1
|
Salvatierra D, González MP, Blasco J, Krull M, Araújo CVM. Habitat loss and discontinuity as drivers of habitat fragmentation: The role of contamination and connectivity of habitats. ENVIRONMENTAL RESEARCH 2025; 266:120609. [PMID: 39672495 DOI: 10.1016/j.envres.2024.120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Habitat discontinuity of aquatic environments is a serious problem that might hamper the different activities performed by organisms. When combined with contamination, the consequences for the population's dynamics might be exacerbated, particularly regarding foraging activity. Therefore, the aim of this study was to evaluate the combined effects of habitat discontinuity and contamination on the foraging behavior by zebrafish (Danio rerio) and on their ability to explore heterogeneous landscapes. The organisms were exposed to three different scenarios of contamination (0, 0.5 and 25 μg L-1 of Cu) and habitat discontinuity (zero, low and high), using the Heterogeneous Multi-Habitat Assay System (HeMHAS). Generalized Bayesian linear models were used to analyze the data and evidence ratios (ER) were used to test the hypotheses. As results, both high levels of contamination and habitat discontinuity had significant effects on the probability of organisms to reach food (ER = 111.8 and > 1,000, respectively), the time taken to reach food (ER = 532.22 and > 1000, respectively) and the time spent in each compartment (ER = 614.4 and > 1000 for contamination and the number of connections available, respectively). As conclusion, the habitat fragmentation as a consequence of contamination and discontinuity affected the probability of fish to reach food and the time spent to reach it. This could lead to additional energy budget with serious consequences for population dynamics. Also, the HeMHAS demonstrated its suitability to assess the role of the contamination and habitat connectivity stressors in the spatial distribution and habitat selection response.
Collapse
Affiliation(s)
- David Salvatierra
- . Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain.
| | - María Pilar González
- . Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain
| | - Julián Blasco
- . Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain
| | - Marcos Krull
- . Senckenberg Research Institute and Natural History Museum, Mertonstraße 17, 60325, Frankfurt Am Main, Germany; . Benthic Ecology Laboratory, IBIO & CIEnAM & INCT IN-TREE, Universidade Federal da Bahia, Rua Barão de Geremoabo, S/n, Campus de Ondina, Salvador, Bahia 40170-000, Brazil
| | - Cristiano V M Araújo
- . Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain
| |
Collapse
|
2
|
McCarty LS. Ecotoxicology dilemmas: issues with dose, causality, response, mixtures, and modifying factors. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:45-58. [PMID: 39887285 DOI: 10.1093/etojnl/vgae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 02/01/2025]
Abstract
Ecotoxicology has model assumptions that are the basis of the discipline's scientific validity and regulatory utility. Using testing data to advance knowledge and practical applications is contingent on assumption validation of underlying models, an uncommon practice. Fundamental components-dose, causality, response-are confounded, as test metrics are each accumulations of a multiplicity of factors. Consequently, ecotoxicology test interpretation of both legacy and new approach methodologies is plagued by unaddressed issues related to interactions of within and between dose, causation, response, and modifying factors-each component is effectively a mixture-such that established relationships are more correlative than causal. Limited knowledge about the multiplicity of modifying factors influencing dose, causality, and response at each level of biological organization and the challenge of establishing dose metrics in upper ecological levels, where the paradigm is stressor-causality-response, further confounds the formidable task of in vitro to in vivo, laboratory-to-field, and toxicity-to-ecology translation. Although available aquatic ecotoxicity data and information have been successfully fitted to explanatory frameworks in past and present regulatory policies, environmental protection successes are more attributable to good policy than to scientific knowledge. Unresolved issues in the simple model frameworks and regulatory policies that initially advanced environmental protection are now impeding development of newer policies and procedures due to inadequate consideration of basic model assumptions. Resolution of the problem will begin when the problem definition of the tasks is refined to reflect the reality of the challenge. This is a necessary step towards achieving the objective of advancing the efficiency, effectiveness, and sophistication of environmental effects assessment and management in regulatory ecotoxicology.
Collapse
Affiliation(s)
- Lynn S McCarty
- L.S. McCarty Scientific Research & Consulting, Newmarket, Canada
| |
Collapse
|
3
|
Savage G, Jones JJ, Muñoz-Pérez JP, Lewis C, Galloway TS. Assessing the chemical landscape of the Galápagos Marine Reserve. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176659. [PMID: 39369998 DOI: 10.1016/j.scitotenv.2024.176659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
The Galápagos Archipelago is at the forefront of the Anthropocene, facing intensifying pressures from its growing human footprint and accelerated global connectivity. Despite this, little is currently known of its chemical landscape. This review critically examines the drivers, sources, distribution and fate of oil, plastics, pesticides, persistent organic pollutants and heavy metals in the Galápagos Marine Reserve, identifying pollutant hotspots and evaluating rapid assessment methods and sentinel species that could aid regional monitoring. The cumulative influence of the Galápagos' equatorial position amongst major (and seasonally variable) atmospheric and oceanic circulation patterns, along with its distinctive geophysical and environmental conditions, such as extreme UV radiation and precipitation, likely exacerbates the archipelagos susceptibility to chemicals from both local and continental inputs. Point and diffuse sources identified include wastewater/effluent discharge, agricultural run-off, mismanaged waste, recreational boating, commercial shipping and industrial fishing. Limited spatiotemporal monitoring has hindered the identification of pollution hotspots, except for harbours as aggregates for maritime activities and urban run-off, and eastern-facing coastlines exposed to the Humboldt Current as plastic accumulation zones. Furthermore, the remote nature and vital protected status of the Galápagos National Park has constrained comprehensive assessment of chemical toxicity and its impacts on marine species across the reserve, with studies primarily restricted to Galápagos pinnipeds. Thus, there is currently insufficient knowledge to determine the extent to which the widespread but sporadic presence of chemical contaminants threatens the resilience and adaptive capacity of Galápagos' complex ecosystems, unique biodiversity and interconnected environmental processes. Future efforts are recommended to strengthen environmental monitoring and chemical risk assessment through the utilisation of rapid assessment tools and regional sentinel species, enhancing fundamental understanding of the chemical landscape in this global conservation Hope Spot, as well as the wider implications of the Anthropocene on diverse, dynamic and remote island ecosystems.
Collapse
Affiliation(s)
- Georgie Savage
- Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom.
| | - Jen J Jones
- Galápagos Conservation Trust, 7-14 Great Dover Street, London SE1 4YR, United Kingdom
| | - Juan Pablo Muñoz-Pérez
- Galápagos Science Center, Alsacio Northia Avenue, Puerto Baquerizo Moreno, Galápagos, Ecuador; Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Puerto Baquerizo Moreno, Galápagos, Ecuador; School of Science, Technology & Engineering, University of the Sunshine Coast, Queensland 4556, Australia
| | - Ceri Lewis
- Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Tamara S Galloway
- Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
4
|
Almeida-Silva D, Hipolito M, da Fonseca Martins AMCRP, Batista BL, Pedron T, Dias GM, Verdade VK. Frog hepatic health and metal pollution: An assemblage-level approach in a hotspot in southeastern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59457-59471. [PMID: 39354261 DOI: 10.1007/s11356-024-35162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Chemical pollutants include the harmful effects of various substances on soils, water bodies, and biodiversity. Amphibians are one of the most endangered groups of vertebrates and are impacted by chemical pollutants in various ways due to their complex life cycles. Since trace pollutant concentrations vary across environments, different frog ecomorphs (classified by their microhabitat use) may have different exposures. We aimed to determine the association between frog ecomorphs and the occurrence of histopathological hepatic lesions (HHLs) as an indicator of contaminant exposure. We focused on small forest streams near a large urban region in Brazil, heavily polluted in the 1980s. We examined 104 frog specimens from various families. All specimens exhibited HHLs, with melanomacrophages being the most common (n = 99). Arboreal frogs exhibited more vascular congestion, while terrestrial frogs showed structural hepatic damage. Higher cobalt levels were linked to increased liver necrosis in arboreal frogs and structural issues in both arboreal and terrestrial frogs. Cadmium was associated with hepatitis in terrestrial frogs. Although metal levels had no significant effects on rheophilic frogs, the prevalence of hepatitis and necrosis indicated complex exposure pathways. Iron and aluminum were linked to fewer lesions in rheophilic frogs, suggesting resilience. The high prevalence of HHLs signals an ongoing issue, with variations among ecomorphs suggesting differential exposure to pollutants and posing a complex challenge for community conservation.
Collapse
Affiliation(s)
- Diego Almeida-Silva
- CONICET Tucumán, Unidad Ejecutora Lillo, Miguel Lillo, 251, 4000, San Miguel de Tucumán, Tucumán, Argentina.
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, Avenida Dos Estados, 5001, CEP 09210-971, Santo André, SP, Brazil.
| | - Marcio Hipolito
- Laboratório Interinstitucional de Sanidade Em Aquicultura, Instituto Biológico Do Estado de São Paulo, Av. Conselheiro Rodrigues Alves, 1252, CEP 04016-035, São Paulo, SP, Brazil
| | | | - Bruno Lemos Batista
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, Avenida Dos Estados, 5001, CEP 09210-971, Santo André, SP, Brazil
| | - Tatiana Pedron
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, Avenida Dos Estados, 5001, CEP 09210-971, Santo André, SP, Brazil
| | - Gustavo Muniz Dias
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, Avenida Dos Estados, 5001, CEP 09210-971, Santo André, SP, Brazil
| | - Vanessa Kruth Verdade
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, Avenida Dos Estados, 5001, CEP 09210-971, Santo André, SP, Brazil
| |
Collapse
|
5
|
Michelangeli M, Martin JM, Robson S, Cerveny D, Walsh R, Richmond EK, Grace MR, Brand JA, Bertram MG, Ho SSY, Brodin T, Wong BBM. Pharmaceutical Pollution Alters the Structure of Freshwater Communities and Hinders Their Recovery from a Fish Predator. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13904-13917. [PMID: 39049184 PMCID: PMC11308527 DOI: 10.1021/acs.est.4c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Freshwater ecosystems are under threat from rising pharmaceutical pollution. While such pollutants are known to elicit biological effects on organisms, we have limited knowledge on how these effects might cascade through food-webs, disrupt ecological processes, and shape freshwater communities. In this study, we used a mesocosm experiment to explore how the community impacts of a top-order predator, the eastern mosquitofish (Gambusia holbrooki), are mediated by exposure to environmentally relevant low (measured concentration: ∼10 ng/L) and high concentrations (∼110 ng/L) of the pervasive pharmaceutical pollutant fluoxetine. We found no evidence that exposure to fluoxetine altered the consumptive effects of mosquitofish on zooplankton. However, once mosquitofish were removed from the mesocosms, zooplankton abundance recovered to a greater extent in control mesocosms compared to both low and high fluoxetine-exposed mesocosms. By the end of the experiment, this resulted in fundamental differences in community structure between the control and fluoxetine-treated mesocosms. Specifically, the control mesocosms were characterized by higher zooplankton abundances and lower algal biomass, whereas mesocosms exposed to either low or high concentrations of fluoxetine had lower zooplankton abundances and higher algal biomass. Our results suggest that fluoxetine, even at very low concentrations, can alter aquatic communities and hinder their recovery from disturbances.
Collapse
Affiliation(s)
- Marcus Michelangeli
- School
of Environment and Science, Griffith University, Nathan 4111, Australia
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Jake M. Martin
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
- Department
of Zoology, Stockholm University, Stockholm 114 18, Sweden
| | - Stephanie Robson
- Water
Studies Centre, School of Chemistry, Monash
University, Melbourne 3800, Australia
| | - Daniel Cerveny
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
- University
of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection
of Waters, South Bohemian Research Center
of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Robert Walsh
- Australian
Waterlife, 55 Vaughan
Chase, Wyndham Vale, Victoria 3024, Australia
| | - Erinn K. Richmond
- Environmental
Protection Authority Victoria, EPA Science, Macleod, Victoria 3085, Australia
| | - Michael R. Grace
- Water
Studies Centre, School of Chemistry, Monash
University, Melbourne 3800, Australia
| | - Jack A. Brand
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
- Institute
of Zoology, Zoological Society of London, London NW1 4RY, U.K.
| | - Michael G. Bertram
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
- Department
of Zoology, Stockholm University, Stockholm 114 18, Sweden
| | - Susie S. Y. Ho
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Tomas Brodin
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Bob B. M. Wong
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
| |
Collapse
|
6
|
Xiao W, Zhang Y, Chen X, Sha A, Xiong Z, Luo Y, Peng L, Zou L, Zhao C, Li Q. The Easily Overlooked Effect of Global Warming: Diffusion of Heavy Metals. TOXICS 2024; 12:400. [PMID: 38922080 PMCID: PMC11209588 DOI: 10.3390/toxics12060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Since industrialization, global temperatures have continued to rise. Human activities have resulted in heavy metals being freed from their original, fixed locations. Because of global warming, glaciers are melting, carbon dioxide concentrations are increasing, weather patterns are shifting, and various environmental forces are at play, resulting in the movement of heavy metals and alteration of their forms. In this general context, the impact of heavy metals on ecosystems and organisms has changed accordingly. For most ecosystems, the levels of heavy metals are on the rise, and this rise can have a negative impact on the ecosystem as a whole. Numerous studies have been conducted to analyze the combined impacts of climate change and heavy metals. However, the summary of the current studies is not perfect. Therefore, this review discusses how heavy metals affect ecosystems during the process of climate change from multiple perspectives, providing some references for addressing the impact of climate warming on environmental heavy metals.
Collapse
Affiliation(s)
- Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| |
Collapse
|
7
|
Wang T, Li D, Tian X, Huang G, He M, Wang C, Kumbhar AN, Woldemicael AG. Mitigating salinity stress through interactions between microalgae and different forms (free-living & alginate gel-encapsulated) of bacteria isolated from estuarine environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171909. [PMID: 38522526 DOI: 10.1016/j.scitotenv.2024.171909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Salinity stress in estuarine environments poses a significant challenge for microalgal survival and proliferation. The interaction between microalgae and bacteria shows promise in alleviating the detrimental impacts of salinity stress on microalgae. Our study investigates this interaction by co-cultivating Chlorella sorokiniana, a freshwater microalga, with a marine growth-promoting bacterium Pseudomonas gessardii, both of which were isolated from estuary. In this study, bacteria were encapsulated using sodium alginate microspheres to establish an isolated co-culture system, preventing direct exposure between microalgae and bacteria. We evaluated microalgal responses to different salinities (5 PSU, 15 PSU) and interaction modes (free-living, gel-encapsulated), focusing on growth, photosynthesis, cellular metabolism, and extracellular polymeric substances (EPS) properties. High salinity inhibited microalgal proliferation, while gel-fixed interaction boosted Chlorella growth rate by 50.7 %. Both attached and free-living bacteria restored Chlorella's NPQ to normal levels under salt stress. Microalgae in the free-living interaction group exhibited a significantly lower respiratory rate compared to the pure algae group (-17.2 %). Increased salinity led to enhanced EPS polysaccharide secretion by microalgae, particularly in interaction groups (19.7 %). Both salt stress and interaction increased the proportion of aromatic proteins in microalgae's EPS, enhancing its stability by modulating EPS glycosidic bond C-O-C and protein vibrations. This alteration caused microalgal cells to aggregate, free-living bacteria co-culture group, and fixed co-culture group increasing by 427.5 %, 567.1 %, and 704.1 %, respectively. In gel-fixed bacteria groups, reduced neutral lipids don't accumulate starch instead, carbon redirects to cellular growth, aiding salt stress mitigation. These synergistic activities between salinity and bacterial interactions are vital in mitigating salinity stress, improving the resilience and growth of microalgae in saline conditions. Our research sheds light on the mechanisms of microalgal-bacterial interactions in coping with salt stress, offering insights into the response of estuarine microorganisms to global environmental changes and their ecological stability.
Collapse
Affiliation(s)
- Tong Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Li
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; School of Civil Engineering, Yantai University, Yantai 264000, China
| | - Xin Tian
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Guolin Huang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Meilin He
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Changhai Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Lianyungang 222005, China.
| | - Ali Nawaz Kumbhar
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Abeselom Ghirmai Woldemicael
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Geras'kin S. Plant adaptation to ionizing radiation: Mechanisms and patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170201. [PMID: 38246389 DOI: 10.1016/j.scitotenv.2024.170201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Adaptation to environmental stressors is an essential property of plants that allows them, despite an immobile lifestyle, to survive in a changeable environment. The chain of successive events culminating in the final radiobiological reaction begins with the absorption of energy of ionizing radiation in the cell. Starting from stochastic acts of molecular injury formation, radiation damage gradually acquires deterministic features, which are expressed in a limited number of phenomena that complete plant radiation damage. As plants undergo specialization, the differences between plants and animals become more pronounced, leading to distinct responses to radiation. Chronic radiation exposure may activate biological mechanisms resulting in increased radioresistance of the population. The higher the level of radiation exposure and the sensitivity of plants to radiation, the more intensive the selection. Depending on the circumstances, enhanced radioresistance of a population can be achieved in different ways or has not evolved at all. High dose rates of chronic irradiation leаd to selection for the efficiency of repair systems, while low dose rates activate epigenetic mechanisms that lead to the maintenance of oxidative balance, additional synthesis of chaperones, and control of TEs transposition. Due to huge differences in the radiosensitivity of organisms that make up the ecosystem, irradiation can result in disruption of connections between components of ecosystems which may lead to consequences that can differ drastically from those expected at the organismal and population levels. Therefore, the use of ecological knowledge is essential for understanding the responses of populations and ecosystems to radiation exposure.
Collapse
Affiliation(s)
- Stanislav Geras'kin
- Russian Institute of Radiology and Agroecology of NRC "Kurchatov Institute", Kievskoe shosse, 109 km, Obninsk, Kaluga Region 249032, Russia.
| |
Collapse
|
9
|
Johari SA, Tayemeh MB, Veisi S, Sarkheil M. Acute toxicity of nanoscale zeolitic imidazolate framework 8 (ZIF-8) to saltwater planktonic species Artemia salina and Nannochloropsis oculata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4025-4035. [PMID: 38093077 DOI: 10.1007/s11356-023-31436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) are metal-organic frameworks (MOFs) that have gained significant attention in various fields due to their unique properties. They have potential applications in drug delivery, gas storage, and catalysis. However, their increasing use raises concerns about their potential environmental impact. Our study evaluates the effects of ≈90 nm ZIF-8 NPs in two planktonic species, the green microalga Nannochloropsis oculata and the brine shrimp Artemia salina. After synthesis and characterization (SEM, EDS, BET, and DLS) of nanoporous ZIF-8 NPs, a growth inhibition test on microalgae (72 h) and acute immobilization test on instar I and II of Artemia nauplii (48 h) were conducted following, OECD 201 and ISO/TS 20787, respectively. The toxicity of ZIF-8 NPs to both species was time- and concentration-dependent. The 72-h median inhibitory concentration (IC50) of ZIF-8 NPs for N. oculata based on average specific growth rate and yield were calculated as 79.71 ± 8.55 mg L-1 and 51.73 ± 5.16 mg L-1, respectively. Also, the 48-h median effective concentration (EC50) of ZIF-8 NPs on immobilization rate of instar I and II were calculated as 175.09 ± 4.14 mg L-1 and 4.69 ± 0.34 mg L-1, respectively. Moreover, the swimming type of non-immobilized animals was affected by ZIF-8 NPs. These findings provide a good insight into the toxicity of nanoparticulate ZIF-8 to saltwater planktons and also confirm that instar II Artemia is more sensitive than instar I. This study demonstrated that ZIF-8 NPs, despite all their advantages, could have toxic effects on aquatic organisms. More studies are required to assess their potential environmental impact and develop strategies to mitigate their toxicity.
Collapse
Affiliation(s)
- Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, P.O. Box 416, Sanandaj, 66177-15175, Kurdistan, Iran.
| | - Mohammad Behzadi Tayemeh
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, P.O. Box 416, Sanandaj, 66177-15175, Kurdistan, Iran
| | - Shakila Veisi
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, P.O. Box 416, Sanandaj, 66177-15175, Kurdistan, Iran
| | - Mehrdad Sarkheil
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Kim J, Choi J. Trans- and Multigenerational Effects of Isothiazolinone Biocide CMIT/MIT on Genotoxicity and Epigenotoxicity in Daphnia magna. TOXICS 2023; 11:388. [PMID: 37112615 PMCID: PMC10140887 DOI: 10.3390/toxics11040388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
The mixture of 5-chloro-2-methylisothiazol-3(2H)-one and 2-methylisothiazol-3(2H)-one, CMIT/MIT, is an isothiazolinone biocide that is consistently detected in aquatic environments because of its broad-spectrum usage in industrial fields. Despite concerns about ecotoxicological risks and possible multigenerational exposure, toxicological information on CMIT/MIT is very limited to human health and within-generational toxicity. Furthermore, epigenetic markers altered by chemical exposure can be transmitted over generations, but the role of these changes in phenotypic responses and toxicity with respect to trans- and multigenerational effects is poorly understood. In this study, the toxicity of CMIT/MIT on Daphnia magna was evaluated by measuring various endpoints (mortality, reproduction, body size, swimming behavior, and proteomic expression), and its trans- and multigenerational effects were investigated over four consecutive generations. The genotoxicity and epigenotoxicity of CMIT/MIT were examined using a comet assay and global DNA methylation measurements. The results show deleterious effects on various endpoints and differences in response patterns according to different exposure histories. Parental effects were transgenerational or recovered after exposure termination, while multigenerational exposure led to acclimatory/defensive responses. Changes in DNA damage were closely associated with altered reproduction in daphnids, but their possible relationship with global DNA methylation was not found. Overall, this study provides ecotoxicological information on CMIT/MIT relative to multifaceted endpoints and aids in understanding multigenerational phenomena under CMIT/MIT exposure. It also emphasizes the consideration of exposure duration and multigenerational observations in evaluating ecotoxicity and the risk management of isothiazolinone biocides.
Collapse
|
11
|
Schneeweiss A, Juvigny-Khenafou NPD, Osakpolor S, Scharmüller A, Scheu S, Schreiner VC, Ashauer R, Escher BI, Leese F, Schäfer RB. Three perspectives on the prediction of chemical effects in ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:21-40. [PMID: 36131639 DOI: 10.1111/gcb.16438] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The increasing production, use and emission of synthetic chemicals into the environment represents a major driver of global change. The large number of synthetic chemicals, limited knowledge on exposure patterns and effects in organisms and their interaction with other global change drivers hamper the prediction of effects in ecosystems. However, recent advances in biomolecular and computational methods are promising to improve our capacity for prediction. We delineate three idealised perspectives for the prediction of chemical effects: the suborganismal, organismal and ecological perspective, which are currently largely separated. Each of the outlined perspectives includes essential and complementary theories and tools for prediction but captures only part of the phenomenon of chemical effects. Links between the perspectives may foster predictive modelling of chemical effects in ecosystems and extrapolation between species. A major challenge for the linkage is the lack of data sets simultaneously covering different levels of biological organisation (here referred to as biological levels) as well as varying temporal and spatial scales. Synthesising the three perspectives, some central aspects and associated types of data seem particularly necessary to improve prediction. First, suborganism- and organism-level responses to chemicals need to be recorded and tested for relationships with chemical groups and organism traits. Second, metrics that are measurable at many biological levels, such as energy, need to be scrutinised for their potential to integrate across levels. Third, experimental data on the simultaneous response over multiple biological levels and spatiotemporal scales are required. These could be collected in nested and interconnected micro- and mesocosm experiments. Lastly, prioritisation of processes involved in the prediction framework needs to find a balance between simplification and capturing the essential complexity of a system. For example, in some cases, eco-evolutionary dynamics and interactions may need stronger consideration. Prediction needs to move from a static to a real-world eco-evolutionary view.
Collapse
Affiliation(s)
- Anke Schneeweiss
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | | | - Stephen Osakpolor
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Andreas Scharmüller
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
- Institut Terre et Environnement de Strasbourg (ITES), UMR 7063, CNRS-Université de Strasbourg-ENGEES, Strasbourg, France
| | - Sebastian Scheu
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Verena C Schreiner
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Roman Ashauer
- Syngenta Crop Protection AG, Basel, Switzerland
- Department of Environment and Geography, University of York, York, UK
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| | - Ralf B Schäfer
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| |
Collapse
|
12
|
Silva ARR, Malheiro C, Loureiro S, González-Alcaraz MN. Toxicity of historically metal(loid)-contaminated soils to Folsomia candida under the influence of climate change alterations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119256. [PMID: 35395349 DOI: 10.1016/j.envpol.2022.119256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Global warming is drastically altering the climate conditions of our planet. Soils will be among the most affected components of terrestrial ecosystems, especially in contaminated areas. In this study we investigated if changes in climate conditions (air temperature and soil moisture) affect the toxicity of historically metal(loid)-contaminated soils to the invertebrate Folsomia candida, followed by an assessment of its recovery capacity. Ecotoxicity tests (assessing survival, reproduction) were performed in field soils affected by metal(loid)s under different climate scenarios, simulated by individually changing air temperature or soil moisture conditions. The scenarios tested were: standard conditions (20°C + 50% soil water holding capacity-WHC); increased air temperature (daily fluctuation of 20-30°C + 50% WHC); soil drought (20°C + 25% WHC); soil flood (20°C + 75% WHC). Recovery potential was assessed under standard conditions in clean soil. Increased temperature was the major climate condition negatively affecting collembolans performance (decreased survival and reproduction), regardless of metal(loid) contamination. Drought and flood conditions presented less pronounced effects. When it was possible to move to the recovery phase (enough juveniles in exposure phase), F. candida was apparently able to recover from the exposure to metal(loid) contamination and/or climate alterations. The present study showed that forecasted climate alterations in areas already affected by contamination should be considered to improve environmental risk assessment.
Collapse
Affiliation(s)
- Ana Rita R Silva
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Portugal.
| | - Catarina Malheiro
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Portugal
| | - Susana Loureiro
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Portugal
| | - M Nazaret González-Alcaraz
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Portugal; Department of Agricultural Engineering of the E.T.S.I.A. & Soil Ecology and Biotechnology Unit of the Institute of Plant Biotechnology, Technical University of Cartagena, 30203 Cartagena, Spain
| |
Collapse
|
13
|
Salvatierra D, Rodríguez-Ruiz Á, Cordero A, López-Doval J, Baldó F, Blasco J, Araújo CVM. Experimental evidence of contamination driven shrimp population dynamics: Susceptibility of populations to spatial isolation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153225. [PMID: 35063515 DOI: 10.1016/j.scitotenv.2022.153225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Contamination is likely to affect the composition of an ecological landscape, leading to the rupture of ecological connectivity among habitats (ecological fragmentation), which may impact on the distribution, persistence and abundance of populations. In the current study, different scenarios within a spatially heterogeneous landscape were simulated in the Heterogeneous Multi-Habitat Assay System (HeMHAS) to evaluate the potential effect that contamination (copper at 0.5 and 25 μg/L) might have on habitat selection by the estuarine shrimp Palaemon varians in combination with two other ecological factors: predator presence and food availability. As a result, P. varians detected and avoided copper; however, in the presence of the predation signal, shrimps shifted their response by moving to previously avoided regions, even if this resulted in a higher exposure to contamination. When encouraged to move towards environments with a high availability of food, a lower connectivity among the shrimp populations isolated by both contamination and predation risk simultaneously was evidenced, when compared to populations isolated only by the risk of predation. These results indicate that contamination might: (i) trigger avoidance in shrimps, (ii) prevent colonization of attractive foraging areas, (iii) enhance populations' isolation and (iv), make populations more susceptible to local extinction.
Collapse
Affiliation(s)
- David Salvatierra
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real, Cadiz, Spain.
| | - Ángela Rodríguez-Ruiz
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real, Cadiz, Spain
| | - Andrea Cordero
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real, Cadiz, Spain
| | | | - Francisco Baldó
- Spanish Institute of Oceanography, Oceanographic Center of Cadiz (IEO-CSIC), Cadiz, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real, Cadiz, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real, Cadiz, Spain
| |
Collapse
|
14
|
Ferraz MA, Kiyama AC, Primel EG, Barbosa SC, Castro ÍB, Choueri RB, Gallucci F. Does pH variation influence the toxicity of organic contaminants in estuarine sediments? Effects of Irgarol on nematode assemblages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152944. [PMID: 35007601 DOI: 10.1016/j.scitotenv.2022.152944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Natural pH values in coastal waters vary largely among locations, ecosystems, and time periods; still, there is an ongoing acidification trend. In this scenario, more acidic pH values can alter bioavailability of organic contaminants, to organisms. Despite this, interactive effects between pH and chemical substances are not usually considered in Ecological Risk Assessment protocols. This study investigated the effects of pH on the toxicity of a hydrophobic organic compound on a benthic community using a microcosm experiment setup to assess the response of nematode assemblages exposed to environmentally relevant concentrations of Irgarol at two natural pH conditions. Estuarine nematode assemblages were exposed to two concentrations of Irgarol at pH 7.0 and 8.0 for periods of 7 and 35 days. Lower diversity of nematode genera was observed at the highest tested Irgarol concentration (1281 ± 65 ng.g-1). The results showed that the effects of Irgarol contamination were independent of pH variation, indicating no influence of acidification within this range on the toxicity of Irgarol to benthic meiofauna. However, the results showed that estuarine nematode assemblages are impacted by long-term exposure to low (but naturally occurring) pHs. This indicates that estuarine organisms may be under naturally high physiological pressure and that permanent changes in the ecosystem's environmental factors, such as future coastal ocean acidification, may drive organisms closer to the edges of their tolerance windows.
Collapse
Affiliation(s)
- Mariana Aliceda Ferraz
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100 Santos, SP, Brazil
| | - Ana Carolina Kiyama
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100 Santos, SP, Brazil
| | - Ednei Gilberto Primel
- Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS 96201-900, Brazil
| | - Sergiane Caldas Barbosa
- Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS 96201-900, Brazil
| | - Ítalo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100 Santos, SP, Brazil
| | - Rodrigo Brasil Choueri
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100 Santos, SP, Brazil.
| | - Fabiane Gallucci
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100 Santos, SP, Brazil
| |
Collapse
|
15
|
Martinez AS, Underwood T, Christofoletti RA, Pardal A, Fortuna MA, Marcelo-Silva J, Morais GC, Lana PC. Reviewing the effects of contamination on the biota of Brazilian coastal ecosystems: Scientific challenges for a developing country in a changing world. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150097. [PMID: 34500263 DOI: 10.1016/j.scitotenv.2021.150097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Pollution is a major worldwide problem that is increasing with urban growth, mainly along coastal areas. Pollution is often worse, governance is poorer and managerial strategies to improve environmental quality are less advanced in developing than developed countries. Here, we present an overview of the current scientific knowledge of the impacts of contamination on the biota of coastal ecosystems of Brazil and evaluate the scientific challenges to provide baseline information for local managerial purposes. We compiled data from 323 peer-reviewed published papers from the extensive Brazilian coast. We critically evaluated the produced knowledge (target contaminants, sources, ecosystems, taxa, response variables) and the science behind it (rigour and setting) within its socioenvironmental context (land occupation, use of the coast, sanitation status, contamination history). Research was driven largely by environmental outcomes of industrial development with a focus on the single effects of metals on the biota. The current knowledge derives mainly from laboratory manipulative experiments or from correlative field studies of changes in the biota with varying levels of contamination. Of these, 70% had problems in their experimental design. Environmental impacts have mainly been assessed using standard indicators of populations, mostly in ecotoxicological studies. Benthic assemblages have mostly been studied using structural indicators in field studies. Future assessments of impacts should expand research to more taxonomic groups and ecosystem compartments, adding combined functional and structural responses. Furthermore, further investigations need to consider the interactive effects of contaminants and other environmental stressors. By doing so, researchers would deliver more robust and effective results to solve problems of pollution.
Collapse
Affiliation(s)
- Aline S Martinez
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP 11070-100, Brazil.
| | - Tony Underwood
- Marine Ecology Laboratories A11, School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Ronaldo A Christofoletti
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP 11070-100, Brazil
| | - André Pardal
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP 11070-100, Brazil; Center for Natural and Human Sciences, Federal University of ABC (CCNH/UFABC), Rua Santa Adélia, 166, Santo André, SP 09210-170, Brazil
| | - Monique A Fortuna
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP 11070-100, Brazil
| | - João Marcelo-Silva
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP 11070-100, Brazil
| | - Gisele C Morais
- Laboratório de Bentos, Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira-mar, s/n, Pontal do Paraná, PR 83255-976, Brazil
| | - Paulo C Lana
- Laboratório de Bentos, Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira-mar, s/n, Pontal do Paraná, PR 83255-976, Brazil
| |
Collapse
|
16
|
Zhao Y, Wang CA, Li JK, Li QL, Guo Q, Ru J, Ma CL, Han YF. A Eu( iii) metal–organic framework based on anthracenyl and alkynyl conjugation as a fluorescence probe for the selective monitoring of Fe 3+ and TNP. RSC Adv 2022; 12:26945-26952. [PMID: 36320831 PMCID: PMC9490770 DOI: 10.1039/d2ra02892a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/03/2022] [Indexed: 12/03/2022] Open
Abstract
In this work, a luminescent metal–organic framework (Eu-MOF {[Eu6L6(μ3-OH)8(H2O)3]8·H2O}n) was constructed by a solvothermal method with a linear organic ligand L (10-[(2-amino-4-carboxyl-phenyl)ethynyl]anthracene-9-carboxylic acid) based on anthracene and alkyne groups and using Eu3+ as the metal center. The MOF exhibits a stable UiO-66 crystal structure, and a six-core cluster twelve-linked secondary structural unit was successfully synthesized using 2-fluorobenzoic acid as a modulator, forming a classical fcu topology. Moreover, it exhibits good chemical stability. Interestingly, Eu-MOF exhibited high selectivity and sensitive fluorescence burst properties towards Fe3+ ions and 2,4,6-trinitrophenol (TNP) in DMF solution. For Fe3+, the KSV value is 5.06 × 105 M−1 and the LOD value is 5.1 × 10−7 M. For TNP, the KSV value is 1.92 × 104 M−1 and the LOD value is 1.93 × 10−6 M. In addition, Eu-MOF showed good anti-interference ability and fast response. This work provides an excellent fluorescent sensor for the detection of Fe3+ and 2,4,6-trinitrophenol (TNP) residues in contaminants. In this work, Eu-MOF has been synthesized and has excellent luminescence recognition ability for Fe3+ and TNP with good selectivity and high sensitivity via luminescence quenching.![]()
Collapse
Affiliation(s)
- Yue Zhao
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
- Department of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, PR China
| | - Chang-An Wang
- Department of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, PR China
| | - Ji-Kun Li
- Department of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, PR China
| | - Qian-Li Li
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Qiang Guo
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Jing Ru
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Chun-Lin Ma
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Yin-Feng Han
- Department of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, PR China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China
| |
Collapse
|
17
|
Rizzuto S, Jones KC, Zhang H, Baho DL, Leu E, Nizzetto L. Critical assessment of an equilibrium-based method to study the binding of waterborne organic contaminants to natural dissolved organic matter (DOM). CHEMOSPHERE 2021; 285:131524. [PMID: 34329125 DOI: 10.1016/j.chemosphere.2021.131524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Dissolved organic matter (DOM) can play a major role in determining availability of pollutants to aquatic biota. Equilibrium dialysis is the most commonly used method to assess the interaction between DOM and organic contaminants. However, results obtained through this method can be affected by confounding factors linked to the diffusion of DOM through the membrane or the interaction of DOM and/or the compounds with the membrane itself. In this study, we propose an improved experimental approach, where highly hydrophilic cellulose-ester membranes with small molecular cut-off (100-500 Da) were used to overcome some of these hindrances. The performance of the method to determine the binding of a commonly used moderately hydrophobic herbicide (Isoproturon - ISU) with natural DOM was critically evaluated through a set of quality assurance criteria, across a range of DOM concentrations and pH conditions. DOM trans-membrane diffusion was prevented by the smaller pore size of the dialysis membrane. Good measurement reproducibility, mass balance closure, and successful trans-membrane equilibrium of ISU were obtained. ISU showed relatively low affinity with DOM (log KDOC 1-2 L g-1), which was significantly influenced by varying pH and DOM concentration. An alternative membrane may be needed for higher pH conditions as the greater adsorption effect blurred the observation of trans-membrane equilibrium and confounding mass balance closure. The paper makes recommendations on how to avoid measurement artefacts, while considering criteria for the expected mass distribution of compounds at equilibrium and for sorption onto the membrane and surfaces of the experimental units.
Collapse
Affiliation(s)
- Simone Rizzuto
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Didier L Baho
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway
| | - Eva Leu
- Akvaplan-niva, CIENS, Science Park, Gaustadalléen 21, 0349, Oslo, Norway
| | - Luca Nizzetto
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway; RECETOX, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| |
Collapse
|
18
|
Cabrera J, Marcoval MA, Díaz-Jaramillo M, Gonzalez M. Single and Combined Effects of Cypermethrin and UVR Pre-Exposure in the Microalgae Phaeodactylum Tricornutum. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:507-516. [PMID: 34545442 DOI: 10.1007/s00244-021-00889-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Coastal marine microalgae are exposed to anthropogenic pollutants, including pesticides from aquaculture/agriculture/household uses. Some microalgae species, such as Phaeodactylum tricornutum, can induce and accumulate UV-absorbing compounds (UACs) upon ultraviolet radiation (UVR) exposure to prevent deleterious effects. Tolerance mechanisms activated by natural stressors might also protect organisms from anthropogenic stressors. This work assesses the effects of the insecticide cypermethrin (Cyp) and UVR in the marine microalgae P tricornutum. Considering the pro-oxidant properties of both stressors and UACs' induction in P tricornutum, lethal and sublethal effects of Cyp were tested in cultures with and without UVR acclimation. After a 24-h exposure to 10 μg L-1 of technical Cyp or culture medium, UACs, growth, glutathione-S-transferase activity (GST), sulfhydryl groups (SH-g), and lipid peroxidation (LPO) were analyzed. Results showed differences in terms of growth between Cyp and Cyp + UVR pre-exposure. UACs' content was induced after UVR acclimation and diminished after 24 h of growth in control and UVR pre-treated cultures, while levels remained constant under Cyp exposure. A single Cyp exposure exerted GST induction, SH-g depletion, and LPO increments. In UVR-acclimatized treatments, oxidative stress responses showed similar or more pronounced effects than the single chemical exposure, suggesting a potential additive effect of the UVR acclimation. The contrasting effects of Cyp + UVR observed between growth and biochemical responses suggest different compensatory mechanisms that need to be further investigated. Also, it highlights the need to include both lethal and sublethal endpoints to understand microalgae's tolerance and its significance in the multiple stressors' context.
Collapse
Affiliation(s)
- Joaquin Cabrera
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Estresores Múltiples en el Ambiente (EMA), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, B7602AYL, Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Laboratorio de Acuicultura, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, B7602AYL, Mar del Plata, Buenos Aires, Argentina
| | - Ma Alejandra Marcoval
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Laboratorio de Acuicultura, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, B7602AYL, Mar del Plata, Buenos Aires, Argentina
| | - Mauricio Díaz-Jaramillo
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Estresores Múltiples en el Ambiente (EMA), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, B7602AYL, Mar del Plata, Buenos Aires, Argentina
| | - Mariana Gonzalez
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Estresores Múltiples en el Ambiente (EMA), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, B7602AYL, Mar del Plata, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Cheloni G, Slaveykova VI. Morphological plasticity in Chlamydomonas reinhardtii and acclimation to micropollutant stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105711. [PMID: 33338702 DOI: 10.1016/j.aquatox.2020.105711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Phytoplankton are characterized by a great phenotypic plasticity and amazing morphological variability, both playing a primary role in the acclimation to changing environments. However, there is a knowledge gap concerning the role of algal morphological plasticity in stress responses and acclimation to micropollutants. The present study aims at examining palmelloid colony formation of the green alga Chlamydomonas reinhardtii upon micropollutants exposure. Cells were exposed to four micropollutants (MPs, copper, cadmium, PFOS and paraquat) with different modes of action for a duration of 72 h. Effects of MPs on palmelloid formation, growth and physiological traits (chlorophyll fluorescence, membrane integrity and oxidative stress) were monitored by flow cytometry and fluorescence microscopy. Palmelloid formation was observed upon treatment with the four micropollutants. Number of palmelloid colonies and their size were dependent on MP concentration and exposure duration. Cells reverted to their unicellular lifestyle when colonies were harvested and inoculated in fresh medium indicating that palmelloid formation is a plastic response to micropollutants. No physiological effects of these compounds were observed in cells forming palmelloids. Palmelloid colonies accumulated lower Cd concentration than unicellular C. reinhardtii suggesting that colony formation protects the cells from MPs stress. The results show that colony formation in Chlamydomonas reinhardtii is a stress response strategy activated to face sub-lethal micropollutant concentrations.
Collapse
Affiliation(s)
- Giulia Cheloni
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, CH-1211, Geneva, Switzerland.
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, CH-1211, Geneva, Switzerland
| |
Collapse
|
20
|
Gul FZ, Hanif S, Abbasi BH, Asad B, Khan A, Hano C, Zia M. Interactive Effect of Light and CdO Nanoparticles on Dodonaea viscosa Morphological, Antioxidant, and Phytochemical Properties. ACS OMEGA 2020; 5:24211-24221. [PMID: 33015437 PMCID: PMC7528174 DOI: 10.1021/acsomega.0c01878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Cadmium nanoparticles (NPs) used in semiconducting devices are photosensitive and optically active. The objective of this study was to investigate the interactive effect of different spectral lights and CdO NPs on morphological, antioxidant, and phytochemical characteristics of Dodonaea viscosa. The plants were grown on media in the presence of green and chemically synthesized CdO NPs and under red, yellow, green, blue, and white light intensities. Results illustrated that plant morphological parameters changed in the presence of different spectral lights and NPs behaved differentially under different spectral lights. Fresh and dry weights of plants decreased in the presence of NPs in the media; however, the concentration and route of synthesis of NPs have a significant effect on these parameters. The same was observed in the case of shoot and root lengths; however, green synthesized NPs were found to be less toxic under different spectral lights. The total antixodant response increased under yellow, blue, and white lights, while the total reducing potential of plant extracts significantly varied depending upon the NP concentration and light spectrum. Different spectral lights significantly influenced the syntheses of phenolics and flavonoids under CdO NP stress and light regimes. It is concluded that toxicity of NPs also depends upon the wavelength of striking light that varies the morphological, biochemical, and antioxidative response of the plants. Furthermore, the white light might have synergistic effects of different wavelengths.
Collapse
Affiliation(s)
- Faiza Zareen Gul
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saad Hanif
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Bushra Asad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Aisha Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328/Université d’Orléans, 28000 Chartres, France
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
21
|
Ricupero M, Abbes K, Haddi K, Kurtulus A, Desneux N, Russo A, Siscaro G, Biondi A, Zappalà L. Combined thermal and insecticidal stresses on the generalist predator Macrolophus pygmaeus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138922. [PMID: 32498167 DOI: 10.1016/j.scitotenv.2020.138922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Ecotoxicological risk assessments of pesticides on non-target arthropods are often carried out under constant and optimal temperature regimes. However, living organisms rarely experience these conditions in real field situations. Understanding the impact of pesticides on non-target beneficial arthropods under temperature stresses is especially important in terms of global warming. We assessed the lethal and sublethal effects of four modern insecticides (chlorantraniliprole, cyantraniliprole, spinetoram, spinosad), on the generalist predator Macrolophus pygmaeus (Hemiptera: Miridae) under a range of temperatures (from 10 to 40°C) frequently experienced in a real field scenario. A reduction coefficient (Ex) was calculated by summarizing the mortality and predator reproductive capacity and, the chemicals were classified according to the International Organization for Biological Control (IOBC) toxicity classes. The insecticides showed a marked synergistic effect with temperature, as the predator mortality and reproductive outputs were significantly correlated with increasing temperatures. Spinosyns interacted significantly with temperature causing the highest mortality and lowest fertility rates. Anthranilic diamides showed a safer ecotoxicological profile compared to spinosyns, with cyantraniliprole being more harmful than chlorantraniliprole. These results suggest that temperature should be taken into account in pesticide ecotoxicology studies within the framework of integrated pest management and the recent climate changes.
Collapse
Affiliation(s)
- Michele Ricupero
- University of Catania, Department of Agriculture, Food and Environment, Catania, Italy
| | - Khaled Abbes
- University of Catania, Department of Agriculture, Food and Environment, Catania, Italy; University of Sousse, High Agronomic Institute of Chott-Mariem, 4042, Chott-Mariem, Sousse, Tunisia
| | - Khalid Haddi
- University of Catania, Department of Agriculture, Food and Environment, Catania, Italy; Federal University of Lavras (UFLA), Department of Entomology, Lavras, Minas Gerais, Brazil
| | - Alican Kurtulus
- University of Catania, Department of Agriculture, Food and Environment, Catania, Italy; Cukurova University, Agricultural Faculty, Department of Plant Protection, 01330 Adana, Turkey
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | - Agatino Russo
- University of Catania, Department of Agriculture, Food and Environment, Catania, Italy
| | - Gaetano Siscaro
- University of Catania, Department of Agriculture, Food and Environment, Catania, Italy
| | - Antonio Biondi
- University of Catania, Department of Agriculture, Food and Environment, Catania, Italy
| | - Lucia Zappalà
- University of Catania, Department of Agriculture, Food and Environment, Catania, Italy.
| |
Collapse
|
22
|
Effects of Mixtures of Engineered Nanoparticles and Metallic Pollutants on Aquatic Organisms. ENVIRONMENTS 2020. [DOI: 10.3390/environments7040027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In aquatic environment, engineered nanoparticles (ENPs) are present as complex mixtures with other pollutants, such as trace metals, which could result in synergism, additivity or antagonism of their combined effects. Despite the fact that the toxicity and environmental risk of the ENPs have received extensive attention in the recent years, the interactions of ENPs with other pollutants and the consequent effects on aquatic organisms represent an important challenge in (nano)ecotoxicology. The present review provides an overview of the state-of-the-art and critically discusses the existing knowledge on combined effects of mixtures of ENPs and metallic pollutants on aquatic organisms. The specific emphasis is on the adsorption of metallic pollutants on metal-containing ENPs, transformation and bioavailability of ENPs and metallic pollutants in mixtures. Antagonistic, additive and synergistic effects observed in aquatic organisms co-exposed to ENPs and metallic pollutants are discussed in the case of “particle-proof” and “particle-ingestive” organisms. This knowledge is important in developing efficient strategies for sound environmental impact assessment of mixture exposure in complex environments.
Collapse
|
23
|
Yang J, Wei H, Yalin T, Alan W, Xiaofeng L, Jiqiu L. Combined effects of food resources and exposure to ammonium nitrogen on population growth performance in the bacterivorous ciliate Paramecium caudatum. Eur J Protistol 2019; 71:125631. [PMID: 31542654 DOI: 10.1016/j.ejop.2019.125631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
Ciliated protozoa (ciliates) play vital roles in biological wastewater-treatment processes, however, combined effects of abiotic and biotic factors as well as the importance of species-specificity of bacterial food organisms on population growth dynamics remain poorly understood, which are hampering the management and optimization of biological wastewater treatment processes. This study investigated the effects of food resources and ammonium nitrogen (NH4+) exposure, both independently and in combination, on the population growth of the bacterivorous ciliate Paramecium caudatum. Results showed that, when fed with two different bacterial food organisms, population growth performance of P. caudatum differed significantly and increased with the addition of protozoa pellet medium. When exposed to NH4+ population growth declined and metabolic enzyme activities were altered. The negative effects of NH4+ on population growth could be weakened by supplementing the food resource with protozoa pellet media. In brief, it was confirmed that the existence of interactive effect of food resources and ammonium nitrogen, as well as the importance of species-specificity of bacterial food organisms on the population growth performance of ciliates. These findings might lead to the development of a valuable strategy for improving the performance of biological wastewater-treatment processes.
Collapse
Affiliation(s)
- Jing Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Hu Wei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Tan Yalin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Warren Alan
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Lin Xiaofeng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Li Jiqiu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
24
|
Dellafiora L, Galaverna G, Cruciani G, Dall'Asta C. A computational study toward the "personalized" activity of alternariol - Does it matter for safe food at individual level? Food Chem Toxicol 2019; 130:199-206. [PMID: 31128219 DOI: 10.1016/j.fct.2019.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/08/2023]
Abstract
Mycotoxins in food may threat public health at a global scale. However, for most of them, the current body of knowledge does not support a proper risk assessment and more data are needed to clarify their toxicity. In particular, the assessment of "personalized" action may succeed in understanding and counteracting the effects of many toxicants. Therefore, the assessment of "personalized" toxicology of mycotoxins might deserve attention to foster the understanding of their mechanisms of toxicity and to eventually improve the assessment of risk. This work dealt with the early warning analysis of possible differences in eliciting androgenic stimuli by alternariol, a widespread mycotoxin produce by Alternaria species, when mutations on the androgen receptor occur. It was applied a computational study based on docking simulations, pharmacophore modeling and molecular dynamics to assess the capability of alternariol to interact with the androgen receptor bearing the M749I substitution - which confers insensitivity to androgens stimulation. The results collected pointed to possible "protective" effects against alternariol suggesting: i) the likely existence of inter-individual responses to alternariol stimulation; ii) the meaningfulness of collecting data on "personalized" response to mycotoxins toward a more precise paradigm addressing the risk assessment at the individual level.
Collapse
Affiliation(s)
- Luca Dellafiora
- Department of Food and Drug, University of Parma, Area Parco delle Scienze 27/A, 43124, Parma, Italy.
| | - Gianni Galaverna
- Department of Food and Drug, University of Parma, Area Parco delle Scienze 27/A, 43124, Parma, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Area Parco delle Scienze 27/A, 43124, Parma, Italy
| |
Collapse
|
25
|
Evaluating the Impact of Wastewater Effluent on Microbial Communities in the Panke, an Urban River. WATER 2019. [DOI: 10.3390/w11050888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pharmaceuticals are consumed in high amounts and can enter as emerging organic compounds in surface waters as they are only partially retained in wastewater treatment plants (WWTPs). Receiving pharmaceuticals may burden the aquatic environment, as they are designed to be bioactive even at low concentrations. Sediment biofilm populations were analyzed in river sediments due to the exposure of an inflow of WWTP effluents. Illumina MiSeq 16S rRNA gene amplicon sequencing was performed of 108 sediment samples, which were taken from multiple cores within three sampling locations in the Panke River, with one sampling site located downstream of the inflow. Sequencing data were processed to infer microbial community structure in samples concerning the environmental variables, such as micropollutants and physicochemical parameters measured for each core. More than 25 different micropollutants were measured in pore water samples, in which bezafibrate, clofibric acid, carbamazepine, and diclofenac were detected at high concentrations. Bacterial 16S rRNA gene amplicons revealed Nitrospirae, Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria, Bacteroidetes, and Ignavibacteriae as the most abundant groups in the samples. Differences in microbial community composition were observed with respect to micropollutants. However, our findings revealed that the composition of the microbial community was not only governed by the effluent. The significant changes in the alpha- and beta-diversity were explained by phenobarbital and SO42−, which did not originate from the WWTP indicating that more unobserved factors are also likely to play a role in affecting the biofilm community’s composition.
Collapse
|
26
|
Nilsen E, Smalling KL, Ahrens L, Gros M, Miglioranza KSB, Picó Y, Schoenfuss HL. Critical review: Grand challenges in assessing the adverse effects of contaminants of emerging concern on aquatic food webs. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:46-60. [PMID: 30294805 DOI: 10.1002/etc.4290] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/24/2018] [Accepted: 10/03/2018] [Indexed: 05/24/2023]
Abstract
Much progress has been made in the past few decades in understanding the sources, transport, fate, and biological effects of contaminants of emerging concern (CECs) in aquatic ecosystems. Despite these advancements, significant obstacles still prevent comprehensive assessments of the environmental risks associated with the presence of CECs. Many of these obstacles center around the extrapolation of effects of single chemicals observed in the laboratory or effects found in individual organisms or species in the field to impacts of multiple stressors on aquatic food webs. In the present review, we identify 5 challenges that must be addressed to promote studies of CECs from singular exposure events to multispecies aquatic food web interactions. There needs to be: 1) more detailed information on the complexity of mixtures of CECs in the aquatic environment, 2) a greater understanding of the sublethal effects of CECs on a wide range of aquatic organisms, 3) an ascertaining of the biological consequences of variable duration CEC exposures within and across generations in aquatic species, 4) a linkage of multiple stressors with CEC exposure in aquatic systems, and 5) a documenting of the trophic consequences of CEC exposure across aquatic food webs. We examine the current literature to show how these challenges can be addressed to fill knowledge gaps. Environ Toxicol Chem 2019;38:46-60. © 2018 SETAC.
Collapse
Affiliation(s)
- Elena Nilsen
- US Geological Survey, Oregon Water Science Center, Portland, Oregon, USA
| | - Kelly L Smalling
- US Geological Survey, New Jersey Water Science Center, Lawrenceville, New Jersey, USA
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Meritxell Gros
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Catalan Institute for Water Research, Girona, Spain
| | - Karina S B Miglioranza
- Laboratory of Ecotoxicology and Environmental Pollution, Mar del Plata University, Mar del Plata, Argentina
| | - Yolanda Picó
- Environmental and Food Safety Research Group, Center of Research on Desertification (CIDe), Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| |
Collapse
|
27
|
Abstract
Trace metals (TMs) have a central role in the functioning of aquatic and terrestrial ecosystems. [...]
Collapse
|
28
|
Arce-Funck J, Crenier C, Danger M, Billoir E, Usseglio-Polatera P, Felten V. High stoichiometric food quality increases moulting organism vulnerability to pollutant impacts: An experimental test with Gammarus fossarum (Crustacea: Amphipoda). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1484-1495. [PMID: 30248870 DOI: 10.1016/j.scitotenv.2018.07.227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Headwater organisms are most often simultaneously faced with multiple stressors such as low resource quality and pollutants. Higher food quality has been hypothesized to enhance the tolerance of organisms to pollutants, but the interactive effects of food quality and pollutants on species and ecosystems remain poorly studied. To better understand these interactive effects, we experimentally manipulated the phosphorus (P) content of two leaf litters with contrasted carbon quality (alder and maple). During four weeks, individuals of the detritivorous crustacean Gammarus fossarum were exposed to low levels of cadmium ([Cd] = 0, 0.35 or 0.70 μg L-1) while being fed with one of the leaf P treatments. When organisms were not exposed to Cd, their high survival rate was more driven by the carbon quality of the resource (litter species) than by its stoichiometric quality. In contrast, their number of moults and growth rates were primarily increased by the P content of resources. When exposed to Cd, G. fossarum survival rate was reduced, but this effect was largely magnified by a higher P level in resources. Our results showed that despite positive effects of resource stoichiometric quality on organism life history traits (growth, survival), a resource of high stoichiometric quality might be detrimental for organisms exposed to low and environmentally realistic levels of pollutants. Two non-exclusive hypotheses are proposed to explain these results. First, organisms fed on the highest quality resource exhibited the highest moulting frequencies (moults being the most critical life cycle step of arthropods), which could have rendered them more sensitive to pollutants. Secondly, the metabolism of organisms fed on higher quality resources was potentially enhanced, increasing the uptake of dissolved Cd by gammarids. This study suggests that species sensitivity to pollutants might be underestimated in ecosystems facing both nutrient constraint and pollutants.
Collapse
Affiliation(s)
- Julio Arce-Funck
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER France, Zone Atelier du Bassin de la Moselle, 54506 Vandœuvre-lès-Nancy, France
| | - Clément Crenier
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER France, Zone Atelier du Bassin de la Moselle, 54506 Vandœuvre-lès-Nancy, France
| | - Michael Danger
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER France, Zone Atelier du Bassin de la Moselle, 54506 Vandœuvre-lès-Nancy, France
| | - Elise Billoir
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER France, Zone Atelier du Bassin de la Moselle, 54506 Vandœuvre-lès-Nancy, France
| | - Philippe Usseglio-Polatera
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER France, Zone Atelier du Bassin de la Moselle, 54506 Vandœuvre-lès-Nancy, France
| | - Vincent Felten
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER France, Zone Atelier du Bassin de la Moselle, 54506 Vandœuvre-lès-Nancy, France.
| |
Collapse
|
29
|
Shimalina NS, Orekhova NA, Pozolotina VN. Features of Prooxidant and Antioxidant Systems of Greater Plantain Plantago major Growing for a Long Time under Conditions of Radioactive Contamination. RUSS J ECOL+ 2018. [DOI: 10.1134/s1067413618050120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
30
|
Van den Brink PJ, Boxall AB, Maltby L, Brooks BW, Rudd MA, Backhaus T, Spurgeon D, Verougstraete V, Ajao C, Ankley GT, Apitz SE, Arnold K, Brodin T, Cañedo-Argüelles M, Chapman J, Corrales J, Coutellec MA, Fernandes TF, Fick J, Ford AT, Papiol GG, Groh KJ, Hutchinson TH, Kruger H, Kukkonen JV, Loutseti S, Marshall S, Muir D, Ortiz-Santaliestra ME, Paul KB, Rico A, Rodea-Palomares I, Römbke J, Rydberg T, Segner H, Smit M, van Gestel CA, Vighi M, Werner I, Zimmer EI, van Wensem J. Toward sustainable environmental quality: Priority research questions for Europe. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2281-2295. [PMID: 30027629 PMCID: PMC6214210 DOI: 10.1002/etc.4205] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/28/2018] [Accepted: 06/11/2018] [Indexed: 05/05/2023]
Abstract
The United Nations' Sustainable Development Goals have been established to end poverty, protect the planet, and ensure prosperity for all. Delivery of the Sustainable Development Goals will require a healthy and productive environment. An understanding of the impacts of chemicals which can negatively impact environmental health is therefore essential to the delivery of the Sustainable Development Goals. However, current research on and regulation of chemicals in the environment tend to take a simplistic view and do not account for the complexity of the real world, which inhibits the way we manage chemicals. There is therefore an urgent need for a step change in the way we study and communicate the impacts and control of chemicals in the natural environment. To do this requires the major research questions to be identified so that resources are focused on questions that really matter. We present the findings of a horizon-scanning exercise to identify research priorities of the European environmental science community around chemicals in the environment. Using the key questions approach, we identified 22 questions of priority. These questions covered overarching questions about which chemicals we should be most concerned about and where, impacts of global megatrends, protection goals, and sustainability of chemicals; the development and parameterization of assessment and management frameworks; and mechanisms to maximize the impact of the research. The research questions identified provide a first-step in the path forward for the research, regulatory, and business communities to better assess and manage chemicals in the natural environment. Environ Toxicol Chem 2018;37:2281-2295. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Paul J. Van den Brink
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Wageningen Environmental Research (Alterra), P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Alistair B.A. Boxall
- Environment Department, University of York, Heslington, York, YO10 5NG, UK
- Corresponding author:
| | - Lorraine Maltby
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Bryan W. Brooks
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | | | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs Gata 22 B, 40530 Gothenburg, Sweden
| | - David Spurgeon
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | | | - Charmaine Ajao
- European Chemicals Agency (ECHA), Annankatu 18, 00120 Helsinki, Finland
| | - Gerald T. Ankley
- US Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - Sabine E. Apitz
- SEA Environmental Decisions, Ltd., 1 South Cottages, The Ford; Little Hadham, Hertfordshire SG11 2AT, UK
| | - Kathryn Arnold
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Tomas Brodin
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| | - Miguel Cañedo-Argüelles
- Freshwater Ecology and Management (FEM) Research Group, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Aquatic Ecology Group, BETA Tecnio Centre, University of Vic - Central University of Catalonia, Vic, Catalonia, Spain
| | - Jennifer Chapman
- Environment Department, University of York, Heslington, York, YO10 5NG, UK
| | - Jone Corrales
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | | | - Teresa F. Fernandes
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Jerker Fick
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Alex T. Ford
- Institute of Marine Sciences, University of Portsmouth, Ferry Road, Portsmouth, England, PO4 9LY, UK
| | - Gemma Giménez Papiol
- Environmental Engineering Laboratory, Chemical Engineering Department, Universitat Rovira i Virgili, Av. Països Catalans 26, Tarragona, Spain
| | - Ksenia J. Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf Switzerland
| | - Thomas H. Hutchinson
- School of Geography, Earth & Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Hank Kruger
- Wildlife International Ltd., Easton, Maryland, USA
| | - Jussi V.K. Kukkonen
- Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Jyväskylä, Finland
| | - Stefania Loutseti
- DuPont De Nemours, Agriculture & Nutrition Crop Protection, Hellas S.A. Halandri Ydras 2& Kifisias Avenue 280r. 15232 Athens, Greece
| | - Stuart Marshall
- Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, MK441LQ, UK. (Retired)
| | - Derek Muir
- Aquatic Contaminants Research Division, Water Science Technology Directorate, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario L7S 1A1 Canada
| | - Manuel E. Ortiz-Santaliestra
- Spanish Institute of Game and Wildlife Resources (IREC) CSIC-UCLM-JCCM. Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Kai B. Paul
- Blue Frog Scientific Limited, Quantum House, 91 George St., EH2 3ES, Edinburgh, UK
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Ismael Rodea-Palomares
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jörg Römbke
- ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, D-65439 Flörsheim, Germany
| | - Tomas Rydberg
- IVL Swedish Environmental Research Institute, PO Box 5302, 40014 Göteborg, Sweden
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, 3012 Bern, Switzerland
| | - Mathijs Smit
- Shell Global Solutions, Carel van Bylandtlaan 30, 2596 HR The Hague, The Netherlands
| | - Cornelis A.M. van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Marco Vighi
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology, Ueberlandstrasse 133, 8600 Dübendorf, Switzerland
| | | | - Joke van Wensem
- Ministry of Infrastructure and the Environment, P.O. Box 20901, 2500 EX The Hague, The Netherlands
| |
Collapse
|
31
|
Combined Effects of Trace Metals and Light on Photosynthetic Microorganisms in Aquatic Environment. ENVIRONMENTS 2018. [DOI: 10.3390/environments5070081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the present review, we critically examine the state-of-the-art of the research on combined effects of trace metals and light on photosynthetic microorganisms in aquatic environment. Light of different intensity and spectral composition affects the interactions between trace metals and photosynthetic microorganisms directly, by affecting vital cellular functions and metal toxicokinetics and toxicodynamics, and indirectly, by changing ambient medium characteristics. Light radiation and in particular, the ultraviolet radiation component (UVR) alters the structure and reactivity of dissolved organic matter in natural water, which in most of the cases decreases its metal binding capacity and enhances metal bioavailability. The increase of cellular metal concentrations is generally associated with increasing light intensity, however further studies are necessary to better understand the underlying mechanisms. Studies on the combined exposures of photosynthetic microorganisms to metals and UVR reveal antagonistic, additive or synergistic interactions depending on light intensity, spectral composition or light pre-exposure history. Among the light spectrum components, most of the research was performed with UVR, while the knowledge on the role of high-intensity visible light and environmentally relevant solar light radiation is still limited. The extent of combined effects also depends on the exposure sequence and duration, as well as the species-specific sensitivity of the tested microorganisms and the activation of stress defense responses.
Collapse
|
32
|
Temperature modulates the interaction between fungicide pollution and disease: evidence from a Daphnia-microparasitic yeast model. Parasitology 2017; 145:939-947. [PMID: 29160185 DOI: 10.1017/s0031182017002062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Temperature is expected to modulate the responses of organisms to stress. Here, we aimed to assess the influence of temperature on the interaction between parasitism and fungicide contamination. Specifically, using the cladoceran Daphnia as a model system, we explored the isolated and interactive effects of parasite challenge (yeast Metschnikowia bicuspidata) and exposure to fungicides (copper sulphate and tebuconazole) at two temperatures (17 and 20 °C), in a fully factorial design. Confirming a previous study, M. bicuspidata infection and copper exposure caused independent effects on Daphnia life history, whereas infection was permanently suppressed with tebuconazole exposure. Here, we show that higher temperature generally increased the virulence of the parasite, with the hosts developing signs of infection earlier, reproducing less and dying at an earlier age. These effects were consistent across copper concentrations, whereas the joint effects of temperature (which enhanced the difference between non-infected and infected hosts) and the anti-parasitic action of tebuconazole resulted in a more pronounced parasite × tebuconazole interaction at the higher temperature. Thus, besides independently influencing parasite and contaminant effects, the temperature can act as a modulator of interactions between pollution and disease.
Collapse
|
33
|
Windsor FM, Ormerod SJ, Tyler CR. Endocrine disruption in aquatic systems: up-scaling research to address ecological consequences. Biol Rev Camb Philos Soc 2017; 93:626-641. [PMID: 28795474 PMCID: PMC6849538 DOI: 10.1111/brv.12360] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022]
Abstract
Endocrine‐disrupting chemicals (EDCs) can alter biological function in organisms at environmentally relevant concentrations and are a significant threat to aquatic biodiversity, but there is little understanding of exposure consequences for populations, communities and ecosystems. The pervasive nature of EDCs within aquatic environments and their multiple sub‐lethal effects make assessments of their impact especially important but also highly challenging. Herein, we review the data on EDC effects in aquatic systems focusing on studies assessing populations and ecosystems, and including how biotic and abiotic processes may affect, and be affected by, responses to EDCs. Recent research indicates a significant influence of behavioural responses (e.g. enhancing feeding rates), transgenerational effects and trophic cascades in the ecological consequences of EDC exposure. In addition, interactions between EDCs and other chemical, physical and biological factors generate uncertainty in our understanding of the ecological effects of EDCs within aquatic ecosystems. We illustrate how effect thresholds for EDCs generated from individual‐based experimental bioassays of the types commonly applied using chemical test guidelines [e.g. Organisation for Economic Co‐operation and Development (OECD)] may not necessarily reflect the hazards associated with endocrine disruption. We argue that improved risk assessment for EDCs in aquatic ecosystems urgently requires more ecologically oriented research as well as field‐based assessments at population‐, community‐ and food‐web levels.
Collapse
Affiliation(s)
- Fredric M Windsor
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, U.K.,Department of Biosciences, University of Exeter, Exeter, EX4 4PS, U.K
| | - Steve J Ormerod
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, U.K
| | - Charles R Tyler
- Department of Biosciences, University of Exeter, Exeter, EX4 4PS, U.K
| |
Collapse
|
34
|
Dranguet P, Cosio C, Le Faucheur S, Hug Peter D, Loizeau JL, Ungureanu VG, Slaveykova VI. Biofilm composition in the Olt River (Romania) reservoirs impacted by a chlor-alkali production plant. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:687-695. [PMID: 28379244 DOI: 10.1039/c7em00033b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Freshwater biofilms can be useful indicators of water quality and offer the possibility to assess contaminant effects at the community level. The present field study examines the effects of chlor-alkali plant effluents on the community composition of biofilms grown in the Olt River (Romania) reservoirs. The relationship between ambient water quality variables and community composition alterations was explored. Amplicon sequencing revealed a significant modification of the composition of microalgal, bacterial and fungal communities in the biofilms collected in the impacted reservoirs in comparison with those living in the uncontaminated control reservoir. The abundance corrected Simpson index showed lower richness and diversity in biofilms collected in the impacted reservoirs than in the control reservoir. The biofilm bacterial communities of the impacted reservoirs were characterized by the contaminant-tolerant Cyanobacteria and Bacteroidetes, whereas microalgal communities were predominantly composed of Bacillariophyta and fungal communities of Lecanoromycetes and Paraglomycetes. A principal component analysis revealed that major contaminants present in the waste water of the chlor-alkali production plant, i.e. Na+, Ca2+, Cl- and Hg, were correlated with the alteration of biofilm community composition in the impacted reservoirs. However, the biofilm composition was also influenced by water quality variables such as NO3-, SO42-, DOC and Zn from unknown sources. The results of the present study imply that, even when below the environmental quality standards, typical contaminants of chlor-alkali plant releases may affect biofilm composition and that their impacts on the microbial biodiversity might be currently overlooked.
Collapse
Affiliation(s)
- P Dranguet
- University of Geneva, Faculty of Sciences, Earth and Environmental Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Uni Carl Vogt, 66 Bvd. Carl Vogt, CH-1211, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
35
|
Water-borne pharmaceuticals reduce phenotypic diversity and response capacity of natural phytoplankton communities. PLoS One 2017; 12:e0174207. [PMID: 28328933 PMCID: PMC5362198 DOI: 10.1371/journal.pone.0174207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/06/2017] [Indexed: 12/04/2022] Open
Abstract
Chemical micropollutants occur worldwide in the environment at low concentrations and in complex mixtures, and how they affect the ecology of natural systems is still uncertain. Dynamics of natural communities are driven by the interaction between individual organisms and their growth environment, which is mediated by the organisms’ expressed phenotypic traits. We tested whether exposure to a mixture of 12 pharmaceuticals and personal care products (PPCP) influences phenotypic trait diversity in lake phytoplankton communities and their ability to regulate biomass production to fit environmental changes (response capacity). We exposed natural phytoplankton assemblages to three mixture levels in permeable microcosms maintained at three depths in a eutrophic lake for one week, during which the environmental conditions were fluctuating. We studied individual-level traits, phenotypic diversity and community biomass. PPCP reduced individual-level trait variance and overall community phenotypic diversity, but maintained higher standing phytoplankton biomass compared to untreated controls. Estimated effect sizes of PPCP on traits and community properties were very large (partial Eta-squared > 0.15). The PPCP mixture antagonistically interacted with the natural environmental gradient in habitats offered by different depths and, at concentrations comparable to those in waste-water effluents, prevented communities from converging to the same phenotypic structure and total biomass of unexposed controls. We show that micropollutants can alter individual-level trait diversity of lake phytoplankton communities and therefore their capacity to respond to natural environmental gradients, potentially affecting aquatic ecosystem processes.
Collapse
|
36
|
Venâncio C, Anselmo E, Soares A, Lopes I. Does increased salinity influence the competitive outcome of two producer species? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5888-5897. [PMID: 28064393 DOI: 10.1007/s11356-016-8346-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
Within the context of global climate changes, it is expected that low-lying coastal freshwater ecosystems will face seawater intrusion with concomitant increase in salinity levels. Increased salinity may provoke disruption of competitive relationships among freshwater species. However, species may be capable of acclimating to salinity, which, in turn, may influence the resilience of ecosystems. Accordingly, this work aimed at assessing the effects of multigenerational exposure to low levels of salinity in the competitive outcome of two species of green microalgae: Raphidocelis subcapitata and Chlorella vulgaris. To attain this, three specific objectives were delineated: (1) compare the toxicity of natural seawater (SW) and NaCl (as a surrogate of SW) to the two microalgae, (2) determine the capacity of the two microalgae species to acclimate to low salinity levels, and (3) assess the influence of exposure to low salinity levels in the competitive outcome of the two microalgae. Results revealed SW to be slightly less toxic than NaCl for the two microalgae. The EC25,72 h for growth rate was 4.63 and 10.3 mS cm-1 for R. subcapitata and 6.94 and 15.4 mS cm-1 for C. vulgaris, respectively for NaCl and SW. Both algae were capable of acclimating to low levels of salinity, but C. vulgaris seemed to acclimate faster than R. subcapitata. When exposed in competition, under control conditions, the growth rates of C. vulgaris were lower than those of R. subcapitata. However, C. vulgaris was capable of acquiring competitive advantage equaling or surpassing the growth rate of R. subcapitata with the addition of NaCl or SW, respectively. The multigenerational exposure to low levels of salinity influenced the competitive outcome of the two algae both under control and salinity exposure. These results suggest that long-term exposure to low salinity stress can cause shifts in structure of algae communities and, therefore, should not be neglected since algae are at the basis of food web constituting important energetic resources to higher trophic levels.
Collapse
Affiliation(s)
- C Venâncio
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- CESAM-Centro de Estudos do Ambiente e do Mar, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - E Anselmo
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - A Soares
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- CESAM-Centro de Estudos do Ambiente e do Mar, University of Aveiro, 3810-193, Aveiro, Portugal
| | - I Lopes
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- CESAM-Centro de Estudos do Ambiente e do Mar, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
37
|
López-Doval JC, Montagner CC, de Alburquerque AF, Moschini-Carlos V, Umbuzeiro G, Pompêo M. Nutrients, emerging pollutants and pesticides in a tropical urban reservoir: Spatial distributions and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1307-1324. [PMID: 27745929 DOI: 10.1016/j.scitotenv.2016.09.210] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/05/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Reservoirs located in urban areas suffer specific pressures related to human activities. Their monitoring, management, and protection requirements differ from reservoirs situated in non-urbanized areas. The objectives of this study were: (a) to determine the concentrations of select pesticides and emerging pollutants (EPs) present in an urban reservoir; (b) to describe their possible spatial distributions; and (c) to quantify the risks for aquatic life and safeguard drinking water supplies. For this purpose, the Guarapiranga reservoir was studied as an example of a multi-stressed urban reservoir in a tropical region. A total of 31 organic compounds (including pesticides, illicit drugs, pharmaceuticals, and endocrine disruptors) were analyzed twice over a period of one year, together with classical indicators of water quality. The physical and chemical data were treated using principal component analysis (PCA) to identify possible temporal or spatial patterns. Risk assessment was performed for biota and drinking water use, comparing maximum environmental concentrations (MECs) with the predicted no-effect concentrations (PNECs) or drinking water quality criteria (DWC), respectively. The results demonstrated the presence of pesticides and EPs, as well as pollution by high levels of nutrients and Chlorophyll a (Chl. a), during the study period. The nutrients and Trophic State Index (TSI) showed gradients in the reservoir and regional distributions, while the pesticides and EPs only clearly showed this pattern in the dry season. The concentrations and distributions of the pesticides and EPs therefore showed seasonality. These findings suggested that the two groups of pollutants (EPs+pesticides and nutrients) possessed different sources and behavior and were not always correlated in the reservoir studied. In the studied period, no risk was observed in raw water for drinking water use, but carbendazim, imidacloprid, and BPA showed risks for the biota in the reservoir.
Collapse
Affiliation(s)
- Julio C López-Doval
- Institute of Biosciences, Department of Ecology, University of São Paulo, Rua do Matão, Travessa 14, 321, Butantã, 05508-090 São Paulo, SP, Brazil; Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avinguda Diagonal, 643, 08028 Barcelona, Spain.
| | - Cassiana C Montagner
- Institute of Chemistry, University of Campinas, PO Box 6154, 13084-971 Campinas, SP, Brazil
| | | | - Viviane Moschini-Carlos
- São Paulo State University -UNESP, Environmental Sciences Program, Avenida Três de Março 511, 18087-180 Sorocaba, SP, Brazil
| | - Gisela Umbuzeiro
- Institute of Chemistry, University of Campinas, PO Box 6154, 13084-971 Campinas, SP, Brazil
| | - Marcelo Pompêo
- Institute of Biosciences, Department of Ecology, University of São Paulo, Rua do Matão, Travessa 14, 321, Butantã, 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
38
|
Echeveste P, Galbán-Malagón C, Dachs J, Berrojalbiz N, Agustí S. Toxicity of natural mixtures of organic pollutants in temperate and polar marine phytoplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:34-41. [PMID: 27470667 DOI: 10.1016/j.scitotenv.2016.07.111] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Semivolatile and persistent organic pollutants (POPs) undergo atmospheric transport before being deposited to the oceans, where they partition to phytoplankton organic matter. The goal of this study was to determine the toxicity of naturally occurring complex mixtures of organic pollutants to temperate and polar phytoplankton communities from the Mediterranean Sea, the North East (NE) Atlantic, and Southern Oceans. The cell abundance of the different phytoplankton groups, chlorophyll a concentrations, viability of the cells, and growth and decay constants were monitored in response to addition of a range of concentrations of mixtures of organic pollutants obtained from seawater extracts. Almost all of the phytoplankton groups were significantly affected by the complex mixtures of non-polar and polar organic pollutants, with toxicity being greater for these mixtures than for single POPs or simple POP mixtures. Cocktails' toxicity arose at concentrations as low as tenfold the field oceanic levels, probably due to a higher chemical activity of the mixture than of simple POPs mixtures. Overall, smaller cells were the most affected, although Mediterranean picophytoplankton was significantly more tolerant to non-polar POPs than picophytoplankton from the Atlantic Ocean or the Bellingshausen Sea microphytoplankton.
Collapse
Affiliation(s)
- Pedro Echeveste
- Department of Global Change Research, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Mallorca, Illes Balears, Spain.
| | - Cristóbal Galbán-Malagón
- Departamento de Ecología y Biodiversidad, Universidad Nacional Andrés Bello, Santiago, Chile; Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Naiara Berrojalbiz
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya, Spain; Norges Geotekniske Institutt, Oslo, Norway
| | - Susana Agustí
- Department of Global Change Research, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Mallorca, Illes Balears, Spain; Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
39
|
Geras'kin SA. Ecological effects of exposure to enhanced levels of ionizing radiation. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 162-163:347-357. [PMID: 27343462 DOI: 10.1016/j.jenvrad.2016.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/01/2016] [Accepted: 06/15/2016] [Indexed: 05/06/2023]
Abstract
Irradiation of plants and animals can result in disruption of ecological relationships between the components of ecosystems. Such effects may act as triggers of perturbation and lead to consequences that may differ essentially from expected ones based on effects observed at the organismal level. Considerable differences in ecology and niches occupied by different species lead to substantial differences in doses of ionizing radiation absorbed by species, even when they all are present in the same environment at the same time. This is especially evident for contamination with α-emitting radionuclides. Radioactive contamination can be considered an ecological factor that is able to modify the resistance in natural populations. However, there are radioecological situations when elevated radioresistance does not evolve or persist. The complexity and non-linearity of the structure and functioning of ecosystems can lead to unexpected consequences of stress effects, which would appear harmless if they were assessed within the narrower context of organism-based traditional radioecology. Therefore, the use of ecological knowledge is essential for understanding responses of populations and ecosystems to radiation exposure. Integration of basic ecological principles in the design and implementation of radioecological research is essential for predicting radiation effects under rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Stanislav A Geras'kin
- Russian Institute of Radiology and Agroecology, Obninsk, Kaluga Region, 249032, Russia.
| |
Collapse
|
40
|
Cuco AP, Abrantes N, Gonçalves F, Wolinska J, Castro BB. Toxicity of two fungicides in Daphnia: is it always temperature-dependent? ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1376-1389. [PMID: 27381036 DOI: 10.1007/s10646-016-1689-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
The joint effect of increasing temperature and pollution on aquatic organisms is important to understand and predict, as a combination of stressors might be more noxious when compared to their individual effects. Our goal was to determine the sensitivity of a model organism (Daphnia spp.) to contaminants at increasing temperatures, allowing prior acclimation of the organisms to the different temperatures. Prior to exposure, two Daphnia genotypes (Daphnia longispina species complex) were acclimated to three temperatures (17, 20, and 23 °C). Afterwards, a crossed design was established using different exposure temperatures and a range of concentrations of two common fungicides (tebuconazole and copper). Daphnia life history parameters were analysed in each temperature × toxicant combination for 21 days. Temperature was the most influencing factor: Daphnia reproduced later and had lower fecundity at 17 °C than at 20 and 23 °C. Both copper and tebuconazole also significantly reduced the fecundity and survival of Daphnia at environmentally-relevant concentrations. Temperature-dependence was found for both toxicants, but the response pattern was endpoint- and genotype-specific. The combination of contaminant and high temperature often had severe effects on survival. However, unlike some literature on the subject, our results do not support the theory that increasing temperatures consistently foment increasing reproductive toxicity. The absence of a clear temperature-dependent toxicity pattern may result from the previous acclimation to the temperature regime. However, a proper framework is lacking to compare such studies and to avoid misleading conclusions for climate change scenarios.
Collapse
Affiliation(s)
- Ana P Cuco
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Fernando Gonçalves
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Mueggelseedamm 301, 12587, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Königi-Luise-Str. 1-5, 14195, Berlin, Germany
| | - Bruno B Castro
- CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
41
|
Bizarro C, Eide M, Hitchcock DJ, Goksøyr A, Ortiz-Zarragoitia M. Single and mixture effects of aquatic micropollutants studied in precision-cut liver slices of Atlantic cod (Gadus morhua). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:395-404. [PMID: 27388235 DOI: 10.1016/j.aquatox.2016.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/10/2016] [Accepted: 06/17/2016] [Indexed: 06/06/2023]
Abstract
The low concentrations of most contaminants in the aquatic environment individually may not affect the normal function of the organisms on their own. However, when combined, complex mixtures may provoke unexpected effects even at low amounts. Selected aquatic micropollutants such as chlorpyrifos, bis-(2-ethylhexyl)-phthalate (DEHP), perfluorooctanoic acid (PFOA) and 17α-ethinylestradiol (EE2) were tested singly and in mixtures at nM to μM concentrations using precision-cut liver slices (PCLS) of Atlantic cod (Gadus morhua). Fish liver is a target organ for contaminants due to its crucial role in detoxification processes. In order to understand the effects on distinct key liver metabolic pathways, transcription levels of various genes were measured, including cyp1a1 and cyp3a, involved in the metabolism of organic compounds, including toxic ones, and the catabolism of bile acids and steroid hormones; cyp7a1, fabp and hmg-CoA, involved in lipid and cholesterol homeostasis; cyp24a1, involved in vitamin D metabolism; and vtg, a key gene in xenoestrogenic response. Only EE2 had significant effects on gene expression in cod liver slices when exposed singly at the concentrations tested. However, when exposed in combinations, effects not detected in single exposure conditions arose, suggesting complex interactions between studied pollutants that could not be predicted from the results of individual exposure scenarios. Thus, the present work highlights the importance of assessing mixtures when describing the toxic effects of micropollutants to fish liver metabolism.
Collapse
Affiliation(s)
- Cristina Bizarro
- Dept. Zoology and Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Basque Country Spain
| | - Marta Eide
- Dept. of Biology, University of Bergen, N-5020 Bergen, Norway
| | - Daniel J Hitchcock
- Dept. of Biology, University of Bergen, N-5020 Bergen, Norway; Dept.of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Anders Goksøyr
- Dept. of Biology, University of Bergen, N-5020 Bergen, Norway
| | - Maren Ortiz-Zarragoitia
- Dept. Zoology and Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Basque Country Spain.
| |
Collapse
|
42
|
Stamm C, Räsänen K, Burdon F, Altermatt F, Jokela J, Joss A, Ackermann M, Eggen R. Unravelling the Impacts of Micropollutants in Aquatic Ecosystems. ADV ECOL RES 2016. [DOI: 10.1016/bs.aecr.2016.07.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Lambert AS, Dabrin A, Morin S, Gahou J, Foulquier A, Coquery M, Pesce S. Temperature modulates phototrophic periphyton response to chronic copper exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:821-829. [PMID: 26608872 DOI: 10.1016/j.envpol.2015.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Streams located in vineyard areas are highly prone to metal pollution. In a context of global change, aquatic systems are generally subjected to multi-stress conditions due to multiple chemical and/or physical pressures. Among various environmental factors that modulate the ecological effects of toxicants, special attention should be paid to climate change, which is driving an increase in extreme climate events such as sharp temperature rises. In lotic ecosystems, periphyton ensures key ecological functions such as primary production and nutrient cycling. However, although the effects of metals on microbial communities are relatively well known, there is scant data on possible interactions between temperature increase and metal pollution. Here we led a study to evaluate the influence of temperature on the response of phototrophic periphyton to copper (Cu) exposure. Winter communities, collected in a 8 °C river water, were subjected for six weeks to four thermal conditions in microcosms in presence or not of Cu (nominal concentration of 15 μg L(-1)). At the initial river temperature (8 °C), our results confirmed the chronic impact of Cu on periphyton, both in terms of structure (biomass, distribution of algal groups, diatomic composition) and function (photosynthetic efficiency). At higher temperatures (13, 18 and 23 °C), Cu effects were modulated. Indeed, temperature increase reduced Cu effects on algal biomass, algal class proportions, diatom assemblage composition and photosynthetic efficiency. This reduction of Cu effects on periphyton may be related to lower bioaccumulation of Cu and/or to selection of more Cu-tolerant species at higher temperatures.
Collapse
Affiliation(s)
- Anne Sophie Lambert
- Irstea, UR MALY, Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS 70077, 69626 Villeurbanne Cedex, France.
| | - Aymeric Dabrin
- Irstea, UR MALY, Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS 70077, 69626 Villeurbanne Cedex, France.
| | - Soizic Morin
- Irstea, UR EABX, Centre de Bordeaux, 33612 Cestas, France.
| | - Josiane Gahou
- Irstea, UR MALY, Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS 70077, 69626 Villeurbanne Cedex, France.
| | - Arnaud Foulquier
- Irstea, UR MALY, Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS 70077, 69626 Villeurbanne Cedex, France; Laboratoire d'Écologie Alpine, UMR CNRS 5553, Université Grenoble Alpes, BP 53, 38041 Grenoble Cedex 9, France.
| | - Marina Coquery
- Irstea, UR MALY, Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS 70077, 69626 Villeurbanne Cedex, France.
| | - Stéphane Pesce
- Irstea, UR MALY, Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS 70077, 69626 Villeurbanne Cedex, France.
| |
Collapse
|
44
|
Loureiro C, Cuco AP, Claro MT, Santos JI, Pedrosa MA, Gonçalves F, Castro BB. Progressive acclimation alters interaction between salinity and temperature in experimental Daphnia populations. CHEMOSPHERE 2015; 139:126-132. [PMID: 26079923 DOI: 10.1016/j.chemosphere.2015.05.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
Environmental stressors rarely act in isolation, giving rise to interacting environmental change scenarios. However, the impacts of such interactions on natural populations must consider the ability of organisms to adapt to environmental changes. The phenotypic adaptability of a Daphnia galeata clone to temperature rise and salinisation was investigated in this study, by evaluating its halotolerance at two different temperatures, along a short multigenerational acclimation scenario. Daphniids were acclimated to different temperatures (20°C and 25°C) and salinities (0gL(-1) and 1gL(-1), using NaCl as a proxy) in a fully crossed design. The objective was to understand whether acclimation to environmental stress (combinations of temperature and salinity) influenced the response to the latter exposure to these stressors. We hypothesize that acclimation to different temperature×salinity regimes should elicit an acclimation response of daphniids to saline stress or its interaction with temperature. Acute (survival time) and chronic (juvenile growth) halotolerance measures were obtained at discrete timings along the acclimation period (generations F1, F3 and F9). Overall, exposure temperature was the main determinant of the acute and chronic toxicity of NaCl: daphniid sensitivity (measured as the decrease of survival time or juvenile growth) was consistently higher at the highest temperature, irrespective of background conditions. However, this temperature-dependent effect was nullified after nine generations, but only when animals had been acclimated to both stressors (high salinity and high temperature). Such complex interaction scenarios should be taken in consideration in risk assessment practices.
Collapse
Affiliation(s)
- Cláudia Loureiro
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana P Cuco
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria Teresa Claro
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Joana I Santos
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M Arminda Pedrosa
- Unidade de I&D n° 70/94, Química-Física Molecular/FCT, MCT, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Portugal
| | - Fernando Gonçalves
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno B Castro
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Department of Biology, University of Minho, 4710-054 Braga, Portugal.
| |
Collapse
|
45
|
Korkaric M, Xiao M, Behra R, Eggen RIL. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:209-219. [PMID: 26349947 DOI: 10.1016/j.aquatox.2015.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023]
Abstract
The toxicity of chemical pollutants can be modulated under stressful environmental conditions, such as increased temperature, salinity or ultraviolet radiation (UVR), due to the interaction of effects during simultaneous stressor exposure. However, organisms may acclimate to such conditions by activation of physiological and biochemical defence mechanisms. In sequential exposures, organisms acclimated to environmental stressors may display an increased sensitivity or co-tolerance towards chemical pollutants. It has been suggested that co-tolerance might be expected for similarly acting stressors due to common defence mechanisms. To test this for combinations of UVR and chemical stressors, we first acclimatized the model green alga Chlamydomonas reinhardtii to UVR and subsequently compared the sensitivity of UVR pre-exposed and control algae towards chemicals. Selected chemicals all act on photosynthesis and thus share a common physiological target, but display distinct toxicity mechanisms. Results showed that UVR pre-exposure for four days partially inhibited algal growth and photosynthesis, but also increased algal tolerance to higher UVR levels, confirming UVR acclimation. HPLC analysis of algal pigments indicated that UVR acclimation might in part be explained by the protective function of lutein while the contribution of UVR absorbing compounds was less clear. Challenge exposure to chemicals in the absence of UVR showed that acclimated algae were co-tolerant to the photosensitizer rose bengal, but not to the herbicides paraquat and diuron, suggesting that the fast physiological and biochemical defence mechanisms that conferred tolerance of algae towards higher UVR levels were related to singlet oxygen defence. The presented study suggests that knowledge of the molecular toxicity mechanisms of chemicals, rather than their general physiological target, is needed in order to predict co-tolerance between environmental and chemical stressors.
Collapse
Affiliation(s)
- Muris Korkaric
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Mao Xiao
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Renata Behra
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf, Switzerland
| | - Rik I L Eggen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland.
| |
Collapse
|
46
|
Rodea-Palomares I, González-Pleiter M, Martín-Betancor K, Rosal R, Fernández-Piñas F. Additivity and Interactions in Ecotoxicity of Pollutant Mixtures: Some Patterns, Conclusions, and Open Questions. TOXICS 2015; 3:342-369. [PMID: 29051468 PMCID: PMC5606646 DOI: 10.3390/toxics3040342] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/09/2015] [Accepted: 09/23/2015] [Indexed: 11/16/2022]
Abstract
Understanding the effects of exposure to chemical mixtures is a common goal of pharmacology and ecotoxicology. In risk assessment-oriented ecotoxicology, defining the scope of application of additivity models has received utmost attention in the last 20 years, since they potentially allow one to predict the effect of any chemical mixture relying on individual chemical information only. The gold standard for additivity in ecotoxicology has demonstrated to be Loewe additivity which originated the so-called Concentration Addition (CA) additivity model. In pharmacology, the search for interactions or deviations from additivity (synergism and antagonism) has similarly captured the attention of researchers over the last 20 years and has resulted in the definition and application of the Combination Index (CI) Theorem. CI is based on Loewe additivity, but focused on the identification and quantification of synergism and antagonism. Despite additive models demonstrating a surprisingly good predictive power in chemical mixture risk assessment, concerns still exist due to the occurrence of unpredictable synergism or antagonism in certain experimental situations. In the present work, we summarize the parallel history of development of CA, IA, and CI models. We also summarize the applicability of these concepts in ecotoxicology and how their information may be integrated, as well as the possibility of prediction of synergism. Inside the box, the main question remaining is whether it is worthy to consider departures from additivity in mixture risk assessment and how to predict interactions among certain mixture components. Outside the box, the main question is whether the results observed under the experimental constraints imposed by fractional approaches are a de fide reflection of what it would be expected from chemical mixtures in real world circumstances.
Collapse
Affiliation(s)
- Ismael Rodea-Palomares
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid E-28049, Spain.
| | - Miguel González-Pleiter
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid E-28049, Spain.
| | - Keila Martín-Betancor
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid E-28049, Spain.
| | - Roberto Rosal
- Departamento de Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid E-28871, Spain.
| | - Francisca Fernández-Piñas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid E-28049, Spain.
| |
Collapse
|
47
|
Multiple Stressors in a Top Predator Seabird: Potential Ecological Consequences of Environmental Contaminants, Population Health and Breeding Conditions. PLoS One 2015; 10:e0131769. [PMID: 26172383 PMCID: PMC4501839 DOI: 10.1371/journal.pone.0131769] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/08/2015] [Indexed: 11/23/2022] Open
Abstract
Environmental contaminants may have impacts on reproduction and survival in wildlife populations suffering from multiple stressors. This study examined whether adverse effects of persistent organic pollutants (POPs) increased with poor population health and breeding conditions in three colonies (60–74°N) of great skua (Stercorarius skua) in the north-eastern Atlantic (Shetland, Iceland and Bjørnøya [Bear Island]). POPs (organochlorines [OCs] and polybrominated diphenyl ethers [BDEs]) were measured in plasma of incubating birds (n = 222), concentrations differing nearly tenfold among colonies: Bjørnøya (2009) > Bjørnøya (2010) > Iceland (2009) > Shetland (2009). Reproductive success (hatching success and chick survival) showed that breeding conditions were favourable in Shetland and at Bjørnøya (2010), but were very poor in Iceland and at Bjørnøya (2009). Biomarkers indicated that health was poor in the Shetland population compared to the other populations. Females whose chicks hatched late had high POP concentrations in all colonies except at Bjørnøya (2010), and females losing their eggs at Bjørnøya (2009) tended to have higher concentrations than those hatching. Moreover, there was a negative relationship between female POP concentrations and chick body condition at hatching in Iceland and at Bjørnøya (2010). Supplementary feeding experiments were conducted, and in Iceland where feeding conditions were poor, significant negative relationships were found between female POP concentrations and daily growth-rate in first-hatched chicks of control nests, but not in food supplemented nests. This suggests that negative impacts of POPs were mitigated by improved feeding conditions. For second-chicks, there was a strong negative relationship between the female POP concentrations and growth-rate, but no effects of supplementary feeding. Lowered adult return-rate between breeding seasons with increasing POP loads were found both at Bjørnøya (2009) and in Shetland, especially related to BDEs. This indicates stronger fitness consequences of POPs following seasons with very poor breeding conditions and/or high reproductive effort. This study suggests that the impacts of POPs may differ depending on population health and breeding conditions, and that even low concentrations of POPs could have ecological consequences during adverse circumstances. This is important with regard to risk assessment of biomagnifying contaminants in marine ecosystems.
Collapse
|
48
|
Lavergne E, Pedron N, Calves I, Claireaux G, Mazurais D, Zambonino-Infante J, Le Bayon N, Cahu C, Laroche J. Does the chronic chemical contamination of a European flounder population decrease its thermal tolerance? MARINE POLLUTION BULLETIN 2015; 95:658-664. [PMID: 25636829 DOI: 10.1016/j.marpolbul.2015.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/02/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
Juvenile flounders (Platichthys flesus), collected in two estuaries with similar temperature regimes (the heavily polluted Seine and the moderately contaminated Vilaine), were submitted to a common garden experiment. After an acclimation period, both populations were challenged by a thermal stress (9-24°C for 15days, then maintenance at 24°C for 19days). The condition factor of the Vilaine fish increased in both conditions, while it decreased for the heated Seine flounders after 34days. The expression of genes related to the energetic metabolism was measured in the liver. The expression levels for ATP-F0 and COII were significantly reduced for heated vs. standard fish from both estuaries, while a decrease of the 12S expression was detected only in heated vs. standard fish from the Seine estuary. Thus, it is suggested that highly contaminated fish from Seine could display a lower tolerance to thermal stress, compared to moderately contaminated fish from Vilaine.
Collapse
Affiliation(s)
- Edouard Lavergne
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France.
| | - Nicolas Pedron
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France; Ifremer, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons ARN, Unité de Physiologie Fonctionnelle des Organismes Marins PFOM, Plouzané, France
| | - Isabelle Calves
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France
| | - Guy Claireaux
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France
| | - David Mazurais
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France; Ifremer, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons ARN, Unité de Physiologie Fonctionnelle des Organismes Marins PFOM, Plouzané, France
| | - José Zambonino-Infante
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France; Ifremer, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons ARN, Unité de Physiologie Fonctionnelle des Organismes Marins PFOM, Plouzané, France
| | - Nicolas Le Bayon
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France; Ifremer, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons ARN, Unité de Physiologie Fonctionnelle des Organismes Marins PFOM, Plouzané, France
| | - Chantal Cahu
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France; Ifremer, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons ARN, Unité de Physiologie Fonctionnelle des Organismes Marins PFOM, Plouzané, France
| | - Jean Laroche
- Université de Bretagne Occidentale, UMR 6539, CNRS/IRD/UBO/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France
| |
Collapse
|
49
|
Lefcort H, Cleary DA, Marble AM, Phillips MV, Stoddard TJ, Tuthill LM, Winslow JR. Snails from heavy-metal polluted environments have reduced sensitivity to carbon dioxide-induced acidity. SPRINGERPLUS 2015; 4:267. [PMID: 26090314 PMCID: PMC4469689 DOI: 10.1186/s40064-015-1073-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 06/01/2015] [Indexed: 11/23/2022]
Abstract
Anthropogenic atmospheric CO2 reacts with water to form carbonic acid (H2CO3) which increases water acidity. While marine acidification has received recent consideration, less attention has been paid to the effects of atmospheric carbon dioxide on freshwater systems—systems that often have low buffering potential. Since many aquatic systems are already impacted by pollutants such as heavy metals, we wondered about the added effect of rising atmospheric CO2 on freshwater organisms. We studied aquatic pulmonate snails (Physella columbiana) from both a heavy-metal polluted watershed and snails from a reference watershed that has not experienced mining pollution. We used gaseous CO2 to increase water acidity and we then measured changes in antipredatory behavior and also survival. We predicted a simple negative additive effect of low pH. We hypothesized that snails from metal-polluted environments would be physiologically stressed and impaired due to defense responses against heavy metals. Instead, snails from populations that acclimated or evolved in the presence of heavy metal mining pollution were more robust to acidic conditions than were snails from reference habitats. Snails from mining polluted sites seemed to be preadapted to a low pH environment. Their short-term survival in acidic conditions was better than snails from reference sites that lacked metal pollution. In fact, the 48 h survival of snails from polluted sites was so high that it did not significantly differ from the 24 h survival of snails from control sites. This suggests that the response of organisms to a world with rising anthropogenic carbon dioxide levels may be complex and difficult to predict. Snails had a weaker behavioral response to stressful stimuli if kept for 1 month at a pH that differed from their lake of origin. We found that snails raised at a pH of 5.5 had a weaker response (less of a decrease in activity) to concentrated heavy metals than did snails raised at their natal pH of 6.5. Furthermore, snails raised a pH of 5.5, 6.0, and 7.0 all had a weaker antipredatory response to an extract of crushed snail cells than did the pH 6.5 treatment snails.
Collapse
Affiliation(s)
- Hugh Lefcort
- Biology Department, Gonzaga University, 502 E. Boone Avenue, Spokane, WA 99258 USA
| | - David A Cleary
- Chemistry Department, Gonzaga University, 502 E. Boone Avenue, Spokane, WA 99258 USA
| | - Aaron M Marble
- Biology Department, Gonzaga University, 502 E. Boone Avenue, Spokane, WA 99258 USA
| | - Morgan V Phillips
- Biology Department, Gonzaga University, 502 E. Boone Avenue, Spokane, WA 99258 USA
| | - Timothy J Stoddard
- Biology Department, Gonzaga University, 502 E. Boone Avenue, Spokane, WA 99258 USA
| | - Lara M Tuthill
- Biology Department, Gonzaga University, 502 E. Boone Avenue, Spokane, WA 99258 USA
| | - James R Winslow
- Biology Department, Gonzaga University, 502 E. Boone Avenue, Spokane, WA 99258 USA
| |
Collapse
|
50
|
Korkaric M, Behra R, Fischer BB, Junghans M, Eggen RIL. Multiple stressor effects in Chlamydomonas reinhardtii--toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 162:18-28. [PMID: 25768714 DOI: 10.1016/j.aquatox.2015.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 02/26/2015] [Accepted: 03/01/2015] [Indexed: 06/04/2023]
Abstract
The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are discussed.
Collapse
Affiliation(s)
- Muris Korkaric
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Renata Behra
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf, Switzerland
| | - Beat B Fischer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf, Switzerland
| | - Marion Junghans
- Swiss Center for Applied Ecotoxicology Eawag-EPFL, 8600, Duebendorf, Switzerland
| | - Rik I L Eggen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland.
| |
Collapse
|