1
|
Makgoba L, Abrams A, Röösli M, Cissé G, Dalvie MA. DDT contamination in water resources of some African countries and its impact on water quality and human health. Heliyon 2024; 10:e28054. [PMID: 38560195 PMCID: PMC10979284 DOI: 10.1016/j.heliyon.2024.e28054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/13/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) usage has been prohibited in developed nations since 1972 but is exempted for use in indoor residual spraying (IRS) in developing countries, including African countries, for malaria control. There have been no previous reviews on DDT residues in water resources in Africa. The study aimed to provide a review of available research investigating the levels of DDT residues in water sources in Africa and to assess the consequent human health risks. A scoping review of published studies in Africa was conducted through a systematic electronic search using PubMed, Web of Science, EBSCO HOST, and Scopus. A total of 24 articles were eligible and reviewed. Concentrations of DDT ranged from non-detectable levels to 81.2 μg/L. In 35% of the studies, DDT concentrations surpassed the World Health Organization (WHO) drinking water guideline of 1 μg/L in the sampled water sources. The highest DDT concentrations were found in South Africa (81.2 μg/L) and Egypt (5.62 μg/L). DDT residues were detected throughout the year in African water systems, but levels were found to be higher during the wet season. Moreover, water from taps, rivers, reservoirs, estuaries, wells, and boreholes containing DDT residues was used as drinking water. Seven studies conducted health risk assessments, with two studies identifying cancer risk values surpassing permissible thresholds in water sampled from sources designated for potable use. Non-carcinogenic health risks in the studies fell below a hazard quotient of 1. Consequently, discernible evidence of risks to human health surfaced, given that the concentration of DDT residues surpassed either the WHO drinking water guidelines or the permissible limits for cancer risk in sampled drinking sources within African water systems. Therefore, alternative methods for malaria vector control should be investigated and applied.
Collapse
Affiliation(s)
- Lethabo Makgoba
- Centre for Environmental and Occupational Health Research, School of Public Health, University of Cape Town, Health Sciences Faculty, Observatory, Cape Town, 7925, South Africa
| | - Amber Abrams
- Future Water Research Institute, University of Cape Town, Cape Town, 7700, South Africa
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002, Basel, Switzerland
- University of Basel, P.O. Box, CH-4003, Basel, Switzerland
| | - Guéladio Cissé
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002, Basel, Switzerland
- University of Basel, P.O. Box, CH-4003, Basel, Switzerland
| | - Mohamed Aqiel Dalvie
- Centre for Environmental and Occupational Health Research, School of Public Health, University of Cape Town, Health Sciences Faculty, Observatory, Cape Town, 7925, South Africa
- Future Water Research Institute, University of Cape Town, Cape Town, 7700, South Africa
| |
Collapse
|
2
|
Sun L, Ouyang M, Liu M, Liu J, Zhao X, Yu Q, Zhang Y. Enrichment, bioaccumulation and human health assessment of organochlorine pesticides in sediments and edible fish of a plateau lake. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9669-9690. [PMID: 37801211 DOI: 10.1007/s10653-023-01762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
The organochlorine pesticides (OCPs) are with features of persistence, high toxicity, bioaccumulation and adverse impact on ecosystems and human beings. Although OCPs pollutions have been observed in the plateau lakes, comprehensive understandings in the distribution characteristics and human health risks of OCPs in these valuable but fragile ecosystems are limited. We here investigated the distribution, bioaccumulation process and health risks of OCPs in the Jianhu lake, a representative plateau lake in China. The endrin ketone, endrin aldehyde and heptachlor were the most dominant species in surface and columnar sediments. Their total contents ranged between 0 ~ 1.92 × 103 ng·g-1. The distribution of OCPs in sediment cores combined with chronology information indicated that the fast accumulation of OCPs happened during the last decades. Combining the distribution features of OCPs in different sources with mixing model results of carbon isotope (δ13C), farming area was identified as the main source (46%), and the OCPs were transported to lake by inflow-rivers (37%). The enrichment of OCPs in sediments caused considerable bioaccumulation of OCPs in local fish (∑OCPs 0-3199.93 ng·g-1, dw) with the bio-sediment accumulation factor (BSAF) ranging from ND to 9.41. Moreover, growing time was another key factor governing the accumulation in specific species (Carassius auratus and Cyprinus carpio). Eventually, the carcinogenic risk index (CRI) and exposure risk index (ERI) of the endrin category and aldrin exceeded the reference value, indicating relatively high health risks through consumption of fish. Overall, this study systematically illustrated the bioaccumulation process and health risks of OCPs in the typical plateau lake, providing theoretical support for the better protection of this kind of lakes.
Collapse
Affiliation(s)
- Lei Sun
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, No.300 of Bailong Road, Panlong District, Kunming, 650224, China
- National Plateau Wetlands Research Center/College of Wetlands, Southwest Forestry University, Kunming, 650224, China
| | - Min Ouyang
- Kunming Institute of Physics, Kunming, 650223, China
| | - Min Liu
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Jianhui Liu
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Xiaohui Zhao
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Qingguo Yu
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, No.300 of Bailong Road, Panlong District, Kunming, 650224, China
- National Plateau Wetlands Research Center/College of Wetlands, Southwest Forestry University, Kunming, 650224, China
| | - Yinfeng Zhang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, No.300 of Bailong Road, Panlong District, Kunming, 650224, China.
- National Plateau Wetlands Research Center/College of Wetlands, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
3
|
Lee JD, Chiou TH, Zhang HJ, Chao HR, Chen KY, Gou YY, Huang CE, Lin SL, Wang LC. Persistent Halogenated Organic Pollutants in Deep-Water-Deposited Particulates from South China Sea. TOXICS 2023; 11:968. [PMID: 38133369 PMCID: PMC10748163 DOI: 10.3390/toxics11120968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
POP data are limited in the marine environment; thus, this study aimed to investigate background persistent organic pollutant (POP) levels in oceanic deep-water-deposited particulates in the South China Sea (SCS). Six POPs, including polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (DL-PCBs), polybrominated diphenyl ethers (PBDEs), polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs), polychlorinated diphenyl ethers (PCDEs), and polybrominated biphenyls (PBBs), were investigated in eight pooled samples from the SCS from 20 September 2013 to 23 March 2014 and 15 April 2014 to 24 October 2014 at depths of 2000 m and 3500 m. PBDEs were the most predominant compounds, with the highest mean Σ14PBDE of 125 ± 114 ng/g dry weight (d.w.), followed by Σ17PCDD/F, Σ12PBDD/F, and Σ12DL-PCB (275 ± 1930, 253 ± 216, and 116 ± 166 pg/g d.w., respectively). Most PBDD/F, PBB, and PCDE congeners were below the detection limits. PCDDs had the highest toxic equivalency (TEQ), followed by PBDDs and DL-PCBs. Among the six POPs, PBDEs were the major components of the marine-deposited particles, regarding both concentrations and mass fluxes. Compared to 3500 m, PBDE levels were higher at a depth of 2000 m. PBDE mass fluxes were 20.9 and 14.2 ng/m2/day or 68.2 and 75.9 ng/m2/year at deep-water 2000 and 3500 m, respectively. This study first investigated POP levels in oceanic deep-water-deposited particles from existing global data.
Collapse
Affiliation(s)
- Jia-De Lee
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan; (J.-D.L.); (Y.-Y.G.)
| | - Tsyr-Huei Chiou
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hong-Jie Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100811, China;
| | - How-Ran Chao
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan; (J.-D.L.); (Y.-Y.G.)
- Center for Agricultural, Forestry, Fishery, Livestock and Aquaculture Carbon Emission Inventory and Emerging Compounds, General Research Service Center, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
- Institute of Food Safety Management, College of Agriculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Occupational Safety and Health, Faculty of Public Health, Universitas Airlangga, Kampus C, Mulyorejo, Surabaya 60115, Indonesia
| | - Kuang-Yu Chen
- National Applied Research Laboratories, Taiwan Ocean Research Institute, Kaohsiung 852, Taiwan;
| | - Yan-You Gou
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan; (J.-D.L.); (Y.-Y.G.)
| | - Chien-Er Huang
- Department of Mechanical Engineering, Institute of Mechanical Engineering, Cheng Shiu University, Niaosong District, Kaohsiung 833, Taiwan;
- Super Micro Mass Research & Technology Center, Cheng Shiu University, Niaosong District, Kaohsiung 833, Taiwan
| | - Sheng-Lun Lin
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan;
| | - Lin-Chi Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Nanzih District, Kaohsiung 81157, Taiwan
| |
Collapse
|
4
|
Fan J, Liu C, Zheng J, Song Y. Dithionite promoted microbial dechlorination of hexachlorobenzene while goethite further accelerated abiotic degradation by sulfidation in paddy soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115047. [PMID: 37220705 DOI: 10.1016/j.ecoenv.2023.115047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023]
Abstract
It is of great scientific and practical importance to explore the mechanisms of accelerated degradation of Hexachlorobenzene (HCB) in soil. Both iron oxide and dithionite may promote the reductive dechlorination of HCB, but their effects on the microbial community and the biotic and abiotic mechanisms behind it remain unclear. This study investigated the effects of goethite, dithionite, and their interaction on microbial community composition and structure, and their potential contribution to HCB dechlorination in a paddy soil to reveal the underlying mechanism. The results showed that goethite addition alone did not significantly affect HCB dechlorination because the studied soil lacked iron-reducing bacteria. In contrast, dithionite addition significantly decreased the HCB contents by 44.0-54.9%, while the coexistence of dithionite and goethite further decreased the HCB content by 57.9-69.3%. Random Forest analysis suggested that indicator taxa (Paenibacillus, Acidothermus, Haliagium, G12-WMSP1, and Frankia), Pseudomonas, richness and Shannon's index of microbial community, and immobilized Fe content were dominant driving factors for HCB dechlorination. The dithionite addition, either with or without goethite, accelerated HCB anaerobic dechlorination by increasing microbial diversity and richness as well as the relative abundance of the above specific bacterial genera. When goethite and dithionite coexist, sulfidation of goethite with dithionite could remarkably increase FeS formation and then further promote HCB dechlorination rates. Overall, our results suggested that the combined application of goethite and dithionite could be a practicable strategy for the remediation of HCB contaminated soil.
Collapse
Affiliation(s)
- Jianling Fan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Cuiying Liu
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China.
| | - Jinjin Zheng
- School of Changwang, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
5
|
Huang D, Gao L, Zhu S, Qiao L, Liu Y, Ai Q, Xu C, Wang W, Lu M, Zheng M. Target and non-target analysis of organochlorine pesticides and their transformation products in an agrochemical-contaminated area. CHEMOSPHERE 2023; 324:138314. [PMID: 36889467 DOI: 10.1016/j.chemosphere.2023.138314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Organochlorine pesticides show biological toxicity and their degradation typically takes many years. Previous studies of agrochemical-contaminated areas have mainly focused on limited target compounds, and emerging pollutants in soil have been overlooked. In this study, we collected soil samples from an abandoned agrochemical-contaminated area. Target analysis and non-target suspect screening by gas chromatography coupled with time-of-flight mass spectrometry were combined for qualitative and quantitative analysis of organochlorine pollutants. Target analysis showed that dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), and dichlorodiphenyldichloroethane (DDD) were the main pollutants. With concentrations between 3.96 × 106 and 1.38 × 107 ng/g, these compounds posed significant health risks at the contaminated site. Non-target suspect screening identified 126 organochlorine compounds, most of which were chlorinated hydrocarbons and 90% of the compounds contained a benzene ring structure. The possible transformation pathways of DDT were inferred from proven pathways and the compounds identified by non-target suspect screening that had similar structures to DDT. This study will be useful for studies of the degradation mechanism of DDT. Semi-quantitative and hierarchical cluster analysis of compounds in soil showed that the distribution of contaminants in soil was influenced by the types of pollution sources and distance to them. Twenty-two contaminants were found in the soil at relatively high concentrations. The toxicities of 17 of these compounds are currently not known. These results improve our understanding of the environmental behavior of organochlorine contaminants in soil and are useful for further risk assessments of agrochemical-contaminated areas.
Collapse
Affiliation(s)
- Di Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Shuai Zhu
- National Research Center for Geoanalysis, Beijing, 100037, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiaofeng Ai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chi Xu
- State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Wenwen Wang
- Agilent Technologies, Inc., Beijing, 100102, China
| | - Meiling Lu
- Agilent Technologies, Inc., Beijing, 100102, China
| | | |
Collapse
|
6
|
Srivastav AL, Markandeya, Patel N, Pandey M, Pandey AK, Dubey AK, Kumar A, Bhardwaj AK, Chaudhary VK. Concepts of circular economy for sustainable management of electronic wastes: challenges and management options. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48654-48675. [PMID: 36849690 PMCID: PMC9970861 DOI: 10.1007/s11356-023-26052-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/17/2023] [Indexed: 04/16/2023]
Abstract
The electronic and electrical industrial sector is exponentially growing throughout the globe, and sometimes, these wastes are being disposed of and discarded with a faster rate in comparison to the past era due to technology advancements. As the application of electronic devices is increasing due to the digitalization of the world (IT sector, medical, domestic, etc.), a heap of discarded e-waste is also being generated. Per-capita e-waste generation is very high in developed countries as compared to developing countries. Expansion of the global population and advancement of technologies are mainly responsible to increase the e-waste volume in our surroundings. E-waste is responsible for environmental threats as it may contain dangerous and toxic substances like metals which may have harmful effects on the biodiversity and environment. Furthermore, the life span and types of e-waste determine their harmful effects on nature, and unscientific practices of their disposal may elevate the level of threats as observed in most developing countries like India, Nigeria, Pakistan, and China. In the present review paper, many possible approaches have been discussed for effective e-waste management, such as recycling, recovery of precious metals, adopting the concepts of circular economy, formulating relevant policies, and use of advance computational techniques. On the other hand, it may also provide potential secondary resources valuable/critical materials whose primary sources are at significant supply risk. Furthermore, the use of machine learning approaches can also be useful in the monitoring and treatment/processing of e-wastes. HIGHLIGHTS: In 2019, ~ 53.6 million tons of e-wastes generated worldwide. Discarded e-wastes may be hazardous in nature due to presence of heavy metal compositions. Precious metals like gold, silver, and copper can also be procured from e-wastes. Advance tools like artificial intelligence/machine learning can be useful in the management of e-wastes.
Collapse
Affiliation(s)
- Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, 174103, India
| | - Markandeya
- Ex-Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Naveen Patel
- Department of Civil Engineerin, IET, Dr. RammanoharLohia Avadh University, Uttar Pradesh, Ayodhya, India
| | - Mayank Pandey
- Department of Environmental Studies, P.G.D.A.V. College (Evening), University of Delhi, Delhi, 110065, India
| | - Ashutosh Kumar Pandey
- Department of Earth Sciences, Banasthali Vidyapith, Radha Kishnpura, P. O. Banasthali, Rajasthan, 304022, India
| | - Ashutosh Kumar Dubey
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, 174103, India.
| | - Abhishek Kumar
- Department of Computer Science and Engineering, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Abhishek Kumar Bhardwaj
- Amity School of Life Sciences, Department of Environmental Science, Amity University, Madhya Pradesh, Gwalior, 474001, India
| | - Vinod Kumar Chaudhary
- Department of Environmental Sciences, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| |
Collapse
|
7
|
Chromatin modifiers: A new class of pollutants with potential epigenetic effects revealed by in vitro assays and transcriptomic analyses. Toxicology 2023; 484:153413. [PMID: 36581016 DOI: 10.1016/j.tox.2022.153413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
A great variety of endocrine-disrupting chemicals (EDCs) have been used extensively and become widespread in the environment nowadays. Limited mammalian studies have shown that certain EDCs may target chromosome and epigenome of the germline, leading to adverse effects in subsequent generations, despite these progenies having never been exposed to the EDC before. However, the underlying mechanisms of chromosomal changes induced by these pollutants remain poorly known. Using the human ovarian granulosa tumor cell line COV434 as a model, we investigated and compared the transcriptomic changes induced by nine EDCs with diverse chemical structures (i.e. BDE-47, BPA, BP-3, DEHP, DHP, EE2, TCS, TDCPP and NP), to inquire if there is any common epigenetic modification associated with reproductive functions induced by these EDCs. Our results showed that COV434 cells were more responsive to BP-3, NP, DEHP and EE2, and more importantly, these four EDCs altered the expression of gene clusters related to DNA damage response, cell cycle, proliferation, and chromatin remodeling, which can potentially lead to epigenetic modifications and transgenerational inheritance. Furthermore, dysregulation of similar gene clusters was common in DEHP and NP treatments. Bioinformatics analysis further revealed that BP-3 disturbed signaling pathways associated with reproductive functions, whereas alterations in telomere-related pathways were highlighted upon EE2 exposure. Overall, this study highlighted chromatin modifications caused by a class of chemicals which that may potentially lead to epigenetic changes and transgenerational reproductive impairments.
Collapse
|
8
|
Lyu Y, Li G, He Y, Li Y, Tang Z. Occurrence and distribution of organic ultraviolet absorbents in soils and plants from a typical industrial area in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157383. [PMID: 35843326 DOI: 10.1016/j.scitotenv.2022.157383] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Organic ultraviolet absorbents (UVAs) have attracted increasing concern due to their ubiquity, bioaccumulation, and potential toxicity. However, available information on their occurrence and transfer in terrestrial environment is still extremely insufficient. In this study, we investigated twelve UVAs in the soils and five terrestrial plant species from a typical industrial area in South China, and found their total concentrations were 5.87-76.1 (median 13.1) and 17.9-269 (median 82.9) ng/g dry weight, respectively. Homosalate was dominant in soils while benzophenone and octrizole were predominant in plants, likely due to their complex sources and bioaccumulation preferences. The bioaccumulation factors (BAFs) were further evaluated based on the ratios of UVA concentrations in plants and soils. The observed BAFs of UVAs were compound and species-specific, and most of them were much >1.0, indicating the chemicals could be transferred from soils to plants. To the best of our knowledge, this is the first report of organic UVAs in field soil-plant systems, providing information that may improve our understanding of the bioaccumulability of these chemicals in terrestrial environment and the associated risks. More studies are needed to investigate the transfer and bioaccumulation of such chemicals in soils and terrestrial biota.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Guanghui Li
- Chongqing Engineering Research Center for Soil Contamination Control and Remediation, Chongqing 400067, China.
| | - Ying He
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yonghong Li
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Zhenwu Tang
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
9
|
Xu W, He M, Meng W, Zhang Y, Yun H, Lu Y, Huang Z, Mo X, Hu B, Liu B, Li H. Temporal-spatial change of China's coastal ecosystems health and driving factors analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157319. [PMID: 35839892 DOI: 10.1016/j.scitotenv.2022.157319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Understanding the spatial distribution pattern change and driving factors behind ecosystem health is essential to ecosystem management and restoration. However, in the research of regional ecosystem health, there is little research on ecosystem health in coastal regions, and there is little exploration of its temporal and spatial pattern change and its driving factors. In this study, we use the Vigor-Organization-Resilience-Services (VORS) model and marine ecosystem health index to diagnose the ecosystem health of the whole coastal area of China over the last 20 years, and find the main contributing factors affecting ecosystem health with the help of geographic detectors and geographic weighted regression analysis. Our results show that: (1) the ecosystem health level in the south of the coastal region is higher than that in the north, mainly with 30° north latitude as the main dividing line. (2) The regions with high change rate are mainly concentrated in Bohai Bay, the Yangtze River Estuary, Hangzhou Bay and the Pearl River Estuary, and the change is mainly negative. (3) Both natural and human factors have an impact on ecosystem health, and the influencing factors are different on different scales. The interaction between different factors is greater than the impact of a single factor on ecosystem health. The study puts forward a new evaluation framework for the study of ecosystem health in coastal areas, which can be applied to other coastal areas with similar conditions, and can help the sustainable and healthy development of coastal areas.
Collapse
Affiliation(s)
- Wenbin Xu
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300387, China
| | - Mengxuan He
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300387, China.
| | - Weiqing Meng
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300387, China
| | - Ying Zhang
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300387, China
| | - Haofan Yun
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300387, China
| | - Yalan Lu
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300387, China
| | - Zhimei Huang
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300387, China
| | - Xunqiang Mo
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300387, China
| | - Beibei Hu
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300387, China
| | - Baiqiao Liu
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300387, China
| | - Hongyuan Li
- College of Environment Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Kou J, Li X, Zhang M, Wang L, Hu L, Liu X, Mei S, Xu G. Accumulative levels, temporal and spatial distribution of common chemical pollutants in the blood of Chinese adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119980. [PMID: 35985432 DOI: 10.1016/j.envpol.2022.119980] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
China has been in a rapid development period in recent decades, the mass production and use of chemical industrial products and pesticides have resulted in a large amount of pollutants in the environment. These pollutants enter the human body through environmental exposure and dietary intake, causing adverse health effects. Although many of them have been banned and restricted in the production and use in China, these pollutants still remain in the human body due to their high persistence and strong bioaccumulation. In this review, we aim to reveal the accumulation levels and profiles, as well as the temporal and spatial distribution of common chemical pollutants including chlorinated paraffins (CPs), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers, organophosphorus flame retardants (OPFRs), new halogenated flame retardants (NHFRs), polychlorinated biphenyls, phthalic acid esters, perfluorinated compounds, bisphenols, organophosphorus pesticides and pyrethroid insecticides in the blood (including whole blood, serum and plasma) of Chinese adults by extracting 93 related studies published from 1990 to 2021. Results have shown that CPs, OCPs and PAHs were the main pollutants in China, the levels of short-chain chlorinated paraffin, p,p'-DDE and phenanthrene in blood even reached 11,060.58, 740.41 and 498.28 ng/g lipid respectively. Under the strict control of pollutants in China, the levels of most pollutants have been on a downward trend except for perfluoro octanoate and perfluoro nonanoate. Besides, OPFRs, NHFRs and PAHs may have a potential upward trend, requiring further research and observation. As for spatial distribution, East China (Bohai Bay and Yangtze River Delta) and South China (Pearl River Delta) were the major polluted regions due to their fast development of industry and agriculture.
Collapse
Affiliation(s)
- Jing Kou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Mingye Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Limei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Liqin Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| |
Collapse
|
11
|
Ji L, Li W, Li Y, He Q, Bi Y, Zhang M, Zhang G, Wang X. Spatial Distribution, Potential Sources, and Health Risk of Polycyclic Aromatic Hydrocarbons (PAHs) in the Surface Soils under Different Land-Use Covers of Shanxi Province, North China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191911949. [PMID: 36231245 PMCID: PMC9565183 DOI: 10.3390/ijerph191911949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 05/21/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread in the environment and pose a serious threat to the soil ecosystem. In order to better understand the health risks for residents exposed to PAH-contaminated soil, 173 surface soil samples were collected in Shanxi Province, China, to detect the levels of 16 priority PAHs. The spatial distribution patterns of PAHs were explored using interpolation and spatial clustering analysis, and the probable sources of soil PAHs were identified for different land-use covers. The results indicate that the soil Σ16 PAH concentration ranged from 22.12 to 1337.82 ng g-1, with a mean of 224.21 ng g-1. The soils were weakly to moderately contaminated by high molecular weight PAHs (3-5 ring) and the Taiyuan-Linfen Basin was the most polluted areas. In addition, the concentration of soil PAHs on construction land was higher than that on other land-use covers. Key sources of soil PAHs were related to industrial activities dominated by coal burning, coking, and heavy traffic. Based on the exposure risk assessment of PAHs, more than 10% of the area was revealed to be likely to suffer from high carcinogenic risks for children. The study maps the high-risk distribution of soil PAHs in Shanxi Province and provides PAH pollution reduction strategies for policy makers to prevent adverse health risks to residents.
Collapse
Affiliation(s)
- Li Ji
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Wenwen Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yuan Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiusheng He
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
- Correspondence: ; Tel.: +86-351-699-8256
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Minghua Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
12
|
Ighalo JO, Yap PS, Iwuozor KO, Aniagor CO, Liu T, Dulta K, Iwuchukwu FU, Rangabhashiyam S. Adsorption of persistent organic pollutants (POPs) from the aqueous environment by nano-adsorbents: A review. ENVIRONMENTAL RESEARCH 2022; 212:113123. [PMID: 35339467 DOI: 10.1016/j.envres.2022.113123] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The intensification of urbanisation and industrial activities significantly exacerbates the distribution of toxic contaminations into the aqueous environment. Persistent organic pollutants (POPs) have received considerable attention in the past few decades because of their persistence, long-distance migration, potential bioaccumulation, latent toxicity for humans and wildlife. There is no doubt that POPs cause serious effects on the global ecosystem. Therefore, it is necessary to develop a simple, safe and sustainable approach to remove POPs from water bodies. Among other conventional techniques, the adsorption process has proven to be a more effective method for eliminating POPs and to a larger extent meet discharge regulations. Nanomaterials can effectively adsorb POPs from aqueous solutions. For most POPs, a >70% adsorptive removal efficiency was achieved. The major mechanisms for POPS uptake by nano-adsorbents includes electrostatic interaction, hydrophobic (van der Waals, π-π and electron donor-acceptor) interaction and hydrogen bonding. Nano-adsorbent can sustain a >90% POPs adsorptive removal for about 3 cycles and reuseable for up to 10 cycles. Challenges around adsorbent ecotoxicity and safe disposal were also discussed. The present review evaluated recent research outcomes on nanomaterials that are employed to remove POPs in water systems.
Collapse
Affiliation(s)
- Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B., 5025, Awka, Nigeria; Department of Chemical Engineering, University of Ilorin, P. M. B., 1515, Ilorin, Nigeria.
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Kingsley O Iwuozor
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B., 5025, Awka, Nigeria
| | - Chukwunonso O Aniagor
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B., 5025, Awka, Nigeria
| | - Tianqi Liu
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Kanika Dulta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, India
| | - Felicitas U Iwuchukwu
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B., 5025, Awka, Nigeria
| | - Selvasembian Rangabhashiyam
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
13
|
Guo Y, Yu RQ, Zhang L, Liang Y, Liu Z, Sun X, Wu Y. Cross-Generational Impacts of Diet Shift on Bisphenol Analogue Loads in Indo-Pacific Humpback Dolphins ( Sousa chinensis). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10764-10774. [PMID: 35861411 DOI: 10.1021/acs.est.2c02222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bisphenol analogues (BPs) are ubiquitous pollutants to marine organisms as endocrine disruptive chemicals. However, the residue contamination and the trophic transfer of BPs in the apex predator nearshore dolphins are poorly studied. Here, we measured the concentrations of six BPs, including bisphenol A (BPA), bisphenol AF (BPAF), bisphenol B (BPB), bisphenol F (BPF), bisphenol P (BPP), and bisphenol S (BPS) in the liver of Indo-Pacific humpback dolphin (Sousa chinensis) (n = 75) collected from the Pearl River Estuary during a period with significant dietary changes (2004-2020). BPA and BPAF were the dominant components of the residue ∑BPs in the liver, with a proportion of 80%. Sex, maturity, and stranding location had no significant effects on BP levels. The generalized additive models indicated that BPA levels in juveniles and adults decreased from 2004 to 2013 while increasing from 2013 to 2020. The temporal trend of BPA levels was likely driven by the shift of the dominant diet from Harpadon nehereus to Thryssa spp. The concurrent increase of BPA loads in calves and juveniles and adults over the recent decades suggested that the diet-mediated variations of maternal BPA levels could be redistributed to their offspring.
Collapse
Affiliation(s)
- Yongwei Guo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Ri-Qing Yu
- Department of Biology, Center for Environment, Biodiversity and Conservation, The University of Texas at Tyler, Tyler, Texas 75799, United States
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuqin Liang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Zhiwei Liu
- School of Ecology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xian Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| |
Collapse
|
14
|
Wu X, Chen L, Li X, Cao X, Zheng X, Li R, Zhang J, Luo X, Mai B. Trophic transfer of methylmercury and brominated flame retardants in adjacent riparian and aquatic food webs: 13C indicates biotransport of contaminants through food webs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119433. [PMID: 35550129 DOI: 10.1016/j.envpol.2022.119433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Biomagnification of persistent toxic substances (PTSs) in food chains is of environmental concern, but studies on biotransport of PTSs across aquatic and riparian food chains are still incomplete. In this study, biomagnification of several PTSs including methylmercury (MeHg), polybrominated diphenyl ethers (PBDEs), and 1,2-bis (2,4,6-tribromophenoxy) ethane (BTBPE) was investigated in adjacent aquatic and riparian food webs. Concentrations of MeHg and PBDEs ranged from 2.37 to 353 ng/g dry weight (dw) and not detected (Nd) to 65.1 ng/g lipid weight (lw) in riparian samples, respectively, and ranged from Nd to 705 ng/g dw and Nd to 187 ng/g lw in aquatic samples, respectively. Concentrations of MeHg were significantly correlated with δ13C (p < 0.01) rather than δ15N (p > 0.05) values in riparian organisms, while a significant correlation was observed between concentrations of MeHg and δ15N (p < 0.01) in aquatic organisms. Biomagnification factors (BMFs) and trophic magnification factors (TMFs) of PBDE congeners were similar in riparian and aquatic food webs, while BMFs and TMFs of MeHg were much higher in aquatic food web than those in riparian food web. The results indicate the biotransport of MeHg from aquatic insects to terrestrial birds, and δ13C can be a promising ecological indicator for biotransport of pollutants across ecosystems.
Collapse
Affiliation(s)
- Xiaodan Wu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Laiguo Chen
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, MEE, Guangzhou, 510655, PR China
| | - Xiaoyun Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xingpei Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaobo Zheng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Ronghua Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jia'en Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
15
|
Zaghden H, Barhoumi B, Jlaiel L, Guigue C, Chouba L, Touil S, Sayadi S, Tedetti M. Occurrence, origin and potential ecological risk of dissolved polycyclic aromatic hydrocarbons and organochlorines in surface waters of the Gulf of Gabès (Tunisia, Southern Mediterranean Sea). MARINE POLLUTION BULLETIN 2022; 180:113737. [PMID: 35597001 DOI: 10.1016/j.marpolbul.2022.113737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
We investigated the occurrence, origin, and potential ecological risk of dissolved polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl (PCBs) and organochlorine pesticides (OCPs) in 27 surface water samples collected from a highly anthropized and industrialized area in the Gulf of Gabès (Tunisia, Southern Mediterranean Sea) in October-November 2017. The results demonstrated a wide range of concentrations (ng L-1) with the following decreasing order: Ʃ16 PAHs (17.6-71.2) > Ʃ20 PCBs (2.9-33.7) > Ʃ6 DDTs (1.1-12.1) > Ʃ4 HCHs (1.1-14.8). Selected diagnostic ratios indicated a mixture of both pyrolytic and petrogenic sources of PAHs, with a predominance of petrogenic sources. PCB compositions showed distinct contamination signatures for tetra- to hepta-chlorinated PCBs, characteristic of contamination by commercial (Aroclor) PCB mixtures. The dominant OCP congeners were γ-HCH, 2,4'-DDD and 2,4'-DDE, reflecting past use of Lindane and DDTs in the study area. Agricultural, industrial and domestic activities, as well as atmospheric transport are identified as potential sources of PAHs, PCBs and OCPs in surface waters of the Gulf of Gabès. Toxic equivalents (TEQs) suggested a low carcinogenic potential for PAHs in seawater samples (mean of 0.14 ng TEQ L-1). Evaluation of risk coefficients revealed low risk for PAHs and PCBs, and moderate to severe risk for OCPs.
Collapse
Affiliation(s)
- Hatem Zaghden
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia; Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cédria, 2050 Hammam-Lif, Tunisia.
| | - Badreddine Barhoumi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia; Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
| | - Lobna Jlaiel
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Catherine Guigue
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Lassaad Chouba
- Laboratory of Marine Environment, National Institute of Marine Science and Technology (INSTM), Goulette, Tunisia
| | - Soufiane Touil
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Marc Tedetti
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia; Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.
| |
Collapse
|
16
|
Zhao D, Feng K, Sun L, Baiocchi G, Liu H. Environmental implications of economic transformation in China's Pearl River Delta region: Dynamics at four nested geographical scales over 1987-2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151631. [PMID: 34774940 DOI: 10.1016/j.scitotenv.2021.151631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/16/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Environmental pollution in the Pearl River Delta (PRD) region is largely driven by socioeconomic forces outside the region as vast majority of manufacturing products produced in the region are destined to national and international markets. Given the remarkable economic transformation of the PRD in the past decades, this study investigates the impacts of local, provincial, national, and global socio-economic drivers on PRD's pollution dynamics under the background of significant economic restructuring and upgrading from 1987 to 2017. The results indicate that changes in pollution pattern were deeply shaped by the economic transformation. The share of PRD's emissions driven by international exports expanded significantly before 2007 as a result of the fast growth of international exports. The transformation of economic growth to domestic consumption driven model since the 2007-2008 global financial crisis had resulted in an increasing contribution share to the PRD's environmental pollution from local demand and trade with Rest of China (RoC). Similarly, as final demand structure evolving towards the high value-added manufacturing and services, the share of emissions driven by low value-added manufacturing (LVM) demand had decreased by an enlarged margin, while that driven by high value-added manufacturing (HVM) demand and services demand had moved in the opposite direction. The structural decomposition analysis shows that reduction in emission intensity remains the most effective way in pollution alleviation. The contribution of changes in production input structure also shifted from a strong impetus force before 2007 to a mitigating force afterwards due to significant technological progresses in the industrial sectors since the global financial crisis. With the marginal cost of reducing emission intensity becoming prohibitively expensive, the optimization of production structure and consumption pattern is likely to play more important role in future emission mitigation.
Collapse
Affiliation(s)
- Danyang Zhao
- School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China; Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
| | - Kuishuang Feng
- Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA.
| | - Laixiang Sun
- Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA; School of Finance & Management, SOAS University of London, London, UK
| | - Giovanni Baiocchi
- Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
| | - Haiting Liu
- School of Cultural Industry and Tourism Management, Henan University, Kaifeng 475001, China
| |
Collapse
|
17
|
Haarr A, Mwakalapa EB, Mmochi AJ, Lyche JL, Ruus A, Othman H, Larsen MM, Borgå K. Seasonal rainfall affects occurrence of organohalogen contaminants in tropical marine fishes and prawns from Zanzibar, Tanzania. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145652. [PMID: 33609827 DOI: 10.1016/j.scitotenv.2021.145652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/05/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Seasonal differences in precipitation may affect contaminant dynamics in tropical coastal regions due to terrestrial runoff of contaminants to the marine environment after the rainy seasons. To assess the effect of seasonal rainfall on occurrence of organohalogen contaminants in a coastal ecosystem, marine fishes and prawns were collected off the coast of Zanzibar, Tanzania in January and August 2018, representing pre- and post-rainy season, respectively. Samples were analyzed for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) and emerging BFRs, as well as the dietary descriptors stable isotopes of carbon (δ13C) and nitrogen (δ15N). Across all species and seasons, mean contaminant concentrations ranged from below limit of detection (LOD) to 129 ng/g lipid weight (lw) ΣPCBs; 5.6-336 ng/g lw ΣOCPs; and < LOD -22.1 ng/g lw ΣPBDEs. Most of the emerging BFRs were below LOD. Contaminant concentrations generally increased with higher pelagic carbon signal (δ13C) and higher relative trophic position (δ15N). The ratio of DDE/ΣDDTs in fishes and prawns was lower in August than in January, suggesting runoff of non-degraded DDT into the marine system during or after the seasonal rainfall. Contaminant patterns of OCPs and PCBs, and concentrations of BFRs, differed between seasons in all species. A higher relative concentration-increase in lower halogenated, more mobile PCB and PBDE congeners, compared to higher halogenated congeners with lower mobility, between January and August aligns with a signal and effect of terrestrial runoff following the rainy season.
Collapse
Affiliation(s)
- Ane Haarr
- Department of Biosciences, University of Oslo, P.O.Box 1066, 0316 Oslo, Norway.
| | - Eliezer B Mwakalapa
- Department of Natural Sciences, Mbeya University of Science and Technology, P.O. Box 131, Mbeya, Tanzania.
| | - Aviti J Mmochi
- Institute of Marine Science, University of Dar es Salaam, P.O. Box 668, Zanzibar, Tanzania.
| | - Jan L Lyche
- Norwegian University of Life Sciences, Ullevålsveien 72, 0474 Oslo, Norway.
| | - Anders Ruus
- Norwegian Institute for Water Research, Gaustadalleen 21, 0349 Oslo, Norway; Department of Biosciences, University of Oslo, P.O.Box 1066, 0316 Oslo, Norway.
| | - Halima Othman
- State University of Zanzibar, P.O.BOX 146, Tunguu, Zanzibar, Tanzania.
| | - Martin M Larsen
- University of Aarhus, Institute of Bioscience, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, P.O.Box 1066, 0316 Oslo, Norway; Center for Biogeochemistry in the Anthropocene, University of Oslo, PB 1066, 0316 Oslo, Norway.
| |
Collapse
|
18
|
Zhou Y, Sun J, Wang L, Zhu G, Li M, Liu J, Li Z, Gong H, Wu C, Yin G. Multiple classes of chemical contaminants in soil from an e-waste disposal site in China: Occurrence and spatial distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141924. [PMID: 32898803 DOI: 10.1016/j.scitotenv.2020.141924] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
E-waste recycling is well known for releasing halogenated organic compounds (HOCs) and heavy metals. This study investigated the occurrence and distribution of traditional and novel classes of contaminants, including chlorinated, brominated, and mixed halogenated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs, PBDD/Fs, PXDD/Fs), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and polyhalogenated carbazoles (PHCZs), in soil from an e-waste disposal site in Hangzhou. PBDEs were the most abundant, at 343-69306 ng kg-1, followed by PHCZs (896-41,362 ng kg-1), PCDD/Fs (349-19,396 ng kg-1), PCBs (51.3-1834 ng kg-1), PBDD/Fs (2.99-524 ng kg-1) and PXDD/Fs (0.104-21.2 ng kg-1). The detected target compound concentrations were generally lower than those reported in the literature for informal e-waste sites. Nevertheless, they can serve as a basis of information for evaluation and subsequent control. The toxic equivalent (TEQ) contributions from these contaminants (except PBDEs) decreased as follows: PCDD/Fs > PXDD/Fs > PHCZs > PCBs > PBDD/Fs. ΣDioxins (PCDD/Fs + PBDD/Fs + PXDD/Fs) accounted for 47.7%-97.2% of the total TEQs in the soil. OCDD, 1,2,3,4,6,7,8-HpBDF and OBDF were the dominant congeners, mainly derived from combustion and transport because of their low saturated vapor pressure. PXDFs were more abundant than PXDDs, and homologue profiles suggested a similar formation mechanism for PXDFs and PBDFs involving successive Br-to-Cl exchange. PHCZs were reported in soil from an e-waste disposal area for the first time, and their concentrations were several orders of magnitude higher than those of the other contaminants. Although the risk of human exposure in this study was estimated to be lower than the values recommended by the WHO (1-4 pg TEQ/kg bw/day), health implications still exist, and further investigations are necessary.
Collapse
Affiliation(s)
- Yanxiao Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junjun Sun
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Ling Wang
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Guohua Zhu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Mufei Li
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Jinsong Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China.
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hongping Gong
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Chenwang Wu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Ge Yin
- Shimadzu (China) Co., Ltd., Shanghai 200233, China
| |
Collapse
|
19
|
Liu C, Zeng T, Zheng J, Fan J, Luo X. Biochar-Polylactic Acid Composite Accelerated Reductive Dechlorination of Hexachlorobenzene in Paddy Soils under Neutral pH Condition. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:175-182. [PMID: 33392683 DOI: 10.1007/s00128-020-03070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
In order to clarify the effect of biochar-polylactic acid (PLA) composite on reductive dechlorination of HCB in paddy soils, an anaerobic incubation experiment was conducted with four treatments of Sterile control, Control, Biochar, and Biochar-PLA in Hydragric Acrisols (Ac) and Gleyi-Stagnic Anthrosols (An). The results showed that in Ac, biochar addition significantly promoted HCB degradation during the whole incubation period, but biochar-PLA composite inhibited HCB dechlorination due to the low soil pH in the early period and then accelerated HCB degradation while soil pH climbed to nearly neutral. The dechlorination rate of HCB in An was: Biochar-PLA > Biochar > Control > Sterilization control. The degradation rate of HCB in An was faster than in Ac, due to the higher iron content and neutral pH condition in An. The results indicated that biochar-PLA composite promoted the reductive dechlorination of HCB efficiently in paddy soil under nearly neutral pH condition.
Collapse
Affiliation(s)
- Cuiying Liu
- Department of Agricultural resources and environment, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Tao Zeng
- Department of Agricultural resources and environment, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jinjin Zheng
- School of Changwang, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jianling Fan
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaosan Luo
- Department of Agricultural resources and environment, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
20
|
Farzana S, Ruan Y, Wang Q, Wu R, Kai Z, Meng Y, Leung KMY, Lam PKS. Developing interim water quality criteria for emerging chemicals of concern for protecting marine life in the Greater Bay Area of South China. MARINE POLLUTION BULLETIN 2020; 161:111792. [PMID: 33197792 DOI: 10.1016/j.marpolbul.2020.111792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to establish marine water quality criteria (MWQC) for emerging chemicals of concern (ECCs) for protecting aquatic life in the Greater Bay Area (GBA) of South China. Despite the frequent occurrence and elevated concentrations of these ECCs in the GBA, there is a lack of regional MWQC for these contaminants. We screened 21 common ECCs that were classified into the following six groups: (1) new persistent organic contaminants; (2) brominated flame retardants; (3) perfluoroalkyl and polyfluoroalkyl substances; (4) pharmaceutically active compounds (PhACs); (5) plasticizers; and (6) personal care products. Globally, MWQC for PhACs remain largely unavailable despite their increasing occurrence in marine environments. Using an integrative scientific approach, we derived interim MWQC for the GBA with specific protection goals. The approach described herein can be applied for the derivation of MWQC for ECCs and the establishment of guidelines for ecological risk assessment in the GBA and other regions.
Collapse
Affiliation(s)
- Shazia Farzana
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhang Kai
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yan Meng
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
21
|
Zhou L, Liu L, Chen WY, Sun JJ, Hou SW, Kuang TX, Wang WX, Huang XD. Stochastic determination of the spatial variation of potentially pathogenic bacteria communities in a large subtropical river. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114683. [PMID: 32388300 DOI: 10.1016/j.envpol.2020.114683] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/01/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Understanding the composition and assembly mechanism of waterborne pathogen is essential for preventing the pathogenic infection and protecting the human health. Here, based on 16S rRNA sequencing, we investigated the composition and spatial variation of potentially pathogenic bacteria from different sections of the Pearl River, the most important source of water for human in Southern China. The results showed that the potential pathogen communities consisted of 6 phyla and 64 genera, covering 11 categories of potential pathogens mainly involving animal parasites or symbionts (AniP), human pathogens all (HumPA), and intracellular parasites (IntCelP). Proteobacteria (75.87%) and Chlamydiae (20.56%) were dominant at the phylum level, and Acinetobacter (35.01%) and Roseomonas (8.24%) were dominant at the genus level. Multivariate analysis showed that the potential pathogenic bacterial community was significantly different among the four sections in the Pearl River. Both physicochemical factors (e.g., NO3-N, and suspended solids) and land use (e.g., urban land and forest) significantly shaped the pathogen community structure. However, spatial effects contributed more to the variation of pathogen community based on variation partitioning and path analysis. Null model based normalized stochasticity ratio analysis further indicated that the stochastic process rather than deterministic process dominated the assembly mechanisms by controlling the spatial patterns of potential pathogens. In conclusion, high-throughput sequencing shows great potential for monitoring the potential pathogens, and provided more comprehensive information on the potentially pathogenic community. Our study highlighted the importance of considering the influences of dispersal-related processes in future risk assessments for the prevention and control of pathogenic bacteria.
Collapse
Affiliation(s)
- Lei Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Li Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wei-Yuan Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ji-Jia Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shi-Wei Hou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Tian-Xu Kuang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wen-Xiong Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China; School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Xian-De Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
22
|
Shao HY, Zhang ZC, Chai JF, Xu G, Tang L, Wu MH. Pollution characteristics and underlying ecological risks of primary semi-volatile organic compounds (SVOCs) in urban watersheds of Shanghai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27708-27720. [PMID: 32399879 DOI: 10.1007/s11356-020-08528-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
We investigated the pollution characteristics of ninety semi-volatile organic compounds (SVOCs) in the rivers and lakes of Shanghai. Total concentrations of Σ90SVOCs in water and sediment samples from 30 sites ranged from 1.47 to 19.5 μg/L and 2.38 to 9.48 mg/kg, respectively. PAEs and PAHs were the major contaminant compounds found in all samples. OCPs accounted for less than 3% of the total concentrations of Σ90SVOCs and other SVOCs were either not detected or only detected in trace amounts. Our results indicated that domestic swage, industrial wastewater, petroleum products, and other human activities were the pollutant sources to the water and sediment. It is noteworthy that products that contain the banned chemicals HCH and DDT are still under use within the studied areas. Ecological and health risk assessment results showed that dieldrin and BBP have the potential to cause adverse effects on the environment, while B(a)p and DBP have high carcinogenic risks to humans.
Collapse
Affiliation(s)
- Hai-Yang Shao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Zhou-Chong Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jian-Fei Chai
- Information Technology Office, School of Mechatronic Engineering and Automation, Shanghai, 200444, People's Republic of China.
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Liang Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Ming-Hong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| |
Collapse
|
23
|
Suami RB, Sivalingam P, Al Salah DM, Grandjean D, Mulaji CK, Mpiana PT, Breider F, Otamonga JP, Poté J. Heavy metals and persistent organic pollutants contamination in river, estuary, and marine sediments from Atlantic Coast of Democratic Republic of the Congo. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20000-20013. [PMID: 32232759 DOI: 10.1007/s11356-020-08179-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
The pollution assessment and the evaluation of potential risks in the Atlantic Coastal Region of the Democratic Republic of the Congo are still very limited. Consequently, the present study investigates for the first time the concentrations of heavy metals and persistent organic pollutants (organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs)) in river, estuary, and marine sediments from this area. The results highlighted high concentrations of Cr, Zn, As, and Pb exceeding the probable effect level (PEL) on aquatic life. Zn was the most dominant element detected at a range of 180-480 mg kg-1 in marine sediment, 132-382 mg kg-1 in estuary sediment, and 121-687 mg kg-1 in river sediment. Total PCBs (∑7 × 4.3) ranged from 1995 to 20,156 μg kg-1, 2013-12,058 μg kg-1, and 1861-36,417 μg kg-1 in marine, estuary, and river sediments, respectively. Total PCBs (∑7 × 4.3) were above PEL for all sediments, suggesting potential adverse effects on benthic organisms. The OCP, PBDE, and PAH levels were low to moderate for all sediments. Taking into consideration, the concentrations of Zn, Pb, PCBs, and DDTs, probable environmental risks, are present.
Collapse
Affiliation(s)
- Robert Bueya Suami
- Faculty of Science, Department of Chemistry, University of Kinshasa (UNIKIN), BP 190, Kinshasa XI, Democratic Republic of the Congo
- Faculty of Pharmaceutical Sciences, University of Kinshasa (UNIKIN), BP 212, Kinshasa XI, Democratic Republic of the Congo
| | - Periyasamy Sivalingam
- Department F.-A. Forel for Environmental and Aquatic Sciences and Institute of Environmental Sciences, School of Earth and Environmental Sciences, Faculty of Science, University of Geneva, Uni Carl-Vogt, 66 Boulevard Carl-Vogt, CH-1211, Geneva 4, Switzerland
- Postgraduate and Research Department of Microbiology, Jamal Mohamed College, Tiruchirappalli, Tamil Nadu, 620020, India
| | - Dhafer Mohammed Al Salah
- Department F.-A. Forel for Environmental and Aquatic Sciences and Institute of Environmental Sciences, School of Earth and Environmental Sciences, Faculty of Science, University of Geneva, Uni Carl-Vogt, 66 Boulevard Carl-Vogt, CH-1211, Geneva 4, Switzerland
- Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Prince Turki the 1st st, Riyadh, 11442, Saudi Arabia
| | - Dominique Grandjean
- Central Environmental Laboratory (GR-CEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Crispin Kyela Mulaji
- Faculty of Science, Department of Chemistry, University of Kinshasa (UNIKIN), BP 190, Kinshasa XI, Democratic Republic of the Congo
| | - Pius Tshimankinda Mpiana
- Faculty of Science, Department of Chemistry, University of Kinshasa (UNIKIN), BP 190, Kinshasa XI, Democratic Republic of the Congo
| | - Florian Breider
- Central Environmental Laboratory (GR-CEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jean-Paul Otamonga
- Université Pédagogique Nationale (UPN), Croisement Route de Matadi et Avenue de la Libération. Quartier Binza/UPN, BP 8815, Kinshasa, Democratic Republic of the Congo
| | - John Poté
- Faculty of Science, Department of Chemistry, University of Kinshasa (UNIKIN), BP 190, Kinshasa XI, Democratic Republic of the Congo.
- Department F.-A. Forel for Environmental and Aquatic Sciences and Institute of Environmental Sciences, School of Earth and Environmental Sciences, Faculty of Science, University of Geneva, Uni Carl-Vogt, 66 Boulevard Carl-Vogt, CH-1211, Geneva 4, Switzerland.
- Université Pédagogique Nationale (UPN), Croisement Route de Matadi et Avenue de la Libération. Quartier Binza/UPN, BP 8815, Kinshasa, Democratic Republic of the Congo.
| |
Collapse
|
24
|
Cheng B, Peng FJ, Liu QR, Ke CL, Liu Q, Pan CG. Nationwide assessment of persistent halogenated compounds (PHCs) in farmed golden pompano of China. Food Chem 2020; 313:126135. [DOI: 10.1016/j.foodchem.2019.126135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/21/2019] [Accepted: 12/26/2019] [Indexed: 01/05/2023]
|
25
|
Sun R, Pan C, Li QX, Peng F, Mai B. Occurrence and congener profiles of polybrominated diphenyl ethers in green mussels (Perna viridis) collected from northern South China Sea and the associated potential health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134276. [PMID: 31514028 DOI: 10.1016/j.scitotenv.2019.134276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ether (PBDE) contamination has become a major concern over the effects on human health. In the present study, we collected widely consumed green mussels (Perna viridis) samples from the northern South China Sea (NSCS) to investigate the occurrence, spatial distribution, congener profiles as well as potential risk of 18 PBDEs. All the target PBDEs were detected in green mussel samples, indicating their ubiquitous distribution. The concentrations of the total 18 PBDES (ΣPBDEs) in all samples varied from 6.96 to 55.6 ng/g lipid weight (lw), with BDE-47 and BDE-209 being the predominant PBDE congeners. Overall, the ΣPBDEs pollution in green mussels from NSCS was at a moderate to high level in comparison with the PBDEs pollution worldwide. The dietary exposure of the local population in South China to PBDEs via consuming green mussels was estimated to be 0.30-0.80 ng/kg body weight (bw)/day. Evaluation of the exposure risk for BDE-47, 99, 153 and 209 indicated that health risks due to green mussel consumption are substantially lower than the U.S. EPA minimum concern level.
Collapse
Affiliation(s)
- Runxia Sun
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Changgui Pan
- School of Marine Sciences, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Fengjiao Peng
- Department of Population Health, Luxembourg Institute of Health, 1A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
26
|
Jiang Y, Yuan L, Lin Q, Ma S, Yu Y. Polybrominated diphenyl ethers in the environment and human external and internal exposure in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133902. [PMID: 31470322 DOI: 10.1016/j.scitotenv.2019.133902] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 05/12/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame retardants. Because of their toxicity and persistence, some PBDEs were restricted under the Stockholm Convention in 2009. Since then, many studies have been carried out on PBDEs in China and in many other countries. In the present review, the occurrences and contamination of PBDEs in air, water, sediment, soil, biota and daily food, human blood, hair, and other human tissues in China are comprehensively reviewed and described. The human exposure pathways and associated health risks of PBDEs are summarized. The data showed no obvious differences between North and South China, but concentrations from West China were generally lower than in East China, which can be mainly attributed to the production and widespread use of PBDEs in eastern regions. High levels of PBDEs were generally observed in the PBDE production facilities (e.g., Jiangsu Province and Shandong Province, East China) and e-waste recycling sites (Taizhou City, Zhejiang Province, East China, and Guiyu City and Qingyuan City, both located in Guangdong Province, South China) and large cities, whereas low levels were detected in rural and less-developed areas, especially in remote regions such as the Tibetan Plateau. Deca-BDE is generally the major congener. Existing problems for PBDE investigations in China are revealed, and further studies are also discussed and anticipated. In particular, non-invasive matrices such as hair should be more thoroughly studied; more accurate estimations of human exposure and health risks should be performed, such as adding bioaccessibility or bioavailability to human exposure assessments; and the degradation products and metabolites of PBDEs in human bodies should receive more attention. More investigations should be carried out to evaluate the quantitative relationships between internal and external exposure so as to provide a scientific basis for ensuring human health.
Collapse
Affiliation(s)
- Yufeng Jiang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Longmiao Yuan
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Qinhao Lin
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shentao Ma
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
27
|
Yang H, Li Y, Chen Y, Ye G, Sun X. Comparison of ciprofloxacin degradation in reclaimed water by UV/chlorine and UV/persulfate advanced oxidation processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1576-1588. [PMID: 31100181 DOI: 10.1002/wer.1144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
This study analyzed the ciprofloxacin (CIP) degradation in real reclaimed water through UV/chlorine and UV/persulfate (UV/PS) advanced oxidation processes. The influence of oxidant dosage, pH, inorganic anions, and humic acid (HA) on the oxidation capacity and performances of various UV-based processes was investigated. The results revealed that the CIP degradation rate constants in the UV/chlorine and UV/PS processes were higher than that in UV/H2 O2 , direct-UV, NaClO, and K2 S2 O8 processes. The removal rate peaked at 0.1 mM oxidant dosage for 1 μM CIP, while the rate constant was highest at pH 5 (UV/chlorine) and pH 7 (UV/PS). The presence of Cl- , HCO3 - , and HA inhibited CIP removal in both processes. The degradation rate observed in reclaimed water was high, but still lower than that in laboratory water by 9.2 (UV/chlorine) and 9 (UV/PS) times. The UV/chlorine and UV/PS processes were found to be more cost-effective and hence more feasible in removing refractory compounds in reclaimed water. PRACTITIONER POINTS: The addition of oxidant and UV irradiation together had a pronounced promotion in the degradation of CIP. Cl· and SO4 ·- had potential importance for enhancing CIP degradation in UV/chlorine and UV/PS process, respectively. UV/chlorine and UV/PS processes exhibited effective removal capability to CIP in real reclaimed water.
Collapse
Affiliation(s)
- Haiyan Yang
- Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Yi Li
- Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Yihua Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Guihong Ye
- Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Xiaobo Sun
- Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, China
| |
Collapse
|
28
|
Fang L, Qiu F, Li Y, Wang S, DeGuzman J, Wang J, She J. Determination of carbazole and halogenated carbazoles in human serum samples using GC-MS/MS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109609. [PMID: 31518828 DOI: 10.1016/j.ecoenv.2019.109609] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/05/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Carbazole and halogenated carbazoles have been widely detected throughout the environment in soil, river deposits, and lake sediments. Human exposure to these compounds may occur through inhalation, drinking water, dietary intake and/or skin contact, and exposure levels in the body may be evaluated by measuring them in serum or blood. This paper reports the method development and validation for the analysis of carbazole and 11 halogenated carbazoles in human blood and/or serum samples. A small sample size of 100 μL of blood or serum was employed for the analysis. The samples were prepared through salting-out liquid-liquid extraction (LLE) by using hexane/ethyl acetate (4:1, v/v) as the extraction solvent and aqueous MgSO4 (37.5 wt%) as the salting-out regent, respectively. Sample analysis was performed using gas-chromatography (GC) coupled with a tandem mass spectrometer (MS/MS) in an electron impact (EI) mode. The developed method demonstrated low detection limits in the range of 0.02-0.27 ng/mL, intra-day accuracy ranging from 81.2% to 125%, and inter-day accuracy from 91.0% to 117%. The intra- and inter-day precisions, calculated by relative standard deviations (RSDs), were in the ranges of 1.0-16.0% and 1.8-16.4%, respectively. The developed method was applied to the analysis of 50 human serum samples collected from pregnant women in Southern California in 2012. Low concentrations of carbazole were measured in 18 samples, while halogenated carbazoles were not detected in any of the samples.
Collapse
Affiliation(s)
- Li Fang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood (Zhoushan Municipal District Center for Disease Control and Prevention), Zhoushan, 316021, China; Environmental Health Laboratory, California Department of Public Health, 850 Marina Bay Parkway, Richmond, CA, 94804, USA
| | - Fengmei Qiu
- Daishan Center for Disease Control and Prevention, Daishan, Zhejiang, 316200, China
| | - Ying Li
- Environmental Health Laboratory, California Department of Public Health, 850 Marina Bay Parkway, Richmond, CA, 94804, USA
| | - Shizhong Wang
- Environmental Health Laboratory, California Department of Public Health, 850 Marina Bay Parkway, Richmond, CA, 94804, USA
| | - Josephine DeGuzman
- Environmental Health Laboratory, California Department of Public Health, 850 Marina Bay Parkway, Richmond, CA, 94804, USA
| | - Jun Wang
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jianwen She
- Environmental Health Laboratory, California Department of Public Health, 850 Marina Bay Parkway, Richmond, CA, 94804, USA.
| |
Collapse
|
29
|
Wu L, Ru H, Ni Z, Zhang X, Xie H, Yao F, Zhang H, Li Y, Zhong L. Comparative thyroid disruption by o,p'-DDT and p,p'-DDE in zebrafish embryos/larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105280. [PMID: 31518776 DOI: 10.1016/j.aquatox.2019.105280] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/14/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
1,1-Trichloro-2-(p-chlorophenyl)-2-(o-chlorophenyl) ethane (o,p'-DDT) and 1,1-dichloro-2,2-bis (p-chlorophenyl)-ethylene (p,p'-DDE) cause thyroid disruption, but the underlying mechanisms of these disturbances in fish remain unclear. To explore the potential mechanisms of thyroid dysfunction caused by o,p'-DDT and p,p'-DDE, thyroid hormone and gene expression levels in the hypothalamic-pituitary-thyroid (HPT) axis were measured, and the developmental toxicity were recorded in zebrafish larvae. Zebrafish embryos/larvae were exposed to o,p'-DDT (0, 0.28, 2.8, and 28 nM; or 0, 0.1, 1, and 10 μg/L) and p,p'-DDE (0, 1.57, 15.7, and 157 nM; or 0, 0.5, 5, and 50 μg/L) for 7 days. The genes related to thyroid hormone synthesis (crh, tshβ, tg, nis and tpo) and thyroid development (nkx2.1 and pax8) were up-regulated in both the o,p'-DDT and p,p'-DDE exposure groups. Zebrafish embryos/larvae exposed to o,p'-DDT showed significantly increased total whole-body T4 and T3 levels, with the expression of ugt1ab and dio3 being significantly down-regulated. However, the p,p'-DDE exposure groups showed significantly lowered whole-body total T4 and T3 levels, which were associated with up-regulation and down-regulation expression of the expression of dio2 and ugt1ab, respectively. Interestingly, the ratio of T3 to T4 was significantly decreased in the o,p'-DDT (28 nM) and p,p'-DDE (157 nM) exposure groups, suggesting an impairment of thyroid function. In addition, reduced survival rates and body lengths and increased malformation rates were recorded after treatment with either o,p'-DDT or p,p'-DDE. In summary, our study indicates that the disruption of thyroid states was different in response to o,p'-DDT and p,p'-DDE exposure in zebrafish larvae.
Collapse
Affiliation(s)
- Luyin Wu
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huijun Ru
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zhaohui Ni
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaoxin Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Huaxiao Xie
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Fan Yao
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - He Zhang
- State Key Laboratory of Optometry, Ophthalmology, and Visual Science, School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Yunfeng Li
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Liqiao Zhong
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
30
|
Jin H, Dai W, Li Y, Hu X, Zhu J, Wu P, Wang W, Zhang Q. Semi-volatile organic compounds in tap water from Hangzhou, China: Influence of pipe material and implication for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:671-678. [PMID: 31071669 DOI: 10.1016/j.scitotenv.2019.04.387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Investigations on environmental behaviors of SVOCs have recently received great attention. However, the SVOC occurrence and influence of pipe materials on SVOC levels in the tap water have received little attention. Herein, we collected tap water samples from 25 households constructed at different ages in Hangzhou, China. Concentrations of 61 SVOCs, including phthalate esters (PAEs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs), were simultaneously determined in these collected samples. The potential human exposure risks were evaluated via the hazard index calculation. Our results showed that the total concentration of detected SVOCs (∑SVOCs) ranged from 110 to 289 μg/L (mean, 179 μg/L), and the SVOCs were dominated by PAHs (mean, 116 ng/L) and PAEs (mean, 55 ng/L) in Hangzhou tap water. 12 PCB congeners were detected in Hangzhou tap water samples, with hepta-CBs (68% of samples) as the most frequently detected PCBs. Nearly all tap water samples contained measurable o, p'-DDE, p, p'-DDT, and p, p'-DDD, and ∑DDTs had significantly (p < 0.05) higher concentrations than ∑HCHs. All target PAHs had high detection frequencies (>72%) in tap water samples, with their mean concentrations in the range of 2.1-41 ng/L. Tap water from steel pipes had relatively lower SVOC concentrations than that from either reinforced concrete, gray cast iron, or ductile iron pipes. Although no carcinogenic risks originating from exposure to SVOCs through ingestion and bathing were observed, the tap water from steel pipes showed relatively low exposure risks than that from other materials. Data provided here, for the first, are helpful in understanding the influence of pipe materials on human SVOC exposure risks through tap water intake.
Collapse
Affiliation(s)
- Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Wei Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Yan Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Xiaoying Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Jianqiang Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Pengfei Wu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR 999007, PR China
| | - Wucheng Wang
- Zhejiang Province Environmental Monitoring Center, Zhejiang 310012, PR China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
31
|
Weng N, Wang WX. Seasonal fluctuations of metal bioaccumulation and reproductive health of local oyster populations in a large contaminated estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:175-185. [PMID: 30995571 DOI: 10.1016/j.envpol.2019.04.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/17/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Despite of much evidence of trace metal pollution in the Pearl River Estuary (PRE), the seasonal dynamics of metal bioavailability as well as the potential impacts of metal pollution on the local marine organisms in this estuary is poorly understood. In the present study, the accumulation of trace metals and reproductive states of three populations of oyster Crassostrea hongkongensis, a keystone bivalve species in the PRE, were for the first time investigated throughout a one-year field study. Significant temporal fluctuations of metal accumulation were observed in the somatic tissues of oysters, suggesting seasonal variations of metal bioavailability in the PRE. A major feature of the seasonal variations was the increased levels of metal bioaccumulation in the summer season for the contaminated sites nearby the major river inlets. High riverine inputs accompanied by relatively lower salinity in summer may greatly contribute to such variations. Furthermore, oyster populations from two contaminated sites had a poor reproductive condition in comparison with the reference oyster population, as reflected by a significant decrease of gonad-somatic index (GSI) and gonad cover area (GCA), as well as an obvious change of sex ratios. Gonadal metal accumulation of Cu, Zn, Ni, Co and Pb in the contaminated oysters was much higher than that in the relatively uncontaminated oysters. Especially, the concentrations of these metals in the gonad during the breeding season had significantly negative correlations with the gonad condition indexes (GSI and GCA). Our results suggested strong seasonal fluctuations of bioavailability of trace metals in this highly contaminated estuary as well as an adverse effect of metal pollution on the reproduction of local oyster populations.
Collapse
Affiliation(s)
- Nanyan Weng
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, and Department of Ocean Science, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Kowloon, Hong Kong, PR China
| | - Wen-Xiong Wang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, and Department of Ocean Science, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Kowloon, Hong Kong, PR China.
| |
Collapse
|
32
|
Chen Y, Yu K, Hassan M, Xu C, Zhang B, Gin KYH, He Y. Occurrence, distribution and risk assessment of pesticides in a river-reservoir system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:320-327. [PMID: 30278393 DOI: 10.1016/j.ecoenv.2018.09.107] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/23/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
The water environment from river to reservoir has been considered as a hybrid river-reservoir system due to pronounced environmental properties. This study investigated the distribution and potential environmental behavior of pesticides in river-reservoir system, examining 31 target pesticides in water phase from a key drinking water source (Dongjiang River). The concentrations of ∑8OCPs, ∑16OPPs and ∑7SPs with the corresponding occurrence were in the range of 107.57-340.35 ng/L (moderate level), 232.65-1197.95 ng/L (moderate level) and 125.23-245.09 ng/L (low level), respectively. Ecological risk assessments indicated that most of the pesticides posed a high level of risk to the aquatic organisms. Moreover, seasonal agricultural application, rainfall and temperature could influence the levels and compositions of ∑8OCPs, ∑16OPPs and ∑7SPs in the river system, while seasonal hydrological processes could only influence their compositions in the reservoir system. In the wet season, the levels of ∑8OCPs and ∑7SPs decreased from the river system to reservoir system probably via biogeochemical processes, while the level of ∑16OPPs decreased along the environmental gradient probably via dilution process. Additionally, longer hydraulic retention time of the reservoir system could contribute to the biogeochemical processes for OPPs and SPs exported from the river system, but it might fail to facilitate this process for OCPs. Taken together, this study highlighted that the distributions and environmental behavior of pesticides in river-reservoir system varied seasonally from river system to reservoir system.
Collapse
Affiliation(s)
- Yihan Chen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Muhammad Hassan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Cong Xu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bo Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
33
|
Alhama J, Fuentes-Almagro CA, Abril N, Michán C. Alterations in oxidative responses and post-translational modification caused by p,p´-DDE in Mus spretus testes reveal Cys oxidation status in proteins related to cell-redox homeostasis and male fertility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:656-669. [PMID: 29723838 DOI: 10.1016/j.scitotenv.2018.04.305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
The major derivate of DDT, 1,1-dichloro-2,2-bis (p-chlorophenyl) ethylene (p,p´-DDE), is a persistent pollutant previously associated with oxidative stress. Additionally, p,p´-DDE has been linked to several metabolic alterations related to sexual function in rodents. In this study, we analysed the effects of a non-lethal p,p´-DDE dose to Mus spretus mice in testes, focusing on oxidative damage to biomolecules, defence mechanisms against oxidative stress and post-translational protein modifications. No increase in lipid or DNA oxidation was observed, although antioxidative enzymatic defences and redox status of glutathione were altered in several ways. Global protein carbonylation and phosphorylation were significantly reduced in testes from p,p´-DDE-exposed mice; however, the total redox state of Cys thiols did not exhibit a defined pattern. We analysed the reversible redox state of specific Cys residues in detail with differential isotopic labelling and a shotgun labelling-based MS/MS proteomic approach for identification and quantification of altered peptides. Our results show that Cys residues are significantly affected by p,p´-DDE in several proteins related to oxidative stress and/or male fertility, particularly those participating in fertilization, sperm capacitation and blood coagulation. These molecular changes could explain the sexual abnormalities previously described in p,p´-DDE exposed organisms.
Collapse
Affiliation(s)
- José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Carlos A Fuentes-Almagro
- Servicio Central de Apoyo a la Investigación (SCAI), Unidad de Proteómica, Universidad de Córdoba, Campus de Rabanales, Edificio Ramón y Cajal, E-14071 Córdoba, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain.
| |
Collapse
|
34
|
|
35
|
Li Q, Lu Y, Wang P, Wang T, Zhang Y, Suriyanarayanan S, Liang R, Baninla Y, Khan K. Distribution, source, and risk of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in urban and rural soils around the Yellow and Bohai Seas, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:233-241. [PMID: 29656247 DOI: 10.1016/j.envpol.2018.03.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Between 1945 and 1983, China was the world's largest producer of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), and the second largest producer of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs). The provinces of Liaoning, Hebei, Tianjin, Shandong, and Jiangsu around the Yellow and Bohai Seas have a long history of production and usage of OCPs and PCBs. To investigate their residual concentration, distribution, risk level, and temporal degradation, 7 OCPs and 7 indicator PCBs were determined in surface soils collected around the Yellow and Bohai Seas. Residues of the 7 OCPs and 7 PCBs were in the range of 5.89-179.96 ng g-1 dry weight (dw) and non-detectable (ND)-385.67 ng g-1 dw, respectively. Tianjin and Hebei provinces recorded the highest concentrations of OCPs and PCBs, respectively. Moreover, OCPs residues had a significant relationship with agriculture and orchard land-use types, whereas PCBs residues occurred more in wasteland. Lifetime carcinogenic and non-carcinogenic risks of OCPs and PCBs through ingestion, inhalation, and dermal contact indicated that OCPs and PCBs residues in surface soils are at a low risk level.
Collapse
Affiliation(s)
- Qifeng Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Pei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tieyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueqing Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Ruoyu Liang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yvette Baninla
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kifayatullah Khan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Environmental and Conservation Sciences, University of Swat, Swat, 19130, Pakistan
| |
Collapse
|
36
|
Cai YM, Ren GF, Lin Z, Sheng GY, Bi XH, Sun SY. Assessment of exposure to polybrominated diphenyl ethers associated with consumption of market hens in Guangzhou. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 153:40-44. [PMID: 29407736 DOI: 10.1016/j.ecoenv.2018.01.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 06/07/2023]
Abstract
To evaluate contamination by polybrominated diphenyl ethers (PBDEs) in market hens and human PBDE exposure via hen consumption in Guangzhou, hens were collected and their muscle, liver, fat, blood, yolk, and ingluvies tissues were analyzed for 13 PBDE congeners. The median highest concentration of ∑PBDEs was found in the ingluvies (5.30 ng/g lw), followed by the muscle (2.53 ng/g lw), with the lowest located in the yolk (0.09 ng/g lw). The concentrations of PBDEs in the muscle tissue of market hens in Guangzhou were at medium levels compared to others reported around the world. BDE-47, -153, -99, and -183 were the predominant congeners. The daily intake concentrations of PBDEs from hen muscle were estimated to range from 0.08 to 0.31 ng/kg/day in this study, with a Hazard Quotient (HQ) below 1.0. These results suggest that the health risk of PBDEs for the general population, through the consumption of market hens in Guangzhou, was generally low. However, the intake of PBDEs via food consumption may be one major exposure pathway for the general population of Guangzhou.
Collapse
Affiliation(s)
- Yun-Mei Cai
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan, Guangdong 528216, China; State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environment Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guo-Fa Ren
- Institute of Environmental Pollution and Health, School of Environment and Chemical Engineering, Shanghai University, Shanghai 200072, China
| | - Zheng Lin
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environment Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guo-Ying Sheng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environment Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xin-Hui Bi
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environment Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Shui-Yu Sun
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan, Guangdong 528216, China.
| |
Collapse
|
37
|
Ni M, Tian S, Huang Q, Yang Y. Electrokinetic-Fenton remediation of organochlorine pesticides from historically polluted soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12159-12168. [PMID: 29455352 DOI: 10.1007/s11356-018-1479-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
Soil contamination by persistent organic pollutants (POPs) poses a great threat to historically polluted soil worldwide. In this study, soils were characterized, and organochlorine pesticides contained in the soils were identified and quantified. Individual electrokinetic (IE), EK-Fenton-coupled technologies (EF), and enhanced EK-Fenton treatment (E-1, E-2, and E-3) were applied to remediate soils contaminated with hexachloro-cyclohexane soprocide (HCH) and dichloro-diphenyl-trichloroethane (DDT). Variation of pH, electrical conductivity, and electroosmotic flow was evaluated during the EK-Fenton process. The IE treatment showed low removal efficiency for HCHs (30.5%) and DDTs (25.9%). In the EF treatment, the highest removal level (60.9%) was obtained for α-HCH, whereas P,P-DDT was the lowest (40.0%). Low solubility of pollutants impeded the HCH and DDT removal. After enhanced EK-Fenton treatment, final removal of pollutants decreased as follows: β-HCH (82.6%) > γ-HCH (81.6%) > α-HCH (81.2%) > δ-HCH (80.0%) > P,P-DDD (73.8%) > P,P-DDE (73.1%) > P,P-DDT (72.6%) > O,P-DDT (71.5%). The results demonstrate that EK-Fenton is a promising technology for POP removal in historically polluted soil.
Collapse
Affiliation(s)
- Maofei Ni
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulei Tian
- Research Institute of Solid Waste Management, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Qifei Huang
- Research Institute of Solid Waste Management, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yanmei Yang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| |
Collapse
|
38
|
Sun R, Luo X, Li QX, Wang T, Zheng X, Peng P, Mai B. Legacy and emerging organohalogenated contaminants in wild edible aquatic organisms: Implications for bioaccumulation and human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:38-45. [PMID: 29107777 DOI: 10.1016/j.scitotenv.2017.10.296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
Highly industrialized and urbanized watersheds may receive various contaminants from anthropogenic activities. In this study, legacy and emerging organohalogenated contaminants (OHCs) were measured in edible wild aquatic organisms sampled from the Pearl River and Dongjiang River in a representative industrial and urban region in China. High concentrations of target contaminants were observed. The Pearl River exhibited higher concentrations of OHCs than the Dongjiang River due to high industrialization and urbanization. Agrochemical inputs remained an important source of OHCs in industrialized and urbanized watershed in China, but vigilance is needed for recent inputs of polychlorinated biphenyls (PCBs) originated from e-waste recycling activities. Bioaccumulation of dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs), PCBs, polybrominated diphenyl ethers (PBDEs), and Dechlorane Plus (DP) was biological species- and compound-specific, which can be largely attributed to metabolic capability for xenobiotics. No health risk was related to the daily intake of DDTs, HCHs, and PBDEs via consumption of wild edible species investigated for local residents. However, the current exposure to PCBs through consuming fish is of potential health concern.
Collapse
Affiliation(s)
- Runxia Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI 96822, USA
| | - Tao Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobo Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Pingan Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
39
|
Tang S, Liu H, Yin H, Liu X, Peng H, Lu G, Dang Z, He C. Effect of 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) and its metabolites on cell viability, oxidative stress, and apoptosis of HepG2. CHEMOSPHERE 2018; 193:978-988. [PMID: 29874774 DOI: 10.1016/j.chemosphere.2017.11.107] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 06/08/2023]
Abstract
2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47), an extensively used brominated flame retardant (BFR), is frequently detected in biotic environments. To date, studies have reported that BDE-47 induces hepatotoxicity, reproductive toxicity, and neurotoxicity in vitro. However, little is known regarding BDE-47 metabolites-mediated cell toxicity in relevant human cell models. The cytotoxic effects of BDE-47 and its eight metabolites on hepatoblastoma cell line-HepG2 cells were investigated in this study. We found that BDE-47 and all its metabolites inhibited cell viability in both a dose- and time-dependent manner. For BDE-47 and its debromination products (BDE-28 and BDE-7), they had less severe effects on cell viability when the cells were pretreated with lower dose of the same compound, however, no significant difference was observed in control, suggesting that low concentrations have an adaptation effect on HepG2 cells. BDE-47 and its metabolites also induce changes in ROS generation, SOD and GSH activity, cell cycle regulation, DNA damage and cell apoptosis, indicating that the toxicity mechanisms of BDE-47 and its degradation products are mediated by oxidative stress, DNA damage and cell cycle dysregulation. Moreover, brominated phenol products (2,4-DBP and 4-BP) posed the highest toxic effects on HepG2, followed by hydroxylated products (6-OH-BDE-47, 5-OH-BDE-47, 2-OH-BDE-28, and 4-OH-BDE-17), and BDE-47 and its debromination products were comparatively less toxic to HepG2 cells. Taken together, these results demonstrate the hepatotoxic potential of BDE-47 and its metabolites.
Collapse
Affiliation(s)
- Shaoyu Tang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Queensland Alliance for Environmental Health Science (QAEHS), Formerly National Research Centre for Environmental Toxicology (ENTOX), The University of Queensland, Brisbane, Australia
| | - Hao Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Xintong Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Chang He
- Queensland Alliance for Environmental Health Science (QAEHS), Formerly National Research Centre for Environmental Toxicology (ENTOX), The University of Queensland, Brisbane, Australia
| |
Collapse
|
40
|
Sun X, Yu RQ, Zhang M, Zhang X, Chen X, Xiao Y, Ding Y, Wu Y. Correlation of trace element concentrations between epidermis and internal organ tissues in Indo-Pacific humpback dolphins (Sousa chinensis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:238-245. [PMID: 28667850 DOI: 10.1016/j.scitotenv.2017.06.180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Trace element accumulation in the epidermis of cetaceans has been less studied. This study explored the feasibility of using epidermis as a surrogate tissue to evaluate internal contaminant burdens in Indo-Pacific humpback dolphin (Sousa chinensis). Eleven trace elements were analyzed in the epidermis, muscle and liver tissues from 46 individuals of dolphins stranded along the Pearl River Estuary (PRE) coast between 2007 and 2013. Trace elemental concentrations varied among the three tissues, generally with the highest concentrations found in liver tissues and lowest in the epidermis (except Zn, As, and Pb). Zn concentration in the epidermis was the highest among all tissues, indicating that Zn could be an important element for the epidermis physiology. High concentrations of Hg and Cr in liver were likely due to an excessive intake by dolphins which consumed high Hg and Cr contaminated fishes in the PRE. Hg concentrations in epidermis and muscle tissues were significantly higher in the females than in males. Concentrations of V and Pb in liver, Se and Cd in both muscle and liver, and As and Hg in all tissue samples showed significantly positive relationships with body length. Hepatic Cu concentrations were significantly negatively correlated with the body length. Hg and As concentrations in epidermis showed significantly positive correlations with those in liver tissues. Thus this study proposed that epidermis could be used as a non-invasive monitoring tissue to evaluate Hg and As bioaccumulation in internal tissues of Indo-Pacific humpback dolphins populations.
Collapse
Affiliation(s)
- Xian Sun
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX 75799, USA
| | - Mei Zhang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiyang Zhang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xi Chen
- Pearl River Estuary Chinese White Dolphin National Nature Reserve, Zhuhai 519080, China
| | - Yousheng Xiao
- Pearl River Estuary Chinese White Dolphin National Nature Reserve, Zhuhai 519080, China
| | - Yulong Ding
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuping Wu
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
41
|
Are Aquaporins (AQPs) the Gateway that Conduits Nutrients, Persistent Organic Pollutants and Perfluoroalkyl Substances (PFASs) into Plants? ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40362-017-0045-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Tang J, An T, Xiong J, Li G. The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:1487-1499. [PMID: 28315117 DOI: 10.1007/s10653-017-9936-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
Three important groups of semi-volatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), organic chlorinated pesticides (OCPs) and phthalate esters (PAEs), were produced by various human activities and entered the water body. In this study, the pollution profiles of three species including 16 PAHs, 20 OCPs and 15 PAEs in water along the Beijiang River, China were investigated. The concentrations of Σ16PAHs in the dissolved and particulate phases were obtained as 69-1.5 × 102 ng L-1 and 2.3 × 103-8.6 × 104 ng g-1, respectively. The levels of Σ20OCPs were 23-66 ng L-1 (dissolved phase) and 19-1.7 × 103 ng g-1 (particulate phase). Nevertheless, higher levels of PAEs were found both in the dissolved and particulate phases due to abuse use of plastic products. Furthermore, non-cancer and cancer risks caused by these SVOCs through the ingestion absorption and dermal absorption were also assessed. There was no non-cancer risk existed through two kinds of exposure of them at current levels, whereas certain cancer risk existed through dermal absorption of PAHs in the particulate phase in some sampling sites. The results will show scientific insights into the evaluation of the status of combined pollution in river basins, and the determination of strategies for incident control and pollutant remediation.
Collapse
Affiliation(s)
- Jiao Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taicheng An
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jukun Xiong
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
43
|
Li AJ, Sang Z, Chow CH, Law JCF, Guo Y, Leung KSY. Environmental behavior of 12 UV filters and photocatalytic profile of ethyl-4-aminobenzoate. JOURNAL OF HAZARDOUS MATERIALS 2017; 337:115-125. [PMID: 28511043 DOI: 10.1016/j.jhazmat.2017.04.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Ethyl-4-aminobenzoate (Et-PABA) is currently used as a substitute for 4-aminobenzoate (PABA) in sunscreens and anesthetic ointments. Despite its widespread use and hydrophilicity, Et-PABA has never been found in environmental waters. This study, probed the occurrence of Et-PABA in both seawater and drinking water sources in Hong Kong, and evaluated its transformation products (TPs) and environmental fate via cumulative potency and photocatalytic profile analyses. Another 11 UV filters used in skin-care products were also studied. Et-PABA was not detected in any water sample. Four other UV filters were dominant at ng/L level in both seawater and drinking water sources. UHPLC-QTOF-MS was used to elucidate the structure of TPs. With high resolution accurate mass data and fragment rationalization, 11 Et-PABA TPs were characterized, including seven intermediates firstly proposed as TPs; two compounds were reported for the first time. It is proposed that photocatalysis induces transformation pathways of (de)hydroxylation, demethylation and molecular rearrangement. Luminescent bacteria tests showed decreasing toxicity with increasing irradiation of Et-PABA, suggesting that irradiation TPs are less toxic than the parent compound. Transformation of Et-PABA appears to explain why Et-PABA has not been detected in the natural environment.
Collapse
Affiliation(s)
- Adela Jing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; Key Laboratory of Tropical Agro-environment, Ministry of Agriculture of China, South China Agricultural University, Guangzhou 510642, China
| | - Ziye Sang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Chi-Hang Chow
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Japhet Cheuk-Fung Law
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Ying Guo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - K S-Y Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China; School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
44
|
Weng N, Wang WX. Dynamics of maternally transferred trace elements in oyster larvae and latent growth effects. Sci Rep 2017; 7:3580. [PMID: 28620168 PMCID: PMC5472574 DOI: 10.1038/s41598-017-03753-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/03/2017] [Indexed: 01/29/2023] Open
Abstract
Understanding the maternal transfer of contaminants and their potential effects has great implications for a valid ecological assessment of environmental pollution. However, relevant studies on marine bivalves are very limited. Here, we examined the maternal transfer of trace metals in populations of oyster Crassostrea hongkongensis with contrasting metal exposure histories. Elevated accumulation of trace metals was observed in eggs and larvae from contaminated sites, suggesting maternal transfer of multi-metals in natural oyster populations. The dynamics of maternally transferred metals was for the first time documented in this study. We demonstrated that excessively transferred metals in contaminated larvae were rapidly eliminated during the early developmental stage, and the efflux rate of metals in larvae was greatly dependent on environmental contamination level. These results provided the first field evidence of modified metal biokinetics in offsprings due to exposure history of adults in marine bivalves. Moreover, egg production was negatively correlated with the contamination level of metals in eggs. There was a further lagged growth in the contaminated larvae, indicating the potential adverse and latent effects of maternally transferred metals on the viability of oyster offspring. Our findings highlighted the importance of transgenerational studies on long-term metal exposure in marine bivalves.
Collapse
Affiliation(s)
- Nanyan Weng
- Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen, 518057, China.,Center for Marine Environmental Chemistry and Toxicology (CMECT), College of Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Wen-Xiong Wang
- Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen, 518057, China. .,Center for Marine Environmental Chemistry and Toxicology (CMECT), College of Environment and Ecology, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
45
|
Syed JH, Iqbal M, Zhong G, Katsoyiannis A, Yadav IC, Li J, Zhang G. Polycyclic aromatic hydrocarbons (PAHs) in Chinese forest soils: profile composition, spatial variations and source apportionment. Sci Rep 2017; 7:2692. [PMID: 28578395 PMCID: PMC5457447 DOI: 10.1038/s41598-017-02999-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
Previous studies reported that forest ecosystems can play a vital role in scavenging anthropogenic polycyclic aromatic hydrocarbons (PAHs) and act as primary reservoirs of these environmental pollutants. The present study aimed to investigate the occurrence, spatial pattern and source apportionment of PAHs across Chinese background forest soils (O- & A-horizons). The 143 soils collected from 30 mountains showed significantly (p < 0.05) higher levels of ∑15PAHs (ng g−1 dw) in O-horizon (222 ± 182) than A-horizon (168 ± 161). A progressive increase in the levels of lighter PAHs was observed along altitudinal gradient, however heavier PAHs did not show any variations. Carbon contents (TOC & BC) of forest soils were found weakly correlated (p < 0.01) with low molecular weight (LMW)-PAHs but showed no relation with high molecular weight (HMW)-PAHs. Source apportionment results using PMF and PCA revealed that PAHs in forest soils mainly come from local biomass burning and/or coal combustion and attributed that forest soils may become a potential sink for PAHs in the region.
Collapse
Affiliation(s)
- Jabir Hussain Syed
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Mehreen Iqbal
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Athanasios Katsoyiannis
- Norwegian Institute for Air Research (NILU) - FRAM High North Research Centre on Climate and the Environment Hjalmar Johansens gt. 14, NO - 9296, Tromsø, Norway
| | - Ishwar Chandra Yadav
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
46
|
Qin Y, Zhang L, An T. Hydrothermal Carbon-Mediated Fenton-Like Reaction Mechanism in the Degradation of Alachlor: Direct Electron Transfer from Hydrothermal Carbon to Fe(III). ACS APPLIED MATERIALS & INTERFACES 2017; 9:17115-17124. [PMID: 28467036 DOI: 10.1021/acsami.7b03310] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
As Fenton systems suffer from the undesirable Fe(III)/Fe(II) cycle, great efforts were made to realize the effective reduction of Fe(III) to Fe(II). The effects of hydrothermal carbon (HTC) on the Fe(III)/H2O2 Fenton-like reaction and the subsequent degradation of alachlor in water was systematically investigated, and the results indicated that HTC could enhance alachlor degradation in Fe(III)/H2O2 by promoting the Fe(III)/Fe(II) cycle via electron transfer from HTC to Fe(III) ions. The apparent alachlor degradation rate constant in the HTC-G/Fe(III)/H2O2 system (7.02 × 10-2 min-1) was about 3 times higher than that in the Fe(III)/H2O2 system (2.25 × 10-2 min-1). The electron spin resonance spectra analysis revealed that HTC consists of abundant carbon-centered persistent free radicals to act as the electron donor. Meanwhile, the hydroxyl groups on the surface of HTC also played an important role in the enhanced alachlor degradation because the decrease in the surface hydroxyl groups on HTC significantly decreased the degradation of alachlor. On the basis of these results, an Fe(III) complex with surface hydroxyl groups on HTC was proposed to favor the electron transfer from the hydroxyl groups to Fe(III), and then, the simultaneously produced Fe(II) could accelerate the catalytic decomposition of H2O2 to facilitate alachlor degradation. These findings shed new light on the possible roles of carbon materials in a natural aquatic environment and provide a new pathway for environmental pollutant control and remediation of organic contaminants by HTC.
Collapse
Affiliation(s)
- Yaxin Qin
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology , Guangzhou 510006, China
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology , Guangzhou 510006, China
| |
Collapse
|
47
|
Yin G, Athanassiadis I, Bergman Å, Zhou Y, Qiu Y, Asplund L. A refined method for analysis of 4,4'-dicofol and 4,4'-dichlorobenzophenone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13307-13314. [PMID: 28386885 PMCID: PMC5434158 DOI: 10.1007/s11356-017-8956-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
The acaricide, dicofol, is a well-known pesticide and partly a substitute for dichlorodiphenyltrichloroethane (DDT). Only few reports on environmental occurrence and concentrations have been reported calling for improvements. Hence, an analytical method was further developed for dicofol and dichlorobenzophenone (DCBP) to enable assessments of their environmental occurrence. Concentrated sulfuric acid was used to remove lipids and to separate dicofol from DCBP. On-column injection was used as an alternative to splitless injection to protect dicofol from thermal decomposition. By the method presented herein, it is possible to quantify dicofol and DCBP in the same samples. Arctic cod (Gadus morhua) were spiked at two dose levels and the recoveries were determined. The mean recovery for dicofol was 65% at the low dose (1 ng) and 77% at the high dose (10 ng). The mean recovery for DCBP was 99% at the low dose (9.2 ng) and 146% at the high dose (46 ng). The method may be further improved by use of another lipid removal method, e.g., gel permeation chromatography. The method implies a step forward in dicofol environmental assessments.
Collapse
Affiliation(s)
- Ge Yin
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691, Stockholm, Sweden
| | - Ioannis Athanassiadis
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691, Stockholm, Sweden
| | - Åke Bergman
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691, Stockholm, Sweden
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Swedish Toxicology Sciences Research Center, Forskargatan 20, SE-15136, Södertälje, Sweden
| | - Yihui Zhou
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691, Stockholm, Sweden.
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment (Ministry of Education), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lillemor Asplund
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691, Stockholm, Sweden
| |
Collapse
|
48
|
Batt AL, Wathen JB, Lazorchak JM, Olsen AR, Kincaid TM. Statistical Survey of Persistent Organic Pollutants: Risk Estimations to Humans and Wildlife through Consumption of Fish from U.S. Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3021-3031. [PMID: 28230353 PMCID: PMC7737500 DOI: 10.1021/acs.est.6b05162] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
U.S. EPA conducted a national statistical survey of fish tissue contamination at 540 river sites (representing 82 954 river km) in 2008-2009, and analyzed samples for 50 persistent organic pollutants (POPs), including 21 PCB congeners, 8 PBDE congeners, and 21 organochlorine pesticides. The survey results were used to provide national estimates of contamination for these POPs. PCBs were the most abundant, being measured in 93.5% of samples. Summed concentrations of the 21 PCB congeners had a national weighted mean of 32.7 μg/kg and a maximum concentration of 857 μg/kg, and exceeded the human health cancer screening value of 12 μg/kg in 48% of the national sampled population of river km, and in 70% of the urban sampled population. PBDEs (92.0%), chlordane (88.5%) and DDT (98.7%) were also detected frequently, although at lower concentrations. Results were examined by subpopulations of rivers, including urban or nonurban and three defined ecoregions. PCBs, PBDEs, and DDT occur at significantly higher concentrations in fish from urban rivers versus nonurban; however, the distribution varied more among the ecoregions. Wildlife screening values previously published for bird and mammalian species were converted from whole fish to fillet screening values, and used to estimate risk for wildlife through fish consumption.
Collapse
Affiliation(s)
- Angela L. Batt
- U.S. Environmental Protection Agency Office of Research and Development National Exposure Research Laboratory, Cincinnati, Ohio 45268, United States
| | - John B. Wathen
- U.S. Environmental Protection Agency Office of Water Office of Science and Technology, Washington, D.C. 20460, United States
- Address correspondence to: John Wathen, USEPA Headquarters, William Jefferson Clinton Building, 1200 Pennsylvania Avenue, N. W., Mail Code: 4305T, Washington, DC 20460, , Phone: 202-566-0367
| | - James M. Lazorchak
- U.S. Environmental Protection Agency Office of Research and Development National Exposure Research Laboratory, Cincinnati, Ohio 45268, United States
| | - Anthony R. Olsen
- U.S. Environmental Protection Agency Office of Research and Development, National Health and Environmental Effects Research Laboratory, Corvallis, Oregon 97333, United States
| | - Thomas M. Kincaid
- U.S. Environmental Protection Agency Office of Research and Development, National Health and Environmental Effects Research Laboratory, Corvallis, Oregon 97333, United States
| |
Collapse
|
49
|
Gui D, Yu RQ, Karczmarski L, Ding Y, Zhang H, Sun Y, Zhang M, Wu Y. Spatiotemporal Trends of Heavy Metals in Indo-Pacific Humpback Dolphins (Sousa chinensis) from the Western Pearl River Estuary, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1848-1858. [PMID: 28075564 DOI: 10.1021/acs.est.6b05566] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We assessed the spatiotemporal trends of the concentrations of 11 heavy metals (HMs) in the liver and kidney of Indo-Pacific humpback dolphins (Sousa chinensis) from western Pearl River Estuary (PRE) during 2004-2015. The hepatic levels of Cr, As, and Cu in these dolphins were among the highest reported for cetaceans globally, and the levels of Zn, Cu, and Hg were sufficiently high to cause toxicological effects in some of the animals. Between same age-sex groups, dolphins from Lingdingyang were significantly more contaminated with Hg, Se, and V than those from the West-four region, while the opposite was true for Cd. Generalized additive mixed models showed that most metals had significant but dissimilar temporal trends over a 10-year period. The concentrations of Cu and Zn increased significantly in recent years, corresponding to the high input of these metals in the region. Body-length-adjusted Cd levels peaked in 2012, accompanied by the highest annual number of dolphin stranding events. In contrast to the significant decrease in HM levels in the dolphins in Hong Kong waters (the eastern reaches of the PRE), the elevated metal exposure in the western PRE raises serious concerns.
Collapse
Affiliation(s)
- Duan Gui
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, 510275, China
| | - Ri-Qing Yu
- Department of Biology, University of Texas at Tyler , Tyler, Texas 75799, United States
| | - Leszek Karczmarski
- The Swire Institute of Marine Sciences, School of Biological Sciences, The University of Hong Kong , Cape d'Aguilar, Shek O, Hong Kong
| | - Yulong Ding
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, 510275, China
| | - Haifei Zhang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, 510275, China
| | - Yong Sun
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, 510275, China
| | - Mei Zhang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, 510275, China
| | - Yuping Wu
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, 510275, China
| |
Collapse
|
50
|
Meng J, Hong S, Wang T, Li Q, Yoon SJ, Lu Y, Giesy JP, Khim JS. Traditional and new POPs in environments along the Bohai and Yellow Seas: An overview of China and South Korea. CHEMOSPHERE 2017; 169:503-515. [PMID: 27894056 DOI: 10.1016/j.chemosphere.2016.11.108] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/18/2016] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
Rapid economic growth during the past two decades in the region surrounding the Bohai and Yellow Seas has resulted in severe pollution. Large amounts of monitoring data on persistent organic pollutants (POPs) in various environmental media have been accumulated, which allows us to conduct a fairly comprehensive assessment of the region around the Bohai and Yellow Seas to elucidate spatial patterns of pollution on a regional scale. This review summarized distributions of traditional and new POPs, including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), and perfluoroalkyl substances (PFASs), in various environmental media. In general, due to their physico-chemical properties (poor solubility in water), OCPs and PCBs were mainly detected in sediments, PBDEs and HBCDs were mainly detected in sediments and soils. PFASs, which have greater solubility, were mainly detected in the hydrosphere. For conventional POPs, such as OCPs and PCBs, Bohai Bay and Haihe River in China, Gyeonggi Bay and Lake Sihwa in South Korea were found to be most polluted areas. While for new POPs, such as PBDEs, HBCDs and PFASs, some areas were heavily polluted due to local production and applications. Estuarine and coastal areas of the Bohai Sea were more severely contaminated by POPs than coastal regions of the Yellow Sea. Overall, the present review will guide identification of key areas for strengthening risk assessment of POPs and management practices.
Collapse
Affiliation(s)
- Jing Meng
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tieyu Wang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qifeng Li
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Seo Joon Yoon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Yonglong Lu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Zoology & Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|