1
|
Su ZH, Wang C, Zhou X, He MJ. Organophosphate esters and phthalate esters in marine fishes from a coastal area of China: Occurrence, tissue distribution, trophic transfer, and human exposure. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107135. [PMID: 40199061 DOI: 10.1016/j.marenvres.2025.107135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/12/2025] [Accepted: 04/04/2025] [Indexed: 04/10/2025]
Abstract
Concern over the influences of constant addition of anthropogenic chemicals to the marine environment has attracted public attention. Organophosphate esters (OPEs) and phthalate esters (PAEs) were two emerging chemicals frequently added to a variety of products as flame retardants and plasticizers. However, limited information is available associated with their environmental behaviors in marine environment, and the tissue-specific bioaccumulation and biomagnification of OPEs and PAEs in fish remain subjects of ongoing debate. Hence, 12 OPE and 6 PA E analogues were analyzed in five marine fish species from the coast of Wenchang, Hainan province. The concentrations of Σ12OPEs and Σ6PAEs were in the range of 319-1790 ng/g lw and 400-1370 ng/g lw, respectively. Significantly negative correlations (p value < 0.05) were observed between the concentration of pollutants and their corresponding lipid contents of fish tissues. There were no obvious correlations between the logarithmic transformed concentrations of each OPE and PAE analogue with their corresponding Log KOW value in fish tissues, but OPE and PAE concentrations were likely to reach the highest when Log KOW values were around five. Significantly negative correlations (p value < 0.05) were found between logarithmic transformed concentrations of TCEP, TCP and BBP along with δ15N values in fish species, except for TDCIPP, TEHP and DBP which exhibited an increasing trend with the increasing of δ15N values. Furthermore, human exposure via fish intakes was assessed, and EDI ranged from 73.9 to 1910 ng/kg bw/day for ∑OPEs and 495-4550 ng/kg bw/day for ∑PAEs, respectively, which were both within the safe dose threshold, and the HI values of ΣOPEs and ΣPAEs were much lower than the boundary value of 1.00. This study contributes valuable insights into OPEs and PAEs present in marine organisms as well as robust evidence indicating that most OPE and PAE analogues undergo trophic dilution within marine fish.
Collapse
Affiliation(s)
- Zi-Han Su
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Can Wang
- Planning and Natural Resources Bureau of Chongqing Wanzhou District, Chongqing, 404199, China
| | - Xue Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Ming-Jing He
- College of Resources and Environment, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| |
Collapse
|
2
|
Green CS, Morris JM, Magnuson JT, Leads RR, Lay CR, Gielazyn M, Rosman L, Schlenk D, Roberts AP. Exposure to the Polychlorinated biphenyl mixture Aroclor 1254 elicits neurological and cardiac developmental effects in early life stage zebrafish (Danio rerio). CHEMOSPHERE 2025; 371:144023. [PMID: 39724984 DOI: 10.1016/j.chemosphere.2024.144023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
The goal of this study was to compare the bioaccumulation of the PCB mixture Aroclor 1254 in zebrafish to cardiac and neurologic outcomes. The establishment of effect concentrations (ECs) for cardiac and neurotoxic effects of PCBs in early life stage fish is challenging due to a lack of measured PCB concentrations in test media (e.g., fish tissue), the lack of standard exposure methods, and the propensity of PCBs to adsorb to test glassware and materials resulting in discrepancies in ECs from different studies with similar endpoints. Reporting tissue concentrations in test organisms will allow for standardization across different tests and thus may improve estimations of effect thresholds. Early life stage zebrafish (Danio rerio) are a common environmental toxicological model well represented within the literature, making them ideal for comparisons across multiple studies. Embryos were exposed at 6 h post fertilization (hpf) to aqueous Aroclor 1254 for 96 h with or without renewal in addition to a PCB 126 positive control for cardiotoxicity. PCB concentrations were measured in both exposure solutions and tissue samples. Measured concentrations of Aroclor 1254 in test solutions ranged from 8.7% to 870% of nominal concentrations. Heart rate, pericardial edema, and neurological endpoints (eye tremors) were measured in 102 hpf larvae. Pericardial edema was not present in Aroclor 1254-treated zebrafish but was observed in those exposed to PCB-126. Concentration-dependent bradycardia was observed in zebrafish exposed to Aroclor 1254 and PCB-126. Similarly, a concentration-dependent increase in eye tremor behavior was observed in embryos exposed to Aroclor 1254. Data produced by this study demonstrate novel toxicological effects of Aroclor 1254 and highlight the importance of measuring PCBs in both exposure and receptor media.
Collapse
Affiliation(s)
- Corey S Green
- Eastern New Mexico University, Department of Biological Sciences, 1500 Ave. K, Portales, NM, 88130, USA.
| | | | - Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, 65201, USA.
| | - Rachel R Leads
- Michigan State University, Department of Fisheries and Wildlife, East Lansing, MI, 48825, USA.
| | | | - Michel Gielazyn
- National Oceanic and Atmospheric Administration, Assessment and Restoration Division, St. Petersburg, FL, 33701, USA.
| | - Lisa Rosman
- National Oceanic and Atmospheric Administration, Assessment and Restoration Division, New York, NY, 10278, USA.
| | - Daniel Schlenk
- University of California Riverside, Department of Environmental Science, Riverside, CA, 92521, USA.
| | - Aaron P Roberts
- University of North Texas, Department of Biological Sciences and Advanced Environmental Research Institute, Denton, TX, 76203, USA.
| |
Collapse
|
3
|
Shahbazian M, Zamani A, Mehdinia A, Khosravi Y, Mahdavi V. Polychlorinated biphenyls (PCBs) in the Persian Gulf and Gulf of Oman: baseline report on occurrence, distribution, and ecological risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1003. [PMID: 39356347 DOI: 10.1007/s10661-024-13099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024]
Abstract
In the present study, 18 polychlorinated biphenyl (PCB) compounds were measured in marine sediments collected from 49 offshore stations in the Persian Gulf and the Gulf of Oman in 2019. After the last oceanographic cruise in 2006, no study has been performed on the offshore sediments of this region, and this is the first study on the PCBs in this area. The total amount of PCB compounds in the sediment samples ranged from 74.38 ng kg-1 (near Abu Musa Island) to 1212.98 ng kg-1 (near Siri and Kish Island). The maximum and minimum values of the individual detected PCB compounds were 175.88 ng kg-1 (PCB52) and 2.09 ng kg-1 (PCB156), respectively. The levels of total PCBs detected in sediments were lower than the Canadian interim sediment quality guideline value of 21500 ng kg-1 for marine sediments. The sedimentary mass inventories for Σ18PCBs were 0.6 and 0.2 mt for the Persian Gulf and Gulf of Oman, respectively.
Collapse
Affiliation(s)
- Maryam Shahbazian
- Department of Environmental Science, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Abbasali Zamani
- Department of Environmental Science, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Ali Mehdinia
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran.
| | - Younes Khosravi
- Department of Environmental Science, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
4
|
Hou T, Yu J, Li C, Wang Z, Liu H. Immunotoxicity of microplastics and polychlorinated biphenyls alone or in combination to Crassostrea gigas. MARINE POLLUTION BULLETIN 2024; 200:116161. [PMID: 38364644 DOI: 10.1016/j.marpolbul.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Microplastics (MPs) and polychlorinated biphenyls (PCBs) are pervasive pollutants in the marine environment, exerting adverse effects on marine organisms. While it is suggested that their exposure may compromise the immune responses of marine organisms, the cumulative immunotoxic effects remain uncertain. Additionally, the intricate mechanisms underlying the immunotoxicity of PCBs and MPs in marine organisms are not yet fully comprehended. To illuminate their combined biological impacts, Crassostrea gigas were exposed to 50 μg/L MPs (30-μm porous) alone, as well as 10 or 100 ng/L PCBs individually or in combination with 50 μg/L of MPs for 28 days. Our data demonstrated that oysters treated with the pollutants examined led to decreased total haemocyte count, inhibited phagocytosis of haemocytes, enhanced the intracellular contents of reactive oxygen species, lipid peroxidation and DNA damage, reduced lysozyme concentration and activity, gave rise to superoxide dismutase. Catalaseand glutathione S-transferaseactivity. The expression of three immune-related genes (NF-κB, TNF-α, TLR-6) was drastically suppressed by the PCBs and MPs treatment, while the apoptosis pathway-related genes (BAX and Caspase-3) showed a significant increase. In addition, compared to oysters treated with a single type of pollutant, coexposure to MPs and PCBs exerted more severe adverse impacts on all the parameters investigated, indicating a significant synergistic effect. Therefore, the risk of MPs and PCBs chemicals on marine organisms should be paid more attention.
Collapse
Affiliation(s)
- Tinglong Hou
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Jinan University, Guangzhou 510632, China; College of Biology and Agriculture, Zunyi Normal College, Guizhou 563002, China
| | - Jinyu Yu
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Department of Fishery Sciences, Tianjin Agricultural University, Tianjin 300384, China
| | - Chuntao Li
- College of Biology and Agriculture, Zunyi Normal College, Guizhou 563002, China
| | - Zibin Wang
- Shenzhen Ocean Center, Ministry of Natural Resources, Shenzhen 518131, China
| | - Huiru Liu
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Department of Fishery Sciences, Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
5
|
Eglite E, Mohm C, Dierking J. Stable isotope analysis in food web research: Systematic review and a vision for the future for the Baltic Sea macro-region. AMBIO 2023; 52:319-338. [PMID: 36269552 PMCID: PMC9589642 DOI: 10.1007/s13280-022-01785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Food web research provides essential insights into ecosystem functioning, but practical applications in ecosystem-based management are hampered by a current lack of knowledge synthesis. To address this gap, we provide the first systematic review of ecological studies applying stable isotope analysis, a pivotal method in food web research, in the heavily anthropogenically impacted Baltic Sea macro-region. We identified a thriving research field, with 164 publications advancing a broad range of fundamental and applied research topics, but also found structural shortcomings limiting ecosystem-level understanding. We argue that enhanced collaboration and integration, including the systematic submission of Baltic Sea primary datasets to stable isotope databases, would help to overcome many of the current shortcomings, unify the scattered knowledge base, and promote future food web research and science-based resource management. The effort undertaken here demonstrates the value of macro-regional synthesis, in enhancing access to existing data and supporting strategic planning of research agendas.
Collapse
Affiliation(s)
- Elvita Eglite
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
- Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47907 USA
| | - Clarissa Mohm
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Jan Dierking
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| |
Collapse
|
6
|
Madgett AS, Yates K, Webster L, McKenzie C, Brownlow A, Moffat CF. The concentration and biomagnification of PCBs and PBDEs across four trophic levels in a marine food web. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119752. [PMID: 35841989 DOI: 10.1016/j.envpol.2022.119752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Contracting Parties to the OSPAR Convention for the Protection of the Maine Environment of the North-East Atlantic are required to undertake monitoring and assessment of both inorganic and organic contaminants. There is a requirement to assess contaminants across different trophic levels on an ecosystem-specific basis. However, this is currently constrained by the availability of relevant samples to cover the full range of trophic levels. This study investigates the variability (inter- and intra-species variation) of the concentrations and distributions of thirty-two polychlorinated biphenyl (PCB) congeners and nine polybrominated diphenyl ether (PBDE) congeners in twenty-six species covering four trophic levels from different geographic locations around Scotland. Trophic magnification factors (TMFs) were calculated using a traditional method and a balanced method for both the ICES-7 PCBs and BDE47, to refine and improve the application of TMFs to assess and predict biomagnification risk to biota in the marine environment. There were clear differences in congener percentage distribution between sample categories and species, with differences influenced by physiological processes and eco-biological parameters. Trophic magnification was found to occur for the ICES-7 PCBs and BDE47 using the traditional method, with the highest degree of trophic magnification reported for CB52. An unbalanced dataset was found to influence the calculated TMF and in some cases, the overall conclusion of the trophic transfer of PCB and PBDE congeners. The balanced method is highly recommended for calculating TMFs to ensure that the TMF is a true indication of the biomagnification potential, particularly when conducting regional comparisons for which sampling requirements are difficult to achieve.
Collapse
Affiliation(s)
- Alethea S Madgett
- University of Aberdeen, King's College, Aberdeen, AB24 3FX, UK; School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7JG, UK; Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK.
| | - Kyari Yates
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7JG, UK
| | - Lynda Webster
- Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | | | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme, Institute of Biodiversity Animal Health & Comparative Medicine, University of Glasgow, G12 8QQ, UK
| | - Colin F Moffat
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7JG, UK
| |
Collapse
|
7
|
McMullin RM, Chen R, Niu S, Matthews W, Murschell T, Wing SR, Hageman KJ. Organic contaminants in imported salmon feed and their effects on reef ecosystems in New Zealand. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118853. [PMID: 35033615 DOI: 10.1016/j.envpol.2022.118853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Organic matter from salmon farms has been shown to be assimilated by soft sediment and rocky reef communities within the ecological footprint of salmon farms. Given these findings, another question arises - What other chemicals in salmon feed may be assimilated into wild communities via organic waste from salmon farms? Here we measured a suite of organic contaminants in salmon feed, in organisms used in a controlled feeding experiment, and in reef species collected within the depositional footprint of salmon farms. Gas Chromatography-Tandem Mass Spectrometry was used to quantify trace concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and current-use (CPUs) and historic-use pesticides (HUPs) in salmon feed imported to New Zealand. The effect of assimilation of farm-derived organic matter on contaminant profiles differed among species during the controlled feeding experiment and demonstrated that migration of individuals to a farm-associated site has the potential to increase or decrease organic contaminant concentrations. Concentrations of PCBs in Parapercis colias (blue cod), a highly resident, long-lived fish, were significantly higher at farm sites than at reference sites. While these concentrations were relatively low in a global context, this result presents blue cod as an important candidate for future monitoring of organic contaminants around point sources. PCBs and PBDEs measured in wild marine species were all below limits set by the European Union, whereas concentrations of certain HUPs, specifically dichlorodiphenyltrichloroethane (DDT) and its degradation products and endosulfan, may be of concern as a consequence of alternative anthropogenic activities. Overall, feed imported to New Zealand had relatively low levels of most organic contaminants that, at current levels, are unlikely to result in significant ecological effects to wild communities in adjacent habitats.
Collapse
Affiliation(s)
- Rebecca M McMullin
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, New Zealand.
| | - Ruiwen Chen
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, 84322, USA
| | - Shan Niu
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, 84322, USA
| | - Will Matthews
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, 84322, USA
| | - Trey Murschell
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, 84322, USA
| | - Stephen R Wing
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Kimberly J Hageman
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
8
|
Nakajima R, Kawato M, Fujiwara Y, Tsuchida S, Ritchie H, Fujikura K. Occurrence and levels of polybrominated diphenyl ethers (PBDEs) in deep-sea sharks from Suruga Bay, Japan. MARINE POLLUTION BULLETIN 2022; 176:113427. [PMID: 35150990 DOI: 10.1016/j.marpolbul.2022.113427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Few studies have investigated the prevalence of polybrominated diphenyl ethers (PBDEs) in deep-sea sharks. In this study, the levels and profiles of PBDEs were determined in liver samples of eight different species of deep-sea sharks collected in Suruga Bay, Japan. Widespread contamination of PBDEs in the deep-sea environment was reconfirmed in this study as these persistent organic pollutants (POPs) were detected in all specimens analyzed. Mean ΣPBDE levels in the deep-sea sharks ranged from 7 to 517 ng/g of lipid weight. The distribution patterns of BDE homologues were similar in all species where tetra-BDEs provided the dominant contribution to total PBDEs (46%). PBDEs levels were similar to, or higher than, those seen in other deep-sea sharks from different regions. The levels of PBDEs were likely to reflect their feeding preferences as higher PBDE levels were seen in species with higher trophic positions.
Collapse
Affiliation(s)
- Ryota Nakajima
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan.
| | - Masaru Kawato
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan
| | - Yoshihiro Fujiwara
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan
| | - Shinji Tsuchida
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan
| | - Heather Ritchie
- RZSS WildGenes, Royal Zoological Society of Scotland, Edinburgh, UK
| | - Katsunori Fujikura
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
9
|
Liu Y, Cui S, Ma Y, Jiang Q, Zhao X, Cheng Q, Guo L, Jia H, Lin L. Brominated flame retardants (BFRs) in marine food webs from Bohai Sea, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145036. [PMID: 33578148 DOI: 10.1016/j.scitotenv.2021.145036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
In this study, brominated flame retardants (BFRs), including 13 polybrominated diphenyl ethers (PBDEs) and 17 novel brominated flame retardants (NBFRs) are determined in 18 species (including plankton, invertebrate, and fish) from Bohai Sea, China. Trophic transfer of these compounds is also assessed in the marine food web. Significant trophic magnification (p < 0.01) for 11 PBDE congeners (BDE-17, BDE-28, BDE-47, BDE-49, BDE-66, BDE-85, BDE-99, BDE-100, BDE-153, BDE154 and BDE-183) is observed. No significant correlation is observed for BDE-138 (p = 0.06), and significant trophic dilution is observed for BDE-209 (p < 0.0001). In PBDEs, BDE-66 has the highest TMF value of 3.9 (95% confidence interval (CI): 3.2-4.7), followed by BDE-47 (TMF: 3.8, 95% CI: 2.6-5.4) and BDE-28 (3.0, 2.2-4.1). For NBFRs, ATE, TBECH (include α- and β-isomer), PBBZ, TBCO (include α- and β-isomer), PBT, DPTE, HBBZ, PBBA, BTBPE, PBEB and HCDBCO are observed significant trophic magnification (p < 0.01), significant trophic dilution is observed for BATE (p < 0.01), DBDPE (p < 0.001) and OBIND (p < 0.0001), no significant correlation is observed for p-TBX (p = 0.77). In NBFRs, PBT has the highest TMF value of 4.5 (95% CI: 3.1-6.3), followed by PBEB (TMF: 4.0, 95% CI: 2.1-7.6) and HCDBCO (3.9, 3.1-5.0). Regression analysis between KOW and TMF values of BFRs suggest that TMF values have a trend of first rising and then falling against the values of log KOW. Generally, chemicals with higher KOW value have stronger trophic magnification capacity than those with lower ones, but due to the influence of bioavailability, the trophic magnification ability of the superhydrophobic compounds may be inhibited. To our best knowledge, this is the first report of trophic transfer of NBFRs in marine food web and trophic transfer of 9 NBFRs (α-TBECH, p-TBX, BATE, PBBZ, α-TBCO, β-TBCO, DPTE, OBIND, and HCDBCO) in aquatic food web.
Collapse
Affiliation(s)
- Yonghu Liu
- College of Fisheries, Huazhong Agricultural University Wuhan, Hubei, China; Dalian Modern Marine Ranching Research Institute, Dalian, Liaoning, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, Liaoning, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Yue Ma
- Dalian Modern Marine Ranching Research Institute, Dalian, Liaoning, China
| | - Qian Jiang
- National Marine Environmental Monitoring Center, Dalian, Liaoning, China
| | - Xuewei Zhao
- Dalian Modern Marine Ranching Research Institute, Dalian, Liaoning, China
| | - Qian Cheng
- Dalian Modern Marine Ranching Research Institute, Dalian, Liaoning, China
| | - Lina Guo
- Dalian Modern Marine Ranching Research Institute, Dalian, Liaoning, China
| | - Hongliang Jia
- IJRC-PTS, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Li Lin
- College of Fisheries, Huazhong Agricultural University Wuhan, Hubei, China; College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Nevalainen L, Tuomisto J, Haapasaari P, Lehikoinen A. Spatial aspects of the dioxin risk formation in the Baltic Sea: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142185. [PMID: 33207481 DOI: 10.1016/j.scitotenv.2020.142185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Dioxins have been an inconvenience to the Baltic Sea ecosystem for decades. Although the concentrations in the environment and biota have continuously decreased, dioxins still pose a risk to human health. The risk and its formation vary in different parts of the Baltic Sea, due to variability in the environmental and societal factors affecting it. This paper presents a systematic literature review and knowledge synthesis about the regional dioxin risk formation in four sub-areas of the Baltic Sea and evaluates, whether systemic approach changes our thinking about the risk and its effective management. We studied the dioxin flux from atmospheric deposition to the Baltic Sea food webs, accumulation to two commercially and culturally important fish species, Baltic herring (Clupea harengus membras) and Baltic salmon (Salmo salar), and further to risk group members of four Baltic countries. Based on 46 studies, we identified 20 quantifiable variables and indexed them for commensurable regional comparison. Spatial differences in dioxin pollution, environmental conditions, food web dynamics, and the following dioxin concentrations in herring and salmon, together with fishing and fish consumption, affect how the final health risk builds up. In the southern Baltic Sea, atmospheric pollution levels are relatively high and environmental processes to decrease bioavailability of dioxins unfavorable, but the growth is fast, which curb the bioaccumulation of dioxins in the biota. In the North, long-range atmospheric pollution is minor compared to South, but the local pollution and slower growth leads to higher bioaccumulation rates. However, based on our results, the most remarkable differences in the dioxin risk formation between the areas arise from the social sphere: the emissions, origin of national catches, and cultural differences in fish consumption. The article suggests that acknowledging spatial characteristics of socio-ecological systems that generate environmental risks may aid to direct local focus in risk management.
Collapse
Affiliation(s)
- Lauri Nevalainen
- University of Helsinki, Ecosystems and Environment Research Programme, Kotka Maritime Research Centre, Viikinkaari 1, P.O. Box 65 00014 Helsinki, Finland; University of Helsinki, Ecosystems and Environment Research Programme, Kotka Maritime Research Centre, Keskuskatu 10, 48100 Kotka, Finland Centre, Keskuskatu 7, 48100 Kotka, Finland.
| | - Jouni Tuomisto
- Finnish Institute for Health and Welfare (THL), Neulaniementie 4, P.O. Box 95 70701 Kuopio, Finland
| | - Päivi Haapasaari
- University of Helsinki, Ecosystems and Environment Research Programme, Kotka Maritime Research Centre, Viikinkaari 1, P.O. Box 65 00014 Helsinki, Finland; University of Helsinki, Ecosystems and Environment Research Programme, Kotka Maritime Research Centre, Keskuskatu 10, 48100 Kotka, Finland Centre, Keskuskatu 7, 48100 Kotka, Finland
| | - Annukka Lehikoinen
- University of Helsinki, Ecosystems and Environment Research Programme, Kotka Maritime Research Centre, Viikinkaari 1, P.O. Box 65 00014 Helsinki, Finland; University of Helsinki, Ecosystems and Environment Research Programme, Kotka Maritime Research Centre, Keskuskatu 10, 48100 Kotka, Finland Centre, Keskuskatu 7, 48100 Kotka, Finland
| |
Collapse
|
11
|
Evaluation of Environmental Quality of Mediterranean Coastal Lagoons Using Persistent Organic Pollutants and Metals in Thick-Lipped Grey Mullet. WATER 2020. [DOI: 10.3390/w12123450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The evaluation of past and present anthropogenic impacts affecting the ecological quality status of transitional ecosystems is crucial from the perspective of protecting them from further deterioration, and to evaluate remediation and restoration measures. Contamination patterns of thick-lipped grey mullet from two Mediterranean coastal lagoons within a protected area in Italy were assessed and compared in order to evaluate their overall quality status and to collect information that can provide useful feedback on management choices aimed at enhancing environmental quality and biodiversity conservation. The quality status of the two lagoons was evaluated by an environmental assessment methodology based on indicators of direct and indirect human pressures, while a broad range of analyses were carried out to determine the presence and concentration of persistent organic pollutants (POPs) and metals in fish muscle tissue. A good quality status resulted for both lagoons, and an overall limited anthropogenic impact in the surrounding area. This could account for POPs and metal contamination levels found in mullet, although limited, and relating to their patterns. The overlap of results achieved with the two evaluation approaches can provide support for management choices in Mediterranean lagoon environments, especially for those committed to the protection and conservation of biodiversity.
Collapse
|
12
|
Ozkaleli Akcetin M, Gedik K, Balci S, Gul HK, Birgul A, Kurt Karakus PB. First insight into polybrominated diphenyl ethers in car dust in Turkey: concentrations and human exposure implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39041-39053. [PMID: 32642893 DOI: 10.1007/s11356-020-09905-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
The presence of polybrominated diphenyl ethers (PBDEs) in the car is due to their use as a flame retardant additive in various car components such as dashboard, plastic parts, seat and headliner cushion foams, insulated cables, and electronic circuits. Ingestion of dust inadvertently or dermal contact to dust are significant pathways of human exposure to pollutants including PBDEs. There are no studies documenting presence of car dust associated flame retardants in Turkey. In the current study, a total of 13 PBDEs congeners were investigated in 62 car dust samples collected from Bursa province of Turkey using glass-fiber filters and a vacuum cleaner. Results of the study showed that congener concentrations were within the range of <MDL-40198 ng/g and PBDE-209, major component of commercial deca-BDE, showed the highest concentration among the targeted congeners. Assessment of exposure to analyzed PBDEs via inadvertent dust ingestion and skin contact showed toddlers are exposed to these chemicals approx. 10 times higher compared to adults. Hazard quotient (HQ) values calculated based on total exposure (ingestion + dermal contact) and were < 1 for both adults and toddler indicated that exposure to car dust-associated PBDEs through ingestion and skin contact does not pose any health risks for human in Bursa.
Collapse
Affiliation(s)
- Merve Ozkaleli Akcetin
- Department of Environmental Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Kadir Gedik
- Department of Environmental Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir, Turkey
| | - Selçuk Balci
- Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Hatice Kübra Gul
- Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Askin Birgul
- Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Perihan Binnur Kurt Karakus
- Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey.
| |
Collapse
|
13
|
Viñas L, Besada V, Pérez-Fernández B, Bode A. Yellow-legged gull eggs (Larus michahellis) as persistent organic pollutants and trace metal bioindicator for two nearby areas with different human impact. ENVIRONMENTAL RESEARCH 2020; 190:110026. [PMID: 32771366 DOI: 10.1016/j.envres.2020.110026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The concentration of different persistent organic pollutants (POPs including chlorinated and brominated compounds) and trace metals and metalloids (As, Cd, Cu, Cr, Pb, Hg, Ni, and Zn) was examined in eggs from two colonies of yellow-legged gulls. The two colonies are established in Ría de Vigo, Northwest Spain, with a distance between them of only 10 km, one in Vigo town (industrial and harbour activities) and the other in the Cíes Islands in a Natural Park and Marine Protected Area -MPA- (with no known anthropogenic inputs). Statistically significant differences for the two colonies were observed for Hg, the sum of 7 CBs, the sum of DDTs y and the sum of 9 PBDEs, with values that could be causing some toxic effects in the area of the most anthropogenically influenced colony. The estimated isotopic niche was also calculated, based on δ15N and δ13C, for the two colonies, pointing to a wider diet in the Cíes colony when compared to the diet in the Vigo colony. The study supports the use of the yellow-legged seagull eggs as a bioindicator of pollution capable of differentiating pollution level even in geographically close areas.
Collapse
Affiliation(s)
- Lucía Viñas
- Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, Subida a Radio Faro, 50, 36390, Vigo, Spain.
| | - Victoria Besada
- Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, Subida a Radio Faro, 50, 36390, Vigo, Spain
| | - Begoña Pérez-Fernández
- Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, Subida a Radio Faro, 50, 36390, Vigo, Spain
| | - Antonio Bode
- Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, Apdo. 130, 15080, A Coruña, Spain
| |
Collapse
|
14
|
O'Neill SM, Carey AJ, Harding LB, West JE, Ylitalo GM, Chamberlin JW. Chemical tracers guide identification of the location and source of persistent organic pollutants in juvenile Chinook salmon (Oncorhynchus tshawytscha), migrating seaward through an estuary with multiple contaminant inputs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135516. [PMID: 31806347 DOI: 10.1016/j.scitotenv.2019.135516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Understanding the spatial extent, magnitude, and source of contaminant exposure in biota is necessary to formulate appropriate conservation measures to reduce or remediate contaminant exposure. However, obtaining such information for migratory animals is challenging. Juvenile Chinook salmon (Oncorhynchus tshawytscha), a threatened species throughout the US Pacific Northwest, are exposed to persistent organic pollutants (POPs), including polybrominated diphenyl ether (PBDE) flame retardants and polychlorinated biphenyls (PCBs), in many developed rivers and estuaries. This study used three types of complementary chemical tracer data (contaminant concentrations, POP fingerprints, and stable isotopes), to determine the location and source of contaminant exposure for natural- and hatchery-origin Chinook salmon migrating seaward through a developed watershed with multiple contaminant sources. Concentration data revealed that salmon were exposed to and accumulated predominantly PBDEs and PCBs in the lower mainstem region of the river, with higher PBDEs in natural- than hatchery-origin fish but similar PCBs in both groups, associated with differences in contaminant inputs and/or habitat use. The POP fingerprints of the natural-origin-fish captured from this region were also distinct from other region and origin sample groups, with much higher proportions of PBDEs in the total POP concentration, indicating a different contaminant source or habitat use than the hatchery-origin fish. Stable isotopes, independent tracers of food sources and habitat use, revealed that natural-origin fish from this region also had depleted δ15N signatures compared to other sample groups, associated with exposure to nutrient-rich wastewater. The PBDE-enhanced POP fingerprints in these salmon were correlated with the degree of depletion in nitrogen stable isotopes of the fish, suggesting a common wastewater source for both the PBDEs and the nitrogen. Identification of the location and source of contaminant exposure allows environmental managers to establish conservation measures to control contaminant inputs, necessary steps to improve the health of Chinook salmon and enhance their marine survival.
Collapse
Affiliation(s)
- Sandra M O'Neill
- Washington Department of Fish and Wildlife, PO Box 43200, Olympia, WA 98504-3200, USA.
| | - Andrea J Carey
- Washington Department of Fish and Wildlife, PO Box 43200, Olympia, WA 98504-3200, USA
| | - Louisa B Harding
- Washington Department of Fish and Wildlife, PO Box 43200, Olympia, WA 98504-3200, USA
| | - James E West
- Washington Department of Fish and Wildlife, PO Box 43200, Olympia, WA 98504-3200, USA
| | - Gina M Ylitalo
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112-2097, USA
| | - Joshua W Chamberlin
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112-2097, USA
| |
Collapse
|
15
|
Assunção MGL, Ives M, Davison PM, Barber JL, Moore A, Law RJ. Persistent contaminants in adipose fins of returning adult salmonids to the river Tees (UK). MARINE POLLUTION BULLETIN 2020; 153:110945. [PMID: 32056853 DOI: 10.1016/j.marpolbul.2020.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
We report on concentrations of polybrominated diphenylethers (PBDEs), polychlorinated biphenyls (PCBs), dichlorodiphenyldichloroethylene (p,p'-DDE) and hexachlorobenzene (HCB) measured in the adipose fins of returning adult Atlantic salmon (Salmo salar) and sea trout (Salmo trutta) to the river Tees in the Northeast of England. Overall, higher concentrations of these contaminants were found in sea trout samples, where detected congeners reflected the more widely used commercial formulations, in particular for the PBDEs. Our results suggest that these fish could be bioaccumulating persistent organic pollutants via diet during their migratory routes (North Sea and the Norwegian Sea) and, in addition, some level of re-mobilisation of these compounds could still be occurring in the UK eastern coastal areas. The use of adipose fin of returning salmonids could be further developed as a non-lethal approach to assess whether persistent contaminants are being accumulated during the juvenile to adult phase of salmonids originating from UK rivers.
Collapse
Affiliation(s)
- Marta G L Assunção
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft NR33 0HT, UK.
| | - Mark Ives
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft NR33 0HT, UK
| | - Phil M Davison
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft NR33 0HT, UK
| | - Jonathan L Barber
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft NR33 0HT, UK
| | - Andy Moore
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft NR33 0HT, UK
| | - Robin J Law
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft NR33 0HT, UK; Institute of Zoology, Reagent's Park, London NW1 4RY, UK
| |
Collapse
|
16
|
Šrédlová K, Škrob Z, Filipová A, Mašín P, Holecová J, Cajthaml T. Biodegradation of PCBs in contaminated water using spent oyster mushroom substrate and a trickle-bed bioreactor. WATER RESEARCH 2020; 170:115274. [PMID: 31751891 DOI: 10.1016/j.watres.2019.115274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/04/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Due to their persistence, polychlorinated biphenyls (PCBs) represent a group of important environmental pollutants, but conventional physicochemical decontamination techniques for their removal are usually expensive. The main aim of this work was to develop a cost-effective method for PCB bioremediation, focusing on contaminated water and utilizing the well-known degradation capability of Pleurotus ostreatus (the oyster mushroom). For this purpose, the conditions of several laboratory-scale reactors (working volume 1 L) were optimized. Spent oyster mushroom substrate obtained from a commercial farm was used as a fungal inoculum and growth substrate. The highest degradation efficiency (87%) was recorded with a continuous low-flow setup, which was subsequently scaled up (working volume 500 L) and used for the treatment of 4000 L of real contaminated groundwater containing 0.1-1 μg/L of PCBs. This trickle-bed pilot-scale bioreactor was able to remove 82, 80, 65, and 30-50% of di-, tri-, tetra- and pentachlorinated PCB congeners, respectively. No degradation was observed for hexa- or heptachlorinated congeners. Multiple mono- and dichlorobenzoic acids (CBAs) were identified as transformation products by mass spectrometry, confirming the role of biodegradation in PCB removal. A Vibrio fischeri bioluminescence inhibition test revealed slight ecotoxicity of the primary reactor effluent (sampling after 24 h), which was quickly suppressed once the effluent passed through the reactor for the second time. Moreover, no other effluent exhibited toxicity for the rest of the experiment (71 days in total). Microbial analyses (phospholipid fatty acid analysis and next-generation sequencing) showed that P. ostreatus was able to degrade PCBs in the presence of an abundance of other fungal species as well as aerobic and anaerobic bacteria. Overall, this study proved the suitability of the use of spent oyster mushroom substrate in a bioremediation practice, even for pollutants as recalcitrant as PCBs.
Collapse
Affiliation(s)
- Kamila Šrédlová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Zdena Škrob
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Alena Filipová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Pavel Mašín
- DEKONTA a.s, Volutová 2523, 15800, Prague 5, Czech Republic
| | - Jana Holecová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
17
|
Jing R, Kjellerup BV. Predicting the potential for organohalide respiration in wastewater: Comparison of intestinal and wastewater microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135833. [PMID: 31818564 DOI: 10.1016/j.scitotenv.2019.135833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Halogenated compounds such as polychlorinated biphenyl (PCBs) and polybrominated diphenyl ethers (PBDEs) enter wastewater treatment plants (WWTPs) via the sewage system. These organic contaminants partition between the aqueous and the biosolid phase, where the former is discharged as wastewater effluent. Biosolids from a WWTP provide a hydrophobic surface for adsorption and thus the presence and potential growth of organohalide respiring (OHR) bacteria. In this study, the aim was to assess the potential organohalide respiration capacity in wastewater biosolids by investigating actively organohalide respiring bacteria with a focus on organohalide respiration of PCBs and PCE. The results of the biosolids analysis showed increased amounts of products from PCB respiration. Simultaneously, experiments with organohalide respiration of PCE in biosolids samples showed significant decreases PCE concentration after 46 days (28-92%). Subsequently, it was evaluated if the OHR microbial populations in biosolids were similar to those present in intestinal human biofilms by applying a bioinformatic approach. The OHR populations of the communities were analyzed from existing American and Chinese human intestinal microbiomes. The overall groups Proteobacteria, Bacteroides, Actinobacteria, and Firmicutes phyla dominated the microbiomes in all datasets. The OHR groups in biosolids and intestinal biofilms included Dehalogenimonas, Dehalobacter, Desulfitibacter, Desulfovibrio, Sulfurospirillum, Clostridium, and Comamonas. The results of this study showed that several OHR phyla were present in all samples independent of origin. Wastewater and intestinal microbiomes also contained OHR phyla. Overall, the results points towards using bacterial communities in biosolids as indicators of organohalide respiration in wastewater and intestinal microbiomes, which is related to ingestion or halogenated compounds.
Collapse
Affiliation(s)
- Ran Jing
- Department of Civil and Environmental Engineering, University of Maryland, 1173 Glenn L. Martin Hall, 4298 Campus Dr, College Park, MD 20742, USA
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, 1173 Glenn L. Martin Hall, 4298 Campus Dr, College Park, MD 20742, USA.
| |
Collapse
|
18
|
He MJ, Lu JF, Wang J, Wei SQ, Hageman KJ. Phthalate esters in biota, air and water in an agricultural area of western China, with emphasis on bioaccumulation and human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134264. [PMID: 31494416 DOI: 10.1016/j.scitotenv.2019.134264] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/12/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Phthalate esters (PAEs) have been shown to be ubiquitous in abiotic and biotic environmental compartments; however, information about bioaccumulation behavior and human exposure, both via environmental exposure and the diet, are limited. Herein, we report the concentrations and composition profiles of phthalate esters (PAEs) in biological samples, river water, indoor air, and outdoor air samples collected from an agricultural site in western China. Dibutyl phthalate (DNBP) occupied a relatively high abundance in biological samples, discrepant with the environmental samples in which di-(2-ethylhexyl) phthalate (DEHP) was the dominant congener. Significant correlations (P < 0.05) were observed between the biota and river water samples, indicating that river water heavily influenced PAE accumulation in biological samples. The mean log Bioaccumulation Factors (BAFs) varied from 0.91 to 2.96, which implies that most PAE congeners are not likely to accumulate in organisms. No obvious trends were observed between log octanol-water partition coefficient (KOW) and log BAF values, nor between log octanol-air partition coefficient (KOW) and biota-air accumulation factors (BAAFs). Nevertheless, the calculated log air-water partitioning factors (AWPFs) of diethyl phthalate (DEP), dimethyl phthalate (DMP), and butyl benzyl phthalate (BBP) were similar to predicted values whereas those for diisobutyl phthalate (DIBP), DNBP and DEHP were significantly higher. The estimated daily intakes of PAEs via food ingestion and environmental exposure were 15, 9.4 and 1.2 ng/kg-bw/day in toddlers, children and adults, respectively, laying at the low end of the reported data and well below the reference dose.
Collapse
Affiliation(s)
- Ming-Jing He
- College of Resources and Environment, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, China.
| | - Jun-Feng Lu
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jun Wang
- Chongqing Research Academy of Environmental Sciences, Chongqing 401147, China
| | - Shi-Qiang Wei
- College of Resources and Environment, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, China
| | - Kimberly J Hageman
- Department of Chemistry & Biochemistry, Utah State University, Logan 84322, United States
| |
Collapse
|
19
|
Liu YE, Tang B, Liu Y, Luo XJ, Mai BX, Covaci A, Poma G. Occurrence, biomagnification and maternal transfer of legacy and emerging organophosphorus flame retardants and plasticizers in water snake from an e-waste site. ENVIRONMENT INTERNATIONAL 2019; 133:105240. [PMID: 31654917 DOI: 10.1016/j.envint.2019.105240] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/10/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Water snake and small common carp samples collected from a Chinese pond polluted with electronic waste (e-waste) were analyzed for organophosphorus flame retardants (PFRs), PFR metabolites, and plasticizers to investigate their occurrence, biomagnification, and maternal transfer in ovoviviparous species. Mean concentrations of total PFRs, PFR metabolites, and plasticizers were 2.2-16, 1.3-2.8 and 151-1320 ng/g wet weight (ww), respectively in analyzed organisms. Metabolites of PFRs were found in the same order of magnitude as or even higher than their parent compounds, indicating the importance of monitoring metabolites to evaluate the internal exposure of PFRs in organisms. Biomagnification factors (BMFs) were below 1 for all targeted chemicals and negatively correlated with metabolite/parent ratios (MPRs), suggesting a biodilution driven by metabolism. The lipid normalized concentrations were lower in eggs than in muscle for most of targeted chemicals. The maternal transfer potential was significantly and positively correlated with log KOW (p < 0.05) when log KOW was below 6.
Collapse
Affiliation(s)
- Yin-E Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, People's Republic of China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Giulia Poma
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
20
|
Li C, Liu J, Wu N, Pan X, Feng J, Al-Basher G, Allam AA, Qu R, Wang Z. Photochemical formation of hydroxylated polychlorinated biphenyls (OH-PCBs) from decachlorobiphenyl (PCB-209) on solids/air interface. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120758. [PMID: 31207486 DOI: 10.1016/j.jhazmat.2019.120758] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
In this work, the photochemical transformation of decachlorobiphenyl (PCB-209) on the surface of several solid particles were systematically evaluated under simulated solar irradiation. The degradation kinetics of PCB-209 were first investigated using silica as a model aerosol particulate. It was found that PCB-209 photodegradation was enhanced at small silica particle size, low surface coverage and low humidity. Electron paramagnetic resonance (EPR) analysis and radicals quenching experiments demonstrated that hydroxyl radicals contributed to PCB-209 degradation. Stepwise hydrodechlorination, hydroxyl addition and cleavage of the CC bridge bond were mainly observed in the reaction process, leading to the formation of lower chlorinated PCBs, hydroxylated PCBs (OH-PCBs) and chlorophenols. Based on density functional theory (DFT) calculation, the dissociation energy of the CCl bond requires 354.81-359.79 kJ/mol energy that corresponds to a wavelength of less than 322 nm. And the minimum activation energy of OH radicals attack on PCB-209 is only 18.12 kJ/mol. Photochemical transformation of PCB-209 can also occur on the surface of natural particles, but the rates were inhibited as compared to silica. The hydroxylation and hydrodechlorination products of PCB-209 were detected in all natural particles. This study would make significant contribution to understanding the fate of PCBs in solids/air interface.
Collapse
Affiliation(s)
- Chenguang Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Jiaoqin Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Xiaoxue Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Jianfang Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Gadh Al-Basher
- King Saud University, College of Science, Zoology Department, P.O. Box 2455, Riyadh, 11451, Saudia Arabia
| | - Ahmed A Allam
- Beni-Suef University, Faculty of Science, Zoology Department, Beni-Suef, 65211, Egypt
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China.
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| |
Collapse
|
21
|
Zhu J, Guo X, Shi J, Gao H. Dilution characteristics of riverine input contaminants in the Seto Inland Sea. MARINE POLLUTION BULLETIN 2019; 141:91-103. [PMID: 30955786 DOI: 10.1016/j.marpolbul.2019.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Riverine input is an important source of contaminants in the marine environments. Based on a hydrodynamic model, the dilution characteristics of riverine contaminants in the Seto Inland Sea and their controlling factors were studied. Results showed that contaminant concentration was high in summer and low in winter. Contaminant concentration decreased with the reduction of its half-life period, and the relationship between them followed power functions. Sensitivity experiments suggested that the horizontal current and vertical stratification associated with air-sea heat flux controlled the seasonal cycle of contaminant concentration in the water column; however, surface wind velocity was the dominant factor affecting the surface contaminant concentration. In addition, contaminant concentration in a sub-region was likely controlled by the variations in river discharges close to the sub-region. These results are helpful for predicting contaminant concentrations in the sea and are expected to contribute to assessing the potential ecological risks to aquatic organisms.
Collapse
Affiliation(s)
- Junying Zhu
- Key laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China; Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-Cho, Matsuyama 790-8577, Japan; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xinyu Guo
- Key laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China; Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-Cho, Matsuyama 790-8577, Japan.
| | - Jie Shi
- Key laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Huiwang Gao
- Key laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
22
|
Muñoz-Arnanz J, Chirife AD, Galletti Vernazzani B, Cabrera E, Sironi M, Millán J, Attard CRM, Jiménez B. First assessment of persistent organic pollutant contamination in blubber of Chilean blue whales from Isla de Chiloé, southern Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1521-1528. [PMID: 30308837 DOI: 10.1016/j.scitotenv.2018.09.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Persistent organic pollutants (POPs) were assessed for the first time in blue whales from the South Pacific Ocean. Concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB) and dichlorodiphenyltrichloroethane and its main metabolites (DDTs), were determined in 40 blubber samples from 36 free-ranging individuals and one stranded, dead animal along the coast of southern Chile between 2011 and 2013. PCBs were the most abundant pollutants (2.97-975 ng/g l.w.), followed by DDTs (3.50-537 ng/g l.w.), HCB (nd-77.5 ng/g l.w.) and PBDEs (nd-33.4 ng/g l.w). There was evidence of differences between sexes, with lower loads in females potentially due to pollutants passing to calves. POP concentrations were higher in specimens sampled in 2013; yet, between-year differences were only statistically significant for HCB and PBDEs. Lower chlorinated (penta > tetra > tri) and brominated (tetra > tri) congeners were the most prevalent among PCBs and PBDEs, respectively, mostly in agreement with findings previously reported in blue and other baleen whales. The present study provides evidence of lower levels of contamination by POPs in eastern South Pacific blue whales in comparison to those reported for the Northern Hemisphere.
Collapse
Affiliation(s)
- J Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, (IQOG-CSIC), Juan de la Cierva 3, Madrid, Spain.
| | - A D Chirife
- Facultad de Ciencias de la Vida, Universidad Andres Bello, República 252, Santiago, Chile
| | - B Galletti Vernazzani
- Centro de Conservación Cetacea (CCC), Casilla 19178 Correo Alonso de Cordoba, Santiago, Chile
| | - E Cabrera
- Centro de Conservación Cetacea (CCC), Casilla 19178 Correo Alonso de Cordoba, Santiago, Chile
| | - M Sironi
- Instituto de Conservación de Ballenas, O'Higgins 4380, 1429 Buenos Aires, Argentina
| | - J Millán
- Facultad de Ciencias de la Vida, Universidad Andres Bello, República 252, Santiago, Chile
| | - C R M Attard
- Molecular Ecology Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia; Cetacean Ecology, Behaviour and Evolution Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - B Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, (IQOG-CSIC), Juan de la Cierva 3, Madrid, Spain
| |
Collapse
|
23
|
He MJ, Lu JF, Wei SQ. Organophosphate esters in biota, water, and air from an agricultural area of Chongqing, western China: Concentrations, composition profiles, partition and human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:388-397. [PMID: 30352353 DOI: 10.1016/j.envpol.2018.10.085] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
We measured the concentrations of organophosphate esters (OPEs) in some biotic samples which can serve as human foodstuffs and ambient environments including air and river water from an agricultural area of Chongqing, western China. Fish samples exhibited highest OPEs levels (960 ng/g lipid weight) among the biota, followed by chicken (676 ng/g lw), cattle (545 ng/g lw) and pigs (535 ng/g lw). Tributyl phosphate (TNBP), tris (2-methylpropyl) (TIBP) and chlorinated OPEs were the major analogs in biotic samples, which appeared similar with the patterns from river water and outdoor air, but apparently different from indoor air. To further investigate the influence of ambient environment on the distribution of OPEs in biota, we analyzed the correlation between OPEs concentrations in ambient environment and biological samples, and the results revealed that most of the samples (except for pig samples) heavily correlated with outdoor air, whereas only fish and cattle samples were strongly correlated with river water. The partitioning behaviors of OPEs among biota, air and river water were also studied through calculating the biota-water accumulation factors (BWAFs), biota-air accumulation factors (BAAFs) and air-water partitioning factor (AWPFs). Significantly linear correlations (P < 0.05) were observed between log (BWAFs) and log (KOW) values, and between log (AWPFs) and log H (Henry's law constants), nevertheless log (BAAFs) was increasing along with the log (KOA) values. The daily intake (DI) values were estimated via foodstuffs ingestion and environmental exposure. The estimated DI values of OPEs from food and ambient environments were 1.78 ng/kg-bw/day, 1.23 ng/kg-bw/day and 1.42 ng/kg-bw/day in toddlers, children and adults, respectively, which lay at the low end of the reported data and well below the reference dose (RfD).
Collapse
Affiliation(s)
- Ming-Jing He
- College of Resources and Environment, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| | - Jun-Feng Lu
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Shi-Qiang Wei
- College of Resources and Environment, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China
| |
Collapse
|
24
|
Lukyanova ON, Tsygankov VY, Boyarova MD. Organochlorine pesticides and polychlorinated biphenyls in the Bering flounder (Hippoglossoides robustus) from the Sea of Okhotsk. MARINE POLLUTION BULLETIN 2018; 137:152-156. [PMID: 30503421 DOI: 10.1016/j.marpolbul.2018.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 06/09/2023]
Abstract
The purpose of this study is to establish the presence of POPs in the Bering flounder (Hippoglossoides robustus) from the Sea of Okhotsk (North-West Pacific). Concentration of OCPs (α-HCH, β-HCH, γ-HCH, o,p'-DDT, p,p'-DDT, o,p'-DDD, p,p'-DDD, o,p'-DDE and p,p'-DDE) and PCBs (28, 52, 155, 101, 118, 143, 153, 138, 180, 207) in samples were measured by GC-MS and GC-ECD. The mean OCP concentrations in flounder from East and South areas of the Sea of Okhotsk were 99.8 ± 125.4 and 53.6 ± 40.5 ng/g lipid, respectively; PCB congeners - 112 ± 94.2 and 88.8 ± 50.8 ng/g lipid, respectively. POPs in fish tissue decreased in the order: PCBs > HCHs > DDTs. Our results indicate that consumers will have no health risk due to fish consumption from Sea of Okhotsk. OCP and PCB levels in the Sea of Okhotsk may be considered as background level for the North Pacific.
Collapse
Affiliation(s)
- Olga N Lukyanova
- Pacific Research Fisheries Centre (TINRO-Centre), 4 Shevchenko Alley, 690091 Vladivostok, Russia; School of Natural Sciences, Far Eastern Federal University, 8 Sukhanova str., 690091 Vladivostok, Russia
| | - Vasiliy Yu Tsygankov
- School of Biomedicine, Far Eastern Federal University, 8 Sukhanova str., 690091 Vladivostok, Russia.
| | - Margarita D Boyarova
- School of Biomedicine, Far Eastern Federal University, 8 Sukhanova str., 690091 Vladivostok, Russia
| |
Collapse
|
25
|
Thornton LM, Path EM, Nystrom GS, Venables BJ, Sellin Jeffries MK. Embryo-larval BDE-47 exposure causes decreased pathogen resistance in adult male fathead minnows (Pimephales promelas). FISH & SHELLFISH IMMUNOLOGY 2018; 80:80-87. [PMID: 29859315 DOI: 10.1016/j.fsi.2018.05.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/12/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Exposures to polybrominated diphenyl ethers (PBDEs) have been shown to alter immune function in adult organisms across a variety of taxa. However, few if any studies have investigated the long-term consequences of early life stage PBDE exposures on immune function in fish. This study sought to determine the effects of early life stage BDE-47 exposure on pathogen resistance in the fathead minnow (Pimephales promelas) following an extended depuration period (≥180 d). Minnows were exposed to BDE-47 via a combination of maternal transfer and diet through 34 days post fertilization (dpf), raised to adulthood (>215 dpf) on a clean diet, then subjected to pathogen resistance trials. Early life stage exposures to BDE-47 did not affect the ability of females to survive from Yersinia ruckeri infection. However, the survival of BDE-47 exposed males was significantly reduced relative to controls, indicating that developmental exposures to BDE-47 altered male immunity. Because BDE-47 is a known thyroid hormone disruptor and thyroid hormone disruptors have the potential to adversely impact immune development and function, metrics indicative of thyroid disruption were evaluated, as were immune parameters known to be altered in response to thyroid disruption. BDE-47 exposed minnows exhibited signs of thyroid disruption (i.e., reduced growth); however, no alterations were observed in immune parameters known to be influenced by thyroid hormones (i.e., thymus size, expression of genes associated with lymphoid development) suggesting that the observed alterations in immunocompetence may occur through alternative mechanisms. Regardless of the mechanisms responsible, the results of this study demonstrate the potential for early life stage PBDE exposures to adversely impact immunity and illustrate that the immunological consequences of PBDE exposures are sex dependent.
Collapse
Affiliation(s)
- Leah M Thornton
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA; Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Elise M Path
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Gunnar S Nystrom
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Barney J Venables
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | | |
Collapse
|
26
|
Stubleski J, Lind L, Salihovic S, Lind PM, Kärrman A. Longitudinal changes in persistent organic pollutants (POPs) from 2001 to 2009 in a sample of elderly Swedish men and women. ENVIRONMENTAL RESEARCH 2018; 165:193-200. [PMID: 29715601 DOI: 10.1016/j.envres.2018.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Prospective cohort studies evaluating the temporal trends of background-level persistent organic pollutants (POPs) and their potential negative health effects in humans are needed. OBJECTIVE The objectives of this study are to examine the five year longitudinal trend in chlorinated and brominated (Cl/Br) POP concentrations in a sample of elderly individuals and to investigate the relationship between gender, changes in body weight, plasma lipid levels and POP concentrations. METHODS In the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study, plasma samples were collected from the same individuals over a 5 year period. Originally 992 subjects (all aged 70) were sampled between 2001 and 2004 and 814 returning subjects (all aged 75) were sampled again from 2006 to 2009. Plasma concentrations of 16 polychlorinated biphenyls (PCBs), 5 organochlorine pesticides (OCPs), octachlorinated dibenzo-p-dioxin (OCDD), and one polybrominated diphenylether (BDE 47) were determined using high-throughput 96-well plate solid phase extraction and gas chromatography-high resolution mass spectrometry (GC-HRMS). RESULTS During the 5-year follow-up, plasma concentrations of all POPs significantly decreased (p < 0.00001). Median reductions ranged from 4% (PCB105) to 45% (PCB 99), with most reductions being in the 30-40% range. For most POPs, a larger decline was seen in men than in women. The relationship between the weight change and change in POP concentrations was generally negative, but a positive relationship between lipid levels and POP concentrations when expressed as wet-weight was observed. In general, similar changes in POP concentrations and their relationships to body weight were observed regardless of using either wet-weight (pg/mL) or lipid-normalized (ng/g lipid) concentrations. CONCLUSION In this longitudinal cohort study, gender and minor, but varying changes in body weight and lipid levels greatly influenced the individual-based changes in POP concentrations. In general, our findings suggest that men and women with larger decreases in body weight and greater increases in lipid levels have the slowest decline in body burden of POPs. Based on the results from this study, either wet-weight or lipid normalized concentrations can be used to determine the percent change in POP concentrations and their relationships to physiological changes and differences.
Collapse
Affiliation(s)
- Jordan Stubleski
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Samira Salihovic
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden; Department of Medical Sciences and Science for Life Laboratory, Molecular Epidemiology Unit, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Anna Kärrman
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden.
| |
Collapse
|
27
|
Muenhor D, Harrad S. Polybrominated diphenyl ethers (PBDEs) in car and house dust from Thailand: Implication for human exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:629-642. [PMID: 29432049 DOI: 10.1080/10934529.2018.1429725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study examines concentrations of tri- to hexa-bromodiphenylethers (BDEs 17, 28, 47, 49, 66, 85, 99, 100, 153 and 154; Σ10PBDEs (polybrominated diphenyl ethers)) in car (n = 30) and house dust samples (n = 53) collected from different provinces in Thailand. The specific objectives of this study were: (i) to monitor levels of tri- to hexa-bromodiphenylethers (BDEs 17, 28, 47, 49, 66, 85, 99, 100, 153 and 154; Σ10PBDEs) in vehicle and residential dust sampled from various provinces in Thailand; (ii) to compare PBDE concentrations with those detected for domestic and automobile dust in studies from other countries and (iii) to estimate exposure of the Thai population to the target PBDEs via dust ingestion. Levels of Σ10PBDEs in vehicle and domestic dust were 0.68-38 and 0.59-260 ng g-1, respectively. BDEs 99 and 47 were the most abundant congeners in all automobile and residential dust samples. A t-test analysis indicated that Σ10PBDE concentrations in dust samples from dwellings exceeded significantly those from cars (p = 0.001). Furthermore, contents in dust of all PBDEs studied, except for BDE-28, were significantly higher in homes than in vehicles (p = 0.000-0.004). Principal Component Analysis (PCA) demonstrated no differences in PBDE congener patterns between Thai house and automobile dust, but revealed some subtle differences in the congener pattern between household dust samples in Thailand and those reported previously for the United Kingdom. Estimated environmental exposure of Thai adults and children for BDE-99 via dust ingestion were well within a chronic oral reference dose (RfD) for BDE-99 (100 ng/kg bw/day) proposed by the United States Environmental Protection Agency (US EPA).
Collapse
Affiliation(s)
- Dudsadee Muenhor
- a School of Geography , Earth and Environmental Sciences, University of Birmingham , Birmingham , United Kingdom
- b Faculty of Environmental Management , Prince of Songkla University , Hat Yai , Songkhla , Thailand
- c Air Pollution and Health Effect Research Center , Prince of Songkla University , Hat Yai , Songkhla , Thailand
- d Health Impact Assessment Research Center , Prince of Songkla University , Hat Yai , Songkhla , Thailand
- e Center of Excellence on Hazardous Substance Management (HSM) , Bangkok , Thailand
| | - Stuart Harrad
- a School of Geography , Earth and Environmental Sciences, University of Birmingham , Birmingham , United Kingdom
| |
Collapse
|
28
|
Bjurlid F, Roos A, Ericson Jogsten I, Hagberg J. Temporal trends of PBDD/Fs, PCDD/Fs, PBDEs and PCBs in ringed seals from the Baltic Sea (Pusa hispida botnica) between 1974 and 2015. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1374-1383. [PMID: 29066193 DOI: 10.1016/j.scitotenv.2017.10.178] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 05/21/2023]
Abstract
Temporal trends in exposure to persistent organic pollutants (POPs) were assessed in 22 pooled samples gathered from 69 individuals of Baltic ringed seal (Pusa hispida botnica) from 1974 to 2015. Samples were analysed for polybrominated dibenzo-p-dioxins and furans (PBDD/Fs), polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs). No previous study has reported on the occurrence of PBDD/Fs in marine mammals in the Baltic Sea. Concentrations of pollutants in Baltic ringed seal, a marine mammal and top predator, can be used as an indicator of pollutants concentrations in the Baltic region. Visual inspection of data did not show any temporal trends for PBDD/Fs, while the PCDD/Fs and PCBs showed decreasing concentrations between 1974 and 2015. PBDEs increased until the end of the 1990s and then decreased until the end of the period. ∑PBDD/Fs ranged from 0.5-52.3pg/g lipid weight (l.w.) (0.08-4.8pgTEQ/g l.w.), with 1,2,3,4,6,7,8-HpBDF contributing on average 61% to ∑PBDD/Fs. ∑PCDD/Fs ranged from 103 to 1480pg/g l.w. (39-784pgTEQ/g l.w.), with 1,2,3,6,7,8-HxCDD, 1,2,3,7,8-PeCDD and 2,3,4,7,8-PeCDF showing the highest average concentrations. PBDD/F toxic equivalents (TEQ) contributed on average 1.1% to the total (PBDD/F+PCDD/F) TEQ. The ∑PBDEs concentration range was 18.7-503ng/g l.w., with BDE #47 the predominant congener. The concentration range for ∑PCBs was 2.8-40.1μg/g l.w., with #138 and #153 the most abundant congeners. Visual inspection of the data showed decreasing concentrations for all compound groups except PBDD/Fs. A slight increase in the PBDD/Fs concentrations was observed from 2004 onwards. This observation needs to be investigated further.
Collapse
Affiliation(s)
- F Bjurlid
- MTM Research Centre, School of Science and Technology, Örebro University, SE 701 82 Örebro, Sweden.
| | - A Roos
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, PO Box 50007, SE 104 05 Stockholm, Sweden
| | - I Ericson Jogsten
- MTM Research Centre, School of Science and Technology, Örebro University, SE 701 82 Örebro, Sweden
| | - J Hagberg
- MTM Research Centre, School of Science and Technology, Örebro University, SE 701 82 Örebro, Sweden; Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, SE-701 85 Örebro, Sweden
| |
Collapse
|
29
|
Bjurlid F, Dam M, Hoydal K, Hagberg J. Occurrence of polybrominated dibenzo-p-dioxins, dibenzofurans (PBDD/Fs) and polybrominated diphenyl ethers (PBDEs) in pilot whales (Globicephala melas) caught around the Faroe Islands. CHEMOSPHERE 2018; 195:11-20. [PMID: 29248748 DOI: 10.1016/j.chemosphere.2017.12.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Blubber from Faroese pilot whales (Globicephala melas) was analysed for brominated dioxins PBDD/Fs, with a subset also analysed for chlorinated dioxins, PCDD/Fs. The studied individuals were restricted to juvenile male whales sampled in the Faroe Islands during the period 1997-2013. Among the PBDD/Fs, the furans were predominant, although the relative abundance of various congeners differed between samples. Furans accounted for, on average, 79% of the ∑PBDD/Fs in the samples, with 1,2,3,4,6,7,8-HpBDF the most abundant congener, found in half of the analysed pilot whales. The concentration range for ∑PBDD/Fs among the samples was 0.080-71 pg/g l.w. (lipid weight), and the sum of toxic equivalents ranged from 0.0039 to 4.7 pg TEQ/g l.w. No relationship was found between PBDD/Fs and PCDD/Fs. In addition, 20 pilot whale samples from the period 2010-2013 were analysed for PBDEs. Several PBDE congeners were found in all of the sampled pilot whales, and at noticeably higher levels than PBDD/Fs and PCDD/Fs. The ∑PBDEs ranged from 140 to 1900 ng/g l.w., with BDE #47 the most abundant congener detected in the samples. Results from the present study were then compared with data from previous studies on pilot wales to investigate temporal trends between 1986 and 2013. The comparison indicated that PBDE concentrations in juvenile males have decreased from 1996 to the latest observations in 2013. No relationship between the concentration levels of PBDD/Fs and PBDEs in the sampled pilot whales could be identified, which indicates possible differences in the metabolism of, or exposure to, PBDEs and PBDD/Fs.
Collapse
Affiliation(s)
- F Bjurlid
- MTM Research Centre, School of Science and Technology, Örebro University, SE 701 82, Örebro, Sweden.
| | - M Dam
- Environment Agency, Traðagøta 38, FO-165, Argir, Faroe Islands
| | - K Hoydal
- Environment Agency, Traðagøta 38, FO-165, Argir, Faroe Islands
| | - J Hagberg
- MTM Research Centre, School of Science and Technology, Örebro University, SE 701 82, Örebro, Sweden; Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, SE-701 85, Örebro, Sweden
| |
Collapse
|
30
|
Ding J, Deng T, Xu M, Wang S, Yang F. Residuals of organophosphate esters in foodstuffs and implication for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:986-991. [PMID: 29037495 DOI: 10.1016/j.envpol.2017.09.092] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 05/25/2023]
Abstract
Foodstuffs may be contaminated by organophosphate esters (OPEs) and become an important source of human exposure since OPEs are ubiquitous in the environment. In the present study, 10 OPEs were analyzed in various food matrices collected from a city in Eastern China including chicken, pork, fishes, vegetables, tofu, eggs, milk and cereals. The concentrations of Σ10OPEs ranged from 1.1 to 9.6 ng g-1 fresh weight (fw) in the foodstuffs. Cereals had the highest residual level of total OPEs with a mean value of 5.7 ng g-1 fw. Tris(2-ethylhexyl) phosphate was detected in all foodstuff samples and showed the highest median residual concentration of 1.3 ng g-1 fw among the OPE analogs. The daily dietary intake of OPEs was calculated as 3.6 and 2.4 μg d-1 for adults and children. Cereals were identified as the major contributor to the total OPEs among different types of foodstuffs. Preliminary exposure assessment revealed that the current non-cancer health risks of OPEs via dietary intake were in the range of 10-5-10-3, indicating low risk levels. Moreover, the hazard index of OPEs indicated that the risk for children (3 × 10-3) was higher than adults (2 × 10-3).
Collapse
Affiliation(s)
- Jinjian Ding
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China; Laboratory of Environmental Monitoring, Research Institute of Zhejiang University-Taizhou, 318000 Taizhou, China
| | - Tongqing Deng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China
| | - Mengmeng Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China
| | - Shen Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China.
| |
Collapse
|
31
|
Romero-Romero S, Herrero L, Fernández M, Gómara B, Acuña JL. Biomagnification of persistent organic pollutants in a deep-sea, temperate food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:589-597. [PMID: 28672247 DOI: 10.1016/j.scitotenv.2017.06.148] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) were measured in a temperate, deep-sea ecosystem, the Avilés submarine Canyon (AC; Cantabrian Sea, Southern Bay of Biscay). There was an increase of contaminant concentration with the trophic level of the organisms, as calculated from stable nitrogen isotope data (δ15N). Such biomagnification was only significant for the pelagic food web and its magnitude was highly dependent on the type of top predators included in the analysis. The trophic magnification factor (TMF) for PCB-153 in the pelagic food web (spanning four trophic levels) was 6.2 or 2.2, depending on whether homeotherm top predators (cetaceans and seabirds) were included or not in the analysis, respectively. Since body size is significantly correlated with δ15N, it can be used as a proxy to estimate trophic magnification, what can potentially lead to a simple and convenient method to calculate the TMF. In spite of their lower biomagnification, deep-sea fishes showed higher concentrations than their shallower counterparts, although those differences were not significant. In summary, the AC fauna exhibits contaminant levels comparable or lower than those reported in other systems.
Collapse
Affiliation(s)
- Sonia Romero-Romero
- Área de Ecología, Dpto. de Biología de Organismos y Sistemas, Universidad de Oviedo, Catedrático Rodrigo Uría s/n, 33071 Oviedo, Asturias, Spain.
| | - Laura Herrero
- Department of Instrumental Analysis and Environmental Chemistry, Institute of General Organic Chemistry, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Mario Fernández
- Department of Instrumental Analysis and Environmental Chemistry, Institute of General Organic Chemistry, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Belén Gómara
- Department of Instrumental Analysis and Environmental Chemistry, Institute of General Organic Chemistry, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - José Luis Acuña
- Área de Ecología, Dpto. de Biología de Organismos y Sistemas, Universidad de Oviedo, Catedrático Rodrigo Uría s/n, 33071 Oviedo, Asturias, Spain
| |
Collapse
|
32
|
Ademollo N, Patrolecco L, Matozzo V, Marin MG, Valsecchi S, Polesello S. Clam bioaccumulation of Alkylphenols and Polyciclic aromatic hydrocarbons in the Venice lagoon under different pressures. MARINE POLLUTION BULLETIN 2017; 124:121-129. [PMID: 28712769 DOI: 10.1016/j.marpolbul.2017.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Biota-Sediment Accumulation Factors (BSAFs) of nonylphenols (NPs) and polycyclic aromatic hydrocarbons (PAHs) in Ruditapes philippinarum from the Venice Lagoon (Italy) were determined with the aim to verify whether the routine biomonitoring studies are reliable in contaminated sites. Clams and sediments were collected in field campaigns (October 2003 to June 2004) in three sites of the Venice Lagoon. Results showed that Marghera and Campalto sediments were more contaminated by NPs and PAHs than Poveglia. Different trends were observed in the contamination of clams with the highest BSAFs found at Poveglia. BSAF trend appeared to be inversely related to the contaminant pressure on the sites. These results suggest that clam bioaccumulation is not always representative of the chemical pressure on aquatic biota. The direct correlation between sediment and biota concentrations in contaminated sites can be lost as a function of the site-specific conditions such as sediment toxicity and food availability.
Collapse
Affiliation(s)
- N Ademollo
- Water Research Institute, National Research Council, Via Salaria Km29.300, 00015 Monterotondo St., Rome, Italy.
| | - L Patrolecco
- Water Research Institute, National Research Council, Via Salaria Km29.300, 00015 Monterotondo St., Rome, Italy
| | - V Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - M G Marin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - S Valsecchi
- Water Research Institute, National Research Council, Via della Mornera, 25, 20047 Brugherio (MI), Italy
| | - S Polesello
- Water Research Institute, National Research Council, Via della Mornera, 25, 20047 Brugherio (MI), Italy
| |
Collapse
|
33
|
Nakatani T, Yamano T. Polychlorinated dibenzo- p-dioxins, polychlorinated dibenzofurans and dioxin-like coplanar polychlorinated biphenyls in mackerel obtained from the Japanese market, 1999–2003. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:1562-1572. [DOI: 10.1080/19440049.2017.1336285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tadashi Nakatani
- Food Chemistry Section 2, Division of Hygienic Chemistry, Osaka Institute of Public Health, Osaka, Japan
| | - Testuo Yamano
- Food Chemistry Section 2, Division of Hygienic Chemistry, Osaka Institute of Public Health, Osaka, Japan
| |
Collapse
|
34
|
Piersanti A, Tavoloni T, Bastari E, Lestingi C, Romanelli S, Rossi R, Saluti G, Moretti S, Galarini R. A GC-EI-MS/MS Method for the Determination of 15 Polybrominated Diphenyl Ethers (PBDEs) in Fish and Shellfish Tissues. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1006-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Windsor FM, Ormerod SJ, Tyler CR. Endocrine disruption in aquatic systems: up-scaling research to address ecological consequences. Biol Rev Camb Philos Soc 2017; 93:626-641. [PMID: 28795474 PMCID: PMC6849538 DOI: 10.1111/brv.12360] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022]
Abstract
Endocrine‐disrupting chemicals (EDCs) can alter biological function in organisms at environmentally relevant concentrations and are a significant threat to aquatic biodiversity, but there is little understanding of exposure consequences for populations, communities and ecosystems. The pervasive nature of EDCs within aquatic environments and their multiple sub‐lethal effects make assessments of their impact especially important but also highly challenging. Herein, we review the data on EDC effects in aquatic systems focusing on studies assessing populations and ecosystems, and including how biotic and abiotic processes may affect, and be affected by, responses to EDCs. Recent research indicates a significant influence of behavioural responses (e.g. enhancing feeding rates), transgenerational effects and trophic cascades in the ecological consequences of EDC exposure. In addition, interactions between EDCs and other chemical, physical and biological factors generate uncertainty in our understanding of the ecological effects of EDCs within aquatic ecosystems. We illustrate how effect thresholds for EDCs generated from individual‐based experimental bioassays of the types commonly applied using chemical test guidelines [e.g. Organisation for Economic Co‐operation and Development (OECD)] may not necessarily reflect the hazards associated with endocrine disruption. We argue that improved risk assessment for EDCs in aquatic ecosystems urgently requires more ecologically oriented research as well as field‐based assessments at population‐, community‐ and food‐web levels.
Collapse
Affiliation(s)
- Fredric M Windsor
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, U.K.,Department of Biosciences, University of Exeter, Exeter, EX4 4PS, U.K
| | - Steve J Ormerod
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, U.K
| | - Charles R Tyler
- Department of Biosciences, University of Exeter, Exeter, EX4 4PS, U.K
| |
Collapse
|
36
|
Ding C, Rogers MJ, Yang KL, He J. Loss of the ssrA genome island led to partial debromination in the PBDE respiring Dehalococcoides mccartyi strain GY50. Environ Microbiol 2017; 19:2906-2915. [PMID: 28618081 DOI: 10.1111/1462-2920.13817] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 11/30/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs), chemicals commonly used as flame-retardants in consumer products, are emerging persistent organic pollutants that are ubiquitous in the environment. In this study, we report a PBDE-respiring isolate - Dehalococcoides mccartyi strain GY50, which debrominates the most toxic tetra- and penta-BDE congeners (∼1.4 µM) to diphenyl ether within 12 days with hydrogen as the electron donor. The complete genome sequence revealed 26 reductive dehalogenase homologous genes (rdhAs), among which three genes (pbrA1, pbrA2 and pbrA3) were highly expressed during PBDE debromination. After 10 transfers of GY50 with trichloroethene or 2,4,6-trichlorophenol as the electron acceptor instead of PBDEs, the ssrA-specific genome island (ssrA-GI) containing pbrA1 and pbrA2 was deleted from the genome of strain GY50, leading to two variants (strain GY52 with trichloroethene, strain GY55 with 2,4,6-trichlorophenol) with identically impaired debromination capabilities (debromination of penta-/tetra-BDEs ceased at di-BDE 15). Through analysis of Illumina paired-end sequencing data, we identified read pairs that probably came from variants that contain ssrA-GI deletions, indicating their possible presence in the original strain GY50 culture. The two variant strains provide real-time examples on rapid evolution of organohalide-respiring organisms. As PBDE-respiring organisms, GY50-like strains may serve as key players in detoxifying PBDEs in contaminated environments.
Collapse
Affiliation(s)
- Chang Ding
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
37
|
Chen YP, Zheng YJ, Liu Q, Ellison AM, Zhao Y, Ma QY. PBDEs (polybrominated diphenyl ethers) pose a risk to captive giant pandas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:174-181. [PMID: 28431316 DOI: 10.1016/j.envpol.2017.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 04/09/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
The Qinling subspecies of giant panda (Ailuropoda melanoleuca qinlingensis), is highly endangered; fewer than 350 individuals still inhabit Qinling Mountains. Previous research revealed captive pandas were exposed to bromine, so we hypothesized that captive pandas were exposed to and affected by polybrominated diphenyl ethers (PBDEs). To test this hypothesis, we tested blood and feces of captive and wild pandas, their drinking water, food (bamboo leaves) from SWARC (Shaanxi Wild Animal Research Center)and FNNR (Foping National Nature Reserve) and supplemental feedstuff given to captive panda at SWARC. We found 13 congeners of PBDEs in fecal samples, of which BDE47, BDE66, BDE71, BDE99, and BDE154 were the dominant, total PBDE concentration in feces of captive pandas was 255% higher than in wild pandas. We found nine PBDEs congeners in blood samples: BDE153 and BDE183 were the predominant congers. PBDEs in blood from captive pandas were significantly higher than in wild pandas. The total concentration of PBDEs were 5473 and 4835 (pg.g) in Fargesia qinlingensis, were 2192 and 1414 (pg.g) in Bashannia fargesii (2192, 1414 pg g), 0.066, 0.038 (pg/ml) in drinking water, and 28.8 (pg.g) in supplemental feedstuff for captive and wild pandas, which indicate that the PBDEs came from its bamboo feed, especially from Bashannia fargesii. Our results demonstrate that BDE99 and BDE47 could be threatening the pandas' health especially for captive panda and there are potential health risks from PBDEs for pandas. In the short term, this risk may be ameliorated by strict control of food quality. In the long term, however, reducing air, water and soil contamination so as to improve environmental quality can best reduce these risks to meet the international standard such as Stockholm Convention.
Collapse
Affiliation(s)
- Yi-Ping Chen
- SKLLQG (State Key Laboratory of Loess and Quaternary Geology), Institute of Earth Environment, CAS, Xi'an 710075, China; College of Life Science, Northwest Normal University, Lanzhou 730000, China.
| | - Ying-Juan Zheng
- SKLLQG (State Key Laboratory of Loess and Quaternary Geology), Institute of Earth Environment, CAS, Xi'an 710075, China
| | - Qiang Liu
- SKLLQG (State Key Laboratory of Loess and Quaternary Geology), Institute of Earth Environment, CAS, Xi'an 710075, China
| | - Aaron M Ellison
- Harvard University, Harvard Forest, Petersham, MA 01368, USA
| | - Yan Zhao
- SKLLQG (State Key Laboratory of Loess and Quaternary Geology), Institute of Earth Environment, CAS, Xi'an 710075, China
| | - Qing-Yi Ma
- Shaanxi Wild Animal Research Center, Zhouzhi, Xi'an 710402, China
| |
Collapse
|
38
|
Jin X, Guo X, Xu D, Zhao Y, Xia X, Bai F. Single-Cell Real-Time Visualization and Quantification of Perylene Bioaccumulation in Microorganisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6211-6219. [PMID: 28514843 DOI: 10.1021/acs.est.7b02070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bioaccumulation of perylene in Escherichia coli and Staphylococcus aureus was visualized and quantified in real time with high sensitivity at high temporal resolution. For the first time, single-molecule fluorescence microscopy (SMFM) with a microfluidic flow chamber and temperature control has enabled us to record the dynamic process of perylene bioaccumulation in single bacterial cells and examine the cell-to-cell heterogeneity. Although with identical genomes, individual E. coli cells exhibited a high degree of heterogeneity in perylene accumulation dynamics, as shown by the high coefficient of variation (C.V = 1.40). This remarkable heterogeneity was exhibited only in live E. coli cells. However, the bioaccumulation of perylene in live and dead S. aureus cells showed similar patterns with a low degree of heterogeneity (C.V = 0.36). We found that the efflux systems associated with Tol C played an essential role in perylene bioaccumulation in E. coli, which caused a significantly lower accumulation and a high cell-to-cell heterogeneity. In comparison with E. coli, the Gram-positive bacteria S. aureus lacked an efficient efflux system against perylene. Therefore, perylene bioaccumulation in S. aureus was simply a passive diffusion process across the cell membrane.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University , No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Xuejun Guo
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University , No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Deshu Xu
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University , No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Yanna Zhao
- Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , No. 5 Yiheyuan Road, Beijing 100871, China
| | | | - Fan Bai
- Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , No. 5 Yiheyuan Road, Beijing 100871, China
| |
Collapse
|
39
|
Kang HM, Lee YH, Kim BM, Kim IC, Jeong CB, Lee JS. Adverse effects of BDE-47 on in vivo developmental parameters, thyroid hormones, and expression of hypothalamus-pituitary-thyroid (HPT) axis genes in larvae of the self-fertilizing fish Kryptolebias marmoratus. CHEMOSPHERE 2017; 176:39-46. [PMID: 28254713 DOI: 10.1016/j.chemosphere.2017.02.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
2,2',4,4'-tetrabromodiphenylether (BDE-47) is known to have the potential to disrupt the thyroid endocrine system in fishes due to its structural similarity to the thyroid hormones triiodothyronine (T3) and thyroxine (T4). However, the effects of BDE-47 on thyroid function in fishes remain unclear. In this study, abnormal development (e.g. deformity, hemorrhaging) and an imbalance in thyroid hormone (TH) homeostasis was shown in the early developmental stages of the mangrove killifish Kryptolebias marmoratus in response to BDE-47 exposure. To examine the thyroid endocrinal effect of BDE-47 exposure in mangrove killifish K. marmoratus larvae, transcript levels of genes involved in TH homeostasis and hypothalamus-pituitary-thyroid (HPT) axis-related genes were measured. The expression of thyroid hormone metabolism-related genes (e.g. deiodinases, UGT1ab) and HPT axis-related genes was up-regulated and there were significant changes in TH levels (P < 0.05) in response to BDE-47 exposure. This study provides insights into the regulation of TH homeostasis at the transcriptional level and provides a better understanding on the potential impacts of BDE-47 on the thyroid endocrine system of fishes.
Collapse
Affiliation(s)
- Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Bo-Mi Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
40
|
Taylor MD, Bowles KC, Johnson DD, Moltschaniwskyj NA. Depuration of perfluoroalkyl substances from the edible tissues of wild-caught invertebrate species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:258-267. [PMID: 28057344 DOI: 10.1016/j.scitotenv.2016.12.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/17/2016] [Accepted: 12/17/2016] [Indexed: 06/06/2023]
Abstract
Detection and quantification of poly- and perfluoroalkyl substances (PFASs) in aquatic organisms is increasing, particularly for saltwater species. Depuration can remove PFASs from the tissues of some species once they are removed from the contaminant source, but it is not known if this process occurs for saltwater crustaceans. Such information is important for managing human health risks for exploited migratory species following exposure. We present the results of a depuration trial for School Prawn (Metapenaeus macleayi) and Mud Crab (Scylla serrata), two commercially important crustaceans in Australia. Perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and perfluorooctanoic acid (PFOA) were present in samples of both species collected following exposure under natural conditions in contaminated estuaries. Depuration was tested in uncontaminated water for 33days. PFOA was present at levels close to LOR in both species, and was not detected after 4.5h and 72h in School Prawn and Mud Crab respectively. PFHxS was rapidly depurated by School Prawn, and had a depuration half-life of 5.7h. PFOS was also depurated by School Prawn, with a depuration half-life of 158.5h. PFHxS and PFOS concentrations were highly variable in Mud Crab both at the start, and during the depuration experiment, and a depuration model could not be fitted to the data. For School Prawn, depuration of total PFASs to the relevant screening value for protection of human health (9.1μgkg-1) occurred within 7.1h. Rapid depuration of PFASs in School Prawn indicates that human health risks associated with consumption may decrease as this species migrates away from the contamination source. Further research is required to better understand the relationships between contaminant load and life-history characteristics (such as growth, reproduction, and moult cycle) in Mud Crab, and future work should target broader time frames for depuration in this species.
Collapse
Affiliation(s)
- Matthew D Taylor
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Taylors Beach Rd, Taylors Beach, New South Wales, Australia; School of Environmental and Life Sciences, University of Newcastle, New South Wales, Australia.
| | - Karl C Bowles
- New South Wales Office of Environment and Heritage, Goulburn St, Haymarket, NSW, Australia; CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232, Australia
| | - Daniel D Johnson
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Taylors Beach Rd, Taylors Beach, New South Wales, Australia
| | - Natalie A Moltschaniwskyj
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Taylors Beach Rd, Taylors Beach, New South Wales, Australia; School of Environmental and Life Sciences, University of Newcastle, New South Wales, Australia
| |
Collapse
|
41
|
Scholes RC, Hageman KJ, Closs GP, Stirling CH, Reid MR, Gabrielsson R, Augspurger JM. Predictors of pesticide concentrations in freshwater trout - The role of life history. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:253-261. [PMID: 27814542 DOI: 10.1016/j.envpol.2016.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/02/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
Concentrations of halogenated pesticides in freshwater fish can be affected by age, size, trophic position, and exposure history. Exposure history may vary for individual fish caught at a single location due to different life histories, e.g. they may have hatched in different tributaries before migrating to a specific lake. We evaluated correlations of pesticide concentrations in freshwater brown trout (Salmo trutta) from the Clutha River, New Zealand, with potential predictors including capture site, age, length, trophic level, and life history. Life history was determined from otolith (fish ear bone) strontium isotope signatures, which vary among tributaries in the region of our study. Variability in pesticide concentrations between individual fish was not well explained by capture site, age, length, or trophic level. However, hexachlorobenzene (HCB) and chlorpyrifos concentrations were distinct in lake-based trout with different life histories. Additionally, one of the riverine life histories was associated with relatively high concentrations of total endosulfans. Linear models that included all potential predictor variables were evaluated and the resulting best models for HCB, chlorpyrifos, and total endosulfans included life history. These findings show that in cases where otolith isotope signatures vary geographically, they can be used to help explain contaminant concentration variations in fish caught from a single location.
Collapse
Affiliation(s)
- Rachel C Scholes
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Kimberly J Hageman
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand.
| | - Gerard P Closs
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand
| | - Claudine H Stirling
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; Centre for Trace Element Analysis, University of Otago, Dunedin 9016, New Zealand
| | - Malcolm R Reid
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; Centre for Trace Element Analysis, University of Otago, Dunedin 9016, New Zealand
| | - Rasmus Gabrielsson
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand; Cawthron Institute, Nelson 7010, New Zealand
| | | |
Collapse
|
42
|
Environmental Characteristics of Polybrominated Diphenyl Ethers in Marine System, with Emphasis on Marine Organisms and Sediments. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1317232. [PMID: 27999788 PMCID: PMC5143782 DOI: 10.1155/2016/1317232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/18/2016] [Indexed: 12/05/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs), due to their widespread usage as flame retardants and their lipophilicity and persistence, have become ubiquitous in the environment. It is urgent to understand the environmental characteristics of PBDEs in marine system, but they have attracted little attention. We summarize the available data and analyze the regional distributions, controlling factors, and congener patterns of PBDEs in marine and associated environmental matrixes worldwide. Based on meta-analysis, after separating the estuarial sites from the marine sites, ignoring the extraordinary sample sites such as those located just near the point source, the PBDE concentration levels are still in the same order of magnitude from global scale. Despite Principal Component Analysis, the congener patterns of sediments are predominant with the heavy brominated congeners (BDE-209 contributing over 75% to the total load) while the biota abound with the light ones (BDE-47, BDE-99, and BDE-100 taking about 80%). The ratio between BDE-99 and BDE-100 for the lower trophic-level species often turns to be greater than 1, while for those higher species the ratio may be below 1, and some species feed mainly on the crustaceans and zooplankton seems to have a higher ratio value. The data of the PBDEs in marine system are currently limited; thus, data gaps are identified as well.
Collapse
|
43
|
Anna S, Sofia B, Christina R, Magnus B. The dilemma in prioritizing chemicals for environmental analysis: known versus unknown hazards. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1042-9. [PMID: 27222376 DOI: 10.1039/c6em00163g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A major challenge for society is to manage the risks posed by the many chemicals continuously emitted to the environment. All chemicals in production and use cannot be monitored and science-based strategies for prioritization are essential. In this study we review available data to investigate which substances are included in environmental monitoring programs and published research studies reporting analyses of chemicals in Baltic Sea fish between 2000 and 2012. Our aim is to contribute to the discussion of priority settings in environmental chemical monitoring and research, which is closely linked to chemical management. In total, 105 different substances or substance groups were analyzed in Baltic Sea fish. Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) were the most studied substances or substance groups. The majority, 87%, of all analyses comprised 20% of the substances or substance groups, whereas 46 substance groups (44%) were analyzed only once. Almost three quarters of all analyses regarded a POP-substance (persistent organic pollutant). These results demonstrate that the majority of analyses on environmental contaminants in Baltic Sea fish concern a small number of already regulated chemicals. Legacy pollutants such as POPs pose a high risk to the Baltic Sea due to their hazardous properties. Yet, there may be a risk that prioritizations for chemical analyses are biased based on the knowns of the past. Such biases may lead to society failing in identifying risks posed by yet unknown hazardous chemicals. Alternative and complementary ways to identify priority chemicals are needed. More transparent communication between risk assessments performed as part of the risk assessment process within REACH and monitoring programs, and information on chemicals contained in consumer articles, would offer ways to identify chemicals for environmental analysis.
Collapse
Affiliation(s)
- Sobek Anna
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden.
| | - Bejgarn Sofia
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden.
| | - Rudén Christina
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden.
| | - Breitholtz Magnus
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
44
|
Shao M, Tao P, Wang M, Jia H, Li YF. Trophic magnification of polybrominated diphenyl ethers in the marine food web from coastal area of Bohai Bay, North China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:379-385. [PMID: 26942685 DOI: 10.1016/j.envpol.2016.02.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/14/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Trophic transfer of polybrominated diphenyl ethers (PBDEs) in aquatic ecosystems is an important criterion for assessing their environmental risk. This study analyzed 13 PBDEs in marine organisms collected from coastal area of Bohai Bay, China. The concentrations of total PBDEs (Σ13PBDEs) ranged from 12 ± 1.1 ng/g wet weight (ww) to 230 ± 54 ng/g ww depending on species. BDE-47 was the predominant compound, with a mean abundance of 20.21 ± 12.97% of total PBDEs. Stable isotopic ratios of carbon (δ(13)C) and nitrogen (δ(15)N) were analyzed to determine the food web structure and trophic level respectively. Trophic magnification factors (TMFs) of PBDEs were assessed as the slope of lipid equivalent concentrations regressed against trophic levels. Significant positive relationships were found for Σ13PBDEs and eight PBDE congeners (BDE-28, BDE-47, BDE-49, BDE-66, BDE-85, BDE-99, BDE-100 and BDE-154). Monte-Carlo simulations showed that the probabilities of TMF >1 were 100% for Σ13PBDEs, BDE-47, BDE-85, BDE-99 and BDE-100, 99% for DE-28, BDE-49, BDE-66 and BDE-154, 94% for BDE-153, and 35% for BDE-17.
Collapse
Affiliation(s)
- Mihua Shao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Ping Tao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Man Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Hongliang Jia
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yi-Fan Li
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
45
|
Adeyeye SAO, Oyewole OB, Obadina AO, Omemu AM, Omoniyi SA. Quality attributes, polycyclic aromatic hydrocarbon, and heavy metal profile of traditional drum-smoked Guinean barracuda fish from Lagos State, Nigeria. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2016. [DOI: 10.1080/10498850.2016.1155191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- S. A. O. Adeyeye
- Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria
| | - O. B. Oyewole
- Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria
| | - A. O. Obadina
- Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria
| | - A. M. Omemu
- Department of Hospitality and Tourism, Federal University of Agriculture, Abeokuta, Nigeria
| | - S. A. Omoniyi
- Department of Home Science & Management, Federal University, Gashua, Nigeria
| |
Collapse
|
46
|
Morales L, Gene'rosa Martrat M, Parera J, Bertolero A, Ábalos M, Santos FJ, Lacorte S, Abad E. Dioxins and dl-PCBs in gull eggs from Spanish Natural Parks (2010-2013). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 550:114-122. [PMID: 26808402 DOI: 10.1016/j.scitotenv.2016.01.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
The aim of this study was to evaluate the presence and distribution of polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs) and biphenyls (PCBs), concretely those so-called as dioxin-like PCBs, in yellow-legged gull eggs (Larus michahellis) collected from five Natural Parks (some of them National Parks) in Spain during the period 2010-2013. PCDD/Fs and dl-PCBs were detected in all the samples. Due to the proximity to important urban and industrial areas higher concentrations were determined in colonies located in the Northern Mediterranean coast than those found in the Southern Mediterranean or Atlantic colonies where a softer anthropogenic impact occurs. Mean ∑PCDD/F concentrations ranged from 49 to 223pg/g lipid weight (lw) and ∑dl-PCB concentrations varied from 146 to 911ng/g lw. In the Natural Park of the Ebro Delta (Northern Mediterranean coast) two gull species share habitat: yellow-legged and Audouin gull (Larus audouinii). Eggs from both species were collected and PCDD/F and dl-PCB levels compared. The species that feeds exclusively on pelagic fish (L. audouinii) had significantly higher PCDD/F and dl-PCB levels than the scavenger L. michahellis, pointing out the diet-dependent differences in the accumulation of persistent organic pollutants between similar cohabitant breeding species. Finally, mean TEQ values were in general below those considered as critical for toxicological effects in birds.
Collapse
Affiliation(s)
- Laura Morales
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | | | - Jordi Parera
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Albert Bertolero
- Associació Ornitològica Picampall de les Terres de l'Ebre, Catalonia, Spain
| | - Manuela Ábalos
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | | | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Esteban Abad
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain.
| |
Collapse
|
47
|
Yebra-Pimentel I, Fernández-González R, Martínez-Carballo E, Simal-Gándara J. A Critical Review about the Health Risk Assessment of PAHs and Their Metabolites in Foods. Crit Rev Food Sci Nutr 2016; 55:1383-405. [PMID: 24915328 DOI: 10.1080/10408398.2012.697497] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a family of toxicants that are ubiquitous in the environment. These contaminants generate considerable interest, because some of them are highly carcinogenic in laboratory animals and have been implicated in breast, lung, and colon cancers in humans. Dietary intake of PAHs constitutes a major source of exposure in humans. Factors affecting the accumulation of PAHs in the diet, their absorption following ingestion, and strategies to assess risk from exposure to these hydrocarbons following ingestion have received very little attention. This review, therefore, focuses on concentrations of PAHs in widely consumed dietary ingredients along with gastrointestinal absorption rates in humans. Metabolism and bioavailability of PAHs in animal models and the processes, which influence the disposition of these chemicals, are discussed. Finally, based on intake, disposition, and tumorigenesis data, the exposure risk to PAHs from diet is presented. This information is expected to provide a framework for refinements in risk assessment of PAHs.
Collapse
Affiliation(s)
- Iria Yebra-Pimentel
- a Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology , University of Vigo , Ourense Campus, E-32004 Ourense , Spain
| | | | | | | |
Collapse
|
48
|
Bonito LT, Hamdoun A, Sandin SA. Evaluation of the global impacts of mitigation on persistent, bioaccumulative and toxic pollutants in marine fish. PeerJ 2016; 4:e1573. [PMID: 26839747 PMCID: PMC4734435 DOI: 10.7717/peerj.1573] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/16/2015] [Indexed: 11/20/2022] Open
Abstract
Although persistent, bioaccumulative and toxic pollutants (PBTs) are well-studied individually, their distribution and variability on a global scale are largely unknown, particularly in marine fish. Using 2,662 measurements collected from peer-reviewed literature spanning 1969-2012, we examined variability of five classes of PBTs, considering effects of geography, habitat, and trophic level on observed concentrations. While we see large-scale spatial patterning in some PBTs (chlordanes, polychlorinated biphenyls), habitat type and trophic level did not contribute to significant patterning, with the exception of mercury. We further examined patterns of change in PBT concentration as a function of sampling year. All PBTs showed significant declines in concentration levels through time, ranging from 15-30% reduction per decade across PBT groups. Despite consistent evidence of reductions, variation in pollutant concentration remains high, indicating ongoing consumer risk of exposure to fish with pollutant levels exceeding EPA screening values. The temporal trends indicate that mitigation programs are effective, but that global levels decline slowly. In order for monitoring efforts to provide more targeted assessments of risk to PBT exposure, these data highlight an urgent need for improved replication and standardization of pollutant monitoring protocols for marine finfish.
Collapse
Affiliation(s)
- Lindsay T Bonito
- Scripps Institution of Oceanography, University of California, San Diego , La Jolla, CA , United States of America
| | - Amro Hamdoun
- Scripps Institution of Oceanography, University of California, San Diego , La Jolla, CA , United States of America
| | - Stuart A Sandin
- Scripps Institution of Oceanography, University of California, San Diego , La Jolla, CA , United States of America
| |
Collapse
|
49
|
Morales L, Dachs J, Fernández-Pinos MC, Berrojalbiz N, Mompean C, González-Gaya B, Jiménez B, Bode A, Ábalos M, Abad E. Oceanic Sink and Biogeochemical Controls on the Accumulation of Polychlorinated Dibenzo-p-dioxins, Dibenzofurans, and Biphenyls in Plankton. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13853-13861. [PMID: 26115052 DOI: 10.1021/acs.est.5b01360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) were measured in plankton samples from the Atlantic, Pacific, and Indian Oceans collected during the Malaspina circumnavigation cruise. The concentrations of PCDD/Fs and dl-PCBs in plankton averaged 14 and 240 pg gdw(-1), respectively, but concentrations were highly variable. The global distribution of PCDD/Fs and dl-PCBs was not driven by proximity to continents but significantly correlated with plankton biomass, with higher plankton phase PCDD/F and dl-PCB concentrations at lower biomass. These trends are consistent with the interactions between atmospheric deposition, biomass dilution, and settling fluxes of organic matter in the water column (biological pump), as key processes driving POPs plankton phase concentrations in the global oceans. The application of a model of the air-water-plankton diffusive exchange reproduces in part the influence of biomass on plankton phase concentrations and suggests future modeling priorities. The estimated oceanic sink (Atlantic, Pacific, and Indian Oceans) due to settling fluxes of organic matter bound PCDD/Fs and dl-PCBs is of 400 and 10,500 kg y(-1), respectively. The atmospheric inputs due to gross diffusive absorption and dry deposition are nearly 3 and 10 times larger for PCDD/Fs and dl-PCBs, respectively, than the oceanic sink. These observations suggest that the coupling of atmospheric deposition with water column cycling supports and drives the accumulation of dl-PCBs and PCDD/Fs in plankton from the global oligotrophic oceans.
Collapse
Affiliation(s)
- Laura Morales
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research , IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research , IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - María-Carmen Fernández-Pinos
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research , IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Naiara Berrojalbiz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research , IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Carmen Mompean
- A Coruña Oceanographic Center, Spanish Institute of Oceanography, IEO , A Coruña, Galicia, Spain
| | - Belén González-Gaya
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research , IDAEA-CSIC, Barcelona, Catalunya, Spain
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, IQOG-CSIC , Madrid, Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, IQOG-CSIC , Madrid, Spain
| | - Antonio Bode
- A Coruña Oceanographic Center, Spanish Institute of Oceanography, IEO , A Coruña, Galicia, Spain
| | - Manuela Ábalos
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research , IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Esteban Abad
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research , IDAEA-CSIC, Barcelona, Catalunya, Spain
| |
Collapse
|
50
|
Kumar V, Sinha AK, Rodrigues PP, Mubiana VK, Blust R, De Boeck G. Linking environmental heavy metal concentrations and salinity gradients with metal accumulation and their effects: A case study in 3 mussel species of Vitória estuary and Espírito Santo bay, Southeast Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 523:1-15. [PMID: 25847311 DOI: 10.1016/j.scitotenv.2015.03.139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/11/2015] [Accepted: 03/30/2015] [Indexed: 05/12/2023]
Abstract
The present study was conducted to link the heavy metal load in three species of mussels (Perna perna, Mytella falcata and Mytella guyanensis) from the estuaries and bays around Vitória island, south-east of Brazil, with the salinity gradient and the heavy metal levels in the abiotic environment (including water, suspended particulate matter (SPM) and sediment). Primarily based on the salinity gradient, a total of 26 sites around Vitória Island were selected for sampling of water, SPM, sediments and organisms. Besides tissue metal levels, the condition index and energy stores (glycogen, lipid and protein) were quantified as an indicator of fitness in response to metal pollution. Dissolved metals in water indicate that Cd and Mn content was higher along Espírito Santo Bay, while Al, Co, Cu, Cr and Fe were elevated in the sites with low salinity such as river mouths, estuarine and sewage canals. Likewise, suspended matter sampled from low salinity sites showed a higher heavy metal load compared to moderate and high salinity sites. Though mussels were sampled from different sites, the contamination for Cd, Cu, Fe and Mn was higher in mussels inhabiting low salinity sites (M. guyanensis and M. falcata) compared to P. perna, a high saline water inhabitant. However, a higher Zn body burden was observed for P. perna compared to Mytella species. Tissue Fe accumulation (but not Mn and Zn) correlated with heavy metal levels in suspended material for all three species, and for M. falcata this correlation also existed for Cd and Cu. Energy store and condition index in all mussels varied depending on the sampling sites and correlated with salinity gradient rather than tissue metal concentration. Overall, metal concentration in mussels did not exceed the safe levels as per the international standards for metals, and would be of no risk for human consumption.
Collapse
Affiliation(s)
- Vikas Kumar
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium; Division of Aquaculture, College of Agriculture, Food Science and Sustainable Systems, Kentucky State University, Frankfort, KY, USA.
| | - Amit Kumar Sinha
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium.
| | - Paulo Pinheiro Rodrigues
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Valentine K Mubiana
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| |
Collapse
|