1
|
Montenegro SDR, Ferreira MC, Santos ACD, Fonseca CB, Rodrigues CA, Schmidt IB. Fire management benefits tree growth and survival in the Brazilian savanna. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125085. [PMID: 40120448 DOI: 10.1016/j.jenvman.2025.125085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
The Cerrado has evolved with natural fires. However, human activities have altered fire regimes; in protected areas (PA), fire has been suppressed for years. Fire exclusion increases fuel loads busting the risk of wildfires, especially during the late-dry season. An Integrated Fire Management (IFM) program was implemented in Cerrado's PAs in 2014 to reduce wildfires. However, there is limited information about the effects of management burns on vegetation. Considering the demands of PA managers, we compared woody plant responses to management burns, wildfires, and fire exclusion for 5 years and assessed factors determining these responses, including fire behavior and pre-fire plant size. For this, we selected seven sites in open savanna areas of Northern Brazil. In each site, three 50 × 100m plots were assigned to the following treatments: mid-dry season biennial fires, similar to management burns; late-dry season biennial fires, similar to wildfires; and total fire protection. From 2015 to 2018, we assessed changes in vegetation structure by calculating basal area and stem density and evaluated the plant damages and responses to each treatment. Mid-dry season fires resulted in less topkill, more resprouting, and higher rates of non-damaged plants than late-dry season fires. This difference was influenced by flame height and by pre-fire stem diameter. Mid-dry season fires led to minimal changes in vegetation structure. However, continuous vegetation monitoring is essential in managed areas to detect changes and should be part of a fire management program.
Collapse
Affiliation(s)
- Samuel da Rocha Montenegro
- Ecology Graduate Program Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, CEP 70910-900, DF, Brazil.
| | - Maxmiller Cardoso Ferreira
- Ecology Graduate Program Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, CEP 70910-900, DF, Brazil
| | - Ana Carla Dos Santos
- Ecology Graduate Program Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, CEP 70910-900, DF, Brazil; PEQUI - Pesquisa e Conservação do Cerrado, Quadra 103, Conjunto 16, Casa 9, São Sebastião, Brasília, CEP: 70692-200, DF, Brazil
| | - Clara Baringo Fonseca
- Ecology Graduate Program Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, CEP 70910-900, DF, Brazil
| | - Cassy Anne Rodrigues
- Rede Biota Cerrado, INCT Biota Cerrado, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, CEP 70910-900, DF, Brazil
| | - Isabel Belloni Schmidt
- Ecology Graduate Program Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, CEP 70910-900, DF, Brazil; Rede Biota Cerrado, INCT Biota Cerrado, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, CEP 70910-900, DF, Brazil
| |
Collapse
|
2
|
Yang S, Ooi MKJ, Falster DS, Cornwell WK. Continental-scale empirical evidence for relationships between fire response strategies and fire frequency. THE NEW PHYTOLOGIST 2025; 246:528-542. [PMID: 39931917 PMCID: PMC11923400 DOI: 10.1111/nph.20464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/23/2025] [Indexed: 03/21/2025]
Abstract
Theory suggests that the dominance of resprouting and seeding, two key mechanisms through which plants persist with recurrent fire, both depend on other traits and vary with fire regime. However, these patterns remain largely untested over broad scales. We analysed the relationships between mean fire frequency, derived from MODIS satellite data, and resprouting and seeding strategies, respectively, for c. 10 000 woody and herbaceous species in Australia. We tested whether leaf economics traits differed among these strategies. Probability of resprouting exhibits a monotonic increase with fire frequency for woody plants; for herbaceous plants, a hump-shaped relationship is observed. Probability of seeding exhibits a hump shape with fire frequency in woody plants. In herbaceous plants, probability of resprouting was associated with higher leaf mass per area (LMA), and probability of seeding with lower LMA. A broader range of leaf investment strategies occurred in woody plants. Our findings provide the largest empirical support to date for theory connecting fire response strategy to fire frequency. Woody seeders appear constrained by immaturity and senescence risk. Herbaceous and woody seeders showed different placements along the leaf economics spectrum, suggesting an important interaction between growth form and growth rate for seeders.
Collapse
Affiliation(s)
- Sophie Yang
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - Mark K. J. Ooi
- Centre for Ecosystem Science, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - Daniel S. Falster
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - William K. Cornwell
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
3
|
Ferrer-Paris JR, Sánchez-Mercado A, Cornwell WK, Ooi M, Tozer M, Mackenzie BDE, Woodward R, Denham AJ, Auld TD, Keith DA. Fire ecology database for documenting plant responses to fire events in Australia. Sci Data 2025; 12:399. [PMID: 40055329 PMCID: PMC11889083 DOI: 10.1038/s41597-025-04705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
An understanding of fire-response traits is essential for predicting how fire regimes structure plant communities and for informing fire management strategies for biodiversity conservation. Quantification of these traits is complex, encompassing several levels of data abstraction scaling up from field observations of individuals, to general categories of species responses. We developed the Fire Ecology Database to accommodate this complexity. Its conceptual framework is underpinned by a flexible data pipeline enabling links between fire-related trait data and event information at individual, population, and community levels. Key features include: (a) concise and documented trait and method vocabularies; (b) documented uncertainty in observations and aggregation; and (c) documented origin of data including field observations, laboratory experiments, and expert elicitation. We demonstrated application of our framework using data from new field surveys and existing data sets in New South Wales, Australia. The database includes 14 traits for 6,287 plant species derived from 8,936 field work records from 2007 to 2018, 7,054 field records from surveys after 2019, and 48,306 records from 301 existing sources.
Collapse
Affiliation(s)
- José Rafael Ferrer-Paris
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia.
- UNSW Data Science Hub, University of New South Wales, Sydney, Australia.
- IUCN Commission on Ecosystem Management, Gland, Switzerland.
| | - Ada Sánchez-Mercado
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Department of Climate Change, Energy, the Environment and Water, Sydney, New South Wales, Australia
| | - William K Cornwell
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, Australia
| | - Mark Ooi
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Mark Tozer
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Department of Climate Change, Energy, the Environment and Water, Sydney, New South Wales, Australia
| | - Berin D E Mackenzie
- Department of Climate Change, Energy, the Environment and Water, Sydney, New South Wales, Australia
| | - Renee Woodward
- Department of Climate Change, Energy, the Environment and Water, Sydney, New South Wales, Australia
| | - Andrew J Denham
- Department of Climate Change, Energy, the Environment and Water, Sydney, New South Wales, Australia
- University of Wollongong, Wollongong, Australia
| | - Tony D Auld
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Department of Climate Change, Energy, the Environment and Water, Sydney, New South Wales, Australia
- University of Wollongong, Wollongong, Australia
| | - David A Keith
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- IUCN Commission on Ecosystem Management, Gland, Switzerland
| |
Collapse
|
4
|
Rogers EIE, Mehnaz KR, Ellsworth DS. Stimulated photosynthesis of regrowth after fire in coastal scrub vegetation: increased water or nutrient availability? TREE PHYSIOLOGY 2024; 44:tpae079. [PMID: 38959858 PMCID: PMC11299026 DOI: 10.1093/treephys/tpae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Fire-prone landscapes experience frequent fires, disrupting above-ground biomass and altering below-ground soil nutrient availability. Augmentation of leaf nutrients or leaf water balance can both reduce limitations to photosynthesis and facilitate post-fire recovery in plants. These modes of fire responses are often studied separately and hence are rarely compared. We hypothesized that under severe burning, woody plants of a coastal scrub ecosystem would have higher rates of photosynthesis (Anet) than in unburned areas due to a transient release from leaf nutrient and water limitations, facilitating biomass recovery post-burn. To compare these fire recovery mechanisms in regrowing plants, we measured leaf gas exchange, leaf and soil N and P concentrations, and plant stomatal limitations in Australian native coastal scrub species across a burn sequence of sites at 1 year after severe fire, 7 years following a light controlled fire, and decades after any fire at North Head, Sydney, Australia. Recent burning stimulated increases in Anet by 20% over unburned trees and across three tree species. These species showed increases in total leaf N and P as a result of burning of 28% and 50% for these macronutrients, respectively, across the three species. The boost in leaf nutrients and stimulated leaf biochemical capacity for photosynthesis, alongside species-specific stomatal conductance (gs) increases, together contributed to increased photosynthetic rates after burning compared with the long-unburned area. Photosynthetic stimulation after burning occurred due to increases in nutrient concentrations in leaves, particularly N, as well as stomatal opening for some species. The findings suggest that changes in species photosynthesis and growth with increased future fire intensity or frequency may be facilitated by changes in leaf physiology after burning. On this basis, species dominance during regrowth depends on nutrient and water availability during post-fire recovery.
Collapse
Affiliation(s)
- Erin I E Rogers
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Kazi R Mehnaz
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
5
|
Gajendiran K, Kandasamy S, Narayanan M. Influences of wildfire on the forest ecosystem and climate change: A comprehensive study. ENVIRONMENTAL RESEARCH 2024; 240:117537. [PMID: 37914016 DOI: 10.1016/j.envres.2023.117537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Wildfires have complex impacts on forests, including changes in vegetation, threats to biodiversity, and emissions of greenhouse gases like carbon dioxide, which exacerbate climate change. The influence of wildfires on animal habitats is particularly noteworthy, as they can lead to significant changes in native environments. The extent of these alterations in species and habitats plays a crucial role in shaping forest ecology. Drought, disease, insect infestations, overgrazing, or their combined effects can amplify the negative effects on specific plant genera and entire ecosystems. In addition to the immediate consequences of plant mortality and altered community dynamics, forest fires have far-reaching implications. They often increase flowering and seed production, further influencing ecological communities. However, one concerning trend is the decline in the diversity of forest biological species within fire-affected areas. Beyond their ecological impacts, wildfires emit substantial quantities of greenhouse gases and fine particulates into the atmosphere, triggering profound changes in climate patterns and contributing to global warming. As vegetation burns during these fires, the carbon stored within is released, rendering large forest fires detrimental to biodiversity and the emission of CO2, a significant contributor to global warming. Measuring the global impact of wildfires on ecological communities and greenhouse gas emissions has become increasingly vital. These research endeavors shed light on the intricate relationships and feedback loops linking wildfires, ecosystem inhabitants, and the evolving climate landscape.
Collapse
Affiliation(s)
- Kandasamy Gajendiran
- Department of Microbiology, M.G.R. College of Arts and Science, Hosur, Krishnagiri, Tamil Nadu, India
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore, 641004, India
| | - Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602105, Tamil Nadu, India.
| |
Collapse
|
6
|
Gorta SBZ, Callaghan CT, Samonte F, Ooi MKJ, Mesaglio T, Laffan SW, Cornwell WK. Multi-taxon biodiversity responses to the 2019-2020 Australian megafires. GLOBAL CHANGE BIOLOGY 2023; 29:6727-6740. [PMID: 37823682 DOI: 10.1111/gcb.16955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
Conditions conducive to fires are becoming increasingly common and widespread under climate change. Recent fire events across the globe have occurred over unprecedented scales, affecting a diverse array of species and habitats. Understanding biodiversity responses to such fires is critical for conservation. Quantifying post-fire recovery is problematic across taxa, from insects to plants to vertebrates, especially at large geographic scales. Novel datasets can address this challenge. We use presence-only citizen science data from iNaturalist, collected before and after the 2019-2020 megafires in burnt and unburnt regions of eastern Australia, to quantify the effect of post-fire diversity responses, up to 18 months post-fire. The geographic, temporal, and taxonomic sampling of this dataset was large, but sampling effort and species discoverability were unevenly spread. We used rarefaction and prediction (iNEXT) with which we controlled sampling completeness among treatments, to estimate diversity indices (Hill numbers: q = 0-2) among nine broad taxon groupings and seven habitats, including 3885 species. We estimated an increase in species diversity up to 18 months after the 2019-2020 Australian megafires in regions which were burnt, compared to before the fires in burnt and unburnt regions. Diversity estimates in dry sclerophyll forest matched and likely drove this overall increase post-fire, while no taxon groupings showed clear increases inconsistent with both control treatments post-fire. Compared to unburnt regions, overall diversity across all taxon groupings and habitats greatly decreased in areas exposed to extreme fire severity. Post-fire life histories are complex and species detectability is an important consideration in all post-fire sampling. We demonstrate how fire characteristics, distinct taxa, and habitat influence biodiversity, as seen in local-scale datasets. Further integration of large-scale datasets with small-scale studies will lead to a more robust understanding of fire recovery.
Collapse
Affiliation(s)
- Simon B Z Gorta
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Corey T Callaghan
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Davie, Florida, USA
| | - Fabrice Samonte
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Mark K J Ooi
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Thomas Mesaglio
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Shawn W Laffan
- Earth and Sustainability Science Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Will K Cornwell
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Furlaud JM, Williamson GJ, Bowman DMJS. Mechanical treatments and prescribed burning can reintroduce low-severity fire in southern Australian temperate sclerophyll forests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118301. [PMID: 37352633 DOI: 10.1016/j.jenvman.2023.118301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/25/2023]
Abstract
The establishment of sustainable, low-intensity fire regimes is a pressing global challenge given escalating risk of wildfire driven by climate change. Globally, colonialism and industrialisation have disrupted traditional fire management, such as Indigenous patch burning and silvo-pastoral practices, leading to substantial build-up of fuel and increased fire risk. The disruption of fire regimes in southeastern Tasmania has led to dense even-aged regrowth in wet forests that are prone to crown fires, and dense Allocasuarina-dominated understoreys in dry forests that burn at high intensities. Here, we investigated the effectiveness of several fire management interventions at reducing fire risk. These interventions involved prescribed burning or mechanical understorey removal techniques. We focused on wet and dry Eucalyptus-dominated sclerophyll forests on the slopes of kunanyi/Mt. Wellington in Hobart, Tasmania, Australia. We modelled potential fire behaviour in these treated wet and dry forests using fire behaviour equations based on measurements of fuel load, vegetation structure, understorey microclimate and regional meteorological data. We found that (a) fuel treatments were effective in wet and dry forests in reducing fuel load, though each targeted different layers, (b) both mechanical treatments and prescribed burning resulted in slightly drier, and hence more fire prone understorey microclimate, and (c) all treatments reduced predicted subsequent fire severity by roughly 2-4 fold. Our results highlight the importance of reducing fuel loads, even though fuel treatments make forest microclimates drier, and hence fuel more flammable. Our finding of the effectiveness of mechanical treatments in lowering fire risk enables managers to reduce fuels without the risk of uncontrolled fires and smoke pollution that is associated with prescribed burning. Understanding the economic and ecological costs and benefits of mechanic treatment compared to prescribed burning requires further research.
Collapse
Affiliation(s)
- James M Furlaud
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia; CSIRO Environment, Private Bag 44, Winnellie, NT 0821, Australia.
| | - Grant J Williamson
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - David M J S Bowman
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
8
|
Staudinger C, Renton M, Leopold M, Wasaki J, Veneklaas EJ, de Britto Costa P, Boitt G, Lambers H. Interspecific facilitation of micronutrient uptake between cluster-root-bearing trees and non-cluster rooted-shrubs in a Banksia woodland. PLANT AND SOIL 2023; 496:71-82. [PMID: 38510945 PMCID: PMC10948572 DOI: 10.1007/s11104-023-06092-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/23/2023] [Indexed: 03/22/2024]
Abstract
Background and aims Belowground interspecific plant facilitation is supposed to play a key role in enabling species co-existence in hyperdiverse ecosystems in extremely nutrient-poor, semi-arid habitats, such as Banksia woodlands in southwestern-Australia. Manganese (Mn) is readily mobilised by Banksia cluster root activity in most soils and accumulates in mature leaves of native Australian plant species without significant remobilisation during leaf senescence. We hypothesised that neighbouring shrubs are facilitated in terms of Mn uptake depending on distance to surrounding cluster root-forming Banksia trees. Methods We mapped all Banksia trees and selected neighbouring shrubs within a study site in Western Australia. Soil samples were collected and analysed for physical properties and nutrient concentrations. To assesses the effect of Banksia tree proximity on leaf Mn concentrations [Mn] of non-cluster-rooted woody shrubs, samples of similarly aged leaves were taken. We used multiple linear models to test for factors affecting shrub leaf [Mn]. Results None of the assessed soil parameters showed a significant correlation with shrub leaf Mn concentrations. However, we observed a significant positive effect of very close Banksia trees (2 m) on leaf [Mn] in one of the understorey shrubs. We found additional effects of elevation and shrub size. Conclusions Leaf micronutrient concentrations of understorey shrubs were enhanced when growing within 2 m of tall Banksia trees. Our model predictions also indicate that belowground facilitation of Mn uptake was shrub size-dependent. We discuss this result in the light of plant water relations and shrub root system architecture. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-023-06092-6.
Collapse
Affiliation(s)
- Christiana Staudinger
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009 Australia
- Institute of Agronomy, Institute of Soil Science, University of Natural Resources and Life Sciences, BOKU Vienna, 3400 Tulln, Austria
- Graduate School of Integrated Sciences of Life, Hiroshima University, Higashi-Hiroshima, 739-8521 Japan
| | - Michael Renton
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009 Australia
| | - Matthias Leopold
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009 Australia
| | - Jun Wasaki
- Graduate School of Integrated Sciences of Life, Hiroshima University, Higashi-Hiroshima, 739-8521 Japan
| | - Erik J. Veneklaas
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009 Australia
| | | | - Gustavo Boitt
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009 Australia
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009 Australia
| |
Collapse
|
9
|
McLean CA, Melville J, Schubert J, Rose R, Medina I. Assessing the impact of fire on spiders through a global comparative analysis. Proc Biol Sci 2023; 290:20230089. [PMID: 37122254 PMCID: PMC10130718 DOI: 10.1098/rspb.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
In many regions fire regimes are changing due to anthropogenic factors. Understanding the responses of species to fire can help to develop predictive models and inform fire management decisions. Spiders are a diverse and ubiquitous group and can offer important insights into the impacts of fire on invertebrates and whether these depend on environmental factors, phylogenetic history or functional traits. We conducted phylogenetic comparative analyses of data from studies investigating the impacts of fire on spiders. We investigated whether fire affects spider abundance or presence and whether ecologically relevant traits or site-specific factors influence species' responses to fire. Although difficult to make broad generalizations about the impacts of fire due to variation in site- and fire-specific factors, we find evidence that short fire intervals may be a threat to some spiders, and that fire affects abundance and species compositions in forests relative to other vegetation types. Orb and sheet web weavers were also more likely to be absent after fire than ambush hunters, ground hunters and other hunters suggesting functional traits may affect responses. Finally, we show that analyses of published data can be used to detect broad-scale patterns and provide an alternative to traditional meta-analytical approaches.
Collapse
Affiliation(s)
- Claire A. McLean
- Sciences Department, Museums Victoria, 11 Nicholson Street, Carlton, VIC 3053, Australia
| | - Jane Melville
- Sciences Department, Museums Victoria, 11 Nicholson Street, Carlton, VIC 3053, Australia
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Joseph Schubert
- Sciences Department, Museums Victoria, 11 Nicholson Street, Carlton, VIC 3053, Australia
| | - Rebecca Rose
- Sciences Department, Museums Victoria, 11 Nicholson Street, Carlton, VIC 3053, Australia
| | - Iliana Medina
- School of BioSciences, The University of Melbourne, Royal Parade, Parkville, VIC 3010, Australia
| |
Collapse
|
10
|
Thorley J, Srivastava SK, Shapcott A. What type of rainforest burnt in the South East Queensland's 2019/20 bushfires and how might this impact biodiversity. AUSTRAL ECOL 2023. [DOI: 10.1111/aec.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- James Thorley
- GeneCology Research Centre and School of Science, Technology and Engineering University of the Sunshine Coast Maroochydore Queensland Australia
| | - Sanjeev Kumar Srivastava
- GeneCology Research Centre and School of Science, Technology and Engineering University of the Sunshine Coast Maroochydore Queensland Australia
| | - Alison Shapcott
- GeneCology Research Centre and School of Science, Technology and Engineering University of the Sunshine Coast Maroochydore Queensland Australia
| |
Collapse
|
11
|
Losso A, Challis A, Gauthey A, Nolan RH, Hislop S, Roff A, Boer MM, Jiang M, Medlyn BE, Choat B. Canopy dieback and recovery in Australian native forests following extreme drought. Sci Rep 2022; 12:21608. [PMID: 36517498 PMCID: PMC9751299 DOI: 10.1038/s41598-022-24833-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
In 2019, south-eastern Australia experienced its driest and hottest year on record, resulting in massive canopy dieback events in eucalypt dominated forests. A subsequent period of high precipitation in 2020 provided a rare opportunity to quantify the impacts of extreme drought and consequent recovery. We quantified canopy health and hydraulic impairment (native percent loss of hydraulic conductivity, PLC) of 18 native tree species growing at 15 sites that were heavily impacted by the drought both during and 8-10 months after the drought. Most species exhibited high PLC during drought (PLC:65.1 ± 3.3%), with no clear patterns across sites or species. Heavily impaired trees (PLC > 70%) showed extensive canopy browning. In the post-drought period, most surviving trees exhibited hydraulic recovery (PLC:26.1 ± 5.1%), although PLC remained high in some trees (50-70%). Regained hydraulic function (PLC < 50%) corresponded to decreased canopy browning indicating improved tree health. Similar drought (37.1 ± 4.2%) and post-drought (35.1 ± 4.4%) percentages of basal area with dead canopy suggested that trees with severely compromised canopies immediately after drought were not able to recover. This dataset provides insights into the impacts of severe natural drought on the health of mature trees, where hydraulic failure is a major contributor in canopy dieback and tree mortality during extreme drought events.
Collapse
Affiliation(s)
- Adriano Losso
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria.
| | - Anthea Challis
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Plant Ecology Research Laboratory PERL, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Rachael H Nolan
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- NSW Bushfire Risk Management Research Hub, Wollongong, NSW, Australia
| | - Samuel Hislop
- Forest Science, NSW Department of Primary Industries, Parramatta, NSW, 2150, Australia
| | - Adam Roff
- Department of Planning, Industry and Environment, Remote Sensing and Landscape Science, 26 Honeysuckle Drive, Newcastle, NSW, 2302, Australia
| | - Matthias M Boer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- NSW Bushfire Risk Management Research Hub, Wollongong, NSW, Australia
| | - Mingkai Jiang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang, China
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
12
|
Ward M, Carwardine J, Watson JEM, Pintor A, Stuart S, Possingham HP, Rhodes JR, Carey AR, Auerbach N, Reside A, Yong CJ, Tulloch AIT. How to prioritize species recovery after a megafire. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13936. [PMID: 35561069 PMCID: PMC9804514 DOI: 10.1111/cobi.13936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 04/09/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Due to climate change, megafires are increasingly common and have sudden, extensive impacts on many species over vast areas, leaving decision makers uncertain about how best to prioritize recovery. We devised a decision-support framework to prioritize conservation actions to improve species outcomes immediately after a megafire. Complementary locations are selected to extend recovery actions across all fire-affected species' habitats. We applied our method to areas burned in the 2019-2020 Australian megafires and assessed its conservation advantages by comparing our results with outcomes of a site-richness approach (i.e., identifying areas that cost-effectively recover the most species in any one location). We found that 290 threatened species were likely severely affected and will require immediate conservation action to prevent population declines and possible extirpation. We identified 179 subregions, mostly in southeastern Australia, that are key locations to extend actions that benefit multiple species. Cost savings were over AU$300 million to reduce 95% of threats across all species. Our complementarity-based prioritization also spread postfire management actions across a wider proportion of the study area compared with the site-richness method (43% vs. 37% of the landscape managed, respectively) and put more of each species' range under management (average 90% vs. 79% of every species' habitat managed). In addition to wildfire response, our framework can be used to prioritize conservation actions that will best mitigate threats affecting species following other extreme environmental events (e.g., floods and drought).
Collapse
Affiliation(s)
- Michelle Ward
- Centre for Biodiversity and Conservation ScienceThe University of QueenslandSt LuciaQueenslandAustralia
- School of Earth and Environmental SciencesThe University of QueenslandBrisbaneQueenslandAustralia
- World Wide Fund for Nature–AustraliaBrisbaneQueenslandAustralia
| | | | - James E. M. Watson
- Centre for Biodiversity and Conservation ScienceThe University of QueenslandSt LuciaQueenslandAustralia
- School of Earth and Environmental SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Anna Pintor
- School of Marine and Tropical BiologyJames Cook UniversityCairnsQueenslandAustralia
| | - Stephanie Stuart
- Saving our Species Program, Department of Planning, Industry and EnvironmentParramattaNew South WalesAustralia
| | - Hugh P. Possingham
- Centre for Biodiversity and Conservation ScienceThe University of QueenslandSt LuciaQueenslandAustralia
| | - Jonathan R. Rhodes
- Centre for Biodiversity and Conservation ScienceThe University of QueenslandSt LuciaQueenslandAustralia
- School of Earth and Environmental SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Alexander R. Carey
- Saving our Species Program, Department of Planning, Industry and EnvironmentParramattaNew South WalesAustralia
- Charles Darwin UniversityCasuarinaNorthern TerritoryAustralia
| | - Nancy Auerbach
- Saving our Species Program, Department of Planning, Industry and EnvironmentParramattaNew South WalesAustralia
| | - April Reside
- Centre for Biodiversity and Conservation ScienceThe University of QueenslandSt LuciaQueenslandAustralia
- School of Earth and Environmental SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Chuan Ji Yong
- Centre for Biodiversity and Conservation ScienceThe University of QueenslandSt LuciaQueenslandAustralia
| | - Ayesha I. T. Tulloch
- School of Life and Environmental SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
13
|
Campbell‐Jones MM, Bassett M, Bennett AF, Chia EK, Leonard S, Collins L. Fire severity has lasting effects on the distribution of arboreal mammals in a resprouting forest. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Michelle Bassett
- Department of Environment, Land, Water and Planning East Melbourne Victoria 3002 Australia
| | - Andrew F. Bennett
- Department of Environment and Genetics La Trobe University Bundoora Victoria 3086 Australia
- Research Centre for Future Landscapes La Trobe University Bundoora Victoria 3086 Australia
| | - Evelyn K. Chia
- Nature Conservation Council of New South Wales Chippendale New South Wales 2008 Australia
| | - Steve Leonard
- Department of Environment and Genetics La Trobe University Bundoora Victoria 3086 Australia
- Department of Natural Resources and Environment Tasmania Hobart Tasmania 7001 Australia
| | - Luke Collins
- Department of Environment and Genetics La Trobe University Bundoora Victoria 3086 Australia
- Research Centre for Future Landscapes La Trobe University Bundoora Victoria 3086 Australia
- Department of Environment, Land, Water and Planning Arthur Rylah Institute for Environmental Research Heidelberg Victoria 3084 Australia
- Pacific Forestry Centre, Canadian Forest Service Natural Resources Canada 506 West Burnside Road Victoria British Columbia V8Z 1M5 Canada
| |
Collapse
|
14
|
Remarkable Resilience of Forest Structure and Biodiversity Following Fire in the Peri-Urban Bushland of Sydney, Australia. CLIMATE 2022. [DOI: 10.3390/cli10060086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In rapidly urbanizing areas, natural vegetation becomes fragmented, making conservation planning challenging, particularly as climate change accelerates fire risk. We studied urban forest fragments in two threatened eucalypt-dominated (scribbly gum woodland, SGW, and ironbark forest, IF) communities across ~2000 ha near Sydney, Australia, to evaluate effects of fire frequency (0–4 in last 25 years) and time since fire (0.5 to >25 years) on canopy structure, habitat quality and biodiversity (e.g., species richness). Airborne lidar was used to assess canopy height and density, and ground-based surveys of 148 (400 m2) plots measured leaf area index (LAI), plant species composition and habitat metrics such as litter cover and hollow-bearing trees. LAI, canopy density, litter, and microbiotic soil crust increased with time since fire in both communities, while tree and mistletoe cover increased in IF. Unexpectedly, plant species richness increased with fire frequency, owing to increased shrub richness which offset decreased tree richness in both communities. These findings indicate biodiversity and canopy structure are generally resilient to a range of times since fire and fire frequencies across this study area. Nevertheless, reduced arboreal habitat quality and subtle shifts in community composition of resprouters and obligate seeders signal early concern for a scenario of increasing fire frequency under climate change. Ongoing assessment of fire responses is needed to ensure that biodiversity, canopy structure and ecosystem function are maintained in the remaining fragments of urban forests under future climate change which will likely drive hotter and more frequent fires.
Collapse
|
15
|
Zupo T, Gorgone‐Barbosa E, Ninno Rissi M, Daibes LF. Experimental burns in an open savanna: Greater fuel loads result in hotter fires. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Talita Zupo
- Lab of Vegetation Ecology Universidade Estadual Paulista (UNESP), Instituto de Biociências Av. 24‐A 1515 13506‐900 Rio Claro Brazil
- Instituto Tecnológico Vale (ITV) Rua Boaventura da Silva, 955 Belém Pará Brazil
| | - Elizabeth Gorgone‐Barbosa
- Lab of Vegetation Ecology Universidade Estadual Paulista (UNESP), Instituto de Biociências Av. 24‐A 1515 13506‐900 Rio Claro Brazil
| | - Mariana Ninno Rissi
- Lab of Vegetation Ecology Universidade Estadual Paulista (UNESP), Instituto de Biociências Av. 24‐A 1515 13506‐900 Rio Claro Brazil
| | - Luis Felipe Daibes
- Lab of Vegetation Ecology Universidade Estadual Paulista (UNESP), Instituto de Biociências Av. 24‐A 1515 13506‐900 Rio Claro Brazil
| |
Collapse
|
16
|
Underwood EC, Hollander AD, Molinari NA, Larios L, Safford HD. Identifying priorities for post‐fire restoration in California chaparral shrublands. Restor Ecol 2022. [DOI: 10.1111/rec.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emma C. Underwood
- Department of Environmental Science and Policy University of California Davis CA 95616 U.S.A
- Centre for Biological Sciences University of Southampton Southampton SO17 1BJ U.K
| | - Allan D. Hollander
- Department of Environmental Science and Policy University of California Davis CA 95616 U.S.A
| | - Nicole A. Molinari
- USDA Forest Service Pacific Southwest Region 1980 Old Mission Drive Solvang CA 93463 U.S.A
| | - Loralee Larios
- Department of Botany and Plant Science 900 University Avenue Riverside CA 92521 U.S.A
| | - Hugh D. Safford
- Department of Environmental Science and Policy University of California Davis CA 95616 U.S.A
- USDA Forest Service Pacific Southwest Region 1323 Club Dive Vallejo CA 94592 U.S.A
| |
Collapse
|
17
|
Thomsen AM, Ooi MKJ. Shifting season of fire and its interaction with fire severity: Impacts on reproductive effort in resprouting plants. Ecol Evol 2022; 12:e8717. [PMID: 35342578 PMCID: PMC8931712 DOI: 10.1002/ece3.8717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 01/18/2023] Open
Abstract
Fire regimes shape plant communities but are shifting with changing climate. More frequent fires of increasing intensity are burning across a broader range of seasons. Despite this, impacts that changes in fire season have on plant populations, or how they interact with other fire regime elements, are still relatively understudied. We asked (a) how does the season of fire affect plant vigor, including vegetative growth and flowering after a fire event, and (b) do different functional resprouting groups respond differently to the effects of season of fire? We sampled a total of 887 plants across 36 sites using a space-for-time design to assess resprouting vigor and reproductive output for five plant species. Sites represented either a spring or autumn burn, aged one to three years old. Season of fire had the clearest impacts on flowering in Lambertia formosa with a 152% increase in the number of plants flowering and a 45% increase in number of flowers per plant after autumn compared with spring fires. There were also season × severity interactions for total flowers produced for Leptospermum polygalifolium and L. trinervium with both species producing greater flowering in autumn, but only after lower severity fires. Severity of fire was a more important driver in vegetative growth than fire season. Season of fire impacts have previously been seen as synonymous with the effects of fire severity; however, we found that fire season and severity can have clear and independent, as well as interacting, impacts on post-fire vegetative growth and reproductive response of resprouting species. Overall, we observed that there were positive effects of autumn fires on reproductive traits, while vegetative growth was positively related to fire severity and pre-fire plant size.
Collapse
Affiliation(s)
- Alexandria M. Thomsen
- School of Biological, Earth and Environmental SciencesCentre for Ecosystem ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| | - Mark K. J. Ooi
- School of Biological, Earth and Environmental SciencesCentre for Ecosystem ScienceUniversity of New South WalesSydneyNew South WalesAustralia
- NSW Bushfire Risk Management Research HubSydneyNew South WalesAustralia
| |
Collapse
|
18
|
Pfeilsticker TR, Jones RC, Steane DA, Harrison PA, Vaillancourt RE, Potts BM. Expansion of the rare Eucalyptus risdonii under climate change through hybridization with a closely related species despite hybrid inferiority. ANNALS OF BOTANY 2022; 129:1-14. [PMID: 34351372 PMCID: PMC8752398 DOI: 10.1093/aob/mcab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/04/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Hybridization is increasingly recognized as an integral part of the dynamics of species range expansion and contraction. Thus, it is important to understand the reproductive barriers between co-occurring species. Extending previous studies that argued that the rare Eucalyptus risdonii was expanding into the range of the surrounding E. amygdalina by both seed and pollen dispersal, we here investigate the long-term fitness of both species and their hybrids and whether expansion is continuing. METHODS We assessed the survival of phenotypes representing a continuum between the two pure species in a natural hybrid swarm after 29 years, along with seedling recruitment. The performance of pure species as well as of artificial and natural hybrids was also assessed over 28 years in a common garden trial. KEY RESULTS In the hybrid zone, E. amygdalina adults showed greater mortality than E. risdonii, and the current seedling cohort is still dominated by E. risdonii phenotypes. Morphologically intermediate individuals appeared to be the least fit. Similar results were observed after growing artificial first-generation and natural hybrids alongside pure species families in a common garden trial. Here, the survival, reproduction, health and growth of the intermediate hybrids were significantly less than those of either pure species, consistent with hybrid inferiority, although this did not manifest until later reproductive ages. Among the variable progeny of natural intermediate hybrids, the most E. risdonii-like phenotypes were the most fit. CONCLUSIONS This study contributes to the increasing number of reports of hybrid inferiority in Eucalyptus, suggesting that post-zygotic barriers contribute to the maintenance of species integrity even between closely related species. However, with fitness rapidly recovered following backcrossing, it is argued that hybridization can still be an important evolutionary process, in the present case appearing to contribute to the range expansion of the rare E. risdonii in response to climate change.
Collapse
Affiliation(s)
- T R Pfeilsticker
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - R C Jones
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - D A Steane
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - P A Harrison
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - R E Vaillancourt
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - B M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| |
Collapse
|
19
|
Barker JW, Price OF, Jenkins ME. High severity fire promotes a more flammable eucalypt forest structure. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- James W. Barker
- Centre for Environmental Risk Management of Bushfires University of Wollongong Northfields Avenue Wollongong New South Wales 2522 Australia
| | - Owen F. Price
- Centre for Environmental Risk Management of Bushfires University of Wollongong Northfields Avenue Wollongong New South Wales 2522 Australia
| | | |
Collapse
|
20
|
Nolan RH, Collins L, Leigh A, Ooi MKJ, Curran TJ, Fairman TA, Resco de Dios V, Bradstock R. Limits to post-fire vegetation recovery under climate change. PLANT, CELL & ENVIRONMENT 2021; 44:3471-3489. [PMID: 34453442 DOI: 10.1111/pce.14176] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Record-breaking fire seasons in many regions across the globe raise important questions about plant community responses to shifting fire regimes (i.e., changing fire frequency, severity and seasonality). Here, we examine the impacts of climate-driven shifts in fire regimes on vegetation communities, and likely responses to fire coinciding with severe drought, heatwaves and/or insect outbreaks. We present scenario-based conceptual models on how overlapping disturbance events and shifting fire regimes interact differently to limit post-fire resprouting and recruitment capacity. We demonstrate that, although many communities will remain resilient to changing fire regimes in the short-term, longer-term changes to vegetation structure, demography and species composition are likely, with a range of subsequent effects on ecosystem function. Resprouting species are likely to be most resilient to changing fire regimes. However, even these species are susceptible if exposed to repeated short-interval fire in combination with other stressors. Post-fire recruitment is highly vulnerable to increased fire frequency, particularly as climatic limitations on propagule availability intensify. Prediction of community responses to fire under climate change will be greatly improved by addressing knowledge gaps on how overlapping disturbances and climate change-induced shifts in fire regime affect post-fire resprouting, recruitment, growth rates, and species-level adaptation capacity.
Collapse
Affiliation(s)
- Rachael H Nolan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- NSW Bushfire Risk Management Research Hub, Wollongong, New South Wales, Australia
| | - Luke Collins
- School of Ecosystem and Forest Sciences, University of Melbourne, Creswick, Victoria, Australia
- Department of Ecology, Environment & Evolution, La Trobe University, Bundoora, Victoria, Australia
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Canada
| | - Andy Leigh
- School of Life Sciences, University of Technology Sydney, Broadway, New South Wales, Australia
| | - Mark K J Ooi
- NSW Bushfire Risk Management Research Hub, Wollongong, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales UNSW, Sydney, New South Wales, Australia
| | - Timothy J Curran
- Department of Pest-management and Conservation, Lincoln University, Lincoln, New Zealand
| | - Thomas A Fairman
- School of Ecosystem and Forest Sciences, University of Melbourne, Creswick, Victoria, Australia
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Joint Research Unit CTFC-AGROTECNIO, University of Lleida, Lleida, Spain
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | - Ross Bradstock
- NSW Bushfire Risk Management Research Hub, Wollongong, New South Wales, Australia
- Centre for Environmental Risk Management of Bushfires, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
21
|
Gomes L, Lenza E, Souchie FF, Pinto JRR, Maracahipes-Santos L, Furtado MT, Maracahipes L, Silvério D. Long-term post-fire resprouting dynamics and reproduction of woody species in a Brazilian savanna. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Falster D, Gallagher R, Wenk EH, Wright IJ, Indiarto D, Andrew SC, Baxter C, Lawson J, Allen S, Fuchs A, Monro A, Kar F, Adams MA, Ahrens CW, Alfonzetti M, Angevin T, Apgaua DMG, Arndt S, Atkin OK, Atkinson J, Auld T, Baker A, von Balthazar M, Bean A, Blackman CJ, Bloomfield K, Bowman DMJS, Bragg J, Brodribb TJ, Buckton G, Burrows G, Caldwell E, Camac J, Carpenter R, Catford JA, Cawthray GR, Cernusak LA, Chandler G, Chapman AR, Cheal D, Cheesman AW, Chen SC, Choat B, Clinton B, Clode PL, Coleman H, Cornwell WK, Cosgrove M, Crisp M, Cross E, Crous KY, Cunningham S, Curran T, Curtis E, Daws MI, DeGabriel JL, Denton MD, Dong N, Du P, Duan H, Duncan DH, Duncan RP, Duretto M, Dwyer JM, Edwards C, Esperon-Rodriguez M, Evans JR, Everingham SE, Farrell C, Firn J, Fonseca CR, French BJ, Frood D, Funk JL, Geange SR, Ghannoum O, Gleason SM, Gosper CR, Gray E, Groom PK, Grootemaat S, Gross C, Guerin G, Guja L, Hahs AK, Harrison MT, Hayes PE, Henery M, Hochuli D, Howell J, Huang G, Hughes L, Huisman J, Ilic J, Jagdish A, Jin D, Jordan G, Jurado E, Kanowski J, Kasel S, et alFalster D, Gallagher R, Wenk EH, Wright IJ, Indiarto D, Andrew SC, Baxter C, Lawson J, Allen S, Fuchs A, Monro A, Kar F, Adams MA, Ahrens CW, Alfonzetti M, Angevin T, Apgaua DMG, Arndt S, Atkin OK, Atkinson J, Auld T, Baker A, von Balthazar M, Bean A, Blackman CJ, Bloomfield K, Bowman DMJS, Bragg J, Brodribb TJ, Buckton G, Burrows G, Caldwell E, Camac J, Carpenter R, Catford JA, Cawthray GR, Cernusak LA, Chandler G, Chapman AR, Cheal D, Cheesman AW, Chen SC, Choat B, Clinton B, Clode PL, Coleman H, Cornwell WK, Cosgrove M, Crisp M, Cross E, Crous KY, Cunningham S, Curran T, Curtis E, Daws MI, DeGabriel JL, Denton MD, Dong N, Du P, Duan H, Duncan DH, Duncan RP, Duretto M, Dwyer JM, Edwards C, Esperon-Rodriguez M, Evans JR, Everingham SE, Farrell C, Firn J, Fonseca CR, French BJ, Frood D, Funk JL, Geange SR, Ghannoum O, Gleason SM, Gosper CR, Gray E, Groom PK, Grootemaat S, Gross C, Guerin G, Guja L, Hahs AK, Harrison MT, Hayes PE, Henery M, Hochuli D, Howell J, Huang G, Hughes L, Huisman J, Ilic J, Jagdish A, Jin D, Jordan G, Jurado E, Kanowski J, Kasel S, Kellermann J, Kenny B, Kohout M, Kooyman RM, Kotowska MM, Lai HR, Laliberté E, Lambers H, Lamont BB, Lanfear R, van Langevelde F, Laughlin DC, Laugier-Kitchener BA, Laurance S, Lehmann CER, Leigh A, Leishman MR, Lenz T, Lepschi B, Lewis JD, Lim F, Liu U, Lord J, Lusk CH, Macinnis-Ng C, McPherson H, Magallón S, Manea A, López-Martinez A, Mayfield M, McCarthy JK, Meers T, van der Merwe M, Metcalfe DJ, Milberg P, Mokany K, Moles AT, Moore BD, Moore N, Morgan JW, Morris W, Muir A, Munroe S, Nicholson Á, Nicolle D, Nicotra AB, Niinemets Ü, North T, O'Reilly-Nugent A, O'Sullivan OS, Oberle B, Onoda Y, Ooi MKJ, Osborne CP, Paczkowska G, Pekin B, Guilherme Pereira C, Pickering C, Pickup M, Pollock LJ, Poot P, Powell JR, Power SA, Prentice IC, Prior L, Prober SM, Read J, Reynolds V, Richards AE, Richardson B, Roderick ML, Rosell JA, Rossetto M, Rye B, Rymer PD, Sams MA, Sanson G, Sauquet H, Schmidt S, Schönenberger J, Schulze ED, Sendall K, Sinclair S, Smith B, Smith R, Soper F, Sparrow B, Standish RJ, Staples TL, Stephens R, Szota C, Taseski G, Tasker E, Thomas F, Tissue DT, Tjoelker MG, Tng DYP, de Tombeur F, Tomlinson K, Turner NC, Veneklaas EJ, Venn S, Vesk P, Vlasveld C, Vorontsova MS, Warren CA, Warwick N, Weerasinghe LK, Wells J, Westoby M, White M, Williams NSG, Wills J, Wilson PG, Yates C, Zanne AE, Zemunik G, Ziemińska K. AusTraits, a curated plant trait database for the Australian flora. Sci Data 2021; 8:254. [PMID: 34593819 PMCID: PMC8484355 DOI: 10.1038/s41597-021-01006-6] [Show More Authors] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
Collapse
Affiliation(s)
- Daniel Falster
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia.
| | - Rachael Gallagher
- Department of Biological Sciences, Macquarie University, Sydney, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Elizabeth H Wenk
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Dony Indiarto
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | | | - Caitlan Baxter
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - James Lawson
- NSW Department of Primary Industries, Orange, Australia
| | - Stuart Allen
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Anne Fuchs
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | - Anna Monro
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | - Fonti Kar
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Mark A Adams
- Swinburne University of Technology, Hawthorn, Australia
| | - Collin W Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Matthew Alfonzetti
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | | | - Deborah M G Apgaua
- Centre for Rainforest Studies, School for Field Studies, Yungaburra, Queensland, 4872, Australia
| | | | - Owen K Atkin
- The Australian National University, Canberra, Australia
| | - Joe Atkinson
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Tony Auld
- NSW Department of Planning Industry and Environment, Parramatta, Australia
| | | | - Maria von Balthazar
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | | | | | | | - Jason Bragg
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | | | | | | | | | - James Camac
- Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Melbourne, Australia
| | | | | | | | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| | | | - Alex R Chapman
- Western Australian Herbarium, Keiran McNamara Conservation Science Centre, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
| | - David Cheal
- Centre for Environmental Management, School of Health & Life Sciences, Federation University, Mount Helen, Australia
| | | | - Si-Chong Chen
- Royal Botanic Gardens, Richmond, Kew, United Kingdom
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Brook Clinton
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | - Peta L Clode
- University of Western Australia, Crawley, Australia
| | - Helen Coleman
- Western Australian Herbarium, Keiran McNamara Conservation Science Centre, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
| | - William K Cornwell
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | | | - Michael Crisp
- The Australian National University, Canberra, Australia
| | - Erika Cross
- Charles Sturt University, Bathurst, Australia
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Saul Cunningham
- Fenner School of Environment and Society, The Australian National University, Canberra, Australia
| | | | - Ellen Curtis
- University of Technology Sydney, Sydney, Australia
| | - Matthew I Daws
- Environment Department, Alcoa of Australia, Huntly, Western Australia, Australia
| | - Jane L DeGabriel
- School of Marine and Tropical Biology, James Cook University, Douglas, Australia
| | - Matthew D Denton
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Ning Dong
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | | | - Honglang Duan
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, China
| | | | - Richard P Duncan
- Institute for Applied Ecology, University of Canberra, ACT, 2617, Canberra, Australia
| | - Marco Duretto
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | - John M Dwyer
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | | | | | - John R Evans
- The Australian National University, Canberra, Australia
| | - Susan E Everingham
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | | | - Jennifer Firn
- Queensland University of Technology, Brisbane, Australia
| | - Carlos Roberto Fonseca
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Natal - RN, Brazil
| | | | - Doug Frood
- Pathways Bushland and Environment Consultancy, Sydney, Australia
| | - Jennifer L Funk
- Department of Plant Sciences, University of California, Davis, USA
| | | | - Oula Ghannoum
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | | | - Carl R Gosper
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
| | - Emma Gray
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | | | - Saskia Grootemaat
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | | | - Greg Guerin
- Terrestrial Ecosystem Research Network, The School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Lydia Guja
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | - Amy K Hahs
- School of Ecosystem and Forest Sciences, The University of Melbourne, Melbourne, Australia
| | | | | | - Martin Henery
- arks Australia, Department of Agriculture, Water and the Environment, Hobart, Australia
| | - Dieter Hochuli
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
| | | | - Guomin Huang
- Nanchang Institute of Technology, Nanchang, China
| | - Lesley Hughes
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - John Huisman
- Western Australian Herbarium, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | | | - Ashika Jagdish
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Daniel Jin
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
| | | | - Enrique Jurado
- Universidad Autonoma de Nuevo Leon, San Nicolás de los Garza, Mexico
| | | | | | - Jürgen Kellermann
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Hackney Road, Adelaide, SA, 5000, Australia
| | | | - Michele Kohout
- Department of Environment, Land, Water and Planning, Victoria, Australia
| | - Robert M Kooyman
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Martyna M Kotowska
- Department of Plant Ecology and Ecosystems Research, University of Goettingen, Göttingen, Germany
| | - Hao Ran Lai
- University of Canterbury, Christchurch, New Zealand
| | - Etienne Laliberté
- Institut de recherche en biologie végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, Canada
| | - Hans Lambers
- University of Western Australia, Crawley, Australia
| | | | - Robert Lanfear
- Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Frank van Langevelde
- Wildlife Ecology & Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Daniel C Laughlin
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | | | | | | | - Andrea Leigh
- University of Technology Sydney, Sydney, Australia
| | | | - Tanja Lenz
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Brendan Lepschi
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | | | - Felix Lim
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France
| | | | | | - Christopher H Lusk
- Environmental Research Institute, University of Waikato, Hamilton, New Zealand
| | | | - Hannah McPherson
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | - Susana Magallón
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Anthony Manea
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Andrea López-Martinez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Margaret Mayfield
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | | | | | - Marlien van der Merwe
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | | | | | | | - Angela T Moles
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Ben D Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | | | | | | | - Annette Muir
- Department of Environment, Land, Water and Planning, Victoria, Australia
| | - Samantha Munroe
- Terrestrial Ecosystem Research Network, The School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | | | - Dean Nicolle
- Currency Creek Arboretum, Currency Creek, Australia
| | | | - Ülo Niinemets
- Estonian University of Life Sciences, Tartu, Estonia
| | - Tom North
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | | | | | - Brad Oberle
- Division of Natural Sciences, New College of Florida, Sarasota, USA
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mark K J Ooi
- Centre for Ecosystem Science, School of Biological, Earth, and Environmental Sciences, UNSW, Sydney, Australia
| | - Colin P Osborne
- University of Sheffield, Department of Animal and Plant Sciences, Sheffield, United Kingdom
| | - Grazyna Paczkowska
- Western Australian Herbarium, Keiran McNamara Conservation Science Centre, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
| | - Burak Pekin
- Istanbul Technical University, Eurasia Institute of Earth Sciences, Istanbul, Turkey
| | - Caio Guilherme Pereira
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | | | | | | | - Pieter Poot
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | | | | | | | - Jennifer Read
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Victoria Reynolds
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | | | - Ben Richardson
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
| | | | - Julieta A Rosell
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Maurizio Rossetto
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | - Barbara Rye
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Michael A Sams
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Gordon Sanson
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Science, University of Queensland, St Lucia, Australia
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | - Kerrie Sendall
- Rider University, Lawrence Township, Lawrenceville, NJ, USA
| | - Steve Sinclair
- Department of Plant Ecology and Ecosystems Research, University of Goettingen, Göttingen, Germany
| | - Benjamin Smith
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Renee Smith
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | | | - Ben Sparrow
- Terrestrial Ecosystem Research Network, The School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Rachel J Standish
- Environmental and Conservation Sciences, Murdoch University, Murdoch, Australia
| | - Timothy L Staples
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Ruby Stephens
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | | | - Guy Taseski
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
| | - Elizabeth Tasker
- NSW Department of Planning Industry and Environment, Parramatta, Australia
| | | | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - David Yue Phin Tng
- Centre for Rainforest Studies, School for Field Studies, Yungaburra, Queensland, 4872, Australia
| | - Félix de Tombeur
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | | | | | | | - Susanna Venn
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Australia
| | - Peter Vesk
- University of Melbourne, Melbourne, Australia
| | - Carolyn Vlasveld
- School of Biological Sciences, Monash University, Clayton, Australia
| | | | - Charles A Warren
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
| | | | | | - Jessie Wells
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Mark Westoby
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Matthew White
- Department of Environment, Land, Water and Planning, Victoria, Australia
| | | | - Jarrah Wills
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
| | - Peter G Wilson
- National Herbarium of NSW and Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | - Colin Yates
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
| | - Amy E Zanne
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
- Department of Biology, University of Miami, Coral Gables, Florida 33146 USA, George Washington University, Washington, DC, 20052, USA
| | | | - Kasia Ziemińska
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France
| |
Collapse
|
23
|
Li J, Pei J, Liu J, Wu J, Li B, Fang C, Nie M. Spatiotemporal variability of fire effects on soil carbon and nitrogen: A global meta-analysis. GLOBAL CHANGE BIOLOGY 2021; 27:4196-4206. [PMID: 34101948 DOI: 10.1111/gcb.15742] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
A consensus about the fire-related soil carbon (C) and nitrogen (N) impacts that determine soil health and ecosystem services at the global scale remains elusive. Here, we conducted a global meta-analysis of 3173 observations with 1444, 1334, 228, and 167 observations for soil C, N, pyrogenic C (PyC), and the percent of PyC to total organic C (PyC/TOC) from 296 field studies. Results showed that fire significantly decreased soil C (-15.2%) and N (-14.6%) but increased soil PyC (40.6%) and PyC/TOC (30.3%). Stronger negative fire impacts on soil C and N were found in tropical and temperate climates than in Mediterranean and subtropical climates; stronger effects were found in forest ecosystems than in non-forest ecosystems. Wildfire and high-severity fire led to greater soil C and N losses than prescribed and low-severity fires, respectively, while they promoted greater increases in soil PyC and PyC/TOC than prescribed and low-severity fires, respectively. However, soil C and N recovered to control levels approximately 10 years after fire, which is a shorter period than previously determined. These results suggest that fire-induced PyC production should be accounted for in the C budget under global change. These results will improve our knowledge of the spatiotemporal variability of fire effects on soil C and N storage and have implications for fire management and ecosystem recovery.
Collapse
Affiliation(s)
- Jinquan Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Junmin Pei
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiajia Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Jihua Wu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
- Tibet University - Fudan University Joint Laboratory for Biodiversity and Global Change, Research Center for Ecology, College of Science, Tibet University, Lhasa, China
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Changming Fang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Defaunation and changes in climate and fire frequency have synergistic effects on aboveground biomass loss in the brazilian savanna. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Gladstone‐Gallagher RV, Hewitt JE, Thrush SF, Brustolin MC, Villnäs A, Valanko S, Norkko A. Identifying "vital attributes" for assessing disturbance-recovery potential of seafloor communities. Ecol Evol 2021; 11:6091-6103. [PMID: 34141205 PMCID: PMC8207434 DOI: 10.1002/ece3.7420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
Despite a long history of disturbance-recovery research, we still lack a generalizable understanding of the attributes that drive community recovery potential in seafloor ecosystems. Marine soft-sediment ecosystems encompass a range of heterogeneity from simple low-diversity habitats with limited biogenic structure, to species-rich systems with complex biogenic habitat structure. These differences in biological heterogeneity are a product of natural conditions and disturbance regimes. To search for unifying attributes, we explore whether a set of simple traits can characterize community disturbance-recovery potential using seafloor patch-disturbance experiments conducted in two different soft-sediment landscapes. The two landscapes represent two ends of a spectrum of landscape biotic heterogeneity in order to consider multi-scale disturbance-recovery processes. We consider traits at different levels of biological organization, from the biological traits of individual species, to the traits of species at the landscape scale associated with their occurrence across the landscape and their ability to be dominant. We show that in a biotically heterogeneous landscape (Kawau Bay, New Zealand), seafloor community recovery is stochastic, there is high species turnover, and the landscape-scale traits are good predictors of recovery. In contrast, in a biotically homogeneous landscape (Baltic Sea), the options for recovery are constrained, the recovery pathway is thus more deterministic and the scale of recovery traits important for determining recovery switches to the individual species biological traits within the disturbed patch. Our results imply that these simple, yet sophisticated, traits can be effectively used to characterize community recovery potential and highlight the role of landscapes in providing resilience to patch-scale disturbances.
Collapse
Affiliation(s)
- Rebecca V. Gladstone‐Gallagher
- Institute of Marine ScienceUniversity of AucklandAucklandNew Zealand
- Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
| | - Judi E. Hewitt
- Department of StatisticsUniversity of AucklandAucklandNew Zealand
- National Institute of Water and Atmospheric ResearchHamiltonNew Zealand
| | - Simon F. Thrush
- Institute of Marine ScienceUniversity of AucklandAucklandNew Zealand
| | | | - Anna Villnäs
- Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
- Baltic Sea CentreStockholm UniversityStockholmSweden
| | - Sebastian Valanko
- Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
- International Council for the Exploration of the Sea (ICES)CopenhagenDenmark
| | - Alf Norkko
- Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
- Baltic Sea CentreStockholm UniversityStockholmSweden
| |
Collapse
|
26
|
Scheper AC, Verweij PA, van Kuijk M. Post-fire forest restoration in the humid tropics: A synthesis of available strategies and knowledge gaps for effective restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144647. [PMID: 33736177 DOI: 10.1016/j.scitotenv.2020.144647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Humid tropical forests are increasingly exposed to devastating wildfires. Major efforts are needed to prevent fire-related tipping points and to enable the effective recovery of fire-affected areas. Here, we provide a synthesis of the most common forest restoration strategies, thereby focusing on post-fire forest dynamics in the humid tropics. A variety of restoration strategies can be adopted in restoring humid tropical forests, including natural regeneration, assisted natural regeneration (i.e. fire breaks, weed control, erosion control, topsoil replacement, peatland rewetting), enrichment planting (i.e. planting nursery-raised seedlings, direct seeding) and commercial restoration (i.e. plantation forests, agroforestry). Our analysis shows that while natural regeneration can be effective under favourable ecological conditions, humid tropical forests are often ill-adapted to fire, and therefore less likely to recover unassisted after a wildfire event. Active restoration practices may be more effective, but can be costly and challenging to implement. We also identify gaps in knowledge needed for effective restoration of humid tropical forests after fire, hereby taking into account the ecosystems and socio-economic conditions in which these fires occur. We suggest to incorporate fire severity in future studies, to better understand and predict post-fire ecosystem responses. In addition, as fire poses a recurring and intensifying threat throughout the recovery process, more emphasis should be placed on post-restoration management and the prevention of fire throughout the different phases of the restoration process. Furthermore, as tropical wildfires are increasing in scale, establishing collaborative capacity and setting priorities for efficient resource allocation should become a major priority for restoration practitioners in the humid tropics. Finally, as global fire regimes are changing and expected to intensify in the context of climate change, land use and land cover change, we suggest to put continuous effort into fire monitoring and modelling to inform the development of effective restoration strategies in the long-run.
Collapse
Affiliation(s)
- Anke C Scheper
- Energy and Resources, Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, the Netherlands.
| | - Pita A Verweij
- Energy and Resources, Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, the Netherlands.
| | - Marijke van Kuijk
- Ecology and Biodiversity, Institute of Environmental Biology, Faculty of Science, Utrecht University, the Netherlands.
| |
Collapse
|
27
|
Rainsford FW, Kelly LT, Leonard SWJ, Bennett AF. How does prescribed fire shape bird and plant communities in a temperate dry forest ecosystem? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02308. [PMID: 33605500 DOI: 10.1002/eap.2308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/23/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
To mitigate the impact of severe wildfire on human society and the environment, prescribed fire is widely used in forest ecosystems to reduce fuel loads and limit fire spread. To avoid detrimental effects on conservation values, it is imperative to understand how prescribed fire affects taxa having a range of different adaptations to disturbance. Such studies will have greatest benefit if they extend beyond short-term impacts of burning. We used a field study to examine the effects of prescribed fire on birds and plants across a 36-yr post-fire chronosequence in a temperate dry forest ecosystem in southeastern Australia, and by making comparison with long-unburned reference sites (79 yr since wildfire). We modeled changes in the relative abundance of 22 bird species and the cover of 39 plant species, and examined how individual species, functional groups, species richness and community composition differed between sites with different fire history. For most individual bird and plant species modeled, relative abundance or cover at sites subject to prescribed fire did not change significantly with time since fire or differ from that of long-unburned vegetation. When bird species were pooled into functional groups, time since prescribed fire had strong effects on birds that forage in the lower-midstorey, facultative-resprouting shrubs and obligate-seeding shrubs. Species richness for both taxa did not differ between sites subject to prescribed fire and those in long-unburned vegetation. Bird communities varied significantly between the youngest (0-3 yr) and oldest (79 yr) post-fire age classes, driven by species associated with understorey vegetation. Plant community composition showed little evidence of a post-fire successional trajectory. The prevalence of bird species with broad habitat and dietary niches and plant regeneration through resprouting, make bird and plant communities in these forests relatively resilient to small and patchy prescribed fires they have experienced to date. Application of prescribed fire will be most compatible with maintaining biodiversity by taking a landscape approach that (1) plans for a geographic spread of stands with a range of between-prescribed-fire intervals to ensure provision of suitable habitat for all taxa, and (2) avoids burning in moist gullies to maintain their value as fire refuges.
Collapse
Affiliation(s)
- Frederick W Rainsford
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, Victoria, 3086, Australia
- Research Centre for Future Landscapes, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Luke T Kelly
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Steve W J Leonard
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Primary Industries, Parks, Water and Environment, GPO Box 44, Hobart, Tasmania, 7001, Australia
| | - Andrew F Bennett
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, Victoria, 3086, Australia
- Research Centre for Future Landscapes, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
28
|
Baranowski K, Faust C, Eby P, Bharti N. Quantifying the impacts of Australian bushfires on native forests and gray-headed flying foxes. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
29
|
Clarke MF, Kelly LT, Avitabile SC, Benshemesh J, Callister KE, Driscoll DA, Ewin P, Giljohann K, Haslem A, Kenny SA, Leonard S, Ritchie EG, Nimmo DG, Schedvin N, Schneider K, Watson SJ, Westbrooke M, White M, Wouters MA, Bennett AF. Fire and Its Interactions With Other Drivers Shape a Distinctive, Semi-Arid ‘Mallee’ Ecosystem. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.647557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fire shapes ecosystems globally, including semi-arid ecosystems. In Australia, semi-arid ‘mallee’ ecosystems occur primarily across the southern part of the continent, forming an interface between the arid interior and temperate south. Mallee vegetation is characterized by short, multi-stemmed eucalypts that grow from a basal lignotuber. Fire shapes the structure and functioning of mallee ecosystems. Using the Murray Mallee region in south-eastern Australia as a case study, we examine the characteristics and role of fire, the consequences for biota, and the interaction of fire with other drivers. Wildfires in mallee ecosystems typically are large (1000s ha), burn with high severity, commonly cause top-kill of eucalypts, and create coarse-grained mosaics at a regional scale. Wildfires can occur in late spring and summer in both dry and wet years. Recovery of plant and animal communities is predictable and slow, with regeneration of eucalypts and many habitat components extending over decades. Time since the last fire strongly influences the distribution and abundance of many species and the structure of plant and animal communities. Animal species display a discrete set of generalized responses to time since fire. Systematic field studies and modeling are beginning to reveal how spatial variation in fire regimes (‘pyrodiversity’) at different scales shapes biodiversity. Pyrodiversity includes variation in the extent of post-fire habitats, the diversity of post-fire age-classes and their configuration. At regional scales, a desirable mix of fire histories for biodiversity conservation includes a combination of early, mid and late post-fire age-classes, weighted toward later seral stages that provide critical habitat for threatened species. Biodiversity is also influenced by interactions between fire and other drivers, including land clearing, rainfall, herbivory and predation. Extensive clearing for agriculture has altered the nature and impact of fire, and facilitated invasion by pest species that modify fuels, fire regimes and post-fire recovery. Given the natural and anthropogenic drivers of fire and the consequences of their interactions, we highlight opportunities for conserving mallee ecosystems. These include learning from and fostering Indigenous knowledge of fire, implementing actions that consider synergies between fire and other processes, and strategic monitoring of fire, biodiversity and other drivers to guide place-based, adaptive management under climate change.
Collapse
|
30
|
Lawes MJ, Woolley L, Van Holsbeeck S, Murphy BP, Burrows GE, Midgley JJ. Bark functional ecology and its influence on the distribution of Australian half‐butt eucalypts. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Michael J. Lawes
- School of Life Sciences University of KwaZulu‐Natal P/Bag X01 Scottsville 3209 South Africa
| | - Leigh‐Ann Woolley
- WWF‐Australia Broome Western AustraliaAustralia
- Forest Research Institute University of the Sunshine Coast Maroochydore QueenslandAustralia
| | - Sam Van Holsbeeck
- Forest Research Institute University of the Sunshine Coast Maroochydore QueenslandAustralia
| | - Brett P. Murphy
- Research Institute for the Environment and Livelihoods Charles Darwin University Darwin Northern TerritoryAustralia
| | - Geoffrey E. Burrows
- School of Agricultural and Wine Sciences Charles Sturt University Wagga Wagga New South Wales Australia
| | - Jeremy J. Midgley
- Department of Biological Sciences University of Cape Town Cape Town South Africa
| |
Collapse
|
31
|
Smith I, Velasquez E, Pickering C. Quantifying potential effect of 2019 fires on national parks and vegetation in South‐East Queensland. ECOLOGICAL MANAGEMENT & RESTORATION 2021. [DOI: 10.1111/emr.12479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
The Effect of Antecedent Fire Severity on Reburn Severity and Fuel Structure in a Resprouting Eucalypt Forest in Victoria, Australia. FORESTS 2021. [DOI: 10.3390/f12040450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Research highlights—Feedbacks between fire severity, vegetation structure and ecosystem flammability are understudied in highly fire-tolerant forests that are dominated by epicormic resprouters. We examined the relationships between the severity of two overlapping fires in a resprouting eucalypt forest and the subsequent effect of fire severity on fuel structure. We found that the likelihood of a canopy fire was the highest in areas that had previously been exposed to a high level of canopy scorch or consumption. Fuel structure was sensitive to the time since the previous canopy fire, but not the number of canopy fires. Background and Objectives—Feedbacks between fire and vegetation may constrain or amplify the effect of climate change on future wildfire behaviour. Such feedbacks have been poorly studied in forests dominated by highly fire-tolerant epicormic resprouters. Here, we conducted a case study based on two overlapping fires within a eucalypt forest that was dominated by epicormic resprouters to examine (1) whether past wildfire severity affects future wildfire severity, and (2) how combinations of understorey fire and canopy fire within reburnt areas affect fuel properties. Materials and Methods—The study focused on ≈77,000 ha of forest in south-eastern Australia that was burnt by a wildfire in 2007 and reburnt in 2013. The study system was dominated by eucalyptus trees that can resprout epicormically following fires that substantially scorch or consume foliage in the canopy layer. We used satellite-derived mapping to assess whether the severity of the 2013 fire was affected by the severity of the 2007 fire. Five levels of fire severity were considered (lowest to highest): unburnt, low canopy scorch, moderate canopy scorch, high canopy scorch and canopy consumption. Field surveys were then used to assess whether combinations of understorey fire (<80% canopy scorch) and canopy fire (>90% canopy consumption) recorded over the 2007 and 2013 fires caused differences in fuel structure. Results—Reburn severity was influenced by antecedent fire severity under severe fire weather, with the likelihood of canopy-consuming fire increasing with increasing antecedent fire severity up to those classes causing a high degree of canopy disturbance (i.e., high canopy scorch or canopy consumption). The increased occurrence of canopy-consuming fire largely came at the expense of the moderate and high canopy scorch classes, suggesting that there was a shift from crown scorch to crown consumption. Antecedent fire severity had little effect on the severity patterns of the 2013 fire under nonsevere fire weather. Areas affected by canopy fire in 2007 and/or 2013 had greater vertical connectivity of fuels than sites that were reburnt by understorey fires, though we found no evidence that repeated canopy fires were having compounding effects on fuel structure. Conclusions—Our case study suggests that exposure to canopy-defoliating fires has the potential to increase the severity of subsequent fires in resprouting eucalypt forests in the short term. We propose that the increased vertical connectivity of fuels caused by resprouting and seedling recruitment were responsible for the elevated fire severity. The effect of antecedent fire severity on reburn severity will likely be constrained by a range of factors, such as fire weather.
Collapse
|
33
|
Rainsford FW, Kelly LT, Leonard SWJ, Bennett AF. Fire and functional traits: Using functional groups of birds and plants to guide management in a fire‐prone, heathy woodland ecosystem. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Frederick W. Rainsford
- Department of Ecology Environment and Evolution La Trobe University Bundoora Vic. Australia
- Research Centre for Future Landscapes La Trobe University Bundoora Vic. Australia
| | - Luke T. Kelly
- School of Ecosystem and Forest Sciences University of Melbourne Parkville Vic. Australia
| | - Steve W. J. Leonard
- Department of Ecology Environment and Evolution La Trobe University Bundoora Vic. Australia
- Department of Primary Industries Hobart Tas. Australia
| | - Andrew F. Bennett
- Department of Ecology Environment and Evolution La Trobe University Bundoora Vic. Australia
- Research Centre for Future Landscapes La Trobe University Bundoora Vic. Australia
| |
Collapse
|
34
|
Mitchell RM, Ames GM, Wright JP. Intraspecific trait variability shapes leaf trait response to altered fire regimes. ANNALS OF BOTANY 2021; 127:543-552. [PMID: 33038232 PMCID: PMC7988511 DOI: 10.1093/aob/mcaa179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/05/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Understanding impacts of altered disturbance regimes on community structure and function is a key goal for community ecology. Functional traits link species composition to ecosystem functioning. Changes in the distribution of functional traits at community scales in response to disturbance can be driven not only by shifts in species composition, but also by shifts in intraspecific trait values. Understanding the relative importance of these two processes has important implications for predicting community responses to altered disturbance regimes. METHODS We experimentally manipulated fire return intervals in replicated blocks of a fire-adapted, longleaf pine (Pinus palustris) ecosystem in North Carolina, USA and measured specific leaf area (SLA), leaf dry matter content (LDMC) and compositional responses along a lowland to upland gradient over a 4 year period. Plots were burned between zero and four times. Using a trait-based approach, we simulate hypothetical scenarios which allow species presence, abundance or trait values to vary over time and compare these with observed traits to understand the relative contributions of each of these three processes to observed trait patterns at the study site. We addressed the following questions. (1) How do changes in the fire regime affect community composition, structure and community-level trait responses? (2) Are these effects consistent across a gradient of fire intensity? (3) What are the relative contributions of species turnover, changes in abundance and changes in intraspecific trait values to observed changes in community-weighted mean (CWM) traits in response to altered fire regime? KEY RESULTS We found strong evidence that altered fire return interval impacted understorey plant communities. The number of fires a plot experienced significantly affected the magnitude of its compositional change and shifted the ecotone boundary separating shrub-dominated lowland areas from grass-dominated upland areas, with suppression sites (0 burns) experiencing an upland shift and annual burn sites a lowland shift. We found significant effects of burn regimes on the CWM of SLA, and that observed shifts in both SLA and LDMC were driven primarily by intraspecific changes in trait values. CONCLUSIONS In a fire-adapted ecosystem, increased fire frequency altered community composition and structure of the ecosystem through changes in the position of the shrub line. We also found that plant traits responded directionally to increased fire frequency, with SLA decreasing in response to fire frequency across the environmental gradient. For both SLA and LDMC, nearly all of the observed changes in CWM traits were driven by intraspecific variation.
Collapse
Affiliation(s)
- Rachel M Mitchell
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
| | - Greg M Ames
- Department of Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|
35
|
Implications of the 2019-2020 megafires for the biogeography and conservation of Australian vegetation. Nat Commun 2021; 12:1023. [PMID: 33589628 PMCID: PMC7884386 DOI: 10.1038/s41467-021-21266-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Australia’s 2019–2020 ‘Black Summer’ bushfires burnt more than 8 million hectares of vegetation across the south-east of the continent, an event unprecedented in the last 200 years. Here we report the impacts of these fires on vascular plant species and communities. Using a map of the fires generated from remotely sensed hotspot data we show that, across 11 Australian bioregions, 17 major native vegetation groups were severely burnt, and up to 67–83% of globally significant rainforests and eucalypt forests and woodlands. Based on geocoded species occurrence data we estimate that >50% of known populations or ranges of 816 native vascular plant species were burnt during the fires, including more than 100 species with geographic ranges more than 500 km across. Habitat and fire response data show that most affected species are resilient to fire. However, the massive biogeographic, demographic and taxonomic breadth of impacts of the 2019–2020 fires may leave some ecosystems, particularly relictual Gondwanan rainforests, susceptible to regeneration failure and landscape-scale decline. Fires triggered by climate change threaten plant diversity in many biomes. Here the authors investigate how the catastrophic fires of 2019–2020 affected the vascular flora of SE Australia. They report that 816 species were highly impacted, including taxa of biogeographic and conservation interest.
Collapse
|
36
|
Lamont BB, Witkowski ETF. Plant functional types determine how close postfire seedlings are from their parents in a species-rich shrubland. ANNALS OF BOTANY 2021; 127:381-395. [PMID: 33038222 PMCID: PMC7872127 DOI: 10.1093/aob/mcaa180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS Fine-scale spatial patterns of the seedlings of co-occurring species reveal the relative success of reproduction and dispersal and may help interpret coexistence patterns of adult plants. To understand whether postfire community dynamics are controlled by mathematical, biological or environmental factors, we documented seedling-adult (putative parent) distances for a range of co-occurring species. We hypothesized that nearest-seedling-to-adult distances should be a function of the distance between the closest conspecific seedlings, closest inter-adult distances and seedling-to-parent ratios, and also that these should scale up in a consistent way from all individuals, to within and between species and finally between functional types (FTs). METHODS We assessed seedling-adult, seedling-seedling and adult-adult distances for 19 co-occurring shrub species 10 months after fire in a species-rich shrubland in south-western Australia. Species were categorized into 2 × 2 FTs: those that are killed by fire [non-(re)sprouters] vs. those that survive (resprouters) in nine taxonomically matched pairs, and those that disperse their seeds prefire (geosporous) vs. those that disperse their seeds postfire (serotinous). KEY RESULTS For the total data set and means for all species, seedling-adult distance was essentially a mathematical phenomenon, and correlated positively with seedling-seedling distance and adult-adult distance, and inversely with seedlings per adult. Among the four FTs, seedling-adult distance was shortest for geosporous non-sprouters and widest for serotinous resprouters. Why adults that produce few seedlings (resprouters) should be further away from them defies a simple mathematical or biological explanation at present. Ecologically, however, it is adaptive: the closest seedling was usually under the (now incinerated) parent crown of non-sprouters whereas those of resprouters were on average four times further away. CONCLUSIONS Our study highlights the value of recognizing four reproductive syndromes within fire-prone vegetation, and shows how these are characterized by marked differences in their seedling-adult spatial relations that serve to enhance biodiversity of the community.
Collapse
Affiliation(s)
- Byron B Lamont
- Ecology Section, School of Life and Molecular Sciences, Curtin University, Perth, WA, Australia
| | - Ed T F Witkowski
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, PO Wits, Johannesburg, South Africa
| |
Collapse
|
37
|
Blanchard MD, Platt WJ. Ground Layer Microhabitats Influence Recruitment of Longleaf Pine in an Old-growth Pine Savanna. AMERICAN MIDLAND NATURALIST 2021. [DOI: 10.1674/0003-0031-185.1.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Matthew D. Blanchard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, 70803
| | - William J. Platt
- Department of Biological Sciences, Louisiana State University, Baton Rouge, 70803
| |
Collapse
|
38
|
Radford IJ, Oliveira SLJ, Byrne B, Woolley LA. Tree hollow densities reduced by frequent late dry-season wildfires in threatened Gouldian finch (Erythrura gouldiae) breeding habitat. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr20108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Context. Tree hollows are a key habitat resource for hollow-nesting species, including the northern Australian Gouldian finch (Erythrura gouldiae). Certain fire and disturbance regimes limit tree hollow availability in the northern Australian savannas.
Aims. This study investigated the influence of fire regime and vegetation structure on the density of tree hollows at Gouldian finch breeding sites.
Methods. Fire scars were mapped across breeding sites by using LANDSAT images. Vegetation plots within sites were spatially stratified according to three fire-regime attributes, namely, fire frequency, late dry-season wildfire frequency and time since the last fire. Tree hollow and vegetation structural attributes were measured at each vegetation plot. We modelled the relationship among hollow density, fire and vegetation attributes by using general linear mixed models with site as the random factor.
Key results. We found that the highest tree-hollow density was found at plots with high eucalypt tree density and cover and with the lowest frequency of late dry-season wildfires (<1 wildfire over 5 years). Tree-hollow density declined after >2 years without fire. Hollow density was not directly related to total fire frequency.
Conclusions. This study adds to previous work on grass seed resources in highlighting the importance of fire in Gouldian finch ecology. This study particularly highlighted the importance of reducing the impacts of high-intensity late dry-season wildfires because of their negative impacts on tree-hollow density, which is a key resource for breeding Gouldian finches.
Implications. We recommend the use of a network of interconnected annual patchy early dry-season prescribed burns for protecting Gouldian breeding habitat from threat of high-intensity wildfires. We do NOT recommend fire exclusion from Gouldian finch breeding habitats. This is because fire risks to hollow-bearing trees, and grass seed resources, increase with the long-term accumulation of savanna litter fuels in the absence of fire.
Collapse
|
39
|
Gosper CR, Kinloch J, Coates DJ, Byrne M, Pitt G, Yates CJ. Differential exposure and susceptibility to threats based on evolutionary history: how OCBIL theory informs flora conservation. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Optimal conservation approaches have been proposed to differ for biota with contrasting evolutionary histories. Natural selection filters the distribution of plant traits over evolutionary time, with the current expression of traits mediating susceptibility to contemporary and often novel threats. We use old, climatically buffered, infertile landscape (OCBIL) theory to compile predictions regarding differences in exposure and susceptibility to key threats between OCBIL and young, often disturbed, fertile landscape (YODFEL) flora. Based on literature and existing data from the Southwest Australian Floristic Region (SWAFR), we evaluate evidence in support of our predictions, finding strong theoretical and empirical support for the proposition that exposure and/or impact of many threats differs between OCBILs and YODFELs. OCBILs have more exposure to land clearance from mining, whereas many YODFELs have greater exposure to land clearance from agriculture, and urban and industrial land uses, and greater overall levels of habitat loss and fragmentation. OCBIL flora are more susceptible to pathogens and extremes of fire interval than YODFEL flora, but conversely may have a greater capacity to persist in smaller populations if small populations featured in the evolutionary history of the species prior to anthropogenic fragmentation, and have substantial resistance to weed invasion. We argue that consideration of evolutionary history has an important role in informing conservation management.
Collapse
Affiliation(s)
- Carl R Gosper
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| | - Janine Kinloch
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| | - David J Coates
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| | - Georgie Pitt
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| | - Colin J Yates
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| |
Collapse
|
40
|
Tran BN, Tanase MA, Bennett LT, Aponte C. High-severity wildfires in temperate Australian forests have increased in extent and aggregation in recent decades. PLoS One 2020; 15:e0242484. [PMID: 33206713 PMCID: PMC7673578 DOI: 10.1371/journal.pone.0242484] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/03/2020] [Indexed: 11/18/2022] Open
Abstract
Wildfires have increased in size and frequency in recent decades in many biomes, but have they also become more severe? This question remains under-examined despite fire severity being a critical aspect of fire regimes that indicates fire impacts on ecosystem attributes and associated post-fire recovery. We conducted a retrospective analysis of wildfires larger than 1000 ha in south-eastern Australia to examine the extent and spatial pattern of high-severity burned areas between 1987 and 2017. High-severity maps were generated from Landsat remote sensing imagery. Total and proportional high-severity burned area increased through time. The number of high-severity patches per year remained unchanged but variability in patch size increased, and patches became more aggregated and more irregular in shape. Our results confirm that wildfires in southern Australia have become more severe. This shift in fire regime may have critical consequences for ecosystem dynamics, as fire-adapted temperate forests are more likely to be burned at high severities relative to historical ranges, a trend that seems set to continue under projections of a hotter, drier climate in south-eastern Australia.
Collapse
Affiliation(s)
- Bang Nguyen Tran
- School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, Victoria, Australia
- Faculty of Environment, Vietnam National University of Agriculture, Trauquy, Gialam, Hanoi, Vietnam
- * E-mail:
| | - Mihai A. Tanase
- School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, Victoria, Australia
- Department of Geology, Geography and Environment, University of Alcala, Alcala de Henares, Spain
| | - Lauren T. Bennett
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria, Australia
| | - Cristina Aponte
- School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, Victoria, Australia
- National Institute for Research and Development in Forestry “Marin Dracea”, Voluntari, Ilfov, Romania
| |
Collapse
|
41
|
Gosper CR, Yates CJ, Fox E, Prober SM. Time since fire and prior fire interval shape woody debris dynamics in obligate‐seeder woodlands. Ecosphere 2019. [DOI: 10.1002/ecs2.2927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Carl R. Gosper
- Biodiversity and Conservation Science Department of Biodiversity, Conservation and Attractions Locked Bag 104, Bentley Delivery Centre Bentley Western Australia 6983 Australia
- CSIRO Land and Water Private Bag 5 Wembley Western Australia 6913 Australia
| | - Colin J. Yates
- Biodiversity and Conservation Science Department of Biodiversity, Conservation and Attractions Locked Bag 104, Bentley Delivery Centre Bentley Western Australia 6983 Australia
| | - Elizabeth Fox
- BirdLife Australia Suite 2‐05, 60 Leicester Street Carlton Victoria 3053 Australia
| | - Suzanne M. Prober
- CSIRO Land and Water Private Bag 5 Wembley Western Australia 6913 Australia
| |
Collapse
|
42
|
Ott JP, Klimešová J, Hartnett DC. The ecology and significance of below-ground bud banks in plants. ANNALS OF BOTANY 2019; 123:1099-1118. [PMID: 31167028 PMCID: PMC6612937 DOI: 10.1093/aob/mcz051] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/10/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND Below-ground bud banks have experienced much recent interest due to discoveries that they (1) account for the majority of seasonal population renewal in many communities, (2) are crucial to regeneration following disturbance, and (3) have important consequences for plant population dynamics and plant and ecosystem function across a number of habitats. SCOPE This review presents an overview of the role of bud banks in plant population renewal, examines bud bank life history, summarizes bud bank traits and their potential ecological implications, synthesizes the response of bud banks to disturbance, and highlights gaps to guide future research. The characteristics and life history of buds, including their natality, dormancy, protection and longevity, provide a useful framework for advancing our understanding of bud banks. The fate of buds depends on their age, size, type, location, and biotic and abiotic factors that collectively regulate bud bank dynamics. A bud bank can provide a demographic storage effect stabilizing population dynamics, and also confer resistance to disturbance and invasion. Regeneration capacity following disturbance is determined by interactions among the rates of bud natality, depletion and dormancy (meristem limitation), and the resources available to support the regeneration process. The resulting response of plants and their bud banks to disturbances such as fire, herbivory and anthropogenic sources determines the community's regenerative capacity. CONCLUSIONS Vegetation responses to environmental change may be mediated through changes in bud bank dynamics and phenology. Environmental change that depletes the bud bank or prohibits its formation likely results in a loss of vegetation resilience and plant species diversity. Standardization of bud sampling, examination of bud banks in more ecosystems and their response to environmental variation and disturbance regimes, employment of stage-structured bud bank modelling and evaluation of the cost of bud bank construction and maintenance will benefit this expanding field of research.
Collapse
Affiliation(s)
- Jacqueline P Ott
- Forest and Grassland Research Laboratory, Rocky Mountain Research Station, U.S. Forest Service, Rapid City, SD, USA
- For correspondence. E-mail
| | - Jitka Klimešová
- Institute of Botany of the Czech Academy of Sciences, Dukelská, CZ – Třeboň, Czech Republic
| | - David C Hartnett
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
43
|
Nolan RH, Sinclair J, Waters CM, Mitchell PJ, Eldridge DJ, Paul KI, Roxburgh S, Butler DW, Ramp D. Risks to carbon dynamics in semi-arid woodlands of eastern Australia under current and future climates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 235:500-510. [PMID: 30711835 DOI: 10.1016/j.jenvman.2019.01.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/17/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Extreme disturbance events, such as wildfire and drought, have large impacts on carbon storage and sequestration of forests and woodlands globally. Here, we present a modelling approach that assesses the relative impact of disturbances on carbon storage and sequestration, and how this will alter under climate change. Our case study is semi-arid Australia where large areas of land are managed to offset over 122 million tonnes of anthropogenic carbon emissions over a 100-year period. These carbon offsets include mature vegetation that has been protected from clearing and regenerating vegetation on degraded agricultural land. We use a Bayesian Network model to combine multiple probabilistic models of the risk posed by fire, drought, grazing and recruitment failure to carbon dynamics. The model is parameterised from a review of relevant literature and additional quantitative analyses presented here. We found that the risk of vegetation becoming a net source of carbon due to a mortality event, or failing to realise maximum sequestration potential, through recruitment failure in regenerating vegetation, was primarily a function of rainfall in this semi-arid environment. However, the relative size of an emissions event varied across vegetation communities depending on plant attributes, specifically resprouting capacity. Modelled climate change effects were variable, depending on the climate change projection used. Under 'best-case' or 'most-likely' climate scenarios for 2050, similar or increased projections of mean annual precipitation, associated with a build-up of fuel, were expected to drive an increase in fire activity (a 40-160% increase), but a decrease in drought (a 20-35% decrease). Under a 'worst-case' climate scenario, fire activity was expected to decline (a 37% decrease), but drought conditions remain similar (a 5% decrease). These projected changes to the frequency of drought and fire increase the risk that vegetation used for carbon offsetting will fail to provide anticipated amounts of carbon abatement over their lifetime.
Collapse
Affiliation(s)
- Rachael H Nolan
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Jennifer Sinclair
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia; GreenCollar, The Rocks, Sydney, NSW, 2000, Australia
| | - Cathleen M Waters
- New South Wales Department of Primary Industries, Climate Research, Orange, New South Wales, 2800, Australia
| | | | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW, 2052, Australia
| | - Keryn I Paul
- CSIRO Land and Water Flagship, Canberra, Australian Capital Territory, 2601, Australia
| | - Stephen Roxburgh
- CSIRO Land and Water Flagship, Canberra, Australian Capital Territory, 2601, Australia
| | - Don W Butler
- Queensland Herbarium, Toowong, Queensland, 4066, Australia
| | - Daniel Ramp
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
44
|
Phylogenomics shows lignotuber state is taxonomically informative in closely related eucalypts. Mol Phylogenet Evol 2019; 135:236-248. [PMID: 30914394 DOI: 10.1016/j.ympev.2019.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 11/21/2022]
Abstract
Plant taxa can be broadly divided based on the mechanisms enabling persistence through whole-crown disturbances, specifically whether individuals resprout, populations reseed, or both or neither of these mechanisms are employed. At scales from species through to communities, the balance of disturbance-response types has major ramifications for ecological function and biodiversity conservation. In some lineages, morphologically identical populations except for differences in a disturbance-response trait (e.g. ± lignotuber) occur, offering the opportunity to apply genetic analyses to test whether trait state is representative of broader genetic distinctiveness, or alternatively, variation in response to local environmental conditions. In eucalypts, a globally-significant plant group, we apply dense taxon sampling and high-density, genome-wide markers to test monophyly and genetic divergence among pairs of essentially morphologically-identical taxa excepting lignotuber state. Taxa differing in lignotuber state formed discrete phylogenetic lineages. Obligate-seeders were monophyletic and strongly differentiated from each other and lignotuber-resprouters, but this was not the case for all lignotuber-resprouter taxa. One lignotuber state transition within our sample clade was supported, implying convergence of some non-lignotuber morphology characters. Greater evolutionary rate associated with the obligate-seeder disturbance-response strategy offers a plausible explanation for these genetic patterns. Lignotuber state is an important taxonomic character in eucalypts, with transitions in lignotuber state having contributed to the evolution of the exceptional diversity of eucalypts in south-western Australia. Differences in lignotuber state have evolved directionally with respect to environmental conditions.
Collapse
|
45
|
Eliott M, Lawson S, Hayes A, Debuse V, York A, Lewis T. The response of cerambycid beetles (Coleoptera: Cerambycidae) to long-term fire frequency regimes in subtropical eucalypt forest. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martyn Eliott
- School of Science; Faculty of Science, Health, Education & Engineering; University of the Sunshine Coast; 90 Sippy Downs Dr Sippy Downs Queensland 4556 Australia
| | - Simon Lawson
- Forest Industries Research Centre; University of the Sunshine Coast; Sippy Downs Queensland Australia
- Department of Agriculture and Fisheries; Forest Industries Research Centre; Ecosciences Precinct; Dutton Park Queensland Australia
| | - Andrew Hayes
- Forest Industries Research Centre; University of the Sunshine Coast; Sippy Downs Queensland Australia
- Department of Agriculture and Fisheries; Forest Industries Research Centre; Ecosciences Precinct; Dutton Park Queensland Australia
| | - Valerie Debuse
- Forest Industries Research Centre; University of the Sunshine Coast; Sippy Downs Queensland Australia
- Department of Agriculture and Fisheries; Forest Industries Research Centre; Ecosciences Precinct; Dutton Park Queensland Australia
| | - Alan York
- School of Ecosystem and Forest Sciences; University of Melbourne; Creswick Victoria Australia
| | - Tom Lewis
- School of Science; Faculty of Science, Health, Education & Engineering; University of the Sunshine Coast; 90 Sippy Downs Dr Sippy Downs Queensland 4556 Australia
- Department of Agriculture and Fisheries; Forest Industries Research Centre; Ecosciences Precinct; Dutton Park Queensland Australia
| |
Collapse
|
46
|
Smith MG, Arndt SK, Miller RE, Kasel S, Bennett LT. Trees use more non-structural carbohydrate reserves during epicormic than basal resprouting. TREE PHYSIOLOGY 2018; 38:1779-1791. [PMID: 30219862 DOI: 10.1093/treephys/tpy099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Non-structural carbohydrates (NSCs) are crucial to support tree resprouting after disturbances that damage the crown or stem. Epicormic resprouting (from stem) could demand more from NSC reserves than basal resprouting (following top-kill), since epicormically resprouting trees need to maintain a greater living biomass. Yet, little is known about NSC use during epicormic resprouting, particularly the relative importance of stem and below-ground NSC reserves. We compared the distribution and magnitude of NSC decreases during epicormic and basal resprouting by experimentally removing crowns or stems of 14-year-old Eucalyptus obliqua L'Hér. trees in native forest, then harvesting these trees over a 10-month period (start, sprouts emerged, sprouts expanded) to measure changes in NSC concentration and mass by organ (stem, lignotuber, roots). We hypothesized that (i) NSC depletion during resprouting is primarily due to decreases in starch rather than soluble sugars concentrations; (ii) during epicormic resprouting, stem NSC concentrations are decreased irrespective of any decreases in roots; and (iii) absolute decreases in NSC mass are greater for epicormic than basal resprouting during the leafless period due to the carbon demands associated with maintaining greater living biomass. Results confirmed our hypotheses; starch was the primary storage carbohydrate, stems were an important source of starch during epicormic resprouting and carbon demands of maintenance functions were greater for epicormic resprouting, leading to greater decreases in NSC reserves. Roots were a more important starch storage organ than the lignotuber for both epicormic and basal resprouting. The proportional decrease in starch was severe for both modes of resprouting due to a long leafless period, after which trees resprouting epicormically relied on starch reserves for longer than those resprouting basally. It remains to be seen how the timing of disturbance affects the timing and vigour of resprouting, and how long-term NSC recovery differs for epicormic and basal resprouting.
Collapse
Affiliation(s)
- Merryn G Smith
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria, Australia
| | - Stefan K Arndt
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria, Australia
| | - Rebecca E Miller
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria, Australia
| | - Sabine Kasel
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria, Australia
| | - Lauren T Bennett
- School of Ecosystem and Forest Sciences, The University of Melbourne, 4 Water Street, Creswick, Victoria, Australia
| |
Collapse
|
47
|
Evaluation of Spectral Indices for Assessing Fire Severity in Australian Temperate Forests. REMOTE SENSING 2018. [DOI: 10.3390/rs10111680] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spectral indices derived from optical remote sensing data have been widely used for fire-severity classification in forests from local to global scales. However, comparative analyses of multiple indices across diverse forest types are few. This represents an information gap for fire management agencies in areas like temperate south-eastern Australia, which is characterised by a diversity of natural forests that vary in structure, and in the fire-regeneration strategies of the dominant trees. We evaluate 10 spectral indices across eight areas burnt by wildfires in 1998, 2006, 2007, and 2009 in south-eastern Australia. These wildfire areas encompass 13 forest types, which represent 86% of the 7.9M ha region’s forest area. Forest types were aggregated into six forest groups based on their fire-regeneration strategies (seeders, resprouters) and structure (tree height and canopy cover). Index performance was evaluated for each forest type and forest group by examining its sensitivity to four fire-severity classes (unburnt, low, moderate, high) using three independent methods (anova, separability, and optimality). For the best-performing indices, we calculated index-specific thresholds (by forest types and groups) to separate between the four severity classes, and evaluated the accuracy of fire-severity classification on independent samples. Our results indicated that the best-performing indices of fire severity varied with forest type and group. Overall accuracy for the best-performing indices ranged from 0.50 to 0.78, and kappa values ranged from 0.33 (fair agreement) to 0.77 (substantial agreement), depending on the forest group and index. Fire severity in resprouter open forests and woodlands was most accurately mapped using the delta Normalised Burnt ratio (dNBR). In contrast, dNDVI (delta Normalised difference vegetation index) performed best for open forests with mixed fire responses (resprouters and seeders), and dNDWI (delta Normalised difference water index) was the most accurate for obligate seeder closed forests. Our analysis highlighted the low sensitivity of all indices to fire impacts in Rainforest. We conclude that the optimal spectral index for quantifying fire severity varies with forest type, but that there is scope to group forests by structure and fire-regeneration strategy to simplify fire-severity classification in heterogeneous forest landscapes.
Collapse
|
48
|
Gordon CE, Bendall ER, Stares MG, Collins L, Bradstock RA. Aboveground carbon sequestration in dry temperate forests varies with climate not fire regime. GLOBAL CHANGE BIOLOGY 2018; 24:4280-4292. [PMID: 29855108 DOI: 10.1111/gcb.14308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
The storage of carbon in plant tissues and debris has been proposed as a method to offset anthropogenic increases in atmospheric [CO2 ]. Temperate forests represent significant above-ground carbon (AGC) "sinks" because their relatively fast growth and slow decay rates optimise carbon assimilation. Fire is a common disturbance event in temperate forests globally that should strongly influence AGC because: discrete fires consume above-ground biomass releasing carbon to the atmosphere, and the long-term application of different fire-regimes select for specific plant communities that sequester carbon at different rates. We investigated the latter process by quantifying AGC storage at 104 sites in the Sydney Basin Bioregion, Australia, relative to differences in components of the fire regime: frequency, severity and interfire interval. To predict the potential impacts of future climate change on fire/AGC interactions, we stratified our field sites across gradients of mean annual temperature and precipitation and quantified within- and between-factor interactions between the fire and climate variables. In agreement with previous studies, large trees were the primary AGC sink, accounting for ~70% of carbon at sites. Generalised additive models showed that mean annual temperature was the strongest predictor of AGC storage, with a 54% near-linear decrease predicted across the 6.1°C temperature range experienced at sites. Mean annual precipitation, fire frequency, fire severity and interfire interval were consistently poor predictors of total above-ground storage, although there were some significant relationships with component stocks. Our results show resilience of AGC to frequent and severe wildfire and suggest temperature mediated decreases in forest carbon storage under future climate change predictions.
Collapse
Affiliation(s)
- Christopher E Gordon
- Centre for Environmental Risk Management of Bushfires, Centre for Sustainable Ecosystem Solutions, University of Wollongong, Wollongong, NSW, Australia
| | - Eli R Bendall
- Centre for Environmental Risk Management of Bushfires, Centre for Sustainable Ecosystem Solutions, University of Wollongong, Wollongong, NSW, Australia
| | - Mitchell G Stares
- Centre for Environmental Risk Management of Bushfires, Centre for Sustainable Ecosystem Solutions, University of Wollongong, Wollongong, NSW, Australia
| | - Luke Collins
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, Vic., Australia
- Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, Vic., Australia
- Research Centre for Future Landscapes, La Trobe University, Bundoora, Vic., Australia
| | - Ross A Bradstock
- Centre for Environmental Risk Management of Bushfires, Centre for Sustainable Ecosystem Solutions, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
49
|
Gosper CR, Yates CJ, Cook GD, Harvey JM, Liedloff AC, McCaw WL, Thiele KR, Prober SM. A conceptual model of vegetation dynamics for the unique obligate-seeder eucalypt woodlands of south-western Australia. AUSTRAL ECOL 2018. [DOI: 10.1111/aec.12613] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carl R. Gosper
- Department of Biodiversity, Conservation and Attractions; Biodiversity and Conservation Science; Locked Bag 104 Bentley Delivery Centre Kensington Western Australia 6983 Australia
- CSIRO Land and Water; Wembley Western Australia Australia
| | - Colin J. Yates
- Department of Biodiversity, Conservation and Attractions; Biodiversity and Conservation Science; Locked Bag 104 Bentley Delivery Centre Kensington Western Australia 6983 Australia
| | - Garry D. Cook
- CSIRO Land and Water; Winnellie Northern Territory Australia
| | - Judith M. Harvey
- Department of Biodiversity, Conservation and Attractions; Biodiversity and Conservation Science; Locked Bag 104 Bentley Delivery Centre Kensington Western Australia 6983 Australia
| | | | - W. Lachlan McCaw
- Department of Biodiversity, Conservation and Attractions; Biodiversity and Conservation Science; Manjimup Western Australia Australia
| | - Kevin R. Thiele
- School of Biological Sciences; The University of Western Australia; Crawley Western Australia Australia
| | | |
Collapse
|
50
|
Barker JW, Price OF. Positive severity feedback between consecutive fires in dry eucalypt forests of southern Australia. Ecosphere 2018. [DOI: 10.1002/ecs2.2110] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- James W. Barker
- Centre for Environmental Risk Management of Bushfires; University of Wollongong; Wollongong New South Wales 2522 Australia
| | - Owen F. Price
- Centre for Environmental Risk Management of Bushfires; University of Wollongong; Wollongong New South Wales 2522 Australia
| |
Collapse
|