1
|
Pala N, Vorkamp K, Bossi R, Bignert A, Traversa G, Fugazza D, Ancora S, Ademollo N, Baroni D, Corsolini S. Temporal trends of persistent organic pollutants (POPs) and perfluoroalkyl substances (PFAS) in Adèlie penguin (Pygoscelis adeliae) eggs from the Ross Sea (Antarctica), including their relationship with climate parameters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126130. [PMID: 40157488 DOI: 10.1016/j.envpol.2025.126130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Temporal trends of contaminants represent an important tool to evaluate the effectiveness of chemical restriction measures. In this work, 50 eggs of Adèlie penguin (Pygoscelis adeliae) collected along the Ross Sea coasts from 1997 to 2021 were analysed for polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), perfluoroalkyl substances (PFAS). Some PCB congeners showed a significantly decreasing trend, whereas HCB and p,p'-DDE indicated decreasing but not significant trends, potentially related to the unintentional production of HCB and ongoing use of DDT, even if a contribution from climate-driven remobilisation mechanisms may also play a role. PBDE-47 also indicated a decreasing but not significant trend, which might be explained by the more recent global restriction. PFAS trends agreed with what has been previously observed in the Arctic, i.e. significantly decreasing perfluorooctane sulfonate (PFOS) according to its global ban and increasing long-chain perfluorinated carboxylic acids (PFCAs). Correlations with selected climate parameters showed an association between PBDE-47 and sampling year precipitations. To our knowledge, this work represents the longest time trend study of pollutants in penguins from the Ross Sea and the first one reporting PFAS. It highlights the importance of global regulations for the contaminant developments in polar ecosystems.
Collapse
Affiliation(s)
- Nicolas Pala
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy.
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Rossana Bossi
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Anders Bignert
- Yibin Research Base of the Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Yibin University, Sichuan Province, Yibin, 644000, China
| | - Giacomo Traversa
- Institute of Polar Sciences, Italian National Research Council (ISP-CNR), 20126, Milan, Italy
| | - Davide Fugazza
- Department of Environmental Science and Policy (ESP), University of Milan, 20133, Milan, Italy
| | - Stefania Ancora
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
| | - Nicoletta Ademollo
- Institute of Polar Sciences, Italian National Research Council (ISP-CNR), 40129, Bologna, Italy
| | - Davide Baroni
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
| | - Simonetta Corsolini
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy; Institute of Polar Sciences, Italian National Research Council (ISP-CNR), 40129, Bologna, Italy
| |
Collapse
|
2
|
Bustnes JO, Bårdsen BJ, Moe B, Herzke D, van Bemmelen RSA, Tulp I, Schekkerman H, Hanssen SA. The pollution fast-track to the Arctic: how southern wintering areas contribute to organochlorine loads in a migrant seabird breeding in the Arctic. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:1020-1028. [PMID: 39844592 DOI: 10.1093/etojnl/vgaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
This study examines how southern wintering areas may contribute to organochlorine (OCs) loads in arctic seabirds during breeding. Light-sensitive geolocators (GLS loggers) were deployed on Arctic skuas (Stercorarius parasiticus) in one high arctic and two subarctic colonies. Hexcahlorobenzene (HCB), chlordanes, mirex, p,p'-dichlorodiphenyldichloro-ethylene (p,p'-DDE), and polychlorinated biphenyls (PCBs) were measured in the blood of breeding adults at the nest (58 individuals, a total of 128 samples) in northern Norway and Svalbard between 2009 and 2015. We compared OC concentrations and OC profiles among nesting skuas wintering in five Atlantic regions, determined by the GLS loggers: the coast of Argentina, the Caribbean, off West Africa, off the coast of southern Africa, and the Mediterranean Sea. As predicted, HCB, which is semi-volatile and has high long-range transport potential, showed high prevalence in birds wintering in all regions except the Mediterranean. Mirex showed the highest prevalence in birds wintering off the coasts of Argentina and southern Africa, in accordance with high background levels previously documented in the Southern Ocean. Chlordanes were particularly prevalent in skuas wintering off southern Africa, whereas p,p'-DDE seemed relatively evenly distributed among wintering areas. As predicted, the prevalence of PCBs was much higher in birds wintering in the Mediterranean Sea than in birds from other regions. This study thus suggests that the Mediterranean Sea and the mid- and southern Atlantic are essential sources of different OCs in the blood of Arctic skuas breeding in the European Arctic.
Collapse
Affiliation(s)
- Jan Ove Bustnes
- Norwegian Institute for Nature Research, FRAM-High North Research Centre on Climate and the Environment, NO-9296 Tromsø, Norway
| | - Bård-Jørgen Bårdsen
- Norwegian Institute for Nature Research, FRAM-High North Research Centre on Climate and the Environment, NO-9296 Tromsø, Norway
| | - Børge Moe
- Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, NO-7485 Trondheim, Norway
| | - Dorte Herzke
- Norwegian Institute for Air Research, FRAM-High North Research Centre on Climate and the Environment, NO-9296 Tromsø, Norway
| | - Rob S A van Bemmelen
- Waardenburg Ecology, Culemborg, The Netherlands
- Wageningen Marine Research, IJmuiden, The Netherlands
| | - Ingrid Tulp
- Wageningen Marine Research, IJmuiden, The Netherlands
| | | | - Sveinn-Are Hanssen
- Norwegian Institute for Nature Research, Sognsveien 68, NO-0316 Oslo, Norway
| |
Collapse
|
3
|
Gao M, Liu X, Yao W, Li X, Gao Y, Chen J. Fate and ecological risk of legacy and emerging POPs in coastal waters in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178733. [PMID: 39922009 DOI: 10.1016/j.scitotenv.2025.178733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/03/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Short-chain chlorinated paraffins (SCCPs) and dechlorane plus (DPs) are persistent organic pollutants of emerging concern, however, little is known of their fate and ecological risks in coastal waters compared to legacy contaminants in marine environment. Here, we analyzed SCCPs, 2 DP isomers as well as legacy contaminants including 24 organochlorine pesticides and polychlorinated biphenyls (PCBs) in seawater from Hangzhou Bay (HZB) and Liaodong Bay (LDB) for comparison using GC-Orbitrap MS. The total contaminant load in seawater was dominated by SCCPs with the highest detection frequency, in concentrations ranging from 25.38 to 388.23 ng/L in HZB and 7.45 to 144.48 ng/L in LDB, respectively. The congener patterns of SCCPs differed significantly, where HZB was predominated by C11-13-CPs (accounted for 83 %) and C10-CPs (40.4 %) was the most abundant in LDB. SCCPs were positively correlated with legacy contaminants in HZB, indicating similar sources. In terms of legacy contaminants, HZB exhibited higher levels of hexachlorobenzene, whereas LDB showed a prevalence of hexachlorocyclohexane. The ocean current in HZB and direct terrestrial input with the impact of intensive human activities around LDB were suggested to attribute to their spatial distribution characteristics, respectively. The contaminants were identified to have medium risks to aquatic organisms by using the risk quotient method. SCCPs contributed most with proportions of 45 % and 80 % for HZB and LDB, the monitoring of which needs to be strengthened in the future.
Collapse
Affiliation(s)
- Menghao Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xing Liu
- Key Laboratory for Ecological Environment in Coastal Areas, Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Wenjun Yao
- Key Laboratory for Ecological Environment in Coastal Areas, Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xiaoying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yuan Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jiping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Wang Z, Yuan C, Yang D, Cui M, Tang J, Zhang Z, Qiao X. Defect-derived catalytic sites in Ce/Zr-UiO-66 for degradation of hexachlorobenzene. Dalton Trans 2025; 54:2308-2319. [PMID: 39714129 DOI: 10.1039/d4dt02951h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
It is of great significance to develop catalysts for the degradation of hexachlorobenzene from the industrial thermal process. In this paper, formic acid was used as a modulator to generate defect sites in Ce/Zr-UiO-66 with intrinsic Brønsted acidity. The defective formate ligands were removed through methanol-water vapor treatment to expose additional open metal sites with Lewis acidity. The intrinsic Brønsted acid sites of the resulting Ce/Zr-UiO-66-FA-P achieved a hexachlorobenzene degradation efficiency of 99.5% at 250 °C. The generated Lewis acid sites facilitated the C-C cleavage of degradation intermediates. More than 95.0% of the final products were CO2/CO, coupled with chlorinated alkanes/alkenes, which outperformed other benchmark metal oxide catalysts. The Ce/Zr-UiO-66-FA-P catalyst maintained its catalytic activity in the model industrial flue gas and humid environment. The degradation pathway of hexachlorobenzene was tracked using in situ FT-IR spectra.
Collapse
Affiliation(s)
- Zhengyan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Chenhao Yuan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Dong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Mifen Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Jihai Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Zhuxiu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Xu Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| |
Collapse
|
5
|
Khuman SN, Lee HY, Cho IG, Chung D, Lee SY, Lee J, Oh JK, Choi SD. Monitoring of organochlorine pesticides using pine needle, pine bark, and soil samples across South Korea: Source apportionment and implications for atmospheric transport. CHEMOSPHERE 2025; 370:144043. [PMID: 39733949 DOI: 10.1016/j.chemosphere.2024.144043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Pine needle, pine bark, and soil samples were collected from various regions in South Korea, considering the suitability of vegetation samples as passive samplers. A total of 27 organochlorine pesticides (OCPs) were analyzed using a gas chromatograph/high-resolution mass spectrometer (GC/HRMS). The total concentrations of OCPs ranged between 650 and 3652 pg/g dw in soil, 215 and 1384 pg/g ww in pine needles, and 456 and 1723 pg/g ww in pine bark. Metabolites such as endosulfan sulfate, p,p'-DDE, and p,p'-DDD were dominant in the soil samples, whereas parent compounds were more prevalent in the pine needles. Diagnostic ratios and compositional profiles suggested that potential OCP sources were primarily related to historical use, atmospheric transport, and unintentional byproducts. OCPs that were never used or registered in South Korea were also detected in all sample types, indicating atmospheric transport from source regions. Sites closer to North Korea and China showed higher concentrations of OCPs, with levels gradually decreasing from west to east in the soil, suggesting long-range atmospheric transport from the source regions. Fugacity fractions indicated net volatilization for most compounds, while net deposition was observed for others, suggesting a dynamic equilibrium. This study concludes that atmospheric transport plays a predominant role in the distribution and fate of OCPs in the environment, with no evidence of current local sources.
Collapse
Affiliation(s)
- Sanjenbam Nirmala Khuman
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ho-Young Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - In-Gyu Cho
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - David Chung
- Natural Environmental Research Division, National Institute of Environmental Research (NIER), Incheon, 22689, Republic of Korea
| | - Soo Yong Lee
- Natural Environmental Research Division, National Institute of Environmental Research (NIER), Incheon, 22689, Republic of Korea
| | - Jangho Lee
- Natural Environmental Research Division, National Institute of Environmental Research (NIER), Incheon, 22689, Republic of Korea
| | - Jung-Keun Oh
- Natural Environmental Research Division, National Institute of Environmental Research (NIER), Incheon, 22689, Republic of Korea
| | - Sung-Deuk Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
6
|
Tunega D, Gerzabek MH, Böhm L. Theoretical Study on Adsorption of Halogenated Benzenes on Montmorillonites Modified With M(I)/M(II) Cations. J Comput Chem 2025; 46:e70042. [PMID: 39874250 PMCID: PMC11774449 DOI: 10.1002/jcc.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
Halogenated benzenes (HBs) are hydrophobic organic chemicals belonging to persistent organic pollutants. Owing to their persistence, they represent a serious problem in environmental contamination, specifically of soils and sediments. One of the most important physical processes determining the fate of HBs in soils is adsorption to main soil components such as soil organic matter and soil minerals. Smectites, layered clay minerals of the 2:1 type, are common minerals in clay-rich soils, of which montmorillonite (Mt) is a typical representative. This work focuses on a systematic modeling study of the adsorption mechanism of selected HBs interacting with the basal (001) surface, which is the dominant surface of Mt particles. The HB···Mt interactions were studied by means of a quantum chemical approach based on the density functional theory method. HBs were represented by five molecules, particularly C6F6, C6Cl3F3, C6Cl6, C6Br3Cl3, and C6Br6. In mixed HBs (C6Cl3F3 and C6Br3Cl3) Cl atoms are in 1,3,5 or rather 2,4,6 positions. The effect of a different cation type on adsorption was investigated for M+/M2+-Mt models with cations from alkali group (M+: Li, K, Na, Rb, Cs) and alkaline earth metal group (M2+: Mg, Ca, Sr., Ba). The calculations were also performed on the gas phase HB···M+/M2+ complexes for comparison. Adsorption energies and distances of the main HB molecular plane from the Mt surface were calculated as a measure of the adsorption strength. The results showed that the strongest HB adsorption is for the Na+-Mt and Ca2+-Mt surfaces. The strongest affinity was observed for hexabromobenzene, while the weakest adsorption was found for hexafluorobenzene. The decomposition of the adsorption energy showed that its dominant component is dispersion energy and less important is the cation-π interaction. The calculated adsorption energies showed a good correlation with experimentally determined log Kd values.
Collapse
Affiliation(s)
- Daniel Tunega
- Institute for Soil Research, Department of Forest and Soil SciencesUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - Martin H. Gerzabek
- Institute for Soil Research, Department of Forest and Soil SciencesUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - Leonard Böhm
- Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ)Justus Liebig University GiessenGiessenGermany
| |
Collapse
|
7
|
Lin Y, Gabrielsen GW, Lu Z, Huang Q, Huang P, Ke H, Cai M. Local contributions and climate change effects on organochlorine pesticide levels in soil and sediments in Svalbard. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125386. [PMID: 39586449 DOI: 10.1016/j.envpol.2024.125386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
The Arctic region, including Svalbard, faces unique environmental challenges from the presence and persistence of organochlorine pesticides (OCPs), pollutants known for their long-range atmospheric transport and potential local sources. In Svalbard, the melting of sea ice and glaciers due to climate change may release OCPs trapped over decades, while human activities in the area could contribute additional local contamination. This study aimed to identify and quantify different sources of OCPs in soil and marine sediments at Svalbard. Samples were collected from Kongsfjorden, Rijpfjorden, and in Ny-Ålesund. The concentrations of 23 OCPs in sediments sampled were in the range of 0.36-0.90 ng/g, which were lower than those in the soils from Ny-Ålesund (0.28 ng/g to 3.6 ng/g). The highest OCP levels were detected at locations near the research station in Ny-Ålesund, where local contamination from research activities, mining, and dumpsites could occur. Hexachlorobenzene (HCB) were the most prominent compound, followed by various DDTs and HCHs. Dignostic ratios and the Positive Matrix Factorization (PMF) model were employed to determine the primary sources of OCPs. The results from modeling showed that historically used pollutants were the primary contributor, accounting for 90% of OCPs present, while recently input OCPs were a minor contributor. However, newly input pollutants significantly contributed to HCHs (43%). It is suggested that the contribution of legacy OCPs mainly comes from the melting of sea ice and glaciers. This was especially true for Rijpfjorden (95%), while it was also significant for Kongsfjorden (55%). The local contamination and fresh inputs played a substantial role in the area near the research station in Ny-Ålesund. The study emphasizes the importance of secondly source, especially the role of melting sea ice and glaciers as well as local contaminations as sources of OCPs in Svalbard's marine sediment, which highlight the urgent need to address the impact of climate change on the Arctic environment.
Collapse
Affiliation(s)
- Yan Lin
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361021, China
| | | | - Zhibo Lu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200082, China
| | - Qinghui Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200082, China
| | - Peng Huang
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongwei Ke
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Minggang Cai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
8
|
Lv L, Cui S, Zhang H, Qi W, Liu X, Jiang J, Jiang J, Zhu Z, Gao H. Spatial pattern and compositional distribution of organochlorine pesticides in the black soil region of Shenyang. ENVIRONMENTAL RESEARCH 2024; 263:120228. [PMID: 39490546 DOI: 10.1016/j.envres.2024.120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) prevalent in soils with carcinogenic, teratogenic and mutagenic hazards that are commonly found in soils and remain in the environment even though they have been banned. In order to fill the gap of fewer studies after the ban, soil samples were collected from 308 agricultural fields of cash crops and grain crops in the black soil area of Shenyang City (Liaozhong District, Faku County, Xinmin City and Kangping County) in this study. The aim was to determine, the use and distribution characteristics of OCPs in agricultural soils in the black soil region of Shenyang City. Compositional analysis showed that the detection rate of banned OCPs in agricultural soils was 71.75%, including contaminants such as technical dichloro-diphenyl-trichloroethane (DDT), chlordane and hexachlorobenzene (HCB), which were widely distributed in Liaozhong District, Faku County, Xinmin City and Kangping County, with 45.25% of the fields having compounded contamination of OCPs, and several areas were involved in the fresh inputs of contaminants such as technical DDT. Among them, Kangping County and Faku County are more seriously polluted, with 66.29% and 60.71% of OCPs exceeding the standard. Soil OCPs is more serious in cabbage and rice farmland among cash and food crop farmland. Based on Chinese policy on control, prevention and other pesticide management measures, it was concluded that the framework should be strengthened to prevent further illegal use of banned OCPs.
Collapse
Affiliation(s)
- Lianghe Lv
- Ministry of Education, Shenyang Ligong University, Shenyang, 110159, China.
| | - Shuang Cui
- Ministry of Education, Shenyang Ligong University, Shenyang, 110159, China.
| | - Hongling Zhang
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Weijun Qi
- Ministry of Education, Shenyang Ligong University, Shenyang, 110159, China
| | - Xinyue Liu
- Ministry of Education, Shenyang Ligong University, Shenyang, 110159, China
| | - Jianyu Jiang
- Ministry of Education, Shenyang Ligong University, Shenyang, 110159, China
| | - Jing Jiang
- Ministry of Education, Shenyang Ligong University, Shenyang, 110159, China
| | - Ziyue Zhu
- Ministry of Education, Shenyang Ligong University, Shenyang, 110159, China
| | - Hang Gao
- Ministry of Education, Shenyang Ligong University, Shenyang, 110159, China
| |
Collapse
|
9
|
Yavuz O, Arslan HH, Tokur O, Marangoz O, Nuhoglu Ozturk Z, Mushtaq S. Monitoring of environmental persistent organic pollutants in hair samples of cats and dogs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173020. [PMID: 38719047 DOI: 10.1016/j.scitotenv.2024.173020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
This study investigated 32 persistent organic pollutants, including 9 organochlorine pesticides, 15 polychlorinated biphenyls, 6 polycyclic aromatic hydrocarbons, and 2 organophosphate pesticides in the hair samples of domestic cats and dogs living in an urban area in Samsun, Turkiye. Hair samples were collected from 35 cats and 38 dogs, grouped by sex and age (<3 or >3 years old). Samples were extracted using a liquid-liquid extraction method and analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). The results revealed the presence of organochlorine pesticides (n = 58, 468.65 ± 92.30 ng/g), polycyclic aromatic hydrocarbons (n = 57, 15.65 ± 3.91 ng/g), polychlorinated biphenyls (n = 55, 54.11 ± 9.47 ng/g), and organophosphate pesticides (n = 25, 568.43 ± 113.17 ng/g) in the samples. PCBs 81, 118, 128, 208, and 2,4-DDE were not detected in any samples. Only one sample did not contain any of the searched compounds. Fluorene was the most frequently detected pollutant (n = 53, 72.6 %), followed by β-hexachlorocyclohexane (n = 34, 46.6 %). The highest maximum concentration was observed for hexachlorobenzene (2748.03 ng/g), followed by aldrin (2313.45 ng/g) and fenitrothion (2081.13 ng/g). Pollutant concentrations did not differ between cats and dogs, sexes, and ages (p > 0.05). This study highlights the significant threat that urban areas pose to pets, and therefore, POPs should be monitored periodically in hair and other samples. To the best of our knowledge, this is the first report to investigate POP levels in hair samples from cats and dogs in Turkiye.
Collapse
Affiliation(s)
- Oguzhan Yavuz
- Department of Pharmacology and Toxicology, Ceyhan Faculty of Veterinary Medicine, Cukurova University, Adana, Turkiye.
| | - Handan Hilal Arslan
- Department of Internal Medicine, Ceyhan Faculty of Veterinary Medicine, Cukurova University, Adana, Turkiye
| | - Orhan Tokur
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkiye
| | - Ozge Marangoz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkiye
| | - Zeyno Nuhoglu Ozturk
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkiye
| | - Saima Mushtaq
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkiye
| |
Collapse
|
10
|
Wada R, Peng FJ, Lin CA, Vermeulen R, Iglesias-González A, Palazzi P, Bodinier B, Streel S, Guillaume M, Vuckovic D, Dagnino S, Chiquet J, Appenzeller BMR, Chadeau-Hyam M. Hair-Derived Exposome Exploration of Cardiometabolic Health: Piloting a Bayesian Multitrait Variable Selection Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5383-5393. [PMID: 38478982 DOI: 10.1021/acs.est.3c08739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Cardiometabolic health is complex and characterized by an ensemble of correlated and/or co-occurring conditions including obesity, dyslipidemia, hypertension, and diabetes mellitus. It is affected by social, lifestyle, and environmental factors, which in-turn exhibit complex correlation patterns. To account for the complexity of (i) exposure profiles and (ii) health outcomes, we propose to use a multitrait Bayesian variable selection approach and identify a sparse set of exposures jointly explanatory of the complex cardiometabolic health status. Using data from a subset (N = 941 participants) of the nutrition, environment, and cardiovascular health (NESCAV) study, we evaluated the link between measurements of the cumulative exposure to (N = 33) pollutants derived from hair and cardiometabolic health as proxied by up to nine measured traits. Our multitrait analysis showed increased statistical power, compared to single-trait analyses, to detect subtle contributions of exposures to a set of clinical phenotypes, while providing parsimonious results with improved interpretability. We identified six exposures that were jointly explanatory of cardiometabolic health as modeled by six complementary traits, of which, we identified strong associations between hexachlorobenzene and trifluralin exposure and adverse cardiometabolic health, including traits of obesity, dyslipidemia, and hypertension. This supports the use of this type of approach for the joint modeling, in an exposome context, of correlated exposures in relation to complex and multifaceted outcomes.
Collapse
Affiliation(s)
- Rin Wada
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- MRC Centre for Environment and Health Imperial College London, London W2 1PG, U.K
| | - Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
| | - Chia-An Lin
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
| | - Roel Vermeulen
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Alba Iglesias-González
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
| | - Barbara Bodinier
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- MRC Centre for Environment and Health Imperial College London, London W2 1PG, U.K
| | - Sylvie Streel
- Department of Public Health Sciences, University of Liege, Liege 4000, Belgium
| | - Michèle Guillaume
- Department of Public Health Sciences, University of Liege, Liege 4000, Belgium
| | - Dragana Vuckovic
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- MRC Centre for Environment and Health Imperial College London, London W2 1PG, U.K
| | - Sonia Dagnino
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), Institut des sciences du vivant Fréderic Joliot, CEA, Université Côte d'Azur, Nice 06107, France
| | - Julien Chiquet
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, Palaiseau 91120, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- MRC Centre for Environment and Health Imperial College London, London W2 1PG, U.K
| |
Collapse
|
11
|
Drysdale M, Gamberg M, Brammer J, Majowicz SE, Packull-McCormick S, Skinner K, Laird BD. Hexachlorobenzene and omega-3 fatty acid intake from traditional foods in the northern Yukon: A risk and benefit analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169205. [PMID: 38145675 DOI: 10.1016/j.scitotenv.2023.169205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
A human biomonitoring study was conducted in the community of Old Crow, Yukon, in 2019, finding that levels of hexachlorobenzene (HCB) in plasma were elevated in the community relative to the general Canadian population. The aim of this study was to estimate dietary intake of both hexachlorobenzene, and the nutrient omega-3 fatty acids from locally harvested traditional foods in Old Crow, with the aim of identifying possible regional sources of exposure. A stochastic model was constructed to estimate intake of both hexachlorobenzene and the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Average predicted hexachlorobenzene exposure levels from traditional food consumption in Old Crow were below the tolerable daily intake of 1600-1700 ng/kg body weight/day in both average (18 ng/kg body weight/day) and short-term maximum (27 ng/kg body weight/day) exposure models. The primary contributors to average hexachlorobenzene intake were caribou fat, bone marrow, ribs, and kidneys, and Chinook salmon muscle. Average estimated dietary EPA + DHA intake levels from traditional foods were below the recommendation of 2.1 to 3.2 g of EPA + DHA per week in the average (1.6 g/week) exposure model, but above this recommendation in the short-term maximum model (3.3 g/week). The primary contributors to average EPA + DHA intake were the meat of Chinook, coho, and, chum salmon muscle, and whitefish muscle and eggs. The results of this study support the message that traditional foods continue to be an important source of nutrients and other health benefits and that the health benefits of traditional foods generally outweigh contaminant risks.
Collapse
Affiliation(s)
- Mallory Drysdale
- School of Public Health and Health Systems, Faculty of Applied Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mary Gamberg
- Gamberg Consulting, P.O. Box 11267, Whitehorse, Yukon Y1A 6N5, Canada
| | - Jeremy Brammer
- Vuntut Gwitchin Government, Old Crow, Yukon Y0B 1N0, Canada
| | - Shannon E Majowicz
- School of Public Health and Health Systems, Faculty of Applied Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Sara Packull-McCormick
- School of Public Health and Health Systems, Faculty of Applied Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Kelly Skinner
- School of Public Health and Health Systems, Faculty of Applied Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Brian D Laird
- School of Public Health and Health Systems, Faculty of Applied Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
12
|
Amirbekov A, Vrchovecka S, Riha J, Petrik I, Friedecky D, Novak O, Cernik M, Hrabak P, Sevcu A. Assessing HCH isomer uptake in Alnus glutinosa: implications for phytoremediation and microbial response. Sci Rep 2024; 14:4187. [PMID: 38378833 PMCID: PMC10879209 DOI: 10.1038/s41598-024-54235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/10/2024] [Indexed: 02/22/2024] Open
Abstract
Although the pesticide hexachlorocyclohexane (HCH) and its isomers have long been banned, their presence in the environment is still reported worldwide. In this study, we investigated the bioaccumulation potential of α, β, and δ hexachlorocyclohexane (HCH) isomers in black alder saplings (Alnus glutinosa) to assess their environmental impact. Each isomer, at a concentration of 50 mg/kg, was individually mixed with soil, and triplicate setups, including a control without HCH, were monitored for three months with access to water. Gas chromatography-mass spectrometry revealed the highest concentrations of HCH isomers in roots, decreasing towards branches and leaves, with δ-HCH exhibiting the highest uptake (roots-14.7 µg/g, trunk-7.2 µg/g, branches-1.53 µg/g, leaves-1.88 µg/g). Interestingly, α-HCH was detected in high concentrations in β-HCH polluted soil. Phytohormone analysis indicated altered cytokinin, jasmonate, abscisate, and gibberellin levels in A. glutinosa in response to HCH contamination. In addition, amplicon 16S rRNA sequencing was used to study the rhizosphere and soil microbial community. While rhizosphere microbial populations were generally similar in all HCH isomer samples, Pseudomonas spp. decreased across all HCH-amended samples, and Tomentella dominated in β-HCH and control rhizosphere samples but was lowest in δ-HCH samples.
Collapse
Affiliation(s)
- Aday Amirbekov
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17, Liberec, Czech Republic
| | - Stanislava Vrchovecka
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17, Liberec, Czech Republic
| | - Jakub Riha
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic
| | - Ivan Petrik
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, 78371, Olomouc, Czech Republic
| | - David Friedecky
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, 775 20, Olomouc, Czech Republic
| | - Ondrej Novak
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, 78371, Olomouc, Czech Republic
| | - Miroslav Cernik
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic
| | - Pavel Hrabak
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic.
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17, Liberec, Czech Republic.
| | - Alena Sevcu
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic.
- Faculty of Science, Humanities and Education, Technical University of Liberec, 460 01, Liberec, Czech Republic.
| |
Collapse
|
13
|
Boitsov S, Frantzen S, Bruvold A, Grøsvik BE. Varying temporal trends in the levels of six groups of legacy persistent organic pollutants (POPs) in liver of three gadoid species from the North Sea. CHEMOSPHERE 2024; 349:140939. [PMID: 38101477 DOI: 10.1016/j.chemosphere.2023.140939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
From 2005 to 2019, three gadoid species, Atlantic cod (Gadus morhua), haddock (Melanogrammus aeglefinus) and saithe (Pollachius virens), were sampled approximately every third year in the northeastern part of the North Sea. Liver samples were analyzed to investigate levels and temporal trends of six groups of persistent organic pollutants (POPs): polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and its degradation products, hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), trans-nonachlor (TNC), and polybrominated diphenyl ethers (PBDEs). Some of the highest average concentrations were found in cod, the levels otherwise being similar between the three species and mostly below established threshold values. The levels of all the contaminants except HCB and TNC were higher than previously reported for cod and haddock in the Barents Sea. Significantly decreasing levels were found for Σ7PCBs, ΣDDTs, ΣHCHs and Σ15PBDEs in all three species, and for TNC in haddock and saithe, while there was no significant trend for TNC in cod. HCB levels increased significantly in cod and haddock and showed only a minor decrease in saithe. The observed time trends of legacy POPs demonstrate the persistence of some of the studied pollutants despite efforts to eliminate them from the marine environment.
Collapse
Affiliation(s)
- Stepan Boitsov
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway.
| | - Sylvia Frantzen
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway.
| | - Are Bruvold
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway; Department of Chemistry, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway.
| | - Bjørn Einar Grøsvik
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway.
| |
Collapse
|
14
|
Ángel-Moreno Briones Á, Ramírez-Álvarez N, Hernández-Guzmán FA, Galván-Magaña F, Marmolejo-Rodríguez AJ, Sánchez-González A, Baró-Camarasa I, González-Armas R. Levels and species-specific organochlorine accumulation in three shark species from the western Gulf of California with different life history traits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168468. [PMID: 37951268 DOI: 10.1016/j.scitotenv.2023.168468] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Organochlorine compounds (OCs), such as organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), remain ubiquitous in marine ecosystems despite their prohibition or restriction, posing a risk to marine wildlife and humans. Their accumulation in liver tissue and potential toxicity in three exploited shark species (the scalloped hammerhead, Sphyrna lewini; the Pacific sharpnose shark, Rhizoprionodon longurio; and the Pacific angel shark, Squatina californica) with different physiological and ecological features from the western Gulf of California (GC) were investigated. Forty of the 47 OCs analyzed were identified, evidencing a greater agricultural than industrial influence considering the high DDTs/PCBs ratios. The DDT group was the main contributor to ∑OCs in the three species, while hexa- and hepta-CBs dominated the PCB profiles. S. lewini (juveniles) and R. longurio (juveniles and adults) had similar and significantly (p < 0.05) higher ∑OCP concentrations than S. californica (juveniles and adults), which is attributed to their migration to other polluted regions of the gulf. The three species' ∑PCB levels (lipid weight) were comparable and considered low in comparison to those documented in prior studies conducted worldwide. No intraspecific differences were observed when comparing by sex, but OC concentrations were higher in larger individuals. S. lewini and R. longurio showed different OC bioaccumulation trends against size, while no relationship between size and ∑OC concentrations was observed in S. californica. All shark species' toxic equivalents (TEQs) were calculated from dioxin-like PCB concentrations and were far below the established TEQ fish thresholds. However, future research is needed regarding the possible PCB and OCP effects in elasmobranchs. This study provides the basis for monitoring organic contaminants in predatory sharks from the western GC. It also highlights the importance of further research on unintentionally produced organochlorine environmental levels and sources.
Collapse
Affiliation(s)
- Ángela Ángel-Moreno Briones
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico.
| | - Nancy Ramírez-Álvarez
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana no 3917, Ensenada, Baja California C. P. 22860, Mexico
| | - Félix Augusto Hernández-Guzmán
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana no 3917, Ensenada, Baja California C. P. 22860, Mexico
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico
| | - Ana Judith Marmolejo-Rodríguez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico
| | - Alberto Sánchez-González
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico
| | - Isis Baró-Camarasa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico
| | - Rogelio González-Armas
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico
| |
Collapse
|
15
|
Bustnes JO, Bårdsen BJ, Moe B, Herzke D, Ballesteros M, Fenstad A, Borgå K, Krogseth IS, Eulaers I, Skogeng LP, Gabrielsen GW, Hanssen SA. Impacts of a warming climate on concentrations of organochlorines in a fasting high arctic marine bird: Direct vs. indirect effects? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168096. [PMID: 37914131 DOI: 10.1016/j.scitotenv.2023.168096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/12/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
The present study examined how climate changes may impact the concentrations of lipophilic organochlorines (OCs) in the blood of fasting High Arctic common eiders (Somateria mollissima) during incubation. Polychlorinated biphenyls (PCBs), 1-dichloro-2,2-bis (p-chlorophenyl) ethylene (p,p'-DDE), hexachlorobenzene (HCB) and four chlordane compounds (oxychlordane, trans-chlordane and trans- and cis-nonachlor) were measured in females at chick hatching (n = 223) over 11 years (2007-2017). Firstly, median HCB and p,p'-DDE concentrations increased ~75 % over the study period, whereas median chlordane concentrations doubled (except for oxychlordane). PCB concentrations, in contrast, remained stable over the study period. Secondly, both body mass and clutch size were negatively associated with OC levels, suggesting that females with high lipid metabolism redistributed more OCs from adipose tissue, and that egg production is an important elimination route for OCs. Thirdly, the direct climate effects were assessed using the mean effective temperature (ET: air temperature and wind speed) during incubation, and we hypothesized that a low ET would increase redistribution of OCs. Contrary to expectation, the ET was positively correlated to most OCs, suggesting that a warmer climate may lead to higher OCs levels, and that the impact of ET may not be direct. Finally, potential indirect impacts were examined using the Arctic Oscillation (AO) in the three preceding winters (AOwinter 1-3) as a proxy for potential long-range transport of OCs, and for local spring climate conditions. In addition, we used chlorophyll a (Chla) as a measure of spring primary production. There were negative associations between AOwinter 1 and HCB, trans-chlordane and trans-nonachlor, whereas oxychlordane and cis-chlordane were negatively associated with Chla. This suggests that potential indirect climate effects on eiders were manifested through the food chain and not through increased long-range transport, although these relationships were relatively weak.
Collapse
Affiliation(s)
- Jan Ove Bustnes
- Norwegian Institute for Nature Research, FRAM - High North Research Centre on Climate and the Environment, NO-9296 Tromsø, Norway.
| | - Bård-Jørgen Bårdsen
- Norwegian Institute for Nature Research, FRAM - High North Research Centre on Climate and the Environment, NO-9296 Tromsø, Norway
| | - Børge Moe
- Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, NO-7485 Trondheim, Norway
| | - Dorte Herzke
- Norwegian Institute for Air Research, FRAM - High North Research Centre on Climate and the Environment, NO-9296 Tromsø, Norway; UiT - The Arctic University of Norway, Department of Arctic and Marine Biology, Norway
| | - Manuel Ballesteros
- Norwegian Institute for Nature Research, FRAM - High North Research Centre on Climate and the Environment, NO-9296 Tromsø, Norway
| | - Anette Fenstad
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Katrine Borgå
- University of Oslo, Section for Aquatic Biology and Toxicology, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Ingjerd S Krogseth
- Norwegian Institute for Air Research, FRAM - High North Research Centre on Climate and the Environment, NO-9296 Tromsø, Norway; UiT - The Arctic University of Norway, Department of Arctic and Marine Biology, Norway
| | - Igor Eulaers
- Norwegian Polar Institute, FRAM - High North Research Centre on Climate and the Environment, NO-9296 Tromsø, Norway
| | - Lovise P Skogeng
- Norwegian Institute for Air Research, FRAM - High North Research Centre on Climate and the Environment, NO-9296 Tromsø, Norway; UiT - The Arctic University of Norway, Department of Arctic and Marine Biology, Norway
| | - Geir W Gabrielsen
- Norwegian Polar Institute, FRAM - High North Research Centre on Climate and the Environment, NO-9296 Tromsø, Norway
| | - Sveinn-Are Hanssen
- Norwegian Institute for Nature Research, Sognsveien 68, NO-0855 Oslo, Norway
| |
Collapse
|
16
|
Feng Z, Yang Z, Yang S, Xiong H, Ning Y, Wang C, Li Y. Current status and future challenges of chlorobenzenes pollution in soil and groundwater (CBsPSG) in the twenty-first century: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111748-111765. [PMID: 37843707 DOI: 10.1007/s11356-023-29956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
The global industrial structure had undertaken significant changes since the twenty-first century, making a severe problem of chlorobenzene pollution in soil and groundwater (CBsPSG). CBsPSG receives increasing attention due to the high toxicity, persistence, and bioaccumulation of chlorobenzenes. To date, despite the gravity of this issue, no bibliometric analysis (BA) of CBsPSG does exist. This study fills up the gap by conducting a BA of 395 articles related to CBsPSG from the Web of Science Core Collection database using CiteSpace. Based on a comprehensive analysis of various aspects, including time-related, related disciplines, keywords, journal contribution, author productivity, and institute and country distribution, the status, development, and hotspots of research in the field were shown visually and statistically. Moreover, this study has also delved into the environmental behavior and remediation techniques of CBsPSG. In addition, four challenges (unequal research development, insufficient cooperation, deeply mechanism research, and developing new technologies) have been identified, and corresponding suggestions have been proposed for the future development of research in the field. Afterwards, the limitations of BA were discussed. This work provides a powerful insight into CBsPSG, enabling to quickly identify the hotspot and direction of future studies by relevant researchers.
Collapse
Affiliation(s)
- Zhi Feng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Zhe Yang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Sen Yang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Hanxiang Xiong
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yu Ning
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Changxiang Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yilian Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
17
|
Sar P, Kundu S, Ghosh A, Saha B. Natural surfactant mediated bioremediation approaches for contaminated soil. RSC Adv 2023; 13:30586-30605. [PMID: 37859781 PMCID: PMC10583161 DOI: 10.1039/d3ra05062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
The treatment of environmental pollution by employing microorganisms is a promising technology, termed bioremediation, which has several advantages over the other established conventional remediation techniques. Consequently, there is an urgent inevitability to develop pragmatic techniques for bioremediation, accompanied by the potency of detoxifying soil environments completely. The bioremediation of contaminated soils has been shown to be an alternative that could be an economically viable way to restore polluted soil. The soil environments have long been extremely polluted by a number of contaminants, like agrochemicals, polyaromatic hydrocarbons, heavy metals, emerging pollutants, etc. In order to achieve a quick remediation overcoming several difficulties the utility of biosurfactants became an excellent advancement and that is why, nowadays, the biosurfactant mediated recovery of soil is a focus of interest to the researcher of the environmental science field specifically. This review provides an outline of the present scenario of soil bioremediation by employing a microbial biosurfactant. In addition to this, a brief account of the pollutants is highlighted along with how they contaminate the soil. Finally, we address the future outlook for bioremediation technologies that can be executed with a superior efficiency to restore a polluted area, even though its practical applicability has been cultivated tremendously over the few decades.
Collapse
Affiliation(s)
- Pintu Sar
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur - 741246 West Bengal India
| | - Sandip Kundu
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| | - Aniruddha Ghosh
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| |
Collapse
|
18
|
Cruz-Santiago O, Flores-Ramírez R, Ilizaliturri-Hernández CA, Méndez-Rodríguez KB, Cilia-López VG, Espinosa-Reyes G, González-Mille DJ. Levels of persistent organic pollutants in cane toads (Rhinella marina) differ among sites with varying industrial and agricultural activities. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104280. [PMID: 37741478 DOI: 10.1016/j.etap.2023.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
In this study, we captured cane toads (Rhinella marina) in four sites located in different regions affected by anthropogenic activities in Mexico. Subsequently we analyzed liver tissue for the presence of organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) The levels of these POPs in the toads' livers ranged from 863.2 to 3109.6 ng/g of lipid weight across all sites. A multivariate statistical analysis highlighted two sites with the highest POPs levels, with the most polluted site displaying a high level of PCBs, suggesting influence of industrial activities. The second most polluted site displayed significant amounts of OCs, linking this location to agricultural activity. Additionally, we found pesticide metabolites and isomers that allowed us to distinguish past and recent exposure events. Our observations indicate that R. marina is suitable bioindicator of sites impacted by anthropogenic activities.
Collapse
Affiliation(s)
- Omar Cruz-Santiago
- El Colegio de la Frontera Sur (ECOSUR), Unidad San Cristóbal, San Cristóbal de Las Casas, Chiapas 29290, México
| | - Rogelio Flores-Ramírez
- Programa de Investigadoras e Investigadores por México, CONAHCYT, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, México
| | - César A Ilizaliturri-Hernández
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, México
| | - Karen B Méndez-Rodríguez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, México
| | - Virginia G Cilia-López
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, México
| | - Guillermo Espinosa-Reyes
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, México
| | - Donaji J González-Mille
- Programa de Investigadoras e Investigadores por México, CONAHCYT, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, México.
| |
Collapse
|
19
|
Lee F, Gallo MV, Schell LM, Jennings J, Lawrence DA, On The Environment ATF. Exposure of Akwesasne Mohawk women to polychlorinated biphenyls and hexachlorobenzene is associated with increased serum levels of thyroid peroxidase autoantibodies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:597-613. [PMID: 37335069 DOI: 10.1080/15287394.2023.2226685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Persistent organic pollutants (POPs) including polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), and dichlorodiphenyltrichloroethane (p,p'-DDT) were reported to influence immunological activity. As endocrine-disrupting chemicals (EDC), these pollutants may disrupt normal thyroid function and act as catalysts for development of autoimmune thyroid disease by directly and indirectly affecting levels of thyroid peroxidase antibodies (TPOAbs). Native American communities are disproportionately exposed to harmful toxicants and are at an increased risk of developing an autoimmune disease. The aim of this study was to determine the association between POPs and TPOAbs in serum obtained from Native American women. This assessment was used to measure whether increased risk of autoimmune thyroid disease occurred as a result of exposure to POPs. Data were collected from 183 Akwesasne Mohawk women, 21-38 years of age, between 2009 and 2013. Multivariate analyses were conducted to determine the association between toxicant exposure and levels of TPOAbs. In multiple logistic regression analyses, exposure to PCB congener 33 was related to elevated risk of individuals possessing above normal levels of TPOAbs. Further, HCB was associated with more than 2-fold higher risk of possessing above normal levels of TPOAbs compared to women with normal levels of TPOAbs. p,p'-DDE was not associated with TPOAb levels within this study. Exposure to PCB congener 33 and HCB was correlated with above normal levels of TPOAbs, a marker of autoimmune thyroid disease. Additional investigations are needed to establish the causes and factors surrounding autoimmune thyroid disease which are multiple and complex.
Collapse
Affiliation(s)
- Florence Lee
- Department of Anthropology, University at Albany, Albany, NY, USA
| | - Mia V Gallo
- Department of Anthropology, University at Albany, Albany, NY, USA
- Center for the Elimination of Minority Health Disparities, University at Albany, Albany, NY, USA
| | - Lawrence M Schell
- Department of Anthropology, University at Albany, Albany, NY, USA
- Center for the Elimination of Minority Health Disparities, University at Albany, Albany, NY, USA
- Department of Epidemiology and Biostatistics, University at Albany, Albany, NY, USA
| | - Julia Jennings
- Department of Anthropology, University at Albany, Albany, NY, USA
| | - David A Lawrence
- Wadsworth Center/New York State Department of Health, Albany, NY, USA
- Biomedical Sciences and Environmental Health Sciences, University at Albany, Albany, NY, USA
| | | |
Collapse
|
20
|
Sim W, Nam A, Lee M, Oh JE. Polychlorinated biphenyls and organochlorine pesticides in surface sediments from river networks, South Korea: Spatial distribution, source identification, and ecological risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94371-94385. [PMID: 37531057 DOI: 10.1007/s11356-023-28973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
In this study, the nationwide monitoring of 65 polychlorinated biphenyls (PCBs) and 23 organochlorine pesticides (OCPs) in surface sediments was conducted at 77 sites in river networks in South Korea. The concentrations of ∑PCBs were relatively high in industrial sites (0.0297-138 ng/g dry weight (dw); mean 15.1 ng/g dw; median 5.44 ng/g dw), followed by industrial and agricultural (not detected (ND)-15.2 ng/g dw; mean 1.23 ng/g dw; median 0.513 ng/g dw), other sites (0.0369-0.209 ng/g dw; mean 0.116 ng/g dw; median 0.101 ng/g dw), and agricultural (0.0119-0.359 ng/g dw; mean 0.117 ng/g dw; median 0.0476 ng/g dw). The distribution and composition of PCBs in sediments are affected by past use of commercial products, atmospheric deposition, wastewater effluents, and manufacturing processes. The concentrations of ∑OCPs in industrial sites ranged from 0.0587 to 8.70 ng/g dw (mean 1.85 ng/g dw; median 0.989 ng/g dw), followed by industrial and agricultural (ND-8.54 ng/g dw; mean 0.739 ng/g dw; median 0.343 ng/g dw), other sites (0.0247-0.143 ng/g dw; mean 0.0939 ng/g dw; median 0.114 ng/g dw), and agricultural (0.00838-0.931 ng/g dw; mean 0.232 ng/g dw; median 0.0752 ng/g dw). Hexachlorobenzene and pentachlorobenzene are unintentionally generated in industries and combustion processes. Dichlorodiphenyltrichloroethanes and chlordane were dominantly distributed by historical use, whereas recent inputs (i.e., long-range transport and atmospheric deposition) were related to aldrin, heptachlor, and hexachlorocyclohexanes. The ecological risks determined by the sediment quality guidelines and mean probable effect level quotients were acceptable, except at two sites.
Collapse
Affiliation(s)
- Wonjin Sim
- Institute for Environment and Energy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Aeji Nam
- Institute for Environment and Energy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Mikyung Lee
- National Institute of Environmental Research, 42 hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Jeong-Eun Oh
- Institute for Environment and Energy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
- Department of Civil and Environmental Engineering, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
21
|
Khan S, Khan JA, Shah NS, Sayed M, Ateeq M, Ansar S, Boczkaj G, Farooq U. Determination of lindane in surface water samples and its degradation by hydrogen peroxide and persulfate assisted TiO 2-based photocatalysis. RSC Adv 2023; 13:20430-20442. [PMID: 37435380 PMCID: PMC10331374 DOI: 10.1039/d3ra03610c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023] Open
Abstract
Organochlorine pesticides (OCPs) have been used extensively as insecticides and herbicides. This study investigates the occurrence of lindane in surface water from the Peshawar valley (i.e., Peshawar, Charsadda, Nowshera, Mardan and Swabi districts of Khyber Pakhtunkhwa, Pakistan). Out of 75 samples tested (i.e., 15 samples from each district), 13 samples (including 2 from Peshawar, 3 from Charsadda, 4 from Nowshera, 1 from Mardan, and 3 from Swabi) are found to be contaminated with lindane. Overall, the detection frequency is 17.3%. The maximum concentration of lindane is detected in a water sample from Nowshera and found to be 2.60 μg L-1. Furthermore, the degradation of lindane in the water sample from Nowshera, containing the maximum concentration, is investigated by simulated solar-light/TiO2 (solar/TiO2), solar/H2O2/TiO2 and solar/persulfate/TiO2 photocatalysis. The degradation of lindane by solar/TiO2 photocatalysis is 25.77% after 10 h of irradiation. The efficiency of the solar/TiO2 process is significantly increased in the presence of 500 μM H2O2 and 500 μM persulfate (PS) (separately), represented by 93.85 and 100.00% lindane removal, respectively. The degradation efficiency of lindane is lower in natural water samples as compared to Milli-Q water, attributed to water matrix effect. Moreover, the identification of degradation products (DPs) shows that lindane follows similar degradation pathways in natural water samples as the one in Milli-Q water. The results show that the occurrence of lindane in surface waters of Peshawar valley is a matter of great concern for human beings and the environment. Interestingly, H2O2 and PS assisted solar/TiO2 photocatalysis is an effective method for the removal of lindane from natural water.
Collapse
Affiliation(s)
- Sanaullah Khan
- Departmen of Chemistry, Women University Swabi 23430 Pakistan
| | - Javed Ali Khan
- Department of Chemistry, Abdul Wali Khan University Mardan Mardan 23200 Pakistan +92-937-542189 +92-937-929122
| | - Noor S Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus 61100 Pakistan
| | - Murtaza Sayed
- Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar Peshawar 25120 Pakistan
| | - Muhammad Ateeq
- Department of Chemistry, Abdul Wali Khan University Mardan Mardan 23200 Pakistan +92-937-542189 +92-937-929122
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University P.O. Box 10219 Riyadh 11433 Saudi Arabia
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology G. Narutowicza St. 11/12 80-233 Gdansk Poland
- EkoTech Center, Gdansk University of Technology G. Narutowicza St. 11/12 80-233 Gdansk Poland
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad-Campus 22060 Abbottabad Pakistan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
22
|
Lohmann R, Vrana B, Muir D, Smedes F, Sobotka J, Zeng EY, Bao LJ, Allan IJ, Astrahan P, Barra RO, Bidleman T, Dykyi E, Estoppey N, Fillmann G, Greenwood N, Helm PA, Jantunen L, Kaserzon S, Macías JV, Maruya KA, Molina F, Newman B, Prats RM, Tsapakis M, Tysklind M, van Drooge BL, Veal CJ, Wong CS. Passive-Sampler-Derived PCB and OCP Concentrations in the Waters of the World─First Results from the AQUA-GAPS/MONET Network. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37294896 DOI: 10.1021/acs.est.3c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Persistent organic pollutants (POPs) are recognized as pollutants of global concern, but so far, information on the trends of legacy POPs in the waters of the world has been missing due to logistical, analytical, and financial reasons. Passive samplers have emerged as an attractive alternative to active water sampling methods as they accumulate POPs, represent time-weighted average concentrations, and can easily be shipped and deployed. As part of the AQUA-GAPS/MONET, passive samplers were deployed at 40 globally distributed sites between 2016 and 2020, for a total of 21 freshwater and 40 marine deployments. Results from silicone passive samplers showed α-hexachlorocyclohexane (HCH) and γ-HCH displaying the greatest concentrations in the northern latitudes/Arctic Ocean, in stark contrast to the more persistent penta (PeCB)- and hexachlorobenzene (HCB), which approached equilibrium across sampling sites. Geospatial patterns of polychlorinated biphenyl (PCB) aqueous concentrations closely matched original estimates of production and use, implying limited global transport. Positive correlations between log-transformed concentrations of Σ7PCB, ΣDDTs, Σendosulfan, and Σchlordane, but not ΣHCH, and the log of population density (p < 0.05) within 5 and 10 km of the sampling sites also supported limited transport from used sites. These results help to understand the extent of global distribution, and eventually time-trends, of organic pollutants in aquatic systems, such as across freshwaters and oceans. Future deployments will aim to establish time-trends at selected sites while adding to the geographical coverage.
Collapse
Affiliation(s)
- Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882-1197, United States
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Derek Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 867 Lakeshore Road, L7S 1A1 Burlington, Ontario, Canada
| | - Foppe Smedes
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Jaromír Sobotka
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443 Guangzhou, China
| | - Lian-Jun Bao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443 Guangzhou, China
| | - Ian J Allan
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| | - Peleg Astrahan
- Israel Oceanographic and Limnological Research, Kinneret Lake Laboratory, 3109701 Haifa, Israel
| | - Ricardo O Barra
- Faculty of Environmental Sciences and EULA Chile Centre, University of Concepción, 4070386 Concepción, Chile
| | - Terry Bidleman
- Department of Chemistry, Umeå University, Linnaeus väg 6, SE-901 87 Umeå, Sweden
| | - Evgen Dykyi
- National Antarctic Scientific Center, Taras Shevchenko Boulevard 16, 01601 Kyiv, Ukraine
| | - Nicolas Estoppey
- School of Criminal Justice, University of Lausanne, Batochime Building, 1015 Lausanne, Switzerland
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Gilberto Fillmann
- Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Naomi Greenwood
- Centre of Environment, Fisheries and Aquaculture Science, Pakefield Road, NR33 0HT Lowestoft, U.K
| | - Paul A Helm
- Ontario Ministry of the Environment, Conservation and Parks, M9P 3V6 Toronto, Ontario, Canada
| | - Liisa Jantunen
- Air Quality Processes Research Section, Environment and Climate Change Canada, 6248 Eighth Line, Egbert, Ontario L0L1N0, Canada
| | - Sarit Kaserzon
- Queensland Alliance for Environmental Health Sciences, (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - J Vinicio Macías
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Fracc. Playitas, 22860 Ensenada, Mexico
| | - Keith A Maruya
- Southern California Coastal Water Research Project Authority, 3535 Harbor Blvd., Suite 110, Costa Mesa, California 92626, United States
| | - Francisco Molina
- Environmental School, Faculty of Engineering, University of Antioquia UdeA, Calle 70 No 52-21, 050010 Medellín, Colombia
| | - Brent Newman
- Coastal Systems Research Group, CSIR, P.O. Box 59081, Umbilo, 4075 Durban, South Africa
- Nelson Mandela University, P.O. Box 77000, 6031 Port Elizabeth, South Africa
| | - Raimon M Prats
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Manolis Tsapakis
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, GR-71003 Heraklion, Crete, Greece
| | - Mats Tysklind
- Department of Chemistry, Umeå University, Linnaeus väg 6, SE-901 87 Umeå, Sweden
| | - Barend L van Drooge
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Cameron J Veal
- Seqwater, 117 Brisbane Road, 4305 Ipswich, Queensland, Australia
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba 4102, Queensland, Australia
| | - Charles S Wong
- Southern California Coastal Water Research Project Authority, 3535 Harbor Blvd., Suite 110, Costa Mesa, California 92626, United States
| |
Collapse
|
23
|
Wang Q. Degradation behaviors and accumulative effects of coexisting chlorobenzene congeners on the dechlorination of hexachlorobenzene in soil by nanoscale zero-valent iron. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3971-3983. [PMID: 36629959 DOI: 10.1007/s10653-023-01479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/04/2023] [Indexed: 06/01/2023]
Abstract
It is well known that many chlorinated organic pollutants can be dechlorinated by nanoscale zero-valent iron. However, in the real chlorinated organic compounds contaminated soil, the congeners of high- and low-chlorinated isomer often coexist and their dechlorination behaviors are poorly known, such as hexachlorobenzene (HCB). In this work, the degradation behaviors of three coexisting chlorobenzene congeners pentachlorobenzene (PeCB), 1,2,4,5-tetrachlorobenzene (1,2,4,5-TeCB) and 1,2,4-trichlorobenzene (1,2,4-TCB) and the influence of initial pH and reaction temperature on the dechlorination of HCB in HCB-contaminated soil by nanoscale zero-valent iron were studied. The amount and extent of accumulated coexisting chlorobenzenes was analyzed under different environmental conditions. The results indicate that nanoscale zero-valent iron can improve the degradation efficiency of highly toxic chlorinated benzenes and reduce the accumulative effects of highly toxic chlorinated benzenes on dechlorination of HCB. The accumulative effects of three coexisting chlorobenzene congeners on the dechlorination of HCB were ranked as follows: 1,2,4-TCB > 1,2,4,5-TeCB > PeCB.
Collapse
Affiliation(s)
- Qi Wang
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China.
| |
Collapse
|
24
|
Guo J, Chen W, Wu M, Qu C, Sun H, Guo J. Distribution, Sources, and Risk Assessment of Organochlorine Pesticides in Water from Beiluo River, Loess Plateau, China. TOXICS 2023; 11:496. [PMID: 37368595 DOI: 10.3390/toxics11060496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
The Loess Plateau has been a focus of public discussion and environmental concerns over the past three decades. In this study, in order to investigate the effect of OCP pollution in water of the Beiluo River, concentrations of 25 OCPs at 17 locations in the water were examined. The results showed that the concentration of ∑OCPs in the water ranged from 1.76 to 32.57 ng L-1, with an average concentration of 7.23 ng L-1. Compared with other basins in China and abroad, the OCP content in the Beiluo River was at a medium level. Hexachlorocyclohexane (HCH) pollution in the Beiluo River was mainly from the mixed input of lindane and technical HCHs. Dichlorodiphenyltrichloroethane (DDT) pollution was mainly from the mixed input of technical DDTs and dicofol. Most of the OCP pollution came from historical residues. The risk assessment results showed that hexachlorobenzene (HCB) and endosulfan had high ecological risks in the middle and lower reaches of the Beiluo River. Most residual OCPs were not sufficient to pose carcinogenic and non-carcinogenic health risks to humans. The results of this study can provide a reference for OCP prevention and control and watershed environmental management.
Collapse
Affiliation(s)
- Jipu Guo
- State Grid Shaanxi Electric Power Research Institute, Xi'an 710100, China
| | - Wenwu Chen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710100, China
| | - Menglei Wu
- Key Laboratory of Cultural Heritage Research and Conservation, School of Culture Heritage, Northwest University, Xi'an 710127, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710100, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710100, China
| |
Collapse
|
25
|
Fan J, Liu C, Zheng J, Song Y. Dithionite promoted microbial dechlorination of hexachlorobenzene while goethite further accelerated abiotic degradation by sulfidation in paddy soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115047. [PMID: 37220705 DOI: 10.1016/j.ecoenv.2023.115047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023]
Abstract
It is of great scientific and practical importance to explore the mechanisms of accelerated degradation of Hexachlorobenzene (HCB) in soil. Both iron oxide and dithionite may promote the reductive dechlorination of HCB, but their effects on the microbial community and the biotic and abiotic mechanisms behind it remain unclear. This study investigated the effects of goethite, dithionite, and their interaction on microbial community composition and structure, and their potential contribution to HCB dechlorination in a paddy soil to reveal the underlying mechanism. The results showed that goethite addition alone did not significantly affect HCB dechlorination because the studied soil lacked iron-reducing bacteria. In contrast, dithionite addition significantly decreased the HCB contents by 44.0-54.9%, while the coexistence of dithionite and goethite further decreased the HCB content by 57.9-69.3%. Random Forest analysis suggested that indicator taxa (Paenibacillus, Acidothermus, Haliagium, G12-WMSP1, and Frankia), Pseudomonas, richness and Shannon's index of microbial community, and immobilized Fe content were dominant driving factors for HCB dechlorination. The dithionite addition, either with or without goethite, accelerated HCB anaerobic dechlorination by increasing microbial diversity and richness as well as the relative abundance of the above specific bacterial genera. When goethite and dithionite coexist, sulfidation of goethite with dithionite could remarkably increase FeS formation and then further promote HCB dechlorination rates. Overall, our results suggested that the combined application of goethite and dithionite could be a practicable strategy for the remediation of HCB contaminated soil.
Collapse
Affiliation(s)
- Jianling Fan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Cuiying Liu
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China.
| | - Jinjin Zheng
- School of Changwang, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
26
|
Sørensen L, Schaufelberger S, Igartua A, Størseth TR, Øverjordet IB. Non-target and suspect screening reveal complex pattern of contamination in Arctic marine zooplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161056. [PMID: 36565880 DOI: 10.1016/j.scitotenv.2022.161056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Although increasing, there is still limited knowledge of the presence of 'contaminants of emerging concern' in Arctic marine biota, particularly in lower trophic species. In the present study, we have applied a novel pipeline to investigate the presence of contaminants in a variety of benthic and pelagic low-trophic organisms: amphipods, copepods, arrow worms and krill. Samples collected in Kongsfjorden in Svalbard in 2018 were subject to extraction and two-dimensional gas chromatography coupled to high-resolution mass spectrometry (GC×GC-HRMS). Tentatively identified compounds included plastic additives, antioxidants, antimicrobials, flame retardants, precursors, production solvents and chemicals, insecticides, and pharmaceuticals. Both legacy contaminants (PAHs, PCBs, PBDEs, hexachlorobenzene) as well as novel and emerging contaminants (triclosan, bisphenol A, and ibuprofen) were quantified in several species using target analysis by GC-MS/MS. The significance of these discoveries is discussed considering the potential for detrimental effects caused by these chemicals, as well as suggested local and distant sources of the components to the Arctic environment.
Collapse
Affiliation(s)
| | - Sonja Schaufelberger
- University of Koblenz-Landau, Institute for Environmental Sciences, Germany; University of Gothenburg, Department of Biological and Environmental Sciences, Sweden
| | - Amaia Igartua
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | | | | |
Collapse
|
27
|
Böhm L, Grančič P, Scholtzová E, Heyde BJ, Düring RA, Siemens J, Gerzabek MH, Tunega D. Adsorption of the hydrophobic organic pollutant hexachlorobenzene to phyllosilicate minerals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36824-36837. [PMID: 36564692 PMCID: PMC10039842 DOI: 10.1007/s11356-022-24818-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Hexachlorobenzene (HCB), a representative of hydrophobic organic chemicals (HOC), belongs to the group of persistent organic pollutants (POPs) that can have harmful effects on humans and other biota. Sorption processes in soils and sediments largely determine the fate of HCB and the risks arising from the compound in the environment. In this context, especially HOC-organic matter interactions are intensively studied, whereas knowledge of HOC adsorption to mineral phases (e.g., clay minerals) is comparatively limited. In this work, we performed batch adsorption experiments of HCB on a set of twelve phyllosilicate mineral sorbents that comprised several smectites, kaolinite, hectorite, chlorite, vermiculite, and illite. The effect of charge and size of exchangeable cations on HCB adsorption was studied using the source clay montmorillonite STx-1b after treatment with nine types of alkali (M+: Li, K, Na, Rb, Cs) and alkaline earth metal cations (M2+: Mg, Ca, Sr, Ba). Molecular modeling simulations based on density functional theory (DFT) calculations to reveal the effect of different cations on the adsorption energy in a selected HCB-clay mineral system accompanied this study. Results for HCB adsorption to minerals showed a large variation of solid-liquid adsorption constants Kd over four orders of magnitude (log Kd 0.9-3.3). Experiments with cation-modified montmorillonite resulted in increasing HCB adsorption with decreasing hydrated radii of exchangeable cations (log Kd 1.3-3.8 for M+ and 1.3-1.4 for M2+). DFT calculations predicted (gas phase) adsorption energies (- 76 to - 24 kJ mol-1 for M+ and - 96 to - 71 kJ mol-1 for M2+) showing a good correlation with Kd values for M2+-modified montmorillonite, whereas a discrepancy was observed for M+-modified montmorillonite. Supported by further calculations, this indicated that the solvent effect plays a relevant role in the adsorption process. Our results provide insight into the influence of minerals on HOC adsorption using HCB as an example and support the relevance of minerals for the environmental fate of HOCs such as for long-term source/sink phenomena in soils and sediments.
Collapse
Affiliation(s)
- Leonard Böhm
- Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.
| | - Peter Grančič
- Institute for Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Straße 82, 1190, Vienna, Austria
| | - Eva Scholtzová
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 36, Bratislava 45, Slovakia
| | - Benjamin Justus Heyde
- Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Rolf-Alexander Düring
- Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Jan Siemens
- Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Martin H Gerzabek
- Institute for Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Straße 82, 1190, Vienna, Austria
| | - Daniel Tunega
- Institute for Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Straße 82, 1190, Vienna, Austria
| |
Collapse
|
28
|
Chen L, Qian Y, Jia Q, Weng R, Zhang X, Li Y, Qiu J. A national-scale distribution of organochlorine pesticides (OCPs) in cropland soils and major types of food crops in China: Co-occurrence and associated risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160637. [PMID: 36464042 DOI: 10.1016/j.scitotenv.2022.160637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) that resist degradation in the environment. OCPs remain detectable in cropland systems in China. However, spatial distribution of OCPs across China and associated ecological and health risks, as well as the relationship between levels of OCPs in cropland soils and crops, remain to be elucidated. To fill these gaps, we conducted a national-scale characterization of 19 individual OCPs in cropland soils and food crops including cereals and legumes in China, which were on-spot sampled simultaneously. Sparse canonical correlation analysis was employed to investigate the co-occurrence of OCPs in cropland soils and corresponding food crops. The ecological soil screening levels and risk quotient method were adopted for ecological and health risk assessment, respectively. Dichlorodiphenyltrichloroethanes (DDTs) were dominant in cropland systems, with its levels ranging up to 337 and 22.8 μg/kg in cropland soils and food crops, respectively. The mean ∑OCP levels in cropland soils varied from below the limit of detection to 337 μg/kg. Peanuts were the most contaminated crop, in which endosulfans and hexachlorobenzene (HCB) were co-occurrent with those in cropland soils (correlation coefficient R = 0.999 and 0.947, respectively). Besides, lindane and β-endosulfan in rice were co-occurrent with those in cropland soils (R = 0.810 and 0.868, respectively). The componential ratio analysis indicated fresh inputs of technical DDT, lindane, chlordane, endosulfan, HCB and aldrin. Among these pesticides, ecological impacts of DDTs, lindane, aldrin and β-endosulfan could be expected. Human health risk assessment suggested that daily consumption of the OCP-contaminated food crops raises a health concern especially for male teens. It is concluded that OCPs remain present in cropland systems in China at levels that raise a concern for both environment and human health.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - YongZhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Rui Weng
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xinglian Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yun Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
29
|
Hites RA, Venier M. Good News: Some Insecticides Have Been Virtually Eliminated in Air near the Great Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2199-2204. [PMID: 36730917 DOI: 10.1021/acs.est.2c08318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Persistent insecticides have been classic environmental problems for 60-70 years─perhaps starting with Rachel Carson's indictment of DDT. Both national and international regulations have been put in place over the last 20-30 years to eventually eliminate these compounds from the environment. One focus is the atmosphere, which acts as a major long-range transport route of these pollutants from their numerous sources to many ecosystems. This paper will ask, "Have we have made any progress in eliminating insecticides from the atmosphere?" We will focus only on the atmosphere around the North American Great Lakes and only on concentration measurements made once every 12 days since about 1990 for six classic insecticides. The answer is that some of these compounds (lindane, α-HCH, and endosulfans) are well on their way to being virtually eliminated, while the concentrations of others (DDT, chlordane, and hexachlorobenzene) have not changed much. We speculate that this difference in elimination is a result of soil compaction in cities (DDT, etc.) versus soil mixing in rural areas (lindane, etc.).
Collapse
Affiliation(s)
- Ronald A Hites
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana47405, United States
| | - Marta Venier
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana47405, United States
| |
Collapse
|
30
|
Wang C, Wang X, Gong P, Wang X. Evaluation of the spatiotemporal variations of organochlorine pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in the forests of the Himalaya and Hengduan mountains using tree bark and tree core samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160306. [PMID: 36403843 DOI: 10.1016/j.scitotenv.2022.160306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
There have been few reports of the large-scale spatial distribution and long-term historical variations of pollutants in high-altitude forests. Tree bark and tree core samples were collected from forests in the Himalaya and Hengduan mountains to determine the spatiotemporal variations of persistent organic pollutants. The average concentrations of dichlorodiphenyl trichloroethanes (DDTs), hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in tree bark samples were 9.09, 0.10, 0.13, 0.11and 26 ng/g dry weight, respectively, and 1.30, 0.02, 0.17, 0.07 and 186 ng/g dry weight, respectively, in tree core samples. Higher levels of these pollutants were observed in the forests on the southern slopes of the Himalaya (Nepal) and the southern part of the Hengduan mountains (Yunnan, China). Lower concentrations of these pollutants were found in the interior of the Tibetan Plateau on the northern slopes of the Himalaya as a result of the blocking effect of these mountain ranges. The concentrations of DDTs and HCHs in Himalayan tree cores showed increasing trends from 1956 to 1975 when they were used as pesticide extensively worldwide, especially in India. Peak concentrations of DDTs, HCHs and PAHs in tree cores of Qamdo located in Hengduan Mountains were observed in 2013, which were consistent with the history of industrial and agricultural development in Sichuan. This study provides new insights into the impact of atmospheric pollutants in South and Southeast Asia.
Collapse
Affiliation(s)
- Chuanfei Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyan Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Gong
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Yao Z, He X, Wang Q, Wang C, Shi Q, Zhang Q. Mechanochemical remediation of the chlorinated compounds contaminated soil depending on the minerals inside-the most reasonable approach. CHEMOSPHERE 2023; 313:137449. [PMID: 36464018 DOI: 10.1016/j.chemosphere.2022.137449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
This study explored a possible destruction of hexachlorobenzene (HCB) as example of persistent organic pollutants (POPs) as well as the dechlorination mechanism by directly using minerals in the soil, such as antigorite, talc and olivine. Compared with a stable quartz phase of SiO2, all three Mg silicate minerals demonstrated certain degrading capacity for HCB with different efficiency order as: antigorite > talc > olivine > SiO2 at 2 h of milling time. Interestingly, olivine exhibited a better performance than antigorite at 4 h of milling time, giving destruction percentage of 92.7% over 89.0% even at high concentrated HCB up to 5% added. Raman and ESR characterizations of the ball milled sample with olivine indicated the formation of amorphous carbon and graphitic carbon, and the occurrence of free radicals was observed to play an important role in dechlorination and carbonization of HCB. The first identified effectiveness of directly using Mg silicate minerals, allowed no addition of active chemicals during the ball milling, therefore avoided the concern over extrinsic contaminations on the soil. Olivine was further utilized to deal with actual contaminated soil and showed unique advantages on application prospects.
Collapse
Affiliation(s)
- Zhenzhen Yao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoman He
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Qian Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chao Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Qing Shi
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Qiwu Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
32
|
Xuan Z, Ma Y, Zhang J, Zhu J, Cai M. Dissolved legacy and emerging organochlorine pesticides in the Antarctic marginal seas: Occurrence, sources and transport. MARINE POLLUTION BULLETIN 2023; 187:114511. [PMID: 36580836 DOI: 10.1016/j.marpolbul.2022.114511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Polar regions are recognized as final sinks of the persistent contaminants, however, environmental investigations in the Antarctica are greatly limited by harsh field conditions. In this study, seawater samples were collected in the Antarctic marginal seas during the austral summer of 2021 to investigate the environmental behavior and fate of organochlorine pesticides (OCPs). The concentrations and source markers of representative legacy hexachlorocyclohexane (HCH), hexachlorobenzene (HCB) and dichlorodiphenyltrichloroethanes (DDTs) indicated the coexistent sources of historical residues and fresh inputs. While the emerging OCPs, including quintozene, pentachloroaniline and dichlobenil, showed relatively lower detection frequency. Due to the differences in temperature and sea ice coverage, dissolved OCPs generally displayed higher concentrations in the eastern Antarctic than those in the western Antarctic. The 'surface depleted and depth enrichment' vertical profile of representative OCPs in the continental shelf of Prydz Bay was jointly controlled by biological pump and water mass structure.
Collapse
Affiliation(s)
- Zhaojie Xuan
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China
| | - Yuxin Ma
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China.
| | - Jinghua Zhang
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China
| | - Jincai Zhu
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China
| | - Minghong Cai
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| |
Collapse
|
33
|
Adeyinka GC, Afolabi F, Bakare BF. Evaluating the fate and potential health risks of organochlorine pesticides and triclosan in soil, sediment, and water from Asa Dam River, Ilorin Kwara State, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:189. [PMID: 36507963 DOI: 10.1007/s10661-022-10783-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The quest for safe water due to exponential population growth and climate change has stressed the existing available water source. It is crucial to establish the present pollution level of the Asa River and the health risk it may pose to the people. Samples were collected along the Asa River, Ilorin, Kwara State, Nigeria, and treated using standard methods as stipulated by United States Environmental Protection Agency. The treated samples were analyzed and quantified for dieldrin, endrin, dichlorodiphenyltrichloroethane metabolites, mirex, hexachlorocyclohexane, hexachlorobenzene, and triclosan using the gas chromatography-mass spectrometry. The result showed that the levels of organochlorine pesticides (OCPs) ranged from 0.0045-0.947 μg/kg, 0.0036-0.093 μg/kg, and 0.001-0.007 μg/L in sediment, soil, and water samples, respectively. While the mean concentration of triclosan is 3.78 μg/kg, 2.995 μg/kg, and 0.064 μg/L in sediment, soil, and water samples, respectively. The levels of OCPs were lower than the limits in drinking water as set by World Health Organization and European Union. Health risk assessment for both children and adults was evaluated using non-carcinogenic and carcinogenic risk with the hazard quotient (HQ) and was found to be greater than unity (> 1) in children for the targeted OCPs. Associated cancer risk for OCPs ranged from low cancer risk to moderate risk for humans. The adverse ecological effects of OCPs showed to be very rare to occur and frequent effects may not likely occur except for HCH.
Collapse
Affiliation(s)
- Gbadebo Clement Adeyinka
- Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, Durban, 4031, South Africa.
| | - Fatai Afolabi
- Department of Science Laboratory Technology, Osun State Polytechnic, Iree, Nigeria
| | - Babatunde Femi Bakare
- Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, Durban, 4031, South Africa
| |
Collapse
|
34
|
Wang C, Feng L, Thakuri B, Chakraborty A. Ecological risk assessment of organochlorine pesticide mixture in South China Sea and East China Sea under the effects of seasonal changes and phase-partitioning. MARINE POLLUTION BULLETIN 2022; 185:114329. [PMID: 36356345 DOI: 10.1016/j.marpolbul.2022.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Organochlorine pesticides (OCPs), chlorinated hydrocarbon derivatives extensively used in agriculture and chemical industry, have been banned for several decades in most developed countries. However, OCPs act as persistent organic pollutants due to their semi-volatility nature, high ability for wide range transportation and faster bioaccumulation, and thus it has remained as a topical global concern. This study focuses on OCP distributions, sources and associated ecological risks in the globally important OCP source-sink regions of South China Sea (SCS) and East China Sea (ECS). Given the co-exposure of multiple OCPs that undermine the classical risk assessment of single OCP species, a two-tier mixture risk assessment approach has been employed with explicit consideration of seasonal changes and phase-partitioning effects. The results indicate existence of multiple sources varied across the seasons and between the dissolved and particulate phases. Potential sources include the current-use of lindane or historical use of technical HCH, input of technical DDTs, long-range atmospheric transport, and deposition of HCB from land surfaces. There are no wide high-risk zones. Dissolved HCB and DDTs have posed low-to-medium levels of risks broadly distributed across the seasons. Relatively greater risks are observed in summer in the both dissolved and particulate phases. The study has shown the importance of considering mixture risk assessments with the effects of phase-partitioning and seasonal changes for efficient oceanic risk management.
Collapse
Affiliation(s)
- Ce Wang
- School of Energy and Environment, Southeast University, Nanjing 210096, PR China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, PR China.
| | - Lan Feng
- National-Provincial Joint Engineering Research Center of Electromechanical Product Packaging, College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Bikash Thakuri
- Department of Mathematics, School of Physical Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Amit Chakraborty
- Department of Mathematics, School of Physical Sciences, Sikkim University, Gangtok 737102, Sikkim, India.
| |
Collapse
|
35
|
Bustnes JO, Bårdsen BJ, Herzke D, Bangjord G, Bollinger E, Bourgeon S, Schulz R, Fritsch C, Eulaers I. The impact of climate sensitive factors on the exposure to organohalogenated contaminants in an aquatic bird exploiting both marine and freshwater habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157667. [PMID: 35907551 DOI: 10.1016/j.scitotenv.2022.157667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
To assess how climate-sensitive factors may affect the exposure to organochlorines (OCs) and perfluoroalkyl substances (PFASs), we monitored concentrations in eggs of the common goldeneye (Bucephala clangula) over two decades (1999-2019) in central Norway. The goldeneye alternates between marine and freshwater habitats and is sensitive to climate variation, especially due to alterations in ice conditions which may affect feeding conditions. We assessed how biological factors such as diet (stable isotopes δ13C and δ15N), the onset of egg laying, and physical characteristics such as winter climate (North Atlantic Oscillation: NAOw) influenced exposure. We predicted compounds to show different temporal trends depending on whether they were still in production (i.e. some PFASs) or have been banned (i.e. legacy OCs and some PFASs). Therefore, we controlled for potential temporal trends in all analyses. There were declining trends for α- and γ-hexachlorocyclohexane (HCH), oxychlordane, cis-chlordane, cis-nonachlor, p,p'-dichlorodiphenyltrichloroethane (p.p'-DDT) and less persistent polychlorinated biphenyl (PCB) congeners (e.g. PCB101). In contrast, the dominant compounds, such as p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and persistent PCB congeners, were stable, whereas hexachlorobenzene (HCB) increased over time. Most OCs were positively related to δ15N, suggesting higher exposure in birds feeding at upper trophic levels. Chlordanes and HCB were positively associated with δ13C, indicating traces of marine input for these compounds, whereas the relationships to most PCBs were negative. Among PFASs, perfluorooctanesulfonamide (PFOSA) and perfluorohexane sulfonic acid (PFHxS) declined. Most PFASs were positively associated with δ13C, whereas there were no associations with δ15N. Egg laying date was positively associated to perfluoroheptanesulfonic acid (PFHpS), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), suggesting that some of the PFAS load originated from the wintering locations. Although NAOw had little impact on the exposure to organohalogenated contaminants, factors sensitive to climate change, especially diet, were associated with the exposure to OHCs in goldeneyes.
Collapse
Affiliation(s)
- Jan Ove Bustnes
- Norwegian Institute for Nature Research (NINA), The Fram Centre, N-9296 Tromsø, Norway.
| | - Bård-Jørgen Bårdsen
- Norwegian Institute for Nature Research (NINA), The Fram Centre, N-9296 Tromsø, Norway
| | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), The Fram Centre, N-9296 Tromsø, Norway; The Arctic University of Norway, Department of Arctic and Marine Biology, N-9037 Tromsø, Norway
| | | | - Eric Bollinger
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, DE-76829 Landau, Germany
| | - Sophie Bourgeon
- The Arctic University of Norway, Department of Arctic and Marine Biology, N-9037 Tromsø, Norway
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, DE-76829 Landau, Germany
| | - Clementine Fritsch
- UMR Chrono-environnement 6249 CNRS - University of Franche-Comté, F-25030 Besançon Cedex, France
| | - Igor Eulaers
- Norwegian Polar Institute, The Fram Centre, N-9296 Tromsø, Norway
| |
Collapse
|
36
|
Ma A, Ma J, Chen X, Zhuang G. Immobilized nanoscale zero-valent iron for synergistic enhanced removal of pentachlorobenzene with Pseudomonas sp. JS100. Front Bioeng Biotechnol 2022; 10:1089212. [DOI: 10.3389/fbioe.2022.1089212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Highly chlorinated benzenes usually have a low efficient degradation in environment. Here we proposed a synergistic removal strategy of pentachlorobenzene (PeCB) using Pseudomonas sp. JS100 coupled with immobilized nanoscale zero-valent iron (NZVI). The structural and textural features of the synergistic system were characterized by X-ray powder diffraction, field emission scanning electron microscopy, and a specific surface area and pore size analysis. Nanoscale zero-valent iron particles were dispersed and attached to the biofilter, which increased the specific surface area to 34.5 m2 g−1. The batch experiment revealed that the removal efficiency of PeCB reached 80.2% in the synergistic system within 48 h. The degradation followed pseudo-first-order reaction kinetics, and the reaction rate constant was measured to be 0.0336 h−1. In the degradation mechanism, PeCB was degraded by NZVI to lower chlorobenzenes, which were utilized by Pseudomonas sp. JS100 as nutrients, thereby achieving rapid removal of PeCB.
Collapse
|
37
|
Hussein MA, Hammad OS, Tharwat AE, Darwish WS, Sayed-Ahmed A, Zigo F, Farkašová Z, Rehan IF. Health risk assessment of organochlorine pesticide residues in edible tissue of seafood. Front Vet Sci 2022; 9:1042956. [PMID: 36544552 PMCID: PMC9761600 DOI: 10.3389/fvets.2022.1042956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
Fish is one of the most valuable foods with high-quality animal protein. However, aquaculture, or ingesting contaminated food, allows organochlorine pesticides (OCPs) to enter the fish's body, and therefore, it negatively impacted public health. One-hundred and twenty random samples of Clupea harengus (C. harengus), Mugil cephalus (M. cephalus), Sardinella aurita (S. aurita), Oreochromis niloticus (O. niloticus), Neptunus pelagicus (N. pelagicus) and Sepia savigngi (S. savigngi) (n = 20 each) were collected from local markets in Mansoura city, Egypt. Samples were checked to see whether any residues of OCPs with the application of risk assessment due to their consumption by Mansoura citizens. The findings indicated that summation hexachlorocyclohexane (∑HCH) in examined seafood samples ranged from 0.27 ± 0.13 in N. pelagicus to 61.61 ± 52.03 μg.kg-1 in S. aurita. Also, the γ-HCH isomer was considered the more prominent among isomers. Hexachlorobenzene (HCB) was found in five different species, with mean values of 2.03 ± 1.85, 1.5.7 ± 1.17, 0.94 ± 0.87, 0.35 ± 0.06, and 0.18 ± 0.06 μg.kg-1 in C. harengus, S. aurita, M. cephlaus, O. niloticus, and S. savigngi. Moreover, summation of Heptachlors (∑HPTs) was 10.19 ± 7.63, 1.27 ± 0.26, 2.58 ± 0.11, 0.95 ± 0.12, 0.21 ± 0.11 and 0.32 ± 0.03 μg.kg-1 of wet weight in examined C. harengus, M. cephlaus, S. aurita, O. niloticus, N. pelagicus, and S. savigngi. Aldrin and dieldrin residues were 3.75 ± 1.31 and 4.86 ± 1.33 μg.kg-1 in C. harengu, meanwhile they were 1.61 ± 0.77 and 0.78 ± 0.04 μg.kg-1in M. cephalus. Dichlorodiphenyldichloroethylene (pp-DDE) was dominant in all examined species within different concentrations 5.08 ± 4.12, 0.98 ± 0.10, 3.07 ± 0.91, 0.93 ± 0.27, 0.08 ± 0.01 and 0.35 ± 0.02 μg.kg-1 in C. harengus, M. cephlaus, S. aurita, O. niloticus, N. pelagicus and S. savigngi, respectively. We concluded that all examined seafood samples were lower than the recommended maximum residue limit. Also, the estimated daily intake was less than the permitted daily intake. Non-carcinogenic indices of target hazard quotient and hazard index for OCPs in all examined species were less than 1.
Collapse
Affiliation(s)
- Mohamed A. Hussein
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Omnya S. Hammad
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed E. Tharwat
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Wageh S. Darwish
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Sayed-Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
| | - František Zigo
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Zuzana Farkašová
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Ibrahim F. Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University Yagotoyama, Nagoya-shi, Japan
| |
Collapse
|
38
|
Yao S, Huang J, Zhou H, Cao C, Ai T, Xing H, Sun J. Levels, Distribution and Health Risk Assessment of Organochlorine Pesticides in Agricultural Soils from the Pearl River Delta of China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13171. [PMID: 36293752 PMCID: PMC9603595 DOI: 10.3390/ijerph192013171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
To reveal the pollution status of agricultural soils along with rapid urbanization and economic growth, a large regional survey of organochlorine pesticides (OCPs) in agricultural soils was conducted in the Pearl River Delta (PRD) of China. The results showed that the total residues of 23 OCPs were in the range of ND-946 ng/g dry weight. OCP residues showed distinct spatial distribution characteristics within the PRD. OCPs were mainly found in areas with high agricultural production and industrial activities. Higher OCP concentrations were observed in the top layer of soil, while the concentration decreases to marginal levels when the soil depth is greater than 50 cm. OCPs are mainly derived from historical use. Hexachlorocyclohexanes (HCHs) in the top soil of the study area are mainly from the use of lindane. Soil pH was negatively and significantly correlated with total OCP concentration. The human health risk assessment showed no health risk for children, while for adults, there is a non-carcinogenic risk, which needs to be noticed. Agricultural activities and industrial production have made the region a pollution hotspot and should arouse more stringent regulation to protect the environment and food safety.
Collapse
Affiliation(s)
- Siyu Yao
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Department of Environmental Sciences, College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Haijun Zhou
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Cuiting Cao
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Tao Ai
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Huanhuan Xing
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
39
|
Carvalho LDC, Goodburn-Brown D, McCullagh JSO, Pollard AM. The influence of pesticides on the corrosion of a Roman bowl excavated in Kent, UK. Sci Rep 2022; 12:14521. [PMID: 36202853 PMCID: PMC9537325 DOI: 10.1038/s41598-022-17902-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
We analysed corrosion from a copper bowl dating from the Roman period (43–410 AD) found in a farm in Kent, UK. Despite its relatively good condition, the interior and exterior surface of the object had areas of deterioration containing green and brown-coloured corrosion which were sampled for characterization by a multi-analytical protocol. Basic copper chlorides atacamite and paratacamite were identified in the context of mineral phases along with chlorobenzenes in the green corrosion. Chlorobenzenes are common soil contaminants in rural areas from the use of pesticides, many of which were banned more than 50 years ago. Here we show that their presence is associated with accelerated corrosion, and this provides a threat to the preservation of archaeological metal objects in the ground.
Collapse
Affiliation(s)
- Luciana da Costa Carvalho
- School of Archaeology, University of Oxford, Oxford, OX1 3TG, UK. .,Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | | | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - A Mark Pollard
- School of Archaeology, University of Oxford, Oxford, OX1 3TG, UK
| |
Collapse
|
40
|
Zhang G, Lan T, Yang G, Li J, Zhang K. Contamination, spatial distribution, and source contribution of persistent organic pollutants in the soil of Guiyang city, China: a case study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3265-3278. [PMID: 34515896 DOI: 10.1007/s10653-021-01089-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The contamination of persistent organic pollutants (POPs), including dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), and polycyclic aromatic hydrocarbon (PAH), is the most studied environmental issue. In 2020, a total of sixty soil samples collected from ten locations in Guiyang were analyzed to assess the presence of four DDTs and HCHs and sixteen PAHs. The concentrations of total DDTs, total HCHs and Σ16PAHs in the soil were between 0.26 and 12.76, 0.23 and 51.80 μg/kg, and 10.02 and 1708.86 μg/kg, respectively. The mean and median concentrations of total DDTs, total HCHs and Σ16PAHs in the soil were 1.04 and 0.26 μg/kg, 4.32 and 0.23 μg/kg, 139.14 and 98.98 μg/kg, respectively. p,p'-DDT, p,p'-DDD and γ-HCH the dominant organochloride pollutants in the soil, while 4-ring PAHs were the dominant PAHs, occupying 41.1-53.6% of the total PAHs in the soil. The highest levels of PAHs in the soil were observed in areas of Guiyang with relatively larger population densities and more developed heave industries. Various diagnostic tools were used to identify the potential sources of the POPs in the soil. The data indicated that DDTs and HCHs were from past and recent common inputs and that mixtures of several combustion activities (biomass, coal and petroleum combustion, diesel, gasoline, and vehicular emissions) were the major sources of PAHs in the Guiyang soil. The results provide information for the assessment of the extent of POP pollution in the Guiyang soil and can help authorities establish environmental protection regulations and soil remediation techniques.
Collapse
Affiliation(s)
- Guanglong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guizhou, 550025, People's Republic of China
| | - Tingting Lan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guizhou, 550025, People's Republic of China
| | - Guangqian Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guizhou, 550025, People's Republic of China
| | - Jianmin Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guizhou, 550025, People's Republic of China
| | - Kankan Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guizhou, 550025, People's Republic of China.
| |
Collapse
|
41
|
Bustnes JO, Bårdsen BJ, Herzke D, Bangjord G, Bourgeon S, Fritsch C, Eulaers I. Ecosystem specific accumulation of organohalogenated compounds: A comparison between adjacent freshwater and terrestrial avian predators. ENVIRONMENTAL RESEARCH 2022; 212:113455. [PMID: 35580663 DOI: 10.1016/j.envres.2022.113455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Insight into processes determining the exposure of organohalogenated contaminants (OHCs) in wildlife might be gained from comparing predators in different ecosystems. This study compared two avian predator species with similar food chain lengths: the goldeneye duck (Bucephala clangula) and the tawny owl (Strix aluco) breeding in adjacent freshwater- and terrestrial ecosystems in central Norway. We measured lipophilic organochlorines (OCs) and protein-bound perfluorinated substances (PFASs) in eggs of the two species over 21 years (1999-2019). Across years, the proportional distribution of OCs (∼90% of the ΣOHC load) relative to PFASs (∼10%) was similar in the two species. Moreover, ΣOC concentrations were similar between the species, but PFAS compounds were 2-12 times higher in the goldeneyes than in tawny owls. OC-pesticides dominated in tawny owls (∼60% of ΣOC), whereas persistent polychlorinated biphenyl (PCBs) congeners were the main OC components in goldeneyes (∼70% of ΣOC). The lipid-normalized concentrations of most OC-pesticides and the less persistent PCB101 declined significantly in both species. Hexachlorobenzene (HCB), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), and more persistent PCBs decreased in tawny owls, while they tended to increase in goldeneyes. The increase in HCB was particulary robust. Among the PFASs, contrasted temporal trends were found across the species for four out of 11 compounds: PFOS declined while most perfluorocarboxylic acids (PFCAs) increased in tawny owls. In contrast, most PFASs were stable in goldeneyes. Moreover, there was no annual covariance between the OHC exposure in the two species: i.e., high concentrations in one species in a given year did not translate into high concentrations in the other. Hence, the two avian predators in adjacent ecosystems seem to be subject to different processes determining the OHC exposure, probably related to variation in diet and climate, long-range transport of different contaminants, and emissions of pollution locally.
Collapse
Affiliation(s)
- Jan Ove Bustnes
- Norwegian Institute for Nature Research (NINA), The Fram Centre, 9296, Tromsø, Norway.
| | - Bård-Jørgen Bårdsen
- Norwegian Institute for Nature Research (NINA), The Fram Centre, 9296, Tromsø, Norway
| | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), The Fram Centre, 9296, Tromsø, Norway
| | | | - Sophie Bourgeon
- Biology Department, Faculty of Science, University of Tromsø, 9037 Tromsø, Norway
| | - Clementine Fritsch
- Chrono-environnement UMR 6249 CNRS, University of Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Igor Eulaers
- Norwegian Polar Institute, The Fram Centre, 9296, Tromsø, Norway
| |
Collapse
|
42
|
Grimalt JO, Garí M, Santa-Marina L, Ibarluzea J, Sunyer J. Influence of gestational weight gain on the organochlorine pollution content of breast milk. ENVIRONMENTAL RESEARCH 2022; 209:112783. [PMID: 35074353 DOI: 10.1016/j.envres.2022.112783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/17/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Transplacental transfer and breastfeeding are the main transport routes of organic pollutants into children at the beginning of life. Although pollutant transmission through these mechanisms primarily depends on the maternal pollution burden, its impact may be modulated by physiological effects. OBJECTIVES We have examined whether gestational weight gain (GWG) exerts an influence on the content of lipophilic low volatile pollutants in breast milk. RESULTS Colostrum from mothers from the INMA cohorts of Sabadell and Gipuzkoa (n = 256 and 119, respectively) with low GWG as defined by the Institute of Medicine (IOM) from the US National Academies of Sciences, Engineering and Medicine had significantly higher concentrations of polychlorobiphenyls (PCBs) and 4,4'-DDE than colostrum in mothers who gained weight within IOM recommendations or in those who exceeded this threshold. Statistically significant differences were also found in the colostrum:maternal serum ratios of these compounds. Women with low GWG retained higher pollutant amounts in colostrum. These observations are consistent with previously described higher concentrations of these pollutants in infant cord blood from mothers with low GWG by IOM standards. They indicate that mobilization of lipophilic organic pollutants by metabolic pregnant changes not only leads to higher fetal transfer but to higher accumulation into the mammary system upon low GWG. CONCLUSIONS The present results show that insufficient GWG, besides increasing in utero exposure, also enhances pollutant transfer to infants during breastfeeding which considerably extends the significance of this physiological change for the pollutant children intake in early life.
Collapse
Affiliation(s)
- Joan O Grimalt
- Spanish Council for Scientific Research (CSIC), Jordi Girona, 18. 08034, Barcelona, Catalonia, Spain.
| | - Mercè Garí
- Spanish Council for Scientific Research (CSIC), Jordi Girona, 18. 08034, Barcelona, Catalonia, Spain; Computational Health Department, Helmholtz Zentrum Munich for Environmental Health, Munich, Germany
| | - Loreto Santa-Marina
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, Spain; BioDonostia Health Research Institute, Donostia-San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Jesús Ibarluzea
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, Spain; BioDonostia Health Research Institute, Donostia-San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Jordi Sunyer
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Global Health Institute of Barcelona (ISGlobal), Barcelona, Catalonia, Spain; Hospital de Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Catalonia, Spain
| |
Collapse
|
43
|
Ding Y, Huang H, Chen W, Zhang Y, Chen W, Xing X, Qi S. Background levels of OCPs, PCBs, and PAHs in soils from the eastern Pamirs, China, an alpine region influenced by westerly atmospheric transport. J Environ Sci (China) 2022; 115:453-464. [PMID: 34969473 DOI: 10.1016/j.jes.2020.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/14/2020] [Accepted: 11/14/2020] [Indexed: 06/14/2023]
Abstract
Long-range atmospheric transport (LRAT) plays a crucial role in the occurrence of persistent organic pollutants (POPs) in remote regions. When studying the LRAT of POPs on the Tibetan Plateau, westerly-controlled regions have received insufficient attention compared with regions influenced by the Indian monsoon or air flow from East Asia. We investigated the residual levels of POPs in soils from the eastern Pamirs and used air backward trajectory analysis to elucidate the influence of potential source regions via LRAT. Organochlorine pesticides (OCPs, mainly comprising DDTs, HCHs, and HCB), polychlorinated biphenyls (PCBs, mainly comprising penta- and hexa-CBs), and polycyclic aromatic hydrocarbons (PAHs, mainly comprising three- and four-ring) were detected at low concentrations of 40-1000, <MDL-88, and 2100-34,000 pg/g, respectively. We elucidated three major geographical distribution patterns of POPs, which were influenced by (1) the distribution of total organic carbon and black carbon in soil, (2) historical use of pesticides in the Tarim Basin, and (3) continuous emissions. Central Asia and the Tarim Basin were major potential source regions of POPs reaching the eastern Pamirs via LRAT. Historical use of technical HCH or lindane and technical DDT in potential source regions may contribute to the accumulation of HCHs and DDTs in the eastern Pamirs, respectively. Local sources seem to play a more important role in the occurrence of PAHs in the study area. By being under the control of less contaminated westerly air flow, the eastern Pamirs are more pristine than the core of the Tibetan Plateau where the Indian and East Asia monsoons deliver contaminants from highly industrialized areas in East China and India.
Collapse
Affiliation(s)
- Yang Ding
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - Huanfang Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wenwen Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xinli Xing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
44
|
Tu Z, Qi Y, Qu R, Tang X, Wang Z, Huo Z. Photochemical transformation of hexachlorobenzene (HCB) in solid-water system: Kinetics, mechanism and toxicity evaluation. CHEMOSPHERE 2022; 295:133907. [PMID: 35151701 DOI: 10.1016/j.chemosphere.2022.133907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/19/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
As one of the first batch of persistent organic pollutants (POPs) included in Stockholm Convention, hexachlorobenzene (HCB) has attracted great attention because of its wide occurrence and great environmental risks. Considering the easy adsorption of HCB on solids and the complexity of natural particles, we systematically investigated the photodegradation of HCB on the surface of silica gel (SG) in aqueous solution in this work to reveal its fate in natural waters. Under mercury lamp irradiation, more than 90% of HCB loaded on SG could be removed after 240 min. Moreover, the effects of solution pH and water constituents were examined, and results showed that the presence of NO2-, NO3-, Fe3+ and humic acid (HA) significantly inhibited the reaction due to the scavenging of ROS and/or competitive absorption of light. According to radical quenching experiments and electron paramagnetic resonance (EPR) spectra, hydroxyl radicals and singlet oxygen generated on the surface of SG could participate in the transformation of HCB, but •OH played a dominant role. Based on products identified by high performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS), two main pathways were proposed for the removal of HCB, including dechlorination and hydroxylation which represent direct and indirect photodegradation, respectively, and the occurrence of these two reactions was further supported by density functional theory (DFT) calculations. From the quantitative analysis of penta-chlorobenzene, it was estimated that dechlorination and hydroxylation contributed to approximately 44.4% and 55.6% of initial HCB degradation, respectively. Furthermore, toxicity predictions by the ecological structure-activity relationship model (ECOSAR) suggested that the toxicity of HCB was decreased in the photodegradation process. This study would provide important information for understanding the photochemical transformation mechanism of HCB at the solid/water interface.
Collapse
Affiliation(s)
- Zhengnan Tu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China.
| | - Xiaosheng Tang
- Jiangsu Yangtze River Delta Environmental Science and Technology Research Institute Co., Ltd., Jiangsu, Changzhou, 213100, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No.172 Jiangsu Road, Jiangsu, Nanjing, 210009, PR China
| |
Collapse
|
45
|
Pozo K, Gómez V, Tucca F, Galbán-Malagón C, Ahumada R, Rudolph A, Klánová J, Lammel G. Multicompartmental analysis of POPs and PAHs in Concepciόn Bay, central Chile: Part II - Air-sea exchange during Austral summer. MARINE POLLUTION BULLETIN 2022; 177:113518. [PMID: 35299147 DOI: 10.1016/j.marpolbul.2022.113518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Air-sea exchange of POPs and PAHs was assessed in Concepción Bay during January, summer 2015. Results showed low levels, in air and water, for POPs (1-20 pg m-3, and 6-50 pg L-1, respectively) and for ΣPAHs (1-2 ng m-3 and 1-2 ng L-1, respectively). The highest levels were found for PBDEs (200-20,000 pg L-1) in the water samples (3-fold times higher than PCBs and OCP) and PBDE209 accounted for 90% of total ΣPBDEs. Air-sea exchange fluxes (ng m-2 d-1) were low in general, with exception of PBDEs showing values up to 40,000 ng m-2 d-1. Net deposition was found for PAHs, HCB and some PBDEs; while, BDE99, and BDE100 showed net volatilization. These findings contribute with new data of diffusive air-sea exchange on the southern hemisphere Pacific coast.
Collapse
Affiliation(s)
- Karla Pozo
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción, Chile.
| | - Victoria Gómez
- Department of Environmental Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| | - Felipe Tucca
- Instituto Tecnológico del Salmón (INTESAL SpA), Puerto Montt, Chile
| | - Cristóbal Galbán-Malagón
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA
| | - Ramón Ahumada
- Facultad de Ciencias, Universidad Católica Santisima Concepción, Concepción, Chile
| | - Anny Rudolph
- Facultad de Ciencias, Universidad Católica Santisima Concepción, Concepción, Chile
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Gerhard Lammel
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| |
Collapse
|
46
|
Seo SH, Choi SD, Batterman S, Chang YS. Health risk assessment of exposure to organochlorine pesticides in the general population in Seoul, Korea over 12 years: A cross-sectional epidemiological study. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127381. [PMID: 34638073 DOI: 10.1016/j.jhazmat.2021.127381] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the 12-year trends in serum levels of 28 organochlorine pesticides (OCPs) in 880 adults living in Seoul, Korea. The OCP levels decreased from 2006 to 2017, and p,p'-dichlorodiphenyldichloroethylene was a predominant compound. OCP levels were higher in females than in males, and showed positive associations with BMI and age. The OCP concentrations had inverted U-shaped associations with low-density lipoprotein cholesterol and total cholesterol. Concentrations of β-hexachlorocyclohexane were significantly higher in patients with hypertension than in participants that were normotensive. OCP levels showed positive associations with uric acid, creatinine, and thyroid-stimulating hormone, but negative associations with free thyroxine. Participants with diabetes had significantly higher OCP levels than those without it. Principal component analysis suggested possible differences in disease manifestation depending on the composition of OCPs. These results suggest that OCPs might disturb renal transport and thyroid homeostasis. To our knowledge, the inverted U-shaped associations of heptachlor epoxide and endosulfan with cholesterol, the epidemiological associations of trans-nonachlor and endosulfan with thyroid hormones, and the association of p,p'-DDE with hyperuricemia have not been previously reported in general population. This is the first long-term study to show trends of 28 OCPs in serum and associations with various health indicators in Korea.
Collapse
Affiliation(s)
- Sung-Hee Seo
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Sung-Deuk Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Stuart Batterman
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Yoon-Seok Chang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
47
|
Kang Y, Zhang R, Yu K, Han M, Wang Y, Huang X, Wang R, Liu F. First report of organochlorine pesticides (OCPs) in coral tissues and the surrounding air-seawater system from the South China Sea: Distribution, source, and environmental fate. CHEMOSPHERE 2022; 286:131711. [PMID: 34340115 DOI: 10.1016/j.chemosphere.2021.131711] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The levels, fate, and potential sources of 22 organochlorine pesticides (OCPs) in coral tissues and the surrounding air-seawater system from the South China Sea (SCS) were elucidated for the first time. ∑22OCPs (total concentration of 22 OCPs) (16.1-223 pg L-1) was relatively higher in coastal seawater than in offshore seawater, which may be the widespread influence of coastal pollution inputs under the western boundary current. The atmospheric ∑22OCPs were predominantly distributed in the gas phase (48.0-2264 pg m-3) and were mainly influenced by continental air mass origins. The air-seawater exchange of selected OCPs showed that OCPs tended to migrate from the atmosphere to seawater. The distribution of ∑22OCPs in coral tissues (0.02-52.2 ng g-1 dw) was significantly correlated with that in air samples, suggesting that OCPs may have a migration pattern of atmosphere-ocean corals in the SCS. Corals exhibited higher bioaccumulation ability (Log BAFs: 2.42-7.41) for OCPs. Source analysis showed that the new application of technical Chlordanes (CHLs) was primarily responsible for the current levels of CHLs in the surrounding environment over the SCS, while historical residues were the primary sources of other OCPs.
Collapse
Affiliation(s)
- Yaru Kang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ruixuan Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Fang Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
48
|
Ogura AP, Lima JZ, Marques JP, Massaro Sousa L, Rodrigues VGS, Espíndola ELG. A review of pesticides sorption in biochar from maize, rice, and wheat residues: Current status and challenges for soil application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113753. [PMID: 34537561 DOI: 10.1016/j.jenvman.2021.113753] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
The use of pesticides has been increasing in recent years for maintaining traditional agricultural practices. However, these chemicals are associated with several environmental impacts, demanding urgent remediation techniques. Biochar is a carbonaceous material produced by pyrolysis that has the potential for pesticide sorption and remediation. In this context, this interdisciplinary review systematically assessed the state of the knowledge of crop residues to produce biochar for pesticide sorption. We focused on maize, rice, and wheat residues since these are the three most-produced grains worldwide. Besides, we evaluated different biochar handling, storage, and soil dispersion techniques to ease its implementation in agriculture. In general, pyrolysis temperature influences biochar characteristics and its potential for pesticide sorption. Furthermore, biochar amended soils had greater pesticide sorption capacity, limiting potential leaching and runoff. Most studies showed that the feedstock and specific surface area influence the biochar sorption properties, among other factors. Also, biochar reduces pesticides' bioavailability, decreasing their toxicity to soil organisms and improving soil fertility and crop yields. Nonetheless, the retrieved papers assessed only 21 pesticides, mainly consisting of lab-scale batch experiments. Therefore, there is still a gap in studies evaluating biochar aging, its potential desorption, pesticide co-contaminations, the associated microbiological processes, and field applications. Determining flow properties for biochars of different sizes and pellets is vital for reliable handling equipment design, and performing techno-economic assessment under different farm contexts is encouraged. Ultimately, coupling biochar production with residue management could address this challenge on sustainable agricultural systems.
Collapse
Affiliation(s)
- Allan Pretti Ogura
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil.
| | - Jacqueline Zanin Lima
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Jéssica Pelinsom Marques
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Lucas Massaro Sousa
- Process Design and Modeling Division, IFP Energies Nouvelles, Rond-Point Échangeur de Solaize, 69360, Solaize, France
| | | | - Evaldo Luiz Gaeta Espíndola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| |
Collapse
|
49
|
Ito K. Mechanisms of aerobic dechlorination of hexachlorobenzene and pentachlorophenol by Nocardioides sp. PD653. JOURNAL OF PESTICIDE SCIENCE 2021; 46:373-381. [PMID: 34908898 PMCID: PMC8640678 DOI: 10.1584/jpestics.j21-04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 06/14/2023]
Abstract
We sought to elucidate the mechanisms underlying the aerobic dechlorination of the persistent organic pollutants hexachlorobenzene (HCB) and pentachlorophenol (PCP). We performed genomic and heterologous expression analyses of dehalogenase genes in Nocardioides sp. PD653, the first bacterium found to be capable of mineralizing HCB via PCP under aerobic conditions. The hcbA1A2A3 and hcbB1B2B3 genes, which were involved in catalysing the aerobic dechlorination of HCB and PCP, respectively, were identified and characterized; they were classified as members of the two-component flavin-diffusible monooxygenase family. This was subsequently verified by biochemical analysis; aerobic dechlorination activity was successfully reconstituted in vitro in the presence of flavin, NADH, the flavin reductase HcbA3, and the HCB monooxygenase HcbA1. These findings will contribute to the implementation of in situ bioremediation of HCB- or PCP-contaminated sites, as well as to a better understanding of bacterial evolution apropos their ability to degrade heavily chlorinated anthropogenic compounds under aerobic conditions.
Collapse
Affiliation(s)
- Koji Ito
- National Agriculture and Food Research Organization, Institute for Agro-Environmental Sciences, 3–1–3 Kannondai, Tsukuba-city, Ibaraki 305–8604, Japan
| |
Collapse
|
50
|
Traina A, Ausili A, Bonsignore M, Fattorini D, Gherardi S, Gorbi S, Quinci E, Romano E, Salvagio Manta D, Tranchida G, Regoli F, Sprovieri M. Organochlorines and Polycyclic Aromatic Hydrocarbons as fingerprint of exposure pathways from marine sediments to biota. MARINE POLLUTION BULLETIN 2021; 170:112676. [PMID: 34218035 DOI: 10.1016/j.marpolbul.2021.112676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
To elucidate the dynamics of a suite of organochlorine contaminants (PCBs, HCB), PAHs and Hg and verify the potential of these pollutants as reliable fingerprints of sources, an ensemble of marine sediments and organisms (finfish, shellfish species and Mytilus galloprovincialis) were analysed from the contaminated Augusta Bay (Southern Italy). The Hg and HCB concentration in the sediments exceeded the EQS of the Directive 2000/60/EU. Similarly, ∑PCB and selected PAHs were above the threshold limit set by regulation. The marine organisms showed Hg concentrations above CE 1881/2006. Contaminants in transplanted mussel evidenced an increased accumulation overtime and different distribution patterns between sampling sites. Analysis of the homolog composition of PCB congeners revealed comparable patterns between sediments and marine organisms and offered the opportunity to define a robust fingerprint for tracing contaminants transfer from the abiotic to the biotic compartments. These results were confirmed by the Fluoranthene/Pyrene, Hg and HCB distribution modes.
Collapse
Affiliation(s)
- Anna Traina
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), Lungomare Cristoforo Colombo 452, 90149 Palermo, Italy
| | - Antonella Ausili
- Institute for Environmental Protection and Research (ISPRA), Via V. Brancati 60, 00144 Rome, Italy
| | - Maria Bonsignore
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare 3, 91021 Torretta Granitola, Trapani, Italy.
| | - Daniele Fattorini
- Department of Life and Environmental Sciences (DiSVA), Polytechnic University of Marche, Via Brecce Bianche, Monte Dago, 60131 Ancona, Italy
| | - Serena Gherardi
- National Research Council of Italy - Institute of Marine Science (CNR-ISMAR), Calata Porta di Massa, 80133 Naples, Italy
| | - Stefania Gorbi
- Department of Life and Environmental Sciences (DiSVA), Polytechnic University of Marche, Via Brecce Bianche, Monte Dago, 60131 Ancona, Italy
| | - Enza Quinci
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare 3, 91021 Torretta Granitola, Trapani, Italy
| | - Elena Romano
- Institute for Environmental Protection and Research (ISPRA), Via V. Brancati 60, 00144 Rome, Italy
| | - Daniela Salvagio Manta
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), Lungomare Cristoforo Colombo 452, 90149 Palermo, Italy
| | - Giorgio Tranchida
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare 3, 91021 Torretta Granitola, Trapani, Italy
| | - Francesco Regoli
- Department of Life and Environmental Sciences (DiSVA), Polytechnic University of Marche, Via Brecce Bianche, Monte Dago, 60131 Ancona, Italy
| | - Mario Sprovieri
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare 3, 91021 Torretta Granitola, Trapani, Italy
| |
Collapse
|