and increased percentages of dendritic cell populations. Activated interstitial (IMs) and alveolar macrophages (AMs) isolated from arsenic-exposed male mice produced significantly less IFN-γ than controls. Conversely, activated AMs from arsenic-exposed females produced significantly more IFN-γ than controls. Although systemic cytokine levels were higher upon Mycobacterium tuberculosis (Mtb) infection in prenatally arsenic-exposed offspring there was no difference in lung Mtb burden compared to controls. This study highlights significant long-term impacts of prenatal arsenic exposure on lung and immune cell function. These effects may contribute to the elevated risk of respiratory diseases associated with prenatal arsenic exposure in epidemiology studies and point to the need for more research into mechanisms driving these maintained responses.
Collapse
Affiliation(s)
- Kristal A Rychlik
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Public Health Program, School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | - Emily J Illingworth
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ian F Sanchez
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah E Attreed
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Plum Island, CT, USA
| | - Prithvi Sinha
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kevin M Casin
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Nicole Taube
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jeff Loube
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Rokeya Tasneen
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raihan Kabir
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Eric Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Fenna C M Sillé
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Tian X, Wang M, Ying X, Dong N, Li M, Feng J, Zhao Y, Zhao Q, Tian F, Li B, Zhang W, Qiu Y, Yan X. Co-exposure to arsenic and fluoride to explore the interactive effect on oxidative stress and autophagy in myocardial tissue and cell. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114647. [PMID: 36801539 DOI: 10.1016/j.ecoenv.2023.114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Co-contamination of arsenic and fluoride is widely distributed in groundwater. However, little is known about the interactively influence of arsenic and fluoride, especially the combined mechanism in cardiotoxicity. Cellular and animal models exposure to arsenic and fluoride were established to assess the oxidative stress and autophagy mechanism of cardiotoxic damage using the factorial design, a widely used statistical method for assessing two factor interventions. In vivo, combined exposure to high arsenic (50 mg/L) and high fluoride (100 mg/L) induced myocardial injury. The damage is accompanied by accumulation of myocardial enzyme, mitochondrial disorder, and excessive oxidative stress. Further experiment identified that arsenic and fluoride induced the accumulation of autophagosome and increased expression level of autophagy related genes during the cardiotoxicity process. These findings were further demonstrated through the in vitro model of arsenic and fluoride-treated the H9c2 cells. Additionally, combined of arsenic-fluoride exposure possesses the interactively influence on oxidative stress and autophagy, contributing to the myocardial cell toxicity. In conclusion, our data suggest that oxidative stress and autophagy are involved in the process of cardiotoxic injury, and that these indicators showed interaction effect in response to the combined exposure of arsenic and fluoride.
Collapse
Affiliation(s)
- Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Nisha Dong
- Heping Hospital Affiliated To Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jing Feng
- Laboratory of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qian Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wenping Zhang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
6
|
Sagha A, Shiri H, Juybari KB, Mehrabani M, Nasri HR, Nematollahi MH. The Association Between Arsenic Levels and Oxidative Stress in Myocardial Infarction: A Case-Control Study. Cardiovasc Toxicol 2023; 23:61-73. [PMID: 36648739 DOI: 10.1007/s12012-022-09778-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023]
Abstract
Cardiovascular diseases (CVDs) are known as the first causes of death throughout the world, and mainly myocardial infarction (MI), lead to 7.4 million deaths annually. Atherosclerosis is the major underlying cause of most CVDs. However, exposure to heavy metals, among other factors, deserves further attention as a risk factor for CVDs. This study was designed to evaluate the levels of arsenic (Ars) in myocardial infarction (MI) patients and healthy individuals as well as assess the association between the incidence of MI and Ars, total antioxidant capacity (TAC), and oxidative stress. This case-control study was conducted among patients with MI (n = 164) and normal individuals (n = 61) at Shafa Hospital in Kerman, Iran. Patients were classified into two groups, including coronary artery blocks above 50% (CAB > 50%, n = 83) and coronary artery blocks less than 50% (CAB < 50%, n = 83) based on their angiography findings. The demographic characteristics, clinical history, biochemical parameters, and serum Ars and TAC levels were evaluated. In the present study, both CAB groups had significantly reduced levels of TAC compared with the control. Furthermore, TAC was lower in the CAB > %50 group compared to the CAB < %50 group. Ars levels were significantly higher in both CAB groups compared with the control. There was a significant positive relationship between CAB and Ars, BG, HbA1c, urea, creatinine, TG, TC, and LDL-c, as well as a negative relationship between HDL-c and TAC. Moreover, TAC levels showed a significant inverse correlation with Ars, HbA1c, and creatinine, and a positive correlation with HDL-c. As risk factors, Ars, hs-CRP, TG, TC, and LDL-c enhance the severity of the disease, and HDL-c and TAC decrease the disease severity. Moreover, ROC curve analysis revealed that the highest AUC for the CAB > %50 (AUC = 78.29), and cytotoxic levels for both CAB groups (Ars ≥ 0.105 ppm), and no significant differences were found between the two groups. Our findings suggest that Ars at ≥ 0.105 ppm is able to increase the risk of MI through the increased OS and decreased TAC.
Collapse
Affiliation(s)
- Arian Sagha
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamidreza Shiri
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Reza Nasri
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, and Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Hadi Nematollahi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
Andrews FV, Branscum A, Hystad P, Smit E, Afroz S, Golam M, Sharif O, Rahman M, Quamruzzaman Q, Christiani DC, Kile ML. A prospective study of arsenic and manganese exposures and maternal blood pressure during gestation. ENVIRONMENTAL RESEARCH 2022; 214:113845. [PMID: 35830911 PMCID: PMC9629670 DOI: 10.1016/j.envres.2022.113845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pregnancy is a sensitive time for maternal cardiovascular functioning and exposures to arsenic or manganese may adversely affect blood pressure (BP). OBJECTIVES This study examined the associations between arsenic and manganese exposures and maternal BP measured during pregnancy. Effect modification by pre-pregnancy body mass index (BMI) was evaluated. METHODS Pregnant women (N = 1522) were recruited for a prospective cohort study in Bangladesh (2008-2011). Exposure to arsenic and manganese was measured in drinking water at <16 weeks gestation and toenails at one-month postpartum. Systolic and diastolic BP were measured monthly. Linear mixed models estimated mean BP and differences in mean BP over gestation for arsenic or manganese exposures and adjusted for covariates. RESULTS Arsenic levels had an increasing dose-response association with maternal BP after 25 weeks gestation. Effect modification was observed for BMI. Participants with lower BMI (<23 kg/m2) exposed to 50 μg/L arsenic had 2.83 mmHg (95% CI:1.74-3.92) greater mean systolic and 1.96 mmHg (95% CI: 1.02-2.91 mmHg) diastolic BP compared to those exposed to ≤ 1 μg/L arsenic at 40 weeks gestation. Participants with higher BMI (≥23 kg/m2) showed a greater mean systolic BP of 5.72 mmHg (95% CI: 3.18-8.27 mmHg) and diastolic BP change of 6.09 mmHg (95% CI: 4.02-8.16 mmHg) at 40 weeks gestation when exposed to 50 μg/L compared to ≤ 1 μg/L arsenic. Participants with lower BMI exposed to drinking water manganese in the 2nd quartile (181-573 μg/L) had 1.04 mmHg higher mean diastolic BP (95% CI: 0.01-2.07 mmHg) at 40 weeks gestation compared to those in the 1st quartile (0.5-180 μg/L). CONCLUSION Arsenic exposures during pregnancy were consistently associated with increased average maternal systolic and diastolic BP. The effect of manganese on BP was less consistent.
Collapse
Affiliation(s)
- Faye V Andrews
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA; Oregon Clinical and Translational Research Institute, Oregon Health and Sciences University, Portland, OR, USA.
| | - Adam Branscum
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Ellen Smit
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Sakila Afroz
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | | | - Omar Sharif
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | | | | | - David C Christiani
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Harvard University, Boston, MA, USA
| | - Molly L Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
8
|
Huang J, El-Kersh K, Mann KK, James KA, Cai L. Overview of the cardiovascular effects of environmental metals: New preclinical and clinical insights. Toxicol Appl Pharmacol 2022; 454:116247. [PMID: 36122736 PMCID: PMC9941893 DOI: 10.1016/j.taap.2022.116247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 02/06/2023]
Abstract
Environmental causes of cardiovascular diseases (CVDs) are global health issues. In particular, an association between metal exposure and CVDs has become evident but causal evidence still lacks. Therefore, this symposium at the Society of Toxicology 2022 annual meeting addressed epidemiological, clinical, pre-clinical animal model-derived and mechanism-based evidence by five presentations: 1) An epidemiologic study on potential CVD risks of individuals exposed occupationally and environmentally to heavy metals; 2) Both presentations of the second and third were clinical studies focusing on the potential link between heavy metals and pulmonary arterial hypertension (PAH), by presenting altered blood metal concentrations of both non-essential and essential metals in the patients with PAH and potential therapeutic approaches; 3) Arsenic-induced atherosclerosis via inflammatory cells in mouse model; 4) Pathogenic effects on the heart by adult chronic exposure to very low-dose cadmium via epigenetic mechanisms and whole life exposure to low dose cadmium via exacerbating high-fat-diet-lipotoxicity. This symposium has brought epidemiologists, therapeutic industry, physicians, and translational scientists together to discuss the health risks of occupational and environmental exposure to heavy metals through direct cardiotoxicity and indirect disruption of homeostatic mechanisms regulating essential metals, as well as lipid levels. The data summarized by the presenters infers a potential causal link between multiple metals and CVDs and defines differences and commonalities. Therefore, summary of these presentations may accelerate the development of efficient preventive and therapeutic strategies by facilitating collaborations among multidisciplinary investigators.
Collapse
Affiliation(s)
- Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Cardiovascular Innovation Institute, Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Karim El-Kersh
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koren K Mann
- Departments of Pharmacology & Therapeutics and Oncology and Medicine, McGill University, Canada; Segal Cancer Center, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Katherine A James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA,.
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Pediatric Research Institute, Departments of Pediatrics and Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
9
|
Cleal JK, Poore KR, Lewis RM. The placental exposome, placental epigenetic adaptations and lifelong cardio-metabolic health. Mol Aspects Med 2022; 87:101095. [DOI: 10.1016/j.mam.2022.101095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 12/15/2022]
|
10
|
Singh RD, Koshta K, Tiwari R, Khan H, Sharma V, Srivastava V. Developmental Exposure to Endocrine Disrupting Chemicals and Its Impact on Cardio-Metabolic-Renal Health. FRONTIERS IN TOXICOLOGY 2022; 3:663372. [PMID: 35295127 PMCID: PMC8915840 DOI: 10.3389/ftox.2021.663372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023] Open
Abstract
Developmental origin of health and disease postulates that the footprints of early life exposure are followed as an endowment of risk for adult diseases. Epidemiological and experimental evidence suggest that an adverse fetal environment can affect the health of offspring throughout their lifetime. Exposure to endocrine disrupting chemicals (EDCs) during fetal development can affect the hormone system homeostasis, resulting in a broad spectrum of adverse health outcomes. In the present review, we have described the effect of prenatal EDCs exposure on cardio-metabolic-renal health, using the available epidemiological and experimental evidence. We also discuss the potential mechanisms of their action, which include epigenetic changes, hormonal imprinting, loss of energy homeostasis, and metabolic perturbations. The effect of prenatal EDCs exposure on cardio-metabolic-renal health, which is a complex condition of an altered biological landscape, can be further examined in the case of other environmental stressors with a similar mode of action.
Collapse
Affiliation(s)
- Radha Dutt Singh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Kavita Koshta
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Ratnakar Tiwari
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University Chicago, Chicago, IL, United States
| | - Hafizurrahman Khan
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India
| | - Vineeta Sharma
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India
| | - Vikas Srivastava
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
11
|
Zelko IN, Taylor BS, Das TP, Watson WH, Sithu ID, Wahlang B, Malovichko MV, Cave MC, Srivastava S. Effect of vinyl chloride exposure on cardiometabolic toxicity. ENVIRONMENTAL TOXICOLOGY 2022; 37:245-255. [PMID: 34717031 PMCID: PMC8724461 DOI: 10.1002/tox.23394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/09/2021] [Accepted: 10/22/2021] [Indexed: 05/08/2023]
Abstract
Vinyl chloride (VC) is an organochlorine mainly used to manufacture its polymer polyvinyl chloride, which is extensively used in the manufacturing of consumer products. Recent studies suggest that chronic low dose VC exposure affects glucose homeostasis in high fat diet-fed mice. Our data suggest that even in the absence of high fat diet, exposure to VC (0.8 ppm, 6 h/day, 5 day/week, for 12 weeks) induces glucose intolerance (1.0 g/kg, i.p.) in male C57BL/6 mice. This was accompanied with the depletion of hepatic glutathione and a modest increase in lung interstitial macrophages. VC exposure did not affect the levels of circulating immune cells, endothelial progenitor cells, platelet-immune cell aggregates, and cytokines and chemokines. The acute challenge of VC-exposed mice with LPS did not affect lung immune cell composition or plasma IL-6. To examine the effect of VC exposure on vascular inflammation and atherosclerosis, LDL receptor-KO mice on C57BL/6 background maintained on western diet were exposed to VC for 12 weeks (0.8 ppm, 6 h/day, 5 day/week). Unlike the WT C57BL/6 mice, VC exposure did not affect glucose tolerance in the LDL receptor-KO mice. Plasma cytokines, lesion area in the aortic valve, and markers of lesional inflammation in VC-exposed LDL receptor-KO mice were comparable with the air-exposed controls. Collectively, despite impaired glucose tolerance and modest pulmonary inflammation, chronic low dose VC exposure does not affect surrogate markers of cardiovascular injury, LPS-induced acute inflammation in C57BL/6 mice, and chronic inflammation and atherosclerosis in the LDL receptor-KO mice.
Collapse
Affiliation(s)
- Igor N. Zelko
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
| | - Breandon S. Taylor
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
| | - Trinath P. Das
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
| | - Walter H. Watson
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
- Hepatobiology and Toxicology Program, University of Louisville, KY 40202
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, KY 40202
| | - Israel D. Sithu
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
| | - Banrida Wahlang
- Superfund Research Center, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
- Hepatobiology and Toxicology Program, University of Louisville, KY 40202
| | - Marina V. Malovichko
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
| | - Matthew C. Cave
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
- Hepatobiology and Toxicology Program, University of Louisville, KY 40202
| | - Sanjay Srivastava
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
| |
Collapse
|
12
|
Grau-Perez M, Caballero-Mateos MJ, Domingo-Relloso A, Navas-Acien A, Gomez-Ariza JL, Garcia-Barrera T, Leon-Latre M, Soriano-Gil Z, Jarauta E, Cenarro A, Moreno-Franco B, Laclaustra M, Civeira F, Casasnovas JA, Guallar E, Tellez-Plaza M. Toxic Metals and Subclinical Atherosclerosis in Carotid, Femoral, and Coronary Vascular Territories: The Aragon Workers Health Study. Arterioscler Thromb Vasc Biol 2021; 42:87-99. [PMID: 34879710 DOI: 10.1161/atvbaha.121.316358] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Studies evaluating the association of metals with subclinical atherosclerosis are mostly limited to carotid arteries. We assessed individual and joint associations of nonessential metals exposure with subclinical atherosclerosis in 3 vascular territories. Approach and Results: One thousand eight hundred seventy-three Aragon Workers Health Study participants had urinary determinations of inorganic arsenic species, barium, cadmium, chromium, antimony, titanium, uranium, vanadium, and tungsten. Plaque presence in carotid and femoral arteries was determined by ultrasound. Coronary Agatston calcium score ≥1 was determined by computed tomography scan. Median arsenic, barium, cadmium, chromium, antimony, titanium, uranium, vanadium, and tungsten levels were 1.83, 1.98, 0.27, 1.18, 0.05, 9.8, 0.03, 0.66, and 0.23 μg/g creatinine, respectively. The adjusted odds ratio (95% CI) for subclinical atherosclerosis presence in at least one territory was 1.25 (1.03-1.51) for arsenic, 1.67 (1.22-2.29) for cadmium, and 1.26 (1.04-1.52) for titanium. These associations were driven by arsenic and cadmium in carotid, cadmium and titanium in femoral, and titanium in coronary territories and mostly remained after additional adjustment for the other relevant metals. Titanium, cadmium, and antimony also showed positive associations with alternative definitions of increased coronary calcium. Bayesian Kernel Machine Regression analysis simultaneously evaluating metal associations suggested an interaction between arsenic and the joint cadmium-titanium exposure. CONCLUSIONS Our results support arsenic and cadmium and identify titanium and potentially antimony as atherosclerosis risk factors. Exposure reduction and mitigation interventions of these metals may decrease cardiovascular risk in individuals without clinical disease.
Collapse
Affiliation(s)
- Maria Grau-Perez
- Area of Cardiometabolic and Renal Risk, Biomedical Research Institute INCLIVA, Valencia, Spain (M.G.-P., M.J.C.-M., M.T.-P.).,Department of Preventive Medicine and Microbiology, Autonomous University of Madrid, Spain (M.G.-P., M.T.-P.).,Department of Statistics and Operational Research, University of Valencia, Spain (M.G.-P., A.D.-R.)
| | - Maria J Caballero-Mateos
- Area of Cardiometabolic and Renal Risk, Biomedical Research Institute INCLIVA, Valencia, Spain (M.G.-P., M.J.C.-M., M.T.-P.)
| | - Arce Domingo-Relloso
- Department of Statistics and Operational Research, University of Valencia, Spain (M.G.-P., A.D.-R.).,Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain (A.D.-R., M.T.-P.).,Department of Environmental Health Sciences, Columbia University, New York, NY (A.D.-R., A.N.-A.)
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY (A.D.-R., A.N.-A.)
| | - Jose L Gomez-Ariza
- Research Center on Natural Resources, Health and the Environment, Department of Chemistry, University of Huelva, Spain (J.L.G.-A., T.G.-B.)
| | - Tamara Garcia-Barrera
- Research Center on Natural Resources, Health and the Environment, Department of Chemistry, University of Huelva, Spain (J.L.G.-A., T.G.-B.)
| | - Montse Leon-Latre
- CIBERCV (M.L.-L., E.J., A.C., M.L., F.C., J.A.C.).,Instituto de Investigacion Sanitaria de Aragon (M.L.-L., Z.S.-G., E.J., A.C., B.M.-F., M.L., F.C., J.A.C.)
| | - Zoraida Soriano-Gil
- Instituto de Investigacion Sanitaria de Aragon (M.L.-L., Z.S.-G., E.J., A.C., B.M.-F., M.L., F.C., J.A.C.).,Department of Microbiology, Pediatrics, Radiology, and Public Health, University of Zaragoza, Spain (Z.S.-G., B.M.-F.)
| | - Estibaliz Jarauta
- CIBERCV (M.L.-L., E.J., A.C., M.L., F.C., J.A.C.).,Instituto de Investigacion Sanitaria de Aragon (M.L.-L., Z.S.-G., E.J., A.C., B.M.-F., M.L., F.C., J.A.C.).,Hospital Universitario Miguel Servet, Zaragoza, Spain, and University of Zaragoza, Spain (E.J., B.M.-F., M.L., F.C., J.A.C.)
| | - Ana Cenarro
- CIBERCV (M.L.-L., E.J., A.C., M.L., F.C., J.A.C.).,Instituto de Investigacion Sanitaria de Aragon (M.L.-L., Z.S.-G., E.J., A.C., B.M.-F., M.L., F.C., J.A.C.).,Instituto Aragonés de Ciencias de la Salud (A.C.)
| | - Belen Moreno-Franco
- Instituto de Investigacion Sanitaria de Aragon (M.L.-L., Z.S.-G., E.J., A.C., B.M.-F., M.L., F.C., J.A.C.).,Hospital Universitario Miguel Servet, Zaragoza, Spain, and University of Zaragoza, Spain (E.J., B.M.-F., M.L., F.C., J.A.C.).,Department of Microbiology, Pediatrics, Radiology, and Public Health, University of Zaragoza, Spain (Z.S.-G., B.M.-F.)
| | - Martin Laclaustra
- CIBERCV (M.L.-L., E.J., A.C., M.L., F.C., J.A.C.).,Instituto de Investigacion Sanitaria de Aragon (M.L.-L., Z.S.-G., E.J., A.C., B.M.-F., M.L., F.C., J.A.C.).,Hospital Universitario Miguel Servet, Zaragoza, Spain, and University of Zaragoza, Spain (E.J., B.M.-F., M.L., F.C., J.A.C.)
| | - Fernando Civeira
- CIBERCV (M.L.-L., E.J., A.C., M.L., F.C., J.A.C.).,Instituto de Investigacion Sanitaria de Aragon (M.L.-L., Z.S.-G., E.J., A.C., B.M.-F., M.L., F.C., J.A.C.).,Hospital Universitario Miguel Servet, Zaragoza, Spain, and University of Zaragoza, Spain (E.J., B.M.-F., M.L., F.C., J.A.C.)
| | - Jose A Casasnovas
- CIBERCV (M.L.-L., E.J., A.C., M.L., F.C., J.A.C.).,Instituto de Investigacion Sanitaria de Aragon (M.L.-L., Z.S.-G., E.J., A.C., B.M.-F., M.L., F.C., J.A.C.).,Hospital Universitario Miguel Servet, Zaragoza, Spain, and University of Zaragoza, Spain (E.J., B.M.-F., M.L., F.C., J.A.C.)
| | - Eliseo Guallar
- Departments of Epidemiology (E.G.), Johns Hopkins University, Baltimore, MD.,Medicine (E.G.), Johns Hopkins University, Baltimore, MD
| | - Maria Tellez-Plaza
- Area of Cardiometabolic and Renal Risk, Biomedical Research Institute INCLIVA, Valencia, Spain (M.G.-P., M.J.C.-M., M.T.-P.).,Department of Preventive Medicine and Microbiology, Autonomous University of Madrid, Spain (M.G.-P., M.T.-P.).,Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain (A.D.-R., M.T.-P.).,Environmental Health and Engineering (M.T.-P.), Johns Hopkins University, Baltimore, MD
| |
Collapse
|
13
|
Negro Silva LF, Makhani K, Lemaire M, Lemarié CA, Plourde D, Bolt AM, Chiavatti C, Bohle DS, Lehoux S, Goldberg MS, Mann KK. Sex-Specific Effects of Prenatal and Early Life Inorganic and Methylated Arsenic Exposure on Atherosclerotic Plaque Development and Composition in Adult ApoE-/- Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57008. [PMID: 34014776 PMCID: PMC8136521 DOI: 10.1289/ehp8171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Epidemiologic studies indicate that early life arsenic exposures are linked to an increased risk of cardiovascular diseases. Different oxidation and methylation states of arsenic exist in the environment and are formed in vivo via the action of arsenic (+3 oxidation state) methyltransferase (As3MT). Methylated arsenicals are pro-atherogenic postnatally, but pre- and perinatal effects are unclear. This is particularly important because methylated arsenicals are known to cross the placenta. OBJECTIVES We tested the effects of early life exposure to inorganic and methylated arsenicals on atherosclerotic plaque formation and its composition in apolipoprotein E knock-out (apoE-/-) mice and evaluated whether apoE-/- mice lacking As3MT expression were susceptible to this effect. METHODS We exposed apoE-/- or apoE-/-/As3MT-/- mice to 200 ppb inorganic or methylated arsenic in the drinking water from conception to weaning and assessed atherosclerotic plaques in the offspring at 18 wk of age. Mixed regression models were used to estimate the mean difference in each outcome relative to controls, adjusting for sex and including a random effects term to account for within-litter clustering. RESULTS Early life exposure to inorganic arsenic, and more profoundly methylated arsenicals, resulted in significantly larger plaques in the aortic arch and sinus in both sexes. Lipid levels in these plaques were higher without a substantial difference in macrophage numbers. Smooth muscle cell content was not altered, but collagen content was lower. Importantly, there were sex-specific differences in these observations, where males had higher lipids and lower collagen in the plaque, but females did not. In mice lacking As3MT, arsenic did not alter the plaque size, although the size was highly variable. In addition, control apoE-/-/As3MT-/- mice had significantly larger plaque size compared with control apoE-/-. CONCLUSION This study shows that early life exposure to inorganic and methylated arsenicals is pro-atherogenic with sex-specific differences in plaque composition and a potential role for As3MT in mice. https://doi.org/10.1289/EHP8171.
Collapse
Affiliation(s)
| | - Kiran Makhani
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Maryse Lemaire
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Catherine A. Lemarié
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
- EA3878, European University of Occidental Brittany, Brest, France
- UMR 1078, Institut national de la santé et de la recherché médicale, Brest, France
| | - Dany Plourde
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Alicia M. Bolt
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Christopher Chiavatti
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - D. Scott Bohle
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Stéphanie Lehoux
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Mark S. Goldberg
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
- Division of Clinical Epidemiology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Koren K. Mann
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Ferragut Cardoso AP, Udoh KT, States JC. Arsenic-induced changes in miRNA expression in cancer and other diseases. Toxicol Appl Pharmacol 2020; 409:115306. [PMID: 33127375 PMCID: PMC7772821 DOI: 10.1016/j.taap.2020.115306] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
miRNAs (miRNA) are essential players regulating gene expression affecting cellular processes contributing to disease development. Dysregulated miRNA expression has been observed in numerous diseases including hepatitis, cardiovascular diseases and cancers. In cardiovascular diseases, several miRNAs function as mediators of pathogenic stress-related signaling pathways that may lead to an excessive extracellular matrix production and collagen deposition causing cardiac stress resulting in fibrosis. In cancers, many miRNAs function as oncogenes or tumor suppressors facilitating tumor growth, invasion and angiogenesis. Furthermore, the association between distinct miRNA profile and tumor development, progression and treatment response has identified miRNAs as potential biomarkers for disease diagnosis and prognosis. Growing evidence demonstrates changes in miRNA expression levels in experimental settings or observational studies associated with environmental chemical exposures such as arsenic. Arsenic is one of the most well-known human carcinogens. Long-term exposure through drinking water increases risk of developing skin, lung and urinary bladder cancers, as well as cardiovascular disease. The mechanism(s) by which arsenic causes disease remains elusive. Proposed mechanisms include miRNA dysregulation. Epidemiological studies identified differential miRNA expression between arsenic-exposed and non-exposed individuals from India, Bangladesh, China and Mexico. In vivo and in vitro studies have shown that miRNAs are critically involved in arsenic-induced malignant transformation. Few studies analyzed miRNAs in other diseases associated with arsenic exposure. Importantly, there is no consensus on a consistent miRNA profile for arsenic-induced cancers because most studies analyze only particular miRNAs. Identifying miRNA expression changes common among humans, rodents and cell lines might guide future miRNA investigations.
Collapse
Affiliation(s)
- Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Karen T Udoh
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
15
|
Chen Y, Wu F, Liu X, Parvez F, LoIacono NJ, Gibson EA, Kioumourtzoglou MA, Levy D, Shahriar H, Uddin MN, Islam T, Lomax A, Saxena R, Sanchez T, Santiago D, Ellis T, Ahsan H, Wasserman GA, Graziano JH. Early life and adolescent arsenic exposure from drinking water and blood pressure in adolescence. ENVIRONMENTAL RESEARCH 2019; 178:108681. [PMID: 31520830 PMCID: PMC7010462 DOI: 10.1016/j.envres.2019.108681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/14/2019] [Accepted: 08/18/2019] [Indexed: 05/26/2023]
Abstract
OBJECTIVES Evidence of the association between inorganic arsenic (As) exposure, especially early-life exposure, and blood pressure (BP) in adolescence is limited. We examined the association of As exposure during early childhood, childhood, and adolescence with BP in adolescence. METHODS We conducted a cross-sectional study of 726 adolescents aged 14-17 (mean 14.75) years whose mothers were participants in the Bangladesh Health Effects of Arsenic Longitudinal Study (HEALS). Adolescents' BP was measured at the time of their recruitment between December 2012 and December 2016. We considered maternal urinary As (UAs), repeatedly measured during childhood, as proxy measures of early childhood (<5 years old, A1) and childhood (5-12 years old, A2) exposure. Adolescents' current UAs was collected at the time of recruitment (14-17 years of age, A3). RESULTS Every doubling of UAs at A3 and maternal UAs at A1 was positively associated with a difference of 0.7-mmHg (95% confidence interval [CI]: 0.1, 1.3) and a 0.7-mmHg (95% CI: 0.05, 1.4) in SBP, respectively. These associations were stronger in adolescents with a BMI above the median (17.7 kg/m2) than those with a BMI below the median (P for interaction = 0.03 and 0.03, respectively). There was no significant association between any of the exposure measures and DBP. The Weighted Quantile Sum (WQS) regression confirmed that adolescents' UAs at A3 and maternal UAs at A1 contributed the most to the overall effect of As exposure at three life stages on SBP. Mixture analyses using Bayesian Kernel Machine Regression identified UAs at A3 as a significant contributor to SBP and DBP independent of other concurrent blood levels of cadmium, lead, manganese, and selenium. CONCLUSION Our findings suggest an association of current exposure and early childhood exposure to As with higher BP in adolescents, which may be exacerbated by higher BMI at adolescence.
Collapse
Affiliation(s)
- Yu Chen
- Departments of Population Health, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA.
| | - Fen Wu
- Departments of Population Health, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Xinhua Liu
- Department of Biostatistics, New York, NY, USA
| | - Faruque Parvez
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nancy J LoIacono
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Elizabeth A Gibson
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Diane Levy
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | | | - Taruqul Islam
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | - Angela Lomax
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Roheeni Saxena
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Tiffany Sanchez
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - David Santiago
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Tyler Ellis
- Lamont-Doherty Earth Observatory, Columbia University, New York, NY, USA
| | - Habibul Ahsan
- Department of Health Studies, Center for Cancer Epidemiology and Prevention, The University of Chicago, Chicago, IL, USA
| | - Gail A Wasserman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Joseph H Graziano
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
16
|
Young JL, Cai L, States JC. Impact of prenatal arsenic exposure on chronic adult diseases. Syst Biol Reprod Med 2018; 64:469-483. [PMID: 29873257 PMCID: PMC6291241 DOI: 10.1080/19396368.2018.1480076] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/03/2018] [Accepted: 05/14/2018] [Indexed: 02/08/2023]
Abstract
Exposure to environmental stressors during susceptible windows of development can result in negative health outcomes later in life, a concept known as the Developmental Origins of Health and Disease (DOHaD). There is a growing body of evidence that exposures to metals early in life (in utero and postnatal) increase the risk of developing adult diseases such as cancer, cardiovascular disease, non-alcoholic fatty liver disease, and diabetes. Of particular concern is exposure to the metalloid arsenic, a drinking water contaminant and worldwide health concern. Epidemiological studies of areas with high levels of arsenic in the drinking water, such as some regions in Chile and Bangladesh, indicate an association between in utero arsenic exposure and the development of adult diseases. Therefore, the need for experimental models to address the mechanism underlining early onset of adult diseases have emerged including the in utero and whole-life exposure models. This review will highlight the epidemiological events and subsequent novel experimental models implemented to study the impact of early life exposure to arsenic on the development of adult diseases. In addition, current research using these models will be discussed as well as possible underlying mechanism for the early onset of disease. Abbreviations: ALT: alanine aminotransferase; AMI: acute myocardial infarction; AST: aspartate aminotransferase; ATSDR: Agency for Toxic Substances and Disease Registry; CVD: cardiovascular disease; DMA: dimethylarsinate; DOHaD: Developmental Origins of Health and Disease; EPA: U.S. Environmental Protection Agency; ER-α: estrogen receptor alpha; HDL: high-density lipoprotein; HOMA-IR: homeostatic model assessment of insulin resistance; iAs: inorganic arsenic; LDL: low-density lipoprotein; MetS: metabolic syndrome; MMA: monomethylarsonate; NAFLD: non-alcoholic fatty liver disease; PND: postnatal day; ppb: parts per billion; ppm: parts per million; SAM: S-adenosylmethionine; USFDA: United States Food and Drug Administration.
Collapse
Affiliation(s)
- Jamie L. Young
- Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock St, Louisville, KY., 40202. USA Tel.: +1 502 852 2631.
| | - Lu Cai
- Pediatric Research Institute, Departments of Pediatrics, Radiation Oncology and pharmacology and Toxicology, University of Louisville, 570 S. Preston St, Room 304F, Louisville, KY., 40202. USA Tel,: +1 502 852 2214.
| | - J. Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock St, Room 304, Louisville, KY., 40202. USA Tel.: +1 502 852 5347.
| |
Collapse
|
17
|
Kuo CC, Su PH, Sun CW, Liu HJ, Chang CL, Wang SL. Early-life arsenic exposure promotes atherogenic lipid metabolism in adolescence: A 15-year birth cohort follow-up study in central Taiwan. ENVIRONMENT INTERNATIONAL 2018; 118:97-105. [PMID: 29859944 DOI: 10.1016/j.envint.2018.05.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Inorganic arsenic (iAs) exposure potentially causes diabetes and cardiovascular diseases in adults. However, its effect on glucose and lipid metabolism in early life remains unknown. OBJECTIVE We evaluated the associations between early-life arsenic exposure and profiles of glucose and lipids in a 15-year birth cohort in central Taiwan. METHODS We studied 237 adolescents through 5 waves of follow-up interviews and examinations at ages of approximately 2, 5, 8, 11, and 14 y. We obtained at least one follow-up urine measurement for arsenic species and blood sample collection up to 14 y of age and identified group-based trajectories of serial iAs by semiparametric mixture modeling. Multiple linear and logistic regressions were performed to assess the effect of the arsenic exposure trajectory on serum fasting glucose, total cholesterol (TCHO), triglycerides (TGs), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL). RESULTS Three trajectories of postnatal arsenic exposure were identified, namely stable-low (31.4%), stable-high (48.2%), and rising-high (20.4%) groups. Compared with the stable-low trajectory group, the percent changes in TCHO and LDL was 14% (95% confidence interval 4-24%) and 23% (9-38%) for the group with "rising-high" trajectory and was 8% (-1-16%) and 16% (4-29%) for the group with "stable-high" trajectory. The rising-high group was also associated with an increase in the TCHO/HDL ratio by 14% (95% CI 3%-25%). The adjusted odds ratios of high developmental trajectories of TCHO, TG, LDL, and non-HDL levels were 4.0 (95% CI 1.2-13.7), 12.2 (2.2-67), 7.3 (1.8-30), and 3.6 (0.9-14.6), respectively, in the rising-high group (reference: stable-low group). CONCLUSION Our findings suggest that conversion to an atherogenic lipid profile in adolescents may be associated with early-life exposure to environmental arsenic, particularly during the pre-adolescent period. An environmental modification approach for preventing As-related cardiovascular disease is recommended to begin early in life.
Collapse
Affiliation(s)
- Chin-Chi Kuo
- Kidney Institute and Division of Nephrology, Department of Internal Medicine, China Medical University Hospital and College of Medicine, China Medical University, Taichung, Taiwan; Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Pen-Hua Su
- Department of Pediatrics, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Huei-Ju Liu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chaw-Liang Chang
- Department of Pediatrics, Cathay General Hospital, Hsinchu, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; School of Public Health, National Defense Medical Center, Taipei, Taiwan; Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
18
|
Harrigan J, Ravi D, Ricks J, Rosenfeld ME. In Utero Exposure of Hyperlipidemic Mice to Diesel Exhaust: Lack of Effects on Atherosclerosis in Adult Offspring Fed a Regular Chow Diet. Cardiovasc Toxicol 2018; 17:417-425. [PMID: 28097517 PMCID: PMC5603628 DOI: 10.1007/s12012-017-9399-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Uterine stress is associated with an increased risk of later life metabolic diseases. In this study, we investigated the effect of diesel exhaust (DE) exposure in utero on adult susceptibility to atherosclerosis in genetically hyperlipidemic mice. Pregnant apolipoprotein E-deficient mice received either DE exposure (~250–300 μg/m3 PM2.5 for 6 h/day, 5 days/week) or filtered air (FA) throughout gestation. Treatment effects on litter size and gender distribution were recorded. Plasma cholesterol and triglycerides were measured at 8, 12 and 16 weeks of age. Urinary 8-isoprostane and liver 8-hydroxy-deoxyguanosine levels were measured at killing at 16 weeks of age. Expression of the antioxidant genes heme oxygenase-1 and the glutamate-cysteine ligase modifier and catalytic subunits were measured in the lung, liver and aorta. The average area and frequency of atherosclerotic lesions were measured in the aortic sinus and innominate arteries. There were significantly smaller litters and higher postnatal mortality in the DE-exposed mice. There were no significant differences in plasma lipids or lipoprotein profiles, expression of antioxidant genes or markers of oxidative stress between treatment groups. There were also no significant differences in average atherosclerotic lesion area in the aortic sinus or innominate arteries of the DE and FA groups although there was a higher frequency of lesions in the DE-exposed group. Our study indicates that in utero DE exposure does not influence later life lipoprotein metabolism, redox homeostasis or the risk of developing larger atherosclerotic lesions.
Collapse
Affiliation(s)
- Jenna Harrigan
- Program in Nutritional Sciences, University of Washington, Box 358050, Seattle, WA, 98109-4714, USA
| | - Divya Ravi
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jerry Ricks
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Michael E Rosenfeld
- Program in Nutritional Sciences, University of Washington, Box 358050, Seattle, WA, 98109-4714, USA. .,Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA. .,Department of Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
19
|
Zuo TT, Li YL, Jin HY, Gao F, Wang Q, Wang YD, Ma SC. HPLC-ICP-MS speciation analysis and risk assessment of arsenic in Cordyceps sinensis. Chin Med 2018; 13:19. [PMID: 29686726 PMCID: PMC5902960 DOI: 10.1186/s13020-018-0178-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/05/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Cordyceps sinensis, one of the most valued traditional herbal medicines in China, contains high amount of arsenic. Considering the adverse health effects of arsenic, this is of particular concern. The aim of this study was to determine and analyze arsenic speciation in C. sinensis, and to measure the associated human health risks. METHODS We used microwave extraction and high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry to determine and analyze the arsenic content in C. sinensis, and measured the associated human health risks according to the hazard index (HI), lifetime cancer risk (CR), and target hazard quotient (THQ). RESULTS The main arsenic speciation in C. sinensis were not the four organic arsenic compounds, including dimethyl arsenic, monomethyl arsenic, arsenobetaine, and arsenocholine, but comprised inorganic arsenic and other unknown risk arsenic compounds. HI scores indicated that the risk of C. sinensis was acceptable. CR results suggested that the cancer risk was greater than the acceptable lifetime risk of 10-5, even at low exposure levels. THQ results indicated that at the exposure level < 2.0 months/year, the arsenic was not likely to harm human health during a lifetime; however, if the exposure rate was > 3.0 months/year, the systemic effects of the arsenic in C. sinensis was of great concern. CONCLUSION The arsenic in C. sinensis might not be free of risks. The suggested C. sinensis consumption rate of 2.0 months/year provided important insights into the ways by which to minimize potential health risks. Our study not only played the role of "cast a brick to attract jade" by which to analyze arsenic speciation in C. sinensis but also offered a promising strategy of risk assessment for harmful residues in traditional herbal medicines.
Collapse
Affiliation(s)
- Tian-Tian Zuo
- National Institutes for Food and Drug Control, No. 2 Tiantan Xili, Dongcheng District, Beijing, 100050 China
| | - Yao-Lei Li
- National Institutes for Food and Drug Control, No. 2 Tiantan Xili, Dongcheng District, Beijing, 100050 China
| | - Hong-Yu Jin
- National Institutes for Food and Drug Control, No. 2 Tiantan Xili, Dongcheng District, Beijing, 100050 China
| | - Fei Gao
- National Institutes for Food and Drug Control, No. 2 Tiantan Xili, Dongcheng District, Beijing, 100050 China
| | - Qi Wang
- National Institutes for Food and Drug Control, No. 2 Tiantan Xili, Dongcheng District, Beijing, 100050 China
| | - Ya-Dan Wang
- National Institutes for Food and Drug Control, No. 2 Tiantan Xili, Dongcheng District, Beijing, 100050 China
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, No. 2 Tiantan Xili, Dongcheng District, Beijing, 100050 China
| |
Collapse
|
20
|
Dani SU, Walter GF. Chronic arsenic intoxication diagnostic score (CAsIDS). J Appl Toxicol 2017; 38:122-144. [DOI: 10.1002/jat.3512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/02/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Sergio Ulhoa Dani
- Medawar Institute for Medical and Environmental Research; Acangau Foundation; Paracatu MG Brazil
- Department of General Internal Medicine; St. Gallen Cantonal Hospital; Switzerland
- PizolCare Praxis Wartau; Trübbach Switzerland
| | | |
Collapse
|
21
|
Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines. Exp Cell Res 2017; 353:6-15. [PMID: 28238834 DOI: 10.1016/j.yexcr.2017.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/31/2017] [Accepted: 02/19/2017] [Indexed: 02/04/2023]
Abstract
ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analyses of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses.
Collapse
|
22
|
Cardenas A, Houseman EA, Baccarelli AA, Quamruzzaman Q, Rahman M, Mostofa G, Wright RO, Christiani DC, Kile ML. In utero arsenic exposure and epigenome-wide associations in placenta, umbilical artery, and human umbilical vein endothelial cells. Epigenetics 2016; 10:1054-63. [PMID: 26646901 DOI: 10.1080/15592294.2015.1105424] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to arsenic early in life has been associated with increased risk of several chronic diseases and is believed to alter epigenetic programming in utero. In the present study, we evaluate the epigenome-wide association of arsenic exposure in utero and DNA methylation in placenta (n = 37), umbilical artery (n = 45) and human umbilical vein endothelial cells (HUVEC) (n = 52) in a birth cohort using the Infinium HumanMethylation450 BeadChip array. Unadjusted and cell mixture adjusted associations for each tissue were examined along with enrichment analyses relative to CpG island location and omnibus permutation tests of association among biological pathways. One CpG in artery (cg26587014) and 4 CpGs in placenta (cg12825509; cg20554753; cg23439277; cg21055948) reached a Bonferroni adjusted level of significance. Several CpGs were differentially methylated in artery and placenta when controlling the false discovery rate (q-value<0.05), but none in HUVEC. Enrichment of hypomethylated CpG islands was observed for artery while hypermethylation of open sea regions were present in placenta relative to prenatal arsenic exposure. The melanogenesis pathway was differentially methylated in artery (Max F P < 0.001), placenta (Max F P < 0.001), and HUVEC (Max F P = 0.02). Similarly, the insulin-signaling pathway was differentially methylated in artery (Max F P = 0.02), placenta (Max F P = 0.02), and HUVEC (Max F P = 0.02). Our results show that prenatal arsenic exposure can alter DNA methylation in artery and placenta but not in HUVEC. Further studies are needed to determine if these alterations in DNA methylation mediate the effect of prenatal arsenic exposure and health outcomes later in life.
Collapse
Affiliation(s)
- Andres Cardenas
- a School of Biological and Population Health Sciences; College of Public Health and Human Sciences; Oregon State University ; Corvallis , OR USA
| | - E Andres Houseman
- a School of Biological and Population Health Sciences; College of Public Health and Human Sciences; Oregon State University ; Corvallis , OR USA
| | | | | | | | | | - Robert O Wright
- d Preventative Medicine and Pediatrics; Mt Sinai School of Medicine ; New York , NY USA
| | | | - Molly L Kile
- a School of Biological and Population Health Sciences; College of Public Health and Human Sciences; Oregon State University ; Corvallis , OR USA
| |
Collapse
|
23
|
Ditzel EJ, Nguyen T, Parker P, Camenisch TD. Effects of Arsenite Exposure during Fetal Development on Energy Metabolism and Susceptibility to Diet-Induced Fatty Liver Disease in Male Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:201-9. [PMID: 26151952 PMCID: PMC4749082 DOI: 10.1289/ehp.1409501] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 07/02/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Chronic exposure to arsenicals at various life stages and across a range of exposures has been implicated in cardiometabolic and liver disease, but disease predisposition from developmental exposures remains unclear. OBJECTIVES In utero and post-weaning exposure to trivalent arsenic (AsIII) was examined on the background of a Western-style diet to determine whether AsIII exposure affects metabolic disease. METHODS Male Swiss Webster mice were exposed to 100 ppb AsIII in utero, after weaning, or both. Ad libitum access to a Western-style diet was provided after weaning, and the plasma metabolome, liver histopathology, liver enzyme activity, and gene expression were analyzed. RESULTS Hepatic lipid composition and histopathology revealed that developmental AsIII exposure exacerbated Western-style diet-induced fatty liver disease. Continuous AsIII exposure increased cardiometabolic risk factors including increased body weight, insulin resistance, hyperglycemia, and plasma triglycerides. AsIII exposure produced a decrease in the intermediates of glycolysis and the TCA cycle while increasing ketones. Hepatic isocitrate dehydrogenase activity was also decreased, which confirmed disruption of the TCA cycle. Developmental AsIII exposure increased the expression of genes involved in fatty acid synthesis, lipogenesis, inflammation, and packaging of triglycerides, suggesting an increased acetyl coenzyme A (acetyl-CoA) load. CONCLUSIONS In utero and continuous early-life exposure to AsIII disrupted normal metabolism and elevated the risk for fatty liver disease in mice maintained on a high-fat diet. Our findings suggest that individuals exposed to AsIII during key developmental periods and who remain exposed to AsIII on the background of a Western-style diet may be at increased risk for metabolic disease later in life.
Collapse
Affiliation(s)
- Eric J. Ditzel
- Department of Pharmacology and Toxicology, College of Pharmacy,
| | - Thu Nguyen
- Department of Pharmacology and Toxicology, College of Pharmacy,
| | - Patricia Parker
- Department of Pharmacology and Toxicology, College of Pharmacy,
| | - Todd D. Camenisch
- Department of Pharmacology and Toxicology, College of Pharmacy,
- Steele Children’s Research Center,
- Southwest Environmental Health Sciences Center,
- Sarver Heart Center, and
- Bio5 Institute, University of Arizona, Tucson, Arizona, USA
- Address correspondence to T.D. Camenisch, 1703 E. Mabel St., P.O. Box 210207, Tucson, AZ 85721 USA. Telephone: (520) 626-0240. E-mail:
| |
Collapse
|
24
|
Bailey KA, Smith AH, Tokar EJ, Graziano JH, Kim KW, Navasumrit P, Ruchirawat M, Thiantanawat A, Suk WA, Fry RC. Mechanisms Underlying Latent Disease Risk Associated with Early-Life Arsenic Exposure: Current Research Trends and Scientific Gaps. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:170-5. [PMID: 26115410 PMCID: PMC4749078 DOI: 10.1289/ehp.1409360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 06/23/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Millions of individuals worldwide, particularly those living in rural and developing areas, are exposed to harmful levels of inorganic arsenic (iAs) in their drinking water. Inorganic As exposure during key developmental periods is associated with a variety of adverse health effects, including those that are evident in adulthood. There is considerable interest in identifying the molecular mechanisms that relate early-life iAs exposure to the development of these latent diseases, particularly in relationship to cancer. OBJECTIVES This work summarizes research on the molecular mechanisms that underlie the increased risk of cancer development in adulthood that is associated with early-life iAs exposure. DISCUSSION Epigenetic reprogramming that imparts functional changes in gene expression, the development of cancer stem cells, and immunomodulation are plausible underlying mechanisms by which early-life iAs exposure elicits latent carcinogenic effects. CONCLUSIONS Evidence is mounting that relates early-life iAs exposure and cancer development later in life. Future research should include animal studies that address mechanistic hypotheses and studies of human populations that integrate early-life exposure, molecular alterations, and latent disease outcomes.
Collapse
Affiliation(s)
- Kathryn A. Bailey
- Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Allan H. Smith
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Erik J. Tokar
- National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Kyoung-Woong Kim
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Apinya Thiantanawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - William A. Suk
- Superfund Research Program, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
- Address correspondence to R.C. Fry, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, 135 Dauer Dr., CB 7431, University of North Carolina, Chapel Hill, NC 27599-7295 USA. Telephone: (919) 843-6864. E-mail:
| |
Collapse
|
25
|
Broka D, Ditzel E, Quach S, Camenisch TD. Methylation of inorganic arsenic by murine fetal tissue explants. Drug Chem Toxicol 2015; 39:279-83. [PMID: 26446802 DOI: 10.3109/01480545.2015.1092043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although it is generally believed that the developing fetus is principally exposed to inorganic arsenic and the methylated metabolites from the maternal metabolism of arsenic, little is known about whether the developing embryo can autonomously metabolize arsenic. This study investigates inorganic arsenic methylation by murine embryonic organ cultures of the heart, lung, and liver. mRNA for AS3mt, the gene responsible for methylation of arsenic, was detected in all embryonic tissue types studied. In addition, methylated arsenic metabolites were generated by all three tissue types. The fetal liver explants yielded the most methylated arsenic metabolites (∼7% of total arsenic/48 h incubation) while the heart, and lung preparations produced slightly greater than 2% methylated metabolites. With all tissues the methylation proceeded mostly to the dimethylated arsenic species. This has profound implications for understanding arsenic-induced fetal toxicity, particularly if the methylated metabolites are produced autonomously by embryonic tissues.
Collapse
Affiliation(s)
- Derrick Broka
- a Department of Pharmacology and Toxicology , Molecular and Cellular Biology, Bio5 Institute, and Southwest Environmental Health Sciences Center, University of Arizona , Tucson , AZ , USA
| | - Eric Ditzel
- a Department of Pharmacology and Toxicology , Molecular and Cellular Biology, Bio5 Institute, and Southwest Environmental Health Sciences Center, University of Arizona , Tucson , AZ , USA
| | - Stephanie Quach
- a Department of Pharmacology and Toxicology , Molecular and Cellular Biology, Bio5 Institute, and Southwest Environmental Health Sciences Center, University of Arizona , Tucson , AZ , USA
| | - Todd D Camenisch
- a Department of Pharmacology and Toxicology , Molecular and Cellular Biology, Bio5 Institute, and Southwest Environmental Health Sciences Center, University of Arizona , Tucson , AZ , USA
| |
Collapse
|
26
|
Osorio-Yáñez C, Ayllon-Vergara JC, Arreola-Mendoza L, Aguilar-Madrid G, Hernández-Castellanos E, Sánchez-Peña LC, Del Razo LM. Blood pressure, left ventricular geometry, and systolic function in children exposed to inorganic arsenic. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:629-35. [PMID: 25738397 PMCID: PMC4455579 DOI: 10.1289/ehp.1307327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 02/24/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Inorganic arsenic (iAs) is a ubiquitous element present in the groundwater worldwide. Cardiovascular effects related to iAs exposure have been studied extensively in adult populations. Few epidemiological studies have been focused on iAs exposure-related cardiovascular disease in children. OBJECTIVE In this study we investigated the association between iAs exposure, blood pressure (BP), and functional and anatomical echocardiographic parameters in children. METHODS A cross-sectional study of 161 children between 3 and 8 years was conducted in Central Mexico. The total concentration of arsenic (As) species in urine (U-tAs) was determined by hydride generation-cryotrapping-atomic absorption spectrometry and lifetime iAs exposure was estimated by multiplying As concentrations measured in drinking water by the duration of water consumption in years (LAsE). BP was measured by standard protocols, and M-mode echocardiographic parameters were determined by ultrasonography. RESULTS U-tAs concentration and LAsE were significantly associated with diastolic (DBP) and systolic blood pressure (SBP) in multivariable linear regression models: DBP and SBP were 0.013 (95% CI: 0.002, 0.024) and 0.021 (95% CI: 0.004, 0.037) mmHg higher in association with each 1-ng/mL increase in U-tAs (p < 0.025), respectively. Left ventricular mass (LVM) was significantly associated with LAsE [5.5 g higher (95% CI: 0.65, 10.26) in children with LAsE > 620 compared with < 382 μg/L-year; p = 0.03] in an adjusted multivariable model. The systolic function parameters left ventricular ejection fraction (EF) and shortening fraction were 3.67% (95% CI: -7.14, -0.20) and 3.41% (95% CI: -6.44, -0.37) lower, respectively, in children with U-tAs > 70 ng/mL compared with < 35 ng/mL. CONCLUSION Early-life exposure to iAs was significantly associated with higher BP and LVM and with lower EF in our study population of Mexican children.
Collapse
Affiliation(s)
- Citlalli Osorio-Yáñez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México
| | | | | | | | | | | | | |
Collapse
|
27
|
Mechanisms of action for arsenic in cardiovascular toxicity and implications for risk assessment. Toxicology 2015; 331:78-99. [PMID: 25771173 DOI: 10.1016/j.tox.2015.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/09/2015] [Accepted: 02/27/2015] [Indexed: 11/20/2022]
Abstract
The possibility of an association between inorganic arsenic (iAs) exposure and cardiovascular outcomes has received increasing attention in the literature over the past decade. The United States Environmental Protection Agency (US EPA) is currently revising its Integrated Risk Assessment System (IRIS) review of iAs, and one of the non-cancer endpoints of interest is cardiovascular disease (CVD). Despite the increased interest in this area, substantial gaps remain in the available information, particularly regarding the mechanism of action (MOA) by which iAs could cause or exacerbate CVD. Few studies specifically address the plausibility of an association between iAs and CVD at the low exposure levels which are typical in the United States (i.e., below 100 μg As/L in drinking water). We have conducted a review and evaluation of the animal, mechanistic, and human data relevant to the potential MOAs of iAs and CVD. Specifically, we evaluated the most common proposed MOAs, which include disturbance of endothelial function and hepatic dysfunction. Our analysis of the available evidence indicates that there is not a well-established MOA for iAs in the development or progression of CVD. Few human studies of the potential MOAs have addressed plausibility at low doses and the applicability of extrapolation from animal studies to humans is questionable. However, the available evidence indicates that regardless of the specific MOA, the effects of iAs on physiological processes at the cellular level appear to operate via a threshold mechanism. This finding is consistent with the lack of association of CVD with iAs exposure in humans at levels below 100 μg/L, particularly when considering important exposure and risk modifiers such as nutrition and genetics. Based on this analysis, we conclude that there are no data supporting a linear dose-response relationship between iAs and CVD, indicating this relationship has a threshold.
Collapse
|
28
|
Lemaire M, Lemarié CA, Flores Molina M, Guilbert C, Lehoux S, Mann KK. Genetic deletion of LXRα prevents arsenic-enhanced atherosclerosis, but not arsenic-altered plaque composition. Toxicol Sci 2014; 142:477-88. [PMID: 25273567 DOI: 10.1093/toxsci/kfu197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arsenic exposure has been linked to an increased incidence of atherosclerosis. Previously, we have shown in vitro and in vivo that arsenic inhibits transcriptional activation of the liver X receptors (LXRs), key regulators of lipid homeostasis. Therefore, we evaluated the role of LXRα in arsenic-induced atherosclerosis using the apoE(-/-) mouse model. Indeed, deletion of LXRα protected apoE(-/-) mice against the proatherogenic effects of arsenic. We have previously shown that arsenic changes the plaque composition in apoE(-/-) mice. Arsenic decreased collagen content in the apoE(-/-) model, and we have observed the same diminution in LXRα(-/-)apoE(-/-) mice. However, the collagen-producing smooth muscle cells (SMCs) were decreased in apoE(-/-), but increased in LXRα(-/-)apoE(-/-). Although transcriptional activation of collagen remained the same in SMC from both genotypes, arsenic-exposed LXRα(-/-)apoE(-/-) plaques had increased matrix metalloproteinase activity compared with both control LXRα(-/-)apoE(-/-) and apoE(-/-), which could be responsible for both the decrease in plaque collagen and the SMC invasion. In addition, arsenic increased plaque lipid accumulation in both genotypes. However, macrophages, the cells known to retain lipid within the plaque, were unchanged in arsenic-exposed apoE(-/-) mice, but decreased in LXRα(-/-)apoE(-/-). We confirmed in vitro that these cells retained more lipid following arsenic exposure and are more sensitive to apoptosis than apoE(-/-). Mice lacking LXRα are resistant to arsenic-enhanced atherosclerosis, but arsenic-exposed LXRα(-/-)apoE(-/-) mice still present a different plaque composition pattern than the arsenic-exposed apoE(-/-) mice.
Collapse
Affiliation(s)
- Maryse Lemaire
- *Department of Oncology, Lady Davis Institute for Medical Research, and Department of Medicine, McGill University, Montréal, Canada H3T 1E2 *Department of Oncology, Lady Davis Institute for Medical Research, and Department of Medicine, McGill University, Montréal, Canada H3T 1E2
| | - Catherine A Lemarié
- *Department of Oncology, Lady Davis Institute for Medical Research, and Department of Medicine, McGill University, Montréal, Canada H3T 1E2 *Department of Oncology, Lady Davis Institute for Medical Research, and Department of Medicine, McGill University, Montréal, Canada H3T 1E2
| | - Manuel Flores Molina
- *Department of Oncology, Lady Davis Institute for Medical Research, and Department of Medicine, McGill University, Montréal, Canada H3T 1E2
| | - Cynthia Guilbert
- *Department of Oncology, Lady Davis Institute for Medical Research, and Department of Medicine, McGill University, Montréal, Canada H3T 1E2
| | - Stéphanie Lehoux
- *Department of Oncology, Lady Davis Institute for Medical Research, and Department of Medicine, McGill University, Montréal, Canada H3T 1E2 *Department of Oncology, Lady Davis Institute for Medical Research, and Department of Medicine, McGill University, Montréal, Canada H3T 1E2
| | - Koren K Mann
- *Department of Oncology, Lady Davis Institute for Medical Research, and Department of Medicine, McGill University, Montréal, Canada H3T 1E2 *Department of Oncology, Lady Davis Institute for Medical Research, and Department of Medicine, McGill University, Montréal, Canada H3T 1E2
| |
Collapse
|
29
|
Sanchez-Soria P, Broka D, Quach S, Hardwick RN, Cherrington NJ, Camenisch TD. Fetal exposure to arsenic results in hyperglycemia, hypercholesterolemia, and nonalcoholic fatty liver disease in adult mice. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2056-3779-1-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Thomas DJ. The Die Is Cast: Arsenic Exposure in Early Life and Disease Susceptibility. Chem Res Toxicol 2013; 26:1778-81. [DOI: 10.1021/tx4003337] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- David J. Thomas
- Pharmacokinetics Branch,
Integrated Systems Toxicology Division, National Health and Environmental
Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
31
|
Farzan SF, Karagas MR, Chen Y. In utero and early life arsenic exposure in relation to long-term health and disease. Toxicol Appl Pharmacol 2013; 272:384-90. [PMID: 23859881 PMCID: PMC3783578 DOI: 10.1016/j.taap.2013.06.030] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND There is a growing body of evidence that prenatal and early childhood exposure to arsenic from drinking water can have serious long-term health implications. OBJECTIVES Our goal was to understand the potential long-term health and disease risks associated with in utero and early life exposure to arsenic, as well as to examine parallels between findings from epidemiological studies with those from experimental animal models. METHODS We examined the current literature and identified relevant studies through PubMed by using combinations of the search terms "arsenic", "in utero", "transplacental", "prenatal" and "fetal". DISCUSSION Ecological studies have indicated associations between in utero and/or early life exposure to arsenic at high levels and increases in mortality from cancer, cardiovascular disease and respiratory disease. Additional data from epidemiologic studies suggest intermediate effects in early life that are related to risk of these and other outcomes in adulthood. Experimental animal studies largely support studies in humans, with strong evidence of transplacental carcinogenesis, atherosclerosis and respiratory disease, as well as insight into potential underlying mechanisms of arsenic's health effects. CONCLUSIONS As millions worldwide are exposed to arsenic and evidence continues to support a role for in utero arsenic exposure in the development of a range of later life diseases, there is a need for more prospective studies examining arsenic's relation to early indicators of disease and at lower exposure levels.
Collapse
Affiliation(s)
- Shohreh F. Farzan
- Children’s Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH 03755
- Section of Biostatistics and Epidemiology, Department of Community and Family Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756
| | - Margaret R. Karagas
- Children’s Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH 03755
- Section of Biostatistics and Epidemiology, Department of Community and Family Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, NY, 10016
| |
Collapse
|
32
|
Osorio-Yáñez C, Ayllon-Vergara JC, Aguilar-Madrid G, Arreola-Mendoza L, Hernández-Castellanos E, Barrera-Hernández A, De Vizcaya-Ruiz A, Del Razo LM. Carotid intima-media thickness and plasma asymmetric dimethylarginine in Mexican children exposed to inorganic arsenic. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:1090-6. [PMID: 23757599 PMCID: PMC3764073 DOI: 10.1289/ehp.1205994] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 06/07/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND Arsenic exposure is a risk factor for atherosclerosis in adults, but there is little information on arsenic and early risk biomarkers for atherosclerosis in children. Carotid intima-media thickness (cIMT) is an indicator of subclinical atherosclerotic burden that has been associated with plasma asymmetric dimethylarginine (ADMA), a predictor of cardiovascular disease risk. OBJECTIVES The aim of this study was to investigate associations of arsenic exposure with cIMT, ADMA, and endothelial adhesion molecules [soluble intercellular cell adhesion molecule-1 (sICAM-1); soluble vascular cell adhesion molecule-1 (sVCAM-1)] in children who had been exposed to environmental inorganic arsenic (iAs). METHODS We conducted a cross-sectional study in 199 children 3-14 years of age who were residents of Zimapan, México. We evaluated cIMT using ultrasonography, and plasma lipid profiles by standard methods. We analyzed ADMA, sICAM-1, and sVCAM-1 by ELISA, and measured the concentrations of total speciated arsenic (tAs) in urine using hydride generation cryotrapping atomic absorption spectrometry. RESULTS In the multiple linear regression model for cIMT, tAs categories were positively associated with cIMT increase. The estimated cIMT diameter was greater in 35- to 70-ng/mL and > 70-ng/mL groups (0.035 mm and 0.058 mm per 1-ng/mL increase in urinary tAs, respectively), compared with the < 35-ng/mL group. In addition to tAs level, plasma ADMA was a significant predictor of cIMT. In the adjusted regression model, cIMT, percent iAs, and plasma sVCAM-1 were significant predictors of ADMA levels (e.g., 0.419-μmol/L increase in ADMA per 1-mm increase in cIMT). CONCLUSIONS Arsenic exposure and plasma ADMA levels were positively associated with cIMT in a population of Mexican children with environmental arsenic exposure through drinking water.
Collapse
Affiliation(s)
- Citlalli Osorio-Yáñez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, México D.F., México
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mahram M, Shahsavari D, Oveisi S, Jalilolghadr S. Comparison of hypertension and diabetes mellitus prevalence in areas with and without water arsenic contamination. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2013; 18:408-12. [PMID: 24174947 PMCID: PMC3810576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/18/2012] [Accepted: 04/21/2013] [Indexed: 10/29/2022]
Abstract
BACKGROUND Arsenic (As), one of the most significant hazards in the environment affecting millions of people around the world is associated with several diseases including cancers, Diabetes Mellitus (DM) and Hypertension (Htn). Drinking water contaminated with inorganic arsenic (iAs) is the primary route of exposure. This study was conducted to determine the difference in the prevalence of DM and Htn in areas with different levels of water contamination of As. MATERIALS AND METHODS In this analytic ecologic study, after measurement of As level in drinking water in all urban regions of Qazvin Province (Islamic Republic of Iran), two cities with As level of 20-30 μg/L and two with the As level <5 μg/L were selected as exposed and unexposed groups, respectively. Measuring the prevalence of above-mentioned diseases in the 30-60 year-old population of the said regions as total sampling, the results were statistically analyzed and compared. RESULTS The mean prevalence of Htn in exposed and unexposed areas were 7.09% and 3.73%, respectively and for DM were 4.53% and 1.99% in the said groups, respectively. There was a positive correlation between As level and Htn (P < 0.001) and between As level and DM (P < 0.001). CONCLUSION High level of As in drinking water, even in the range of 20-30 μg/L has a relationship with increased prevalence of DM and Htn.
Collapse
Affiliation(s)
- Manoochehr Mahram
- Department of Pediatrics, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran,Address for correspondence: Dr. Manoochehr Mahram, Department of Pediatrics, Qods Hospital, Qods Square, Qazvin, Islamic Republic of Iran. E-mail:
| | - Dariush Shahsavari
- General Practitioner, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sonia Oveisi
- Department of Social Medicine, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shabnam Jalilolghadr
- Department of Pediatrics, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
34
|
Abstract
A 47-year-old woman consulted her dermatologist complaining whole body dermatitis, urticaria and irritating bullous eruptions on the plantar and side surfaces of her feet. She had had multiple hypopigmented spots on her skin since her early adulthood. The patient was treated with topical medication without significant improvement of symptoms. One year later she suffered a myocardial infarction, accompanied by refractory anaemia. At the age of 49, a breast cancer was diagnosed and shortly thereafter her last menstruation occurred. At age 50years, upon complaint of weight loss despite normal food intake, Hashimoto thyroiditis with latent hyperthyroidism, vitamin D insufficiency with secondary hyperparathyroidism, and poikilocytic anaemia with anisochromia, hypochromia, anisocytosis, elliptocytes, drepanocytes, dacryocytes, acanthocytes, echinocytes, schizocytes, stomatocytes and target cells were diagnosed. The osteodensitometric and laboratory examinations revealed osteoporosis with sustained elevation of urinary Dipyridinolin-crosslinks (u-Dpd), and urinary arsenic (u-As) of 500μg/l (equivalent to 0.5 parts per million-ppm, 2.5μg/mg creatinine/dl, u-As: Phosphate of 26μg/mmol; the estimated bone As:P and As/kg body weight were 500μg/g and 11.3mg/kg, respectively). Thalassemia, immunoglobinopathy and iron deficiency were excluded. Supplementation with oral vitamin D and calcium, and antiresorptive therapy with intravenous zolendronate normalised the u-Dpd, significantly decreased the urinary arsenic concentration, and cured the anemia and the urticaria. A diagnosis of osteoresorptive arsenic intoxication (ORAI) was established.
Collapse
Affiliation(s)
- Sergio Ulhoa Dani
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg General Hospital, Im Neuenheimer Feld 671, 69120 Heidelberg, Germany.
| |
Collapse
|
35
|
Copat C, Arena G, Fiore M, Ledda C, Fallico R, Sciacca S, Ferrante M. Heavy metals concentrations in fish and shellfish from eastern Mediterranean Sea: Consumption advisories. Food Chem Toxicol 2013; 53:33-7. [DOI: 10.1016/j.fct.2012.11.038] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/05/2012] [Accepted: 11/23/2012] [Indexed: 10/27/2022]
|
36
|
Hawkesworth S, Wagatsuma Y, Kippler M, Fulford AJC, Arifeen SE, Persson LA, Moore SE, Vahter M. Early exposure to toxic metals has a limited effect on blood pressure or kidney function in later childhood, rural Bangladesh. Int J Epidemiol 2013; 42:176-85. [PMID: 23243118 PMCID: PMC3600625 DOI: 10.1093/ije/dys215] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chronic exposure to toxic metals such as arsenic and cadmium has been implicated in the development of kidney and cardiovascular diseases but few studies have directly measured exposure during inutero and early child development. METHODS We investigated the impact of exposure to arsenic (mainly in drinking water) and cadmium (mainly in rice) during pregnancy on blood pressure and kidney function at 4.5 years of age in rural Bangladesh. The effect of arsenic exposure in infancy was also assessed. RESULTS Within a cohort of 1887 children recruited into the MINIMat study, exposure to arsenic (maternal urinary arsenic, U-As), but not cadmium, during in utero development was associated with a minimal increase in blood pressure at 4.5 years. Each 1 mg/l increase in pregnancy U-As was associated with 3.69 mmHg (95% CI: 0.74, 6.63; P: 0.01) increase in child systolic and a 2.91 mmHg (95% CI: 0.41, 5.42; P: 0.02) increase in child diastolic blood pressure. Similarly, a 1 mg/l increase in child U-As at 18 months of age was associated with a 8.25 mmHg (95% CI: 1.37, 15.1; P: 0.02) increase in systolic blood pressure at 4.5 years. There was also a marginal inverse association between infancy U-As and glomerular filtration rate at 4.5 years (-33.4 ml/min/1.72 m(2); 95% CI: -70.2, 3.34; P: 0.08). No association was observed between early arsenic or cadmium exposure and kidney volume at 4.5 years assessed by ultrasound. CONCLUSIONS These modest effect sizes provide some evidence that arsenic exposure in early life has long-term consequences for blood pressure and maybe kidney function.
Collapse
Affiliation(s)
- Sophie Hawkesworth
- Medical Research Council International Nutrition Group, London School of Hygiene and Tropical Medicine, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Boekelheide K, Blumberg B, Chapin RE, Cote I, Graziano JH, Janesick A, Lane R, Lillycrop K, Myatt L, States JC, Thayer KA, Waalkes MP, Rogers JM. Predicting later-life outcomes of early-life exposures. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1353-61. [PMID: 22672778 PMCID: PMC3491941 DOI: 10.1289/ehp.1204934] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 06/06/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND In utero exposure of the fetus to a stressor can lead to disease in later life. Epigenetic mechanisms are likely mediators of later-life expression of early-life events. OBJECTIVES We examined the current state of understanding of later-life diseases resulting from early-life exposures in order to identify in utero and postnatal indicators of later-life diseases, develop an agenda for future research, and consider the risk assessment implications of this emerging knowledge. METHODS This review was developed based on our participation in a National Research Council workshop titled "Use of in Utero and Postnatal Indicators to Predict Health Outcomes Later in Life: State of the Science and Research Recommendations." We used a case study approach to highlight the later-life consequences of early-life malnutrition and arsenic exposure. DISCUSSION The environmental sensitivity of the epigenome is viewed as an adaptive mechanism by which the developing organism adjusts its metabolic and homeostatic systems to suit the anticipated extrauterine environment. Inappropriate adaptation may produce a mismatch resulting in subsequent increased susceptibility to disease. A nutritional mismatch between the prenatal and postnatal environments, or early-life obesogen exposure, may explain at least some of the recent rapid increases in the rates of obesity, type 2 diabetes, and cardiovascular diseases. Early-life arsenic exposure is also associated with later-life diseases, including cardiovascular disease and cancer. CONCLUSIONS With mounting evidence connecting early-life exposures and later-life disease, new strategies are needed to incorporate this emerging knowledge into health protective practices.
Collapse
Affiliation(s)
- Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ngalame NNO, Micciche AF, Feil ME, States JC. Delayed temporal increase of hepatic Hsp70 in ApoE knockout mice after prenatal arsenic exposure. Toxicol Sci 2012; 131:225-33. [PMID: 22956628 DOI: 10.1093/toxsci/kfs264] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prenatal arsenic exposure accelerates atherosclerosis in ApoE(-/-) mice by unknown mechanism. Arsenic is a hepatotoxicant, and liver disease increases atherosclerosis risk. Prenatal arsenic exposure may predispose to liver disease by priming for susceptibility to other environmental insults. Earlier microarray analyses showed prenatal arsenic exposure increased Hsc70 (HspA8) and Hsp70 (HspA1a) mRNAs in livers of 10-week-old mice. We determined effects of prenatal arsenic exposure on hepatic Hsp70 and Hsc70 expression by Western blot and on DNA methylation by methyl acceptance assay during prenatal and postnatal development. Pregnant ApoE(-/-) mice were given drinking water containing 85 mg/l NaAsO(2) (49 ppm arsenic) from gestation day (GD) 8 to 18. Hsp70 and Hsc70 expression and DNA methylation were determined in GD18 fetuses and 3-, 10-, and 24-week-old mice. Hsc70 expression was unchanged at all ages. Hsp70 induction was observed at 3 and 10 weeks, but was unchanged in GD18 fetuses and 24-week livers of mice. Global DNA methylation increased with age; arsenic had no effects. Bisulfite sequencing of DNA from livers of 10-week-old mice showed Hsp70 promoter region methylation was unchanged, but methylation was increased within the transcribed region. Hsf1 and Nrf2 nuclear translocation were investigated as potential mechanisms of Hsp70 induction and found unaltered. Putative binding sites were identified in HSP70 for in utero arsenic exposure-suppressed microRNAs suggesting a possible mechanism. Thus, prenatal arsenic exposure causes delayed temporal hepatic Hsp70 induction, suggesting a transient state of stress in livers which can predispose the mice to developing liver disease.
Collapse
Affiliation(s)
- Ntube N O Ngalame
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
39
|
States JC, Singh AV, Knudsen TB, Rouchka EC, Ngalame NO, Arteel GE, Piao Y, Ko MSH. Prenatal arsenic exposure alters gene expression in the adult liver to a proinflammatory state contributing to accelerated atherosclerosis. PLoS One 2012; 7:e38713. [PMID: 22719926 PMCID: PMC3376138 DOI: 10.1371/journal.pone.0038713] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/11/2012] [Indexed: 01/07/2023] Open
Abstract
The mechanisms by which environmental toxicants alter developmental processes predisposing individuals to adult onset chronic disease are not well-understood. Transplacental arsenic exposure promotes atherogenesis in apolipoprotein E-knockout (ApoE−/−) mice. Because the liver plays a central role in atherosclerosis, diabetes and metabolic syndrome, we hypothesized that accelerated atherosclerosis may be linked to altered hepatic development. This hypothesis was tested in ApoE−/− mice exposed to 49 ppm arsenic in utero from gestational day (GD) 8 to term. GD18 hepatic arsenic was 1.2 µg/g in dams and 350 ng/g in fetuses. The hepatic transcriptome was evaluated by microarray analysis to assess mRNA and microRNA abundance in control and exposed pups at postnatal day (PND) 1 and PND70. Arsenic exposure altered postnatal developmental trajectory of mRNA and microRNA profiles. We identified an arsenic exposure related 51-gene signature at PND1 and PND70 with several hubs of interaction (Hspa8, IgM and Hnf4a). Gene ontology (GO) annotation analyses indicated that pathways for gluconeogenesis and glycolysis were suppressed in exposed pups at PND1, and pathways for protein export, ribosome, antigen processing and presentation, and complement and coagulation cascades were induced by PND70. Promoter analysis of differentially-expressed transcripts identified enriched transcription factor binding sites and clustering to common regulatory sites. SREBP1 binding sites were identified in about 16% of PND70 differentially-expressed genes. Western blot analysis confirmed changes in the liver at PND70 that included increases of heat shock protein 70 (Hspa8) and active SREBP1. Plasma AST and ALT levels were increased at PND70. These results suggest that transplacental arsenic exposure alters developmental programming in fetal liver, leading to an enduring stress and proinflammatory response postnatally that may contribute to early onset of atherosclerosis. Genes containing SREBP1 binding sites also suggest pathways for diabetes mellitus and rheumatoid arthritis, both diseases that contribute to increased cardiovascular disease in humans.
Collapse
Affiliation(s)
- J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Effects of low-dose drinking water arsenic on mouse fetal and postnatal growth and development. PLoS One 2012; 7:e38249. [PMID: 22693606 PMCID: PMC3365045 DOI: 10.1371/journal.pone.0038249] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 05/04/2012] [Indexed: 12/18/2022] Open
Abstract
Background Arsenic (As) exposure is a significant worldwide environmental health concern. Chronic exposure via contaminated drinking water has been associated with an increased incidence of a number of diseases, including reproductive and developmental effects. The goal of this study was to identify adverse outcomes in a mouse model of early life exposure to low-dose drinking water As (10 ppb, current U.S. EPA Maximum Contaminant Level). Methodology and Findings C57B6/J pups were exposed to 10 ppb As, via the dam in her drinking water, either in utero and/or during the postnatal period. Birth outcomes, the growth of the F1 offspring, and health of the dams were assessed by a variety of measurements. Birth outcomes including litter weight, number of pups, and gestational length were unaffected. However, exposure during the in utero and postnatal period resulted in significant growth deficits in the offspring after birth, which was principally a result of decreased nutrients in the dam's breast milk. Cross-fostering of the pups reversed the growth deficit. Arsenic exposed dams displayed altered liver and breast milk triglyceride levels and serum profiles during pregnancy and lactation. The growth deficits in the F1 offspring resolved following separation from the dam and cessation of exposure in male mice, but did not resolve in female mice up to six weeks of age. Conclusions/Significance Exposure to As at the current U.S. drinking water standard during critical windows of development induces a number of adverse health outcomes for both the dam and offspring. Such effects may contribute to the increased disease risks observed in human populations.
Collapse
|
41
|
Chen H, Yang J, Zhang Q, Chen LH, Wang Q. Corosolic Acid Ameliorates Atherosclerosis in Apolipoprotein E-Deficient Mice by Regulating the Nuclear Factor-κB Signaling Pathway and Inhibiting Monocyte Chemoattractant Protein-1 Expression. Circ J 2012; 76:995-1003. [DOI: 10.1253/circj.cj-11-0344] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hong Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University
| | - Jie Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University
| | - Qin Zhang
- Prenatal Diagnosis Center, Nanjing Maternity and Child Health Care Hospital
| | - Li-Hong Chen
- College of Pharmacy, Nanjing University of Chinese Medicine
| | - Qiang Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University
| |
Collapse
|
42
|
States JC, Barchowsky A, Cartwright IL, Reichard JF, Futscher BW, Lantz RC. Arsenic toxicology: translating between experimental models and human pathology. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1356-63. [PMID: 21684831 PMCID: PMC3230447 DOI: 10.1289/ehp.1103441] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 06/17/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND Chronic arsenic exposure is a worldwide health problem. How arsenic exposure promotes a variety of diseases is poorly understood, and specific relationships between experimental and human exposures are not established. We propose phenotypic anchoring as a means to unify experimental observations and disease outcomes. OBJECTIVES We examined the use of phenotypic anchors to translate experimental data to human pathology and investigated research needs for which phenotypic anchors need to be developed. METHODS During a workshop, we discussed experimental systems investigating arsenic dose/exposure and phenotypic expression relationships and human disease responses to chronic arsenic exposure and identified knowledge gaps. In a literature review, we identified areas where data exist to support phenotypic anchoring of experimental results to pathologies from specific human exposures. DISCUSSION Disease outcome is likely dependent on cell-type-specific responses and interaction with individual genetics, other toxicants, and infectious agents. Potential phenotypic anchors include target tissue dosimetry, gene expression and epigenetic profiles, and tissue biomarkers. CONCLUSIONS Translation to human populations requires more extensive profiling of human samples along with high-quality dosimetry. Anchoring results by gene expression and epigenetic profiling has great promise for data unification. Genetic predisposition of individuals affects disease outcome. Interactions with infectious agents, particularly viruses, may explain some species-specific differences between human pathologies and experimental animal pathologies. Invertebrate systems amenable to genetic manipulation offer potential for elaborating impacts of specific biochemical pathways. Anchoring experimental results to specific human exposures will accelerate understanding of mechanisms of arsenic-induced human disease.
Collapse
Affiliation(s)
- J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Mitchell E, Frisbie S, Sarkar B. Exposure to multiple metals from groundwater-a global crisis: geology, climate change, health effects, testing, and mitigation. Metallomics 2011; 3:874-908. [PMID: 21766119 DOI: 10.1039/c1mt00052g] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper presents an overview of the global extent of naturally occurring toxic metals in groundwater. Adverse health effects attributed to the toxic metals most commonly found in groundwater are reviewed, as well as chemical, biochemical, and physiological interactions between these metals. Synergistic and antagonistic effects that have been reported between the toxic metals found in groundwater and the dietary trace elements are highlighted, and common behavioural, cultural, and dietary practices that are likely to significantly modify health risks due to use of metal-contaminated groundwater are reviewed. Methods for analytical testing of samples containing multiple metals are discussed, with special attention to analytical interferences between metals and reagents. An overview is presented of approaches to providing safe water when groundwater contains multiple metallic toxins.
Collapse
|
44
|
Flora SJS. Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 2011; 51:257-281. [PMID: 21554949 DOI: 10.1016/j.freeradbiomed.2011.04.008] [Citation(s) in RCA: 575] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 03/18/2011] [Accepted: 04/04/2011] [Indexed: 12/12/2022]
Abstract
This review summarizes the literature describing the molecular mechanisms of arsenic-induced oxidative stress, its relevant biomarkers, and its relation to various diseases, including preventive and therapeutic strategies. Arsenic alters multiple cellular pathways including expression of growth factors, suppression of cell cycle checkpoint proteins, promotion of and resistance to apoptosis, inhibition of DNA repair, alterations in DNA methylation, decreased immunosurveillance, and increased oxidative stress, by disturbing the pro/antioxidant balance. These alterations play prominent roles in disease manifestation, such as carcinogenicity, genotoxicity, diabetes, cardiovascular and nervous systems disorders. The exact molecular and cellular mechanisms involved in arsenic toxicity are rather unrevealed. Arsenic alters cellular glutathione levels either by utilizing this electron donor for the conversion of pentavalent to trivalent arsenicals or directly binding with it or by oxidizing glutathione via arsenic-induced free radical generation. Arsenic forms oxygen-based radicals (OH(•), O(2)(•-)) under physiological conditions by directly binding with critical thiols. As a carcinogen, it acts through epigenetic mechanisms rather than as a classical mutagen. The carcinogenic potential of arsenic may be attributed to activation of redox-sensitive transcription factors and other signaling pathways involving nuclear factor κB, activator protein-1, and p53. Modulation of cellular thiols for protection against reactive oxygen species has been used as a therapeutic strategy against arsenic. N-acetylcysteine, α-lipoic acid, vitamin E, quercetin, and a few herbal extracts show prophylactic activity against the majority of arsenic-mediated injuries in both in vitro and in vivo models. This review also updates the reader on recent advances in chelation therapy and newer therapeutic strategies suggested to treat arsenic-induced oxidative damage.
Collapse
Affiliation(s)
- Swaran J S Flora
- Division of Pharmacology & Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
45
|
Lemaire M, Lemarié CA, Molina MF, Schiffrin EL, Lehoux S, Mann KK. Exposure to moderate arsenic concentrations increases atherosclerosis in ApoE-/- mouse model. Toxicol Sci 2011; 122:211-21. [PMID: 21512104 DOI: 10.1093/toxsci/kfr097] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arsenic is a widespread environmental contaminant to which millions of people are exposed worldwide. Exposure to arsenic is epidemiologically linked to increased cardiovascular disease, such as atherosclerosis. However, the effects of moderate concentrations of arsenic on atherosclerosis formation are unknown. Therefore, we utilized an in vivo ApoE(-/-) mouse model to assess the effects of chronic moderate exposure to arsenic on plaque formation and composition in order to facilitate mechanistic investigations. Mice exposed to 200 ppb arsenic developed atherosclerotic lesions, a lower exposure than previously reported. In addition, arsenic modified the plaque content, rendering them potentially less stable and consequently, potentially more dangerous. Moreover, we observed that the lower exposure concentration was more atherogenic than the higher concentration. Arsenic-enhanced lesions correlated with several proatherogenic molecular changes, including decreased liver X receptor (LXR) target gene expression and increased proinflammatory cytokines. Significantly, our observations suggest that chronic moderate arsenic exposure may be a greater cardiovascular health risk than previously anticipated.
Collapse
Affiliation(s)
- Maryse Lemaire
- Deptartment of Oncology, Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Steffens AA, Hong GM, Bain LJ. Sodium arsenite delays the differentiation of C2C12 mouse myoblast cells and alters methylation patterns on the transcription factor myogenin. Toxicol Appl Pharmacol 2011; 250:154-61. [PMID: 20965206 PMCID: PMC3014457 DOI: 10.1016/j.taap.2010.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 12/01/2022]
Abstract
Epidemiological studies have correlated arsenic exposure with cancer, skin diseases, and adverse developmental outcomes such as spontaneous abortions, neonatal mortality, low birth weight, and delays in the use of musculature. The current study used C2C12 mouse myoblast cells to examine whether low concentrations of arsenic could alter their differentiation into myotubes, indicating that arsenic can act as a developmental toxicant. Myoblast cells were exposed to 20 nM sodium arsenite, allowed to differentiate into myotubes, and expression of the muscle-specific transcription factor myogenin, along with the expression of tropomyosin, suppressor of cytokine signaling 3 (Socs3), prostaglandin I2 synthesis (Ptgis), and myocyte enhancer 2 (Mef2), was investigated using QPCR and immunofluorescence. Exposing C2C12 cells to 20 nM sodium arsenite delayed the differentiation process, as evidenced by a significant reduction in the number of multinucleated myotubes, a decrease in myogenin mRNA expression, and a decrease in the total number of nuclei expressing myogenin protein. The expression of mRNA involved in myotube formation, such as Ptgis and Mef2 mRNA, was also significantly reduced by 1.6-fold and 4-fold during differentiation. This was confirmed by immunofluorescence for Mef2, which showed a 2.6-fold reduction in nuclear translocation. Changes in methylation patterns in the promoter region of myogenin (-473 to +90) were examined by methylation-specific PCR and bisulfite genomic sequencing. Hypermethylated CpGs were found at -236 and -126 bp, whereas hypomethylated CpGs were found at -207 bp in arsenic-exposed cells. This study indicates that 20 nM sodium arsenite can alter myoblast differentiation by reducing the expression of the transcription factors myogenin and Mef2c, which is likely due to changes in promoter methylation patterns. The delay in muscle differentiation may lead to developmental abnormalities.
Collapse
Affiliation(s)
- Amanda A. Steffens
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 United States
| | - Gia-Ming Hong
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 United States
| | - Lisa J. Bain
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 United States
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 United States
| |
Collapse
|
47
|
Padovani AMS, Molina MF, Mann KK. Inhibition of liver x receptor/retinoid X receptor-mediated transcription contributes to the proatherogenic effects of arsenic in macrophages in vitro. Arterioscler Thromb Vasc Biol 2010; 30:1228-36. [PMID: 20339114 DOI: 10.1161/atvbaha.110.205500] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To determine whether arsenic inhibits transcriptional activation of the liver X receptor (LXR)/retinoid X receptor (RXR) heterodimers, thereby impairing cholesterol efflux from macrophages and potentially contributing to a proatherogenic phenotype. METHODS AND RESULTS Arsenic is an important environmental contaminant and has been linked to an increased incidence of atherosclerosis. Previous findings showed that arsenic inhibits transcriptional activation of type 2 nuclear receptors, known to heterodimerize with RXR. Environmentally relevant arsenic doses decrease the LXR/RXR ligand-induced expression of the LXR target genes (ABCA1 and SREBP-1c). Arsenic failed to decrease cAMP-induced ABCA1 expression, suggesting a selective LXR/RXR effect. This selectivity correlated with the ability of arsenic to decrease LXR/RXR ligand-induced, but not cAMP-induced, cholesterol efflux. By using chromatin immunoprecipitation assays, we found that arsenic inhibits the ability of LXR/RXR ligands to induce activation markers on the ABCA1 and SREBP-1c promoters and blocks ligand-induced release of the nuclear receptor coexpressor (NCoR) from the promoter. Arsenic did not alter the ability of LXR to transrepress inflammatory gene transcription, further supporting our hypothesis that RXR is the target for arsenic inhibition. CONCLUSIONS Exposure to arsenic enhances the risk of atherosclerosis. We present data that arsenic inhibits the transcriptional activity of the liver X receptor, resulting in decreased cholesterol-induced gene expression and efflux from macrophages. Therefore, arsenic may promote an athersclerotic environment by decreasing the ability of macrophages to efflux excess cholesterol, thereby favoring increased plaque formation.
Collapse
Affiliation(s)
- Alessandra M S Padovani
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | | | | |
Collapse
|
48
|
Arsenic exacerbates atherosclerotic lesion formation and inflammation in ApoE-/- mice. Toxicol Appl Pharmacol 2009; 241:90-100. [PMID: 19682479 DOI: 10.1016/j.taap.2009.08.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 11/24/2022]
Abstract
Exposure to arsenic-contaminated water has been shown to be associated with cardiovascular disease, especially atherosclerosis. We examined the effect of arsenic exposure on atherosclerotic lesion formation, lesion composition and nature in ApoE-/- mice. Early post-natal exposure (3-week-old mice exposed to 49 ppm arsenic as NaAsO(2) in drinking water for 7 weeks) increased the atherosclerotic lesion formation by 3- to 5-fold in the aortic valve and the aortic arch, without affecting plasma cholesterol. Exposure to arsenic for 13 weeks (3-week-old mice exposed to 1, 4.9 and 49 ppm arsenic as NaAsO(2) in drinking water) increased the lesion formation and macrophage accumulation in a dose-dependent manner. Temporal studies showed that continuous arsenic exposure significantly exacerbated the lesion formation throughout the aortic tree at 16 and 36 weeks of age. Withdrawal of arsenic for 12 weeks after an initial exposure for 21 weeks (to 3-week-old mice) significantly decreased lesion formation as compared with mice continuously exposed to arsenic. Similarly, adult exposure to 49 ppm arsenic for 24 weeks, starting at 12 weeks of age increased lesion formation by 2- to 3.6-fold in the aortic valve, the aortic arch and the abdominal aorta. Lesions of arsenic-exposed mice displayed a 1.8-fold increase in macrophage accumulation whereas smooth muscle cell and T-lymphocyte contents were not changed. Expression of pro-inflammatory chemokine MCP-1 and cytokine IL-6 and markers of oxidative stress, protein-HNE and protein-MDA adducts were markedly increased in lesions of arsenic-exposed mice. Plasma concentrations of MCP-1, IL-6 and MDA were also significantly elevated in arsenic-exposed mice. These data suggest that arsenic exposure increases oxidative stress, inflammation and atherosclerotic lesion formation.
Collapse
|
49
|
Abstract
Even at high concentrations, arsenic-contaminated water is translucent, tasteless, and odorless. Yet almost every day, studies report a continually increasing plethora of toxic effects that have manifested in exposed populations throughout the world. In this article we focus on recent findings, in particular those associated with major contributions since 2006. Early life exposure, both in utero and in childhood, has been receiving increased attention, and remarkable increases in consequent mortality in young adults have been reported. New studies address the dose-response relationship between drinking-water arsenic concentrations and skin lesions, and new findings have emerged concerning arsenic and cardiovascular disease. We also review the increasing epidemiological evidence that the first step of methylation of inorganic arsenic to monomethylated arsenic (MMA) is actually an activation step rather than the first step in detoxification, as once thought. Hexavalent chromium differs from arsenic in that it discolors water, turning the water yellow at high concentrations. A controversial issue is whether chromium causes cancer when ingested. A recent publication supports the original findings in China of increased cancer mortality in a population where well water turned yellow with chromium.
Collapse
Affiliation(s)
- Allan H. Smith
- School of Public Health, University of California, Berkeley, California 94720; ,
| | - Craig M. Steinmaus
- School of Public Health, University of California, Berkeley, California 94720; ,
| |
Collapse
|
50
|
States JC, Srivastava S, Chen Y, Barchowsky A. Arsenic and cardiovascular disease. Toxicol Sci 2008; 107:312-23. [PMID: 19015167 DOI: 10.1093/toxsci/kfn236] [Citation(s) in RCA: 244] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chronic arsenic exposure is a worldwide health problem. Although arsenic-induced cancer has been widely studied, comparatively little attention has been paid to arsenic-induced vascular disease. Epidemiological studies have shown that chronic arsenic exposure is associated with increased morbidity and mortality from cardiovascular disease. In addition, studies suggest that susceptibility to arsenic-induced vascular disease may be modified by nutritional factors in addition to genetic factors. Recently, animal models for arsenic-induced atherosclerosis and liver sinusoidal endothelial cell dysfunction have been developed. Initial studies in these models show that arsenic exposure accelerates and exacerbates atherosclerosis in apolipoprotein E-knockout mice. Microarray studies of liver mRNA and micro-RNA abundance in mice exposed in utero suggest that a permanent state of stress is induced by the arsenic exposure. Furthermore, the livers of the arsenic-exposed mice have activated pathways involved in immune responses suggesting a pro-hyperinflammatory state. Arsenic exposure of mice after weaning shows a clear dose-response in the extent of disease exacerbation. In addition, increased inflammation in arterial wall is evident. In response to arsenic-stimulated oxidative signaling, liver sinusoidal endothelium differentiates into a continuous endothelium that limits nutrient exchange and waste elimination. Data suggest that nicotinamide adenine dinucleotide phosphate oxidase-derived superoxide or its derivatives are essential second messengers in the signaling pathway for arsenic-stimulated vessel remodeling. The recent findings provide future directions for research into the cardiovascular effects of arsenic exposure.
Collapse
Affiliation(s)
- J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | | | |
Collapse
|