1
|
Abu-Dalo M, Abu-Dalo D, Halalsheh M, Al Bawab A. Olive mill wastewater treatment using vertical flow constructed wetlands (VFCWs). BMC Chem 2024; 18:234. [PMID: 39574128 PMCID: PMC11583398 DOI: 10.1186/s13065-024-01348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
The study explores a synergistic two-phase system to treat olive mill wastewater (OMW), comprising a multilayer adsorbent filter (pretreatment) and a vertical flow constructed wetland (VFCW). The pretreatment phase includes layers of commercial granular activated carbon (CGAC) and volcanic tuff (VT), while the VFCW phase consists of planted tank with Phragmites australis reeds and unplanted tanks. Initially, municipal wastewater is introduced into the VFCW to establish the required microbial community. Then, pre-treated OMW is passed through the VFCW. The removal rates of various pollutants were assessed. The planted VFCW showed superior removal efficiencies, averaging 97.82% for total chemical oxygen demand (CODT), 92.78% for dissolved oxygen demand (CODd), 99.61% for total phenolic compounds (TPC), 98.94% for total nitrogen (TN), 96.96% for ammonium, and 95.83% for nitrate. In contrast, the unplanted VFCW displayed lower removal efficiencies, averaging 91.47% for CODT, 77.82% for CODd, 98.53% for TPC, 97.51% for TN, 92.04% for ammonium, and 90.82% for nitrate. These findings highlight the significant potential of VFCWs, which offer an integrated approach to OMW treatment by incorporating physical, chemical, and biological mechanisms within a single treatment system.
Collapse
Affiliation(s)
- Muna Abu-Dalo
- Chemistry Department, Faculty of Science and Arts, Jordan University of Science & Technology, Irbid, Jordan.
| | - Duaa Abu-Dalo
- Chemistry Department, School of Science, The University of Jordan, Amman, Jordan
- Basic Pharmaceutical Science Department, Faculty of Pharmacy, Middle East University, Amman, Jordan
| | - Maha Halalsheh
- Water Energy and Environment Center, The University of Jordan, Amman, Jordan
| | - Abeer Al Bawab
- Chemistry Department, School of Science, The University of Jordan, Amman, Jordan.
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, Jordan.
- Nanotechnology Center, The University of Jordan, Amman, Jordan.
| |
Collapse
|
2
|
Kushwaha A, Goswami L, Kim BS, Lee SS, Pandey SK, Kim KH. Constructed wetlands for the removal of organic micropollutants from wastewater: Current status, progress, and challenges. CHEMOSPHERE 2024; 360:142364. [PMID: 38768790 DOI: 10.1016/j.chemosphere.2024.142364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
In this work, the practical utility of constructed wetlands (CWs) is described as a promising treatment option for micropollutants (MPs) in wastewater with the aid of their eco-friendly, low-energy, economically feasible, and ecologically sustainable nature. This paper offers a comprehensive review on CW technology with respect to the key strategies for MP removal such as phytoremediation, substrate adsorption, and microbial degradation. It explores the important factors controlling the performance of CWs (e.g., in terms of configurations, substrates, plant-microbe interactions, temperature, pH, oxygen levels, hydraulic loading rate, and retention time) along with the discussions on the pivotal role of microbial populations in CWs and plant-microbe cooperative remediation dynamics, particularly in relation to diverse organic MP patterns in CWs. As such, this review aims to provide valuable insights into the key strategies for optimizing MP treatment and for enhancing the efficacy of CW systems. In addition, the process-based models of constructed wetlands along with the numerical simulations based on the artificial neural network (ANN) method are also described in association with the data exploratory techniques. This work is thus expected to help open up new possibilities for the application of plant-microbe cooperative remediation approaches against diverse patterns of organic MPs present in CWs.
Collapse
Affiliation(s)
- Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sang Soo Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Sudhir Kumar Pandey
- Department of Botany, Guru Ghasidas Vishwavidyalaya (a central University) Bilaspur, Chhattisgarh, 495009, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
3
|
Wang H, Liu J, Qiang S, Che Y, Hu T. 4-tert-Butylphenol impairs the liver by inducing excess liver lipid accumulation via disrupting the lipid metabolism pathway in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124385. [PMID: 38897274 DOI: 10.1016/j.envpol.2024.124385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Endocrine disrupting chemicals (EDCs) can disrupt normal endocrine function by interfering with the synthesis and release of hormones, causing adverse reactions to development, immunity, nerves, and reproduction. 4-tert-Butylphenol (4-t-BP) is disruptive to early zebrafish development, but its effects on zebrafish liver are unknown. In this study, the adverse effects of 4-t-BP on the liver were investigated using zebrafish as a model organism. 4-t-BP inhibited liver development in zebrafish embryos and induced liver damage in adult zebrafish. Even if F1 was not directly exposed to 4-t-BP, its growth and development were inhibited. 4-t-BP can lead to an increase in lipid accumulation, total cholesterol and triglycerides contents, and the activities of alanine transaminase and aspartate aminotransferase in zebrafish embryos and adult zebrafish livers, and also cause an acceleration of glucose metabolism in zebrafish embryos. In addition, qRT-PCR showed that 4-t-BP induced the changes in the expressions of liver development-, steroid and unsaturated fatty acid biosynthesis-, and glycerolipid and arachidonic acid metabolism-related genes in zebrafish embryos and inflammatory factors-, antioxidant enzymes- and lipid metabolism-related genes in adult zebrafish livers. Transcriptome sequencing of embryos showed that 4-t-BP altered the expressions of lipid metabolism pathways such as steroid and unsaturated fatty acid biosynthesis, glycerolipid, and arachidonic acid metabolism pathways. Therefore, 4-t-BP may be external stimuli that cause oxidative stress, inflammation, and lipid accumulation in zebrafish liver, resulting in tissue damage and dysfunction in zebrafish liver.
Collapse
Affiliation(s)
- Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Shuting Qiang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yufeng Che
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
4
|
Sun S, Wang S, Yin Y, Yang Y, Wang Y, Zhang J, Wang W. Competitive mechanism of salt-tolerance/degradation-performance of organic pollutant in bacteria: Na +/H + antiporters contribute to salt-stress resistance but impact phenol degradation. WATER RESEARCH 2024; 255:121448. [PMID: 38503180 DOI: 10.1016/j.watres.2024.121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Phenolic-laden wastewater is typically characterized by its high toxicity and high salinity, imposing serious limits on the application of bioremediation. Although a few halotolerant microorganisms have been reported to degrade phenol, their removal efficiency on high concentrations of phenol remains unsatisfactory. What's more, the deep interaction molecular mechanism of salt-tolerance/phenol-degradation performance has not been clearly revealed. Here, a halotolerant strain Aeribacillus pallidus W-12 employed a meta-pathway to efficiently degrade high concentration of phenol even under high salinity conditions. Investigation of salt-tolerance strategy indicated that four Na+/H+ antiporters, which are widely distributed in bacteria, synergistically endowed the strain with excellent salt adaptability. All these antiporters differentially but positively responded to salinity changes and induction of phenol, forming a synergistic transport effect on salt ions and phenol. In-depth analysis revealed a competitive relationship between salt tolerance and degradation performance, which significantly impaired the degradation efficiency at relatively high salinity. The efficient degradation performance of W-12 under different phenol concentrations and salinity conditions indicated its bioremediation potential for multiple types of phenolic wastewater. Collectively, the competitive mechanism of salt tolerance and degradation performance enlightens a new strategy of introducing or re-constructing Na+/H+ antiporters to further improve bioremediation efficiency of hypersaline organic wastewater.
Collapse
Affiliation(s)
- Shenmei Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Shuo Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Yalin Yin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Yue Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Yijia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300121, PR China
| | - Jingjing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.
| |
Collapse
|
5
|
Lingamdinne LP, Angaru GKR, Pal CA, Koduru JR, Karri RR, Mubarak NM, Chang YY. Insights into kinetics, thermodynamics, and mechanisms of chemically activated sunflower stem biochar for removal of phenol and bisphenol-A from wastewater. Sci Rep 2024; 14:4267. [PMID: 38383598 PMCID: PMC10881974 DOI: 10.1038/s41598-024-54907-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
This study synthesized a highly efficient KOH-treated sunflower stem activated carbon (KOH-SSAC) using a two-step pyrolysis process and chemical activation using KOH. The resulting material exhibited exceptional properties, such as a high specific surface area (452 m2/g) and excellent adsorption capacities for phenol (333.03 mg/g) and bisphenol A (BPA) (365.81 mg/g). The adsorption process was spontaneous and exothermic, benefiting from the synergistic effects of hydrogen bonding, electrostatic attraction, and stacking interactions. Comparative analysis also showed that KOH-SSAC performed approximately twice as well as sunflower stem biochar (SSB), indicating its potential for water treatment and pollutant removal applications. The study suggests the exploration of optimization strategies to further enhance the efficiency of KOH-SSAC in large-scale scenarios. These findings contribute to the development of improved materials for efficient water treatment and pollution control.
Collapse
Affiliation(s)
| | | | | | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei.
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
6
|
He XS, Pan Q, Xi BD, Zheng J, Liu QY, Sun Y. Volatile and semi-volatile organic compounds in landfill leachate: Concurrence, removal and the influencing factors. WATER RESEARCH 2023; 245:120566. [PMID: 37683521 DOI: 10.1016/j.watres.2023.120566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Volatile and semi-volatile organic compounds (VOCs and SVOCs) carried by landfilled wastes may enter leachate, and require appropriate treatment before discharge. However, the driving factors of the entry of VOCs and SOVCs into leachate, their removal characteristics during leachate treatment and the dominant factors remain unclear. A global survey of the VOCs and SOVCs in leachate from 103 landfill sites combined with 27 articles on leachate treatment was conducted to clarify the abovementioned question. The results showed that SVOCs such as polycyclic aromatic hydrocarbons (PAHs), phthalate acid esters (PAEs) and phenols were the most frequently detected in leachate on a global scale. However, four kinds of VOCs, i.e., toluene, ethylbenzene, xylenes and benzene, were frequently detected at high concentrations in landfill leachate as well. The concentrations of VOCs and SVOCs in leachate ranged from 1 × 10° to 1 × 108 ng/L. Solubility was a key factor driving the entry of VOCs and SOVCs into leachate, and higher solubility enables higher detectable concentrations in leachate (P<0.05). It was easiest to remove monocyclic aromatic hydrocarbons (MAHs) from leachate, followed by phenols and PAHs, and it was most difficult to remove PAEs. In terms of removing MAHs, the anoxic/oxic (A/O) process and the sequential batch reactor (SBR) process were comparable to the advanced oxidization process and far superior to the ultrafiltration and nanofiltration processes, and the removal rate increased with an increase in the Henry's constant and/or the hydrophilicity of the contaminants during the A/O and SBR processes (P<0.05). There were no significant differences among biological, advanced oxidation and reverse osmosis processes in the removal of phenolic. In terms of removing PAHs, the A/O process was comparable to the advanced oxidization process and more efficient than the other treatment processes. As to removing PAEs, the membrane bioreactor process was almost the same efficient as the advanced oxidization process and far more efficient than the other biological treatment processes. Future research should focus on the pollution of atmospheric VOCs and SVOCs near aeration units in leachate treatment plants, as well as the health risk assessment of VOCs and SVOCs in the treated leachate effluent. To the best of our knowledge, this is the first review regarding the occurrence and removal of VOCs and SVOCs from landfill leachates worldwide.
Collapse
Affiliation(s)
- Xiao-Song He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qi Pan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Bei-Dou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jing Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Qing-Yu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yue Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
7
|
Lei Y, Wagner T, Rijnaarts H, de Wilde V, Langenhoff A. The removal of micropollutants from treated effluent by batch-operated pilot-scale constructed wetlands. WATER RESEARCH 2023; 230:119494. [PMID: 36571965 DOI: 10.1016/j.watres.2022.119494] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Micropollutants (MPs), such as pharmaceuticals and antibiotics, are present in the environment at low concentrations (ng/L-μg/L). A constructed wetland (CW) is a nature-based wastewater treatment technology, which can be used to remove MPs from wastewater treatment plant effluent. This study aimed to improve MP removal of CWs by optimizing the design of batch-operated CW. Three pilot-scale CWs were built to study the effect of two design-features: the use of a support matrix (a mixture of bark and biochar) and continuous aeration. The use of bark-biochar as support matrix increased the removal of 11 of 12 studied MPs compared to the CW filled with conventional material sand. The highest improved removal by the addition of bark-biochar was more than 40% (median) for irbesartan, carbamazepine, hydrochlorothiazide and benzotriazole. Aerating the bed of the bark-biochar CW did not change MP removal. Besides, the presence of bark-biochar also enhanced the removal of total nitrogen during 10 months of operation, but no improvement was observed on the total organic carbon and total phosphorus removal. Considering the application in a batch-operated CW, MP removal can be greatly enhanced by replacing sand with bark-biochar that will act as MP adsorbing matrix.
Collapse
Affiliation(s)
- Yu Lei
- Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Thomas Wagner
- Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Huub Rijnaarts
- Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Vinnie de Wilde
- Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Alette Langenhoff
- Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
8
|
The toxicity of 4-tert-butylphenol in early development of zebrafish: morphological abnormality, cardiotoxicity, and hypopigmentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45781-45795. [PMID: 36708478 DOI: 10.1007/s11356-023-25586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Endocrine disrupting effects of 4-tert-butylphenol (4-t-BP) are well described in literature. However, the evidence regarding developmental toxic effect of 4-t-BP is still vague. The present study used zebrafish as a model organism to investigate the toxic effect of 4-t-BP. The results showed that 4-t-BP exposure at 3, 6, and 12 μM induced developmental toxicity in zebrafish, such as reduced embryo hatchability and abnormality morphological. Flow cytometry analysis showed that 4-t-BP also induced intracellular ROS production. 4-t-BP induced changes in the expression of genes related to cardiac development and melanin synthesis, resulting in cardiotoxicity and hypopigmentation. 4-t-BP also caused oxidative stress, and initiated apoptosis through p53-bcl-2/bax-capase3 pathway. Integrative biomarker response analysis showed time- and dose-dependent effects of 4-t-BP on oxidative damage and developmental toxicity in zebrafish embryos. Overall, this study contributed to a comprehensive evaluation of the toxicity of 4-t-BP, and the findings provided new evidence for early warning of residues in aquatic environments.
Collapse
|
9
|
Bessadok S, Kraiem K, Arous F, Al Souki KS, Tabassi D, El Toumi S, Jaouani A. Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate. TOXICS 2023; 11:toxics11010081. [PMID: 36668807 PMCID: PMC9864862 DOI: 10.3390/toxics11010081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/13/2022] [Accepted: 01/12/2023] [Indexed: 05/21/2023]
Abstract
Constructed wetlands (CWs) are considered as low-cost and energy-efficient wastewater treatment systems. Media selection is one of the essential technical keys for their implementation. The purpose of this work was essentially to evaluate the removal efficiency of organic pollution and nitrogen from municipal wastewater (MWW) using different selected media (gravel/gravel amended with granulated cork) in mesocosm horizontal flow constructed wetlands (HFCWs). The results showed that the highest chemical oxygen demand (COD) and ammonium nitrogen removal of 80.53% and 42%, respectively, were recorded in the units filled with gravel amended with cork. The influence of macrophytes (Phragmites australis and Typha angustifolia) was studied and both species showed steeper efficiencies. The system was operated under different hydraulic retention times (HRTs) i.e., 6 h, 24 h, 30 h, and 48 h. The obtained results revealed that the COD removal efficiency was significantly enhanced by up to 38% counter to the ammonium rates when HRT was increased from 6 h to 48 h. Moreover, the removal efficiency of two endocrine-disrupting compounds (EDCs) namely, bisphenol A (BPA) and diclofenac (DCF) was investigated in two selected HFCWs, at 48 h HRT. The achieved results proved the high capacity of cork for BPA and DCF removal with the removal rates of 90.95% and 89.66%, respectively. The results confirmed the role of these engineered systems, especially for EDC removal, which should be further explored.
Collapse
Affiliation(s)
- Salma Bessadok
- Bioresources, Environment and Biotechnology Laboratory (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Khadija Kraiem
- Bioresources, Environment and Biotechnology Laboratory (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Fatma Arous
- Bioresources, Environment and Biotechnology Laboratory (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Karim Suhail Al Souki
- Department of Environmental Chemistry and Technology, Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 400 96 Ústí nad Labem, Czech Republic
| | - Dorra Tabassi
- Bioresources, Environment and Biotechnology Laboratory (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Safa El Toumi
- Bioresources, Environment and Biotechnology Laboratory (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Atef Jaouani
- Bioresources, Environment and Biotechnology Laboratory (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
- Correspondence:
| |
Collapse
|
10
|
Zeng Y, Chen Z, Lyu Q, Cheng Y, Huan C, Jiang X, Yan Z, Tan Z. Microbiologically induced calcite precipitation for in situ stabilization of heavy metals contributes to land application of sewage sludge. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129866. [PMID: 36063711 DOI: 10.1016/j.jhazmat.2022.129866] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Microbiologically induced calcite precipitation (MICP) has shed new light on solving the problem of in situ stabilization of heavy metals (HMs) in sewage sludge before land disposal. In this study, we examined whether MICP treatment can be integrated into a sewage sludge anaerobic digestion-land application process. Our results showed that MICP treatment not only prevented the transfer of ionic-state Cd from the sludge to the supernatant (98.46 % immobilization efficiency) but also reduced the soluble exchangeable Pb and Cd fractions by up to 100 % and 48.54 % and increased the residual fractions by 22.54 % and 81.77 %, respectively. In addition, the analysis of the stability of HMs in MICP-treated sludge revealed maximum reductions of 100 % and 89.56 % for TCLP-extractable Pb and Cd, respectively. Three-dimensional fluorescence, scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy analyses confirmed the excellent performance of the ureolytic bacteria Sporosarcina ureilytica ML-2 in the sludge system. High-throughput sequencing showed that the relative abundance of Sporosarcina sp. reached 53.18 % in MICP-treated sludge, and the urease metabolism functional genes unit increased by a maximum of 239.3 %. The MICP technology may be a feasible method for permanently stabilizing HMs in sewage sludge before land disposal.
Collapse
Affiliation(s)
- Yong Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| | - Zezhi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yapeng Cheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Chenchen Huan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xinru Jiang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| |
Collapse
|
11
|
Jain M, Majumder A, Gupta AK, Ghosal PS. Application of a new baffled horizontal flow constructed wetland-filter unit (BHFCW-FU) for treatment and reuse of petrochemical industry wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116443. [PMID: 36228396 DOI: 10.1016/j.jenvman.2022.116443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
The shortage of water resources and generation of large quantum of wastewater has posed a significant concern to the environment and public health. Recent research on wastewater treatment has started to focus on reusing wastewater for different activities to reduce the stress on natural water resources. Constructed wetland (CWs) is a low-cost wastewater treatment option. However, some drawbacks include large areal requirements and the need for tertiary treatment units for reusable effluent. In this study, a novel composite baffled horizontal flow CW filter unit (BHFCW-FU) was developed to overcome the drawbacks of the conventional CW. The BHFCW-FU planted with Chrysopogon zizanioides provided a nine times longer flow path, and the adjoined variable depth dual media filter reduced the total area requirement and served as a polishing unit. On average, the BHFCW-FU with horizontal sub-surface flow regime could efficiently remove around 93.93%, 87.20%, and 66.25% of turbidity, phenol, and COD, respectively, from real petrochemical wastewater (initial turbidity: 29.6 NTU, phenol: 4.52 mg/L, and COD: 381 mg/L) and rendered the effluent quality reusable for irrigation, industrial, and other environmental purposes. In synthetic wastewater (initial turbidity: 754 NTU, phenol: 10.87 mg/L, and COD: 1691 mg/L), the removal efficiency of turbidity, phenol, and COD were 99.50%, 93.73%, and 87.05%, respectively. In-depth substrate characterization was done to study the removal mechanism. The developed BHFCW-FU required less space and maintenance, provided reusable effluent, and overcame the drawbacks of conventional CWs. Hence, it may show immense potential as an effective wastewater treatment.
Collapse
Affiliation(s)
- Mahak Jain
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
12
|
Chand N, Suthar S, Kumar K, Singh V. Removal of pharmaceuticals by vertical flow constructed wetland with different configurations: Effect of inlet load and biochar addition in the substrate. CHEMOSPHERE 2022; 307:135975. [PMID: 35944676 DOI: 10.1016/j.chemosphere.2022.135975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceuticals (PCs) residues are considered an emerging threat to the environment due to their persistency, ecotoxicity and bioaccumulative nature. To study the PC (amoxicillin, AMX; caffeine, CF; ibuprofen, IBU) removal efficiency of vertical flow constructed wetland (VFCW), three setups of VFCWs were configured: SB (substrate matrix + biochar (BC)); SBP (substrate matrix + BC + plant); SP (substrate matrix + plant) and changes in effluent PC load was estimated at 24, 48, 72, 96, 120, 144 and 168 h intervals. SBP with an influent load of 1,000 μg L-1 showed the maximum removals of 75.51% (AMX), 87.53% (CF), and 79.93% (IBU) significantly higher than that of SB and SP (p < 0.00). Results showed an inverse relationship between removal efficacy and influent PCs loading. The average removal (%) by VFCWS (of all studied setups) was in the order: 66.20 > 47.88 > 39.0 (IBU), 56.56 > 42.12 > 34.36 (AMX), and 74.13 > 64.0 > 52.07 (CF) with 1,000, 5,000 > 10,000 μg L-1 influent load, respectively. The maximum removal of COD, NH4+-N, and NO3-N was recorded at 88.8%, 83.1%, and 64.9%, respectively in SBP, and their removal was hardly affected by influent PC concentration. In summary, planted VFCW spiked with BC could be a viable approach for the removal of PCs in wastewater. The impact of PC load on plant toxicity in VFCWs can be taken as a research problem for future work in this series.
Collapse
Affiliation(s)
- Naveen Chand
- Laboratory of Environmental Sustainability & Energy Research, National Institute of Technology Delhi, Delhi 110036, India
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun 248001, Uttarakhand, India.
| | - Kapil Kumar
- Laboratory of Environmental Sustainability & Energy Research, National Institute of Technology Delhi, Delhi 110036, India
| | - Vineet Singh
- School of Environment & Natural Resources, Doon University, Dehradun 248001, Uttarakhand, India
| |
Collapse
|
13
|
Lei Y, Rijnaarts H, Langenhoff A. Mesocosm constructed wetlands to remove micropollutants from wastewater treatment plant effluent: Effect of matrices and pre-treatments. CHEMOSPHERE 2022; 305:135306. [PMID: 35714955 DOI: 10.1016/j.chemosphere.2022.135306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The contamination of the aquatic environment by micropollutants (MPs) brings risks for the ecosystem and human health. Constructed wetlands (CWs) were an eco-friendly technology to remove MPs from wastewater treatment plant effluent. In this study, the removal of MPs was evaluated in seven vertical flow mesocosm CWs with different configurations, including different support matrices (sand and a combination of bark-biochar), light pre-treatments (UVC and sunlight) or bioaugmentation in support matrices (activated sludge). The CWs with bark-biochar as support matrix significantly enhanced the removal of irbesartan and carbamazepine (>40 %), compared to the CW filled with the conventional support matrix sand. UVC irradiation as pre-treatment was more efficient in removing MPs than sunlight irradiation. After UVC pre-treatment, less MPs accumulated in the plants in the subsequent CW unit compared to the CW unit without any pre-treatment. Moreover, in the UVC combined CW system, less sulfamethoxazole, furosemide, mecoprop and diclofenac were accumulated in the plants (<0.5 μg) than other MPs (>3 μg). The addition of 0.5 % activated sludge combined with the aeration of influent did not improve MP removal in the CW. Considering the application, a bark-biochar based CW combined with UVC pre-treatment will result in more MP removal than a conventional sand CW.
Collapse
Affiliation(s)
- Yu Lei
- Environmental Technology, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Huub Rijnaarts
- Environmental Technology, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Alette Langenhoff
- Environmental Technology, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
14
|
Torres-García JL, Ahuactzin-Pérez M, Fernández FJ, Cortés-Espinosa DV. Bisphenol A in the environment and recent advances in biodegradation by fungi. CHEMOSPHERE 2022; 303:134940. [PMID: 35588877 DOI: 10.1016/j.chemosphere.2022.134940] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is a compound used in the manufacture of a wide variety of everyday materials that, when released into the environment, causes multiple detrimental effects on humans and other organisms. The reason for this review is to provide an overview of the presence, distribution, and concentration of BPA in water, soil, sediment, and air, as well as the process of release and migration, biomagnification, and exposure mechanisms that cause various toxic effects in humans. Therefore, it is important to seek efficient and economic strategies that allow its removal from the environment and prevent it from reaching humans through food chains. Likewise, the main removal techniques are analyzed, focusing on biological treatments, particularly the most recent advances in the degradation of BPA in different environmental matrices through the use of ligninolytic fungi, non-ligninolytic fungi and yeasts, as well as the possible routes of metabolic processes that allow their biotransformation or biodegradation due to their efficient extracellular enzyme systems. This review supports the importance of the application of new biotechnological tools for the degradation of BPA.
Collapse
Affiliation(s)
- J L Torres-García
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, 09340, Ciudad de México, México
| | - M Ahuactzin-Pérez
- Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Autopista Tlaxcala-San Martín Km 10.5, 90120, San Felipe Ixtacuixtla, Tlaxcala, Mexico
| | - F J Fernández
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, 09340, Ciudad de México, México
| | - Diana V Cortés-Espinosa
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada. Carretera Estatal San Inés Tecuexcomac-Tepetitla Km 1.5, 90700, Tepetitla de Lardizabal, Tlaxcala, Mexico.
| |
Collapse
|
15
|
Nie X, Wang L. Plant species compositions alleviate toxicological effects of bisphenol A by enhancing growth, antioxidant defense system, and detoxification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65755-65770. [PMID: 35501435 DOI: 10.1007/s11356-022-20402-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA), a broadly disseminated endocrine disturbing chemicals in environment, is harmful to creatures and plants. Plants can uptake and metabolize BPA, but a single plant species ability is limited. Undeniably, plant species compositions have a more vital ability to remove pollutants than a single plant species. However, the mechanisms of plant species compositions alleviating toxicological effects of bisphenol A are poorly understood. Here, we administered plant species compositions, which based on a full-factorial design of Phragmites australis (A), Typha latifolia (B), and Arundo donax (C), to unveil their role in BPA exposure. The results illustrated that the root activity, biomass, and photosynthetic pigment contents of the mixed hydroponic group (e.g., sp(ABC)) were significantly increased under concentration of BPA(1.5, 5, and 10 mg L-1), which showed that the root activity, fresh weight, dry weight, chlorophyll a, and total chlorophyll contents of shoots were increased. While mixed-hydroponic culture groups (e.g., sp(AB), sp(ABC)) significantly increased antioxidant enzyme activity and antioxidant substances under concentration of BPA(5 and 10 mg L-1), it astoundingly diminished responsive oxygen species (ROS) and malondialdehyde (MDA) substance, proposing that mixed-hydroponic culture groups calmed oxidative stress. Further analysis revealed that mixed-hydroponic culture groups (e.g., sp(AB), sp(AC), sp(ABC)) of 1.5, 5, and 10 mg L-1 BPA exposure significantly increased detoxification enzyme activity of NADPH-cytochrome P450 reductase (CPR), glutathione S-transferase (GST), and glycosyltransferase (GT). Moreover, mixed-hydroponic culture groups (e.g., sp(AB), sp(AC), sp(ABC)) decreased the BPA substance in leaves, proposing that mixed-hydroponic culture groups advanced BPA metabolism by improving CPR, GST, and GT enzyme activities. These results demonstrated that a mixed-hydroponic culture strategy can alleviate BPA phytotoxicity and possibly offer natural and potential phytoremediation methods for BPA.
Collapse
Affiliation(s)
- Xianguang Nie
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Lin Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
16
|
Ono M, Ono Y, Nakamura T, Tsuchikawa T, Kuraya T, Kuwabara S, Nakanishi Y, Asano T, Matsui A, Tanaka K, Ebihara Y, Kurashima Y, Noji T, Murakami S, Shichinohe T, Mitsuhashi T, Omori Y, Furukawa T, Taniue K, Suzuki M, Sugitani A, Karasaki H, Mizukami Y, Hirano S. Predictors of Long-Term Survival in Pancreatic Ductal Adenocarcinoma after Pancreatectomy: TP53 and SMAD4 Mutation Scoring in Combination with CA19-9. Ann Surg Oncol 2022; 29:5007-5019. [PMID: 35399143 DOI: 10.1245/s10434-022-11630-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/26/2022] [Indexed: 12/17/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is a fatal cancer for which even unfavorable clinicopathological factors occasionally fail to preclude long-term survival. We sought to establish a scoring system that utilizes measurable pre-intervention factors for predicting survival following surgical resection. METHODS We retrospectively analyzed 34 patients who died from short-term recurrences and 32 long-term survivors among 310 consecutively resected patients with PDA. A logistic regression model was used to define factors related to clinical parameters, molecular profiles of 18 pancreatic cancer-associated genes, and aberrant expression of major tumor suppressors. RESULTS Carbohydrate antigen 19-9 (CA19-9) had the best ability to classify patients with short-term recurrence and long-term survivors [odds ratio 21.04, 95% confidence interval (CI) 4.612-96.019], followed by SMAD4 and TP53 mutation scoring (odds ratio 41.322, 95% CI 3.156-541.035). Missense TP53 mutations were strongly associated with the nuclear expression of p53, whereas truncating mutations were associated with the absence of nuclear p53. The former subset was associated with a worse prognosis. The combination of aberrant SMAD4 and mutation types of TP53 exhibited a better resolution for distinguishing patients with short-term recurrences from long-term survivors (compared with the assessment of the number of mutated KRAS, CDKN2A, TP53, and SMAD4 genes). Calibration of mutation scores combined with CA19-9 in a logistic regression model setting demonstrated a practical effect in classifying long survivors and patients with early recurrence (c-statistic = 0.876). CONCLUSIONS Genetic information, i.e., TP53 mutation types and SMAD4 abnormalities, combined with CA19-9, will be a valuable tool for improving surgical strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Masato Ono
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
- Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toru Nakamura
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Takahiro Tsuchikawa
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomotaka Kuraya
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shota Kuwabara
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshitsugu Nakanishi
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toshimichi Asano
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Aya Matsui
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kimitaka Tanaka
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuma Ebihara
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yo Kurashima
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takehiro Noji
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Soichi Murakami
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toshiaki Shichinohe
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomoko Mitsuhashi
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Yuko Omori
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenzui Taniue
- Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Mayumi Suzuki
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Ayumu Sugitani
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Hidenori Karasaki
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Yusuke Mizukami
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan.
- Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
17
|
Zhang NC, Hong ZF, Qiu RL, Chao YQ, Yu YF, A D. Removal pathway quantification and co-metabolic mechanism evaluation of alkylphenols from synthetic wastewater by phenolic root exudates in the rhizosphere of Phragmites australis. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127269. [PMID: 34607026 DOI: 10.1016/j.jhazmat.2021.127269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Phenolic root exudates (PREs) released from wetland plants are potentially effective for accelerating the biodegradation of alkylphenols, yet the inherent behavior is still unclear. In this study, two representative root exudates (REs), namely p-coumaric acid (PREs) and oxalic acid (non-PREs) were exogenously added as specific and non-specific co-metabolic substrates, respectively, to elucidate the quantification of each removal pathway and degradation mechanism of co-metabolism for alkylphenols (i.e. p-tert-butylphenol (PTBP)) from synthetic wastewater. The results showed that soil adsorption (31-37%), microbial degradation (27-37%), and plant uptake (16-41%) are the main removal pathways of PTBP by PREs in the Phragmites australis rhizosphere. Both REs enriched anaerobic functional community (anaerobic ammonium oxidation bacteria and denitrifying bacteria) and promoted the usage of PTBP as carbon source and/or electron donor. The activity of non-specific enzyme (polyphenol oxidase) was enhanced by RE which owning a significant positive correlation with bacterial abundance, whereas only PREs strengthened the activity of specific enzyme (monophenol oxidase) catalyzing the phenolic ring hydroxylation of PTBP followed by a dehydrogenation route. Moreover, exogenous PREs significantly improved the growth of degrading-related bacteria (Sphingomonas and Gemmatimonas), especially in unplanted soils with high activity of dioxygenase catalyzing the cleavage pathway of PTBP, instead of plant presence.
Collapse
Affiliation(s)
- Ni-Chen Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Feng Hong
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yuan-Qing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ya-Fei Yu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan A
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
18
|
Mosca Angelucci D, Donati E, Tomei MC. Extractive membrane bioreactor to detoxify industrial/hazardous landfill leachate and facilitate resource recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150892. [PMID: 34653456 DOI: 10.1016/j.scitotenv.2021.150892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Landfill leachate is a highly polluted and toxic waste stream harmful to the environment and human health, its biological treatment, even if challenging, offers the opportunity of recovering valuable resources. In this study, we propose the application of an extractive membrane bioreactor equipped with a polymeric tubing, made of Hytrel, as an innovative device able to remove specific organic toxic compounds of the leachate and, at the same time, to produce an effluent rich in valuable chemicals suitable for recovery. The leachate treatment consists in a two-step process: the extraction of specific toxic compounds through the polymeric tubing based on the affinity with the polymer, and their subsequent biodegradation in controlled conditions in the bulk phase of the extractive membrane bioreactor, thus avoiding the direct contact of the microbial consortium with the toxic leachate. Three synthetic streams simulating leachates produced by landfills of typical industrial/hazardous waste, mixed municipal and industrial solid waste, and oil shale industry waste, whose toxic fraction is mainly constituted by phenolic compounds, have been tested. Successful performance was achieved in all the tested conditions, with high removal (≥98%) and biodegradation efficiencies (89-95%) of the toxic compounds. No mass transfer limitations across the tubing occurred during the operation and a marginal accumulation (in the range of 4-7%) into the polymer has been observed. Furthermore, volatile fatty acids and inorganic compounds contained in the leachates were fully recovered in the treated effluent. Feasibility study confirmed the applicability of the proposed bioreactor as a powerful technology able to achieve high toxic removal efficiency in leachate treatment and facilitate resource recovery.
Collapse
Affiliation(s)
- Domenica Mosca Angelucci
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione, Rome, Italy
| | - Enrica Donati
- Institute for Biological Systems, National Research Council (ISB-CNR), Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione, Rome, Italy
| | - M Concetta Tomei
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione, Rome, Italy.
| |
Collapse
|
19
|
Comparative Study on UV-AOPs for Efficient Continuous Flow Removal of 4-tert-Butylphenol. Processes (Basel) 2021. [DOI: 10.3390/pr10010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the present study, UV-light-driven advanced oxidation processes (AOPs) have been employed for the degradation of 4-tert-Butylphenol (4-t-BP) in water under continuous flow conditions. The effects of varying space time (10, 20, 40, 60 and 120 min) and oxidant dosage (88.3 mg/L, 176.6 mg/L and 264 mg/L) were examined. 4-t-BP degradation efficiency in the UV-induced AOPs followed the order of UV/H2O2 (264.9 mg/L) ≈ UV/Fe2+/H2O2 > UV/Fe3+/H2O2 > UV/H2O2 (176.6 mg/L) > UV/H2O2 (88.3 mg/L) > UV/Fe-TiO2 > UV/TiO2 > UV, while UV/Fe3+/H2O2 was the most efficient process in terms of Total Organic Carbon (TOC) removal (at the space time of 60 min) among those tested. The combination of UV with 88.3 mg/L H2O2 enhanced pollutant removal from 51.29% to 93.34% after 10 min of irradiation. The presence of H2O2 contributed to the highest 4-t-BP and TOC removal values. Interestingly, the increase in space time from 20 to 60 min resulted in surpassing of the activity of the Fe-TiO2 over commercial TiO2, although it had an almost negligible positive impact on the performance of the UV/H2O2 system as well as H2O2 concentration. The results obtained showed that more than 80% of 4-t-BP could be successfully degraded by both heterogeneous and homogeneous AOPs after 60 min.
Collapse
|
20
|
Abstract
Colored Ti2O3 and Ti2O3/TiO2 (mTiO) catalysts were prepared by the thermal treatment method. The effects of treatment temperature on the structure, surface area, morphology and optical properties of the as-prepared samples were investigated by XRD, BET, SEM, TEM, Raman and UV–VIS spectroscopies. Phase transformation from Ti2O3 to TiO2 rutile and TiO2 anatase to TiO2 rutile increased with increasing treatment temperatures. The photocatalytic activities of thermally treated Ti2O3 and mTiO were evaluated in the photodegradation of 4-tert-butylphenol (4-t-BP) under solar light irradiation. mTiO heated at 650 °C exhibited the highest photocatalytic activity for the degradation and mineralization of 4-t-BP, being approximately 89.8% and 52.4%, respectively, after 150 min of irradiation. The effects of various water constituents, including anions (CO32−, NO3, Cl and HCO3−) and humic acid (HA), on the photocatalytic activity of mTiO-650 were evaluated. The results showed that the presence of carbonate and nitrate ions inhibited 4-t-BP photodegradation, while chloride and bicarbonate ions enhanced the photodegradation of 4-t-BP. As for HA, its effect on the degradation of 4-t-BP was dependent on the concentration. A low concentration of HA (1 mg/L) promoted the degradation of 4-t-BP from 89.8% to 92.4% by mTiO-650, but higher concentrations of HA (5 mg/L and 10 mg/L) had a negative effect.
Collapse
|
21
|
Zeng Y, Chen Z, Du Y, Lyu Q, Yang Z, Liu Y, Yan Z. Microbiologically induced calcite precipitation technology for mineralizing lead and cadmium in landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113199. [PMID: 34271357 DOI: 10.1016/j.jenvman.2021.113199] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
As a new bioremediation technology for toxic metals, microbiologically induced calcite precipitation (MICP) is gradually becoming a research focus. This study investigated the application of MICP to mineralize toxic metals (lead and cadmium) in landfill leachate for the first time. In the experiment of remediating synthetic landfill leachate (SLL) contaminated by Pb2+, 100% of the 20 mg/L Pb2+ was removed when the maximum urease activity was only 20.96 U/ml. Scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) and laser particle size characterizations of the precipitates indicate the formation of agglomerated square particles, 76.9% of which had sizes that ranged from 33.93 to 57.06 μm. Fourier transform infrared spectroscopic and X-ray diffraction analyses confirmed that the precipitates consisted predominantly of calcite crystals, and the unit cell lattice constants of the precipitates (a = b = 4.984 Å, c = 17.171 Å) matched those of calcite, while lead was fixed as hydrocerussite. In addition, the Pb-MICP precipitates were stable under continuous acid degradation (pH = 5.5), and only 1.76% of the lead was released after 15 days. In the verification test of toxic metals remediation in a real landfill leachate (RLL), all of the Pb2+ and Cd2+ (initial concentrations: Pb2+ = 25 mg/L; Cd2+ = 5.6205 mg/L) was mineralized simultaneously, which further confirmed the feasibility of MICP for toxic metal remediation in landfill leachate. However, optimizing the urea dosage and combining the ammonium recovery are necessary strategies required for improving the economic and environmental benefits of the MICP process.
Collapse
Affiliation(s)
- Yong Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Zezhi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Yaling Du
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Ziyi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| |
Collapse
|
22
|
Shrestha RG, Inoue D, Ike M. Effects of selection and compiling strategy of substrates in column-type vertical-flow constructed wetlands on the treatment of synthetic landfill leachate containing bisphenol A. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1428-1437. [PMID: 34559077 DOI: 10.2166/wst.2021.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A constructed wetland (CW) is a low-cost, eco-friendly, easy-to-maintain, and widely applicable technology for treating various pollutants in the waste landfill leachate. This study determined the effects of the selection and compiling strategy of substrates used in CWs on the treatment performance of a synthetic leachate containing bisphenol A (BPA) as a representative recalcitrant pollutant. We operated five types of lab-scale vertical-flow CWs using only gravel (CW1), a sandwich of gravel with activated carbon (CW2) or brick crumbs (CW3), and two-stage hybrid CWs using gravel in one column and activated carbon (CW4) or brick crumbs (CW5) in another to treat synthetic leachate containing BPA in a 7-d sequential batch mode for 5 weeks. CWs using activated carbon (CW2 and CW4) effectively removed ammonium nitrogen (NH4-N) (99-100%), chemical oxygen demand (COD) (93-100%), and BPA (100%), indicating that the high adsorption capacity of activated carbon was the main mechanism involved in their removal. CW5 also exhibited higher pollutant removal efficiencies (NH4-N: 94-99%, COD: 89-98%, BPA: 89-100%) than single-column CWs (CW1 and CW3) (NH4-N: 76-100%, COD: 84-100%, BPA: 51-100%). This indicates the importance of the compiling strategy along with the selection of an appropriate substrate to improve the pollutant removal capability of CWs.
Collapse
Affiliation(s)
- Rajani Ghaju Shrestha
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan E-mail:
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan E-mail:
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan E-mail:
| |
Collapse
|
23
|
Alkylphenols and Chlorophenols Remediation in Vertical Flow Constructed Wetlands: Removal Efficiency and Microbial Community Response. WATER 2021. [DOI: 10.3390/w13050715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study aims to investigate the effect of two different groups of phenolic compounds (the alkylphenols nonylphenol (NP) and octylphenol (OP), and the chlorophenol pentachlorophenol (PCP)) on constructed wetlands (CWs) performance, including on organic matter, nutrients and contaminants removal efficiency, and on microbial community structure in the plant bed substrate. CWs were assembled at lab scale simulating a vertical flow configuration and irrigated along eight weeks with Ribeira de Joane (an urban stream) water not doped (control) or doped with a mixture of NP and OP or with PCP (at a 100 μg·L−1 concentration each). The presence of the phenolic contaminants did not interfere in the removal of organic matter or nutrients in CWs in the long term. Removals of NP and OP were >99%, whereas PCP removals varied between 87% and 98%, mainly due to biodegradation. Microbial richness, diversity and dominance in CWs substrate were generally not affected by phenolic compounds, with only PCP decreasing diversity. Microbial community structure, however, showed that there was an adaptation of the microbial community to the presence of each contaminant, with several specialist genera being enriched following exposure. The three more abundant specialist genera were Methylotenera and Methylophilus (methylophilaceae family) and Hyphomicrobium (hyphomicrobiaceae family) when the systems were exposed to a mixture of NP and OP. When exposed to PCP, the three more abundant genera were Denitromonas (Rhodocyclaceae family), Xenococcus_PCC_7305 (Xenococcaceae family) and Rhodocyclaceae_uncultured (Rhodocyclaceae family). To increase CWs efficiency in the elimination of phenolic compounds, namely PCP which was not totally removed, strategies to stimulate (namely biostimulation) or increase (namely bioaugmentation) the presence of these bacteria should be explore. This study clearly shows the potential of vertical flow CWs for the removal of phenolic compounds, a still little explored subject, contributing to promote the use of CWs as nature-based solutions to remediate water contaminated with different families of persistent and/or emergent contaminants.
Collapse
|
24
|
Sun Y, Zhou P, Zhang N, Zhang Z, Guo Q, Chen C, Cui L. Effects of matrix modification and bacteria amendment on the treatment efficiency of municipal tailwater pollutants by modified vertical flow constructed wetland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111920. [PMID: 33418389 DOI: 10.1016/j.jenvman.2020.111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Although vertical flow constructed wetland (VFCW) has great potentials for degradation of water contaminants, traditional VFCW has limited removal efficiencies for pollutants. This study constructed three sets of modified VFCW systems, including VFCW-A with matrix-modification using mixture of biochar and activated carbon, VFCW-B with microbial amendment using denitrifying bacteria, and VFCW-C with combined treatments of both. Their removal efficiencies for various pollutants in synthetic municipal tailwater were investigated. Results showed that the removal efficiencies for NH4-N, NO3-N, total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) by VFCW-C were higher than VFCW-B throughout the experimental period, indicating that matrix-modification could improve the VFCW performance. The higher removal efficiencies for TN, TP, and COD by VFCW-C than VFCW-A also suggested the effectiveness of microbial amendment in VFCW. However, the improved removal for NO3-N by VFCW-C over VFCW-A became less obvious at later operation stage due to insufficient carbon source. All three VFCWs achieved their best removal efficiency when carbon source was supplemented at CH3COO-/TN ratio of 0.5. Our study suggested that the combined treatment of matrix-modification using biochar/activated carbon mixture and microbial amendment using denitrifying bacteria could effectively enhance the treatment efficiency of VFCW systems for tailwater pollutants from sewage plant.
Collapse
Affiliation(s)
- Yaping Sun
- Key Laboratory of Agro-environments in Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, PR China
| | - Pincheng Zhou
- Key Laboratory of Agro-environments in Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, PR China
| | - Nan Zhang
- Key Laboratory of Agro-environments in Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, PR China
| | - Ze Zhang
- Key Laboratory of Agro-environments in Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, PR China
| | - Qingwei Guo
- South China Institute of Environmental Sciences, MEE, 16-18 Ruihe Road, Huangpu District, Guangzhou, Guangdong, 510530, PR China
| | - Chengyu Chen
- Key Laboratory of Agro-environments in Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, PR China.
| | - Lihua Cui
- Key Laboratory of Agro-environments in Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, PR China.
| |
Collapse
|
25
|
Zhao T, Gao Y, Yu T, Zhang Y, Zhang Z, Zhang L, Zhang L. Biodegradation of phenol by a highly tolerant strain Rhodococcus ruber C1: Biochemical characterization and comparative genome analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111709. [PMID: 33396040 DOI: 10.1016/j.ecoenv.2020.111709] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
A novel phenol-degrading strain was isolated and identified as Rhodococcus ruber C1. The degradation analysis shows that 1806 mg/L of phenol can be completely degraded by strain C1 within 38 h, and the maximum specific growth rate (μmax=1.527 h-1) and maximum specific phenol degradation rate (qmax=3.674 h-1) indicate its excellent phenol metabolism capability. More importantly, phenol can be degraded by strain C1 in the temperature range of 20-45 °C within 72 h, and with longer degradation time, phenol can be completely degraded even at 10, 15 and 50 °C. The whole genome of strain C1 was sequenced, and a comparative genome analysis of strain C1 with 36 other genomes of Rhodococcus was performed. A remarkable gene family expansion occurred during the evolution of Rhodococcus, and a comprehensive evolutionary picture of Rhodococcus at genomic level was presented. Moreover, the copy number of genes involved in phenol metabolism was compared among genus Rhodococcus, and the results demonstrate high phenol degradation capability of strain C1 at genomic level. These findings suggest that Rhodococcus ruber C1 is a bacterium capable of degrading phenol efficiently in the temperature range of 10-50 °C.
Collapse
Affiliation(s)
- Tiantao Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yanhui Gao
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Tiantian Yu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yunru Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zhengyi Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Lijie Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
26
|
Sha NQ, Wang GH, Li YH, Bai SY. Removal of abamectin and conventional pollutants in vertical flow constructed wetlands with Fe-modified biochar. RSC Adv 2020; 10:44171-44182. [PMID: 35517164 PMCID: PMC9058508 DOI: 10.1039/d0ra08265a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/01/2020] [Indexed: 01/15/2023] Open
Abstract
To improve the ability of constructed wetlands to remove abamectin (ABM) and nutrients, the influence of four different substrates on constructed wetlands was studied. Four vertical up-flow constructed wetlands (UVCWs) were established to treat simulated agricultural wastewater: CW1 (quartz sand + pebbles), CW2 (pebbles + coke), CW3 (Fe-modified biochar + pebbles + coke), and CW4 (unmodified biochar + pebbles + coke). Under different combinations of hydraulic loading and organic loading, CW3 was extremely effective at removing nitrogen compared with CW1, CW2 and CW4. We found that CW3 was the most effective at treating ABM and conventional pollutants. The highest efficiency of removal of abamectin (99%), COD (98%), NH4 +-N (65%), and TP (80%) was obtained in CW3. These results were directly verified by microbiological tests and microbial community analysis. The microbial diversity of CW3 and CW4 was significantly higher than those of CW1 and CW2. Fe-modified biochar provides a feasible and effective amendment for constructed wetlands to improve the nitrogen removal for C/N (2.5 : 1-5 : 1) wastewater by the ability of microbes to remove nitrogen. Fe-modified bamboo charcoal can be used in engineering as a new type of green environmental protection constructed wetland filler in the future.
Collapse
Affiliation(s)
- Nai-Qing Sha
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology Guilin 541004 China
| | - Guo-Hao Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology Guilin 541004 China
| | - Yan-Hong Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology Guilin 541004 China .,Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology Guilin 541004 China
| | - Shao-Yuan Bai
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology Guilin 541004 China .,Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology Guilin 541004 China
| |
Collapse
|
27
|
Wang J, Zheng W, Zhang Y, Song S, Chou IM, Hu M, Pan Z. Raman spectroscopic technique towards understanding the degradation of phenol by sodium persulfate in hot compressed water. CHEMOSPHERE 2020; 257:127264. [PMID: 32516671 DOI: 10.1016/j.chemosphere.2020.127264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/19/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Degradation of phenol by sodium persulfate (SPS) in hot compressed water (HCW) was investigated in a lab-built fused quartz tube reactor (FQTR) coupled with Raman spectroscopy system. The species of S2O82-, SO42-, HSO4-, SO32- and HSO3- in the reaction system were qualitatively and quantitatively analyzed by Raman spectroscopy. The hydrothermal stability of phenol and SPS at different temperature and the degradation of phenol by SPS were also studied. The results indicated that phenol was not stable in aqueous solution above 200 °C, and that only SO42- was generated in the hydrolysis of SPS at temperatures below 50 °C, and SO42- and HSO4- were generated at higher temperatures. The maximum conversion rate (90.93%) and mineralization efficiency (38.88%) of phenol by SPS was obtained at reaction temperature of 300 °C with 180 min reaction time. During the degradation of phenol by SPS, HSO4- was the main product and S∗ (not detected by Raman spectroscopy) exhibits a positive correlation with temperature. In addition, a degradation pathway of phenol by SPS was proposed. The degradation data for the kinetic analysis indicated that the reaction followed pseudo first-order kinetics, and the reaction rate constants (ks) were given as k50 °C = 0.0083 min-1, k100°C = 0.0197 min-1, k200 °C = 0.0498 min-1, k300 °C = 0.0619 min-1 and k400°C = 0.0505 min-1 at 30 min reaction. Moreover, the activation energy (12.580 kJ mol-1), the enthalpy change (9.064 kJ mol-1) and the entropy change (-222.104 J mol-1) of the reaction were also calculated.
Collapse
Affiliation(s)
- Junliang Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Weicheng Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Yuqing Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - I-Ming Chou
- CAS Key Laboratory of Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, Hainan, China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| |
Collapse
|
28
|
Witthayaphirom C, Chiemchaisri C, Chiemchaisri W, Ogata Y, Ebie Y, Ishigaki T. Long-term removals of organic micro-pollutants in reactive media of horizontal subsurface flow constructed wetland treating landfill leachate. BIORESOURCE TECHNOLOGY 2020; 312:123611. [PMID: 32521467 DOI: 10.1016/j.biortech.2020.123611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
In this work, the removals of organic micro-pollutants (OMPs), i.e. DEP, DBP, 2,6-DTBP, BHT, and DEHP in sand, clay and iron powder mixed media of horizontal subsurface flow constructed wetland (HSSF) from landfill leachate were investigated over 3 years period. The biodegradation was mainly responsible for the removals of DEP, DBP, 2,6-DTBP and BHT whereas DEHP was initially removed through adsorption and formation of iron-organic complex and then subsequently biodegraded during long-term operation as OMP degrading microbial consortium attached to the reactive media was enriched. This study demonstrates that an application of reactive HSSF system can be a viable option for advanced landfill leachate treatment to meet ecological safety level.
Collapse
Affiliation(s)
- Chayanid Witthayaphirom
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Chart Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand.
| | - Wilai Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Yuka Ogata
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Yoshitaka Ebie
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Tomonori Ishigaki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
29
|
Efficient Malathion Removal in Constructed Wetlands Coupled to UV/H2O2 Pretreatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intensive agriculture has led to the increasing application of pesticides, such as malathion, thus generating large volumes of untreated cropland wastewater (CropWW). In this work, a hybrid system constructed wetlands (CW) coupled in continuous with an optimized UV/H2O2 pretreatment was evaluated for the efficient removal of malathion contained in CropWW. In the first stage, 90 min UV irradiation time (UV IR) and 65 mM hydrogen peroxide (H2O2) were identified as optimal operation parameters through a central composite design. The second stage consisted of CW planted with Phragmites australis collected from the agricultural discharge area and operated as a piston flow reactor. Furthermore, CW hydraulic residence times (HRT) of 1, 2 and 3 days, including hydraulic coupling, were evaluated. The removal efficiencies obtained in the first stage (UV/H2O2) were 94 ± 2.5% of malathion and 45 ± 2.5% of total organic carbon (TOC). In stage two (CW) 65 ± 9.6% TOC removal was achieved during the first 17 days, from which around 24% was associated to the biosorption of malathion byproducts. Subsequently, and until the operation ends, CW removed about 80% of TOC for 2 and 3 days HRT, with no significant differences (p > 0.2), which is higher than those reported in several studies involving only advanced oxidation processes (AOP) with UV IR times above 240 min and even for systems using catalysts. The results obtained indicate that the system UV/H2O2-CW is a technically suitable option for the treatment of CropWW with a high content of malathion mainly found in developing countries. Moreover, the hybrid system proposed also represent significant reduction in the size of the treatment plant.
Collapse
|
30
|
Witthayaphirom C, Chiemchaisri C, Chiemchaisri W. Optimization of reactive media for removing organic micro-pollutants in constructed wetland treating municipal landfill leachate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24627-24638. [PMID: 31346849 DOI: 10.1007/s11356-019-06010-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
The removal of organic micro-pollutants (OMPs) from landfill leachate in constructed wetland (CW) media having different material mixtures of sand (S), clay (C), and iron powder (Fe) was investigated using experimental column study. The use of S:C:Fe media consisting of 60:30:10% (w/w) and cattail as vegetation was found optimum for the removals of 2,6-DTBP, BHT, DEP, DBP, and DEHP at 67.5-75.4% during long-term operation of 373 days. Adsorption and biodegradation were confirmed as predominant mechanisms for their removal in CW media but their contribution in total removal varied depending on chemical properties of OMPs. Adsorption kinetic could be well explained by pseudo-second-order whereas biodegradation kinetic followed first-order reaction. The adsorption affinity of OMPs to CW media was S:C:Fe > S:C > S in descending order. This study demonstrated high and sustainable removal of OMPs during long-term operation of CW with the optimized reactive media.
Collapse
Affiliation(s)
- Chayanid Witthayaphirom
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Chart Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand.
| | - Wilai Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
31
|
The Importance of Biological and Ecological Properties of Phragmites Australis (Cav.) Trin. Ex Steud., in Phytoremendiation of Aquatic Ecosystems—The Review. WATER 2020. [DOI: 10.3390/w12061770] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phragmites australis (common reed) is one of the most extensively distributed species of emergent plant worldwide. The adaptive features of this plant show its competitive character. Owing to high intraspecific diversity of common reed, as well as its phenotypic plasticity, the plant shows a broad ecological amplitude. Moreover, the plant exhibits a high capacity for acclimatization to environmental conditions which are considered adverse. This plant has been used for many years in phytoremediation to purify various types of wastewater. Phragmites australis has a high ability to accumulate various nutrients, heavy metals, and micropollutants, and in this respect, it is superior to other aquatic plants. This review examines the existing literature on the biological and ecological properties of common reed, the use of common reed in wastewater treatment for removing pollutants and tolerance for metals, and in hydrophyte treatment systems. It seems vital to conduct further research on the physiology and biochemistry of the common reed, with the aim of increasing the plant’s efficiency for pollutants removal.
Collapse
|
32
|
Ahmadinejad SO, Naeeni STO, Akbari Z, Nazif S. Investigating the performance of agricultural wastes and their ashes in removing phenol from leachate in a fixed-bed column. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:2109-2126. [PMID: 32701490 DOI: 10.2166/wst.2020.274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One of the major pollutants in leachate is phenol. Due to safety and environmental problems, removal of phenol from leachate is essential. Most of the adsorption studies have been conducted in batch systems. Practically, large-scale adsorption is carried out in continuous systems. In this research, the adsorption method has been used for phenol removal from leachate by using walnut shell activated carbon (WSA) and coconut shell activated carbon (CSA) as adsorbents in a fixed-bed column. The effect of adsorbent bed depth, influent phenol concentration and type of adsorbent on adsorption was explored. By increasing the depth of the adsorbent bed in the column, phenol removal efficiency and saturation time increase significantly. Also, by increasing the influent concentration, saturation time of the column decreases. To predict the column performance and describe the breakthrough curve, three kinetic models of Yon-Nelson, Adams-Bohart and Thomas were applied. The results of the experiments indicate that there is a good match between the results of the experiment and the predicted results of the models.
Collapse
Affiliation(s)
- Seyed Omid Ahmadinejad
- School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran E-mail:
| | - Seyed Taghi Omid Naeeni
- School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran E-mail:
| | - Zahra Akbari
- School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran E-mail:
| | - Sara Nazif
- School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran E-mail:
| |
Collapse
|
33
|
Luo H, Zeng Y, Cheng Y, He D, Pan X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135468. [PMID: 31753496 DOI: 10.1016/j.scitotenv.2019.135468] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Nowadays, sanitary landfilling is the most common approach to eliminate municipal solid waste, but a major drawback is the generation of heavily polluted leachates. These leachates must be appropriately treated before being discharged into the environment. Generally, the leachate characteristics such as COD, BOD/COD ratio, and landfill age are necessary determinants for selection of suitable treatment technologies. Rapid, sensitive and cost-effective bioassays are required to evaluate the toxicity of leachate before and after the treatment. This review summarizes extensive studies on leachate treatment methods and leachate toxicity assessment. It is found that individual biological or physical-chemical treatment is unable to meet strict effluent guidelines, whereas a combination of biological and physical-chemical treatments can achieve satisfactory removal efficiencies of both COD and ammonia nitrogen. In order to assess the toxic effects of leachate on different trophic organisms, we need to develop an appropriate matrix of bioassays based on their sensitivity to various toxicants and a multispecies approach using organisms representing different trophic levels. In this regard, a reduction in toxicity of the treated leachate will contribute to assessing the effectiveness of a specific remediation strategy.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Cheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
34
|
Ruppelt JP, Pinnekamp J, Tondera K. Elimination of micropollutants in four test-scale constructed wetlands treating combined sewer overflow: Influence of filtration layer height and feeding regime. WATER RESEARCH 2020; 169:115214. [PMID: 31671295 DOI: 10.1016/j.watres.2019.115214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Municipal wastewater can contain large amounts of organic micropollutants. Some of these substances are harmful to the environment, even at low concentrations, e.g. when being discharged untreated into surface water bodies in case of combined sewer overflows (CSOs) during or after heavy rainfall events. Constructed wetlands can be very effective in treating CSOs. To date, there have only been few investigations about the retention of micropollutants using retention soil filters (RSFs), which basically are vertical flow constructed wetlands with an additional retention area. Thus, focus of this study was set on the interaction between dry periods, loading events, filter operation time, and the resulting removal of micropollutants originating from CSOs. The removal of 1-H-benzotriazole, carbamazepine, diclofenac, metoprolol, sulfamethoxazole and bisphenol A was examined in four test-scale RSFs. Removal efficiencies of approximately 70% were found for metoprolol. 1-H-benzotriazole, diclofenac and bisphenol A were removed moderately between 30 and 40%. For carbamazepine and sulfamethoxazole, negative retention rates were found. No significant correlations were found between removal efficiencies and the length of the antecedent dry period and/or filter operation time. However, the study showed that removal efficiencies depend strongly on respective inflow concentrations. Thickness of the filter layer seems to have an influence as well; does not lead to uniform results, though.
Collapse
Affiliation(s)
- Jan P Ruppelt
- Institute of Environmental Engineering (ISA), RWTH Aachen University, 52056, Aachen, Germany.
| | - Johannes Pinnekamp
- Institute of Environmental Engineering (ISA), RWTH Aachen University, 52056, Aachen, Germany
| | - Katharina Tondera
- IMT Atlantique Bretagne, Pays de Loire, Department of Energy Systems and Environment, F-44307, Nantes, France
| |
Collapse
|
35
|
Nakase C, Zurita F, Nani G, Reyes G, Fernández-Lambert G, Cabrera-Hernández A, Sandoval L. Nitrogen Removal from Domestic Wastewater and the Development of Tropical Ornamental Plants in Partially Saturated Mesocosm-Scale Constructed Wetlands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234800. [PMID: 31795408 PMCID: PMC6926636 DOI: 10.3390/ijerph16234800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 02/02/2023]
Abstract
Vertical partially saturated (VPS) constructed wetlands (CWs) are a novel wastewater treatment system for which little information is known about its design parameters and performance under tropical climates. The objective of this study is to evaluate the nitrogen removal process from domestic wastewater and the production of tropical ornamental plants (Canna hybrids and Zantedeschia aethiopica) in VPS CWs at a mesocosms scale. Nine VPS CWs, with a free-flow zone of 16 cm and a saturated zone of 16 cm, were used as experimental units. Three units were planted with Canna hybrids., and three, with Zantedeschia aethiopica (one plant per unit); the remaining three units were established as controls without vegetation. They were fed with domestic wastewater intermittently and evaluated for the elimination of COD, N-NH4, N-NO3, Norg, NT, and PT. The results showed an increase in the removal for some pollutants in the vegetated systems, i.e., N-NH4 (35%), Norg (16%), TN (25%), and TP (47%) in comparison to the unvegetated systems. While N-NO3 removal showed better removal in 10% of the systems without vegetation, no significant differences were found (p > 0.05) for COD removal. The aerobic and anaerobic conditions in the VPS CWs favor the elimination of pollutants in the systems, and also the development of the tropical species evaluated in this study; good development was exhibited by a high growth rate and biomass production.
Collapse
Affiliation(s)
- Carlos Nakase
- Division of Research, Postgraduate Studies and Innovation, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla, Veracruz C.P. 93821, Mexico
| | - Florentina Zurita
- Quality Environmental Laboratory, Centro Universitario de la Ciénega, University of Guadalajara, Ocotlán, Jalisco C.P. 47820, Mexico
| | - Graciela Nani
- Department of Engineering in Business Management, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla, Veracruz C.P. 93821, Mexico
| | - Guillermo Reyes
- Master of Engineering in Tecnológico Nacional de México/Instituto Tecnológico Superior de San Andrés Tuxtla, San Andrés Tuxtla, Veracruz C.P. 95804 Mexico
| | - Gregorio Fernández-Lambert
- Division of Research, Postgraduate Studies and Innovation, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla, Veracruz C.P. 93821, Mexico
| | - Arturo Cabrera-Hernández
- Division of Research, Postgraduate Studies and Innovation, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla, Veracruz C.P. 93821, Mexico
| | - Luis Sandoval
- Division of Research, Postgraduate Studies and Innovation, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla, Veracruz C.P. 93821, Mexico
- Master of Engineering in Tecnológico Nacional de México/Instituto Tecnológico Superior de San Andrés Tuxtla, San Andrés Tuxtla, Veracruz C.P. 95804 Mexico
- Correspondence:
| |
Collapse
|
36
|
Jarujareet P, Nakkanong K, Luepromchai E, Suttinun O. Bioaugmentation coupled with phytoremediation for the removal of phenolic compounds and color from treated palm oil mill effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32065-32079. [PMID: 31493076 DOI: 10.1007/s11356-019-06332-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
The potential for coupling bioaugmentation with phytoremediation to simultaneously treat and utilize treated palm oil mill effluent (TPOME) in animal feed production was determined from a reduction in phenolic compounds and color in soil leachates, as well as from an increased yield of pasture grass. Two phenol-degrading bacteria-Methylobacterium sp. NP3 and Acinetobacter sp. PK1-were inoculated into the Brachiaria humidicola rhizosphere before the application of TPOME. A pot study showed that the soil with both grass and inoculated bacteria had the highest dephenolization and decolorization efficiencies, with a maximum capability of removing 70% from 587 mg total phenolic compounds added and 73% from 4438 color units during ten TPOME application cycles. The results corresponded to increases in the number of phenol-degrading bacteria and the grass yield. In a field study, this treatment was able to remove 46% from 21,453 mg total phenolic compounds added, with a maximum color removal efficiency of 52% from 5105 color units, while the uninoculated plots removed about 24-39% and 29-46% of phenolic compounds and color, respectively. The lower treatment performance was probably due to the increased TPOME concentrations. Based on the amounts of phenolic compounds, protein, and crude fiber in the grass biomass, the inoculated TPOME-treated grass had a satisfactory nutritional quality and digestibility for use as animal feed.
Collapse
Affiliation(s)
- Palist Jarujareet
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Korakot Nakkanong
- Department of Plant Science, Faculty of Natural Resources, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Ekawan Luepromchai
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand
| | - Oramas Suttinun
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, 90112, Thailand.
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand.
| |
Collapse
|
37
|
Yalçuk A, Ugurlu A. Treatment of landfill leachate with laboratory scale vertical flow constructed wetlands: plant growth modeling. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:157-166. [PMID: 31402676 DOI: 10.1080/15226514.2019.1652562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The main purpose of this study was to investigate the removal of ammonia, orthophosphate, and COD present in landfill leachate using vertical subsurface flow constructed wetland systems (VFCW). The effect of different types of plants (Typha latifolia and Canna indica) in the removal of pollutants was also investigated. The systems were operated identically at a flow rate of 5 l/day and a hydraulic retention time (HRT) of 22 days in the T. latifolia reactor (R1), C. indica reactor (R2), and Control reactor (R3). Concentration-based average removal efficiencies for R1, R2, and R3 were NH4-N; 60.0%, 56.0%, and 46, COD; 81.0%, 84.0%, and 79.0%, PO4-P; 45.0%, 46.0%, and 32.0%, respectively. These results show that the model is a good predictive tool for determining the plant lengths using the growth equations. It is also revealed that the Logistic and Cubic models are suitable for the R1 and R2 reactors.
Collapse
Affiliation(s)
- Arda Yalçuk
- Environmental Engineering Department, Faculty of Architecture and Engineering, Abant Izzet Baysal University, Bolu, Turkey
| | - Aysenur Ugurlu
- Environmental Engineering Department, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
38
|
Su Y, Wu D, Xia H, Zhang C, Shi J, Wilkinson KJ, Xie B. Metallic nanoparticles induced antibiotic resistance genes attenuation of leachate culturable microbiota: The combined roles of growth inhibition, ion dissolution and oxidative stress. ENVIRONMENT INTERNATIONAL 2019; 128:407-416. [PMID: 31078875 DOI: 10.1016/j.envint.2019.05.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/16/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
The dissemination and propagation of antibiotic resistance genes (ARGs) is an emerging global health concern, and the potential effects of nanomaterials on ARGs fates have drawn much attention recently. In the current study, the effects of metallic nanoparticles on ARGs occurrence of leachate culturable microbiota were investigated by four typical metal and metal oxide nanoparticles (Cu, Zn, CuO, and ZnO). The ARGs diversity was remarkably decreased during the cultivation and enrichment of leachate microbiota, and their abundances decreased for 1.4-3.2 orders of magnitude. The presence of nanoparticles facilitated the ARGs attenuation, and the magnitude of effects depended on types of nanoparticles and ARGs. Metal oxide nanoparticles caused more remarkable effects than metal nanoparticles. Mechanism analysis indicated that bacterial growth was inhibited, and the dissolved metal ions from nanoparticles partially contributed to nanoparticles decreasing ARGs. Flow cytometry experiments further confirmed that nanoparticles could enter bacterial cells, and then induce excessive reactive oxygen species (ROS) generation and increase membrane permeability. Finally, the possible mechanisms were put forward, and the structural equation models (SEM) differentiated the contribution of different factors shaping ARGs. The dissolved metal ions and growth inhibition caused by nanoparticles decreased ARGs transfer frequencies via exerting excessive metal stress and lowering population density. On the other hand, nanoparticles were incorporated into the cells, and then induced the generation of ROS, which might facilitate ARGs horizontal transfer via increasing membrane permeability, or decrease ARGs via the damage of genomic and plasmid DNA. Therefore, nanoparticles could affect ARGs fates via several ways, and combined effects finally determined the ARGs variations.
Collapse
Affiliation(s)
- Yinglong Su
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Dong Wu
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Huipeng Xia
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Congyan Zhang
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jianhong Shi
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Kevin J Wilkinson
- Department of Chemistry, University of Montreal, Montreal, QC H3C3J7, Canada
| | - Bing Xie
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
39
|
Hu W, Min X, Li X, Liu J, Yu H, Yang Y, Zhang J, Luo L, Chai L, Zhou Y. Enhanced degradation of 1-naphthol in landfill leachate using Arthrobacter sp. ENVIRONMENTAL TECHNOLOGY 2019; 40:835-842. [PMID: 29168925 DOI: 10.1080/09593330.2017.1408695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/18/2017] [Indexed: 06/07/2023]
Abstract
Arthrobacter sp. named as JY5-1 isolated from contaminated soil of a coking plant can degrade 1-naphthol as the sole carbon source. Through identification of species, analysis of the optimal degradation condition and kinetic equation, the degradation characteristic of Arthrobacter sp. JY5-1 was obtained. Later, the acclimated strain was added into the bio-reactor to observe treatment performance of landfill leachate. The results showed that the optimal conditions for strain JY5-1 biodegradation in the study were pH 7.0 and 30oC. The bio-reactor operation experiment declared that Arthrobacter sp. JY5-1 had a strengthened effect on COD removal of landfill leachate. Moreover, the efficiency of COD removal could be high and stable when JY5-1 was accumulated as a biofilm together with active sludge. These results demonstrate that adding 1-naphthol-degrading strain JY5-1 is a feasible technique for the enhanced treatment of sanitary landfill leachate, providing theoretical support for engineering utilization.
Collapse
Affiliation(s)
- Wenyong Hu
- a College of Metallurgical Science and Engineering , Central South University , Changsha , People's Republic of China
- b College of Biological Resources and Environmental Science , Jishou University , Hunan , People's Republic of China
| | - Xiaobo Min
- a College of Metallurgical Science and Engineering , Central South University , Changsha , People's Republic of China
| | - Xinyu Li
- a College of Metallurgical Science and Engineering , Central South University , Changsha , People's Republic of China
| | - Jingyi Liu
- b College of Biological Resources and Environmental Science , Jishou University , Hunan , People's Republic of China
| | - Haibin Yu
- b College of Biological Resources and Environmental Science , Jishou University , Hunan , People's Republic of China
| | - Yuan Yang
- c College of Resources and Environment , Hunan Agricultural University , Changsha , People's Republic of China
| | - Jiachao Zhang
- c College of Resources and Environment , Hunan Agricultural University , Changsha , People's Republic of China
| | - Lin Luo
- c College of Resources and Environment , Hunan Agricultural University , Changsha , People's Republic of China
| | - Liyuan Chai
- a College of Metallurgical Science and Engineering , Central South University , Changsha , People's Republic of China
| | - Yaoyu Zhou
- c College of Resources and Environment , Hunan Agricultural University , Changsha , People's Republic of China
| |
Collapse
|
40
|
Li H, Zhang S, Yang XL, Yang YL, Xu H, Li XN, Song HL. Enhanced degradation of bisphenol A and ibuprofen by an up-flow microbial fuel cell-coupled constructed wetland and analysis of bacterial community structure. CHEMOSPHERE 2019; 217:599-608. [PMID: 30445405 DOI: 10.1016/j.chemosphere.2018.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
This study aims to demonstrate that an up-flow microbial fuel cell-coupled constructed wetland (UCW-MFC) can effectively treat synthetic wastewater that contains a high concentration of pharmaceutical and personal care products (PPCPs, 10 mg L-1 level), such as ibuprofen (IBP) and bisphenol A (BPA). A significant decline in chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) removal was observed when BPA was added, which indicated that BPA was more toxic to bacteria. The closed circuit operation of UCW-MFC performed better than the open circuit mode for COD and NH4+-N removal. Similarly, the removal rates of IBP and BPA were increased by 9.3% and 18%, respectively, compared with the open circuit mode. The majority of PPCPs were removed from the bottom and anode layer, which accounted for 63.2-78.7% of the total removal. The main degradation products were identified. The removal rates of IBP and BPA decreased by 14.6% and 23.7% due to a reduction in the hydraulic detention times (HRTs) from 16 h to 4 h, respectively. Electricity generation performance, including voltage and maximum power density, initially increased and then declined with a decrease in the HRT. Additionally, both the current circuit operation mode and the HRT have an impact on the bacterial community diversity of the anode according to the results of high-throughput sequencing. The possible bacterial groups involved in PPCP degradation were identified. In summary, UCW-MFC is suitable for enabling the simultaneous removal of IBP and BPA and successful electricity production.
Collapse
Affiliation(s)
- Hua Li
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Shuai Zhang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing, 210023, China.
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing, 210023, China; School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Han Xu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Xian-Ning Li
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing, 210023, China.
| |
Collapse
|
41
|
Aziz A, Agamuthu P, Fauziah SH. Effective removal of p-tert-Butylphenol and Pyridine, 3-(1-methyl-2-pyrrolidinyl)-, (S)- from landfill leachate using locust bean gum. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2018; 36:1146-1156. [PMID: 30067147 DOI: 10.1177/0734242x18789062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The widespread distribution of persistent organic pollutants (POPs) in landfill leachate is problematic due to their acute toxicity, carcinogenicity and genotoxicity effects, which could be detrimental to public health and ecological systems. The objective of this study was to evaluate the effective removal of POPs - namely, p-tert-Butylphenol and Pyridine, 3-(1-methyl-2-pyrrolidinyl)-, (S)- - from landfill leachate using locust bean gum (LBG), and in comparison with commonly used alum. The response surface methodology coupled with a Box-Behnken design was employed to optimize the operating factors for optimal POPs removal. A quadratic polynomial model was fitted into the data with the R2 values of 0.97 and 0.96 for the removal of p-tert-Butylphenol and Pyridine, 3-(1-methyl-2-pyrrolidinyl), (S)-, respectively. The physicochemical characteristics of the flocs produced by LBG and alum were evaluated with Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). The infrared spectra of LBG-treated floc were identical with LBG powder, but there was some variation in the peaks of the functional groups, signifying the chemical interactions between flocculants and pollutant particles resulting from POPs removal. The results showed that p-tert-Butylphenol and Pyridine, 3-(1-methyl-2-pyrrolidinyl)-, (S)- obtained 96% and 100% removal using 500 mg/L of LBG at pH 4. pH have a significant effect on POPs removal in leachate. It is estimated that treating one million gallons of leachate using alum (at 1 g/L dosage) would cost US$39, and using LBG (at 500 mg/L dosage) would cost US$2. LBG is eco-friendly, biodegradable and non-toxic and, hence, strongly recommended as an alternative to inorganic coagulants for the treatment of POPs in landfill leachate.
Collapse
Affiliation(s)
- A Aziz
- 1 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- 2 Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
- 3 Center for Research in Waste Management, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - P Agamuthu
- 1 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- 3 Center for Research in Waste Management, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - S H Fauziah
- 1 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- 3 Center for Research in Waste Management, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Wirasnita R, Mori K, Toyama T. Effect of activated carbon on removal of four phenolic endocrine-disrupting compounds, bisphenol A, bisphenol F, bisphenol S, and 4-tert-butylphenol in constructed wetlands. CHEMOSPHERE 2018; 210:717-725. [PMID: 30036819 DOI: 10.1016/j.chemosphere.2018.07.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
We investigated the effects of activated carbon, used as constructed wetlands (CWs) medium, on its ability to remove four emerging endocrine-disrupting chemicals (EDCs): bisphenol A (BPA), bisphenol F (BPF), bisphenol S (BPS) and 4-tert-butylphenol (4-tert-BP). Two types of CWs planted with common reed were constructed, one with pumice rock called normal CW and the other was amended with activated carbon (AC) called AC-CW. EDCs contaminated synthetic wastewater (5 mg/L of each) was treated by CWs for 8 weeks. AC-CW completely and sustainably removed all four EDCs (98-100%) starting immediately and continuing throughout the experiment. Removal performances of all EDCs by AC-CW were significantly higher than those by normal CW. After experiment, no BPA and BPF and very small amounts of BPS and 4-tert-BP were detected in AC. In AC-CW, final elimination step of EDCs might be biodegradation. In addition, bacterial populations on AC component of AC-CW were one-two orders higher than those on the pumice rock of normal CW. Therefore, in AC-CW, EDCs were initially adsorbed onto AC, where they could be effectively degraded by high bacterial population.
Collapse
Affiliation(s)
- Riry Wirasnita
- Integrated Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Kazuhiro Mori
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Tadashi Toyama
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
43
|
Aziz A, Agamuthu P, Fauziah SH. Removal of bisphenol A and 2,4-Di-tert-butylphenol from landfill leachate using plant- based coagulant. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2018; 36:975-984. [PMID: 30058954 DOI: 10.1177/0734242x18790360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Landfill leachate contain persistent organic pollutants (POPs), namely, bisphenol A (BPA) and 2,4-Di-tert-butylphenol, which exceed the permissible limits. Thus, such landfill leachate must be treated before it is released into natural water courses. This article reports on investigations about the removal efficiency of POPs such as BPA and 2,4-Di-tert-butylphenol from leachate using locust bean gum (LBG) in comparison with alum. The vital experimental variables (pH, coagulant dosage and stirring speed) were optimised by applying response surface methodology equipped with the Box-Behnken design to reduce the POPs from leachate. An empirical quadratic polynomial model could accurately model the surface response with R2 values of 0.928 and 0.954 to reduce BPA and 2,4-Di-tert-butylphenol, respectively. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were performed on treated flocs for further understanding. FTIR analysis revealed that the bridging of pollutant particles could be due to the explicit adsorption and bridging via hydrogen bonding of a coagulation mechanism. SEM micrographs indicated that the flocs produced by LBG have a rough cloudy surface and numerous micro-pores compared with alum, which enabled the capture and removal of POPs from leachate. Results showed that the reduction efficiencies for BPA and 2,4-Di-tert-butylphenol at pH 7.5 were 76% and 84% at LBG dosage of 500 mg·L-1 and 400 mg·L-1, respectively. Coagulant dosage and pH variation have a significant effect on POPs reduction in leachate. Coagulation/flocculation using LBG could be applied for POPs reduction in leachate as a pre-treatment prior to advanced treatments.
Collapse
Affiliation(s)
- A Aziz
- 1 Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
- 2 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- 3 Center for Research in Waste Management, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - P Agamuthu
- 2 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- 3 Center for Research in Waste Management, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - S H Fauziah
- 2 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- 3 Center for Research in Waste Management, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Wang Z, Zhu Y, Chen H, Wu H, Ye C. Fabrication of three functionalized silica adsorbents: Impact of co-immobilization of imidazole, phenyl and long-chain alkyl groups on bisphenol A adsorption from high salt aqueous solutions. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Wang Q, Kelly BC. Occurrence, distribution and bioaccumulation behaviour of hydrophobic organic contaminants in a large-scale constructed wetland in Singapore. CHEMOSPHERE 2017; 183:257-265. [PMID: 28550783 DOI: 10.1016/j.chemosphere.2017.05.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
This study involved a field-based investigation to assess the occurrence, distribution and bioaccumulation behaviour of hydrophobic organic contaminants in a large-scale constructed wetland. Samples of raw leachate, water and wetland plants, Typha angustifolia, were collected for chemical analysis. Target contaminants included polychlorinated biphenyls (PCBs), organochlorine pesticides (OCP), as well as several halogenated flame retardants (HFRs) and personal care products (triclosan and synthetic musks). In addition to PCBs and OCPs, synthetic musks, triclosan (TCS) and dechlorane plus stereoisomers (syn- and anti-DPs) were frequently detected. Root concentration factors (log RCF L/kg wet weight) of the various contaminants ranged between 3.0 and 7.9. Leaf concentration factors (log LCF L/kg wet weight) ranged between 2.4 and 8.2. syn- and anti-DPs exhibited the greatest RCF and LCF values. A strong linear relationship was observed between log RCF and octanol-water partition coefficient (log KOW). Translocation factors (log TFs) were negatively correlated with log KOW. The results demonstrate that more hydrophobic compounds exhibit higher degrees of partitioning into plant roots and are less effectively transported from roots to plant leaves. Methyl triclosan (MTCS) and 2,8-dichlorodibenzo-p-dioxin (DCDD), TCS degradation products, exhibited relatively high concentrations in roots and leaves., highlighting the importance of degradation/biotransformation. The results further suggest that Typha angustifolia in this constructed wetland can aid the removal of hydrophobic organic contaminants present in this landfill leachate. The findings will aid future investigations regarding the fate and bioaccumulation of hydrophobic organic contaminants in constructed wetlands.
Collapse
Affiliation(s)
- Qian Wang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Barry C Kelly
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore.
| |
Collapse
|
46
|
A D, Oka M, Fujii Y, Soda S, Ishigaki T, Machimura T, Ike M. Removal of heavy metals from synthetic landfill leachate in lab-scale vertical flow constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:742-750. [PMID: 28131455 DOI: 10.1016/j.scitotenv.2017.01.112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
Synthetic landfill leachate was treated using lab-scale vertical flow constructed wetlands (CWs) in sequencing batch modes to assess heavy metal removal efficiencies. The CWs filled with loamy soil and pumice stone were unplanted or planted with common reed (Phragmites australis) (Reed-CW) or common rush (Juncus effusus) (Rush-CW). Synthetic leachate contained acetate, propionate, humate, ammonium, and heavy metals. Common reed grew almost vigorously but common rush partly withered during the 8-month experiment. The CWs reduced the leachate volume effectively by evapotranspiration and removed easily degradable organic matter, color, and ammonium. Furthermore, the CWs demonstrated high removal amounts for heavy metals such as Zn, Cr, Ni, Cd, Fe, and Pb, but not Mn from leachate. The metal removal amounts in the CWs were low for high-strength leachate (influent concentration increased from one time to three times) or under short retention time (batch cycle shortened from 3days to 1day). The Rush-CW showed slightly lower removal amounts for Cr, Ni, Mn, and Cd, although the Reed-CW showed lower Mn removal amounts than the unplanted CW did. However, Cd, Cr, Pb, Ni, and Zn were highly accumulated in the upper soil layer in the planted CW by rhizofiltration with adsorption compared with unplanted CW, indicating that the emergent plants would be helpful for decreasing the dredging soil depth for the final removal of heavy metals. Although the emergent plants were minor sinks in comparison with soil, common rush had higher bioconcentration factors and translocation factors for heavy metals than common reed had.
Collapse
Affiliation(s)
- Dan A
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masao Oka
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuta Fujii
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Soda
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tomonori Ishigaki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Takashi Machimura
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|