1
|
Fang K, Sun YB, He RM, Qian JK, Gu W, Lu YF, Dong ZM, Wan Y, Wang C, Tang S. A critical review of human internal exposure to short-chain chlorinated paraffins and its concerning health risks. ENVIRONMENTAL RESEARCH 2025; 272:121179. [PMID: 39983965 DOI: 10.1016/j.envres.2025.121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Short-chain chlorinated paraffins (SCCPs) are a complex mixture of chlorinated derivatives of n-alkanes with a chain length of 10-13 carbon atoms. SCCPs have been extensively used in industrial applications, although an alarming concern is increasingly raised in hazarding environmental matrices and biological organisms due to the environmental persistence, bioaccumulation potential, biotoxicity, and long-range atmospheric transport. Herein, this study conducted a critical review of human internal exposure to SCCPs and its concerning health risks by thoroughly analyzing 63 relevant articles screened in online databases, including the Web of Science, PubMed, Elsevier ScienceDirect, and China National Knowledge Infrastructure (CNKI). The review focused on various biological matrices, including blood, breast milk, and placenta, to assess human internal exposure to SCCPs, and summarized systematic health risk assessments for external exposures across different population groups. The primary exposure routes of SCCPs were dietary intake and dust ingestion and dermal absorption. Particularly, vulnerable population groups of infants, children, and occupational workers suffered from an elevated health risk of SCCPs, with the daily SCCPs intake approaching or exceeding the tolerable daily intake (TDI). So far, existing literature on an internal exposure to SCCPs by detecting human biological samples is insufficient and lacks a comprehensive, life cycle-wide monitoring of vulnerable and occupational populations. The relationship between human exposure to SCCPs and the consequent adverse health effects requires a further deep mining. Moreover, there is a lack of established exposure warning guidance values, and available internal exposure assessment models of SCCPs are currently limited. The future research priority is to knit together the assessment of human internal exposure to SCCPs and the following health risk by advanced sample pre-treatment and analytical methodologies, standardized operating procedures, and non-targeted screening combined with targeted detection techniques. Through a continuous monitoring of human internal exposure to SCCPs, clear illustration of the exposure-effect relationship and comprehensive health risk assessments via multiple exposure routes, these results shed lights on developing and revising regulatory frameworks for governing the production and handling of SCCPs.
Collapse
Affiliation(s)
- Ke Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yi-Bin Sun
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Run-Ming He
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Jian-Kun Qian
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; School of Public Health, China Medical University, Shenyang, 110122, China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yi-Fu Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhao-Min Dong
- School of Public Health, Southeast University, Nanjing, 211189, China
| | - Yi Wan
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Chen C, Li L, Zhang S, Liu J, Wania F. Modeling Global Environmental Fate and Quantifying Global Source-Receptor Relationships of Short-, Medium-, and Long-Chain Chlorinated Paraffins. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:626-633. [PMID: 38882201 PMCID: PMC11172697 DOI: 10.1021/acs.estlett.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Decades-long emissions and long-range transport of chlorinated paraffins (CPs) have resulted in their pervasive presence in the global environment. The lack of an understanding of the global distribution of short-, medium-, and long-chain CPs (SCCPs, MCCPs, and LCCPs) hinders us from quantitatively tracing their origins in remote regions. Using the BETR-Global model and historical emission estimates, we simulate the global dispersion of CPs from 1930 to 2020. Whereas contamination trends in the main contaminated regions (East Asia, Europe, North America, and South Asia) diverge, CP concentrations in the Arctic, Antarctica, and the Tibetan Plateau all increase. By 2020, East Asian, European, and North American emissions contributed 38%, 26%, and 18% of CP contamination in the High Arctic, respectively, while Southern hemispheric emissions and emissions around the Tibetan Plateau primarily contribute to CP contamination in central Antarctica and on the Plateau, respectively. Our results emphasize the important contribution of (i) European and North American emissions to historical CP contamination in remote regions and current MCCP and LCCP contamination in the High Arctic and (ii) East Asian emission to current SCCP and MCCP contamination of all three remote regions. These results can help to evaluate the effectiveness of potential global and regional CP emission-reduction strategies.
Collapse
Affiliation(s)
- Chengkang Chen
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C 1A4, Ontario, Canada
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Li Li
- School of Public Health, University of Nevada Reno, 1664 N Virginia Street, Reno, Nevada 89557, United States
| | - Shaoxuan Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianguo Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C 1A4, Ontario, Canada
| |
Collapse
|
3
|
Han X, Chen H, Zhou W, Liang B, Pang S, Du B, Zeng L. Occurrence, distribution and annual emissions of chlorinated paraffins in hazardous byproducts from municipal solid waste incineration plants in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171764. [PMID: 38494033 DOI: 10.1016/j.scitotenv.2024.171764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Nowadays incineration technology has become the most mainstream way for the disposal of municipal wastes. Short chain chlorinated paraffins (SCCPs) and medium chain chlorinated paraffins (MCCPs) are currently classified as new persistent organic pollutants (POPs) and candidate POPs under the Stockholm Convention, respectively. However, the occurrence and contamination characteristics of these main hazardous byproducts (e.g., leachate, fly ash, and bottom ash) from municipal solid waste incineration (MSWI) plants have remained unknown. This study focused on the SCCPs and MCCPs (defined as CPs) contamination and their annual emissions from leachate, fly ash, and bottom ash among three typical MSWI plants in Shenzhen, South China. Compared to the dissolved phase of the leachate, higher concentrations of CPs were detected in the adsorbed phase. The total concentrations of CPs ranged from lower method detection limits (1 in leachate (i.e., adsorbed phase) and bottom ash, while the opposite results were found in fly ash. The dominant SCCP congener groups were C10Cl6-7 in leachate and fly ash, and C13Cl6-7 in bottom ash. The dominant MCCP congener groups were C14Cl7-8 in leachate, fly ash and bottom ash samples. Principal component analysis (PCA) revealed the dominant CPs in fly ash were obviously different from those in leachate and bottom ash. Estimated total annual emissions of CPs from the three main hazardous byproducts generated from typical MSWI plants were estimated between 66.2 and 7510 kg/y and bottom ash contributed the most to the CP emissions. Overall, this study is the first report on CP contamination in hazardous byproducts from MSWI plants, and can provide basic data support for CP contamination control.
Collapse
Affiliation(s)
- Xu Han
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China; Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Wei Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Bowen Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Siqin Pang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China.
| |
Collapse
|
4
|
Chen C, Li L, Endo S, Jiang S, Wania F. Are We Justified in Modeling Human Exposure to Chlorinated Paraffin Mixtures Using the Average Properties of Congeners and Homologues? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4535-4544. [PMID: 38408178 DOI: 10.1021/acs.est.3c09186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Concern over human exposure to chlorinated paraffin (CP) mixtures keeps increasing. The absence of a comprehensive understanding of how human exposure varies with the physicochemical properties of CP constituents has hindered the ability to determine at what level of aggregation exposure to CPs should be assessed. We answer this question by comparing exposure predicted with either a "complex" method that utilizes isomer-specific properties or "simplified" methods that rely on median properties of congener, homologue, or short-/medium-/long-chain CP groups. Our results demonstrate the wide range of physicochemical properties across CP mixtures and their dependence on molecular structures. Assuming unit emissions in the environment, these variances translate into an extensive disparity in whole-body concentrations predicted for different isomers, spanning ∼11 orders of magnitude. CPs with 13-19 carbons and 6-10 chlorines exhibit the highest human exposure potential, primarily owing to moderate to high hydrophobicity and slow environmental degradation and biotransformation. Far-field exposure is dominant for most CP constituents. Our study underscores that using average properties of congener, homologue, or S/M/LCCP groups yields results that are consistent with those derived from isomer-based modeling, thus offering an efficient and practical framework for future risk assessments and human exposure studies of CPs and other complex chemical mixtures.
Collapse
Affiliation(s)
- Chengkang Chen
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Li Li
- School of Public Health, University of Nevada Reno, 1664 N Virginia Street, Reno, Nevada 89557, United States
| | - Satoshi Endo
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba 305-8506, Ibaraki, Japan
| | - Shaoxiang Jiang
- Institute for Global Health and Development, Peking University, Beijing 100871, China
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| |
Collapse
|
5
|
Amoura C, Larvor F, Marchand P, Bizec BL, Cariou R, Bichon E. Quantification of chlorinated paraffins by chromatography coupled to high-resolution mass spectrometry - Part B: Influence of liquid chromatography separation. CHEMOSPHERE 2024; 352:141401. [PMID: 38346520 DOI: 10.1016/j.chemosphere.2024.141401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
The analysis of chlorinated paraffins (CPs) is today an analytical challenge. Indeed, it is still impractical to describe their real composition in terms of polychlorinated alkanes (PCAs) homologue groups, which dominate technical mixtures. The co-elution of PCA congeners generates interferences due to the competition phenomena which occur during the ionisation process as well as to the dependence of the ionisation sources on the PCA chemistry. Therefore, the aim of this study was to investigate the influence of chromatographic separation, by LC-ESI-HRMS coupling, on the PCA homologue group pattern and, eventually, on their determination in food samples from interlaboratory studies. For this, three different mobile phases and six LC chromatographic columns were studied in order to optimise the analysis of CP mixtures. The first results showed that the use of a MeOH/H2O mobile phase reveals more appropriately the higher chlorinated PCAs. However, using ACN/H2O led to less ion species, with almost exclusively [M + Cl]- adducts, formed using post-column dichloromethane addition. Regarding the choice of the stationary phases, Hypercarb column provided a completely different homologue group pattern from the other chromatographic columns, in relation with the stronger retention of PCAs. Among the other columns, the C30 column better highlighted the short-chain PCAs compared to the C18 column conventionally used. Because the regulations now concern short-chain CPs, the quantification of food samples was then carried out on the C30 column. The optimised LC-ESI-HRMS conditions using C30 column and MeOH/H2O solvent mixture led to a quantification of PCAs in samples from interlaboratory studies with satisfactory accuracy (|Z-score| ≤ 2) and precision (<15%).
Collapse
|
6
|
Wei L, Huang Q, Qiu Y, Zhao J, Rantakokko P, Gao H, Huang F, Bignert A, Bergman Å. Legacy persistent organic pollutants (POPs) in eggs of night herons and poultries from the upper Yangtze Basin, Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93744-93759. [PMID: 37516701 DOI: 10.1007/s11356-023-28974-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Black-crowned night heron (Nycticorax nycticorax) eggs have been identified as useful indicators for biomonitoring the environmental pollution in China. In this study, we investigated thirty eggs of black-crowned night heron collected from the upper Yangtze River (Changjiang) Basin, Southwest China, for the occurrence of legacy persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Our results showed a general presence of POPs in night heron eggs with OCPs being the dominant contaminants, having a geometric mean concentration of 22.2 ng g-1 wet weight (ww), followed by PCBs (1.36 ng g-1 ww), PBDEs (0.215 ng g-1 ww), and PCDD/Fs (23.0 pg g-1 ww). The concentration levels were found to be significantly higher in night heron eggs than in poultry eggs by one or two magnitude orders. Among OCP congeners, p,p'-DDE was found to be predominant in night heron eggs, with a geometric mean concentration of 15.1 ng g-1 ww. Furthermore, species-specific congener patterns in eggs suggested similar or different sources for different POPs, possibly associated with contaminated soil and parental dietary sources. Additionally, estimated daily intakes (EDIs) were used to evaluate non-carcinogenic and carcinogenic risk associated with consumption of bird eggs. Our results revealed non-negligible non-cancer and cancer risk for humans who consume wild bird eggs as a regular diet instead of poultry eggs.
Collapse
Affiliation(s)
- Lai Wei
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China.
- International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
- International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jianfu Zhao
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
- International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Panu Rantakokko
- National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701, Kuopio, Finland
| | - Hongwen Gao
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Fei Huang
- Yibin Research Base of the Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Yibin University, Sichuan Province, Yibin, 644000, China
| | - Anders Bignert
- Yibin Research Base of the Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Yibin University, Sichuan Province, Yibin, 644000, China
- Swedish Museum of Natural History, 104 05, Stockholm, Sweden
| | - Åke Bergman
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
- Department of Environmental Science (ACES), Stockholm University, 106 91, Stockholm, Sweden
- Department of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| |
Collapse
|
7
|
Escobar-Arnanz J, Pena-Abaurrea M, Santos FJ, Ramos L. Non-target analysis of organohalogenated contaminants in deep-sea fishes from the Mediterranean Sea by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162873. [PMID: 36931525 DOI: 10.1016/j.scitotenv.2023.162873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
The enhanced separation power and identification capabilities make comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC - ToF MS) a valuable instrumental alternative for non-target analysis (NTA). In the present study, GC × GC - ToF MS has been used for the NTA of chlorine- and bromine-containing compounds in composite livers of two scarcely investigated Mediterranean deep-sea fish species, hollowsnout grenadier (Coelorinchus caelorhincus) and roughsnout grenadier (Trachyrhinchus trachyrhinchus). Attention focused on the identification of organohalogenated compounds with structural characteristics similar to those of persistent organic pollutants (POPs). In total, 116 Cl-, Br- and mixed Cl/Br-compounds were either positively or tentatively identified in the analyzed liver samples. Up to 88 of these compounds were legacy POPs, being polychlorinated biphenyls (PCBs) and organochlorinated pesticides (OCPs) the most abundant and frequently detected families. The other 28 identified POP-like compounds were analytes not considered by current regulation and environmental monitoring programs, including, among others, degradation products of specific OCPs, naturally produced organohalogen compounds and several perchlorinated diethyldiphenylmethane-derivatives whose presence in the investigated species is reported here for the first time. The presence of other naturally occurring brominated and mixed halogenated compounds in these fish species is also described for the first time. Our results also showed differences in the accumulation profile of the identified compounds in both species. Thereby, anthropogenic POPs showed higher relative abundances in the livers of roughsnout grenadiers than those in hollowsnout grenadiers, while for naturally occurring compounds the opposite trend or similar levels were found in both species.
Collapse
Affiliation(s)
- J Escobar-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - M Pena-Abaurrea
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - F J Santos
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, Diagonal 645, Barcelona 08028, Spain
| | - L Ramos
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
8
|
Chen C, Chen A, Zhan F, Wania F, Zhang S, Li L, Liu J. Global Historical Production, Use, In-Use Stocks, and Emissions of Short-, Medium-, and Long-Chain Chlorinated Paraffins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7895-7904. [PMID: 35536664 DOI: 10.1021/acs.est.2c00264] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The last few decades have seen ubiquitous and increasing contamination of chlorinated paraffins (CPs) worldwide. Here, we develop the first global inventories of production, use, in-use stocks, and emissions of total CPs, including the short-, medium- and long-chain components (SCCPs, MCCPs, and LCCPs) during 1930-2020 using a dynamic substance flow analysis model named Chemical in Products Comprehensive Anthroposhpheric Fate Estimation. The model estimates that a total of ∼33 million metric tons of CPs have been produced and used globally, ∼40% of which still resided in in-use products by 2020 and is available for long-term emissions in the next decades. Global cumulative emissions of CPs have increased to ∼5.2 million metric tons by 2020, with SCCPs, MCCPs, and LCCPs accounting for ∼30, 40, and 30%, respectively. While the production, use, and emissions of CPs started declining in regions such as Western Europe, they remain high in China. The model also suggests that homologues with 10, 14, and 22-23 carbons were predominant in the cumulatively produced and emitted SCCPs, MCCPs, and LCCPs, respectively. The emission estimates were evaluated by generating environmental concentrations that are comparable to literature-reported environmental monitoring data. Our estimates provide opportunities to link the environmental fate and occurrence of CPs to emission sources and lay the basis for future risk-reduction strategies of CPs around the world.
Collapse
Affiliation(s)
- Chengkang Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Anna Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Faqiang Zhan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C 1A4, Ontario, Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C 1A4, Ontario, Canada
| | - Shaoxuan Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Li Li
- School of Public Health, University of Nevada Reno, 1664 N. Virginia Street, Reno, 89557-274 Nevada, United States
| | - Jianguo Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Marlatt VL, Bayen S, Castaneda-Cortès D, Delbès G, Grigorova P, Langlois VS, Martyniuk CJ, Metcalfe CD, Parent L, Rwigemera A, Thomson P, Van Der Kraak G. Impacts of endocrine disrupting chemicals on reproduction in wildlife and humans. ENVIRONMENTAL RESEARCH 2022; 208:112584. [PMID: 34951986 DOI: 10.1016/j.envres.2021.112584] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in aquatic and terrestrial environments. The main objective of this review was to summarize the current knowledge of the impacts of EDCs on reproductive success in wildlife and humans. The examples selected often include a retrospective assessment of the knowledge of reproductive impacts over time to discern how the effects of EDCs have changed over the last several decades. Collectively, the evidence summarized here within reinforce the concept that reproduction in wildlife and humans is negatively impacted by anthropogenic chemicals, with several altering endocrine system function. These observations of chemicals interfering with different aspects of the reproductive endocrine axis are particularly pronounced for aquatic species and are often corroborated by laboratory-based experiments (i.e. fish, amphibians, birds). Noteworthy, many of these same indicators are also observed in epidemiological studies in mammalian wildlife and humans. Given the vast array of reproductive strategies used by animals, it is perhaps not surprising that no single disrupted target is predictive of reproductive effects. Nevertheless, there are some general features of the endocrine control of reproduction, and in particular, the critical role that steroid hormones play in these processes that confer a high degree of susceptibility to environmental chemicals. New research is needed on the implications of chemical exposures during development and the potential for long-term reproductive effects. Future emphasis on field-based observations that can form the basis of more deliberate, extensive, and long-term population level studies to monitor contaminant effects, including adverse effects on the endocrine system, are key to addressing these knowledge gaps.
Collapse
Affiliation(s)
- V L Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - S Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - D Castaneda-Cortès
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - G Delbès
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - P Grigorova
- Département Science et Technologie, Université TELUQ, Montréal, QC, Canada
| | - V S Langlois
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - C J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - C D Metcalfe
- School of Environment, Trent University, Trent, Canada
| | - L Parent
- Département Science et Technologie, Université TELUQ, Montréal, QC, Canada
| | - A Rwigemera
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - P Thomson
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - G Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
Darnerud PO, Bergman Å. Critical review on disposition of chlorinated paraffins in animals and humans. ENVIRONMENT INTERNATIONAL 2022; 163:107195. [PMID: 35447436 DOI: 10.1016/j.envint.2022.107195] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Even though the chlorinated paraffins (CPs) have been on the environmental pollution agenda throughout the last 50 years it is a class of chemicals that only now is discussed in terms of an emerging issue with extensive annual publication rates. Major reviews on CPs have been produced, but a deeper understanding of the chemical fate of CPs, including formation of metabolites in animals and humans, is still missing. Thus, the present review aims to critically compile our present knowledge on the disposition, i.e. Adsorption, Disposition, Metabolism, and Excretion (ADME) of CPs in biota and to identify research needs. We conclude that CPs could be effectively absorbed from the gastro-intestinal tract (GI) tract, and probably also from the lungs, and transported to various organs. A biphasic elimination is suggested, with a rapid initial phase followed by a terminal phase, the latter (e.g., fat tissues) covering half-lives of weeks and months. CPs are metabolized in the liver and excreted mainly via the bile and faeces, and the metabolic rate and type of metabolites are dependent on chlorine content and chain length. Results that strengthen CP metabolism are in vivo findings of phase II metabolites in bile, and CP degradation to carbon fragments in experimental animals. Still the metabolic transformations of CPs are poorly studied, and no metabolic scheme has yet been presented. Further, toxicokinetic mass balance calculations suggest that a large part of a given dose (not found as parent compound) is transformation products of CPs, and in vitro metabolism studies present numerous CP metabolites (e.g., chloroalkenes, chlorinated ketones, aldehydes, and carboxylic acids).
Collapse
Affiliation(s)
- Per Ola Darnerud
- Department of Organismal Biology, Environmental Toxicology, Norbyvägen 18A, SE-752 36 Uppsala, Sweden.
| | - Åke Bergman
- Department of Environmental Science (ACES), Stockholm University, SE-106 92 Stockholm, Sweden; Department of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden; College of Environmental Science and Engineering, Tongji University, Shanghai, China.
| |
Collapse
|
11
|
Wu JP, Li X, Tao L, Nie YT, Feng WL, Xu YC, Zeng YH, Luo XJ, Mai BX. Sex- and size-dependent accumulation of Dechlorane Plus flame retardant in a wild frog-eating snake Amphiesma stolata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118793. [PMID: 34998895 DOI: 10.1016/j.envpol.2022.118793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Despite several studies having addressed the bioaccumulation of Dechlorane Plus (DP) flame retardant in wildlife, there is still a dearth of information for reptiles in general and for snakes in particular. Here, we report the residue levels and trophic transfer of syn-, anti-, and anti-Cl11-DP in a frog-eating snake-namely, the striped keelback snake Amphiesma stolata-from a DP hotspot in South China. The concentrations of syn-, anti-, and anti-Cl11-DP in A. stolata ranged from 1.06-21.2, 2.13-21.5, and 0.16-10.6 ng/g lipid weight, respectively, with significantly higher levels in males compared with females. Statistical analysis showed that the concentrations of these chemicals were negatively correlated with body sizes (length and mass) of the snake. The fractional abundance of anti-DP (fanti) did not significantly differ either between the sexes or between A. stolata and its diet (i.e., frogs). However, fanti showed positive correlations with the snake's body size and negative correlations with ∑DP concentrations (summed concentrations of syn- and anti-DP), indicating that body size and DP residue levels are important factors influencing DP isomeric profiles in these snakes. Biomagnification factors estimated based on the relationship between A. stolata and frogs were 0.49 ± 0.01 (mean ± SE), 0.44 ± 0.09, and 1.79 ± 0.54 for syn-, anti-, and anti-Cl11-DP, respectively, suggesting trophic dilution of syn- and anti-DP and a mild biomagnification of anti-Cl11-DP from frogs to snakes.
Collapse
Affiliation(s)
- Jiang-Ping Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, 241000, China.
| | - Xiao Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Lin Tao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - You-Tian Nie
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Wen-Lu Feng
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Ya-Chun Xu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
12
|
Renaguli A, Fernando S, Holsen TM, Hopke PK, Adams DH, Balazs GH, Jones TT, Work TM, Lynch JM, Crimmins BS. Characterization of Halogenated Organic Compounds in Pelagic Sharks and Sea Turtles Using a Nontargeted Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16390-16401. [PMID: 34846854 DOI: 10.1021/acs.est.1c03798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Halogenated organic compounds (HOCs) in marine species collected from the Atlantic Ocean [3 shortfin mako (Isurus oxyrinchus) and 1 porbeagle (Lamna nasus)], and 12 sea turtles collected from the Pacific Ocean [3 loggerhead (Caretta caretta), 3 green (Chelonia mydas), 3 olive ridley (Lepidochelys olivacea), and 3 hawksbill (Eretmochelys imbricata)] were analyzed with a nontargeted analytical method using two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry. Sharks and sea turtles had distinct HOC profiles. Halogenated methoxyphenols (halo-MeOPs) were the most abundant compound class identified in sea turtle livers, while polychlorinated biphenyls (PCBs) were the most abundant in shark livers. In addition to legacy contaminants and halo-MeOPs, a total of 110 nontargeted/novel HOCs (NHOCs) were observed in the shark livers. Shortfin mako collected from the northern Gulf of Mexico contained the largest number (89) and most diverse structural classes of NHOCs. Among all NHOCs, a group of compounds with the elemental composition C14H12-nCln (n = 5-8) exhibited the highest concentrations, followed by chlorocarbazoles and tris(chlorophenyl) methanes (TCPMs). Using nontargeted workflows, a variety of known and unknown HOCs were observed, which demonstrate the need to develop more complete chemical profiles in the marine environment.
Collapse
Affiliation(s)
- Aikebaier Renaguli
- Institute for a Sustainable Environment, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Sujan Fernando
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Thomas M Holsen
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
- Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Philip K Hopke
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Douglas H Adams
- Cape Canaveral Scientific Inc., 220 Surf Road, Melbourne Beach, Florida 32951, United States
| | - George H Balazs
- Golden Honu Services of Oceania, Honolulu, Hawaii 96825 United States
| | - T Todd Jones
- Golden Honu Services of Oceania, Honolulu, Hawaii 96825 United States
| | - Thierry M Work
- U.S. Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, Hawaii 96818, United States
| | - Jennifer M Lynch
- National Institute of Standards and Technology, Chemical Sciences Division, 41-202 Kalaniana'ole Highway Ste #9, Waima̅nalo, Hawai'i 96795, United States
- Center for Marine Debris Research, Hawai'i Pacific University, 41-202 Kalaniana'ole Highway Ste #9, Waima̅nalo, Hawai'i 96795, United States
| | - Bernard S Crimmins
- Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
- AEACS, LLC, New Kensington, Pennsylvania 15068, United States
| |
Collapse
|
13
|
Yang C, Lim W, Song G. Immunotoxicological effects of insecticides in exposed fishes. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109064. [PMID: 33905824 DOI: 10.1016/j.cbpc.2021.109064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
Biologically active compounds used in agriculture that develop near aquatic environments easily spill into rivers or lakes. As a result, insecticides, herbicides and fungicides are observed worldwide in aquatic environments and accumulated in aquatic organism. Many insecticides, including organochlorine and organophosphate, have long been banned long ago because of their high persistence and non-target toxicity. However, previous studies have shown that persistent pesticides remain in aquatic organisms. The immune system is the first defense mechanism against exposure to persistent organic pollutants or pesticides that have been released into the aquatic environment. Many insecticides have been reported to cause immunotoxicity, which is represented by alteration of phagocytic and lysozyme activity. Recent studies show that immunotoxicity by insecticides exerts a more complex mechanism in fish. Insecticides induce immunotoxic effects, such as the release of inflammatory cytokines from head kidney macrophages and inhibition of immune cell proliferation in fish, which can lead to death in severe cases. Even currently used pesticides, such as pyrethroid, with low bioaccumulation have been shown to induce immunotoxicological effects in fish when exposed continuously. Therefore, this review describes the types and bioaccumulation of insecticides that cause immunotoxicity and detailed immunotoxicological mechanisms in fish tissues.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
14
|
Hoang AQ, Tu MB, Takahashi S, Kunisue T, Tanabe S. Snakes as bimonitors of environmental pollution: A review on organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144672. [PMID: 33513507 DOI: 10.1016/j.scitotenv.2020.144672] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Monitoring data on organic pollutants published between the late 1960s and 2020 are reviewed to provide comprehensive and updated insights into their bioaccumulation characteristics, sources, and fate in snakes. Multiple organic pollutant classes including pesticides, polychlorinated biphenyls, chlorinated paraffins, dioxin-related compounds, alkanes, polycyclic aromatic hydrocarbons, flame retardants, plasticizers, etc., were detected in various aquatic and terrestrial snake species with concentrations and patterns varying between species and locations. In general, higher concentrations of organic pollutants were found in snakes collected from contaminated sites (e.g., densely populated, pesticide-treated, and waste processing areas), suggesting that snakes can serve as good biomonitors of environmental pollution caused by organic contaminants. Factors influencing concentrations and patterns of organic pollutants in snakes are discussed, providing an overview of current understanding about their accumulation, transformation, and elimination processes. Potential negative effects associated with organic pollutants in snakes and their predators are also considered. Based on such discussions, research gaps and future perspectives on the utilization of snake biomonitoring studies are addressed, heading towards an effective monitoring and assessment scheme for a variety of legacy and emerging organic pollutants in the environment.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam.
| | - Minh Binh Tu
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| |
Collapse
|
15
|
Hao Y, Zheng S, Wang P, Sun H, Matsiko J, Li W, Li Y, Zhang Q, Jiang G. Ecotoxicology of persistent organic pollutants in birds. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:400-416. [PMID: 33660728 DOI: 10.1039/d0em00451k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Considering the explosive growth of the list of persistent organic pollutants (POPs), the scientific community is combatting increasing challenges to protect humans and wildlife from the potentially negative consequences of POPs. Herein, we characterize the main aspects and progress in the ecotoxicology of POPs in avian species since 2000. The majority of previous efforts has revealed the global occurrence of high levels of various POPs in birds. Laboratory research and epidemiological studies imply that POPs exert a broad-spectrum of side-effects on birds by interfering with their endocrine, immune and neural system, reproduction, and development, and growth. However, inconsistent results suggest that the potential effects of POP exposure on the physiological parameters in birds are multifactorial, involving a multitude of biological processes, species-specific differences, gender, age and types of compounds. Great progress has been achieved in identifying the species-specific sensitivity to dioxin-like compounds, which is attributed to different amino acid residues in the ligand-binding domain of the aryl hydrocarbon receptor. Besides the conventional concentration additivity, several studies have suggested that different classes of POPs possibly act synergistically or antagonistically based on their concentration. However, ecotoxicology information is still recorded in a scattered and inadequate manner, including lack of enough avian species, limited number of POPs investigated, and insufficient geographical representation, and thus our understanding of the effects of POPs on birds remains rudimentary, although mechanistic understanding of their mode of action is progressing. Particularly, research on what happens to wild bird populations and their ecosystems under POP stress is still unavailable. Thus, our aim is to predict and trace the effects POPs at different biological organization levels, especially from the molecular, cellular and individual levels to the population, community and ecosystem levels because of the limited and scattered information, as mentioned above.
Collapse
Affiliation(s)
- Yanfen Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Anh HQ, Watanabe I, Minh TB, Takahashi S. Unintentionally produced polychlorinated biphenyls in pigments: An updated review on their formation, emission sources, contamination status, and toxic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142504. [PMID: 33035974 DOI: 10.1016/j.scitotenv.2020.142504] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The formation, emission, environmental occurrence, and potential adverse effects of unintentionally produced polychlorinated biphenyls (PCBs) in pigments are reviewed, providing a comprehensive and up-to-date picture on these pollutants. PCBs are typically formed during manufacturing of organic pigments that involve chlorinated intermediates and reaction solvents, rather than those of inorganic pigments. Concentrations and profiles of PCBs vary greatly among pigment types and producers, with total PCB levels ranging from lower than detection limits to several hundred ppm; major components can be low-chlorinated (e.g., CB-11) or high-chlorinated congeners (e.g., CB-209). Pigment-derived PCBs can be released into the environment through different steps including pigment production, application, and disposal. They can contaminate atmospheric, terrestrial, and aquatic ecosystems, and then affect organisms living there. This situation garners scientific and public attention to nonlegacy emissions of PCBs and suggests the need for appropriate monitoring, management, and abatement strategies regarding these pollutants.
Collapse
Affiliation(s)
- Hoang Quoc Anh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 100000, Viet Nam.
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 100000, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| |
Collapse
|
17
|
Tashiro Y, Goto A, Kunisue T, Tanabe S. Contamination of habu (Protobothrops flavoviridis) in Okinawa, Japan by persistent organochlorine chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1018-1028. [PMID: 32829428 DOI: 10.1007/s11356-020-10510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Persistent organochlorine chemicals (OCs), including chlordane compounds (CHLs), DDTs, PCBs, and chlorinated dioxins and related compounds (DRCs), were examined in the adipose tissue and liver from 33 specimens of habu (Protobothrops flavoviridis), a species of venomous pit viper endemic to the Japanese Southwest Islands. The median concentrations of CHLs, DDTs, and PCBs in adipose tissue of 22 habus collected from an urban area were 4400 ng g-1 lipid weight (lw), 610 ng g-1 lw, and 1600 ng g-1 lw, respectively. Their DDT and PCB concentrations were higher in comparison with the specimens from a rural area. Liver of 10 specimens from the urban area were subjected to DRCs analysis, and PCDDs, PCDFs, and DL-PCBs were detected with median values of 1300, 350, and 150,000 pg g-1 lw, respectively. Among PCDD/F congeners, octa-CDD was detected at the highest concentrations in seven liver samples, but considerable concentrations of penta- and hexa-CDD/Fs were found in two samples. Relatively higher concentrations of PCB, DDTs, and PCDD/Fs were found in habus collected within 1 km of the boundary of military facilities, suggesting that OCs from some unknown sources of these OCs inside and/or around some of the facilities accumulated in habus.
Collapse
Affiliation(s)
- Yutaka Tashiro
- School of International Studies, Meio University, 1220-1 Biimata, Nago, Okinawa, 905-8585, Japan.
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo, Matsuyama, Ehime, 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo, Matsuyama, Ehime, 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo, Matsuyama, Ehime, 790-8577, Japan
| |
Collapse
|
18
|
Chen W, Li T, Liu Y, Wang H, Zhao P, Hu J, Jin J. Distributions and biomagnification of polybrominated diphenyl ethers in a grassland ecosystem food chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141141. [PMID: 32777495 DOI: 10.1016/j.scitotenv.2020.141141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The concentrations, distributions, and biomagnification of polybrominated diphenyl ethers (PBDEs) in environmental and biological media in a terrestrial grass ecosystem were studied, The total PBDE concentrations in grasses were 4.00 × 10-2 to 4.28 ng·g-1. The total PBDE concentration in weasel muscle (23.2 ng·g-1 l.w.) was the highest concentrations of all animal tissue samples, and the total PBDE concentration in hair from local herdsmen (22.2 ng·g-1 l.w.) was second highest. Less-brominated PBDEs were found to be more strongly biomagnified than more-brominated PBDEs in the grassland food web. PBDEs were found to be much more strongly biomagnified in the food chains of homothermic animals than heterothermic animals. More-brominated PBDEs were not markedly biomagnified in the grassland food web. For example, BDE-153 was not biomagnified in the grassland wildlife food chain but was clearly biomagnified through the sheep, cattle, or horse hair to human hair route. The biomagnification factors and log Kows negatively correlated for the toad-snake, lizard-snake, and mouse-weasel food chains. The ability of PBDE congeners to become enriched generally decreased as the log Kow increased, and this decrease occurred 100-1000 times more strongly for homothermic animals than heterothermic animals.
Collapse
Affiliation(s)
- Wenming Chen
- College of Life and Environmental Sciences, Minzu University of China, China
| | - Tianwei Li
- College of Life and Environmental Sciences, Minzu University of China, China
| | - Yiming Liu
- College of Life and Environmental Sciences, Minzu University of China, China
| | - Huiting Wang
- College of Life and Environmental Sciences, Minzu University of China, China
| | - Pengyuan Zhao
- College of Life and Environmental Sciences, Minzu University of China, China
| | - Jicheng Hu
- College of Life and Environmental Sciences, Minzu University of China, China
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, China.
| |
Collapse
|
19
|
Sun R, Chen J, Shao H, Tang L, Zheng X, Li QX, Wang Y, Luo X, Mai B. Bioaccumulation of short-chain chlorinated paraffins in chicken (Gallus domesticus): Comparison to fish. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122590. [PMID: 32315939 DOI: 10.1016/j.jhazmat.2020.122590] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are a complex group of chlorinated organic pollutants that have raised an increasing public attention. However, limited information is currently available on the bioaccumulation of SCCPs in terrestrial birds which are abundant and widely distributed around the world. In the present study, chicken (Gallus domesticus) was used as a model organism to provide significant implications for other avian species. We investigated the transfer of SCCPs from dietary sources (feed and topsoil) to chicken and their tissue distribution behavior. SCCPs were detected in chicken feed (54-170 ng/g, dry weight), topsoil (170-860 ng/g, dry weight), and adult chicken tissues (460-13000 ng/g, lipid weight). Adult chicken tended to accumulate SCCP congeners with lower n-octanol-water partition coefficients (KOW) and octanol-air partition coefficients (KOA). The accumulation ratio values for SCCPs of the chicken were more influenced by KOA than by KOW, which was contrary to those for aquatic fish. Levels and homologue profiles of SCCPs varied among chicken tissues. SCCP levels in the livers were significantly lower than those in the other tissues (p < 0.05). The accumulation potential for SCCP congeners with higher KOW increased in the order of muscle < liver < fat.
Collapse
Affiliation(s)
- Runxia Sun
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jiemin Chen
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liang Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaobo Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Yangyang Wang
- College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
20
|
Artabe AE, Cunha-Silva H, Barranco A. Enzymatic assays for the assessment of toxic effects of halogenated organic contaminants in water and food. A review. Food Chem Toxicol 2020; 145:111677. [PMID: 32810589 DOI: 10.1016/j.fct.2020.111677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/05/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Halogenated organic compounds are a particular group of contaminants consisting of a large number of substances, and of great concern due to their persistence in the environment, potential for bioaccumulation and toxicity. Some of these compounds have been classified as persistent organic pollutants (POPs) under The Stockholm Convention and many toxicity assessments have been conducted on them previously. In this work we provide an overview of enzymatic assays used in these studies to establish toxic effects and dose-response relationships. Studies in vivo and in vitro have been considered with a particular emphasis on the impact of halogenated compounds on the activity of relevant enzymes to the humans and the environment. Most information available in the literature focuses on chlorinated compounds, but brominated and fluorinated molecules are also the target of increasing numbers of studies. The enzymes identified can be classified as enzymes: i) the activities of which are affected by the presence of halogenated organic compounds, and ii) those involved in their metabolisation/detoxification resulting in increased activities. In both cases the halogen substituent seems to have an important role in the effects observed. Finally, the use of these enzymes in biosensing tools for monitoring of halogenated compounds is described.
Collapse
Affiliation(s)
- Amaia Ereño Artabe
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Hugo Cunha-Silva
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Alejandro Barranco
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
21
|
Zhou Y, Yuan B, Nyberg E, Yin G, Bignert A, Glynn A, Odland JØ, Qiu Y, Sun Y, Wu Y, Xiao Q, Yin D, Zhu Z, Zhao J, Bergman Å. Chlorinated Paraffins in Human Milk from Urban Sites in China, Sweden, and Norway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4356-4366. [PMID: 32101003 PMCID: PMC7343287 DOI: 10.1021/acs.est.9b06089] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 05/12/2023]
Abstract
Short-, medium-, and long-chain chlorinated paraffins (SCCPs, MCCPs, and LCCPs) were analyzed in human milk from the Yangtze River Delta (YRD) and Scandinavia. Individual samples were collected from Shanghai, Jiaxing, and Shaoxing (China), Stockholm (Sweden), and Bodø (Norway) between 2010 and 2016. Mean concentrations (range) of SCCPs, MCCPs, and LCCPs in samples from the YRD were 124 [
Collapse
Affiliation(s)
- Yihui Zhou
- State
Key Laboratory of Pollution Control and Resource Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, China
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bo Yuan
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Elisabeth Nyberg
- Department
of Contaminants, Swedish Environmental Protection
Agency, Virkesvägen
2, SE-106 48 Stockholm, Sweden
| | - Ge Yin
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
- Shimadzu
Scientific Instrument Company, Shanghai 200233, China
| | - Anders Bignert
- Department
of Environmental Monitoring and Research, Swedish Museum of Natural History, Box
50007, SE-104 15 Stockholm, Sweden
| | - Anders Glynn
- Department
of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, SE-75007 Uppsala, Sweden
| | - Jon Øyvind Odland
- Faculty
of Health Sciences, Norwegian University
of Science and Technology, Postboks 8905, N-7491 Trondheim, Norway
| | - Yanling Qiu
- Key
Laboratory of Yangtze River Water Environment (Ministry of Education),
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yajie Sun
- State
Key Laboratory of Pollution Control and Resource Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, China
| | - Yongning Wu
- NHC
Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Qianfen Xiao
- State
Key Laboratory of Pollution Control and Resource Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, China
| | - Daqiang Yin
- Key
Laboratory of Yangtze River Water Environment (Ministry of Education),
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiliang Zhu
- Key
Laboratory of Yangtze River Water Environment (Ministry of Education),
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianfu Zhao
- State
Key Laboratory of Pollution Control and Resource Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, China
| | - Åke Bergman
- State
Key Laboratory of Pollution Control and Resource Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, China
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
- Department
of Science and Technology, Örebro
University, SE-701 82 Örebro, Sweden
| |
Collapse
|
22
|
Niu S, Chen R, Zou Y, Dong L, Hai R, Huang Y. Spatial distribution and profile of atmospheric short-chain chlorinated paraffins in the Yangtze River Delta. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113958. [PMID: 32023802 DOI: 10.1016/j.envpol.2020.113958] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 05/22/2023]
Abstract
Research on the atmospheric occurrence of short chain chlorinated paraffins (SCCPs) in industrialized areas is scarce. In this study, we investigated the concentrations, profile, and spatial distribution of SCCPs in the highly industrialized and developed areas of the Yangtze River Delta (YRD) in China using polyurethane foam passive air samplers. Sampling was performed during two separate periods in 2011. The concentrations of atmospheric SCCPs ranged from 6.1 to 63 ng m-3 in summer and 6.2-42 ng m-3 in winter. The C10 and C11 groups were the predominant carbon groups in all the samples. Different congener patterns between summer and winter were found, indicating that congeners in the air in winter may be influenced by local and external sources. The highest level of SCCPs was found in Suzhou, which is a highly industrialized area with many manufactories including electronic industries and plastic factories. Higher levels of SCCPs were found in the air than polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ether (PBDEs), suggesting that the production and use of SCCPs were much higher than prohibited or restricted persistent organic pollutants (e.g., PCBs, OCPs, and PBDEs). Future studies should investigate the different sources of atmospheric SCCPs by conducting a comprehensive assessment of SCCP exposure.
Collapse
Affiliation(s)
- Shan Niu
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, 10029, China; National Research Center of Environmental Analysis and Measurement, Beijing, 100029, China
| | - Ruiwen Chen
- Agilent Technologies (China) Co. LTD., Beijing, 100102, China
| | - Yun Zou
- China MS Center, Shimadzu (China) Co. LTD., Beijing, 100020, China
| | - Liang Dong
- National Research Center of Environmental Analysis and Measurement, Beijing, 100029, China.
| | - Reti Hai
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Yeru Huang
- National Research Center of Environmental Analysis and Measurement, Beijing, 100029, China
| |
Collapse
|
23
|
Zhang K, Qian Z, Ruan Y, Hao Y, Dong W, Li K, Mei Z, Wang K, Wu C, Wu J, Zheng J, Lam PKS, Wang D. First evaluation of legacy persistent organic pollutant contamination status of stranded Yangtze finless porpoises along the Yangtze River Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136446. [PMID: 31923702 DOI: 10.1016/j.scitotenv.2019.136446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis), inhabiting the Yangtze River, are an endangered species in China. They are threatened by various kinds of pollutants, among which persistent organic pollutants (POPs) are of special concern due to their toxicities, high persistency and bioaccumulation potential. To better understand the POP contamination status of Yangtze finless porpoises, an investigation of stranded porpoises along the Yangtze River and adjacent two major lakes in the Yangtze River basin was conducted; the concentrations of four groups of legacy POPs, i.e., hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyl (PCBs), were determined in the blubber samples. The mean concentrations of ΣHCHs (the sum of all congeners/isomers), ΣDDTs, ΣPBDEs and ΣPCBs, were 1670 ± 4210, 28,800 ± 52,300, 141 ± 174, and 1020 ± 1070 ng/g lipid weight, respectively; the high DDTs/PCBs ratio reflected a strong influence of agricultural pollution in the Yangtze River basin, and the high α/γ ratio of HCH isomers indicated the usage of lindane in the corresponding areas; the predominance of low-brominated congeners of PBDEs may be related to congruent patterns in the related environmental matrices. A hazard quotient risk assessment revealed that DDTs could pose a relatively high risk to Yangtze finless porpoises compared with the risks posed by the other POPs.
Collapse
Affiliation(s)
- Kai Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Zhengyi Qian
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yujiang Hao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Weiwei Dong
- Bengbu Medical College, Bengbu 233030, China
| | - Ke Li
- Wuhan Institute for Drug and Medical Device Control, Wuhan 430075, China
| | - Zhigang Mei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kexiong Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianhong Wu
- Wuhan Institute for Drug and Medical Device Control, Wuhan 430075, China.
| | - Jinsong Zheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Ding Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
24
|
Guan KL, Liu Y, Luo XJ, Zeng YH, Mai BX. Short- and medium-chain chlorinated paraffins in aquatic organisms from an e-waste site: Biomagnification and maternal transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134840. [PMID: 31791788 DOI: 10.1016/j.scitotenv.2019.134840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Chlorinated paraffins (CPs) are globally pervasive contaminants that are toxic to humans and wildlife. Inconsistent biomagnification behaviors in different food chains have been reported, and very few studies have been conducted to investigate the maternal transfer of CPs in ovoviviparous species. This study investigated the biomagnification of short- and medium-chain chlorinated paraffins (S/MCCPs) in two aquatic food chains, as well as maternal transfer of S/MCCPs in watersnakes collected from an e-waste polluted pond in southern China. The concentrations of SCCPs and MCCPs varied from 1.2 to 250 μg/g lipid weight (lw) and from 2.3 to 200 μg/g lw in the collected organisms. The SCCP homologue profiles in prey (fish and prawn) differed from those in predators (watersnake and waterbird egg), while MCCP homologue group patterns were homogeneous. All maternal transfer concentration ratios (egg to muscle) of S/MCCPs in the watersnakes were lower than 1 and negatively correlated with the octanol-water partition coefficients (log KOW), different from the maternal transfer of halogenated aromatic pollutants in the watersnake. Biomagnification factors (BMFs) of S/MCCPs for fish-watersnake muscle food chain were larger than 1, while BMFs for the fish-waterbird egg food chain were less than 1. However, when watersnake egg was used to calculate BMF, no biomagnification was found. BMFs in the two food chains showed significant positive linear correlations with chlorine atoms, but no significant correlation with carbon atom numbers, which suggested that a congener-group-specific elimination and excretion process for S/MCCPs exist.
Collapse
Affiliation(s)
- Ke-Lan Guan
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, People's Republic of China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| |
Collapse
|
25
|
Du X, Yuan B, Zhou Y, de Wit CA, Zheng Z, Yin G. Chlorinated Paraffins in Two Snake Species from the Yangtze River Delta: Tissue Distribution and Biomagnification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2753-2762. [PMID: 32036653 DOI: 10.1021/acs.est.9b06467] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Very-short, short-, medium-, and long-chain chlorinated paraffins (vSCCPs, SCCPs, MCCPs, and LCCPs, respectively) were analyzed in different tissues of the terrestrial short-tailed mamushi (Gloydius brevicaudus) and the semi-aquatic red-backed rat snake (Elaphe rufodorsata) from the Yangtze River Delta, China. The total CP concentrations in liver, muscle, and adipose tissues in the two snake species were in the range of 2500-24 000, 4900-48 000, and 12-630 ng/g lw, respectively. Tissue burdens indicated that vSCCPs (C6-9) and SCCPs (C10-13) preferentially distributed to snake liver, while adipose was an important storage site and sink of MCCPs (C14-17) and LCCPs (C>18). On a lipid weight basis, vSCCPs and SCCPs were found in highest concentrations in red-backed rat snake liver and MCCPs and LCCPs in muscle, whereas for short-tailed mamushi, all CP groups were predominant in muscle, probably reflecting ecosystem/food web differences. Moreover, vSCCPs, SCCPs, MCCPs, and LCCPs were found to be biomagnified from black-spotted frogs to red-backed rat snakes with mean (maximum) biomagnification factors of 2.2 (3.4), 1.9 (3.7), 1.8 (2.8), and 1.7 (4.5), respectively. This is the first field study of biomagnification potential involving vSCCPs and LCCPs and highlights the need to include all CPs in studies.
Collapse
Affiliation(s)
- Xinyu Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Bo Yuan
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Cynthia A de Wit
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Ziye Zheng
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Ge Yin
- Shimadzu (China) Company, LTD, 200233 Shanghai, China
| |
Collapse
|
26
|
Wu JP, Wu SK, Tao L, She YZ, Chen XY, Feng WL, Zeng YH, Luo XJ, Mai BX. Bioaccumulation characteristics of PBDEs and alternative brominated flame retardants in a wild frog-eating snake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113661. [PMID: 31796314 DOI: 10.1016/j.envpol.2019.113661] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
While a large body of studies have examined polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants (ABFRs) in wildlife, information on the bioaccumulation of these contaminants in reptiles in general, and snakes in particular, are scarce. We investigated the bioaccumulation characteristics of PBDEs and several ABFRs including decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), hexabromobenzene (HBB) and pentabromotoluene (PBT) in a frog-eating snake, the striped keelback snake (Amphiesma stolata), from an e-waste recycling site in South China. The concentrations of ∑PBDEs and ∑ABFRs in the snakes ranged 53-5200 and 3.1-87 ng/g lipid weight, respectively; with higher levels in males than females. Additionally, the concentrations of BDE-28, -47, and -66 were positively correlated with snake size (snout-vent length and body mass), while negative correlations were found for most of the higher brominated PBDE congeners and HBB, PBT and BTBPE. The biomagnification factors (BMFs) estimated in the snake/frog relationship indicated a mild to moderate biomagnification of BDE-28, -47, -66, -100, -153 and -154 (with mean BMFs of 1.1-5.3), while a lack of magnification for the other PBDE congeners and all the ABFRs. This is the first report on the sex- and size-related accumulation and biomagnification potentials of PBDEs and ABFRs in snakes.
Collapse
Affiliation(s)
- Jiang-Ping Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China.
| | - Si-Kang Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China
| | - Lin Tao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Ya-Zhe She
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiao-Yun Chen
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China
| | - Wen-Lu Feng
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
27
|
Jiang Y, Yuan L, Lin Q, Ma S, Yu Y. Polybrominated diphenyl ethers in the environment and human external and internal exposure in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133902. [PMID: 31470322 DOI: 10.1016/j.scitotenv.2019.133902] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 05/12/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame retardants. Because of their toxicity and persistence, some PBDEs were restricted under the Stockholm Convention in 2009. Since then, many studies have been carried out on PBDEs in China and in many other countries. In the present review, the occurrences and contamination of PBDEs in air, water, sediment, soil, biota and daily food, human blood, hair, and other human tissues in China are comprehensively reviewed and described. The human exposure pathways and associated health risks of PBDEs are summarized. The data showed no obvious differences between North and South China, but concentrations from West China were generally lower than in East China, which can be mainly attributed to the production and widespread use of PBDEs in eastern regions. High levels of PBDEs were generally observed in the PBDE production facilities (e.g., Jiangsu Province and Shandong Province, East China) and e-waste recycling sites (Taizhou City, Zhejiang Province, East China, and Guiyu City and Qingyuan City, both located in Guangdong Province, South China) and large cities, whereas low levels were detected in rural and less-developed areas, especially in remote regions such as the Tibetan Plateau. Deca-BDE is generally the major congener. Existing problems for PBDE investigations in China are revealed, and further studies are also discussed and anticipated. In particular, non-invasive matrices such as hair should be more thoroughly studied; more accurate estimations of human exposure and health risks should be performed, such as adding bioaccessibility or bioavailability to human exposure assessments; and the degradation products and metabolites of PBDEs in human bodies should receive more attention. More investigations should be carried out to evaluate the quantitative relationships between internal and external exposure so as to provide a scientific basis for ensuring human health.
Collapse
Affiliation(s)
- Yufeng Jiang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Longmiao Yuan
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Qinhao Lin
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shentao Ma
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
28
|
Yang X, Zhang B, Gao Y, Chen Y, Yin D, Xu T. The chlorine contents and chain lengths influence the neurobehavioral effects of commercial chlorinated paraffins on zebrafish larvae. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:172-178. [PMID: 31158586 DOI: 10.1016/j.jhazmat.2019.05.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 05/26/2023]
Abstract
Increasing concern has arisen regarding ubiquitous environmental distribution and potential ecological and health risks of chlorinated paraffins (CPs), especially short chain congeners. Four commercial CP products with different carbon chain lengths and chlorine contents were employed to investigate and compare the possible neurotoxic effects on zebrafish larvae at 5 days post fertilization using behavioral tests, including locomotion, path angle, and two-fish social interaction. The high-chlorinated short-chain CP-70 product resulted in the strongest effects in all three tests, while the low-chlorinated long-chain CP-42 product was on the other end of the spectrum. The consequences of the chain length of two CP-52 products could be clearly distinguished by the tests. Although exposure to the two products both caused inhibition in the locomotion test, they resulted in different kinds of effects in the path angle and interaction tests. Our results suggested, as evidenced by the sensitivity and resolution of the behavioral tests, that the influence of the chain length and chlorine content of CPs could be well characterized and that chlorine content consistently showed a more significant impact than chain length. The health threats of long-chain CPs could also not be overlooked when they contained relatively high chlorine contents.
Collapse
Affiliation(s)
- Xinyue Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuan Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 200092, PR China
| | - Yawen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
29
|
Zhou Y, de Wit CA, Yin G, Du X, Yuan B. Shorter than short-chain: Very short-chain chlorinated paraffins (vSCCPs) found in wildlife from the Yangtze River Delta. ENVIRONMENT INTERNATIONAL 2019; 130:104955. [PMID: 31260927 DOI: 10.1016/j.envint.2019.104955] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 05/22/2023]
Abstract
Very short-chain chlorinated paraffins (vSCCPs, C6-9) occurred in 94% of wildlife samples from the Yangtze River Delta (YRD), China, with CnClm comparable to that of a local CP product, CP-52. Therefore, we determined the content of vSCCPs in CP-52 using a mathematical deconvolution technique. Then with CP-52 and several other reference standards, vSCCPs together with short-, medium-, and long-chain CPs were quantified in 21 wildlife species from an artificial wetland ecosystem and a freshwater ecosystem in the YRD. Concentrations of vSCCPs ranged from 2.6 to 8400 ng/g lipid. These concentrations were 1.2-380 fold lower than SCCPs, but were significantly correlated with those of SCCPs. vSCCP concentrations were comparable to or higher than reported for brominated flame retardants in the same samples. Bioaccumulation tendency of vSCCPs was identified in two benthic species, indicating congener-specific accumulation of vSCCPs in the environment.
Collapse
Affiliation(s)
- Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Cynthia A de Wit
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Ge Yin
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden; Shimadzu (China) Co. LTD., Shanghai 200233, China
| | - Xinyu Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo Yuan
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
30
|
Li H, Bu D, Fu J, Gao Y, Cong Z, Zhang G, Wang Y, Chen X, Zhang A, Jiang G. Trophic Dilution of Short-Chain Chlorinated Paraffins in a Plant-Plateau Pika-Eagle Food Chain from the Tibetan Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9472-9480. [PMID: 31310123 DOI: 10.1021/acs.est.9b00858] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Little is currently known about the trophic transfer behavior of short-chain chlorinated paraffins (SCCPs) in terrestrial ecosystems. The trophodynamics of SCCPs were investigated in a typical terrestrial food chain (plant-plateau pika-eagle) from the interior of the Tibetan Plateau with an altitude of 4730 m. Pervasive contamination by SCCPs was found in the Tibetan Plateau samples, and the average concentrations of SCCPs in soil, plant, plateau pika, eagle, and gut content of eagle samples were 81.6 ± 31.1, 173 ± 70.3, 258 ± 126, 108 ± 59.6, and 268 ± 93.9 ng/g (average ± standard deviation, dry weight, dw), respectively. The trophic magnification factor (TMF) of SCCPs was 0.37, implying the trophic dilution of SCCPs in this terrestrial food chain. The TMF values of individual congener groups were positively correlated with the values of log Kow, log Koa and biotransformation half-life. As a result of long-range transport, SCCPs congeners with low molecular weight dominated in Tibetan Plateau species (C10+11 congeners = 76.9%, Cl5+6+7 congeners = 71.5%), which could partly explain the low biomagnification factors (BMFs) of SCCPs in the Tibetan Plateau.
Collapse
Affiliation(s)
- Huijuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- Key Laboratory for Applied Technology of Sophisticated Analytic Instrument , Qilu University of Technology (Shandong Academy of Science) , Jinan 250014 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Duo Bu
- Department of Chemistry & Environmental Science , Tibet University , Lhasa 850000 , China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Yan Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Zhiyuan Cong
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes , Institute of Tibetan Plateau Research, Chinese Academy of Sciences , Beijing 100101 , China
| | - Guoshuai Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes , Institute of Tibetan Plateau Research, Chinese Academy of Sciences , Beijing 100101 , China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytic Instrument , Qilu University of Technology (Shandong Academy of Science) , Jinan 250014 , China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| |
Collapse
|
31
|
Wang R, Gao L, Zheng M, Li J, Zhang L, Wu Y, Wang G, Xiong L, Ding D, Lu D, Qiao L, Cui L, Xu C. Characterization of short- and medium-chain chlorinated paraffins in cereals and legumes from 19 Chinese provinces. CHEMOSPHERE 2019; 226:282-289. [PMID: 30933737 DOI: 10.1016/j.chemosphere.2019.03.148] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) were added to the Stockholm Convention Annex A in May 2017. China is the largest producer of chlorinated paraffins (CPs). CPs in the environment can be transferred to foodstuffs directly and through bioaccumulation and then ingested by humans. Cereals and legumes are important components of Chinese diets, so the risks posed by CPs in cereals and legumes should be of concern. 1710 cereal samples and 1710 legume samples from 19 Chinese provinces were pooled by type and province (giving 19 pooled cereal and 19 pooled legume samples). The SCCP and medium-chain chlorinated paraffin (MCCP) concentrations in the samples were determined by comprehensive two-dimensional gas chromatography tandem time-of-flight mass spectrometry (GC × GC-TOFMS). The mean SCCP concentrations in the cereal and legume samples were 343 and 328 ng g-1 wet weight (ww), respectively, and the mean MCCP concentrations were 213 and 184 ng g-1 ww, respectively. The dominant SCCP congener groups were C10Cl6-7 in cereals and C10Cl5-6 in legumes. The MCCP congener groups C14Cl6-7 were dominant in both cereals and legumes. The CP concentrations were higher in samples from eastern China than in samples from other regions. Risk assessments indicated that SCCPs and MCCPs in cereals and legumes do not pose strong risks to Chinese residents.
Collapse
Affiliation(s)
- Runhua Wang
- Division of Chemical Toxicity Test, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China.
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China.
| | - Lei Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Guoquan Wang
- Division of Chemical Toxicity Test, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Lipei Xiong
- Division of Chemical Toxicity Test, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Danting Ding
- Division of Chemical Toxicity Test, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Dasheng Lu
- Division of Chemical Toxicity Test, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Lili Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Chi Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
32
|
Krätschmer K, Schächtele A, Malisch R, Vetter W. Chlorinated paraffins (CPs) in salmon sold in southern Germany: Concentrations, homologue patterns and relation to other persistent organic pollutants. CHEMOSPHERE 2019; 227:630-637. [PMID: 31009870 DOI: 10.1016/j.chemosphere.2019.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 05/22/2023]
Abstract
Chlorinated paraffins (CPs) are complex mixtures of persistent contaminants present throughout the aquatic food web. In this study 122 farmed and 11 wild salmon samples were collected over the course of four years (2014-2017). The ratio of short-chain CP and medium-chain CP and the corresponding homologue patterns were determined by means of gas chromatography (GC) with high resolution, accurate mass Orbitrap mass spectrometry (MS) technology. Characteristic patterns were observed, enabling differentiation between European and non-European (Chilean) samples. Concentration ranges of short-chain CPs (0.97-170 ng/g ww) and medium-chain CPs (1.1-79 ng/g ww) were similarly widespread over three orders of magnitude. Yet, both the mean and median concentrations of MCCPs were usually higher than those of the SCCP. CP levels were generally higher than those of marker polychlorinated biphenyls (PCBs) and hexabromocyclododecanes (HBCDDs). An age- and gender-dependent estimated intake range of 4.6-35 ng/kg bw/week for short and medium-chain CPs via the consumption of salmon was calculated for adults in Germany.
Collapse
Affiliation(s)
- K Krätschmer
- European Union Reference Laboratory (EURL) for Halogenated Persistent Organic Pollutants (POPs) in Feed and Food, 79114, Freiburg, Germany; University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany.
| | - A Schächtele
- European Union Reference Laboratory (EURL) for Halogenated Persistent Organic Pollutants (POPs) in Feed and Food, 79114, Freiburg, Germany
| | - R Malisch
- European Union Reference Laboratory (EURL) for Halogenated Persistent Organic Pollutants (POPs) in Feed and Food, 79114, Freiburg, Germany
| | - W Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany
| |
Collapse
|
33
|
Du X, Yuan B, Zhou Y, Zheng Z, Wu Y, Qiu Y, Zhao J, Yin G. Tissue-Specific Accumulation, Sexual Difference, and Maternal Transfer of Chlorinated Paraffins in Black-Spotted Frogs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4739-4746. [PMID: 30977643 DOI: 10.1021/acs.est.8b06350] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The restriction on usage of short-chain chlorinated paraffins (SCCPs) under Stockholm Convention may promote the production and application of medium chain chlorinated paraffins (MCCPs) and long chain chlorinated paraffins (LCCPs) as substitutes. This study focused on the tissue-specific exposure to SCCPs, MCCPs, and LCCPs in black-spotted frog, a prevalent amphibian species in the Yangtze River Delta, China. The total CP concentrations in frog liver, muscle, and egg samples ranged of 35-1200, 6.3-97, and 6.8-300 ng/g wet weight (ww), respectively. Livers and eggs contained primary SCCPs (on average 78%) while MCCPs (43%) together with SCCPs (41%) were dominant in muscles. A significantly negative correlation was observed between hepatosomatic index and CPs concentration in liver ( p < 0.01), indicating that CP exposure may lower survival rates of frogs by suppressing the energy storage in liver. Additionally, maternal transfer, an important uptake pathway for CPs, was evaluated for the first time by calculating the ratios of CP levels in eggs to those in their paired liver tissues. The ratio of egg to liver for CP congener groups raised with the increasing of log Kow values, indicating mother to egg transport of CPs was related to the lipophilicity of the chemicals.
Collapse
Affiliation(s)
- Xinyu Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
| | - Bo Yuan
- Department of Environmental Science and Analytical Chemistry , Stockholm University , SE-10691 Stockholm , Sweden
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
| | - Ziye Zheng
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | - Yan Wu
- School of Public and Environmental Affairs , Indiana University , Bloomington , Indiana 47405 , United States
| | - Yanling Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
| | - Ge Yin
- Department of Environmental Science and Analytical Chemistry , Stockholm University , SE-10691 Stockholm , Sweden
- Shimadzu (China) Company, Limited , Shanghai 200233 , P. R. China
| |
Collapse
|
34
|
Yuan B, Vorkamp K, Roos AM, Faxneld S, Sonne C, Garbus SE, Lind Y, Eulaers I, Hellström P, Dietz R, Persson S, Bossi R, de Wit CA. Accumulation of Short-, Medium-, and Long-Chain Chlorinated Paraffins in Marine and Terrestrial Animals from Scandinavia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3526-3537. [PMID: 30848596 DOI: 10.1021/acs.est.8b06518] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Short-, medium-, and long-chain chlorinated paraffins (SCCPs, MCCPs, and LCCPs) have a wide range of physical-chemical properties, indicating their varying bioaccumulation tendencies in marine and terrestrial ecosystems. However, there are few empirical data to reveal such bioaccumulation tendencies. In this study, we analyzed SCCPs, MCCPs, and LCCPs in samples from 18 species at both low and high trophic levels of marine and terrestrial ecosystems from the Scandinavian region collected during the past decade. These included fish, seabirds, marine mammals, and terrestrial birds and mammals. SCCPs, MCCPs, and LCCPs were present in all the species, with concentrations ranging from 26-1500, 30-1600, 6.0-1200 ng/g lipid, respectively. Although MCCPs and SCCPs predominated in most species, many terrestrial species had generally higher concentrations of LCCPs than marine species. Terrestrial raptors in particular accumulated higher concentrations of LCCPs, including C24/25-which are predominant among very-long-chain components. LCCP concentrations were highest and predominated (55% of total CPs) in peregrine falcons in this study, which is the first report where concentrations of LCCPs surpass those of SCCPs and MCCPs in wildlife. The results also indicate biomagnification of SCCPs, MCCPs, and LCCPs in both marine and terrestrial food chains, but in-depth studies of specific food webs are needed.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Environmental Science and Analytical Chemistry , Stockholm University , Svante Arrhenius väg 8 , SE-10691 Stockholm , Sweden
| | - Katrin Vorkamp
- Department of Environmental Science, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Anna Maria Roos
- Department of Environmental Research and Monitoring , Swedish Museum of Natural History , PO Box 50007, SE-10405 Stockholm , Sweden
| | - Suzanne Faxneld
- Department of Environmental Research and Monitoring , Swedish Museum of Natural History , PO Box 50007, SE-10405 Stockholm , Sweden
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Svend Erik Garbus
- Department of Environmental Science, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Ylva Lind
- Department of Environmental Research and Monitoring , Swedish Museum of Natural History , PO Box 50007, SE-10405 Stockholm , Sweden
| | - Igor Eulaers
- Department of Bioscience, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Peter Hellström
- Department of Environmental Research and Monitoring , Swedish Museum of Natural History , PO Box 50007, SE-10405 Stockholm , Sweden
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Sara Persson
- Department of Environmental Research and Monitoring , Swedish Museum of Natural History , PO Box 50007, SE-10405 Stockholm , Sweden
| | - Rossana Bossi
- Department of Environmental Science, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Cynthia A de Wit
- Department of Environmental Science and Analytical Chemistry , Stockholm University , Svante Arrhenius väg 8 , SE-10691 Stockholm , Sweden
| |
Collapse
|
35
|
Yuan B, Muir D, MacLeod M. Methods for trace analysis of short-, medium-, and long-chain chlorinated paraffins: Critical review and recommendations. Anal Chim Acta 2019; 1074:16-32. [PMID: 31159936 DOI: 10.1016/j.aca.2019.02.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/01/2022]
Abstract
Many methods for quantifying chlorinated paraffins (CPs) yield only a total concentration of the mixture as a single value. With appropriate analytical instrumentation and quantification methods, more reliable and detailed analysis can be performed by quantifying total concentrations of short-, medium-, and long-chain CPs (SCCPs, MCCPs, and LCCPs), and in the current optimal situation by quantifying individual carbon-chlorine congener groups (CnClm). Sample extraction and clean-up methods for other persistent organochlorines that have been adapted for recovery of CPs must be applied prior to quantification with appropriate quality assurance and quality control to ensure applicability of the methods for SCCPs, MCCPs, and LCCPs. Part critical review, part tutorial, and part perspective, this paper provides practical guidance to analytical chemists who are interested in establishing a method for analysis of CPs in their lab facilities using commercial reference standards, or for expanding existing analysis of total CPs or SCCPs to analysis of SCCPs, MCCPs, and LCCPs, or to analysis of CnClm congener groups.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Derek Muir
- Environment and Climate Change Canada, Burlington, ON, Canada
| | - Matthew MacLeod
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
36
|
Liu Y, Luo XJ, Huang LQ, Tao L, Zeng YH, Mai BX. Halogenated organic pollutants in aquatic, amphibious, and terrestrial organisms from an e-waste site: Habitat-dependent accumulation and maternal transfer in watersnake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:1063-1070. [PMID: 30029314 DOI: 10.1016/j.envpol.2018.06.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Dichlorodiphenyltrichloroethanes (DDTs), Polychlorinated biphenyls (PCBs), and halogenated flame retardants (HFRs) were measured in aquatic, amphibious, and terrestrial wildlife collected from an e-waste contaminated pond and its surrounding region. The species-specific bioaccumulation and maternal transfer of chemicals in the watersnake were investigated. Total concentrations of target chemicals ranged from 1.3 × 103 to 4.8 × 105 ng g-1 lipid weight. PCBs were the predominant (72-95%) contaminants, followed by polybrominated biphenyl ethers (PBDEs, 4-27%). The concentrations of PCBs and HFRs except decabromodiphenyl ethane (DBDPE) were higher in aquatic organisms and terrestrial birds than in amphibians and lizards. Relatively high DDT levels were observed in the terrestrial birds and toads, but high DBDPE was found in the aquatic species except for waterbird eggs. Species-specific congeners profiles for PCB and PBDE and isomeric composition for dechlorane plus were observed. These results indicated a habitat-dependent accumulation among different species. Maternal transfer examined by the ratio of egg to carcass for watersnakes indicated multi-linear correlations between maternal transfer potential and octanol-water partition coefficient (log KOW) of chemicals. The same maternal transfer efficiencies were found for chemicals with log KOW between 6 and 8, then the maternal transfer potential rapidly decreased with increasing of log KOW.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.
| | - Li-Qian Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lin Tao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| |
Collapse
|
37
|
Estimation of anthropogenic organo-chlorine, bromine and iodine compounds in apolar lipid fractions of bovine milk by solid-phase extraction and neutron activation analysis (SPE–NAA). J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6086-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Sousa JCG, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AMT. A review on environmental monitoring of water organic pollutants identified by EU guidelines. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:146-162. [PMID: 29674092 DOI: 10.1016/j.jhazmat.2017.09.058] [Citation(s) in RCA: 400] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/15/2017] [Accepted: 09/30/2017] [Indexed: 05/12/2023]
Abstract
The contamination of fresh water is a global concern. The huge impact of natural and anthropogenic organic substances that are constantly released into the environment, demands a better knowledge of the chemical status of Earth's surface water. Water quality monitoring studies have been performed targeting different substances and/or classes of substances, in different regions of the world, using different types of sampling strategies and campaigns. This review article aims to gather the available dispersed information regarding the occurrence of priority substances (PSs) and contaminants of emerging concern (CECs) that must be monitored in Europe in surface water, according to the European Union Directive 2013/39/EU and the Watch List of Decision 2015/495/EU, respectively. Other specific organic pollutants not considered in these EU documents as substances of high concern, but with reported elevated frequency of detection at high concentrations, are also discussed. The search comprised worldwide publications from 2012, considering at least one of the following criteria: 4 sampling campaigns per year, wet and dry seasons, temporal and/or spatial monitoring of surface (river, estuarine, lake and/or coastal waters) and ground waters. The highest concentrations were found for: (i) the PSs atrazine, alachlor, trifluralin, heptachlor, hexachlorocyclohexane, polycyclic aromatic hydrocarbons and di(2-ethylhexyl)phthalate; (ii) the CECs azithromycin, clarithromycin, erythromycin, diclofenac, 17α-ethinylestradiol, imidacloprid and 2-ethylhexyl 4-methoxycinnamate; and (iii) other unregulated organic compounds (caffeine, naproxen, metolachlor, estriol, dimethoate, terbuthylazine, acetaminophen, ibuprofen, trimethoprim, ciprofloxacin, ketoprofen, atenolol, Bisphenol A, metoprolol, carbofuran, malathion, sulfamethoxazole, carbamazepine and ofloxacin). Most frequent substances as well as those found at highest concentrations in different seasons and regions, together with available risk assessment data, may be useful to identify possible future PS candidates.
Collapse
Affiliation(s)
- João C G Sousa
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Ana R Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Marta O Barbosa
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - M Fernando R Pereira
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
39
|
Zhou Y, Yin G, Du X, Xu M, Qiu Y, Ahlqvist P, Chen Q, Zhao J. Short-chain chlorinated paraffins (SCCPs) in a freshwater food web from Dianshan Lake: Occurrence level, congener pattern and trophic transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:1010-1018. [PMID: 29751405 DOI: 10.1016/j.scitotenv.2017.10.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 06/08/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are new group of persistent organic pollutants (POPs) listed in the Stockholm Convention. The Yangtze River Delta is among the industrially most developed areas in China, supporting a large production and consumption of chlorinated paraffins (CPs). Despite this, there is very limited data on the environmental exposure of SCCPs from the region. This study analyzed SCCPs in 14 wild aquatic organisms from Dianshan Lake, Shanghai, China. The concentrations of total SCCPs ranged from 10 to 1300μgg-1 lipid weight, with significantly higher levels (p<0.05) in benthic (benthic fish and invertebrates) than in non-benthic species (pelagic and mesopelagic fish). The abundance of C10 congeners was much higher in the benthic species compared to in the non-benthic species. The calculated trophic magnification factors (TMFs) of SCCP congeners varied from 1.19 (C10H12Cl10) to 1.57 (C13H20Cl8). The TMFs were significantly correlated (p<0.01) with carbon-chain length in a positive linear relationship and with Log Kow in a parabolic curve relationship. Considering the high concentrations of SCCPs in wild aquatic organisms and the trophic magnification observed in the freshwater food web, further studies should be undertaken to assess the environmental fate of SCCPs and the public health risk in the Yangtze River Delta.
Collapse
Affiliation(s)
- Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Ge Yin
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Xinyu Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Maoying Xu
- Tongji Zhejiang College, Jiaxing 314051, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Patrik Ahlqvist
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Qiaofeng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
40
|
Wang R, Gao L, Zheng M, Tian Y, Li J, Zhang L, Wu Y, Huang H, Qiao L, Liu W, Su G, Liu G, Liu Y. Short- and medium-chain chlorinated paraffins in aquatic foods from 18 Chinese provinces: Occurrence, spatial distributions, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:1199-1206. [PMID: 29751425 DOI: 10.1016/j.scitotenv.2017.09.327] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 06/08/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are classed as persistent organic pollutants and were included in the Stockholm Convention in May 2017. Large amounts of chlorinated paraffins (CPs) are produced in China than in any other countries. CPs can be released into the environment while being produced and used, and can bioaccumulate in aquatic biota and be ingested by humans. Dietary intake is the main route through which humans are exposed to CPs. It has previously been found that persistent organic pollutant concentrations are usually higher in aquatic foods than in other foods. The risk of human exposure to SCCPs in aquatic foods should therefore be of concerns. However, SCCP concentrations in aquatic foods have not been systematically studied. A total of 1620 aquatic food samples were collected, and 18 pooled samples were analyzed by two-dimensional gas chromatography coupled with electron-capture negative-ionization time-of-flight mass spectrometry. The mean SCCP and MCCP concentrations were 1472 and 80.5ng/gwet weight, respectively. The dominant SCCP and MCCP congener groups were C10Cl6-7 and C14Cl7-8, respectively. The concentrations were much higher than those have been found in aquatic foods in other countries. The CP concentrations in the samples consumed by local people from eastern and southern China were higher than the concentrations in samples from central and western China. Risk assessment results indicated that SCCPs and MCCPs in aquatic foods do not pose significant risks to residents of China.
Collapse
Affiliation(s)
- Runhua Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Agricultural University of Hebei, Baoding 071000, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Jianghan University, Wuhan 430056, China.
| | - Yiling Tian
- Agricultural University of Hebei, Baoding 071000, China.
| | - Jingguang Li
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Lei Zhang
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Yongning Wu
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Huiting Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Wenbin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Guijin Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Ying Liu
- Agricultural University of Hebei, Baoding 071000, China.
| |
Collapse
|
41
|
Du X, Yuan B, Zhou Y, Benskin JP, Qiu Y, Yin G, Zhao J. Short-, Medium-, and Long-Chain Chlorinated Paraffins in Wildlife from Paddy Fields in the Yangtze River Delta. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1072-1080. [PMID: 29320169 DOI: 10.1021/acs.est.7b05595] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) were added to Annex A of the Stockholm Convention on Persistent Organic Pollutants in April, 2017. As a consequence of this regulation, increasing production and usage of alternatives, such as medium- and long-chain chlorinated paraffins (MCCPs and LCCPs, respectively), is expected. Little is known about the environmental fate and behavior of MCCPs and LCCPs. In the present study, SCCPs, MCCPs, and LCCPs were analyzed in nine wildlife species from paddy fields in the Yangtze River Delta, China, using atmospheric pressure chemical ionization-quadrupole time-of-flight mass spectrometry. SCCPs, MCCPs, and LCCPs were detected in all samples at concentrations ranging from <91-43 000, 96-33 000, and 14-10 000 ng/g lipid, respectively. Most species contained primarily MCCPs (on average 44%), with the exception of collared scops owl and common cuckoo, in which SCCPs (43%) accumulated to a significantly (i.e., p < 0.05) greater extent than MCCPs (40%). Cl6 groups were dominant in most species except for yellow weasel and short-tailed mamushi, which contained primarily Cl7 groups. Principal components analysis, together with CP concentrations and carbon stable isotope analysis showed that habitat and feeding habits were key factors driving CP accumulation and congener group patterns in wildlife. This is the first report of LCCP exposure in wildlife and highlights the need for data on risks associated with CP usage.
Collapse
Affiliation(s)
- Xinyu Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, China
| | - Bo Yuan
- Department of Environmental Science and Analytical Chemistry, Stockholm University , SE-10691 Stockholm, Sweden
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, China
| | - Jonathan P Benskin
- Department of Environmental Science and Analytical Chemistry, Stockholm University , SE-10691 Stockholm, Sweden
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment (Ministry of Education), College of Environmental Science and Engineering, Tongji University , Shanghai 200092, China
| | - Ge Yin
- Department of Environmental Science and Analytical Chemistry, Stockholm University , SE-10691 Stockholm, Sweden
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, China
| |
Collapse
|
42
|
Weber R, Herold C, Hollert H, Kamphues J, Blepp M, Ballschmiter K. Reviewing the relevance of dioxin and PCB sources for food from animal origin and the need for their inventory, control and management. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:42. [PMID: 30464877 PMCID: PMC6224007 DOI: 10.1186/s12302-018-0166-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND In the past, cases of PCDD/F and PCB contamination exceeding limits in food from animal origin (eggs, meat or milk) were mainly caused by industrially produced feed. But in the last decade, exceedances of EU limit values were discovered more frequently for PCDD/Fs or dioxin-like(dl)-PCBs from free range chicken, sheep, and beef, often in the absence of any known contamination source. RESULTS The German Environment Agency initiated a project to elucidate the entry of PCBs and PCDD/Fs in food related to environmental contamination. This paper summarizes the most important findings. Food products from farm animals sensitive to dioxin/PCB exposure-suckling calves and laying hens housed outdoor-can exceed EU maximum levels at soil concentrations that have previously been considered as safe. Maximum permitted levels can already be exceeded in beef/veal when soil is contaminated around 5 ng PCB-TEQ/kg dry matter (dm). For eggs/broiler, this can occur at a concentration of PCDD/Fs in soil below 5 ng PCDD/F-PCB-TEQ/kg dm. Egg consumers-especially young children-can easily exceed health-based guidance values (TDI). The soil-chicken egg exposure pathway is probably the most sensitive route for human exposure to both dl-PCBs and PCDD/Fs from soil and needs to be considered for soil guidelines. The study also found that calves from suckler cow herds are most prone to the impacts of dl-PCB contamination due to the excretion/accumulation via milk. PCB (and PCDD/F) intake for free-range cattle stems from feed and soil. Daily dl-PCB intake for suckler cow herds must in average be less than 2 ng PCB-TEQ/day. This translates to a maximum concentration in grass of 0.2 ng PCB-TEQ/kg dm which is less than 1/6 of the current EU maximum permitted level. This review compiles sources for PCDD/Fs and PCBs relevant to environmental contamination in respect to food safety. It also includes considerations on assessment of emerging POPs. CONCLUSIONS The major sources of PCDD/F and dl-PCB contamination of food of animal origin in Germany are (1) soils contaminated from past PCB and PCDD/F releases; (2) PCBs emitted from buildings and constructions; (3) PCBs present at farms. Impacted areas need to be assessed with respect to potential contamination of food-producing animals. Livestock management techniques can reduce exposure to PCDD/Fs and PCBs. Further research and regulatory action are needed to overcome gaps. Control and reduction measures are recommended for emission sources and new listed and emerging POPs to ensure food safety.
Collapse
Affiliation(s)
- Roland Weber
- POPs Environmental Consulting, Lindenfirststraße 23, 73527 Schwäbisch Gmünd, Germany
| | - Christine Herold
- POPs Environmental Consulting, Lindenfirststraße 23, 73527 Schwäbisch Gmünd, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Josef Kamphues
- Institute of Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | | | | |
Collapse
|
43
|
Vetter W, Gallistl C, Schlienz A, Preston T, Müller J, von der Trenck KT. Brominated flame retardants (BFRs) in eggs from birds of prey from Southern Germany, 2014. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:569-577. [PMID: 28843896 DOI: 10.1016/j.envpol.2017.08.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/01/2017] [Accepted: 08/12/2017] [Indexed: 05/24/2023]
Abstract
In Southern Germany, peregrine falcons (Falco peregrinus), which almost exclusively prey on other birds, are top predators of the terrestrial food chain. These animals accumulate persistent organic pollutants (POPs) and halogenated flame retardants (HFRs) with mothers transferring these lipophilic contaminants to their eggs. Here we analyzed unhatched eggs of eleven peregrine falcons and six of other species, and report concentrations of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), hexabromobenzene (HBB), 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) and its metabolites, pentabromoethylbenzene (PBEB), pentabromotoluene (PBT), and tribromophenol (TBP). The extract of one purified peregrine falcon egg sample was comprehensively analyzed in a non-target (NT) approach by gas chromatography with mass spectrometry in the electron capture negative ion mode. A total of ∼400 polyhalogenated compounds were detected, among them dechloranes and possibly transformation products, two tetrabrominated metabolites of PBT and several compounds unknown to us which could not be identified.
Collapse
Affiliation(s)
- Walter Vetter
- University of Hohenheim, Institute of Food Chemistry, Garbenstr. 28, D-70599 Stuttgart, Germany.
| | - Christoph Gallistl
- University of Hohenheim, Institute of Food Chemistry, Garbenstr. 28, D-70599 Stuttgart, Germany
| | - Annika Schlienz
- University of Hohenheim, Institute of Food Chemistry, Garbenstr. 28, D-70599 Stuttgart, Germany
| | - Theresa Preston
- University of Hohenheim, Institute of Food Chemistry, Garbenstr. 28, D-70599 Stuttgart, Germany
| | - Jens Müller
- University of Hohenheim, Institute of Food Chemistry, Garbenstr. 28, D-70599 Stuttgart, Germany
| | - K Theo von der Trenck
- Institute for the Environment, Measurements, and Nature Protection of the German State of Baden-Württemberg (LUBW), Griesbachstr. 1, D-76185 Karlsruhe, Germany
| |
Collapse
|
44
|
Yuan B, Strid A, Darnerud PO, de Wit CA, Nyström J, Bergman Å. Chlorinated paraffins leaking from hand blenders can lead to significant human exposures. ENVIRONMENT INTERNATIONAL 2017; 109:73-80. [PMID: 28941391 DOI: 10.1016/j.envint.2017.09.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/23/2017] [Accepted: 09/12/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Chlorinated paraffins (CPs, polychlorinated n-alkanes) are versatile, high-production-volume chemicals. A previous study indicated that hand blenders leak CPs into prepared food. OBJECTIVES (1) to estimate exposure to CPs from hand blender use compared to background CP exposure from diet; (2) to assess the risk from human dietary exposure to CPs from hand blender use; (3) to investigate how hand blenders leak out CPs. METHODS CPs were analyzed in food market baskets, in cooking oil/water samples (1g oil/100mL water) mixed using 16 different hand blenders, and in dismantled components of the hand blenders. RESULTS Dietary intake of CPs from food market baskets was calculated to be 4.6μg/day per capita for Swedish adults. Total CP amounts in oil/water leakage samples ranged from <0.09 to 120μg using the hand blenders once. CP leakage showed no decreasing levels after 20 times of hand blender usage. CP profiles in the leakage samples matched those of self-lubricating bearings and/or polymer components disassembled from the hand blenders. CONCLUSIONS Usage of 75% of the hand blenders tested will lead to increased human exposure to CPs. The intake of CPs for Swedish adults by using hand blenders once a day can raise their daily dietary intake by a factor of up to 26. The 95th percentile intake of CPs via using the hand blenders once a day exceeded the TDI for Swedish infants with a body weight <7.2kg. CP leakage came from blender components which contain CPs. The leakage may last several hundred times of hand blender use.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, SE-106 91 Stockholm, Sweden.
| | - Anna Strid
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, SE-106 91 Stockholm, Sweden
| | - Per Ola Darnerud
- Risk Benefit Assessment Department, National Food Agency, Box 622, SE-751 26 Uppsala, Sweden
| | - Cynthia A de Wit
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, SE-106 91 Stockholm, Sweden
| | - Jessica Nyström
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, SE-106 91 Stockholm, Sweden
| | - Åke Bergman
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, SE-106 91 Stockholm, Sweden; Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| |
Collapse
|
45
|
Yin G, Danielsson S, Dahlberg AK, Zhou Y, Qiu Y, Nyberg E, Bignert A. Sampling designs for contaminant temporal trend analyses using sedentary species exemplified by the snails Bellamya aeruginosa and Viviparus viviparus. CHEMOSPHERE 2017; 185:431-438. [PMID: 28711794 DOI: 10.1016/j.chemosphere.2017.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Environmental monitoring typically assumes samples and sampling activities to be representative of the population being studied. Given a limited budget, an appropriate sampling strategy is essential to support detecting temporal trends of contaminants. In the present study, based on real chemical analysis data on polybrominated diphenyl ethers in snails collected from five subsites in Tianmu Lake, computer simulation is performed to evaluate three sampling strategies by the estimation of required sample size, to reach a detection of an annual change of 5% with a statistical power of 80% and 90% with a significant level of 5%. The results showed that sampling from an arbitrarily selected sampling spot is the worst strategy, requiring much more individual analyses to achieve the above mentioned criteria compared with the other two approaches. A fixed sampling site requires the lowest sample size but may not be representative for the intended study object e.g. a lake and is also sensitive to changes of that particular sampling site. In contrast, sampling at multiple sites along the shore each year, and using pooled samples when the cost to collect and prepare individual specimens are much lower than the cost for chemical analysis, would be the most robust and cost efficient strategy in the long run. Using statistical power as criterion, the results demonstrated quantitatively the consequences of various sampling strategies, and could guide users with respect of required sample sizes depending on sampling design for long term monitoring programs.
Collapse
Affiliation(s)
- Ge Yin
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sara Danielsson
- Swedish Museum of Natural History, Box 50007, SE-10405, Stockholm, Sweden
| | - Anna-Karin Dahlberg
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| | - Yihui Zhou
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment (Ministry of Education), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Elisabeth Nyberg
- Swedish Museum of Natural History, Box 50007, SE-10405, Stockholm, Sweden
| | - Anders Bignert
- Swedish Museum of Natural History, Box 50007, SE-10405, Stockholm, Sweden; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
46
|
Huang H, Gao L, Xia D, Qiao L. Bioaccumulation and biomagnification of short and medium chain polychlorinated paraffins in different species of fish from Liaodong Bay, North China. Sci Rep 2017; 7:10749. [PMID: 28883426 PMCID: PMC5589728 DOI: 10.1038/s41598-017-06148-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/09/2017] [Indexed: 11/09/2022] Open
Abstract
Chlorinated paraffins (CPs) are highly complex technical mixtures, and the short chain chlorinated paraffins (SCCPs) are classed as persistent and have been included in the Stockholm Convention. However, there have been few studies of SCCPs and medium chain chlorinated paraffins (MCCPs) and their bioaccumulation and biomagnification in different species of fish. The present study investigated the levels, congener group profiles, bioaccumulation, and biomagnification of SCCPs and MCCPs in different species of fish from Liaodong Bay, North China. The ranges for the ΣSCCP and ΣMCCP concentrations were 376.3-8596 ng/g lipid weight (lw) and 22.37-5097 ng/g lw, respectively. The logarithms of bioaccumulation factors of ΣSCCPs ranged from 4.69 to 6.05, implying that SCCPs bioaccumulated in the fish. The trophic magnification factor of ΣSCCPs was 2.57, indicating that SCCPs could biomagnify in fish. Carbon chain length, the numbers of chlorine atoms, and octanol/water partition coefficients of the SCCPs and MCCPs might be important factors affecting the bioaccumulation of these chemicals in fish. The risk posed to human health by consumption of fish containing SCCPs was low. New SCCPs with nine carbons (C9) were detected in fish in this study.
Collapse
Affiliation(s)
- Huiting Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian District, Beijing, 100085, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian District, Beijing, 100085, China.
| | - Dan Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian District, Beijing, 100085, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian District, Beijing, 100085, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
47
|
Xia D, Gao LR, Zheng MH, Li JG, Zhang L, Wu YN, Qiao L, Tian QC, Huang HT, Liu WB, Su GJ, Liu GR. Health risks posed to infants in rural China by exposure to short- and medium-chain chlorinated paraffins in breast milk. ENVIRONMENT INTERNATIONAL 2017; 103:1-7. [PMID: 28351765 DOI: 10.1016/j.envint.2017.03.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 05/22/2023]
Abstract
Chlorinated paraffins (CPs) are complex mixtures of synthetic chemicals found widely in environmental matrices. Short-chain CPs (SCCPs) are candidate persistent organic pollutants under the Stockholm Convention. There should be great concern about human exposure to SCCPs. Data on CP concentrations in human breast milk is scarce. This is the first study in which background SCCP and medium-chain CP (MCCP) body burdens in the general rural population of China have been estimated and health risks posed to nursing infants by CPs in breast milk assessed. The concentrations of 48 SCCP and MCCP formula congeners were determined in 24 pooled human milk samples produced from 1412 individual samples from eight provinces in 2007 and 16 provinces in 2011. The samples were analyzed by comprehensive two-dimensional gas chromatography electron capture negative ionization high-resolution time-of-flight mass spectrometry. The median SCCP and MCCP concentrations were 303 and 35.7ngg-1 lipid weight, respectively, for the 2007 samples and 360 and 45.4ngg-1 lipid weight, respectively, for the 2011 samples. The C10 and C14 homologs were the dominant CP carbon-chain-length groups, contributing 51% and 82% of the total SCCP and MCCP concentrations, respectively. There are probably multiple CP sources to the general Chinese population and numerous exposure pathways. The median estimated daily SCCP and MCCP intakes for nursing infants were 1310 and 152ngkg-1d-1, respectively, in 2007 and 1520 and 212ngkg-1d-1, respectively, in 2011. SCCPs do not currently pose significant risks to infants in China. However, it is necessary to continuously monitor CP concentrations and health risks because CP concentrations in Chinese human breast milk are increasing.
Collapse
Affiliation(s)
- Dan Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Li-Rong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ming-Hui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing-Guang Li
- National Institute of Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing 100050, China
| | - Lei Zhang
- National Institute of Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing 100050, China
| | - Yong-Ning Wu
- National Institute of Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing 100050, China.
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Qi-Chang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui-Ting Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Wen-Bin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Gui-Jin Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guo-Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
48
|
Zhou Y, Yin G, Asplund L, Stewart K, Rantakokko P, Bignert A, Ruokojärvi P, Kiviranta H, Qiu Y, Ma Z, Bergman Å. Human exposure to PCDDs and their precursors from heron and tern eggs in the Yangtze River Delta indicate PCP origin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:184-192. [PMID: 28371733 DOI: 10.1016/j.envpol.2017.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/17/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are highly toxic to humans and wildlife. In the present study, PCDD/Fs were analyzed in the eggs of whiskered terns (Chlidonias hybrida), and genetically identified eggs from black-crowned night herons (Nycticorax nycticorax) sampled from two lakes in the Yangtze River Delta area, China. The median toxic equivalent (TEQ) of PCDD/Fs were 280 (range: 95-1500) and 400 (range: 220-1100) pg TEQ g-1 lw (WHO, 1998 for birds) in the eggs of black-crowned night heron and whiskered tern, respectively. Compared to known sources, concentrations of PCDDs relative to the sum of PCDD/Fs in bird eggs, demonstrated high abundance of octachlorodibenzo-p-dioxin (OCDD), 1,2,3,4,6,7,8-heptaCDD and 1,2,3,6,7,8-hexaCDD indicating pentachlorophenol (PCP), and/or sodium pentachlorophenolate (Na-PCP) as significant sources of the PCDD/Fs. The presence of polychlorinated diphenyl ethers (PCDEs), hydroxylated and methoxylated polychlorinated diphenyl ethers (OH- and MeO-PCDEs, known impurities in PCP products), corroborates this hypothesis. Further, significant correlations were found between the predominant congener CDE-206, 3'-OH-CDE-207, 2'-MeO-CDE-206 and OCDD, indicating a common origin. Eggs from the two lakes are sometimes used for human consumption. The WHO health-based tolerable intake of PCDD/Fs is exceeded if eggs from the two lakes are consumed regularly on a weekly basis, particularly for children. The TEQs extensively exceed maximum levels for PCDD/Fs in hen eggs and egg products according to EU legislation (2.5 pg TEQ g-1lw). The results suggest immediate action should be taken to manage the contamination, and further studies evaluating the impacts of egg consumption from wild birds in China. Likewise, studies on dioxins and other POPs in common eggs need to be initiated around China.
Collapse
Affiliation(s)
- Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Ge Yin
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Lillemor Asplund
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Kathryn Stewart
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Panu Rantakokko
- National Institute for Health and Welfare, P.O. Box95, 70701 Kuopio, Finland
| | - Anders Bignert
- Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden; Key Laboratory of Yangtze River Water Environment (Ministry of Education), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Päivi Ruokojärvi
- National Institute for Health and Welfare, P.O. Box95, 70701 Kuopio, Finland
| | - Hannu Kiviranta
- National Institute for Health and Welfare, P.O. Box95, 70701 Kuopio, Finland
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment (Ministry of Education), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhijun Ma
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200438, China
| | - Åke Bergman
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden; Swetox, Karolinska Institute, Unit of Toxicology Sciences, Forskargatan 20, SE-15136 Södertälje, Sweden
| |
Collapse
|
49
|
Yin G, Athanassiadis I, Bergman Å, Zhou Y, Qiu Y, Asplund L. A refined method for analysis of 4,4'-dicofol and 4,4'-dichlorobenzophenone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13307-13314. [PMID: 28386885 PMCID: PMC5434158 DOI: 10.1007/s11356-017-8956-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
The acaricide, dicofol, is a well-known pesticide and partly a substitute for dichlorodiphenyltrichloroethane (DDT). Only few reports on environmental occurrence and concentrations have been reported calling for improvements. Hence, an analytical method was further developed for dicofol and dichlorobenzophenone (DCBP) to enable assessments of their environmental occurrence. Concentrated sulfuric acid was used to remove lipids and to separate dicofol from DCBP. On-column injection was used as an alternative to splitless injection to protect dicofol from thermal decomposition. By the method presented herein, it is possible to quantify dicofol and DCBP in the same samples. Arctic cod (Gadus morhua) were spiked at two dose levels and the recoveries were determined. The mean recovery for dicofol was 65% at the low dose (1 ng) and 77% at the high dose (10 ng). The mean recovery for DCBP was 99% at the low dose (9.2 ng) and 146% at the high dose (46 ng). The method may be further improved by use of another lipid removal method, e.g., gel permeation chromatography. The method implies a step forward in dicofol environmental assessments.
Collapse
Affiliation(s)
- Ge Yin
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691, Stockholm, Sweden
| | - Ioannis Athanassiadis
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691, Stockholm, Sweden
| | - Åke Bergman
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691, Stockholm, Sweden
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Swedish Toxicology Sciences Research Center, Forskargatan 20, SE-15136, Södertälje, Sweden
| | - Yihui Zhou
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691, Stockholm, Sweden.
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment (Ministry of Education), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lillemor Asplund
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691, Stockholm, Sweden
| |
Collapse
|
50
|
Nam TH, Kim L, Jeon HJ, Kim K, Ok YS, Choi SD, Lee SE. Biomarkers indicate mixture toxicities of fluorene and phenanthrene with endosulfan toward earthworm (Eisenia fetida). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:307-317. [PMID: 27696228 DOI: 10.1007/s10653-016-9876-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
α-Endosulfan and some polycyclic aromatic compounds (PAHs) are persistent in the environment and can reach crop products via contaminated agricultural soils. They may even be present as mixtures in the soil and induce mixture toxicity in soil organisms such as earthworms. In this study, the combined toxicities of PAHs with α-endosulfan were determined in Eisenia fetida adults using an artificial soil system. α-Endosulfan and five PAHs were tested for their acute toxicity toward E. fetida in artificial soils. Only α-endosulfan, fluorene, and phenanthrene showed acute toxicities, with LC50 values of 9.7, 133.2, and 86.2 mg kg-1, respectively. A mixture toxicity assay was conducted using α-endosulfan at LC10 and fluorene or phenanthrene at LC50 in the artificial soils. Upon exposure to the mixture of fluorene and α-endosulfan, earthworms were killed in increasing numbers owing to their synergistic effects, while no other mixture showed any additional toxicity toward the earthworms. Along with the acute toxicity results, the biochemical and molecular changes in the fluorene- and phenanthrene-treated earthworms with or without α-endosulfan treatment demonstrated that enhancement of glutathione S-transferase activity was dependent on the addition of PAH chemicals, and the HSP70 gene expression increased with the addition of α-endosulfan. Taken together, these findings contribute toward understanding the adverse effects of pollutants when present separately or in combination with other types of chemicals.
Collapse
Affiliation(s)
- Tae-Hoon Nam
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Leesun Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Hwang-Ju Jeon
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Kyeongnam Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Yong-Sik Ok
- Department of Biological Environment, Korea Biochar Research Center, Kangwon National University, Chuncheon, 200-701, Korea
| | - Sung-Deuk Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea.
| |
Collapse
|