1
|
Ramadan L, Harb M. Fungi as an emerging waterborne health concern: impact of treated wastewater discharge versus aerosolization. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1103-1119. [PMID: 40130584 PMCID: PMC12017459 DOI: 10.1039/d5em00020c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The discharge of treated wastewater effluents into river-fed irrigation canals results in a de facto form of water reuse. Waterborne fungal populations in such environments pose a unique human health concern given that opportunistic fungal pathogens can be proliferated during spray irrigation of crops. In the present study, we consider two different routes (effluent discharge versus bioaerosols) through which wastewater treatment plants (WWTPs) can impact the presence and abundance of fungal communities in irrigation canals of the Rio Grande river basin in New Mexico. Site A was selected to investigate the influence of effluent discharge from a WWTP on waterborne fungal communities in a receiving irrigation canal. Site B represented an irrigation canal that was directly adjacent to a WWTP but that receives no effluent discharge (to exemplify bioaerosolization exclusively). Sampling dates were chosen to capture variations in weather and stream flow conditions at each of the two sites. Results indicated that treated wastewater discharged into the canal had a distinct impact on fungal community composition, especially under low wind and flow conditions. When stream flow was highest, variations along the canal at Site A were minimal. The highest occurrence of pathogen-associated genera was observed at Site B under high wind conditions with an average relative abundance of 20.9 ± 13.1% (peak of 39.3%) and was attributable to bioaerosol emissions from the WWTP and a nearby livestock facility. Such genera included Alternaria, Cladosporium, and Cryptococcus. These findings suggest that although treated effluent discharge can directly impact irrigation canal fungal community composition, bioaerosols likely have a larger overall effect on the spread of potential fungal pathogens.
Collapse
Affiliation(s)
- Lama Ramadan
- Department of Civil and Environmental Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM, USA 87801.
| | - Moustapha Harb
- Department of Civil and Environmental Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM, USA 87801.
| |
Collapse
|
2
|
Zhang H, Xu C, Hu C, Xue Y, Yao D, Hu Y, Wu A, Dai M, Ye H. Development of machine learning models to predict the risk of fungal infection following flexible ureteroscopy lithotripsy. BMC Med Inform Decis Mak 2025; 25:159. [PMID: 40211277 PMCID: PMC11987200 DOI: 10.1186/s12911-025-02987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND The flexible ureteroscopy lithotripsy (F-URL) is an important treatment for upper urinary tract stones. However, urolithiasis, surgical procedures, and catheter placement are risk factors for fungal infections. Our study aimed to construct a machine learning algorithm predictive model to predict the risk of fungal infection following F-URL. METHODS This study retrospectively collected the clinical data of patients who underwent F-URL at the Second Affiliated Hospital of Zhengzhou University from January 2016 to March 2024. The patients were divided into a non-fungal infection group and a fungal infection group based on whether a fungal infection occurred within three months post-surgery. The patient data from January 2016 to December 2023 were used as training data, and the patient data from January 2024 to March 2024 were used as testing set. The training data was randomly divided into a training set and validation set at a ratio of 90:10. Use LASSO regression to screen clinical features based on the training set. Nine machine learning algorithms, Logistic Regression (LR), k-Nearest Neighbours (KNN), Support Vector Machines (SVM), Random Forest (RF), Categorical Boosting (CatBoost), eXtreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost), Gradient Boosting Machines (GBM), and Neural Network (NNet), were used to construct models. The performance of these nine models was evaluated and the best predictive model was selected based on the validation set, and evaluate the best predictive model's generalization ability using the testing set. Visualize the constructed optimal machine learning model using the SHapley additive interpretation (SHAP) value method. SHAP force plots were established to show the application of the prediction model at the individual level. RESULTS A total of 13 clinical features were used to construct predictive models: age, diabetes mellitus (DM), history of malignancy, being bedridden, admission white blood cells (WBC), preoperative ureteral stenting, operation time, postoperative fever, postoperative Neu, carbapenem antibiotics use, duration of antibiotic therapy, length of hospital stay (LOS), and postoperative stent duration. Comparing the performance of 9 prediction models, we found that the model constructed using XGBoost algorithm had the best performance. The model constructed using XGBoost algorithm shows good discrimination, generalization and clinical applicability in the testing set. CONCLUSIONS The XGBoost model developed in this study has good predictive ability and clinical applicability for evaluating the risk of fungal infection following F-URL.
Collapse
Affiliation(s)
- Haofang Zhang
- Department of Urology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- The Second Clinical Medical School of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou, 450000, China
| | - Changbao Xu
- Department of Urology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
- The Second Clinical Medical School of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou, 450000, China.
| | - Chenge Hu
- The Second Clinical Medical School of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou, 450000, China
| | - Yunlai Xue
- The Second Clinical Medical School of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou, 450000, China
| | - Daoke Yao
- The Second Clinical Medical School of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou, 450000, China
| | - Yifan Hu
- Department of Urology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- The Second Clinical Medical School of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou, 450000, China
| | - Ankang Wu
- The Second Clinical Medical School of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou, 450000, China
| | - Miao Dai
- The Second Clinical Medical School of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou, 450000, China
| | - Hang Ye
- The Second Clinical Medical School of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou, 450000, China
| |
Collapse
|
3
|
Yu S, Zhang S, Zhang A, Han H, Han J, Sun B. Construction and activity evaluation of novel CHS inhibitors against fungal infections. Eur J Med Chem 2025; 287:117337. [PMID: 39908793 DOI: 10.1016/j.ejmech.2025.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
Chitin synthase (CHS), as crucial antifungal target, plays a pivotal role in the fungal proliferation and invasion processes. This study constructed pharmacophore models based on ligand and receptor features. These models were used to guide the construction of novel CHS inhibitors via the scaffold-growth pathway. The corresponding molecular structures were synthesized, and their biological activities were evaluated. Among them, compounds 9c, 9e, and 9f exhibited significant inhibitory activity against chitin synthesis, achieving high potent antifungal effect. Furthermore, the potential compound 9f, in combination with immune activators, could accelerate the recovery rate of drug-resistant fungal infections in vivo. This study not only successfully established scientific pharmacophore models but also discovered novel CHS inhibitors, opening up a potential new pathway for effectively treating fungal infections by regulating chitin synthesis pathways.
Collapse
Affiliation(s)
- Shuai Yu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Shiying Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Anli Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Hongfen Han
- Drug Development Department, Shandong Chuancheng Pharmaceutical Co., Ltd, 35 Lushan Road, Liaocheng, 252000, PR China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China.
| |
Collapse
|
4
|
Fang T, Lu H, Jiang Y. Extracellular fungal Hsp90 represents a promising therapeutic target for combating fungal infections. Eur J Pharm Sci 2025; 207:107041. [PMID: 39947525 DOI: 10.1016/j.ejps.2025.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/17/2024] [Accepted: 02/10/2025] [Indexed: 02/16/2025]
Abstract
Heat shock protein 90 (Hsp90) is a pivotal virulence factor in pathogenic fungi, playing a significant role in conferring drug resistance. However, due to the high amino acid sequence similarity between fungal and mammalian Hsp90, targeting fungal intracellular Hsp90 therapeutically is associated with marked toxic side effects, thereby limiting clinical application. Studies have demonstrated that intracellular fungal Hsp90 can be secreted as extracellular Hsp90 (eHsp90), which plays a crucial role in fungal infections. Strategies targeting fungal eHsp90 have exhibited promising therapeutic outcomes. Unlike intracellular targeting, such antifungal approaches can operate without cell penetration, thereby circumventing the toxic side effects due to Hsp90's high conservation. This review summarizes the potential extracellular secretion pathways of fungal eHsp90, its roles in fungal pathogenesis, as well as the development of vaccines and antibodies targeting fungal eHsp90. The review underlines the significance of eHsp90 in fungal infections and suggests that eHsp90 represents a promising therapeutic target for fungal infection treatment.
Collapse
Affiliation(s)
- Ting Fang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
5
|
Kordana N, Johnson A, Quinn K, Obar JJ, Cramer RA. Recent developments in Aspergillus fumigatus research: diversity, drugs, and disease. Microbiol Mol Biol Rev 2025; 89:e0001123. [PMID: 39927770 PMCID: PMC11948498 DOI: 10.1128/mmbr.00011-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
SUMMARYAdvances in modern medical therapies for many previously intractable human diseases have improved patient outcomes. However, successful disease treatment outcomes are often prevented due to invasive fungal infections caused by the environmental mold Aspergillus fumigatus. As contemporary antifungal therapies have not experienced the same robust advances as other medical therapies, defining mechanisms of A. fumigatus disease initiation and progression remains a critical research priority. To this end, the World Health Organization recently identified A. fumigatus as a research priority human fungal pathogen and the Centers for Disease Control has highlighted the emergence of triazole-resistant A. fumigatus isolates. The expansion in the diversity of host populations susceptible to aspergillosis and the complex and dynamic A. fumigatus genotypic and phenotypic diversity call for a reinvigorated assessment of aspergillosis pathobiological and drug-susceptibility mechanisms. Here, we summarize recent advancements in the field and discuss challenges in our understanding of A. fumigatus heterogeneity and its pathogenesis in diverse host populations.
Collapse
Affiliation(s)
- Nicole Kordana
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Angus Johnson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Katherine Quinn
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joshua J. Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
6
|
Pemán J, Ruiz-Gaitán A. Diagnosing invasive fungal infections in the laboratory today: It's all good news? Rev Iberoam Micol 2025:S1130-1406(25)00007-5. [PMID: 40268631 DOI: 10.1016/j.riam.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 04/25/2025] Open
Abstract
Despite the advances in medical science, invasive fungal infections (IFI) remain a diagnostic challenge. The increasing prevalence of IFI, driven by immunosuppressive therapies, advances in intensive care and emerging pathogens, underscores the need for early and accurate diagnosis. This review evaluates current laboratory methods for the diagnosis of IFI, highlighting their strengths and limitations. Conventional techniques, including fungal culture, direct microscopy, and histopathology, remain the gold standard for the diagnosis of proven IFIs. These methods allow pathogen isolation, species identification and antifungal susceptibility testing. However, these techniques have limitations in terms of sensitivity and turnaround times. Although microscopy is a rapid technique, its sensitivity and species discrimination profile are limited. Modern serological assays, such as β-d-glucan and galactomannan detection, have improved the diagnostic accuracy of probable IFI cases. Integration of these assays with clinical and radiological findings, enables earlier intervention, although this is accompanied by an increased risk of false positives and necessitates careful clinical correlation. Molecular diagnostics, particularly polymerase chain reaction (PCR), allow rapid, species-specific identification directly from clinical samples. The advent of MALDI-TOF mass spectrometry has further improved diagnostic efficiency, particularly for yeast identification, although challenges remain for filamentous fungi. Innovative techniques, such as metagenomic sequencing, lateral-flow assays, and loop-mediated isothermal amplification, offer the potential for rapid and precise detection, even in resource-limited settings. The combination of conventional and innovative methods provides a comprehensive diagnostic framework. The continuous refinement of these tools, in conjunction with multidisciplinary collaboration, is imperative to improve the early diagnostic and targeted treatment of patients with IFI.
Collapse
Affiliation(s)
- Javier Pemán
- Department of Clinical Microbiology, La Fe University and Polytechnic Hospital, Valencia, Spain; Severe Infection Research Group, Medical Research Institute La Fe, Valencia, Spain.
| | - Alba Ruiz-Gaitán
- Department of Clinical Microbiology, La Fe University and Polytechnic Hospital, Valencia, Spain; Severe Infection Research Group, Medical Research Institute La Fe, Valencia, Spain
| |
Collapse
|
7
|
Gonzalez-Lara MF, Román-Montes CM, Díaz-Lomelí P, Hernández-Ceballos W, Morales-Camilo L, Cervantes-Sánchez A, Cordero-Rangel A, Tejeda-Olán J, Bonifaz-Trujillo A, Ponce-de-León A, Martínez-Gamboa A. Comparison of the Filamentous Fungi Library v4.0 MALDI Biotyper Platform vs MSI-2 performance for identifying filamentous fungi from liquid cultures. J Clin Microbiol 2025; 63:e0137124. [PMID: 39887202 PMCID: PMC11898572 DOI: 10.1128/jcm.01371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/05/2024] [Indexed: 02/01/2025] Open
Abstract
Correct, rapid, and reliable filamentous fungi identification is crucial for timely diagnosis and therapy. We compared the performance of the FFLv4.0 MALDI Biotyper and MSI-2 to identify filamentous fungi from clinical isolates. We analyzed 307 clinical isolates of Aspergillus spp., Fusarium spp., and Mucorales and compared them to sequencing as the reference standard. The overall identification rates to genus (Mucorales), section (Aspergillus), and species complex (Fusarium) level were 96% (296/307) for FFLv4.0 and 78.5% (241/307) for MSI-2. By each genus, correct species identification was achieved by FFLv4.0 and MSI-2 as follows: 72.4% (165/228) and 55.3% (126/228) for Aspergillus species, 17.6% (6/34) and 38.2% (13/34) for Fusarium species, and 88.9% (40/45) and 55.5% (25/45) for the Mucorales. The rates of non-identification by FFLv4.0 and MSI-2, respectively, were 4% (9/228) and 18% (41/228) for Aspergillus spp., 0% and 17.6% (6/34) for Fusarium spp. and 4.4% (2/45) and 42.2% (19/45%) for the Mucorales. Misidentification rates by FFLv4.0 and MSI-2, respectively, were 16.2% (37/228) and 6.1% (14/228) for Aspergillus species, 67.6% (23/34) and 14.7% (5/34) for Fusarium spp., and 0% and 2.2% (1/45) for the Mucorales. The FFLv4.0 MALDI Biotyper outperformed MSI-2 in identifying filamentous fungi from liquid culture spectra.
Collapse
Affiliation(s)
- María F. Gonzalez-Lara
- Clinical Microbiology Laboratory, Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Carla M. Román-Montes
- Clinical Microbiology Laboratory, Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Paulette Díaz-Lomelí
- Clinical Microbiology Laboratory, Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Winston Hernández-Ceballos
- Clinical Microbiology Laboratory, Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
- Plan of Studies in Medicine (PECEM-MD/PhD), Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Lizeth Morales-Camilo
- Clinical Microbiology Laboratory, Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Axel Cervantes-Sánchez
- Clinical Microbiology Laboratory, Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Andrea Cordero-Rangel
- Clinical Microbiology Laboratory, Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Jazmín Tejeda-Olán
- Mycology Laboratory, Dermatology Department, Hospital General de México Dr Eduardo Liceaga, Mexico City, Mexico
| | - Alexandro Bonifaz-Trujillo
- Mycology Laboratory, Dermatology Department, Hospital General de México Dr Eduardo Liceaga, Mexico City, Mexico
| | - Alfredo Ponce-de-León
- Clinical Microbiology Laboratory, Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Areli Martínez-Gamboa
- Clinical Microbiology Laboratory, Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| |
Collapse
|
8
|
Hagen CM, Eriksson U, Schmid K, Flury R, Bode PK. Autopsy rates and diagnostic errors in a Swiss community hospital: a ten-year retrospective analysis. Virchows Arch 2025:10.1007/s00428-025-04060-2. [PMID: 40038125 DOI: 10.1007/s00428-025-04060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Historically, autopsy has served as a procedure to determine the cause of death. With the surge in diagnostic techniques and a change in mindset, autopsy rates have decreased globally to less than 10%. Besides providing the cause of death and insights into disease mechanism, autopsy may assess clinical performance via discrepancy analysis. The objectives of our study were to determine autopsy rates in a Swiss community hospital and major discrepancies between clinical and autopsy reports according to the Goldman classification. Of 1711 registered in hospital deaths between 2012 and 2021, 123 patients were subjected to autopsy, resulting in an average autopsy rate of 7.2%. Younger patients had higher autopsy rates (17.0% for patients aged 50-59 years), and sex-adjusted male-to-female autopsy rate was 1.6. Major discrepancies were identified in 18 cases (14.6%); 10 (8.1%) class I, and 8 (6.5%) class II errors. Complete agreement was reached in 74 cases (60.2%), and 31 cases (25.2%) were classified as indeterminate category VI. The most frequent class I errors were infectious diseases (n = 5) with two cases of endocarditis, two cases of aspergillosis, and one case of perforated diverticulitis. The most frequent class II error was advanced malignant disease (n = 4). In conclusion, the autopsy rate at our hospital was at the higher end of other contemporary reports, and major discrepancy rates occurred at a comparably low frequency. Nevertheless, the study revealed that despite extensive diagnostics, cases prone to misdiagnosis still exist. In this context, autopsy represents an important tool for quality control.
Collapse
Affiliation(s)
- Cristina Manuela Hagen
- Department of Internal Medicine, GZO Spital Wetzikon, Spitalstrasse 66, 8620, Wetzikon, Switzerland.
- Department of Medical Oncology and Hematologie, Kantonsspital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland.
| | - Urs Eriksson
- Department of Internal Medicine, GZO Spital Wetzikon, Spitalstrasse 66, 8620, Wetzikon, Switzerland
| | - Katrin Schmid
- Department of Pathology, Kantonsspital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland
| | - Renata Flury
- Department of Pathology, Kantonsspital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland
- Pathologie Länggasse, Postfach, 3001, Bern, Switzerland
| | - Peter Karl Bode
- Department of Pathology, Kantonsspital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland
| |
Collapse
|
9
|
Amirinia F, Jabrodini A, Morovati H, Ardi P, Motamedi M. Fungal β-Glucans: Biological Properties, Immunomodulatory Effects, Diagnostic and Therapeutic Applications. INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2025; 7:1-16. [PMID: 40225707 PMCID: PMC11991713 DOI: 10.36519/idcm.2025.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/11/2025] [Indexed: 04/15/2025]
Abstract
Research from the past to the present has shown that natural ingredients in the human daily diet play a crucial role in preventing various diseases. One well-known compound is β-glucan, a natural polysaccharide found in the cell walls of many fungi, yeasts, and some microorganisms, as well as in plants such as barley and wheat. β-glucans are widely recognized for their ability to lower cholesterol and blood glucose levels, thereby reducing the risk of cardiovascular disease and diabetes. In addition to their effects on lipid levels and glucose metabolism, these molecules exhibit antioxidant properties by eliminating reactive oxygen species. As a result, they help lower the risk of conditions such as atherosclerosis, cardiovascular disease, neurological disorders, diabetes, and cancer. Furthermore, β-glucans have been reported to possess immune-boosting and antitumor effects. By binding to specific receptors on the surface of immune cells, they stimulate immune activity. Additionally, β-glucans belong to a group of probiotics that promote the growth and activity of beneficial gut microbiota, preventing the proliferation of harmful pathogens. They play a vital role in maintaining gastrointestinal health, reducing inflammation, and lowering the risk of colon cancer. Further research on the health benefits of β-glucans may be key to improving overall well-being and preventing many chronic non-communicable diseases such as diabetes, high cholesterol, obesity, cardiovascular disease, and cancer.
Collapse
Affiliation(s)
- Fatemeh Amirinia
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jabrodini
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Hamid Morovati
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pegah Ardi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Motamedi
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Sasikumar J, Shaikh HA, Naik B, Laha S, Das SP. Emergence of fungal hybrids - Potential threat to humans. Microb Pathog 2025; 200:107278. [PMID: 39805347 DOI: 10.1016/j.micpath.2025.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Fungal hybrids arise through the interbreeding of distinct species. This hybridization process fosters increased genetic diversity and the emergence of new traits. Mechanisms driving hybridization include the loss of heterozygosity, copy number variations, and horizontal gene transfer. Genetic mating barriers, changes in ploidy, chromosomal instability, and genomic diversity influence hybridization. These factors directly impact the fitness and adaptation of hybrid offspring. Epigenetic factors, including DNA methylation, histone modifications, non-coding RNAs, and chromatin remodelling, play a role in post-mating isolation in hybrids. In addition to all these mechanisms, successful hybridization in fungi is ensured by cellular mechanisms like mitochondrial inheritance, transposable elements, and other genome conversion mechanisms. These mechanisms support hybrid life and enhance the virulence and pathogenicity of fungal hybrids, which provoke diseases in host organisms. Recent advancements in sequencing have uncovered fungal hybrids in pathogens like Aspergillus, Candida, and Cryptococcus. Examples of these hybrids, such as Aspergillus latus, Candida metapsilosis, and Cryptococcus neoformans, induce severe human infections. Identifying fungal hybrids is challenging due to their altered genome traits. ITS sequencing has emerged as a promising method for diagnosing these hybrids. To prevent the emergence of novel hybrid fungal pathogens, it is crucial to develop effective diagnostic techniques and closely monitor pathogenic fungal populations for signs of hybridization. This comprehensive review delves into various facts about fungal hybridization, including its causes, genetic outcomes, barriers, diagnostic strategies, and examples of emerging fungal hybrids. The review emphasises the potential threat that fungal hybrids pose to human health and highlights their clinical significance.
Collapse
Affiliation(s)
- Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Heena Azhar Shaikh
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Bharati Naik
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Suparna Laha
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
11
|
Evangelidis P, Tragiannidis K, Vyzantiadis A, Evangelidis N, Kalmoukos P, Vyzantiadis TA, Tragiannidis A, Kourti M, Gavriilaki E. Invasive Fungal Disease After Chimeric Antigen Receptor-T Immunotherapy in Adult and Pediatric Patients. Pathogens 2025; 14:170. [PMID: 40005545 PMCID: PMC11858289 DOI: 10.3390/pathogens14020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/25/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Invasive fungal diseases (IFDs) have been documented among the causes of post-chimeric antigen receptor-T (CAR-T) cell immunotherapy complications, with the incidence of IFDs in CAR-T cell therapy recipients being measured between 0% and 10%, globally. IFDs are notorious for their potentially life-threatening nature and challenging diagnosis and treatment. In this review, we searched the recent literature aiming to examine the risk factors and epidemiology of IFDs post-CAR-T infusion. Moreover, the role of antifungal prophylaxis is investigated. CAR-T cell therapy recipients are especially vulnerable to IFDs due to several risk factors that contribute to the patient's immunosuppression. Those include the underlying hematological malignancies, the lymphodepleting chemotherapy administered before the treatment, existing leukopenia and hypogammaglobinemia, and the use of high-dose corticosteroids and interleukin-6 blockers as countermeasures for immune effector cell-associated neurotoxicity syndrome and cytokine release syndrome, respectively. IFDs mostly occur within the first 60 days following the infusion of the T cells, but cases even a year after the infusion have been described. Aspergillus spp., Candida spp., and Pneumocystis jirovecii are the main cause of these infections following CAR-T cell therapy. More real-world data regarding the epidemiology of IFDs and the role of antifungal prophylaxis in this population are essential.
Collapse
Affiliation(s)
- Paschalis Evangelidis
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Konstantinos Tragiannidis
- Children & Adolescent Hematology-Oncology Unit, Second Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.T.); (A.T.); (M.K.)
| | - Athanasios Vyzantiadis
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.V.); (T.-A.V.)
| | - Nikolaos Evangelidis
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Panagiotis Kalmoukos
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Timoleon-Achilleas Vyzantiadis
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.V.); (T.-A.V.)
| | - Athanasios Tragiannidis
- Children & Adolescent Hematology-Oncology Unit, Second Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.T.); (A.T.); (M.K.)
| | - Maria Kourti
- Children & Adolescent Hematology-Oncology Unit, Second Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.T.); (A.T.); (M.K.)
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece
| |
Collapse
|
12
|
Craciun B, Rosca I, Peptanariu D, Pinteala M. Enhancing Flucytosine Anticandidal Activity Using PEGylated Squalene Nanocarrier. ChemMedChem 2025; 20:e202400432. [PMID: 39240546 PMCID: PMC11694607 DOI: 10.1002/cmdc.202400432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/07/2024]
Abstract
There is an emerging necessity for improved therapies against Candida-related infections, with significant implications for global healthcare. Current antifungal agents, limited in number, target specific pathways, but resistance remains a concern. Flucytosine (5FC) exhibits antifungal activity, particularly against Candida. However, monotherapy efficacy is limited, necessitating combination treatments. Herein, we report PEGylated squalene-based nanocarriers for 5FC loading, aiming to enhance its monotherapy efficacy against Candida strains. The loading of 5FC within micelles was achieved using the ultrasound-assisted solvent evaporation method. The 5FC-loaded micelles, together with non-loaded micelles, were thoroughly characterized and analyzed. STEM and DLS analysis confirmed the core-shell morphology with nanometric dimensions along with improved colloidal stability. The quantification of drug loading efficiency and drug loading capacity was calculated using the UV-Vis technique. The in vitro drug-release studies in simulated physiological conditions showed sustained release within 48 hours. Moreover, the release kinetics calculated using mathematical models showed a Fickian diffusion drug release mechanism in simulated physiological conditions with a slower diffusion rate. The in vitro antifungal activity was tested on Candida albicans, Candida glabrata, and Candida parapsilosis. The results showed improved antifungal activity for the nanotherapeutic and unchanged in vitro toxicity toward normal cells, suggesting promising advancements in 5FC therapy.
Collapse
Affiliation(s)
- Bogdan‐Florin Craciun
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni”Institute of Macromolecular Chemistry41 A Grigore Ghica Voda AlleyIasi700487Romania
| | - Irina Rosca
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni”Institute of Macromolecular Chemistry41 A Grigore Ghica Voda AlleyIasi700487Romania
| | - Dragos Peptanariu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni”Institute of Macromolecular Chemistry41 A Grigore Ghica Voda AlleyIasi700487Romania
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni”Institute of Macromolecular Chemistry41 A Grigore Ghica Voda AlleyIasi700487Romania
| |
Collapse
|
13
|
Singh SK, Pancholi SS. Current Updates on Pathogenesis, Systemic Therapy, and Treatment of Invasive Fungal Infections. Curr Drug Targets 2025; 26:203-220. [PMID: 39421988 DOI: 10.2174/0113894501337502241015121015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Numerous health hazards are associated with fungal infections, ranging from asymptomatic cases to potentially fatal invasive diseases that are especially dangerous for those with impaired immune systems. The main causes behind these diseases are opportunistic fungi, namely Aspergillus, Candida, and Cryptococcus. Invasive fungal infections (IFIs) require a global response that includes the development of vaccines, standardized protocols for diagnosis, potent antifungal medications, and strategies to stop drug-resistant strains. Improving high-risk group diagnosis and treatment is essential to lowering death rates. This review highlights the substantial health concerns associated with fungal infections, especially in immunocompromised individuals, and identifies Aspergillus, Candida, and Cryptococcus as the main pathogens. It highlights the necessity of international efforts, such as the development of novel diagnostic instruments, imaging methods, and antifungal drugs, to combat these invasive infections. The review also addresses the increasing need for novel treatment approaches in light of the developing resistance to widely used antifungal medications. Furthermore, the significance of secretory proteins in fungal pathogenicity and the potential of combination therapy are investigated. It is also suggested that a multimodal strategy be used to fight these illnesses, given the promise of multivalent vaccinations. Overall, this study emphasizes how critical it is to develop better diagnostic and treatment strategies in order to successfully control and lessen the impact of invasive fungal diseases on the health of the world.
Collapse
Affiliation(s)
- Sushil Kumar Singh
- Shree S.K. Patel College of Pharmaceutical Education and Research, Department of Pharmaceutical Technology, Ganpat University, Kherva, Mehsana, Gujarat 384012, India
| | - Shyam Sunder Pancholi
- School of Pharmacy and Technology Management, Department of Pharmaceutics (SPTM) SVKM's NMIMS (Deemed to be University) Mukesh Patel Technology Park, Babulde, Shirpur 425405, Dist. Dhule Maharashtra, India
| |
Collapse
|
14
|
Liu B, Yu T, Ren R, Wu N, Xing N, Wang J, Wu W, Cao X, Zhang J. Onco-mNGS facilitates rapid and precise identification of the etiology of fever of unknown origin: a single-centre prospective study in North China. BMC Infect Dis 2024; 24:1475. [PMID: 39732661 DOI: 10.1186/s12879-024-10383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
OBJECTIVES Delayed diagnosis of patients with Fever of Unknown Origin has long been a daunting clinical challenge. Onco-mNGS, which can accurately diagnose infectious agents and identify suspected tumor signatures by analyzing host chromosome copy number changes, has been widely used to assist identifying complex etiologies. However, the application of Onco-mNGS to improve FUO etiological screening has never been studied before. METHODS In this single-centre prospective study, we included 65 patients with classic FUO, who were randomly divided into control group (sample cultivation) and mNGS group (cultivation + Onco-mNGS). We analyzed the infectious agents and symbiotic microbiological, tumor and clinical data of both groups. RESULTS Infection-related pathogenic detection efficiency rose from 25% (control group) to 48.48% (experimental group). Seven patients with chromosome copy number changes had later been confirmed tumors, indicating a 100% of clinical concordance rate of Onco-mNGS for tumors. In addition, the time frame for diagnosing or ruling out infection/tumor with Onco-mNGS had greatly reduced to approximately 2 days, which was 7.34 days earlier than that in the control group. CONCLUSIONS Onco-mNGS is an ideal rapid diagnostic aid to assist improving the early diagnostic efficiency of FUO-associated diseases.
Collapse
Affiliation(s)
- Bingbing Liu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tengfei Yu
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, 311112, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Ruotong Ren
- Micro-Health Biotechnology Co., Ltd, Hefei, 230001, China
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, 311112, China
- Foshan Branch, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Nanshu Xing
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jingya Wang
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Wenjie Wu
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, 311112, China
| | - Xuefang Cao
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, 311112, China
| | - Jingping Zhang
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
15
|
Beltran-Reyes P, Ostrosky-Zeichner L, Gonzalez-Lara MF. Update on diagnosis and treatment of fungal meningitis: lessons from recent outbreaks. Curr Opin Infect Dis 2024; 37:437-442. [PMID: 39259683 DOI: 10.1097/qco.0000000000001061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW Recently, fungal meningitis outbreaks have occurred in association with neuraxial and epidural anesthesia in immunocompetent patients. Herein, we describe the course of those outbreaks, their diagnosis, treatment, prognosis, and lessons learned. RECENT FINDINGS Two outbreaks of Fusarium solani meningitis during 2022-2023 were associated with epidural anesthesia in two distant cities in Mexico (Durango and Matamoros). The initial etiological agent identification was delayed due to insensitivity of cultures. A Fusarium solani qPCR was validated and positive in 38% cerebrospinal fluid (CSF) samples from Durango, while BD-Glucan allowed early diagnosis of the index case in Matamoros. Antifungal treatment with voriconazole and liposomal amphotericin B (L-AmB) was recommended. Overall mortality was 51%. Once the cause was confirmed, some patients received fosmanogepix. SUMMARY Fungal meningitis outbreaks due to filamentous fungi are usually associated with direct epidural inoculation. They result in severe presentations and high mortality. Early diagnosis should be suspected, BD-Glucan CSF testing screening is recommended. Aggressive antifungal treatment based on antifungal susceptibility testing should be administered as early as possible. The advent of molecular diagnostic methods and new antifungal drugs may allow for timely diagnosis and treatment, increasing the chances of survival.
Collapse
Affiliation(s)
- Paula Beltran-Reyes
- Clinical Microbiology Department, Infectious Diseases Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maria F Gonzalez-Lara
- Clinical Microbiology Department, Infectious Diseases Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| |
Collapse
|
16
|
Sedik S, Wolfgruber S, Hoenigl M, Kriegl L. Diagnosing fungal infections in clinical practice: a narrative review. Expert Rev Anti Infect Ther 2024; 22:935-949. [PMID: 39268795 DOI: 10.1080/14787210.2024.2403017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Invasive fungal infections (IFI) present a major medical challenge, with an estimated 6.5 million cases annually, resulting in 3.8 million deaths. Pathogens such as Aspergillus spp. Candida spp. Mucorales spp. Cryptococcus spp. and other fungi species contribute to these infections, posing risks to immunocompromised individuals. Early and accurate diagnosis is crucial for effective treatment and better patient outcomes. AREAS COVERED This narrative review provides an overview of the current methods and challenges associated with diagnosing fungal diseases, including invasive aspergillosis and invasive candidiasis, as well as rare and endemic fungal infections. Various diagnostic techniques, including microscopy, culture, molecular diagnostics, and serological tests, are reviewed, highlighting their respective advantages and limitations and role in clinical guidelines. To illustrate, the need for improved diagnostic strategies to overcome existing challenges, such as the low sensitivity and specificity of current tests and the time-consuming nature of traditional culture-based methods, is addressed. EXPERT OPINION Current advancements in fungal infection diagnostics have significant implications for healthcare outcomes. Improved strategies like molecular testing and antigen detection promise early detection of fungal pathogens, enhancing patient management. Challenges include global access to advanced technologies and the need for standardized, user-friendly point-of-care diagnostics to improve diagnosis of fungal infections globally.
Collapse
Affiliation(s)
- Sarah Sedik
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Stella Wolfgruber
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Lisa Kriegl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
17
|
Shen S, Wang W, Ma Y, Wang S, Zhang S, Cai X, Chen L, Zhang J, Li Y, Wu X, Wei J, Zhao Y, Huang A, Niu S, Wang D. Affinity molecular assay for detecting Candida albicans using chitin affinity and RPA-CRISPR/Cas12a. Nat Commun 2024; 15:9304. [PMID: 39468064 PMCID: PMC11519397 DOI: 10.1038/s41467-024-53693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Invasive fungal infections (IFIs) pose a significant threat to immunocompromised individuals, leading to considerable morbidity and mortality. Prompt and accurate diagnosis is essential for effective treatment. Here we develop a rapid molecular diagnostic method that involves three steps: fungal enrichment using affinity-magnetic separation (AMS), genomic DNA extraction with silicon hydroxyl magnetic beads, and detection through a one-pot system. This method, optimized to detect 30 CFU/mL of C. albicans in blood and bronchoalveolar lavage (BAL) samples within 2.5 h, is approximately 100 times more sensitive than microscopy-based staining. Initial validation using clinical samples showed 93.93% sensitivity, 100% specificity, and high predictive values, while simulated tests demonstrated 95% sensitivity and 100% specificity. This cost-effective, highly sensitive technique offers potential for use in resource-limited clinical settings and can be easily adapted to differentiate between fungal species and detect drug resistance.
Collapse
Affiliation(s)
- Shimei Shen
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory Medicine, Chongqing Red Cross Hospital (Jiangbei District People's Hospital), Chongqing, China
| | - Wen Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, China
| | - Yuanyan Ma
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shilei Wang
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shaocheng Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xuefei Cai
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jin Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yalan Li
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoli Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Wei
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yanan Zhao
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Ailong Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Siqiang Niu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Deqiang Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing National Biomedicine Industry Park, Chongqing, China.
| |
Collapse
|
18
|
Ortiz B, Varela D, Fontecha G, Torres K, Cornely OA, Salmanton-García J. Strengthening Fungal Infection Diagnosis and Treatment: An In-depth Analysis of Capabilities in Honduras. Open Forum Infect Dis 2024; 11:ofae578. [PMID: 39421702 PMCID: PMC11483579 DOI: 10.1093/ofid/ofae578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Background Invasive fungal infections (IFIs) are a major public health concern in low- and middle-income countries (LMICs) due to limited diagnostic and treatment resources, leading to high morbidity and mortality. Despite their significant global burden, IFIs are underrecognized and underdiagnosed in LMICs. This study evaluates the diagnostic and therapeutic capacities for managing IFI in Honduras, a country with unique health care challenges. Methods From March to December 2023, a comprehensive survey was conducted across multiple health care centers in Honduras. The survey, reviewed for content and clarity by local medical institutions, targeted medical microbiologists and clinicians to assess various aspects of fungal disease diagnosis and treatment. Data included the availability and use of diagnostic tools and antifungal therapies, identifying gaps and limitations in current practices. Results The survey revealed that Candida spp (97.4%) and Aspergillus spp (35.9%) were the most concerning pathogens. Although microscopy and culture methods were available in most institutions, their application in suspected IFI cases was inconsistent, and antifungal susceptibility testing was rarely performed. Advanced diagnostic techniques, such as antigen detection, were available in only a few institutions, while antibody detection and polymerase chain reaction testing were entirely absent. All hospitals had access to at least 1 triazole antifungal, typically fluconazole, but there was a notable scarcity of more potent antifungals, including amphotericin B formulations and echinocandins. The limited use of available diagnostic tools and the restricted availability of essential antifungals were identified as major barriers to effective IFI management. Conclusions This study highlights significant gaps in the diagnostic and therapeutic capabilities for managing IFI in Honduras. The underutilization of basic diagnostic tools, the inaccessibility of advanced testing methods, and the limited availability of essential antifungal medications underscore the urgent need for capacity-building initiatives, infrastructure improvements, and policy reforms. Addressing these deficiencies is critical for enhancing the management of IFI in Honduras, with broader implications for similar LMIC settings. These findings can inform targeted interventions and resource allocation to improve outcomes for patients with IFI.
Collapse
Affiliation(s)
- Bryan Ortiz
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Diana Varela
- Servicio de Infectología, Servicio de Atención Integral de Pacientes con VIH, Hospital Escuela, Tegucigalpa, Honduras
- Instituto de Enfermedades Infecciosas y Parasitarias Antonio Vidal, Tegucigalpa, Honduras
| | - Gustavo Fontecha
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Karla Torres
- Agrupación de Microbiólogos Propietarios de Laboratorios Privados de Honduras, Tegucigalpa, Honduras
- Departamento de Química y Biología, Centro Universitario Regional de Occidente, Santa Rosa de Copán, Honduras
| | - Oliver A Cornely
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne, University of Cologne, Cologne, Germany
| | - Jon Salmanton-García
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
19
|
Xiong J, Lu H, Jiang Y. A Causal Relationship between Type 2 Diabetes and Candidiasis through Two-Sample Mendelian Randomization Analysis. Microorganisms 2024; 12:1984. [PMID: 39458293 PMCID: PMC11509823 DOI: 10.3390/microorganisms12101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
The potential relationship between type 2 diabetes (T2D) and candidiasis is of concern due to the respective characteristics of these conditions, yet the exact causal link between the two remains uncertain and requires further investigation. In this study, the inverse-variance-weighted (IVW) analysis indicated a significant genetic causal relationship between T2D and candidiasis (p = 0.0264, Odds Ratio [OR], 95% confidence interval [CI] = 1.1046 [0.9096-1.2996]), T2D (wide definition) and candidiasis (p = 0.0031, OR 95% [CI] = 1.1562 [0.8718-1.4406]), and severe autoimmune T2D and candidiasis (p = 0.0041, OR 95% [CI] = 1.0559 [0.9493-1.1625]). Additionally, the MR-Egger analyses showed a significant genetic causal relationship between T2D (wide definition) and candidiasis (p = 0.0154, OR 95% [CI] = 1.3197 [0.7760-1.8634]). The weighted median analyses showed a significant genetic causal relationship between severe autoimmune T2D and candidiasis (p = 0.0285, OR 95% [CI] = 1.0554 [0.9498-1.1610]). This Mendelian randomization (MR) study provides evidence for a genetic correlation between T2D and candidiasis.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
20
|
Thompson GR, Chen SCA, Alfouzan WA, Izumikawa K, Colombo AL, Maertens J. A global perspective of the changing epidemiology of invasive fungal disease and real-world experience with the use of isavuconazole. Med Mycol 2024; 62:myae083. [PMID: 39138063 PMCID: PMC11382804 DOI: 10.1093/mmy/myae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024] Open
Abstract
Global epidemiological data show that the incidence of invasive fungal disease (IFD) has increased in recent decades, with the rising frequency of infections caused by Aspergillus and Mucorales order species. The number and variety of patients at risk of IFD has also expanded, owing in part to advances in the treatment of hematologic malignancies and other serious diseases, including hematopoietic stem cell transplantation (HCT) and other therapies causing immune suppression. Isavuconazonium sulfate (active moiety: isavuconazole) is an advanced-generation triazole antifungal approved for the treatment of invasive aspergillosis and mucormycosis that has demonstrated activity against a variety of yeasts, moulds, and dimorphic fungi. While real-world clinical experience with isavuconazole is sparse in some geographic regions, it has been shown to be effective and well tolerated in diverse patient populations, including those with multiple comorbidities who may have failed to respond to prior triazole antifungal therapy. Isavuconazole may be suitable for patients with IFD receiving concurrent QTc-prolonging therapy, as well as those on venetoclax or ruxolitinib. Data from clinical trials are not available to support the use of isavuconazole prophylactically for the prevention of IFD or for the treatment of endemic IFD, such as those caused by Histoplasma spp., but real-world evidence from case studies suggests that it has clinical utility in these settings. Isavuconazole is an option for patients at risk of IFD, particularly when the use of alternative antifungal therapies is not possible because of toxicities, pharmacokinetics, or drug interactions.
Collapse
Affiliation(s)
- George R Thompson
- Department of Internal Medicine, Division of Infectious Disease, UC Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, and the Department of Infectious Diseases, Westmead Hospital, School of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Wadha Ahmed Alfouzan
- Department of Laboratories, Farwaniya Hospital, Farwaniya, Kuwait
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Arnaldo L Colombo
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo, São Paulo, Brazil
| | - Johan Maertens
- Department of Microbiology, Immunology and Transplantation, KU Leuven and Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Kim S, Kim N, Park WB, Kang CK, Park JH, Lee ST, Jung KH, Park KI, Lee SK, Moon J, Chu K. Real-time application of ITS and D1-D3 nanopore amplicon metagenomic sequencing in fungal infections: Enhancing fungal infection diagnostics. Int J Med Microbiol 2024; 316:151630. [PMID: 39029415 DOI: 10.1016/j.ijmm.2024.151630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/28/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
While fungal infections cause considerable morbidity and mortality, the performance of the current diagnostic tests for fungal infection is low. Even though fungal metagenomics or targeted next-generation sequencing have been investigated for various clinical samples, the real-time clinical utility of these methods still needs to be elucidated. In this study, we used internal transcribed spacer (ITS) and D1-D3 ribosomal DNA nanopore amplicon metagenomic sequencing to assess its utility in patients with fungal infections. Eighty-four samples from seventy-three patients were included and categorized into 'Fungal infection,' 'Fungal colonization,' and 'Fungal contamination' groups based on the judgement of infectious disease specialists. In the 'Fungal infection' group, forty-seven initial samples were obtained from forty-seven patients. Three fungal cases detected not by the sequencing but by conventional fungal assays were excluded from the analysis. In the remaining cases, the conventional fungal assay-negative/sequencing-positive group (n=11) and conventional fungal assay-positive/sequencing-positive group (n=33) were compared. Non-Candida and non-Aspergillus fungi infections were more frequent in the conventional-negative/sequencing-positive group (p-value = 0.031). We demonstrated the presence of rare human pathogens, such as Trichosporon asahii and Phycomyces blakesleeanus. In the 'Fungal infection' group and 'Fungal colonization' group, sequencing was faster than culturing (mean difference = 4.92 days, p-value < 0.001/ mean difference = 4.67, p-value <0.001). Compared to the conventional diagnostic methods including culture, nanopore amplicon sequencing showed a shorter turnaround time and a higher detection rate for uncommon fungal pathogens.
Collapse
Affiliation(s)
- Seondeuk Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Narae Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Hyeon Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Seoul National University Hospital Healthcare System Gangnam Center, 152, Teheran-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jangsup Moon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Hu W, Li X, Guo W, Shangguan Y, Xia J, Feng X, Sheng C, Ji Z, Ding C, Xu K. The Utility of Real-Time PCR, Metagenomic Next-Generation Sequencing, and Culture in Bronchoalveolar Lavage Fluid for Diagnosis of Pulmonary Aspergillosis. J Mol Diagn 2024; 26:832-842. [PMID: 38972592 DOI: 10.1016/j.jmoldx.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/31/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Timely detection of Aspergillus infection is crucial given the high mortality rate of pulmonary aspergillosis (PA). Here, the diagnostic performances for PA of mycological culture, Aspergillus real-time PCR, and metagenomic next-generation sequencing (mNGS) assay from bronchoalveolar lavage fluid, were evaluated. In total, 139 patients with suspected fungal pneumonia were enrolled between December 2021 and July 2023, collecting 139 bronchoalveolar lavage fluid samples for real-time PCR and culture, with 87 undergoing mNGS assay. The sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve with 95% CIs of these assays for PA were as follows: 35.3% (14.2%-61.7%), 100.0% (94.0%-100.0%), 100.0% (54.1%-100.0%), 84.5% (79.3%-88.6%), and 0.676 (0.560-0.779), respectively, for culture; 82.4% (56.6%-96.2%), 98.3% (91.1%-100.0%), 93.3% (66.4%-99.0%), 95.2% (87.6%-98.2%), and 0.903 (0.815-0.959), respectively, for same diagnostic performance of real-time PCR and mNGS; and 94.1% (71.3%-99.9%), 96.7% (88.5%-99.6%), 88.9% (67.1%-96.9%), 98.3% (89.6%-99.7%), and 0.954 (0.880-0.989), respectively, for real-time PCR combining mNGS; real-time PCR, mNGS, and their combination significantly improved in area under the curve values over culture (P < 0.001), but real-time PCR testing and mNGS had no significant difference with each other and their combination. Overall, the performance of culture was limited by low sensitivity; both real-time PCR and mNGS assays as single diagnostic tests are promising compared with culture and combined tests.
Collapse
Affiliation(s)
- Wenjuan Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Xiaomeng Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Wanru Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Yanwan Shangguan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Xuewen Feng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Chengmin Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Zhongkang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Cheng Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China.
| |
Collapse
|
23
|
Belgacem S, Chebil W, Ben Salem S, Babba O, Mastouri M, Babba H. Identification and antifungal susceptibility profile of uncommon yeast species at Fattouma Bourguiba University Hospital in Tunisia. Med Mycol 2024; 62:myae070. [PMID: 38986508 DOI: 10.1093/mmy/myae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Despite the severe impact of uncommon yeast fungal infections and the pressing need for more research on the topic, there are still few studies available on the identification, epidemiology, and susceptibility profile of those pathogens. The aims of the current study were to define the profile of uncommon yeast species at Fattouma Bourguiba University Hospital using phenotypic, molecular, and proteomic methods and to study their antifungal susceptibility profile. Pre-identified uncommon yeast species were collected from 2018 to 2021. These isolates were further identified using phenotypic methods (ID32C® system and Vitek2® YST), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), and sequencing. The antifungal susceptibility profile was studied using the reference CLSI broth microdilution method. In total, 30 strains were collected during the study period. Referring to the sequencing, the most isolated uncommon species were Saprochaete capitata, Candida lusitaniae, Candida kefyr, Candida inconspicua, and Candida guilliermondii. A total of 90% of isolates were correctly identified by MALDI-TOF MS compared to 76.7% and 63.3% by ID32® C and VITEK® 2 YST, respectively. The isolated species showed variable responses to antifungals. Candida guilliermondii showed increased azole minimum inhibitory concentrations. Misidentification of uncommon yeast species was common using commercial phenotypic methods. The high percentage of concordance of MALDI-TOF results with sequencing highlights its high performance and usefulness as a routine diagnosis tool.
Collapse
Affiliation(s)
- Sameh Belgacem
- Unit of Parasitology-Mycology, Laboratory of Microbiology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
- Laboratory of Medical and Molecular Parasitology-Mycology (LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Wissal Chebil
- Laboratory of Medical and Molecular Parasitology-Mycology (LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Safa Ben Salem
- Unit of Parasitology-Mycology, Laboratory of Microbiology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Oussama Babba
- Laboratory of Medical and Molecular Parasitology-Mycology (LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Maha Mastouri
- Unit of Parasitology-Mycology, Laboratory of Microbiology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Hamouda Babba
- Laboratory of Medical and Molecular Parasitology-Mycology (LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
24
|
Nagashima T, Tsumoto S, Yazawa D, Omura M, Ochiai K, Yoshida K, Sugibayashi K, Machida Y, Suzuki R, Igarashi K, Makimura K, Hara Y, Michishita M. Disseminated granulomatous encephalitis caused by Schizophyllum commune in a dog with severe neurological signs. J Comp Pathol 2024; 213:73-77. [PMID: 39146622 DOI: 10.1016/j.jcpa.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
A 10-year-old spayed mixed breed dog presented with severe neurological signs. Computed tomography revealed a cranial mediastinal mass, osteolysis of the right second rib and second thoracic vertebra, tracheobronchial and mesenteric lymph node enlargement, pneumonia and pleural effusion. Magnetic resonance imaging detected lesions in the white matter of the right frontal lobe and left cerebral hemisphere with contrast-enhanced T1-weighted images showing demarcated enhancement. On cut section, the surface of the right cerebral frontal lobe and left cerebral hemisphere corticomedullary junctions were indistinct and the white matter was discoloured. Microscopically, multicentric granulomatous inflammation was seen in the brain, cranial mediastinal mass, masses on the right second rib, tracheobronchial and mesenteric lymph nodes, heart, kidneys, lungs and oesophagus. Necrosis and hyaline fungal structures were frequently observed in the centre of the granulomas. These fungi had septae, Y-shaped branching and were 2-3 μm in width. Sequence analysis of DNA from formalin-fixed paraffin-embedded samples identified the fungi as Schizophyllum commune. Based on these findings, this case was diagnosed as disseminated S. commune infection. This is the first report of granulomatous encephalitis caused by S. commune in a dog.
Collapse
Affiliation(s)
- Tomokazu Nagashima
- Department of Veterinary Pathology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Shohei Tsumoto
- Department of Veterinary Pathology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Daisuke Yazawa
- Department of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Miki Omura
- MycoLabo, Flatsseran 101, 6-6-54 Shimorenjaku, Mitaka-shi, Tokyo, 181-0013, Japan; Teikyo University Institute of Medical Mycology, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kazuhiko Ochiai
- Department of Veterinary Hygiene, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Karin Yoshida
- Veterinary Medical Teaching Hospital, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Kayoko Sugibayashi
- Veterinary Medical Teaching Hospital, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Yukino Machida
- Department of Veterinary Pathology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Ryoichi Suzuki
- Department of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan; Inokashira Street Animal Hospital, 1-38-5 Nishikubo, Musashino-shi, Tokyo, 180-0013, Japan
| | - Koh Igarashi
- Department of Veterinary Pathology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Koichi Makimura
- Teikyo University Institute of Medical Mycology, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yasushi Hara
- Department of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Masaki Michishita
- Department of Veterinary Pathology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan.
| |
Collapse
|
25
|
Stoia D, De Sio L, Petronella F, Focsan M. Recent advances towards point-of-care devices for fungal detection: Emphasizing the role of plasmonic nanomaterials in current and future technologies. Biosens Bioelectron 2024; 255:116243. [PMID: 38547645 DOI: 10.1016/j.bios.2024.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Fungal infections are a significant global health problem, particularly affecting individuals with weakened immune systems. Moreover, as uncontrolled antibiotic and immunosuppressant use increases continuously, fungal infections have seen a dramatic increase, with some strains developing antibiotic resistance. Traditional approaches to identifying fungal strains often rely on morphological characteristics, thus owning limitations, such as struggles in identifying several strains or distinguishing between fungal strains with similar morphologies. This review explores the multifaceted impact of fungi infections on individuals, healthcare providers, and society, highlighting the often-underestimated economic burden and healthcare implications of these infections. In light of the serious constraints of traditional fungal identification methods, this review discusses the potential of plasmonic nanoparticle-based biosensors for fungal infection identification. These biosensors can enable rapid and precise fungal pathogen detection by exploiting several readout approaches, including various spectroscopic techniques, colorimetric and electrochemical assays, as well as lateral-flow immunoassay methods. Moreover, we report the remarkable impact of plasmonic Lab on a Chip technology and microfluidic devices, as they recently emerged as a class of advanced biosensors. Finally, we provide an overview of smartphone-based Point-of-Care devices and the associated technologies developed for detecting and identifying fungal pathogens.
Collapse
Affiliation(s)
- Daria Stoia
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271, Cluj-Napoca, Romania
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Francesca Petronella
- National Research Council of Italy, Institute of Crystallography CNR-IC, Area della Ricerca Roma 1 Strada Provinciale 35d, n. 9, 00010, Montelibretti (RM), Italy.
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271, Cluj-Napoca, Romania.
| |
Collapse
|
26
|
Sáenz V, Lizcano Salas AF, Gené J, Celis Ramírez AM. Fusarium and Neocosmospora: fungal priority pathogens in laboratory diagnosis. Crit Rev Microbiol 2024:1-14. [PMID: 38949272 DOI: 10.1080/1040841x.2024.2369693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Fusarium and Neocosmospora are two fungal genera recently recognized in the list of fungal priority pathogens. They cause a wide range of diseases that affect humans, animals, and plants. In clinical laboratories, there is increasing concern about diagnosis due to limitations in sample collection and morphological identification. Despite the advances in molecular diagnosis, due to the cost, some countries cannot implement these methodologies. However, recent changes in taxonomy and intrinsic resistance to antifungals reveal the necessity of accurate species-level identification. In this review, we discuss the current phenotypic and molecular tools available for diagnosis in clinical laboratory settings and their advantages and disadvantages.
Collapse
Affiliation(s)
- Valeri Sáenz
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
| | - Andrés Felipe Lizcano Salas
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
| | - Josepa Gené
- Unitat de Micologia i Microbiologia Ambiental (MicroAmb), Facultat de Medicina i Ciències de la Salut i Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
27
|
Khodavaisy S, Xu J. Hope on the Horizon? Aptamers in Diagnosis of Invasive Fungal Infections. Genes (Basel) 2024; 15:733. [PMID: 38927669 PMCID: PMC11202631 DOI: 10.3390/genes15060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Despite remarkable advances in the diagnosis of invasive fungal infections (IFIs), rapid, specific, sensitive, and cost-effective detection methods remain elusive. Due to their stability, ease of production, and specificity to signature molecules of fungal pathogens, short single-stranded sequences of DNA, RNA, and XNA, collectively called aptamers, have emerged as promising diagnostic markers. In this perspective, we summarize recent progress in aptamer-based diagnostic tools for IFIs and discuss how these tools could potentially meet the needs and provide economical and simple solutions for point-of-care for better management of IFIs.
Collapse
Affiliation(s)
- Sadegh Khodavaisy
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada;
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada;
| |
Collapse
|
28
|
Tang Z, Wang H, Liu Y, Wang C, Li X, Yang Q. Current status and new experimental diagnostic methods of invasive fungal infections after hematopoietic stem cell transplantation. Arch Microbiol 2024; 206:237. [PMID: 38678508 DOI: 10.1007/s00203-024-03905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 05/01/2024]
Abstract
Invasive fungal infections (IFIs) are common and life-threatening complications in post-hematopoietic stem cell transplantation (post-HSCT) recipients, Severe IFIs can lead to systemic infection and organ damage, which results in high mortality in HSCT recipients. With the development of the field of fungal infection diagnosis, more and more advanced non-culture diagnostic tools have been developed, such as glip biosensors, metagenomic next-generation sequencing, Magnetic Nanoparticles and Identified Using SERS via AgNPs+ , and artificial intelligence-assisted diagnosis. The advanced diagnostic approaches contribute to the success of HSCT and improve the overall survival of post-HSCT leukemia patients by supporting therapeutical decisions. This review provides an overview of the characteristics of two high-incidence IFIs in post-HSCT recipients and discusses some of the recently developed IFI detection technologies. Additionally, it explores the potential application of cationic conjugated polymer fluorescence resonance energy transfer (CCP-FRET) technology for IFI detection. The aim is to offer insights into selecting appropriate IFI detection methods and gaining an understanding of novel fungal diagnostic approaches in laboratory settings.
Collapse
Affiliation(s)
- Zhenhua Tang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - HaiTao Wang
- Department of Hematology, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100071, China
| | - Yuankai Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chen Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xinye Li
- Lanzhou Petrochemical General Hospital (The Fourth Affiliated Hospital of Gansu University of Chinese Medicine), Gansu, 730060, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
29
|
Yao Q, He Y, Deng L, Chen D, Zhang Y, Luo H, Lei W. Rapid detection of pathogenic fungi from coastal population with respiratory infections using microfluidic chip technology. BMC Infect Dis 2024; 24:326. [PMID: 38500041 PMCID: PMC10949588 DOI: 10.1186/s12879-024-09212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Currently, culture methods are commonly used in clinical tests to detect pathogenic fungi including Candida spp. Nonetheless, these methods are cumbersome and time-consuming, thereby leading to considerable difficulties in diagnosis of pathogenic fungal infections, especially in situations that respiratory samples such as alveolar lavage fluid and pleural fluid contain extremely small amounts of microorganisms. The aim of this study was to elucidate the utility and practicality of microfluidic chip technology in quick detection of respiratory pathogenic fungi. METHODS DNAs of clinical samples (mainly derived from sputa, alveolar lavage fluid, and pleural fluid) from 64 coastal patients were quickly detected using microfluidic chip technology with 20 species of fungal spectrum and then validated by Real-time qPCR, and their clinical baseline data were analyzed. RESULTS Microfluidic chip results showed that 36 cases infected with Candida spp. and 27 cases tested negative for fungi, which was consistent with Real-time qPCR validation. In contrast, only 16 cases of fungal infections were detected by the culture method; however, one of the culture-positive samples tested negative by microfluidic chip and qPCR validation. Moreover, we found that the patients with Candida infections had significantly higher rates of platelet count reduction than fungi-negative controls. When compared with the patients infected with C. albicans alone, the proportion of males in the patients co-infected with multiple Candidas significantly increased, while their platelet counts significantly decreased. CONCLUSIONS These findings suggest that constant temperature amplification-based microfluidic chip technology combined with routine blood tests can increase the detection speed and accuracy (including sensitivity and specificity) of identifying respiratory pathogenic fungi.
Collapse
Affiliation(s)
- Qingmei Yao
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Marine Biomedical Research Institution, Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yuan He
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Marine Biomedical Research Institution, Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Guangdong Medical University, Zhanjiang, 524023, China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Liehua Deng
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Dafeng Chen
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yuanli Zhang
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Hui Luo
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
- Marine Biomedical Research Institution, Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
- Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
- Marine Biomedical Research Institution, Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
30
|
Liu R, Li X, Liu Y, Du L, Zhu Y, Wu L, Hu B. A high-speed microscopy system based on deep learning to detect yeast-like fungi cells in blood. Bioanalysis 2024; 16:289-303. [PMID: 38334080 DOI: 10.4155/bio-2023-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Background: Blood-invasive fungal infections can cause the death of patients, while diagnosis of fungal infections is challenging. Methods: A high-speed microscopy detection system was constructed that included a microfluidic system, a microscope connected to a high-speed camera and a deep learning analysis section. Results: For training data, the sensitivity and specificity of the convolutional neural network model were 93.5% (92.7-94.2%) and 99.5% (99.1-99.5%), respectively. For validating data, the sensitivity and specificity were 81.3% (80.0-82.5%) and 99.4% (99.2-99.6%), respectively. Cryptococcal cells were found in 22.07% of blood samples. Conclusion: This high-speed microscopy system can analyze fungal pathogens in blood samples rapidly with high sensitivity and specificity and can help dramatically accelerate the diagnosis of fungal infectious diseases.
Collapse
Affiliation(s)
- Ruiqi Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, P.R. China
| | - Xiaojie Li
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Yingyi Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, P.R. China
| | - Lijun Du
- Department of Clinical Laboratory, Huadu District People's Hospital of Guangzhou, Guangdong, China
| | - Yingzhu Zhu
- Guangzhou Waterrock Gene Technology, Guangdong, China
| | - Lichuan Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, P.R. China
| | - Bo Hu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
31
|
Huang C, Chang S, Ma R, Shang Y, Li Y, Wang Y, Feng M, Guo W. COVID-19 in pulmonary critically ill patients: metagenomic identification of fungi and characterization of pathogenic microorganisms. Front Cell Infect Microbiol 2024; 13:1220012. [PMID: 38444540 PMCID: PMC10912313 DOI: 10.3389/fcimb.2023.1220012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/31/2023] [Indexed: 03/07/2024] Open
Abstract
Background Fungal co-infection is prevalent in critically ill patients with COVID-19. The conventional approach applied to fungal identification has relatively low sensitivity and is time-consuming. The metagenomic next-generation sequencing (mNGS) technology can simultaneously detect a variety of microorganisms, and is increasingly being used for the rapid detection and diagnosis of pathogens. Methods In this single-center retrospective study, we described the clinical presentation and outcomes of COVID-19 and mNGS positive for fungi in pulmonary critically ill patients during the outbreak of Omicron infection from December 2022 to January 2023. Results Among 43 COVID-19 patients with acute respiratory distress syndrome (ARDS) on a single intensive care unit (ICU), 10 were reported to be fungal positive using the mNGS test. The number of pathogenic microorganisms detected by mNGS was significantly higher than that via traditional methods, especially in the detection of fungi and viruses. Aspergillus infection was dominant, and most of these patients also had concurrent bacterial or viral infections. Probable or possible COVID-19-associated pulmonary aspergillosis (CAPA) was diagnosed in all 10 patients, and the prognosis was poor. Conclusion Patients with COVID-19 may be at increased risk of developing fungal infections as well as concurrent bacterial or viral infections, and mNGS can be a powerful tool in identifying these infections. Clinicians should be aware of the increased risk of fungal infections in COVID-19 patients, particularly those who have underlying immunocompromising conditions, and should monitor for early signs of infection.
Collapse
Affiliation(s)
- Changjun Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Chang
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Ma
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yishu Shang
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuexia Li
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Feng
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Naik B, Sasikumar J, B V, Das SP. Fungal coexistence in the skin mycobiome: a study involving Malassezia, Candida, and Rhodotorula. AMB Express 2024; 14:26. [PMID: 38376644 PMCID: PMC10879058 DOI: 10.1186/s13568-024-01674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Evidence of fungal coexistence in humans points towards fungal adaptation to the host environment, like the skin. The human commensal Malassezia has evolved, especially residing in sebum-rich areas of the mammalian body where it can get the necessary nutrition for its survival. This fungus is primarily responsible for skin diseases like Pityriasis versicolor (PV), characterized by hypo or hyperpigmented skin discoloration and erythematous macules. In this manuscript, we report a 19-year-old healthy female who presented with a one-year history of reddish, hypopigmented, asymptomatic lesions over the chest and a raised erythematous lesion over the face. Upon clinical observation, the patient displayed multiple erythematous macules and erythematous papules over the bilateral malar area of the face, along with multiple hypopigmented scaly macules present on the chest and back. Based on the above clinical findings, a diagnosis of PV and Acne vulgaris (AV) was made. Interestingly, the patient was immunocompetent and didn't have any comorbidities. Upon isolation of skin scrapings and post-culturing, we found the existence of three fungal genera in the same region of the patient's body. We further went on to confirm the identity of the particular species and found it to represent Malassezia, Rhodotorula, and Candida. We report how Malassezia, the predominant microbial resident skin fungus, coexists with other fungal members of the skin mycobiome. This study on an applied aspect of microbiology also shows how important it is to identify the fungal organism associated with skin infections so that appropriate therapeutics can be advised to avoid cases of relapse.
Collapse
Affiliation(s)
- Bharati Naik
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Vishal B
- Department of Dermatology, Venereology and Leprosy (DVL), Yenepoya Medical College Hospital (YMCH), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
33
|
Kumar M, Hanisch BR. How I approach: the transplant recipient with fever and pulmonary infiltrates. Front Pediatr 2024; 12:1273590. [PMID: 38440184 PMCID: PMC10909924 DOI: 10.3389/fped.2024.1273590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Recipients of hematopoietic stem cell transplants and solid organ transplants frequently develop pulmonary infiltrates from both infectious and non-infectious etiologies. Differentiation and further characterization of microbiologic etiologies-viral, bacterial, and fungal-can be exceedingly challenging. Pediatric patients face unique challenges as confirmatory evaluations with bronchoscopy or lung biopsy may be limited. A generalizable approach to diagnosing and managing these conditions has not been well established. This paper aims to summarize our initial clinical approach while discussing the relative evidence informing our practices. A pediatric patient with characteristic infiltrates who has undergone HSCT is presented to facilitate the discussion. Generalizable approaches to similar patients are highlighted as appropriate while highlighting considerations based on clinical course and key risk factors.
Collapse
Affiliation(s)
- Madan Kumar
- Section of Pediatric Infectious Diseases, University of Chicago, Chicago, IL, United States
| | - Benjamin R. Hanisch
- Department of Pediatrics, School of Medicine and Health Sciences, Division of Infectious Diseases, Children’s National Hospital, The George Washington University, Washington, DC, United States
| |
Collapse
|
34
|
Stover KR, Aldridge HM, Pollan KL, Slain D, Bland CM, Bookstaver PB, Barber KE. The top 10 papers on the treatment of invasive fungal infections, 2018-2023. Ther Adv Infect Dis 2024; 11:20499361241290349. [PMID: 39440156 PMCID: PMC11494669 DOI: 10.1177/20499361241290349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Background Invasive fungal infections are responsible for a large number of infections in hospitalized patients annually and are responsible for high morbidity and mortality. Familiarity with novel agents or strategies in this area can be challenging. Objectives To identify the top 10 manuscripts on the treatment of invasive fungal infections from 2018 to 2023. Design Modified Delphi consensus-building technique. Methods A three-stage consensus-building approach was used comprised of (1) identifying relevant articles; (2) voting by a panel of experts to establish consensus on the importance of these articles; and (3) finalizing the list of top articles by a small group. Members of the Southeastern Research Group Endeavor network served as content experts. Publications from 2018 to 2023 were evaluated if articles met the following inclusion criteria: (1) published between 2018 and 2023, (2) contained content related to fungal infections, and (3) included an actionable intervention. Results A total of 6518 potential publications were assessed. After applying inclusion and exclusion criteria, 82 articles were reviewed. The top 10 publications related to invasive fungal infections, selected by a panel of experts, are summarized in this manuscript and include publications related to the treatment of invasive aspergillosis, candidiasis, and cryptococcosis. Conclusion This article highlights the selected publications and may serve as a key resource for teaching and training. Clinicians may also employ these reported interventions to identify new opportunities to optimize antifungal therapeutic strategies within one's institution.
Collapse
Affiliation(s)
- Kayla R. Stover
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, 2500 North State Street, Jackson, MS 39216, USA
| | | | - Katherine L. Pollan
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, MS, USA
| | - Douglas Slain
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Christopher M. Bland
- Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Savannah, GA, USA
| | - P. Brandon Bookstaver
- Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Katie E. Barber
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, MS, USA
| |
Collapse
|
35
|
Dean RS, El-Zein Z, Bohr M, Audet M, Fortin PT, Vaupel ZM. Value of Acid-Fast Bacilli and Fungal Cultures in Foot and Ankle Surgery in a US Hospital System. Foot Ankle Int 2023; 44:1266-1270. [PMID: 37823454 DOI: 10.1177/10711007231199091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
BACKGROUND Acid-fast bacilli(AFB) and fungi are generally slow-growing, difficult to culture, and rarely the cause of infection. The goal of this study was to evaluate the value of routinely obtaining AFB and fungal cultures in foot and ankle surgery at a US hospital. METHODS A retrospective review was conducted to determine the number of positive AFB and fungal cultures out of the total number of foot and ankle samples tested. Between 2014 and 2019, patients who underwent surgery for a foot and ankle infection for soft tissue infection, septic arthritis, infectious postoperative complications were identified. Charts were reviewed to identify the results of the microbiological tests performed. To determine the value of running AFB and fungal cultures, the costs of each were provided by the microbiology lab at our institution. RESULTS Of the 322 patient charts reviewed, there were 434 AFB and 525 fungal cultures performed. None of these cultures were indicated to be positive for AFB (0%), and 22 (4.19%) were positive for fungi. The total labor and material costs were calculated to be $38 767. The AFB cultures cost $23 967, the positive fungal cultures cost $2371, and the negative fungal cultures cost $36 395.36. CONCLUSION This 322-case series of surgically managed foot and ankle infections showed 0% and 4.1% positivity rates of AFB and fungal cultures, respectively. Additionally, only 20% of cases with positive cultures were identified as pathologic requiring antifungal treatment. Further analysis is needed to determine best practices for obtaining vs declining to culture for AFB or fungal species, including assessing patient outcomes in the series of culture-positive(fungal-only) cases. Our results suggest that in our clinical setting of a US hospital system, routine fungal and AFB cultures may not be necessary but should be considered for chronic/recalcitrant infections, immunocompromised patients, and those with high surgeon suspicion. LEVEL OF EVIDENCE Level IV, case series.
Collapse
|
36
|
Soldi LR, Coelho YNB, Paranhos LR, Silva MJB. The impact of antifungal prophylaxis in patients diagnosed with acute leukemias undergoing induction chemotherapy: a systematic review and meta-analysis. Clin Exp Med 2023; 23:3231-3249. [PMID: 37058186 DOI: 10.1007/s10238-023-01062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/29/2023] [Indexed: 04/15/2023]
Abstract
Acute leukemias are complex diseases to treat and have a high mortality rate. The immunosuppression caused by chemotherapy also causes the patient to become susceptible to a variety of infections, including invasive fungal infections. Protocols established in many countries attempt to prevent these infections through the use of pharmacological antifungal prophylaxis. This systematic review and meta-analysis investigates the existing evidence for the use of antifungal prophylaxis in patients undergoing induction chemotherapy for acute leukemia, and how prophylaxis can affect treatment response and mortality. Through the use of a population-variable-outcome strategy, keywords were utilized to search online databases. The included studies were selected and the data was collected to develop descriptive results for all studies, and, for studies that met the criteria, a meta-analysis of the Relative Risk (RR) was analyzed for infection rates, in-hospital mortality, and complete remission. A total of 33 studies were included in this systematic review, with most studies presenting positive results (n = 28/33) from the use of antifungal prophylaxis. Using a random effects model, the pooled results of the meta-analysis presented lower invasive fungal infections in AML (RR: 0.527 (95% CI: 0.391; 0.709). p < 0.001). p < 0.001) and ALL (RR: 0.753 (95% CI: 0.574; 0.988). p = 0.041). when antifungal prophylaxis was used. No discernible difference was encountered in the rate of complete remission when using prophylaxis. Antifungal prophylaxis provides a lower risk of invasive fungal infections and in-hospital mortality in acute leukemia patients undergoing induction chemotherapy.
Collapse
Affiliation(s)
- Luiz Ricardo Soldi
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
- Tumor Biomarkers and Osteoimmunology Laboratory, Av. Pará - 1720 - Block 6T, Room 07 - District Umuarama, Uberlândia, Minas Gerais, Brazil.
- Student of the Graduate Program in Applied Immunology and Parasitology, Universidade Federal de Uberlândia, Uberlândia, Brazil.
| | - Yasmin Nascimento Bernardes Coelho
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- Student of the Graduate Program in Applied Immunology and Parasitology, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Luiz Renato Paranhos
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marcelo José Barbosa Silva
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- Tumor Biomarkers and Osteoimmunology Laboratory, Av. Pará - 1720 - Block 6T, Room 07 - District Umuarama, Uberlândia, Minas Gerais, Brazil
- Professor responsible for the area of Immunology at the Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
37
|
Zhao Z, Sun Y, Li M, Yu Q. Construction of Candida albicans Adhesin-Exposed Synthetic Cells for Preventing Systemic Fungal Infection. Vaccines (Basel) 2023; 11:1521. [PMID: 37896925 PMCID: PMC10611093 DOI: 10.3390/vaccines11101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The development of efficient fungal vaccines is urgent for preventing life-threatening systemic fungal infections. In this study, we prepared a synthetic, cell-based fungal vaccine for preventing systemic fungal infections using synthetic biology techniques. The synthetic cell EmEAP1 was constructed by transforming the Escherichia coli chassis using a de novo synthetic fragment encoding the protein mChEap1 that was composed of the E. coli OmpA peptide, the fluorescence protein mCherry, the Candida albicans adhesin Eap1, and the C-terminally transmembrane region. The EmEAP1 cells highly exposed the mChEap1 on the cell surface under IPTG induction. The fungal vaccine was then prepared by mixing the EmEAP1 cells with aluminum hydroxide gel and CpG. Fluorescence quantification revealed that the fungal vaccine was stable even after 112 days of storage. After immunization in mice, the vaccine resided in the lymph nodes, inducing the recruitment of CD11c+ dendritic cells. Moreover, the vaccine strongly activated the CD4+ T splenocytes and elicited high levels of anti-Eap1 IgG. By the prime-boost immunization, the vaccine prolonged the survival time of the mice infected by the C. albicans cells and attenuated fungal colonization together with inflammation in the kidneys. This study sheds light on the development of synthetic biology-based fungal vaccines for the prevention of life-threatening fungal infections.
Collapse
Affiliation(s)
- Zirun Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Ying Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
- Research Center for Infectious Diseases, Nankai University, Tianjin 300350, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Tianjin 300350, China
| |
Collapse
|
38
|
Baker J, Denning DW. The SSS revolution in fungal diagnostics: speed, simplicity and sensitivity. Br Med Bull 2023; 147:62-78. [PMID: 37328942 PMCID: PMC10502448 DOI: 10.1093/bmb/ldad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/24/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Fungal disease has historically presented a diagnostic challenge due to its often non-specific clinical presentations, relative infrequency and reliance on insensitive and time-intensive fungal culture. SOURCES OF DATA We present the recent developments in fungal diagnostics in the fields of serological and molecular diagnosis for the most clinically relevant pathogens; developments that have the potential to revolutionize fungal diagnosis through improvements in speed, simplicity and sensitivity. We have drawn on a body of evidence including recent studies and reviews demonstrating the effectiveness of antigen and antibody detection and polymerase chain reaction (PCR) in patients with and without concurrent human immunodeficiency virus infection. AREAS OF AGREEMENT This includes recently developed fungal lateral flow assays, which have a low cost and operator skill requirement that give them great applicability to low-resource settings. Antigen detection for Cryptococcus, Histoplasma and Aspergillus spp. are much more sensitive than culture. PCR for Candida spp., Aspergillus spp., Mucorales and Pneumocystis jirovecii is more sensitive than culture and usually faster. AREAS OF CONTROVERSY Effort must be made to utilize recent developments in fungal diagnostics in clinical settings outside of specialist centres and integrate their use into standard medical practice. Given the clinical similarities of the conditions and frequent co-infection, further study is required into the use of serological and molecular fungal tests, particularly in patients being treated for tuberculosis. GROWING POINTS Further study is needed to clarify the utility of these tests in low-resource settings confounded by a high prevalence of tuberculosis. AREAS TIMELY FOR DEVELOPING RESEARCH The diagnostic utility of these tests may require revision of laboratory work flows, care pathways and clinical and lab coordination, especially for any facility caring for the immunosuppressed, critically ill or those with chronic chest conditions, in whom fungal disease is common and underappreciated.
Collapse
Affiliation(s)
- Jacob Baker
- Department of Medicine, Shrewsbury and Telford Hospitals Trust, Mytton Oak Rd, Shrewsbury SY3 8XQ, UK
| | - David W Denning
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Global Action For Fungal Infections (GAFFI), Rue Le Corbusier 1208 Geneva, Switzerland
| |
Collapse
|
39
|
AlMaghrabi RS, Al-Musawi T, Albaksami O, Subhi AL, Fakih RE, Stone NR. Challenges in the Management of Invasive Fungal Infections in the Middle East: Expert Opinion to Optimize Management Using a Multidisciplinary Approach. Cureus 2023; 15:e44356. [PMID: 37779746 PMCID: PMC10539715 DOI: 10.7759/cureus.44356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2023] [Indexed: 10/03/2023] Open
Abstract
Invasive fungal infection (IFI) is a significant global healthcare concern among critically ill and immunocompromised patients. In Middle Eastern countries, IFI has been steadily increasing among hospitalized patients in the past two decades. Diagnosis of IFI at an early stage is crucial for efficient management. Invasive fungal infection management is complex and requires the involvement of physicians from different specialties. There are several challenges associated with IFI management in the countries in the Middle East. This review aims to understand the key challenges associated with IFI management in the Middle East, encompassing epidemiology, diagnosis, therapeutic options, and optimizing a multidisciplinary approach. In addition, this review aims to incorporate expert opinions from multidisciplinary fields for optimizing IFI management in different Middle Eastern countries by addressing key decision points throughout the patient's journey. Lack of epidemiological data on fungal infections, slow and poorly sensitive conventional culture-based diagnostic tests, limited availability of biomarker testing, lack of awareness of clinical symptoms of the disease, limited knowledge on fungal infections, lack of local practice guidelines, and complicated disease management are the major challenges associated with IFI diagnosis and management in the Middle Eastern countries. Implementation of a multidisciplinary approach, antifungal stewardship, improved knowledge of fungal infections, the use of rapid diagnostic tests, and enhanced epidemiological research are warranted to lower the IFI burden in the Middle East.
Collapse
Affiliation(s)
- Reem S AlMaghrabi
- Department of Medicine, Organ Transplant Center, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| | - Tariq Al-Musawi
- Department of Critical Care Medicine, Al Salam Hospital, Al-Khobar, SAU
- Department of Medicine, Royal College of Surgeons in Ireland - Bahrain, Busaiteen, BHR
| | - Osama Albaksami
- Department of Infectious Diseases, Infectious Disease Hospital, Kuwait City, KWT
| | - Ahmad L Subhi
- Department of Infectious Diseases, Al-Qassimi Hospital, Sharjah, ARE
| | - Riad E Fakih
- Department of Hematology, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
- Department of Clinical Research, Alfaisal University, Riyadh, SAU
| | - Neil R Stone
- Department of Microbiology, Hospital for Tropical Diseases, London, GBR
- Department of Microbiology, University College London Hospitals, London, GBR
| |
Collapse
|
40
|
Fan W, Li J, Chen L, Wu W, Li X, Zhong W, Pan H. Clinical Evaluation of Polymerase Chain Reaction Coupled with Quantum Dot Fluorescence Analysis for Diagnosis of Candida Infection in Vulvovaginal Candidiasis Practice. Infect Drug Resist 2023; 16:4857-4865. [PMID: 37520453 PMCID: PMC10386842 DOI: 10.2147/idr.s410128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose Time-consuming culture methods and wet-mount microscopy (WMM) with low sensitivity have difficulties in diagnosing Vulvovaginal candidiasis (VVC). Rapid and highly sensitive polymerase chain reaction coupled with quantum dot fluorescence analysis (PCR-QDFA) for the diagnosis of VVC has not been reported to date. This study was the first to evaluate the performance of PCR-QDFA for diagnosis of Candida strains in the leukorrhea samples from patients with suspected VVC. Patients and Methods Leukorrhea samples from all visited patients were taken from the vagina using vaginal swabs by clinicians. We evaluated patients admitted with suspected VVC who completed WMM for diagnosis and reported the diagnostic effectiveness of PCR-QDFA and Candida culture (gold standard) when testing leucorrhea samples. Results A total of 720 leukorrhea samples from 387 VVC-positive patients and 333 VVC-negative patients were included in this study. Of the 387 leukorrhea samples from the VVC-positive patients, 391 Candida strains were identified by culture. 99.23% (388/391) Candida strains were included in the PCR-QDFA list. The 388 Candida strains belonged to four different species of Candida, including C. albicans (n = 273, 70.36%), C. glabrata (n = 85, 21.91%), C. tropicalis (n = 16, 4.12%), and C. krusei (n = 14, 3.61%). PCR-QDFA diagnosed Candida strains in 340/384 (88.54%) of the leucorrhea samples with Candida strains infection. The sensitivity of PCR-QDFA for C. albicans, C. glabrata, C. tropicalis, and C. krusei was 89.01%, 85.88%, 81.25% and 92.86%, respectively. The specificity of PCR-QDFA for C. albicans, C. glabrata, C. tropicalis and C. krusei was 93.69%, 99.37%, 99.71%, and 99.57%, respectively. Conclusion The highly sensitive and specific PCR-QDFA technique can be exploited as a rapid (approximately 4 h) diagnostic tool for common Candida strains of leucorrhea samples from patients with suspected VVC.
Collapse
Affiliation(s)
- Wenjia Fan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People’s Republic of China
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, 310014, People’s Republic of China
| | - Jie Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People’s Republic of China
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, 310014, People’s Republic of China
| | - Lingxia Chen
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, 310014, People’s Republic of China
| | - Wenhao Wu
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, 310014, People’s Republic of China
| | - Xi Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People’s Republic of China
| | - Hongying Pan
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, 310014, People’s Republic of China
| |
Collapse
|
41
|
Kruk K, Szekalska M, Basa A, Winnicka K. The Impact of Hypromellose on Pharmaceutical Properties of Alginate Microparticles as Novel Drug Carriers for Posaconazole. Int J Mol Sci 2023; 24:10793. [PMID: 37445975 DOI: 10.3390/ijms241310793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Fungal infections are a group of diseases which are challenging to treat because of drug-resistant fungi species, drug toxicity, and often severe patient conditions. Hence, research into new treatments, including new therapeutic substances and novel drug delivery systems, is being performed. Mucoadhesive dosage forms are beneficial to improving drug bioavailability by prolonging the residence time at the site of application. Sodium alginate is a natural polymer with favorable mucoadhesive and gelling properties, although its precipitation in acidic pH significantly disrupts the process of drug release in gastric conditions. Hypromellose is a hydrophilic, semi-synthetic cellulose derivative with mucoadhesive properties, which is widely used as a control release agent in pharmaceutical technology. The aim of this study was to evaluate the impact of hypromellose on alginate microparticles with posaconazole, designed to modify drug release and to improve their mucoadhesive properties for both oral or vaginal application.
Collapse
Affiliation(s)
- Katarzyna Kruk
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| | - Marta Szekalska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| | - Anna Basa
- Institute of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| |
Collapse
|
42
|
Fang W, Wu J, Cheng M, Zhu X, Du M, Chen C, Liao W, Zhi K, Pan W. Diagnosis of invasive fungal infections: challenges and recent developments. J Biomed Sci 2023; 30:42. [PMID: 37337179 DOI: 10.1186/s12929-023-00926-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/13/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The global burden of invasive fungal infections (IFIs) has shown an upsurge in recent years due to the higher load of immunocompromised patients suffering from various diseases. The role of early and accurate diagnosis in the aggressive containment of the fungal infection at the initial stages becomes crucial thus, preventing the development of a life-threatening situation. With the changing demands of clinical mycology, the field of fungal diagnostics has evolved and come a long way from traditional methods of microscopy and culturing to more advanced non-culture-based tools. With the advent of more powerful approaches such as novel PCR assays, T2 Candida, microfluidic chip technology, next generation sequencing, new generation biosensors, nanotechnology-based tools, artificial intelligence-based models, the face of fungal diagnostics is constantly changing for the better. All these advances have been reviewed here giving the latest update to our readers in the most orderly flow. MAIN TEXT A detailed literature survey was conducted by the team followed by data collection, pertinent data extraction, in-depth analysis, and composing the various sub-sections and the final review. The review is unique in its kind as it discusses the advances in molecular methods; advances in serology-based methods; advances in biosensor technology; and advances in machine learning-based models, all under one roof. To the best of our knowledge, there has been no review covering all of these fields (especially biosensor technology and machine learning using artificial intelligence) with relevance to invasive fungal infections. CONCLUSION The review will undoubtedly assist in updating the scientific community's understanding of the most recent advancements that are on the horizon and that may be implemented as adjuncts to the traditional diagnostic algorithms.
Collapse
Affiliation(s)
- Wenjie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Mingrong Cheng
- Department of Anorectal Surgery, The Third Affiliated Hospital of Guizhou Medical University, Guizhou, 558000, China
| | - Xinlin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Mingwei Du
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Kangkang Zhi
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
43
|
Howell SA. Dermatopathology and the Diagnosis of Fungal Infections. Br J Biomed Sci 2023; 80:11314. [PMID: 37351018 PMCID: PMC10282148 DOI: 10.3389/bjbs.2023.11314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/20/2023] [Indexed: 06/24/2023]
Abstract
Diagnosis of superficial/cutaneous fungal infections from skin, hair and nail samples is generally achieved using microscopy and culture in a microbiology laboratory, however, any presentation that is unusual or subcutaneous is sampled by taking a biopsy. Using histological techniques a tissue biopsy enables a pathologist to perform a full examination of the skin structure, detect any inflammatory processes or the presence of an infectious agent or foreign body. Histopathological examination can give a presumptive diagnosis while a culture result is pending, and may provide valuable diagnostic information if culture fails. This review demonstrates how histopathology contributes to the diagnosis of fungal infections from the superficial to the life threatening.
Collapse
|
44
|
Senoner T, Breitkopf R, Treml B, Rajsic S. Invasive Fungal Infections after Liver Transplantation. J Clin Med 2023; 12:jcm12093238. [PMID: 37176678 PMCID: PMC10179452 DOI: 10.3390/jcm12093238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Invasive fungal infections represent a major challenge in patients who underwent organ transplantation. Overall, the most common fungal infections in these patients are candidiasis, followed by aspergillosis and cryptococcosis, except in lung transplant recipients, where aspergillosis is most common. Several risk factors have been identified, which increase the likelihood of an invasive fungal infection developing after transplantation. Liver transplant recipients constitute a high-risk category for invasive candidiasis and aspergillosis, and therefore targeted prophylaxis is favored in this patient population. Furthermore, a timely implemented therapy is crucial for achieving optimal outcomes in transplanted patients. In this article, we describe the epidemiology, risk factors, prophylaxis, and treatment strategies of the most common fungal infections in organ transplantation, with a focus on liver transplantation.
Collapse
Affiliation(s)
- Thomas Senoner
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Robert Breitkopf
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Benedikt Treml
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Sasa Rajsic
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
45
|
Xu J, Luo Y, Wang J, Tu W, Yi X, Xu X, Song Y, Tang Y, Hua X, Yu Y, Yin H, Yang Q, Huang WE. Artificial intelligence-aided rapid and accurate identification of clinical fungal infections by single-cell Raman spectroscopy. Front Microbiol 2023; 14:1125676. [PMID: 37032865 PMCID: PMC10073597 DOI: 10.3389/fmicb.2023.1125676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Integrating artificial intelligence and new diagnostic platforms into routine clinical microbiology laboratory procedures has grown increasingly intriguing, holding promises of reducing turnaround time and cost and maximizing efficiency. At least one billion people are suffering from fungal infections, leading to over 1.6 million mortality every year. Despite the increasing demand for fungal diagnosis, current approaches suffer from manual bias, long cultivation time (from days to months), and low sensitivity (only 50% produce positive fungal cultures). Delayed and inaccurate treatments consequently lead to higher hospital costs, mobility and mortality rates. Here, we developed single-cell Raman spectroscopy and artificial intelligence to achieve rapid identification of infectious fungi. The classification between fungi and bacteria infections was initially achieved with 100% sensitivity and specificity using single-cell Raman spectra (SCRS). Then, we constructed a Raman dataset from clinical fungal isolates obtained from 94 patients, consisting of 115,129 SCRS. By training a classification model with an optimized clinical feedback loop, just 5 cells per patient (acquisition time 2 s per cell) made the most accurate classification. This protocol has achieved 100% accuracies for fungal identification at the species level. This protocol was transformed to assessing clinical samples of urinary tract infection, obtaining the correct diagnosis from raw sample-to-result within 1 h.
Collapse
Affiliation(s)
- Jiabao Xu
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Yanjun Luo
- Shanghai Hesen Biotech Co., Shanghai, China
| | - Jingkai Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Weiming Tu
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Xiaofei Yi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yizhi Song
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiaoting Hua
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huabing Yin
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Qiwen Yang,
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Wei E. Huang,
| |
Collapse
|
46
|
A Current Overview of Cyclodextrin-Based Nanocarriers for Enhanced Antifungal Delivery. Pharmaceuticals (Basel) 2022; 15:ph15121447. [PMID: 36558897 PMCID: PMC9785708 DOI: 10.3390/ph15121447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Fungal infections are an extremely serious health problem, particularly in patients with compromised immune systems. Most antifungal agents have low aqueous solubility, which may hamper their bioavailability. Their complexation with cyclodextrins (CDs) could increase the solubility of antifungals, facilitating their antifungal efficacy. Nanoparticulate systems are promising carriers for antifungal delivery due to their ability to overcome the drawbacks of conventional dosage forms. CD-based nanocarriers could form beneficial combinations of CDs and nanoparticulate platforms. These systems have synergistic or additive effects regarding improved drug loading, enhanced chemical stability, and enhanced drug permeation through membranes, thereby increasing the bioavailability of drugs. Here, an application of CD in antifungal drug formulations is reviewed. CD-based nanocarriers, such as nanoparticles, liposomes, nanoemulsions, nanofibers, and in situ gels, enhancing antifungal activity in a controlled-release manner and possessing good toxicological profiles, are described. Additionally, the examples of current, updated CD-based nanocarriers loaded with antifungal drugs for delivery by various routes of administration are discussed and summarized.
Collapse
|
47
|
Pintea A, Vlad RA, Antonoaea P, Rédai EM, Todoran N, Barabás EC, Ciurba A. Structural Characterization and Optimization of a Miconazole Oral Gel. Polymers (Basel) 2022; 14:polym14225011. [PMID: 36433136 PMCID: PMC9692734 DOI: 10.3390/polym14225011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The development of semisolid formulations, gels in particular, has raised the attention of scientists more and more over the last decades. Because of their biocompatibility, hydrophilic nature, and capacity of absorbing large quantities of water, hydrogels are still one of the most promising pharmaceutical formulations in the pharmaceutical industry. The purpose of this study is to develop an optimal formulation capable of incorporating a water-poorly soluble active ingredient such as miconazole used in the treatment of fungal infections with Candida albicans and Candida parapsilosis. A D-optimal design was applied to study the relationship between the formulation parameter and the gel characteristics. The independent parameters used in this study were the Carbopol 940 concentration (the polymer used to obtain the gel matrix), the sodium hydroxide amount, and the presence/absence of miconazole. Ten different dependent parameters (Y1-Y10) were evaluated (penetrometry, spreadability, viscosity, and tangential tension at 1 and 11 levels of speed whilst destructuring and during the reorganization of the gel matrix). The consistency of the gels ranged from 23.2 mm (GO2) to 29.6 mm (GM5). The least spreadable gel was GO7 (1384 mm2), whilst the gel that presented the best spreadability was GO1 (3525 mm2). The viscosity and the tangential stress at the selected levels (1 and 11) varied due to the different compositions of the proposed gels. The gels were also tested for drug content and antifungal activity. All determinations had satisfying results; the drug content was within limits accepted by Ph. Eur. 10 and all formulations containing miconazole exhibited antifungal activity. An optimal formulation with miconazole was attained, consisting of 0.84% Carbopol 940 and 0.32% sodium hydroxide.
Collapse
Affiliation(s)
- Andrada Pintea
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Robert-Alexandru Vlad
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Paula Antonoaea
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Correspondence:
| | - Emöke Margit Rédai
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Nicoleta Todoran
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Enikő-Csilla Barabás
- Cellular Biology and Microbiology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Laboratory Medicine, Mures, County Hospital, 540136 Targu Mures, Romania
| | - Adriana Ciurba
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
48
|
Singh A, Kaur K, Kaur H, Mohana P, Arora S, Bedi N, Chadha R, Bedi PMS. Design, synthesis and biological evaluation of isatin-benzotriazole hybrids as new class of anti-Candida agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Liu Y, Liu W, Yu S, Wang Q, Liu M, Han J, Sun B. Novel Aryl Alkamidazole Derivatives as Multifunctional Antifungal Inhibitors: Design, Synthesis, and Biological Evaluation. J Med Chem 2022; 65:14916-14937. [DOI: 10.1021/acs.jmedchem.2c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yating Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Wenxia Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Shuai Yu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Qingpeng Wang
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Min Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| |
Collapse
|
50
|
Haro-Reyes T, Díaz-Peralta L, Galván-Hernández A, Rodríguez-López A, Rodríguez-Fragoso L, Ortega-Blake I. Polyene Antibiotics Physical Chemistry and Their Effect on Lipid Membranes; Impacting Biological Processes and Medical Applications. MEMBRANES 2022; 12:681. [PMID: 35877884 PMCID: PMC9316096 DOI: 10.3390/membranes12070681] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023]
Abstract
This review examined a collection of studies regarding the molecular properties of some polyene antibiotic molecules as well as their properties in solution and in particular environmental conditions. We also looked into the proposed mechanism of action of polyenes, where membrane properties play a crucial role. Given the interest in polyene antibiotics as therapeutic agents, we looked into alternative ways of reducing their collateral toxicity, including semi-synthesis of derivatives and new formulations. We follow with studies on the role of membrane structure and, finally, recent developments regarding the most important clinical applications of these compounds.
Collapse
Affiliation(s)
- Tammy Haro-Reyes
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Lucero Díaz-Peralta
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Arturo Galván-Hernández
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Anahi Rodríguez-López
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico; (A.R.-L.); (L.R.-F.)
| | - Lourdes Rodríguez-Fragoso
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico; (A.R.-L.); (L.R.-F.)
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| |
Collapse
|