1
|
Yang R, Zhang Y, Gao Q, Sang C, Niu Y, Du S, Shao B. Fluorinated liquid-crystal monomers distribution in paired urine from mothers and infants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126283. [PMID: 40268047 DOI: 10.1016/j.envpol.2025.126283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/25/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Fluorinated liquid-crystal monomers (FLCMs) are widespread environmental contaminants with potential endocrine-disrupting effects. Infants are particularly vulnerable, yet their exposure remains unclear. This study analyzed FLCMs in urine samples from 190 paired mothers and infants in Beijing, detecting 34 and 35 FLCMs, respectively. Median creatinine-corrected concentrations were 1.83 μg/g (unadjusted concentrations: 1.28 ng/mL) for mothers and 3.28 μg/g (0.60 ng/mL) for infants. 1-butoxy-2,3-difluoro-4-(trans-4-propylcyclohexyl) benzene (BDPrB) and 1-ethyl-4-[(4-fluorophenyl) ethynyl] benzene (EFPEB) were identified as the primary detected contaminants. A significant positive correlation in urine concentrations between mothers and infants was observed only for 2'-Fluoro-4″-propyl-[1,1':4',1″-terphenyl]-4-carbonitrile (FPTC) (rs = 0.23, p = 0.023). Certain FLCMs were associated with infant feeding patterns, maternal parity, and environmental exposure, including dust and cleaning frequency (p < 0.05). The results of the study showed that the median estimated daily intakes (EDIs) of ∑FLCMs for mothers and infants were 526 and 425 ng/kg bw/day, respectively, with no significant difference between them (p > 0.05). Further stratification of the data by sex revealed that for male infants, the EDI values for BDPrB and EFPEB were greater (p < 0.05). These findings emphasize the need for greater research on the health effects of FLCMs on infants, particularly considering gender differences.
Collapse
Affiliation(s)
- Runhui Yang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Yanli Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Qun Gao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Chenhui Sang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China; School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
2
|
Chen J, Shi J, Xu G, Feng W, Lv J, Shi T, Jiang Q. Association between combined urinary phthalate metabolites exposure and grip strength among residents in Guangzhou, China. Front Public Health 2025; 13:1545872. [PMID: 40520272 PMCID: PMC12162582 DOI: 10.3389/fpubh.2025.1545872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/29/2025] [Indexed: 06/18/2025] Open
Abstract
Background Exposure to environmental phthalate metabolites (mPAEs) has been suggested to potentially affect grip strength, either directly or indirectly. However, research on the impact of mPAEs mixtures on grip strength remains limited. This study aimed to investigate the independent and joint effects of co-exposure to multiple mPAEs on grip strength among residents of Guangzhou, China. Methods Data were collected from 972 participants, and urinary concentrations of nine mPAEs (mMP, mEP, miBP, mnBP, mCHP, mEOHP, mEHHP, mBzP, and mEHP) were measured. To assess these relationships, we conducted generalized linear regression models, Bayesian Kernel Machine Regression (BKMR), and Weighted Quantile Sum (WQS) regression analyses. Results The Results showed that higher quartiles of mMP, miBP, mCHP, mEHHP, and mEHP were associated with decreased grip strength compared to the first quartile (Q1): mMP (Q4 vs. Q1: β = -1.44, 95% CI: -2.65 to -0.23, p = 0.019); miBP (Q2 vs. Q1: β = -1.78, 95% CI: -2.956 to -0.61, p = 0.003; Q3 vs. Q1: β = -1.39, 95% CI: -2.57 to -0.21, p = 0.002; Q4 vs. Q1: β = -1.23, 95% CI: -2.43 to 0.03, p = 0.045); mCHP (Q2 vs. Q1: β = -1.20, 95% CI: -2.38 to -0.03, p = 0.043); mEHHP (Q3 vs. Q1: β = -1.34, 95% CI: -2.53 to -0.16, p = 0.026); and mEHP (Q4 vs. Q1: β = -1.20, 95% CI: -2.39 to -0.01, p = 0.049). Restricted cubic spline (RCS) analysis indicated that grip strength gradually decreased as exposure concentrations of mMP (P-overall = 0.004) and miBP (P-overall = 0.037) increased, while the relationship between mEHP (P-overall = 0.022, P-nonlinear = 0.022) and grip strength exhibited an inverted U-shape. BKMR model analysis revealed a significant negative correlation between co-exposure to urinary mPAEs and grip strength, with mMP being the most significant contributor. Conclusion This study demonstrates that exposure to mPAEs mixtures is associated with decreased grip strength, particularly influenced by mMP. These findings underscore the necessity for further investigation into the underlying mechanisms and potential modifiers of this association.
Collapse
Affiliation(s)
- Jinbin Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jie Shi
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Guojun Xu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- The School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Wenru Feng
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jiayun Lv
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Tongxing Shi
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Qinqin Jiang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- Guangzhou Conghua District Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
3
|
Zhou X, Li W, Li R, Dang H, Wang X. Dynamic assessment of phthalate exposure: Linking internal and external monitoring in diverse indoor environments. ENVIRONMENT INTERNATIONAL 2025; 198:109423. [PMID: 40209396 DOI: 10.1016/j.envint.2025.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/27/2025] [Accepted: 03/27/2025] [Indexed: 04/12/2025]
Abstract
Phthalates (PAEs), as prevalent endocrine disruptors, are widely distributed in indoor environments and enter the human body through dermal contact, respiratory inhalation, and ingestion, subsequently participating in metabolic processes across various organs and tissues. Existing studies primarily focus on predicting regional exposure scenarios to assess internal or external exposures risks; however, limited studies have systematically examined the correlation and discrepancies between internal and external exposures. This study collected PAEs samples from three phases (gas, particle, and dust phases) across three representative indoor environments and conducted urinary biomonitoring of phthalate metabolites (mPAEs) among exposed populations. Results showed that PAEs concentrations in the gas phase (21.67 μg·m-3) and particle phase (2.38 μg·m-3) were significantly higher in laboratories than in dormitories and offices, whereas office desktops exhibited the highest dust phase concentration (312 μg·g-1). Urinary analysis revealed distinct metabolic profiles across populations: MBP was the dominant metabolite in office and dormitory groups (median: 19.3 ng·mL-1 and 10.4 ng·mL-1, respectively), while MMP prevailed in laboratory populations (median: 18.3 ng·mL-1). Seasonal variation analysis indicated that urinary mPAEs concentrations were 4.28 times higher in summer than in winter. Demographic analysis showed that mPAEs levels were higher in males, individuals with obesity, and those with frequent plastic use compared to females, individuals with normal BMI, and those with infrequent plastic use. Furthermore, external exposure estimated from ambient PAEs concentrations exceeded internal exposure derived from urinary mPAEs concentrations by 17.3 %. These findings provide critical insights into exposure pathway differentiation and risk assessment optimization for indoor PAEs contamination.
Collapse
Affiliation(s)
- Xiaojun Zhou
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wenlong Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Runjie Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haoyu Dang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xinke Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
4
|
Lai X, Zhu J, Liu Y, Ma S, Lin M, Hu Y, Liang J, Song Y, Li W, Zhao T. Infants' Dermal Exposure to Phthalates from Disposable Baby Diapers and Its Association with DNA Oxidative Damage. TOXICS 2025; 13:218. [PMID: 40137545 PMCID: PMC11946139 DOI: 10.3390/toxics13030218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Phthalates are widely used plasticizers that can leach from consumer products and pose potential health risks, particularly to infants whose developing systems are vulnerable to environmental toxicants. While various exposure pathways have been identified, the contribution of dermal absorption from disposable diapers remains inadequately characterized. This study recruited 66 infants from Guangzhou, a representative city in southern China. Paired disposable diaper and urine samples were collected from each participant. Six phthalates in the diapers and nine metabolites in the urine were quantitatively analyzed. The predominant phthalate detected in the diapers was bis-2-ethylhexyl phthalate (DEHP, with a median concentration of 1670 ng/g, range: 678-5200 ng/g), followed by di-n-butyl phthalate (DnBP, 948 ng/g, range: 189-5980 ng/g), di-iso-butyl phthalate (DiBP, 333 ng/g, range: 16.1-4910 ng/g), and diethyl phthalate (DEP, 252 ng/g, range: 116-3350 ng/g). In urine, metabolites of DEHP (mEHP, mEHHP, and mEOHP) were the most abundant (87.1 ng/mL), followed by mnBP (metabolites of DnBP, 44.6 ng/mL), mEP (metabolites of DEP, 33.7 ng/mL), and miBP (metabolites of DiBP, 13.9 ng/mL). A positive correlation was observed between DnBP levels in diapers and mnBP levels in urine (r = 0.259, p = 0.035). Additionally, several urinary metabolites (miBP, mnBP, and mEP) were positively associated with a biomarker of DNA oxidative damage, 8-hydroxydeoxyguanosine (r = 0.265-0.316, p < 0.01). The estimated daily uptake of DEP, DiBP, DnBP, and DEHP through dermal absorption from diapers accounted for 44.9%, 19.5%, 15.1%, and 7.76% of total exposure to these phthalates, respectively. These findings suggest that dermal absorption from diapers is a significant exposure pathway for infants. Given that both the amount of exposure and the contribution of dermal uptake are higher in younger infants, further attention is warranted to understand the potential effects of transdermal phthalate exposure on infant growth and development.
Collapse
Affiliation(s)
- Xi Lai
- Department of Child Health Care, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Jiang Zhu
- Department of Child Health Care, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Yangyang Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Hu
- Department of Child Health Care, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Jingjing Liang
- Department of Child Health Care, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Yanyan Song
- Department of Child Health Care, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Wenyan Li
- Department of Respiratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Tianxin Zhao
- Department of Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| |
Collapse
|
5
|
Hui Q, Du X, Li M, Liu S, Wang Z, Song S, Gao Y, Yang Y, Zhou C, Li Y. Mechanisms and targeted prevention of hepatic osteodystrophy caused by a low concentration of di-(2-ethylhexyl)-phthalate. Front Immunol 2025; 16:1552150. [PMID: 40129988 PMCID: PMC11931061 DOI: 10.3389/fimmu.2025.1552150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/14/2025] [Indexed: 03/26/2025] Open
Abstract
Objectives Hepatic osteodystrophy (HOD) is an important public health issue that severely affects human health. The pathogenesis of HOD is complex, and exposure to environmental pollutants plays an important role. Di-(2-ethylhexyl) phthalate (DEHP) is a persistent environmental endocrine toxicant that is present in many products, and the liver is an important target organ for its toxic effects. Our research aimed to investigate the effects of DEHP on HOD, and to reveal the underlying mechanisms and the potential key preventive approaches. Methods The daily intake EDI of DEHP and bone density indicators for men and women from 2009 to 2018 were screened and organized from the NHANES database to reveal the population correlation between EDI and BMD; C57BL/6 female and male mice were selected to construct an animal model of DEHP induced HOD, exploring the fuchtions and mechanisms of DEHP on osteoporosis; the novel small molecule inhibitor imICA was used to inhibit the process of DEHP induced osteoporosis, further exploring the targeted inhibition pathway of DEHP induced HOD. Results Male and female populations were exposed to a relatively lower concentration of DEHP, and that only the male population exhibited a negative correlation between DEHP exposure and bone mineral density. An in vivo study confirmed that a low dose of DEHP caused liver lesions, disrupted liver function, and induced osteoporosis in male but not female C57BL/6J mice. Regarding the molecular mechanisms, a low dose of DEHP activated the hepatic 14-3-3η/nuclear factor κB (NF-κB) positive feedback loop, which in turn modified the secretory proteome associated with bone differentiation, leading to HOD. Finally, we revealed that targeting the 14-3-3η/ NF-κB feedback loop using our novel 14-3-3η inhibitor (imICA) could prevent DEHP-induced HOD. Conclusion A low dose of DEHP activated the hepatic 14-3-3η/ NF-κB positive feedback loop, which in turn modified the secretory proteome associated with bone differentiation and elevated IL-6 and CXCL1 levels, leading to HOD. Targeted 14-3-3η/NF-κB feedback loop using our novel 14-3-3η inhibitor, imICA, prevented DEHP-induced HOD.
Collapse
Affiliation(s)
- Qinming Hui
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinru Du
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Maoxuan Li
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sha Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhendong Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sisi Song
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yancheng Gao
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ye Yang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunxiao Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yuan Li
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Cui F, Deng S, Fu Y, Xu T, Bao S, Wang S, Lin Y, Wang X, Zhao F, Zhang T, Xu S, Zhang Z, Li W, Yang GY, Tang H, Wang J, Sheng X, Tang Y. Maternal phthalates exposure promotes neural stem cell differentiation into phagocytic astrocytes and synapse engulfment via IRE1α/XBP1s pathway. Cell Rep 2025; 44:115126. [PMID: 39752254 DOI: 10.1016/j.celrep.2024.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 02/01/2025] Open
Abstract
Humans are widely exposed to phthalates, a common chemical plasticizer. Previous cohort studies have revealed that maternal exposure to monobutyl phthalate (MBP), a key metabolite of phthalates, is associated with neurodevelopmental defects. However, the molecular mechanism remains unclear. Here, we demonstrate that maternal exposure to MBP enhances neural stem cell (NSC) differentiation into astrocytes with highly expressed C3 and LCN2 in mouse offspring, resulting in increased synapse phagocytosis and cognitive dysfunction. Mechanistically, we find that MBP exposure activates the IRE1α/XBP1s (spliced XBP1) stress response pathway, which regulates key genes involved in astrocyte differentiation (SOX9 and ATF3) and reactivity (C3 and LCN2). Conditional knockout or pharmacological inhibition of IRE1α markedly inhibits NSC differentiation into astrocytes and astrocyte reactivity, attenuates synapse phagocytosis, and improves cognitive function. This phenotype is further recapitulated in a human brain organoid model. Together, these findings unveil the molecular mechanism underlying the neurodevelopmental deficits caused by a widespread environmental pollutant.
Collapse
Affiliation(s)
- Fengzhen Cui
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China; School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Shiyu Deng
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Yan Fu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Tongtong Xu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Shuangshuang Bao
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - Siyi Wang
- Department of Neurology, Wuhan Fourth Hospital, Wuhan 430033, China
| | - Yahang Lin
- Department of Neurology, Wuhan Fourth Hospital, Wuhan 430033, China
| | - Xianghui Wang
- Department of Environmental Health, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Faming Zhao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tingting Zhang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shunqing Xu
- Department of Environmental Health, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhijun Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Wanlu Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Huanwen Tang
- School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jixian Wang
- Department of Rehabilitation, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Xia Sheng
- Department of Environmental Health, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yaohui Tang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China.
| |
Collapse
|
7
|
Bian J, Guo Z, Liao G, Wang F, Yu YHK, Arrandale VH, Chan AHS, Huang J, Ge Y, Li X, Chen X, Lu B, Tang X, Liu C, Tse LA, Lu S. Increased health risk from co-exposure to polycyclic aromatic hydrocarbons, phthalates, and per- and polyfluoroalkyl substances: Epidemiological insight from e-waste workers in Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177912. [PMID: 39671928 DOI: 10.1016/j.scitotenv.2024.177912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/23/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
The alarming surge in electronic waste (e-waste) in Hong Kong has heightened concerns regarding occupational exposure to a myriad of pollutants. Among these, polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and per- and polyfluoroalkyl substances (PFASs) are prevalent and known for their harmful effects, including the induction of oxidative stress and DNA damage, thereby contributing to various diseases. This study addresses gaps in knowledge by investigating exposure levels of these pollutants-measured via hydroxylated PAHs (OH-PAHs), phthalate metabolites (mPAEs), and PFASs-in urine from 101 e-waste workers and 100 office workers. E-waste workers exhibited higher concentrations of these substances compared to office workers. Elevated urinary levels of OH-PAHs, mPAEs, and PFASs correlated significantly with increased 8-hydroxy-2-deoxyguanosine (8-OHdG) levels (β = 2.53, 95 % CI: 2.12-3.02). The association between short-chain PFASs (Perfluoropentanoic acid, PFPeA) and DNA damage was discovered for the first time. Despite most participants (95 %) showing hazard index (HI) values below non-carcinogenic risk thresholds for PAHs and PAEs, certain pollutants posed higher risks among e-waste workers, necessitating enhanced protective measures. Moreover, the 95th percentile of carcinogenic risk associated with diethylhexyl phthalate (DEHP) exceeded 10-4 in both groups, highlighting the urgent need for regulatory measures to mitigate DEHP exposure risks in Hong Kong.
Collapse
Affiliation(s)
- Junye Bian
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Zhihui Guo
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Gengze Liao
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | - Feng Wang
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | | | | | - Alan Hoi-Shou Chan
- Department of Systems Engineering, City University of Hong Kong, Hong Kong
| | - Jiayin Huang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Xinjie Li
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Xulong Chen
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Bingjun Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Xinxin Tang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Chengwen Liu
- Shenzhen Quality and Safety Inspection and Testing Institute, Shenzhen, China
| | - Lap Ah Tse
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China; Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China.
| |
Collapse
|
8
|
Jeong Y, Mok S, Kim S, Lee I, Lee G, Kho Y, Choi K, Kim KT, Moon HB. Comparison of urinary exposure profiles to phthalates and bisphenol analogues in kindergartens in Korea: Impact of environmental choices on children's health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117391. [PMID: 39603221 DOI: 10.1016/j.ecoenv.2024.117391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Phthalates and bisphenols (BPs) are well-known endocrine disrupting chemicals (EDCs) that are widely used in diverse consumer and personal care products. Despite their vulnerability, children are frequently exposed to phthalates and BPs in their surrounding environments. Although pre-school children spend most of their time in kindergarten, no comprehensive assessment of children' exposure to EDCs has been conducted according to the type of kindergarten. In this study, the urinary concentrations of phthalate metabolites and BPs were determined in Korean children attending conventional and eco-friendly kindergartens. The exposure levels and contaminant profiles were investigated according to kindergarten type and their association with oxidative stress was assessed. Di-(2-ethylhexyl) phthalate (DEHP) metabolites, such as mono-(2-ethyl-5-carboxypentyl) phthalate (median: 47.1 ng/mL) and mono-[(2-carboxymethyl)hexyl] phthalate (8.45 ng/mL) had the highest levels, indicating that they were the primary contaminants to which the children were exposed. Urinary concentrations of phthalate metabolites and bisphenol A (BPA) were higher in children from conventional kindergarten than an eco-friendly kindergarten. Conversely, bisphenol S (BPS) concentrations were significantly higher in children from the eco-friendly kindergarten than in those from conventional kindergartens, implying that eco-friendly plastic products might contain BPS as a replacement for BPA. The estimated daily intakes of BPA for all children exceeded the new tolerable daily intake proposed by the European Food Safety Authority. Malondialdehyde levels were significantly associated with the urinary concentrations of certain phthalate metabolites, indicating potential adverse health outcomes from phthalate exposure in children. The study highlights the need for targeted interventions to reduce EDC exposure in children, especially in settings where alternative chemicals may still pose health risks.
Collapse
Affiliation(s)
- Yunsun Jeong
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Sori Mok
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Sunmi Kim
- Chemical Analysis Center, Chemical Platform Technology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Inae Lee
- Department of Public Health, Keimyung University, Daegu 42601, Republic of Korea
| | - Gowoon Lee
- Department of Safety Engineering, Korea National University of Transportation, Chungbuk 27469, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam 13135, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
9
|
Zheng Y, Hua L, Zhang Z, Zhu L, Zhu H, Sun H, Zhao H. Current Phthalate Exposure Risks of Rural Population in the Northwest China: Evidence from an Internal Exposure Study. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:586-595. [PMID: 39474288 PMCID: PMC11504103 DOI: 10.1021/envhealth.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 01/06/2025]
Abstract
Phthalates (PAEs) are synthetic chemicals widely used in industrial and personal consumer products as adhesives or plasticizers. PAEs have been demonstrated to have toxic effects on the human body. However, biological monitoring data for the internal PAE exposure levels of Chinese rural residents are still limited. The present study investigated the exposure levels of ten phthalate metabolites (mPAEs) of rural residents in Northwest China. The results showed that mPAEs were wildly prevalent in urine and the geometric mean concentration of Σ10mPAEs was 957.02 ng mL-1 (adjusted by specific gravity). Mono-n-butyl phthalate (MBP) and metabolites of di(2-ethylhexyl)-phthalate (DEHP) were the most dominant mPAEs in urine, with specific gravity adjusted median concentrations of 174.67 and 156.30 ng mL-1, respectively. Urinary concentrations of mPAEs were significantly associated with age, body mass index and economic level (p < 0.05). By calculating the percentage and relative conversion rate of DEHP metabolites, it was found that the degree of oxidative metabolism of DEHP in children was significantly higher than that in adults (p < 0.05), indicating that the pathway and degree of DEHP oxidation were age-related. The risk assessment showed that 59.12% of rural residents may have a noncancer risk from PAE exposure. This study provides important basis for assessing the occurrence and exposure of urinary phthalate metabolites among rural residents in China.
Collapse
Affiliation(s)
- Yawen Zheng
- Ministry
of Education Key Laboratory of Pollution Processes and Environmental
Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Liting Hua
- Ministry
of Education Key Laboratory of Pollution Processes and Environmental
Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- School
of Urban and Environmental Sciences, Key Laboratory of the Ministry
of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Zining Zhang
- Ministry
of Education Key Laboratory of Pollution Processes and Environmental
Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lin Zhu
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hongkai Zhu
- Ministry
of Education Key Laboratory of Pollution Processes and Environmental
Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- Ministry
of Education Key Laboratory of Pollution Processes and Environmental
Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- Ministry
of Education Key Laboratory of Pollution Processes and Environmental
Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Wang X, Hu Z, Jin Y, Yang M, Zhang Z, Zhou X, Qiu S, Zou X. Exploring the relationships between exposure levels of bisphenols and phthalates and prostate cancer occurrence. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134736. [PMID: 38815394 DOI: 10.1016/j.jhazmat.2024.134736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
We established an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for simultaneously analyzing the metabolites of bisphenols and phthalates in urine to identify the associations between these exposure levels and prostate cancer (PCa) based on a case-control study. After purifying urine samples with SPE, 18 metabolites were separated on a C18 column, and MS detection was performed. The UPLC-MS/MS method has been proven effective at evaluating bisphenol and phthalate exposure (0.020-0.20 μg/L of the limits of detection, 71.8 %∼119.4 % of recoveries, 0.4 %∼8.2 % of precision). Logistic regression explored the association between exposure level and PCa in 187 PCa cases and 151 controls. The detection rates of bisphenol A (BPA) and most phthalate metabolites were 100 % ranging from 0.06-46.74 and 0.12-899.92 μg/g creatinine, respectively, while the detection rates of other bisphenols and mono-benzyl phthalate (MBzP) are low, ranging from 0 % to 21.85 %. Correlation analysis of the metabolite levels indicated that the exposure sources of BPA, di-ethyl phthalate (DEP), and di(2-ethylhexyl) phthalate (DEHP) were different, and that the exposure sources of di-n-butyl phthalate (DnBP) and di-isobutyl phthalate (DiBP) may differ between two groups. Logistic regression analysis revealed that BPA (OR<0.45 vs ≥1.43 =10.02) and DEHP exposure (OR<21.75 vs ≥45.42 =48.26) increased the risk of PCa.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Zifan Hu
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Yuming Jin
- Department of Urology, Institute of Urology and Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mi Yang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Zilong Zhang
- Department of Urology, Institute of Urology and Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianghong Zhou
- Department of Urology, Institute of Urology and Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shi Qiu
- Department of Urology, Institute of Urology and Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona 6500, Switzerland.
| | - Xiaoli Zou
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China.
| |
Collapse
|
11
|
Liao G, Weng X, Wang F, Kuen Yu YH, Arrandale VH, Chan AHS, Lu S, Tse LA. Estimated daily intake and cumulative risk assessment of organophosphate esters and associations with DNA damage among e-waste workers in Hong Kong. CHEMOSPHERE 2024; 360:142406. [PMID: 38782132 DOI: 10.1016/j.chemosphere.2024.142406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Organophosphate esters (OPEs) are extensively used as additives in various products, including electronic equipment, which becomes e-waste when obsolete. Nevertheless, no study has evaluated OPEs exposure levels and the related health risks among e-waste workers in Hong Kong. Therefore, 201 first-spot morning urine samples were collected from 101 e-waste workers and 100 office workers to compare eight urinary OPE metabolites (mOPEs) levels in these groups. The concentrations of six mOPEs were similar in e-waste workers and office workers, except for significantly higher levels of diphenyl phosphate (DPHP) in e-waste workers and bis(1-chloro-2propyl) phosphate (BCIPP) in office workers. Spearman correlation analysis showed that most non-chlorinated mOPEs were correlated with each other in e-waste workers (i.e., nine out of ten pairs, including di-p-cresyl phosphate (DpCP) and di-o-cresyl phosphate (DoCP), DpCP and bis(2-butoxyethyl) phosphate (BBOEP), DpCP and DPHP, DpCP and dibutyl phosphate (DBP), DoCP and BBOEP, DoCP and DPHP, DoCP and DBP, BBOEP and DPHP, DPHP and DBP), indicating that handling e-waste could be the exposure source of specific OPEs. The median values of estimated daily intake (EDI) and hazard quotient (HQ) suggested that the health risks from OPEs exposures were under the recommended thresholds. However, linear regression models, Quantile g-computation, and Bayesian kernel machine regression found that urinary mOPEs elevated 8-hydroxy-2-deoxyguanosine (8-OhdG) levels individually or as a mixture, in which DPHP contributed prominently. In conclusion, although e-waste might not elevate the internal OPEs levels among the participating Hong Kong e-waste workers, attention should be paid to the potential DNA damage stimulated by OPEs under the currently recommended thresholds.
Collapse
Affiliation(s)
- Gengze Liao
- J.C. School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | - Xueqiong Weng
- J.C. School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Feng Wang
- J.C. School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | | | | | - Alan Hoi-Shou Chan
- Department of Systems Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Lap Ah Tse
- J.C. School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China; Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
12
|
Zhang T, Zhao F, Hu Y, Wei J, Cui F, Lin Y, Jin Y, Sheng X. Environmental monobutyl phthalate exposure promotes liver cancer via reprogrammed cholesterol metabolism and activation of the IRE1α-XBP1s pathway. Oncogene 2024; 43:2355-2370. [PMID: 38879588 DOI: 10.1038/s41388-024-03086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/21/2024]
Abstract
Humans are widely exposed to phthalates, a major chemical plasticizer that accumulates in the liver. However, little is known about the impact of chronic phthalate exposure on liver cancer development. In this study, we applied a long-term cell culture model by treating the liver cancer cell HepG2 and normal hepatocyte L02 to environmental dosage of monobutyl phthalate (MBP), the main metabolite of phthalates. Interestingly, we found that long-term MBP exposure significantly accelerated the growth of HepG2 cells in vitro and in vivo, but barely altered the function of L02 cells. MBP exposure triggered reprogramming of lipid metabolism in HepG2 cells, where cholesterol accumulation subsequently activated the IRE1α-XBP1s axis of the unfolded protein response. As a result, the XBP1s-regulated gene sets and pathways contributed to the increased aggressiveness of HepG2 cells. In addition, we also showed that MBP-induced cholesterol accumulation fostered an immunosuppressive microenvironment by promoting tumor-associated macrophage polarization toward the M2 type. Together, these results suggest that environmental phthalates exposure may facilitate liver cancer progression, and alerts phthalates exposure to patients who already harbor liver tumors.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Faming Zhao
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanxia Hu
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jinlan Wei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengzhen Cui
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yahang Lin
- Department of Neurology, Wuhan Fourth Hospital, Wuhan, 430033, China
| | - Yang Jin
- Department of Biosciences, University of Oslo, 0371, Oslo, Norway
| | - Xia Sheng
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China.
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China.
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Li N, Liu J, Ying G, Lee JCK, Leung TF, Covaci A, Deng WJ. Endocrine disrupting chemicals in children's and their parents' urine: Is the exposure related to the Chinese and Western lifestyle? Int J Hyg Environ Health 2024; 259:114383. [PMID: 38652942 DOI: 10.1016/j.ijheh.2024.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Children are known to be more vulnerable to exposure to endocrine-disrupting chemicals (EDCs) compared to adults, but evaluating the exposure pathways can be challenging. This research employed target and non-target analysis (NTA) to examine the exposure characteristics of EDCs in spot urine samples collected from 46 children's (aged 3-12 years) and their parents in Hong Kong (Chinese/Western lifestyle) and Guangzhou (mainly Chinese lifestyle). The results revealed that the geometric mean concentrations of phthalate esters metabolites (mPAEs) and bisphenols (BPs) in children's urine were 127.3 μg/gcrea and 2.5 μg/gcrea in Guangzhou, and 93.7 μg/gcrea and 2.9 μg/gcrea in Hong Kong, respectively, which were consistent with global levels. NTA identified a total of 1069 compounds, including 106 EDCs, commonly detected in food, cosmetics, and drugs. Notable regional differences were observed between Guangzhou and Hong Kong with potential sources of EDCs including dietary and cosmetic additives, toys, flooring and dust, as well as differences in lifestyles, diet, and living environment. However, age was found to significantly impact EDC exposure. The quantified EDCs (mPAEs and BPs) posed possible health risks to 60% of the children. Moreover, the presence of caffeine in children's urine, which exhibited higher detection rates in children from Hong Kong (95.6%) and Guangzhou (44.4%), warrants further attention. The sources of EDCs exposure in these regions need to be fully confirmed.
Collapse
Affiliation(s)
- Na Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Liu
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Guangguo Ying
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - John Chi-Kin Lee
- Academy of Applied Policy Studies and Education Futures, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China
| | - Ting Fan Leung
- Department of Paediatrics & Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Wen-Jing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China.
| |
Collapse
|
14
|
Chen S, Liu H, Sun Y, Li S, Shi Y, Cheng Z, Zhu H, Sun H. Phthalate Biomarkers Composition in Relation to Fatty Liver: Evidence from Epidemiologic and in vivo studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171607. [PMID: 38461993 DOI: 10.1016/j.scitotenv.2024.171607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Phthalates, classified as environmental endocrine disruptors, pose potential toxicity risks to human health. Metabolic dysfunction-associated fatty liver disease is one of the most widespread liver diseases globally. Compared to studies focusing on metabolic disorders in relation to pollutants exposure, the impact of individual factors such as fatty liver on the in vivo metabolism of pollutants is always overlooked. Therefore, this study measured concentrations and composition of phthalate monoesters (mPAEs) in human urine samples, particularly those from fatty liver patients. Furthermore, we induced fatty liver in male Wistar rats by formulating a high-fat diet for twelve weeks. After administering a single dose of DEHP at 500 mg/kg bw through gavage, we compared the levels of di-2-ethylhexyl phthalate (DEHP), its metabolites (mDEHPs) and three hepatic metabolic enzymes, namely cytochrome P450 enzymes (CYP450), UDP glucuronosyltransferase 1 (UGT1), and carboxylesterase 1 (CarE1), between the normal and fatty liver rat groups. Compared to healthy individuals (n = 75), fatty liver patients (n = 104) exhibited significantly lower urinary concentrations of ∑mPAEs (median: 106 vs. 166 ng/mL), but with a higher proportion of mono-2-ethylhexyl phthalate in ∑mDEHPs (25.7 % vs. 9.9 %) (p < 0.05). In the animal experiment, we found that fatty liver in rats prolonged the elimination half-life of DEHP (24.61 h vs. 18.89 h) and increased the contents of CYP450, CarE1, and UGT1, implying the common but differentiated metabolism of DEHP as excess lipid accumulation in liver cells. This study provides valuable information on how to distinguish populations in biomonitoring studies across a diverse population and in assigning exposure classifications of phthalates or similar chemicals in epidemiologic studies.
Collapse
Affiliation(s)
- Shucong Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hang Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yulian Sun
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Shuxian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yixuan Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
15
|
Guo W, Zhang Z, Zhu R, Li Z, Liu C, Xiao H, Xiao H. Pollution characteristics, sources, and health risks of phthalate esters in ambient air: A daily continuous monitoring study in the central Chinese city of Nanchang. CHEMOSPHERE 2024; 353:141564. [PMID: 38417490 DOI: 10.1016/j.chemosphere.2024.141564] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
In recent years, the atmospheric pollution caused by phthalate esters (PAEs) has been increasing due to the widespread use of PAE-containing materials. Existing research on atmospheric PAEs lacks long-term continuous observation and samples from cities in central China. To investigate the pollution characteristics, sources, and health risks of PAEs in the ambient air of a typical city in central China, daily PM2.5 samples were collected in Nanchang from November 2020 to October 2021. In this study, the detection and quantification of six significant PAE contaminants, namely diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), diisobutyl phthalate (DIBP), Di-2-ethylhexyl phthalate (DEHP), di-n-octyl phthalate (DnOP), and diisodecyl phthalate (DIDP), were accomplished using gas chromatography and mass spectrometry. The results revealed that the concentrations of DEP, DnBP, DEHP, and DnOP were relatively high. Higher temperatures promote the volatilization of PAEs, leading to an increase in the gaseous and particulate PAE concentrations in warm seasons and winter pollution scenarios. The results of principal component analysis show that PAEs mainly come from volatile products and polyvinylchloride plastics. Using positive matrix factorization analysis, it is shown that these two sources contribute 67.0% and 33.0% in atmosphere PAEs, respectively. Seasonally, the contribution of volatile products to both gaseous and particulate PAEs substantially increases during warm seasons. The residents in Nanchang exposed to PAEs have a negligible non-cancer risk and a potential low cancer risk. During the warm seasons, more PAEs are emitted into the air, which will increase the toxicity of PAEs and their impact on human health.
Collapse
Affiliation(s)
- Wei Guo
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Ziyue Zhang
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Renguo Zhu
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Zicong Li
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Cheng Liu
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Hongwei Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huayun Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
16
|
Tan Y, Guo Z, Yao H, Liu H, Fu Y, Luo Y, He R, Liu Y, Li P, Nie L, Tan L, Jing C. Association of phthalate exposure with type 2 diabetes and the mediating effect of oxidative stress: A case-control and computational toxicology study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116216. [PMID: 38503103 DOI: 10.1016/j.ecoenv.2024.116216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Phthalic acid esters (PAEs) are widely used as plasticizers and have been suggested to engender adverse effects on glucose metabolism. However, epidemiological data regarding the PAE mixture on type 2 diabetes (T2DM), as well as the mediating role of oxidative stress are scarce. This case-control study enrolled 206 T2DM cases and 206 matched controls in Guangdong Province, southern China. The concentrations of eleven phthalate metabolites (mPAEs) and the oxidative stress biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine were determined. Additionally, biomarkers of T2DM in paired serum were measured to assess glycemic status and levels of insulin resistance. Significantly positive associations were observed for mono-(2-ethylhexyl) phthalate (MEHP) and Mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) with T2DM (P < 0.001). Restricted cubic spline modeling revealed a non-linear dose-response relationship between MEHHP and T2DM (Pnon-linear = 0.001). The Bayesian kernel machine regression and quantile g-computation analyses demonstrated a significant positive joint effect of PAE exposure on T2DM risk, with MEHHP being the most significant contributor. The mediation analysis revealed marginal evidence that oxidative stress mediated the association between the mPAEs mixture and T2DM, while 8-OHdG respectively mediated 26.88 % and 12.24 % of MEHP and MEHHP on T2DM risk individually (Pmediation < 0.05). Di(2-ethylhexyl) phthalate (DEHP, the parent compound for MEHP and MEHHP) was used to further examine the potential molecular mechanisms by in silico analysis. Oxidative stress may be crucial in the link between DEHP and T2DM, particularly in the reactive oxygen species metabolic process and glucose import/metabolism. Molecular simulation docking experiments further demonstrated the core role of Peroxisome Proliferator Activated Receptor alpha (PPARα) among the DEHP-induced T2DM. These findings suggest that PAE exposure can alter oxidative stress via PPARα, thereby increasing T2DM risk.
Collapse
Affiliation(s)
- Yuxuan Tan
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, PR China; Guangzhou Center for Disease Control and Prevention, No.1 Qide Road, Guangzhou, Guangdong 510440, PR China
| | - Ziang Guo
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, PR China
| | - Huojie Yao
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, PR China
| | - Han Liu
- Department of Endocrine, The First Affiliated Hospital of Jinan University, No.613 Huangpu Ave West, Guangzhou, Guangdong 510630, PR China
| | - Yingyin Fu
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, PR China
| | - Yangxu Luo
- Guangzhou Center for Disease Control and Prevention, No.1 Qide Road, Guangzhou, Guangdong 510440, PR China
| | - Rong He
- Guangzhou Center for Disease Control and Prevention, No.1 Qide Road, Guangzhou, Guangdong 510440, PR China
| | - Yiwan Liu
- Department of Endocrine, The First Affiliated Hospital of Jinan University, No.613 Huangpu Ave West, Guangzhou, Guangdong 510630, PR China
| | - Pei Li
- Department of Endocrine, The First Affiliated Hospital of Jinan University, No.613 Huangpu Ave West, Guangzhou, Guangdong 510630, PR China
| | - Lihong Nie
- Department of Endocrine, The First Affiliated Hospital of Jinan University, No.613 Huangpu Ave West, Guangzhou, Guangdong 510630, PR China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, No.1 Qide Road, Guangzhou, Guangdong 510440, PR China.
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, PR China.
| |
Collapse
|
17
|
Wang Y, Gesang Y, Wang Y, Yang Z, Zhao K, Liu J, Li C, Ouzhu L, Wang H, Chen Y, Jiang Q. Source and health risk of urinary neonicotinoids in Tibetan pregnant women. CHEMOSPHERE 2024; 349:140774. [PMID: 38016522 DOI: 10.1016/j.chemosphere.2023.140774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
High altitude could influence the level of exposure to neonicotinoids, but relevant data remain limited for people living in Tibet. We investigated 476 Tibetan pregnant women from Lhasa of Tibet, China in 2021 and measured eight neonicotinoids and four metabolites in urine. Food consumption was investigated by a food frequency questionnaire. Health risk was assessed by using hazard quotient (HQ) and hazard index (HI) based on acceptable daily dose or chronic reference dose. Neonicotinoids and metabolites were overall detected in 56.5% of urine samples with a median concentration being 0.73 μg g-1 creatinine. Four neonicotinoids or metabolites were detected in more than 10% of urine samples, including N-desmethyl-acetamiprid (47.5%), clothianidin (15.5%), thiamethoxam (16.0%), and imidacloprid (10.5%). Annual household income, family smoking, and pre-pregnancy body mass index were associated with the detection frequencies of neonicotinoids. Pregnant women with a higher consumption frequency of wheat, rice, fresh vegetable, fresh fruit, beef and mutton, fresh milk, yoghourt, candy and chocolate, or carbonated drinks had a higher detection frequency of neonicotinoids. Both HQ and HI were less than one. There was an evident exposure to neonicotinoids in Tibetan pregnant women with both plant- and animal-derived food items as exposure sources, but a low health risk was found based on current safety thresholds.
Collapse
Affiliation(s)
- Yuanping Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yangzong Gesang
- Department of Science and Education, Tibet Autonomous Region People's Hospital, Lhasa, 850000, China
| | - Yi Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zichen Yang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ke Zhao
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Jiaqi Liu
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Chunxia Li
- Obstetrics and Gynecology Department, Fukang Hospital, Affiliated Hospital of Tibet University, Lhasa, Tibet, 850000, China
| | - Luobu Ouzhu
- Administrative Department, Fukang Hospital, Affiliated Hospital of Tibet University, Lhasa, Tibet, 850000, China
| | - Hexing Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1G5Z3, Canada
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Zhang X, Zhang Y, Feng X, Zhao H, Ye H, Fang X, Cui J, Qi W, Ye L. The role of estrogen receptors (ERs)-Notch pathway in thyroid toxicity induced by Di-2-ethylhexyl phthalate (DEHP) exposure: Population data and in vitro studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115727. [PMID: 38042133 DOI: 10.1016/j.ecoenv.2023.115727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND This study aimed to assess the exposure level and risk of Di-2-ethylhexyl Phthalate (DEHP) among adults in Jilin Province, China, clarify the impact of DEHP on human thyroid function, and to explore the role of estrogen receptors (ERs)-Notch signaling pathway in the effect of DEHP metabolites on thyroid hormones based on population data and in vitro experiments. METHODS 312 adults participated in this study. Urinary DEHP metabolites were determined by high performance liquid chromatography coupled to a tandem mass spectrometer (HPLC-MS/MS). Two pharmacokinetic models were used to evaluate the estimated daily intake (EDI) and hazard quotient (HQ) of the adults. Multiple linear regression and mediating effect models were used to evaluate the target associations. In cell experiments, thyroid follicular epithelial (Nthy-ori3-1) cells were exposed to mono (2-ethylhexyl) phthalate (MEHP) for testing. The inhibitions of ERα and Notch pathway were conducted by siRNA and Notch pathway inhibitor DAPT. RESULTS The detection rate of five DEHP metabolites was 97.1∼100.0%. The HQ value of 0.3% of adults was higher than 1. The levels of urinary DEHP metabolites were significantly correlated with thyrotropin (TSH), thyrotropin-releasing hormone (TRH), total triiodothyronine (TT3), total thyroxine (TT4), free triiodothyronine (FT3) and free thyroxine (FT4) and gene (estrogen receptor α (ERα), Notch1, Dll4) levels. The ERα-Notch pathway played a mediating role in the association between DEHP metabolite levels and FT4. The cell results showed, the levels of FT3 and FT4 in cell supernatant decreased after MEHP exposure, and the downward trend was reversed after ERα and notch pathways were inhibited, notch pathway genes also decreased after ERα inhibition. CONCLUSION Adults in the Jilin Province of China were widely exposed to DEHP. ERs-Notch pathway played an important role in the effect of DEHP metabolites on thyroid hormones.
Collapse
Affiliation(s)
- Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Xin Feng
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Haotang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Hui Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Xiaoqi Fang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Jianwei Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China.
| |
Collapse
|
19
|
Duh TH, Yang CJ, Lee CH, Ko YC. A Study of the Relationship between Phthalate Exposure and the Occurrence of Adult Asthma in Taiwan. Molecules 2023; 28:5230. [PMID: 37446892 DOI: 10.3390/molecules28135230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Although phthalate esters contribute to airway remodeling by increasing bronchial cells' migration and proliferation, the relationship between human exposure to phthalates and asthma is not understood. We measured phthalate exposure in the human body and evaluated its effect on asthma. Asthma (n = 123) and asthma-free (n = 139) participants were, respectively, recruited from an asthma clinic and the community in Taiwan. The urine levels of six phthalate metabolites were determined by liquid chromatography tandem mass spectrometry. Compared with the controls, male asthma patients had higher means of mono-(2-ethylhexyl) phthalate (MEHP) (116.3 nmol/g), monobutyl phthalate (MBP) (850.3 nmol/g) and monoethyl phthalate (MEP) (965.8 nmol/g), and female patients had greater MBP (2902.4 nmol/g). Each 10-fold increase in the level of these phthalate metabolites was correspondingly associated with a 5.0-, 5.8-, 4.2- and 5.3-fold risk of contracting asthma. Male asthma patients were identified to have a higher proportion of MEHP exposure (32.5%) than the controls (25.3%). In asthma patients, an increase in urine MEHP levels and the total phthalate metabolite concentration were notably linked to increased risks of emergency room visits and being hospitalized. For the occurrence and acute clinical events of adult asthma, phthalate exposures and MEHP retention may contribute to higher risks of contracting this respiratory disorder.
Collapse
Affiliation(s)
- Tsai-Hui Duh
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Jen Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Hung Lee
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ying-Chin Ko
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
20
|
Wang Y, Chen Y, Gesang Y, Yang Z, Wang Y, Zhao K, Han M, Li C, Ouzhu L, Wang J, Wang H, Jiang Q. Exposure of Tibetan pregnant women to antibiotics in China: A biomonitoring-based study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121439. [PMID: 36921657 DOI: 10.1016/j.envpol.2023.121439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Tibetan people are one Chinese ethnic minority living in Qinghai-Tibet Plateau with an average altitude of more than 4500 m. High altitude could cause a different antibiotic exposure, but relevant information is limited in Tibetan people. We investigated 476 Tibetan pregnant women in Lhasa, Tibet in 2021 and measured 30 antibiotics from five categories in urine, including 13 veterinary antibiotics (VAs), five human antibiotics (HAs), and 12 human/veterinary antibiotics (H/VAs). Food consumption was investigated by a brief food frequency questionnaire. Health risk was assessed by hazard quotient (HQ) and hazard index (HI) based on acceptable daily intakes (ADIs). All antibiotics were overall detected in 34.7% of urine samples with the 75th percentile concentration of 0.19 ng/mL (0.35 μg/g creatinine). HAs, VAs, and H/VAs were respectively detected in 5.3%, 13.0%, and 25.0% of urine samples, with the 95th percentiles of 0.01 ng/mL (0.01 μg/g creatinine), 0.50 ng/mL (0.99 μg/g creatinine), and 3.58 ng/mL (5.02 μg/g creatinine), respectively. Maternal age, smoking of family members, and housework time were associated with detection frequencies of HAs, VAs, or sum of all antibiotics. Pregnant women with a more frequent consumption of fresh milk, egg, yoghourt, poultry meat, and fish had a higher detection frequency of VAs or H/VAs. Only ciprofloxacin and tetracycline had a HQ of larger than one based on microbiological effect in 1.26% and 0.21% of pregnant women, respectively and a HI of larger than one was found in 1.47% of pregnant women. The findings suggested that there was an evident antibiotic exposure from various sources in Tibetan pregnant women with some basic characteristics of pregnant women as potential predictors and several animal-derived food items were important sources of exposure to antibiotic with a fraction of pregnant women in the health risk related to microbiological disruption of gut microbiota.
Collapse
Affiliation(s)
- Yuanping Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1G5Z3, Canada
| | - Yangzong Gesang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zichen Yang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yi Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ke Zhao
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Minghui Han
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Chunxia Li
- Obstetrics and Gynecology Department, Fukang Hospital, Affiliated Hospital of Tibet University, Lhasa, Tibet, 850000, China
| | - Luobu Ouzhu
- Administrative Department, Fukang Hospital, Affiliated Hospital of Tibet University, Lhasa, Tibet, 850000, China
| | - Jiwei Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Hexing Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| |
Collapse
|
21
|
Ren JN, Zhu NZ, Meng XZ, Gao CJ, Li K, Jin LM, Shang TT, Ai FT, Cai MH, Zhao JF. Occurrence and ecological risk assessment of 16 phthalates in surface water of the mainstream of the Yangtze River, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66936-66946. [PMID: 37099107 DOI: 10.1007/s11356-023-27203-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/20/2023] [Indexed: 05/25/2023]
Abstract
Phthalic acid esters (PAEs), a class of typical endocrine disruptors, have received considerable attention due to their widespread applications and adverse effects on biological health. In this study, 30 water samples, along the mainstream of the Yangtze River (YR), were collected from Chongqing (upper stream) to Shanghai (estuary) from May to June in 2019. The total concentrations of 16 targeted PAEs ranged from 0.437 to 20.5 μg/L, with an average of 1.93 μg/L, where dibutyl phthalate (DBP, 0.222-20.2 μg/L), bis (2-ethylhexyl) phthalate (DEHP, 0.254-7.03 μg/L), and diisobutyl phthalate (DIBP, 0.0645-0.621 μg/L) were the most abundant PAEs. According to the pollution level in the YR to assess the ecological risk posed by PAEs, the results showed medium risk level of PAEs in the YR, among which DBP and DEHP posed a high ecological risk to aquatic organisms. The optimal solution for DBP and DEHP is found in ten fitting curves. The PNECSSD of them is 2.50 μg/L and 0.34 μg/L, respectively.
Collapse
Affiliation(s)
- Jia-Nan Ren
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Ning-Zheng Zhu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China.
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Chong-Jing Gao
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo, 315100, China
| | - Kai Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Li-Min Jin
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Ting-Ting Shang
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Fang-Ting Ai
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Ming-Hong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China
| | - Jian-Fu Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| |
Collapse
|
22
|
Li W, Guo L, Fang J, Zhao L, Song S, Fang T, Li C, Wang L, Li P. Phthalates and phthalate metabolites in urine from Tianjin and implications for platelet mitochondrial DNA methylation. Front Public Health 2023; 11:1108555. [PMID: 37181721 PMCID: PMC10169620 DOI: 10.3389/fpubh.2023.1108555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
Background Phthalates (PAEs) are important synthetic substances in plastics, attracting much attention due to their potential effects on the cardiovascular system. Methods In this study, urine and blood samples from 39 individuals were collected in Tianjin, China. Phthalates and phthalate metabolites (mPAEs) were analyzed using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography-mass spectrometry (HPLC-MS), respectively. The polymerase chain reaction (PCR) products from bisulfite-treated mitochondrial DNA (mtDNA) samples were analyzed using pyrosequencing technology. Results The detection frequencies for 9 PAEs varied from 2.56 to 92.31%, and those for 10 mPAEs varied from 30.77 to 100%. The estimated daily intakes (EDIs) and cumulative risk of PAEs were calculated based on the experimental statistics of urinary PAEs and mPAEs. For PAEs, the HIRfD (hazard index corresponding to reference doses) values of 10.26% of participants and the HITDI (hazard index corresponding to tolerable daily intake) values of 30.77% of participants were estimated to exceed 1, suggesting a relatively high exposure risk. The mtDNA methylation levels in the MT-ATP8 and MT-ND5 were observed to be lower than in the MT-ATP6. Mono-ethyl phthalate (MEP) and MT-ATP8 were positively correlated with triglyceride levels (p < 0.05). Based on the association of PAEs, mtDNA methylation, and triglycerides, the mediating role of mtDNA methylation between PAEs and cardiovascular diseases (CVDs) was analyzed in this study, but no mediated effect was observed. Conclusion The effects of PAE exposure on cardiovascular diseases (CVDs) should be investigated further.
Collapse
Affiliation(s)
- Weixia Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Fourth Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, China
| | - Liqiong Guo
- Tianjin Fourth Central Hospital, Tianjin, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Junkai Fang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | | | - Tao Fang
- Tianjin Fourth Central Hospital, Tianjin, China
| | - Chenguang Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, China
| | - Lei Wang
- Hebei Research Center for Geoanalysis, Baoding, Hebei, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Fourth Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, China
| |
Collapse
|
23
|
Wu N, Tao L, Tian K, Wang X, He C, An S, Tian Y, Liu X, Chen W, Zhang H, Xu P, Liao D, Liao J, Wang L, Fang D, Hu Z, Yuan H, Huang J, Chen X, Zhang L, Hou X, Zeng R, Liu X, Xiong S, Xie Y, Liu Y, Li Q, Shen X, Zhou Y, Shang X. Risk assessment and environmental determinants of urinary phthalate metabolites in pregnant women in Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53077-53088. [PMID: 36849691 DOI: 10.1007/s11356-023-26095-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Pregnant women are widely exposed to phthalic acid esters (PAEs) that are commonly used in most aspects of modern life. However, few studies have examined the cumulative exposure of pregnant women to a variety of PAEs derived from the living environmental conditions in China. Therefore, this study aimed to determine the urinary concentrations of nine PAE metabolites in pregnant women, examine the relationship between urinary concentrations and residential characteristics, and conduct a risk assessment analysis. We included 1,888 women who were in their third trimester of pregnancy, and we determined their urinary concentrations of nine PAE metabolites using high-performance gas chromatography-mass spectrometry. The risk assessment of exposure to PAEs was calculated based on the estimated daily intake. A linear regression model was used to analyze the relationship between creatinine-adjusted PAE metabolite concentrations and residential characteristics. The detection rate of five PAE metabolites in the study population was > 90%. Among the PAE metabolites adjusted by creatinine, the urinary metabolite concentration of monobutyl phthalate was found to be the highest. Residential factors, such as housing type, proximity to streets, recent decorations, lack of ventilation in the kitchen, less than equal to three rooms, and the use of coal/kerosene/wood/wheat straw fuels, were all significantly associated with high PAE metabolite concentrations. Due to PAE exposure, ~ 42% (n = 793) of the participants faced potential health risks, particularly attributed to dibutyl phthalate, diisobutyl phthalate, and di(2-ethyl)hexyl phthalate exposure. Living in buildings and using coal/kerosene/wood/wheat straw as domestic fuel can further increase the risks.
Collapse
Affiliation(s)
- Nian Wu
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Lin Tao
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Kunming Tian
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Xia Wang
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Caidie He
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Songlin An
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Yingkuan Tian
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Xiang Liu
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Wei Chen
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Haonan Zhang
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Pei Xu
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Dengqing Liao
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Juan Liao
- Department of Obstetrics, Affiliated Hospital of Zunyi Medical University, NO.149 Dalian Lu, Zunyi, 563006, People's Republic of China
| | - Linglu Wang
- Department of Obstetrics, Affiliated Hospital of Zunyi Medical University, NO.149 Dalian Lu, Zunyi, 563006, People's Republic of China
| | - Derong Fang
- Department of Obstetrics, Affiliated Hospital of Zunyi Medical University, NO.149 Dalian Lu, Zunyi, 563006, People's Republic of China
| | - Zhongmei Hu
- Department of Obstetrics, Affiliated Hospital of Zunyi Medical University, NO.149 Dalian Lu, Zunyi, 563006, People's Republic of China
| | - Hongyu Yuan
- The People's Hospital of Xishui County, Chishui Xilu, Xishui County, Zunyi, Guizhou Province, 564600, People's Republic of China
| | - Jingyi Huang
- The People's Hospital of Xishui County, Chishui Xilu, Xishui County, Zunyi, Guizhou Province, 564600, People's Republic of China
| | - Xiaoshan Chen
- The People's Hospital of Meitan County, Chacheng Avenue, Meitan County, Zunyi, Guizhou Province, 564100, People's Republic of China
| | - Li Zhang
- The People's Hospital of Meitan County, Chacheng Avenue, Meitan County, Zunyi, Guizhou Province, 564100, People's Republic of China
| | - Xiaohui Hou
- School of Preclinical Medicine, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Rong Zeng
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Xingyan Liu
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Yan Xie
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Yijun Liu
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Quan Li
- Department of Obstetrics, Affiliated Hospital of Zunyi Medical University, NO.149 Dalian Lu, Zunyi, 563006, People's Republic of China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China.
| | - Xuejun Shang
- Department of Urology, Jinling Hospital School of Medicine, Nanjing University, No.305 East Zhongshan Road, Nanjing, 210002, China
| |
Collapse
|
24
|
Domínguez-Romero E, Komprdová K, Kalina J, Bessems J, Karakitsios S, Sarigiannis DA, Scheringer M. Time-trends in human urinary concentrations of phthalates and substitutes DEHT and DINCH in Asian and North American countries (2009-2019). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:244-254. [PMID: 35513587 PMCID: PMC10005949 DOI: 10.1038/s41370-022-00441-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Many phthalates are environmental pollutants and toxic to humans. Following phthalate regulations, human exposure to phthalates has globally decreased with time in European countries, the US and Korea. Conversely, exposure to their substitutes DEHT and/or DINCH has increased. In other countries, including China, little is known on the time-trends in human exposure to these plasticizers. OBJECTIVE We aimed to estimate time-trends in the urinary concentrations of phthalates, DEHT, and DINCH metabolites, in general population from non-European countries, in the last decade. METHODS We compiled human biomonitoring (HBM) data from 123 studies worldwide in a database termed "PhthaLit". We analyzed time-trends in the urinary concentrations of the excreted metabolites of various phthalates as well as DEHT and DINCH per metabolite, age group, and country/region, in 2009-2019. Additionally, we compared urinary metabolites levels between continents. RESULTS We found solid time-trends in adults and/or children from the US, Canada, China and Taiwan. DEHP metabolites decreased in the US and Canada. Conversely in Asia, 5oxo- and 5OH-MEHP (DEHP metabolites) increased in Chinese children. For low-weight phthalates, the trends showed a mixed picture between metabolites and countries. Notably, MnBP (a DnBP metabolite) increased in China. The phthalate substitutes DEHT and DINCH markedly increased in the US. SIGNIFICANCE We addressed the major question of time-trends in human exposure to phthalates and their substitutes and compared the results in different countries worldwide. IMPACT Phthalates account for more than 50% of the plasticizer world market. Because of their toxicity, some phthalates have been regulated. In turn, the consumption of non-phthalate substitutes, such as DEHT and DINCH, is growing. Currently, phthalates and their substitutes show high detection percentages in human urine. Concerning time-trends, several studies, mainly in Europe, show a global decrease in phthalate exposure, and an increase in the exposure to phthalate substitutes in the last decade. In this study, we address the important question of time-trends in human exposure to phthalates and their substitutes and compare the results in different countries worldwide.
Collapse
Affiliation(s)
- Elena Domínguez-Romero
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic.
| | - Klára Komprdová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - Jiří Kalina
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - Jos Bessems
- VITO (Flemish Institute for Technological Research), BE-2400, Mol, Belgium
| | - Spyros Karakitsios
- Aristotle Univ Thessaloniki, Dept Chem Engn, Environm Engn Lab, Univ Campus,Bldg D,Rm 201, Thessaloniki, 54124, Greece
- HERACLES Res Ctr Exposome & Hlth, Ctr Interdisciplinary Res & Innovat, Balkan Ctr, Bldg B,10thkm Thessaloniki Thermi Rd, Thessaloniki, 57001, Greece
| | - Dimosthenis A Sarigiannis
- Aristotle Univ Thessaloniki, Dept Chem Engn, Environm Engn Lab, Univ Campus,Bldg D,Rm 201, Thessaloniki, 54124, Greece
- HERACLES Res Ctr Exposome & Hlth, Ctr Interdisciplinary Res & Innovat, Balkan Ctr, Bldg B,10thkm Thessaloniki Thermi Rd, Thessaloniki, 57001, Greece
- Sch Adv Study IUSS, Sci Technol & Soc Dept, Environm Hlth Engn, Piazza Vittoria 15, I-27100, Pavia, Italy
| | - Martin Scheringer
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| |
Collapse
|
25
|
Sree CG, Buddolla V, Lakshmi BA, Kim YJ. Phthalate toxicity mechanisms: An update. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109498. [PMID: 36374650 DOI: 10.1016/j.cbpc.2022.109498] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Phthalates are one of the most widely used plasticizers in polymer products, and they are increasingly being exposed to people all over the world, generating health concerns. Phthalates are often used as excipients in controlled-release capsules and enteric coatings, and patients taking these drugs may be at risk. In both animals and human, phthalates are mainly responsible for testicular dysfunction, ovarian toxicity, reduction in steroidogenesis. In this regard, for a better understanding of the health concerns corresponding to phthalates and their metabolites, still more research is required. Significantly, multifarious forms of phthalates and their biomedical effects are need to be beneficial to investigate in the various tissues or organs. Based on these investigations, researchers can decipher their toxicity concerns and related mechanisms in the body after phthalate's exposure. This review summarizes the chemical interactions, mechanisms, and their biomedical applications of phthalates in animals and human.
Collapse
Affiliation(s)
- Chendruru Geya Sree
- Dr. Buddolla's Institute of Life Sciences, Tirupati 517503, Andhra Pradesh, India
| | - Viswanath Buddolla
- Dr. Buddolla's Institute of Life Sciences, Tirupati 517503, Andhra Pradesh, India
| | - Buddolla Anantha Lakshmi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea.
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
26
|
Lee SH, Du ZY, Tseng WC, Lin WY, Chen MH, Lin CC, Liang HJ, Wen HJ, Guo YL, Chen PC, Lin CY. Identification of serum metabolic signatures of environmental-leveled phthalate in the Taiwanese child population using NMR-based metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120454. [PMID: 36306885 DOI: 10.1016/j.envpol.2022.120454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Phthalates have become important environmental pollutants due to their high exposure frequency in daily life; thus, phthalates are prevalent in humans. Although several epidemiologic surveys have linked phthalates with several adverse health effects in humans, the molecular events underlying phthalate exposure have not been fully elucidated. The purpose of this study was to reveal associations between phthalate exposure and the serum metabolome in Taiwanese children using a metabolomic approach. A total of 256 Taiwanese children (8-10 years old) from two cohorts were enrolled in this study. Twelve urinary phthalate metabolites were analyzed by high-performance liquid chromatography/tandem mass spectrometry, while a nuclear magnetic resonance-based metabolomic approach was used to record serum metabolic profiles. The associations between metabolic profiles and phthalate levels were assessed by partial least squares analysis coupled with multiple linear regression analysis. Our results revealed that unique phthalate exposures, such as mono-isobutyl phthalate, mono-n-butyl phthalate, and mono (2-ethyl-5-oxohexyl) phthalate, were associated with distinct serum metabolite profiles. These phthalate-mediated metabolite changes may be associated with perturbed energy mechanisms, increased oxidative stress, and lipid metabolism. In conclusion, this study suggests that metabolomics is a valid approach to examine the effects of environmental-level phthalate on the serum metabolome. This study also highlighted potentially important phthalates and their possible effects on children.
Collapse
Affiliation(s)
- Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Zhi-Yi Du
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Tseng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Mei-Huei Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Chun Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yue-Leon Guo
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
27
|
Hua L, Guo S, Xu J, Yang X, Zhu H, Yao Y, Zhu L, Li Y, Zhang J, Sun H, Zhao H. Phthalates in dormitory dust and human urine: A study of exposure characteristics and risk assessments of university students. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157251. [PMID: 35817099 DOI: 10.1016/j.scitotenv.2022.157251] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Phthalate diesters (PAEs) are prevalent and potentially toxic to human health. The university dormitory represents a typical and relatively uniform indoor environment. This study evaluated the concentrations of phthalate monoesters (mPAEs) in urine samples from 101 residents of university status, and the concentrations of PAEs in dust collected from 36 corresponding dormitories. Di-(2-ethylhexyl) phthalate (DEHP, median: 68.0 μg/g) was the major PAE in dust, and mono-ethyl phthalate (47.9 %) was the most abundant mPAE in urine. The levels of both PAEs in dormitory dust and mPAEs in urine were higher in females than in males, indicating higher PAE exposure in females. Differences in lifestyles (dormitory time and plastic product use frequency) may also affect human exposure to PAEs. Moreover, there were significant positive correlations between the estimated daily intakes of PAEs calculated by using concentrations of PAEs in dust (EDID) and mPAEs in urine (EDIU), suggesting that PAEs in dust could be a significant source of human exposure to PAEs. The value of EDID/EDIU for low molecular weight PAEs (3-6 carbon atoms in their backbone) was lower than that of high molecular weight PAEs. The contribution rate of various pathways to PAE exposure illustrated that non-dietary ingestion (87.8 %) was the major pathway of human exposure to PAEs in dust. Approximately 4.95 % of university students' hazard quotients of DEHP were >1, indicating that there may be some health risks associated with DEHP exposure among PAEs. Furthermore, it is recommended that some measures be taken to reduce the production and application of DEHP.
Collapse
Affiliation(s)
- Liting Hua
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sai Guo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiaping Xu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaomeng Yang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yongcheng Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingran Zhang
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing 100015, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
28
|
Ma S, Hu X, Tang J, Cui J, Lin M, Wang F, Yang Y, Yu Y. Urinary metabolites and handwipe phthalate levels among adults and children in southern China: Implication for dermal exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129639. [PMID: 35908399 DOI: 10.1016/j.jhazmat.2022.129639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/04/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Paired handwipe and urine samples were collected from adult (n = 130) and child (n = 82) residents of a typical urban community in southern China to examine relationships between external and internal exposure as well as the contribution of dermal absorption to the exposure of phthalates. The concentrations and composition profiles of phthalates were similar in handwipes from both adults and children, and contained mainly di-2-ethylhexyl phthalate (DEHP), di-n-butyl phthalate (DnBP) and di-iso-butyl phthalate (DiBP), consistent with profiles of phthalates in air and dust. The major metabolites of these phthalates, i.e., mono-n-butyl phthalate (mnBP) from DnBP, mono-iso-butyl phthalate (miBP) from DiBP and three metabolites of DEHP (namely mEHP, mEHHP and mEOHP) were widely detected in paired urine samples. Positive correlations were found between contamination levels of DiBP and DnBP in handwipes and their corresponding urinary metabolites, whereas no significant correlation was observed for DEHP. This suggests that dermal absorption might be an important exposure pathway particularly for low molecular weight phthalates. Our study shows that dermal absorption is a non-negligible exposure pathway for phthalates, to which children are particularly sensitive since the contribution of dermal uptake to the internal exposure of phthalates was higher in children than adults.
Collapse
Affiliation(s)
- Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Juntao Cui
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fei Wang
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou 515041, China.
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
29
|
Zhong HW, Guo JL, Hu YB, Jia LL, Guo Y. Phthalate exposure and DNA oxidative damage in young people of takeaway food lovers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71978-71987. [PMID: 35606587 DOI: 10.1007/s11356-022-20849-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Numerous studies have demonstrated the ubiquitous of phthalates in materials of food and food packaging, and the effects of regular eating takeaway food for a long time on human health and phthalate exposure levels were not fully investigated. A total of 288 college students who love eating takeaway food were recruited to explore phthalate exposure and oxidative stress, by measuring metabolites of traditional or alternative phthalates and 8-hydroxydeoxyguanosine (8-OHdG, a biomarker of DNA oxidative damage) in their urine samples. Both traditional and alternative phthalates were highly detected. Based on weekly frequency of takeaway eating collecting from questionnaire, the students were divided into four groups including level 1 (L1, < 3 times), level 2 (L2, 3-7 times), level 3 (L3, 8-12 times) and level 4 (L4, > 12 times). The total concentrations of all phthalate metabolites were 42.5-893 ng/mL in all students, which were significantly different among four groups, with the lowest level in L1 (p < 0.05). Checking with the generalized linear model (L1 as the reference), the concentrations of most phthalate metabolites increased 12.0-144% in L2 and L3 compared with those in L1. For each group increase, the concentrations of total metabolites, and metabolites of high and low molecular weight phthalates will increase by 0.156%, 0.128%, and 0.142%, respectively. Besides, levels of 8-OHdG (0.639-33.7 ng/mL) were positively correlated with phthalate daily exposure doses. The each increase of a percentage unit of daily exposure of phthalates, the concentrations of 8-OHdG will increase by 0.258-0.405%. However, levels of 8-OHdG were not significantly different among the four groups. The alternative phthalates have already entered the body of Chinese young people. Our results indicated the regular consumption of takeaway food (e.g., more than three times per week) may increase the chance of exposure to certain phthalates, and may not significantly increase the levels of DNA oxidative damage, unless exposed to other pollutants such as phthalates.
Collapse
Affiliation(s)
- Hao-Wen Zhong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Jia-Liang Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Yi-Bin Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Lu-Lu Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China.
| |
Collapse
|
30
|
Huang S, Ma S, Wang D, Liu H, Li G, Yu Y. National-scale urinary phthalate metabolites in the general urban residents involving 26 provincial capital cities in China and the influencing factors as well as non-carcinogenic risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156062. [PMID: 35597362 DOI: 10.1016/j.scitotenv.2022.156062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Phthalates (PAEs) are widely used in daily products but can cause a variety of adverse effects in humans. Few studies have been carried out on human internal exposure levels of PAEs on a large-scale, especially in developing countries. In the present study, 1161 urine samples collected from residents of 26 provincial capitals in China were analyzed for nine phthalate metabolites (mPAEs). The chemicals were widely detected, and the median specific gravity adjusted urinary concentration of Σ9mPAEs was 278 μg/L. Di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) were the main parent PAEs that the residents were exposed to. Demographic characteristics, such as age and educational level, were significantly associated with PAE exposure. Children and the elderly had higher mPAE levels. Subjects with lower educational levels were more frequently exposed to DnBP and DEHP. However, mono-ethyl phthalate showed the opposite trend, i.e., higher concentrations in subjects aged 18-59 years and with higher educational levels. Geographic differences were detected at the national scale. Residents in northeastern and western China had higher levels of mPAEs than those in central China, most likely because of different industrial usage of the chemicals and different living habits and living conditions of the residents. Health risk assessment showed that hazard indices of PAEs ranged from 0.07 to 9.34, with 20.0% of the subjects being concern for potential non-carcinogenic risk as assessed by Monte Carlo simulation. DEHP and DnBP were the primary contributors, representing 96.7% of total risk. This first large-scale study on PAE human internal exposure in China provides useful information on residents' health in a developing country, which could be used for chemical management and health protection.
Collapse
Affiliation(s)
- Senyuan Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dongwu Wang
- Shouguang City Center for Disease Control and Prevention in Shandong Province, Weifang 262700, PR China
| | - Hongli Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
31
|
Zhang Y, Li X, Zhang H, Liu W, Liu Y, Guo C, Xu J, Wu F. Distribution, source apportionment and health risk assessment of phthalate esters in outdoor dust samples on Tibetan Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155103. [PMID: 35398431 DOI: 10.1016/j.scitotenv.2022.155103] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
The urbanization of Tibetan Plateau (TP) probably results in a significant contamination of organic pollutants in the area, such as phthalate esters (PAEs). However, there is a lack of monitoring and evaluation of their occurrence and risks in the outdoor dust on TP. This study for the first time investigated the concentrations, distributions and health risk of PAEs in outdoor dust samples on TP, China. A total of 132 outdoor dust samples were collected from five different functional areas, and results showed the ubiquitous detection of all PAEs in the samples. The Σ6PAEs concentrations ranged from 0.08 to 31.49 μg·g-1 with a mean of 3.57 μg·g-1. High concentrations of Σ6PAEs in the outdoor dust were found in commercial districts, which were attributed to the heavy use of PAEs in the public commerce such as consumer products, commodities, and building materials. Di-n-butyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP) were the dominant components accounting for 30.65% and 53.19% of the Σ6PAEs. Principal component analysis, positive matrix factorization, and correlation analysis were used to apportion the potential sources of PAEs in outdoor dust samples. The PAEs in the outdoor dust originated mainly from wide application of plasticizers as well as cosmetics and personal care products. The main pathways of human exposure to PAEs in the outdoor dust were ingestion and dermal absorption of dust particles. The total intakes of PAEs from outdoor dusts for children and adults were 1.50 × 10-5 and 2.47 × 10-6 mg·kg-1·d-1, respectively. Children were more susceptible to the PAEs intake than the adults. Although the estimated health risks of the six PAEs are currently acceptable, caution is needed given the likely future increase in use of these PAEs and the currently unknown contribution to human exposure by other medium.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Xu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Heng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenxiu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| |
Collapse
|
32
|
Rodríguez-Báez AS, Medellín-Garibay SE, Rodríguez-Aguilar M, Sagahón-Azúa J, Milán-Segoviaa RDC, Flores-Ramírez R. Environmental endocrine disruptor concentrations in urine samples from Mexican Indigenous women. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38645-38656. [PMID: 35080728 DOI: 10.1007/s11356-021-18197-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 05/26/2023]
Abstract
The Indigenous communities in Mexico show significant degrees of vulnerability to pollution due to the lack of knowledge of health risks, traditions, low levels of support, and restricted access to healthcare. As a result, exposure to environmental endocrine disruptors increases in these populations through plastic components or indoor air pollution. Therefore, the aim of the study was to evaluate the exposure to phthalate metabolites, 1-hydroxypyrene, and bisphenol A through biomonitoring data from indigenous Mexican women. A total of 45 women from the Tocoy community in San Luis Potosí, Mexico, were included. Urine samples were analyzed for Bisphenol A and 4 phthalate metabolites by ultra-performance liquid chromatography couples to tandem mass spectrometry; additionally, the 1-hydroxypyrene concentrations were evaluated by high-performance liquid chromatography coupled to a fluorescence detector. Among the main pollution sources were the use of plastic containers and burning garbage (98-100%). Indigenous women presented an exposure of 100% to mono-2-ethyl phthalate, mono-n-butyl phthalate, and 1-hydroxypyrene, with a median (25th-75th percentiles) of 17,478 (11,362-37,355), 113.8 (61.7-203.5), and 1.2 (0.9-1.7) µg/g creatinine, respectively. The major findings show urinary mono-2-ethyl phthalate concentrations higher than those measured from other studies. Therefore, these results show an impressive exposure to di(2-ethylhexyl) phthalate in Indigenous women. The current study reflects the absence of regulatory policies in marginalized populations. It highlights the need to design strategies that mitigate exposure and the importance of biological monitoring to evaluate and prevent health risk associated with exposure to environmental endocrine disruptors.
Collapse
Affiliation(s)
- Ana Socorro Rodríguez-Báez
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, #6 Ave. Manuel Nava, C.P. 78210, San Luis Potosi, Mexico
| | - Susanna Edith Medellín-Garibay
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, #6 Ave. Manuel Nava, C.P. 78210, San Luis Potosi, Mexico.
| | - Maribel Rodríguez-Aguilar
- Department of Basic Sciences, Universidad de Quintana Roo, MéxicoCenter for Applied Research in Environment and Health, CIACYT, Autonomous University of San Luis Potosi, San Luis Potosi, Quintana Roo, Mexico
| | - Julia Sagahón-Azúa
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, #6 Ave. Manuel Nava, C.P. 78210, San Luis Potosi, Mexico
| | - Rosa Del Carmen Milán-Segoviaa
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, #6 Ave. Manuel Nava, C.P. 78210, San Luis Potosi, Mexico
| | - Rogelio Flores-Ramírez
- Coordination for Innovation and Application of Science and Technology (CIACYT), Autonomous University of San Luis Potosi, #550 Ave. Sierra Leona, C.P. 78210, San Luis Potosi, Mexico.
| |
Collapse
|
33
|
Al-Bazi MM, Kumosani TA, Al-Malki AL, Moselhy SS. Screening the incidence of diabetogensis with urinary phthalate in Saudi subjects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28743-28748. [PMID: 34988825 DOI: 10.1007/s11356-021-18361-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Nowadays, phthalates widely employed in many products are distributed around us which contributed to the development of many chronic diseases. We investigated the incidence of type 2 diabetes mellitus (T2DM) in Saudi subjects and correlated it with urinary phthalate metabolites' screening study.We selected a total of 100 cases early diagnosed as type 2 diabetes mellitus (FBS ≥ 126 mg/dl, PP 2 h, ≥ 140 mg/dl) and 50 normal subjects (FBS ≤ 90 mg/dl) as control. Overnight fasting blood samples were subjected for assay of FBS, glycated hemoglobin, insulin, C-peptide, HOMA-IR, advanced glycation end products (AGEs), and urinary assay of some phthalate metabolite levels.Data obtained showed a significant elevation of FBS, HA1c, AGEs, insulin, and C-peptide and HOMA-IR in diabetic patients compared with the control (p < 0.001). Urinary phthalate metabolites such as mono-ethyl phthalate (mEP), mono-(2-ethyl-5-oxohexyl) phthalate (mEOHP), and mono-n-butyl phthalate (mBP) were detected in significant concentrations in diabetic patients compared with control. A positive correlation was found between mEP and mBP and HOMA-IR and C-peptide.Phthalate toxicity is considered as one of the risk factors that contributed to insulin resistance and development of T2DM via increasing the levels of HOMA-IR and C-peptide.This will result in the risk of phthalate exposure for diabetogensis and its economic cost for treatment lifetime.
Collapse
Affiliation(s)
- Maha M Al-Bazi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Taha A Kumosani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Production of Bio-Products for Industrial Applications Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman L Al-Malki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Bioactive Natural Products Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Said S Moselhy
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
- Production of Bio-Products for Industrial Applications Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
34
|
Runkel AA, Mazej D, Snoj Tratnik J, Tkalec Ž, Kosjek T, Horvat M. Exposure of men and lactating women to environmental phenols, phthalates, and DINCH. CHEMOSPHERE 2022; 286:131858. [PMID: 34399256 DOI: 10.1016/j.chemosphere.2021.131858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Phthalates and 1,2-Cyclohexane dicarboxylic acid diisononyl ester (DINCH), bisphenols (BPs), parabens (PBs), and triclosan (TCS) are high-production-volume chemicals of pseudo-persistence that are concerning for the environment and human health. This study aims to assess the exposure to 10 phthalates, DINCH, and environmental phenols (3 BPs, 7 PBs, and TCS) of Slovenian men (n = 548) and lactating primiparous women (n = 536). We observed urinary concentrations comparable to studies from other countries and significant differences among the sub-populations. In our study, men had significantly higher levels of phthalates, DINCH, and BPs, whereas the concentrations of PBs in urine were significantly higher in women. The most significant determinant of exposure was the area of residence and the year of sampling (2008-2014) that mirrors trends in the market. Participants from urban or industrialized sampling locations had higher levels of almost all monitored analytes compared to rural locations. In an attempt to assess the risk of the population, hazard quotient (HQ) values were calculated for individual compounds and the chemical mixture. Individual analytes do not seem to pose a risk to the studied population at current exposure levels, whereas the HQ value of the chemical mixture is near the threshold of 1 which would indicate a higher risk. We conclude that greater emphasis on the risk resulting from cumulative exposure to chemical mixtures and additional studies are needed to estimate the exposure of susceptible populations, such as children.
Collapse
Affiliation(s)
- Agneta A Runkel
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Darja Mazej
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | | | - Žiga Tkalec
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Tina Kosjek
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Milena Horvat
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
35
|
Shehata M, Salah E, Youssef MM, Abu Shady MM, El-Alameey I, Ashaat E, Gouda AS, Nazim W. Comparing Levels of Urinary Phthalate Metabolites in Egyptian Children with Autism Spectrum Disorders and Healthy Control Children: Referring to Sources of Phthalate Exposure. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Evidence supporting environmental risk factors of autism spectrum disorder (ASD) is rising. Phthalates are assumed to contribute to this risk due to their extensive use in daily life as plasticizers and additives in numerous customer products. Phthalates are also accused as a neurotoxic agent affecting brain development.
Aim: The main objective of this study is to compare the concentrations of urinary phthalate metabolites as biomarkers of phthalate exposure in children with autism to that of a healthy control group and to compare their exposure to suspected environmental sources of phthalate.
Methods: It was a case-control study; conducted over a period of one year. Thirty-eight children with ASD and 99 apparently healthy children comprised the control group, were enrolled in the study. Urinary concentrations of four phthalate metabolites were measured, using a combination of solid phase extraction, high pressure liquid chromatography, and tandem mass spectrometry.
Results: Children with ASD comprised 38 children (32 boys and 6 girls), their mean age was 8.95 + 4.17 years. There were significant higher levels of urinary Mono (2ethylhexyl) phthalate (MEHP), mono benzyl, and mono butyl phthalates in cases vs. controls with p value equals (0.006, 0.017 and <0.001) respectively. Regression analysis revealed that male gender and the level of mono butyl are the main predictors of ASD (p<0.001).
Conclusion: This study suggested a link between phthalates and ASD with higher urinary levels of phthalate metabolites in children with ASD. These high levels are either due to increased exposure or defective metabolism in children with ASD. The study declined any relationship of the studied sources of phthalate exposure to ASD except the exposure to wall painting with plastic.
Collapse
|
36
|
Zhang YJ, Wu LH, Wang F, Liu LY, Zeng EY, Guo Y. DNA oxidative damage in pregnant women upon exposure to conventional and alternative phthalates. ENVIRONMENT INTERNATIONAL 2021; 156:106743. [PMID: 34243036 DOI: 10.1016/j.envint.2021.106743] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/06/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Exposure to alternative phthalates and related health effects in pregnant women are rarely reported. Nineteen phthalate metabolites and a DNA oxidative damage biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) were determined in urine samples of pregnant women recruited in South China. The detection frequencies and concentration of selected alternative phthalates, i.e., diisononyl phthalate (DiNP), diisodecyl phthalate (DiDP) and di-(2-propylheptyl) phthalate (DPHP) were lower than those of conventional phthalates. However, mono-(6-hydroxy-2-propylheptyl) phthalate, a metabolite of DPHP, was detected in 70% of urine samples (median: 0.13 ng/mL). The estimated daily intakes of conventional plasticizers, including dimethyl phthalate, di-n-butyl phthalate, diisobutyl phthalate and di-(2-ethylhexyl) phthalate (median range: 1.0-3.0 μg/kg_bw/day) were significantly higher than those of DiNP (0.08 μg/kg_bw/day) and DPHP (0.03 μg/kg_bw/day) (p < 0.05). Approximately 24% of pregnant women were at high risk when cumulative risk from exposure to several phthalates was considered. The concentrations of phthalate metabolites and urinary 8-OHdG were significantly correlated with each other (r = 0.206-0.772, p < 0.01), which were further conformed by multiple linear regression analysis (β = 0.168-0.639, p < 0.01). In addition, conventional phthalates were more strongly correlated with 8-OHdG than alternative phthalates (i.e., DiNP, DPHP), partly suggesting the relatively smaller health effects of alternatives due to their low exposure doses and toxicities. These findings suggested that alternative phthalates have entered the human body from consumer products in the study area, and exposure-related risk of DNA oxidative stress was comparatively lower.
Collapse
Affiliation(s)
- Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Liu-Hong Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Fei Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
37
|
Huang C, Zhang YJ, Liu LY, Wang F, Guo Y. Exposure to phthalates and correlations with phthalates in dust and air in South China homes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146806. [PMID: 33836381 DOI: 10.1016/j.scitotenv.2021.146806] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
We spend more than half of our daily time in indoor environments, and the contributions of phthalates present in it to total exposure are important. Here, we determined phthalate concentrations in paired indoor settled dust/air and their metabolites in human urine from 100 general families in south China to explore such kind of effect. The total concentrations of phthalates/metabolites were 48.7-2850 μg/g, 279-5080 ng/m3 and 10.7-2840 ng/mL in the indoor dust, air and urine samples, respectively. Among all targets, di-n-butyl phthalate, di-isobutyl phthalate and di-(2-ethylhexyl) phthalate and their metabolites were the predominant compounds. The daily intakes (DIs) of phthalates via dust or air decreased with age, except for infant, and the values of dust ingestion, air inhalation and air dermal uptake were 2720 ± 2460, 1300 ± 973 and 3590 ± 2890 ng/kg/day for toddlers and 236 ± 194, 360 ± 179 and 1120 ± 586 ng/kg/day for adults, respectively. The ratios of DIs from air to dust were greater than 1.0 for people in all age groups, and the ratio was the highest for adults. Furthermore, the contributions of phthalates from indoor dust and air to total DIs from all sources (estimated from urinary phthalate metabolites) were 0.60%-5.23% and 2.65%-12.2% for different ages, respectively. Our results indicated that indoor air was a quite important source for human exposure to phthalates in indoor environment in south China.
Collapse
Affiliation(s)
- Cong Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China
| | - Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China
| | - Fei Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China.
| |
Collapse
|
38
|
Zhang Y, Jiao Y, Tao Y, Li Z, Yu H, Han S, Yang Y. Monobutyl phthalate can induce autophagy and metabolic disorders by activating the ire1a-xbp1 pathway in zebrafish liver. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125243. [PMID: 33524730 DOI: 10.1016/j.jhazmat.2021.125243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Monobutyl phthalate (MBP) can exist in biological organisms for a long time because of its excellent fat solubility, and it has been found to have certain toxic effects. In this study, the acute effects of MBP on endoplasmic reticulum (ER) stress and metabolism in the zebrafish liver were studied. After continuous exposure to MBP (5 and 10 mg / L) for 96 h, ER damage and the appearance of apoptotic bodies and autophagosomes were found in liver. This is because MBP stimulated the ire-xbp1 pathway of ER stress, thus leading to apoptosis and autophagy. Also, through analysis of metabolic enzymes and genes, it was found that the activated ire-xbp1 pathway could promote lipid synthesis and cause the accumulation of lipid droplets. The gene pparγ related to lipid storage affected the level of insulin, which can also further affect the glucose metabolism process, that is, glycolysis and aerobic respiration were inhibited. And the pentose phosphate pathway (PPP) was activated as a compensation mechanism to alleviate glycogen accumulation. The abnormal supply of energy and the death of excessive cells will eventually severely damage the zebrafish liver. This study will enrich the knowledge about the toxic effects of MBP.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Hui Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Siyue Han
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
39
|
Huang S, Qi Z, Ma S, Li G, Long C, Yu Y. A critical review on human internal exposure of phthalate metabolites and the associated health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116941. [PMID: 33756240 DOI: 10.1016/j.envpol.2021.116941] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Phthalates (PAEs) are popular synthetic chemicals used as plasticizers and solvents for various products, such as polyvinyl chloride or personal care products. Human exposure to PAEs is associated with various diseases, resulting in PAE biomonitoring in humans. Inhalation, dietary ingestion, and dermal absorption are the major human exposure routes. However, estimating the actual exposure dose of PAEs via an external route is difficult. As a result, estimation by internal exposure has become the popular analytical methods to determine the concentrations of phthalate metabolites (mPAEs) in human matrices (such as urine, serum, breast milk, hair, and nails). The various exposure sources and patterns result in different composition profiles of PAEs in biomatrices, which vary from country to country. Nevertheless, the mPAEs of diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), di-iso-butyl phthalate (DiBP), and di-(2-ethylhexyl) phthalate (DEHP) are predominant in the urine. These mPAEs have greater potential health risks for humans. Children have been observed to exhibit higher exposure risks to several mPAEs than adults. Besides age, other influencing factors for phthalate exposure are gender, jobs, and residential areas. Although many studies have reported biological monitoring of PAEs, only a few reviews that adequately summarized the reports are available. The current review appraised available studies on mPAE quantitation in human biomatrices and estimated the dose and health risks of phthalate exposure. While some countries lack biomonitoring data, some countries' data do not reflect the current PAE exposure. Thence, future studies should involve frequent PAE biomonitoring to accurately estimate human exposure to PAEs, which will contribute to health risk assessments of human exposure to PAEs. Such would aid the formulation of corresponding regulations and restrictions by the government.
Collapse
Affiliation(s)
- Senyuan Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China
| | - Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China
| | - Chaoyang Long
- Center for Disease Prevention and Control of Guangdong Province, Guangzhou, 510430, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China.
| |
Collapse
|
40
|
Xu H, Sheng J, Wu X, Zhan K, Tao S, Wen X, Liu W, Cudjoe O, Tao F. Moderating effects of plastic packaged food on association of urinary phthalate metabolites with emotional symptoms in Chinese adolescents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112171. [PMID: 33812210 DOI: 10.1016/j.ecoenv.2021.112171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 05/26/2023]
Abstract
Previous research reports that diet is the main source of phthalate exposure to adolescents, and phthalate is associated with adolescent mental and behavioral problems. However, no study has explored the moderating effects of eating behavior in this association. This study aimed to analyze the moderating effects of plastic packaged food consumption in the longitudinal association between phthalate metabolite concentration and emotional symptoms in adolescents. This school-based survey was carried out among adolescents in two Chinese provinces. We conducted a baseline and follow-up surveys for 893 freshmen using the purposive sampling method from December 2018 to November 2019. We used food frequency questionnaire to assess eating behavior. The Chinese version of 21-item Depression Anxiety Stress Scales was used to assess emotional symptoms, and high-performance liquid chromatography-tandem mass spectrometry was used to analyze the concentration of six urine phthalate metabolites. The results of latent moderation model indicated that plastic packaged food consumption moderated the association of low molecular weight phthalate (LMWP) with depressive symptoms (β = 0.27, P = 0.002), anxiety symptoms (β = 0.89, P < 0.01), and stress symptoms (β = 0.23, P = 0.019). The moderating effects were significant at the higher scores (β = 0.14-0.35, P < 0.05) and/or the lower scores (β = -0.35 to -0.12, P < 0.05) of plastic packaged food consumption. The results suggest that plastic packaged food consumption to some extent moderates the longitudinal association of phthalate exposure with emotional symptoms in adolescents.
Collapse
Affiliation(s)
- Honglv Xu
- School of Medicine, Kunming University, 2 Puxin Road, Kunming 650214, Yunnan, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei 230032, Anhui, PR China
| | - Jie Sheng
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei 230032, Anhui, PR China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei 230032, Anhui, PR China
| | - Kai Zhan
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Science, Hefei 230031, Anhui, PR China
| | - Shuman Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei 230032, Anhui, PR China
| | - Xing Wen
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei 230032, Anhui, PR China
| | - Wenwen Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei 230032, Anhui, PR China
| | - Obed Cudjoe
- University of Cape Coast, Department of Microbiology and Immunology, School of Medical Sciences, Cape Coast, Ghana; Department and the Key Laboratory of Microbiology and Parasitology, Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei 230032, Anhui, PR China.
| |
Collapse
|
41
|
Cheng BJ, Xu PR, Wei R, Li XD, Sheng J, Wang SF, Liu KY, Chen GM, Tao FB, Wang QN, Yang LS. Levels and determinants of urinary phthalate metabolites in Chinese community-dwelling older adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144173. [PMID: 33360337 DOI: 10.1016/j.scitotenv.2020.144173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Biomonitoring studies have demonstrated extensive exposure of infants, children, and pregnant women to phthalates, but data on phthalate exposure and their determinants in Chinese older adults remain insufficient. This study aims to assess urinary phthalate metabolite levels, individual and cumulative exposure risk, and their determinants in Chinese community-dwelling older adults. METHODS A total of 987 individuals aged 60 years or over were included in this study. The urinary levels of seven phthalate metabolites were measured using high-performance liquid chromatography-tandem mass spectrometry. The estimated daily intake (EDI), hazard quotient (HQ), and hazard index (HI) of phthalates were calculated based on urinary metabolite levels. The associations between phthalate metabolite levels and potential determinants were examined using multiple linear regressions. RESULTS Detection rates of seven phthalate metabolites from the study population ranged from 63.83% to 99.39%. The highest median concentration was 43.64 μg/L (42.59 μg/g creatinine) for mono-butyl phthalate (MBP). The highest median EDI was 1.55 μg/kg-bw/day for diethyl phthalate (DBP). Nearly 5% of participants had high HI values exceeding 1, mainly attributed to DBP and di-2-ethylhexyl phthalate (DEHP). Furthermore, we found that females, higher body mass index (BMI), smoking, having two or more chronic diseases, and vegetable-based diets were significantly associated with higher levels of parts of phthalate metabolites. More interestingly, higher urine levels of high-molecular-weight (HMW) phthalate metabolites and lower urine levels of low-molecular-weight (LMW) phthalate metabolites were found in rural older adults than in urban older adults. CONCLUSIONS Chinese community-dwelling older adults are extensively exposed to phthalates, especially to DBP and DEHP. More attention should be paid to urban-rural differences in exposure to HMW and LMW phthalates and to phthalate exposure among older adults with overweight/obesity, females, and individuals who are current heavy smokers, have two or more chronic diseases, and consume vegetable-based diets.
Collapse
Affiliation(s)
- Bei-Jing Cheng
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Pei-Ru Xu
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Rong Wei
- Outpatient Department of the Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Xiu-de Li
- Lu'an Municipal Center for Disease Control and Prevention, Lu'an, Anhui 237008, China
| | - Jie Sheng
- School of Public Health, Experimental Center for Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Su-Fang Wang
- School of Public Health, Department of Nutrition and Food Hygiene, Anhui Medical University, Hefei, Anhui 230032, China
| | - Kai-Yong Liu
- School of Public Health, Department of Nutrition and Food Hygiene, Anhui Medical University, Hefei, Anhui 230032, China
| | - Gui-Mei Chen
- School of Health Services Management, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fang-Biao Tao
- School of Health Services Management, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui 230032, China
| | - Qu-Nan Wang
- School of Public Health, Department of Toxicology, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Lin-Sheng Yang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
42
|
Zhu YT, Yuan YZ, Feng QP, Hu MY, Li WJ, Wu X, Xiang SY, Yu SQ. Food emulsifier polysorbate 80 promotes the intestinal absorption of mono-2-ethylhexyl phthalate by disturbing intestinal barrier. Toxicol Appl Pharmacol 2021; 414:115411. [PMID: 33476678 DOI: 10.1016/j.taap.2021.115411] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Di-2-ethylhexyl phosphate (DEHP) and its main toxic metabolite mono-2-ethylhexyl phthalate (MEHP) are the typical endocrine disrupting chemicals (EDCs) and widely affect human health. Our previous research reported that synthetic nonionic dietary emulsifier polysorbate 80 (P80, E433) had the promotional effect on the oral absorption of DEHP in rats. The aim of this study was to explore its mechanism of promoting oral absorption, focusing on the mucus barrier and mucosal barrier of the small intestine. A small molecule fluorescent probe 5-aminofluorescein-MEHP (MEHP-AF) was used as a tracker of MEHP in vivo and in vitro. First of all, we verified that P80 promoted the bioavailability of MEHP-AF in the long-term and low-dose exposure of MEHP-AF with P80 as a result of increasing the intestinal absorption of MEHP-AF. Afterwards, experimental results from Western blot, qPCR, immunohistochemistry, and immunofluorescence showed that P80 decreased the expression of proteins (mucus protein mucin-2, tight junction proteins claudin-1 and occludin) related to mucus barrier and mucosal barrier in the intestine, changed the integrity of intestinal epithelial cell, and increased the permeability of intestinal epithelial mucosa. These results indicated that P80 promoted the oral absorption of MEHP-AF by altering the intestinal mucus barrier and mucosal barrier. These findings are of great importance for assessing the safety risks of some food emulsifiers and clarifying the absorption mechanism of chemical pollutants in food, especially for EDCs.
Collapse
Affiliation(s)
- Yu-Ting Zhu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Yi-Zhen Yuan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Qiu-Ping Feng
- College of Food Sciences and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Meng-Yuan Hu
- College of Food Sciences and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Wen-Jie Li
- College of Food Sciences and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Xiu Wu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Su-Yun Xiang
- College of Food Sciences and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, People's Republic of China.
| | - Shu-Qin Yu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China.
| |
Collapse
|
43
|
González-Mariño I, Ares L, Montes R, Rodil R, Cela R, López-García E, Postigo C, López de Alda M, Pocurull E, Marcé RM, Bijlsma L, Hernández F, Picó Y, Andreu V, Rico A, Valcárcel Y, Miró M, Etxebarria N, Quintana JB. Assessing population exposure to phthalate plasticizers in thirteen Spanish cities through the analysis of wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123272. [PMID: 32645544 DOI: 10.1016/j.jhazmat.2020.123272] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/03/2020] [Accepted: 06/18/2020] [Indexed: 05/24/2023]
Abstract
Phthalates are widely used plasticizers that produce endocrine-disrupting disorders. Quantifying exposure is crucial to perform risk assessments and to develop proper health measures. Herein, a wastewater-based epidemiology approach has been applied to estimate human exposure to six of the mostly used phthalates within the Spanish population. Wastewater samples were collected over four weekdays from seventeen wastewater treatment plants serving thirteen cities and ca. 6 million people (12.8 % of the Spanish population). Phthalate metabolite loads in wastewater were transformed into metabolite concentrations in urine and into daily exposure levels to the parent phthalates. Considering all the sampled sites, population-weighted overall means of the estimated concentrations in urine varied between 0.7 ng/mL and 520 ng/mL. Very high levels, compared to human biomonitoring data, were estimated for monomethyl phthalate, metabolite of dimethyl phthalate. This, together with literature data pointing to other sources of this metabolite in sewage led to its exclusion for exposure assessments. For the remaining metabolites, estimated concentrations were closer to those found in urine. Their 4-days average exposure levels ranged from 2 to 1347 μg/(day∙inh), exceeding in some sites the daily exposure thresholds set for di-i-butyl phthalate and di-n-buthyl phthalate by the European Food Safety Authority.
Collapse
Affiliation(s)
- Iria González-Mariño
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain.
| | - Leticia Ares
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rosa Montes
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rafael Cela
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ester López-García
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Cristina Postigo
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Eva Pocurull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Rosa María Marcé
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, E-12071 Castellón, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, E-12071 Castellón, Spain
| | - Yolanda Picó
- Food and Environmental Safety Research Group (SAMA-UV) - CIDE (CSIC-University of Valencia-GV), University of Valencia, 46113 Moncada, Spain
| | - Vicente Andreu
- Food and Environmental Safety Research Group (SAMA-UV) - CIDE (CSIC-University of Valencia-GV), University of Valencia, 46113 Moncada, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Punto Com 2, 28805, Alcalá de Henares, Spain
| | - Yolanda Valcárcel
- Group of Risks for the Environmental and Public Health (RiSAMA), Medical Specialities and Public Health, Rey Juan Carlos University, 28933 Móstoles (Madrid), Spain
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Néstor Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
44
|
Lu S, Yang D, Ge X, Li L, Zhao Y, Li C, Ma S, Yu Y. The internal exposure of phthalate metabolites and bisphenols in waste incineration plant workers and the associated health risks. ENVIRONMENT INTERNATIONAL 2020; 145:106101. [PMID: 32905998 DOI: 10.1016/j.envint.2020.106101] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Many hazardous substances can be released during incineration of municipal solid waste (MSW), which pose a potential threat to human health. As additives, phthalates (PAEs) and bisphenols (BPs), which are widely used in daily goods, are likely to be present in the released hazardous substances. In the present study, we investigated the urinary levels of phthalate metabolites (mPAEs) and BPs in workers in an MSW incineration plant (the exposed group) and in residents 8 km away (the control group) in Shenzhen, China. The results showed that the median total urinary concentration of mPAEs in workers was significantly higher than that in residents (1.02 × 103 vs. 375 ng/mL). However, there was no significant difference between workers and residents for BPs. Among the mPAEs measured, the most abundant compound was mono-n-butyl phthalate in both exposed and control groups. Monoethyl phthalate and monomethyl phthalate might be potential markers for MSW incineration because of significantly high levels in the exposed group. The workers engaged in different types of workshops showed no significant differences in the urinary levels of mPAEs, also for BPs. It was worth noting that 70.8% of workers were at risk of the non-carcinogenic effects caused by PAEs with diethylhexyl phthalate having the highest risk. Actions should be taken to reduce the risks caused by these hazardous chemicals.
Collapse
Affiliation(s)
- Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Dongfeng Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health, University of South China, Hengyang 421001, PR China; Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Xiang Ge
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Le Li
- School of Public Health, University of South China, Hengyang 421001, PR China
| | - Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shengtao Ma
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
45
|
Liu L, Wang H, Li X, Tian M, Huang Q, Zhang J, Pan H, Wen K, Huang Q, Yan J, Tong Z, Zhang Y, Zhang T, Zhang Y, Li B, Wang T, Shen H. Infantile phthalate metabolism and toxico/pharmacokinetic implications within the first year of life. ENVIRONMENT INTERNATIONAL 2020; 144:106052. [PMID: 32822925 DOI: 10.1016/j.envint.2020.106052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/14/2020] [Accepted: 08/07/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Infantile development of phthalate metabolism is crucial for risk assessment of endocrine disruption and has important toxico/pharmacokinetic implications. OBJECTIVES To characterize temporal variability in urinary phthalate metabolites in infants and to examine their growth-dependent detoxification. METHODS In this cohort study, urine samples (n = 876) from 155 healthy Chinese infants were collected serially at eight time points from birth to one year old. Free and total (i.e., free plus glucuronide conjugated) phthalate metabolites (PMEs) were measured by LC/MS/MS. Time variability in PMEs and PME metabolism capacity was characterized using intraclass correlation coefficients (ICCs) and linear mixed regression models. RESULTS Concentrations of most PMEs changed significantly, with ICCs ranging from 0.213 to 0.318, and trends increased significantly over time (p < 0.001), while MEHP showed fair reproducibility (ICC = 0.480). Glucuronidation increased considerably (ICC ≤ 0.250; p < 0.001) for most PMEs but not for MMP or MEHP. Ester-chain ω-/ω-1-oxidation and α-/β-oxidation patterns of MEHP steeply increased from 3 months to 8 months, where they peaked, resulting in a molar percentage of MEHP in ΣDEHP showing the inversion pattern. MEHP detoxification through oxidation of the hydrophobic ester-chain is apparently a priority for carboxyl glucuronidation in infants. CONCLUSIONS Infant phthalate exposure is prevalent, but they cannot metabolize or eliminate these compounds as efficiently as adults, especially during the first 6 months of life. From an environmental biomonitoring view, age-dependent phthalate metabolism provides crucial implications for infantile ontogeny and health risk assessment within the first year of life.
Collapse
Affiliation(s)
- Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, PR China
| | - Xueyan Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, PR China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Hong Pan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Kai Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Qiansheng Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Jianbo Yan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, PR China
| | - Zhendong Tong
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, PR China
| | - Yongli Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, PR China
| | - Tongjie Zhang
- Daishan County Center for Disease Control and Prevention, Daishan, Zhejiang 316200, PR China
| | - Yingying Zhang
- School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Tong Wang
- School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
46
|
Tao Y, Yang Y, Jiao Y, Wu S, Zhu G, Akindolie MS, Zhu T, Qu J, Wang L, Zhang Y. Monobutyl phthalate (MBP) induces energy metabolism disturbances in the gills of adult zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115288. [PMID: 32795888 DOI: 10.1016/j.envpol.2020.115288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Monobutyl phthalate (MBP) is a primary metabolite of an environmental endocrine disruptor dibutyl phthalate (DBP), which poses a potential threat to living organisms. In this research, the acute toxicity of MBP on energy metabolism in zebrafish gills was studied. Transmission electron microscopy (TEM) results show that 10 mg L-1 MBP can induce mitochondrial structural damage of chloride cells after 96 h of continuous exposure. The activity of ion ATPase and the expression level of oxidative phosphorylation-related genes suggest that MBP interferes with ATP synthesis and ion transport. Further leading to a decrease in mitochondrial membrane potential (MMP) and cell viability, thereby mediating early-stage cell apoptosis. Through a comprehensive analysis of principal component analysis (PCA) and integrated biomarker response (IBR) scores, atp5a1, a subunit of mitochondrial ATP synthase, is mainly inhibited by MBP, followed by genes encoding ion ATPase (atp1b2 and atp2b1). Importantly, MBP inhibits aerobic metabolism by inhibiting the key enzyme malate dehydrogenase (MDH) in the TCA cycle, forcing zebrafish to maintain ATP supply by enhancing anaerobic metabolism.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Song Wu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guangxue Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Modupe Sarah Akindolie
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
47
|
Yao Y, Chen DY, Yin JW, Zhou L, Cheng JQ, Lu SY, Li HH, Wen Y, Wu Y. Phthalate exposure linked to high blood pressure in Chinese children. ENVIRONMENT INTERNATIONAL 2020; 143:105958. [PMID: 32688158 DOI: 10.1016/j.envint.2020.105958] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/17/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Exposure to phthalate esters may be linked to the risk of high blood pressure (HBP), but limited evidence is available in Chinese children. OBJECTIVE To investigate the associations between nine phthalate metabolites (mPAEs) and systolic/diastolic BP, pulse pressure (PP), mean arterial pressure (MAP), and the risk of HBP. METHODS In this cross-sectional study, a total of 1044 primary school children (6-8 years old) were enrolled from Shenzhen, China, between 2016 and 2017. Nine mPAEs were analyzed from urine using ultra-performance liquid chromatography and tandem mass spectrometry. A multivariable linear regression model was used to explore the associations between phthalate exposure and systolic/diastolic BP, PP, and MAP. A binary logistic regression model was used to examine the associations between phthalate exposure and the risk of HBP. RESULTS Monomethyl phthalate (MMP) concentrations were significantly higher in HBP children than normal BP children. MMP, monoisobutyl phthalate (MiBP), monobutyl phthalate (MnBP), mono(5-carboxy-2-ethylpentyl) phthalate, mono-[(2-carboxy methyl)hexyl] phthalate (MCMHP), the sum of four short-chain mPAEs (∑LMW), and the sum of all nine mPAEs (∑9mPAEs) were significantly positively associated with increases in systolic BP z-score, while only MMP was significantly positively associated with diastolic BP z-score. MMP, MiBP, MnBP, MCMHP, ∑LMW, and ∑9mPAEs were significantly associated with increases in PP, while MMP and MnBP were significantly associated with increases in MAP. MMP was significantly associated with the risk of HBP, with an odds ratio of 1.87 (95% CI: 1.23, 2.85). CONCLUSIONS The present study suggests that dimethyl phthalate exposure increases the risk of HBP. And some types of phthalates are associated with elevations in systolic/diastolic BP z scores, PP, and MAP in Chinese children.
Collapse
Affiliation(s)
- Yao Yao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ding-Yan Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jiang-Wei Yin
- Baoan District Center for Disease Control and Prevention, Shenzhen 518101, China
| | - Li Zhou
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Jin-Quan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Shao-You Lu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou 510275, China
| | - Hong-Hua Li
- Baoan District Center for Disease Control and Prevention, Shenzhen 518101, China
| | - Ying Wen
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yu Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| |
Collapse
|
48
|
Duan C, Fang Y, Sun J, Li Z, Wang Q, Bai J, Peng H, Liang J, Gao Z. Effects of fast food packaging plasticizers and their metabolites on steroid hormone synthesis in H295R cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138500. [PMID: 32334352 DOI: 10.1016/j.scitotenv.2020.138500] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
The health risks of exposure to plasticizers have received widespread attention, however, little is known about the effects of fast food packaging plasticizers on steroid hormone synthesis. In the present study, the types and migration of plasticizers in some commonly used fast-food packaging materials were detected by GC-MS, and the interference effects of these plasticizers and their metabolites on steroid hormone synthesis in the human body were evaluated by the H295R steroidogenesis assay. The GC-MS results showed that the main plasticizer compounds that migrated from fast food packaging into food were di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and bis(2-ethylhexyl) adipate (DEHA). Exposure to these chemicals (100-1000 μM) can significantly reduce the viability of H295R cells in a dose-response manner, and these plasticizers and their metabolites that migrated into oily foods at high temperatures (0.25-25 μM) could significantly increase the E2 level and reduce the T level in H295R cells. According to the qRT-PCR data, 0.25 to 25 μM mono(2-ethylhexyl) phthalate (MEHP) significantly upregulated the expression levels of 17β-HSD1 and CYP19A1, and downregulated those of CYP17A1, CYP11A1 and StAR. The Western blot results were consistent with those of qRT-PCR. In summary, these results indicated that even exposure to low concentrations (≤1 mg/l or 2.5 μM) of these chemicals and their metabolites can cause significant endocrine-disrupting effects.
Collapse
Affiliation(s)
- Chenhui Duan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 30045, China; Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Yanjun Fang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Jingran Sun
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Zhenxin Li
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Qiangqiang Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Jialei Bai
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Hui Peng
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 30045, China.
| | - Zhixian Gao
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
49
|
Xu H, Wu X, Liang C, Shen J, Tao S, Wen X, Liu W, Zou L, Yang Y, Xie Y, Jin Z, Li T, Tao F. Association of urinary phthalates metabolites concentration with emotional symptoms in Chinese university students. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114279. [PMID: 32443185 DOI: 10.1016/j.envpol.2020.114279] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have shown the associations between phthalates exposure and psychological behavior problems in children and adolescents, but such associations have not been fully elucidated in university students, especially among Chinese university students. This study aims to examine the association between urinary phthalates metabolites concentration and emotional symptoms in Chinese university students. A school-based cross-sectional survey was carried out among 990 university students aged 17-24 years from two universities in Anhui and Jiangxi provinces of China. Concentration of six phthalate metabolites in urine was determined by high-performance liquid chromatography-tandem mass spectrometry and the emotional symptoms were assessed by the 21-item Depression, Anxiety, and Stress Scale. The detection rate of six phthalate metabolites in urine ranged from 79.6% to 99.7%. The median concentration of six phthalate metabolites ranged from 2.90 to 119.64 ng/mL. The positive rates of depressive symptoms, anxiety symptoms, and stress were 17.4%, 24.8%, and 9.5%, respectively. After adjusting for the confounding variables, mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) was found to be associated with depressive symptoms (β = 8.84, P = 0.017), anxiety symptoms (β = 8.46, P = 0.015), and stress symptoms (β = 9.95, P = 0.012) in males; whereas, monobutyl phthalate (MBP) was found to be associated with depressive symptoms (β = 1.86, P = 0.002), anxiety symptoms (β = 1.81, P = 0.005), and stress symptoms (β = 1.48, P = 0.047) in females. Our study demonstrates that Chinese university students are widely exposed to phthalates; and high- and low-molecular weight phthalates are associated with emotional symptoms in males and females, respectively.
Collapse
Affiliation(s)
- Honglv Xu
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Xiaoyan Wu
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Chunmei Liang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Jie Shen
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Shuman Tao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Xing Wen
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Wenwen Liu
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Liwei Zou
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Yajuan Yang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Yang Xie
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Zhongxiu Jin
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Tingting Li
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China.
| |
Collapse
|
50
|
Zhang X, Tang S, Qiu T, Hu X, Lu Y, Du P, Xie L, Yang Y, Zhao F, Zhu Y, Giesy JP. Investigation of phthalate metabolites in urine and daily phthalate intakes among three age groups in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114005. [PMID: 31995769 DOI: 10.1016/j.envpol.2020.114005] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/27/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Phthalates are widely used as binders and plasticizers in industrial and consumer products but show diverse toxicity. We investigated the level of human exposure to phthalates in Beijing, one of the most densely populated cities in the world. In this study, 12 metabolites of phthalates were measured in 70 spot urine samples collected from Beijing residents from August 2017 to April 2018 using ultra high-performance liquid chromatography tandem mass spectrometry. We found that metabolites of phthalates were ubiquitous in all urine samples. Total concentrations of phthalate metabolites ranged from 39.6 to 1931 ng mL-1, with median concentrations were in decreasing order of children (371 ng mL-1)> younger adults (332 ng mL-1)> older adults (276 ng mL-1). Mono-n-butyl phthalate (MnBP) was the predominant compound, and occurred at concentrations greater than those reported for people in other countries. The mean values of estimated daily intakes (EDIs) of ∑phthalate were 35.2, 10.3 and 10.9 ng (kg-bm)-1 d-1 for children, younger adults and older adults, respectively. EDIs of di-n-butyl phthalate (DnBP), di-iso-butyl phthalate (DiBP) and di-(2-ethylhexyl) phthalate (DEHP) exceeded reference values suggested by the US Environmental Protection Agency and the European Food Safety Authority. When concentrations were normalized to volume or creatinine-adjusted, hazard quotients (HQs) for 40 of 70 participants exhibited larger HQs >1 for individual phthalates, which was indicative of potential for adverse effects. Thus, exposure to phthalates might be a critical factor contributing to adverse health effects in Beijing residents. To the best of our knowledge, this is the first study to establish a pre-baseline level of urinary phthalate metabolites among residents in Beijing.
Collapse
Affiliation(s)
- Xu Zhang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Song Tang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tian Qiu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaojian Hu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yifu Lu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Du
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Linna Xie
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanwei Yang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Zhao
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Zhu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Biomedical and Veterinary Biosciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA
| |
Collapse
|