1
|
Chen W, An W, Wang C, Gao Q, Wang C, Zhang L, Zhang X, Tang S, Zhang J, Yu L, Wang P, Gao D, Wang Z, Gao W, Tian Z, Zhang Y, Ng WY, Zhang T, Chui HK, Hu J, Yang M. Utilizing wastewater surveillance to model behavioural responses and prevent healthcare overload during "Disease X" outbreaks. Emerg Microbes Infect 2025; 14:2437240. [PMID: 39629513 PMCID: PMC11749008 DOI: 10.1080/22221751.2024.2437240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 01/19/2025]
Abstract
During the COVID-19 pandemic, healthcare systems worldwide faced severe strain. This study, utilizing wastewater virus surveillance, identified that periodic spontaneous avoidance behaviours significantly impacted infectious disease transmission during rapid and intense outbreaks. To incorporate these behaviours into disease transmission analysis, we introduced the Su-SEIQR model and validated it using COVID-19 wastewater data from Beijing and Hong Kong. The results demonstrated that the Su-SEIQR model accurately reflected trends in susceptible populations and confirmed cases during the COVID-19 pandemic, highlighting the role of spontaneous collective avoidance behaviours in generating periodic fluctuations. These fluctuations helped reduce infection peaks, thereby alleviating pressure on healthcare systems. However, the effect of these spontaneous behaviours on mitigating healthcare overload was limited. Consequently, we incorporated healthcare capacity constraints into the model, adjusting parameters to further guide population behaviours during the pandemic, aiming to keep the outbreak within manageable limits and reduce strain on healthcare resources. This study provides robust support for the development of environmental and public health policies during pandemics by constructing an innovative transmission model, which effectively prevents healthcare overload. Additionally, this approach can be applied to managing future outbreaks of unknown viruses or "Disease X".
Collapse
Affiliation(s)
- Wenxiu Chen
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Wei An
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Chen Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qun Gao
- Beijing Center for Disease Prevention and Control, Beijing, People’s Republic of China
| | - Chunzhen Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Lan Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiao Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jianxin Zhang
- Beijing Drainage Group Co. LTD, Beijing, People’s Republic of China
| | - Lixin Yu
- Beijing Drainage Group Co. LTD, Beijing, People’s Republic of China
| | - Peng Wang
- Beijing Drainage Group Co. LTD, Beijing, People’s Republic of China
| | - Dan Gao
- Beijing Drainage Management Center, Beijing, People’s Republic of China
| | - Zhe Wang
- Beijing Drainage Management Center, Beijing, People’s Republic of China
| | - Wenhui Gao
- Chaoyang District Center for Disease Prevention and Control of Beijing, People’s Republic of China
| | - Zhe Tian
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yu Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Wai-yin Ng
- Hong Kong Environmental Protection Department, Hong Kong, People’s Republic of China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, Center for Environmental Engineering Research, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Ho-kwong Chui
- Hong Kong Environmental Protection Department, Hong Kong, People’s Republic of China
| | - Jianying Hu
- College of Urban and Environment Sciences, Peking University, Beijing, People’s Republic of China
| | - Min Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Guajardo-Leiva S, Díez B, Rojas-Fuentes C, Chnaiderman J, Castro-Nallar E, Catril V, Ampuero M, Gaggero A. From sewage to genomes: Expanding our understanding of the urban and semi-urban wastewater RNA virome. ENVIRONMENTAL RESEARCH 2025; 276:121509. [PMID: 40185271 DOI: 10.1016/j.envres.2025.121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Wastewater is a hotspot for viral diversity, harboring various microbial, plant, and animal viruses, including those that infect humans. However, the dynamics, resilience, and ecological roles of viral communities during treatment are largely unknown. In this study, we explored RNA virus ecogenomics using metagenomics from influent and effluent samples across three wastewater catchment areas in Chile, with a population of 7.05 million equivalent inhabitants. We identified 14,212 RNA-dependent RNA polymerase (RdRP)-coding sequences from the Orthornavirae kingdom, clustering into 4989 viral species. Using extensive databases of 14,150 family-level representative sequences, we classified 90 % of our sequences at the family level. Our analysis revealed that treatment reduced viral richness and evenness (Shannon index), but phylogenetic diversity remained unchanged. Effluents showed lower richness and evenness than influents with similar phylogenetic diversity. Species turnover, influenced by catchment area and treatment, accounted for 54 % of sample dissimilarities (Weighted Unifrac). Biomarker analysis indicated that families like Astroviridae and Fiersviridae were more abundant in influents, while Reoviridae and Virgaviridae dominated effluents. This suggests that viral resistance to treatment varies and cannot be solely attributed to genome type, size, or morphology. We traced viral genomes through time and space, identifying sequences like the Pepper Mild Mottle Virus (PMMoV) from the Virgaviridae family over large distances and periods, highlighting its wastewater marker potential. High concentrations of human pathogens, such as Rotavirus (Reoviridae) and Human Astrovirus (Astroviridae), were found in both influents and effluents, stressing the need for continuous monitoring, especially for treated wastewater reuse.
Collapse
Affiliation(s)
- Sergio Guajardo-Leiva
- Dirección de Investigación, Vicerrectoría Académica, Universidad de Talca, Talca, Chile; Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile; Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile.
| | - Beatriz Díez
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile; Center for Climate and Resilience Research (CR)2, Chile; Millennium Institute Center for Genome Regulation (CGR), Chile
| | - Cecilia Rojas-Fuentes
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Jonás Chnaiderman
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Chile
| | - Eduardo Castro-Nallar
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Valentina Catril
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Chile
| | - Manuel Ampuero
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Chile
| | - Aldo Gaggero
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
3
|
Zhu W, Wang D, Li P, Deng H, Deng Z. Advances in Wastewater-Based Epidemiology for Pandemic Surveillance: Methodological Frameworks and Future Perspectives. Microorganisms 2025; 13:1169. [PMID: 40431340 PMCID: PMC12113820 DOI: 10.3390/microorganisms13051169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/18/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Wastewater-based epidemiology (WBE) has emerged as a transformative approach for community-level health monitoring, particularly during the COVID-19 pandemic. This review critically examines the methodological framework of WBE systems through the following three core components: (1) sampling strategies that address spatial-temporal variability in wastewater systems, (2) comparative performance of different platforms in pathogen detection, and (3) predictive modeling integrating machine learning approaches. We systematically analyze how these components collectively overcome the limitations of conventional surveillance methods through early outbreak detection, asymptomatic case identification, and population-level trend monitoring. While highlighting technical breakthroughs in viral concentration methods and variant tracking through sequencing, the review also identifies persistent challenges, including data standardization, cost-effectiveness concerns in resource-limited settings, and ethical considerations in public health surveillance. Drawing insights from global implementation cases, we propose recommendations for optimizing each operational phase and discuss emerging applications beyond pandemic response. This review highlights WBE as an indispensable tool for modern public health, whose methodological refinements and cross-disciplinary integration are critical for transforming pandemic surveillance from reactive containment to proactive population health management.
Collapse
Affiliation(s)
- Weihe Zhu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Hebei Key Laboratory for Emerging Contaminants Control and Risk Management, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | | | - Pengsong Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Hebei Key Laboratory for Emerging Contaminants Control and Risk Management, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | | | | |
Collapse
|
4
|
Li Y, Bhatt P, Xagoraraki I. In-depth comparison of untargeted and targeted sequencing for detecting virus diversity in wastewater. WATER RESEARCH 2025; 283:123803. [PMID: 40373374 DOI: 10.1016/j.watres.2025.123803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/03/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
Sequencing approaches may enable monitoring of a broad range of viruses in wastewater, including potential emerging and non-reportable human viruses. Considering the fact that metagenomic sequencing may be non-specific for low-abundance human viruses, integration of viral amplification and enrichment strategies are proposed to enhance the accurate detection of a broad range of human viruses in municipal wastewater. In this study, we focused on the in-depth comparison analysis of three untargeted amplification methods (Multiple Displace Amplification [MDA], Reverse Transcription - MDA [RT-MDA], and a PCR-based random amplification [PCR-based]) and one targeted method (Twist Comprehensive Viral Research Panel [TWIST]) for detecting virus diversity in wastewater. In addition, we included the comparisons of two extraction kits (Qiagen QIAamp VIRAL RNA Mini Kit and ZymoBIOMICSTM DNA/RNA Minipre Kit) and four virus identification tools (Diamond blast, Kraken2, VirSorter2 and geNomad) for a systematic study. Performances of Qiagen and Zymo extraction kits in recovering viruses and human viruses in wastewater were comparable. By the three untargeted methods we detected 12,808 contigs with lengths longer than 10,000 bp. No contig longer than 10,000 bp was detected by the targeted method. Presence of human viruses were analyzed further by comparing the viral contigs against a custom Swiss-Prot human virus database. There were 45 viruses that are potentially associated with human health found in wastewater, 8 of them were unique to the targeted method and 7 of them were unique to the three untargeted methods. Four enteric viruses Mamastrovirus, Norovirus, Rotavirus and Sapovirus were detected with high abundance in samples prepared with the targeted method. Dimensional scaling analysis demonstrated the divergent virus and human virus communities from the untargeted and targeted methods. Patterns of virus and human virus populations identified by Kraken2 and geNomad were similar. Presence of selected viruses (SARS-CoV-2 [N1&N2], SC2, RSV, Norovirus GI and GII) were confirmed with ddPCR. This work indicates integration of untargeted and targeted sequencing methods, and complementary ddPCR can ensure the accurate detection of known and novel viruses using wastewater surveillance.
Collapse
Affiliation(s)
- Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Pankaj Bhatt
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Santos AFB, Nunes M, Filipa-Silva A, Pimentel V, Pingarilho M, Abrantes P, Miranda MNS, Crespo MTB, Abecasis AB, Parreira R, Seabra SG. Wastewater Metavirome Diversity: Exploring Replicate Inconsistencies and Bioinformatic Tool Disparities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:707. [PMID: 40427823 PMCID: PMC12111215 DOI: 10.3390/ijerph22050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025]
Abstract
This study investigates viral composition in wastewater through metagenomic analysis, evaluating the performance of four bioinformatic tools-Genome Detective, CZ.ID, INSaFLU-TELEVIR and Trimmomatic + Kraken2-on samples collected from four sites in each of two wastewater treatment plants (WWTPs) in Lisbon, Portugal in April 2019. From each site, we collected and processed separately three replicates and one pool of nucleic acids extracted from the replicates. A total of 32 samples were processed using sequence-independent single-primer amplification (SISPA) and sequenced on an Illumina MiSeq platform. Across the 128 sample-tool combinations, viral read counts varied widely, from 3 to 288,464. There was a lack of consistency between replicates and their pools in terms of viral abundance and diversity, revealing the heterogeneity of the wastewater matrix and the variability in sequencing effort. There was also a difference between software tools highlighting the impact of tool selection on community profiling. A positive correlation between crAssphage and human pathogens was found, supporting crAssphage as a proxy for public health surveillance. A custom Python pipeline automated viral identification report processing, taxonomic assignments and diversity calculations, streamlining analysis and ensuring reproducibility. These findings emphasize the importance of sequencing depth, software tool selection and standardized pipelines in advancing wastewater-based epidemiology.
Collapse
Affiliation(s)
- André F. B. Santos
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Mónica Nunes
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| | - Andreia Filipa-Silva
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal;
| | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Patrícia Abrantes
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Mafalda N. S. Miranda
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Maria Teresa Barreto Crespo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal;
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana B. Abecasis
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Ricardo Parreira
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Sofia G. Seabra
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| |
Collapse
|
6
|
Chin PJ, Lambert C, Beurdelay P, Charlebois RL, Colinet AS, Eloit M, Gilchrist S, Gilleece M, Hess M, Leimbach A, de Man TJB, Vandeputte O, Walas D, Wang W, Khan AS. Virus detection by short read high throughput sequencing in a high virus low cellular background. NPJ Vaccines 2025; 10:61. [PMID: 40155393 PMCID: PMC11953420 DOI: 10.1038/s41541-025-01104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
The safety of all biological products includes demonstrating the absence of adventitious viruses by testing various types of samples at different stages of the manufacturing process. Seven laboratories evaluated short-read high-throughput sequencing (HTS) for sensitivity and breadth of adventitious virus detection using viruses with distinct physicochemical and genome properties. These five viruses are currently designated as CBER NGS Virus Reagents and include: Epstein-Barr virus (EBV; or human herpes virus 4), feline leukemia virus (FeLV), respiratory syncytial virus (RSV), mammalian orthoreovirus type 1 (Reo1), and porcine circovirus type 1 (PCV1). To evaluate adventitious virus detection in a biological material with a high production virus titer and low cellular background, the 5 viruses were mixed and different copies of the viral genomes spiked into 1 - 5 × 109 genome copies per mL (GC/mL) of purified adenovirus 5. Independent protocols were used by each laboratory for the entire HTS workflow. All laboratories detected 104 GC/mL of the five viruses by both targeted and non-targeted bioinformatic analyses. Additionally, the limit of detection of squirrel monkey retrovirus and porcine endogenous retrovirus, which pre-existed in EBV and PCV1 virus stocks, respectively, was evaluated. The five laboratories that tested 103 GC/mL, detected all 5 viruses with the targeted analysis, and Reo1 and EBV with the non-targeted analysis. It was noted that some laboratories achieved a better sensitivity for detection of the five viruses ( ≤102 GC/mL). This study presents an approach for HTS validation for viral safety testing of vaccines and other biologics using a panel of reference viruses. The results highlight that optimization of steps in the HTS workflow can improve the limit of detection for adventitious viruses.
Collapse
Affiliation(s)
- Pei-Ju Chin
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Review, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | | | - Pascale Beurdelay
- PathoQuest, 11 rue Watt, Paris, France
- Depixus, 3-5 Imp. Reille, Paris, France
| | | | | | | | | | | | | | - Andreas Leimbach
- Eurofins Genomics Europe Pharma and Diagnostics Products & Services Sanger/PCR GmbH, Konstanz, Germany
| | | | | | - Dawid Walas
- MilliporeSigma, Rockville, MD, USA
- Institut de Recherche et Development Servier, 91190 Gif-sur-Yvette, France and Department of Physiology, Institute of Medical Sciences, University of Opole, Opole, Poland
| | - Weihong Wang
- Eurofins Lancaster Laboratories, Inc, Lancaster, PA, USA
| | - Arifa S Khan
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Review, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
7
|
Cuevas-Ferrando E, Sánchez G, Pérez-Cataluña A. Exploring plant virus diversity in wastewater and reclaimed water through metagenomic analysis. WATER RESEARCH 2025; 270:122827. [PMID: 39602961 DOI: 10.1016/j.watres.2024.122827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The use of reclaimed water for agricultural activities is being widely employed to address drought and water scarcity. Nevertheless, the disinfection processes do not consistently facilitate the complete removal of all eukaryotic viruses within these reclaimed waters. Consequently, it may pose a risk not only to humans but also to irrigated plants. We analyzed 48 influent and 48 effluent samples from 4 different wastewater treatment plants (WWTPs) by high-throughput sequencing (HTS) to characterize plant-associated virome over a one-year period. Our results showed high levels of plant viruses in both influent and effluent waters. The predominant family identified was Virgaviridae, recognized for its high environmental persistence. Notably, the identification of Tomato Brown Rugose Fruit virus (ToBRFV), classified as a harmful organism by the European Union and subject to strict containment measures to control its spread, highlights the importance of monitoring reclaimed water to mitigate the spread of such viruses into the environment. These findings underscore the need of analyzing reclaimed water from a One Health perspective, ensuring its safety for humans, animals, plants, and the environment alike.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia Spain
| | - Gloria Sánchez
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia Spain
| | - Alba Pérez-Cataluña
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia Spain.
| |
Collapse
|
8
|
Van Poelvoorde LAE, Karlsson EA, Dupont-Rouzeyrol M, Roosens NHCJ. Can Wastewater Surveillance Enhance Genomic Tracking of Climate-Driven Pathogens? Microorganisms 2025; 13:294. [PMID: 40005661 PMCID: PMC11858121 DOI: 10.3390/microorganisms13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/07/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Climate change heightens the threat of infectious diseases in Europe, necessitating innovative surveillance methods. Based on 390 scientific papers, for the first time, this review associates climate-related pathogens, data related to their presence in wastewater, and associated available genomic detection methods. This deep analysis reveals a wide range of pathogens that can be tracked through methods such as quantitative and digital PCR, as well as genomic pathogen enrichment in combination with sequencing and metagenomics. Nevertheless, significant gaps remain in the development of methods, particularly for vector-borne pathogens, and in their general harmonization relating to performance criteria. By offering an overview of recent advancements while identifying critical gaps, we advocate for collaborative research and validation to integrate detection techniques into surveillance frameworks. This will enhance public health resilience against emerging infectious diseases driven by climate change.
Collapse
Affiliation(s)
| | - Erik A. Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh 120210, Cambodia
| | | | | |
Collapse
|
9
|
Liu W, Tian H, Ma J, Xue M, Zhou Y, Li M, Jiang J, Fan Y, Liu M. RNA-Sequencing Analysis of the Viral Community in Yellow Catfish ( Pelteobagrus fulvidraco) in the Upper Reaches of the Yangtze River. Animals (Basel) 2024; 14:3386. [PMID: 39682352 DOI: 10.3390/ani14233386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Different viruses are abundant in aquatic ecosystems. There has been limited research on the viral communities in the upper reaches of the Yangtze River. Yellow catfish (Pelteobagrus fulvidraco), an important economic fish that is widely distributed in the upper reaches of the Yangtze River, was selected as the research object. Using RNA sequencing, we identified 11 viruses belonging to the Adintoviridae, Tombusviridae, Caudovirales, Microviridae, Picornavirales, and other bacteriophage families. The predominant viral families/order in Luzhou (LZ), Fuling (FL), and Wanzhou (WZ) were Caudovirales, Adinoviridae, and Microviridae, respectively. The virome from WZ had a unique community composition, with a high abundance of Picornavirales compared with LZ and FL. In LZ, the predominant double-stranded RNA virus family was Siphoviridae. Phylogenetic analyses showed that viruses presented high genetic diversity. Phylogenetically, Wenling pleuronectiformes picornavirus was close to the family Caliciviridae, which includes yellow catfish calicivirus (YcCV), responsible for the massive mortality of yellow catfish in 2020. This study provides insights into the viral community composition in yellow catfish in the upper reaches of the Yangtze River, revealing a diverse and unique river water virome and providing clues for future research on the origin of viral pathogens.
Collapse
Affiliation(s)
- Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huiwu Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Jie Ma
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Mengmeng Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingwen Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Mingdian Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
10
|
Lee SY, Kim JH, Kang S, Park KC, Cho SM, Salinas CX, Rebolledo L, Benítez HA, Mejías TC, Soutullo A, Juri E, Kim S. Detection of human enteric viral genes in a non-native winter crane fly, Trichocera maculipennis (Diptera) in the sewage treatment facilities at Antarctic stations. Parasit Vectors 2024; 17:485. [PMID: 39582010 PMCID: PMC11587659 DOI: 10.1186/s13071-024-06555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND The Antarctic environment is susceptible to the introduction of non-native species due to its unique ecosystem, which has evolved under geographical isolation and extreme climatic conditions over an extended period. The recent introduction of the non-native winter crane fly, Trichocera maculipennis, to maritime Antarctica may pose a potential threat to the Antarctic ecosystem. In this study, we evaluated the possibility of the mechanical transmission of viruses by T. maculipennis. METHODS We assessed the potential for the mechanical transmission of viruses using next-generation sequencing (NGS), quantitative PCR (qPCR), and virus isolation methods from T. maculipennis (Tm)-related samples (Tm body-wash fluid and Tm body-ground samples) collected from habitats and sewage treatment facilities located at three research stations in Antarctica. RESULTS Virome analysis detected the genomic fragments of human adenovirus (AdV) and human endogenous retrovirus (HERV) in Tm-related samples. These viruses are commonly found in human feces. In addition, plant viruses, such as pepper mild mottle virus (PMMoV) and cucumber green mottle mosaic virus (CGMMV), both known indicators of enteric viruses, were identified in all Tm-related samples, likely originating from wastewater. However, the low quantities of AdV and HERV genomes detected in Tm-related samples through qPCR, coupled with the non-viability of AdV in virus isolation tests, indicate that T. maculipennis has limited potential for mechanical transmission under the conditions in the studies. CONCLUSIONS Our study represents the first evaluation of the potential risk of non-native species serving as vectors for viral pathogens in Antarctica. Although the viruses detected were in relatively low quantities and non-viable, this study highlights the importance of further evaluating the risks associated with non-native species, particularly as the likelihood of their introduction increases to Antarctica due to climate change and increased human activity.
Collapse
Affiliation(s)
- Sook-Young Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Ji Hee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Seunghyun Kang
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Kye Chung Park
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Sung Mi Cho
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | | | - Lorena Rebolledo
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - Hugo A Benítez
- Millennium Institute Biodiversity of Antarctic and Subantartic Ecosystem (BASE), Santiago, Chile
- Cape Horn International Center (CHIC), Centro Universitario Cabo de Hornos, Universidad de Magallanes, Puerto Villiams, Chile
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Tamara Contador Mejías
- Millennium Institute Biodiversity of Antarctic and Subantartic Ecosystem (BASE), Santiago, Chile
- Cape Horn International Center (CHIC), Centro Universitario Cabo de Hornos, Universidad de Magallanes, Puerto Villiams, Chile
- Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - Alvaro Soutullo
- Centro Universitario Regional del Este, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Juri
- Instituto Antártico Uruguayo, Montevideo, Uruguay
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea.
| |
Collapse
|
11
|
Tsai KH, Yen TY, Tung HH, Ho A, Chien YT, Wang CY, Kang SW, Juan NN, Lin FL. Surveillance of Emerging Rodent-Borne Pathogens in Wastewater in Taiwan: A One Health Approach. Trop Med Infect Dis 2024; 9:282. [PMID: 39591288 PMCID: PMC11598759 DOI: 10.3390/tropicalmed9110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Leptospirosis and hantavirus syndrome are two major rodent-borne diseases in Taiwan. Rocahepevirus ratii (RHEV), a virus closely related to hepatitis E virus (HEV, Paslahepevirus balayani), is emerging and has been reported to cause hepatitis in humans. We employed wastewater-based epidemiology to actively monitor rodent-borne pathogens, and the correlations with human cases were evaluated. Wastewater was collected using grab sampling at 11 sites along a sewer system including influents and effluents at a wastewater treatment plant in Tamsui, New Taipei City, Taiwan, monthly during June 2023 to May 2024. The presence of pathogens was examined by reverse transcription-polymerase chain reaction (RT-PCR). The result showed an overall positivity rate of 38.2% (50/131). Leptospira was detected most often (48/131, 36.6%), and RHEV and hantaviruses were found once each during the study period. Sequencing identified Leptospira interrogans close to isolates from rodents and human cases, while sequences of hantavirus and RHEV were most similar to isolates from rodents. No significant correlation was found with human cases or positive samples for rodent DNA. Here, we present an example of a One Health approach applying wastewater to environmental surveillance for the early detection and prevention of emerging diseases.
Collapse
Affiliation(s)
- Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; (A.H.); (Y.-T.C.); (C.-Y.W.); (S.-W.K.); (N.-N.J.); (F.-L.L.)
- Global Health Program, College of Public Health, National Taiwan University, Taipei 100025, Taiwan
| | - Tsai-Ying Yen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; (A.H.); (Y.-T.C.); (C.-Y.W.); (S.-W.K.); (N.-N.J.); (F.-L.L.)
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 115201, Taiwan
| | - Hsin-Hsin Tung
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106319, Taiwan;
| | - Amy Ho
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; (A.H.); (Y.-T.C.); (C.-Y.W.); (S.-W.K.); (N.-N.J.); (F.-L.L.)
| | - Yang-Ta Chien
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; (A.H.); (Y.-T.C.); (C.-Y.W.); (S.-W.K.); (N.-N.J.); (F.-L.L.)
| | - Chung-Yu Wang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; (A.H.); (Y.-T.C.); (C.-Y.W.); (S.-W.K.); (N.-N.J.); (F.-L.L.)
| | - Shu-Wei Kang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; (A.H.); (Y.-T.C.); (C.-Y.W.); (S.-W.K.); (N.-N.J.); (F.-L.L.)
| | - Ning-Ning Juan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; (A.H.); (Y.-T.C.); (C.-Y.W.); (S.-W.K.); (N.-N.J.); (F.-L.L.)
| | - Fang-Ling Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; (A.H.); (Y.-T.C.); (C.-Y.W.); (S.-W.K.); (N.-N.J.); (F.-L.L.)
| |
Collapse
|
12
|
Xing J, Gao H, Liu G, Cao X, Zhong J, Xu S, Li Y, Pang Y, Zhang G, Sun Y. Mapping the heterogeneous removal landscape of wastewater virome in effluents of different advanced wastewater treatment systems of swine farm. WATER RESEARCH 2024; 266:122446. [PMID: 39298901 DOI: 10.1016/j.watres.2024.122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In advanced wastewater treatment plants on pig farms, meticulous design aims to eliminate intrinsic pollutants such as organic matter, heavy metals, and biological contaminants. In our field survey across Southern China, a notable disparity in wastewater treatment procedures among various farming facilities lies in the utilization of terminal chemical oxidation post-sedimentation tank. However, recent focus in wastewater surveillance has predominantly centered on antibiotic resistance genes, leaving the efficacy of virus removal in different effluent systems largely unexplored. To profile virus composition at the effluent, assess the virus elimination efficiency of chemical oxidation at the effluent end, and the potential environmental driver of virus abundance, we deployed a meta-transcriptomics approach to first determine the total virome in effluent specimens of terminal clean water tank system (CWT) and terminal chemical oxidation system (TCO) in Southern China pig farms, respectively. From these data, 172 viruses were identified, with a median reads per million (RPM) of 27,789 in CWT and 19,982 in TCO. Through the integration of analyses encompassing the co-occurrence patterns within viral communities, the ecology of viral diversity, and a comparative assessment of average variation degrees, we have empirically demonstrated that the procedure of TCO may perturb viral communities and diminish their abundance, particularly impacting RNA viral communities. However, despite the diminished abundance, pathogenic viruses such as PEDV and PRRSV persisted in the effluent following chemical deoxidation at a moderate RPM value, indicating a substantial in situ presence at effluent. Our environmental driver modeling, employing GLM and mantel tests, substantiated the intricate nature of virus community variation within the effluent, influenced heterogeneously by diverse factors. Notably, pond temperature emerged as the foremost determinant, while fishing farming exhibited a positive correlation with virus diversity (p < 0.05). This revelation of the cryptic persistence of virus communities in wastewater effluent expands our understanding of the varied responses of different virus categories to oxidation. Such insights transcend mere virus characterization, offering valuable implications for enhancing biosafety measures in farming practices and informing wastewater-based epidemiological surveillance.
Collapse
Affiliation(s)
- Jiabao Xing
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Han Gao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Guangyu Liu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xinyu Cao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jianhao Zhong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Sijia Xu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yue Li
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yuwan Pang
- Institute of Agricultural Resources and Environmental Sciences, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, PR China.
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.
| | - Yankuo Sun
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.
| |
Collapse
|
13
|
Sane S, Tene SD, Diouara AAM, Coundoul S, Mbengue M, Dieye Y. Bacterial community in fresh fruits and vegetables sold in streets and open-air markets of Dakar, Senegal. BMC Microbiol 2024; 24:471. [PMID: 39533199 PMCID: PMC11559176 DOI: 10.1186/s12866-024-03622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
In the context of food transition, the agrifood sector has experienced increasingly strong demand for horticultural products. Fresh fruits and vegetables are mainly vehicles of microorganisms, including pathogens that cause human infections. Food safety and compliance with health standards in the fruits and vegetable value chain are significant concerns and multiple challenges, given the prevalence of foodborne pathologies in Southern countries, particularly in Senegal. This study aimed to describe the bacterial community and assess the microbiological quality of a range of fruits and vegetables sold on street stalls and open-air markets in Dakar, the capital city of Senegal. Samples purchased in seven sites were analyzed to isolate Escherichia coli (E. coli), Salmonella spp. and Vibrio spp. Some primary samples with a positive microbiological culture were subjected to DNA extraction and subsequent metagenomic analysis. A total of 240 fresh fruit and vegetable samples were collected, including lettuce (n = 40), tomatoes (n = 40), mango slices (n = 40), onion slices (n = 40), mint leaves (n = 40), strawberries and grapes (each n = 20). Of these samples, 50.83% (122/240) and 60.41% (145/240) were contaminated with E. coli and Vibrio spp., respectively, while Salmonella was not isolated in any product. E. coli and Vibrio spp. contamination levels, 1.3 103 to 6 106 Colonies Forming Units per gram of sample (CFU/g) and 4.55 102 to 8.73 106 CFU/g, respectively, were significantly above the thresholds acceptable for human consumption. The most contaminated samples were lettuce, with a prevalence of 98% (39/40) for E. coli and Vibrio spp. followed by mint leaves with 100% (40/40) and 93% (37/40) of the samples containing E. coli and Vibrio spp. respectively. Out of 46 samples sequenced, the metagenomic analysis revealed high contamination rates for E. coli, Vibrio spp. and Salmonella spp., with 100%, 67.39% and 93.47% of prevalence, respectively. On the other hand, the alpha diversity analysis shows high bacterial diversity in lettuce and mint leaf samples, while the beta diversity analysis highlighted the presence of two major clusters. Our results stress the need for a surveillance system that extends this investigation to a national scale while increasing the number of sampling sites and products analyzed.
Collapse
Affiliation(s)
- Sarbanding Sane
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar, Senegal
| | - Sophie Deli Tene
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar, Senegal
| | - Abou Abdallah Malick Diouara
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar, Senegal.
| | - Seynabou Coundoul
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar, Senegal
| | - Malick Mbengue
- Procédés de Valorisation Des Ressources Naturelles Et Environnement (ProVaRNE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar, Senegal
| | - Yakhya Dieye
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar, Senegal
- Pôle de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar BP 220, Dakar, Senegal
| |
Collapse
|
14
|
Turk Dermastia T, Kutnjak D, Gutierrez-Aguirre I, Brussaard CPD, Bačnik K. Discovery of novel and known viruses associated with toxigenic and non-toxigenic bloom forming diatoms from the Northern Adriatic Sea. HARMFUL ALGAE 2024; 139:102737. [PMID: 39567073 DOI: 10.1016/j.hal.2024.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/17/2024] [Accepted: 10/13/2024] [Indexed: 11/22/2024]
Abstract
Algal blooms impact trophic interactions, community structure and element fluxes. Despite playing an important role in the demise of phytoplankton blooms, only few viruses infecting diatoms have been cultured. Pseudo-nitzschia is a widespread diatom genus that commonly blooms in coastal waters and contains toxin-producing species. This study describes the characterization of a novel virus infecting the toxigenic species Pseudo-nitzschia galaxiae isolated from the northern Adriatic Sea. The ssRNA virus PnGalRNAV has 29.5 nm ± 1.2 nm icosahedral virions and a genome size of 8.8 kb. It belongs to the picorna-like Marnaviridae family and shows high specificity for P. galaxiae infecting two genetically and morphologically distinct strains. We found two genetically distinct types of this virus and screening of the global virome database revealed matching sequences from the Mediterranean region and China, suggesting its global distribution. Another virus of similar shape and size infecting Pseudo-nitzschia calliantha was found, but its genome could not be determined. In addition, we have obtained and characterized a new virus that infects Chaetoceros tenuissimus. The replicase protein of this virus is very similar to the previously described ChTenDNAV type-II virus, but it has a unique genome and infection pattern. Our study is an important contribution to the collective diatom virus culture collection and will allow further investigation into how these viruses control diatom bloom termination, carbon export and toxin release in the case of Pseudo-nitzschia.
Collapse
Affiliation(s)
| | - Denis Kutnjak
- National Institute of Biology, Departments of Biotechnology and Systems Biology, Ljubljana, Slovenia.
| | - Ion Gutierrez-Aguirre
- National Institute of Biology, Departments of Biotechnology and Systems Biology, Ljubljana, Slovenia.
| | - Corina P D Brussaard
- Royal Netherlands Institute of Sea Research (NIOZ), Department of Microbiology & Biogeochemistry, Texel, The Netherlands; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1098 Amsterdam, The Netherlands.
| | - Katarina Bačnik
- National Institute of Biology, Departments of Biotechnology and Systems Biology, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Freitas JF, Oliveira TT, Agnez-Lima LF. Metaviromic reveals the dynamics and diversity of the virosphere in wastewater samples from Natal, Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124752. [PMID: 39154883 DOI: 10.1016/j.envpol.2024.124752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/03/2024] [Accepted: 07/28/2024] [Indexed: 08/20/2024]
Abstract
The COVID-19 pandemic underscored the significance of omics technology and Wastewater-Based Epidemiology for epidemic preparedness. This study investigates the virosphere in wastewater samples from Natal (Brazil), aiming to understand its structure, relationships, and potential. Metaviromic analysis was used on DNA and RNA from weekly samples collected over a year (June/2021 to May/2022) from three wastewater treatment plants. The virosphere showed stability, particularly in viruses infecting microorganisms and plants. However, an alternation of representatives of viruses that infect animals has been observed. Among the most abundant viruses infecting microorganisms are genera associated with the bacterial genera Escherichia, Pseudomonas, and Caulobacte. Regarding the viruses infecting plants, Sobemovirus and Tobamovirus are the most abundant genera. Odontoglossum ringspot virus was identified as a possible RNA virus biomarker. Among DNA viruses infecting animals, genera Bocaparvovirus and Mastadenovirus are the most prevalent. Intriguingly, some Poxviridae family members were observed in the samples. Co-occurrence network analysis identified potential biomarkers like Volepox virus, Anatid herpesvirus 1, and Caviid herpesvirus 2. Among RNA viruses affecting animals, Mamastrovirus, Rotavirus, and Norovirus genera were the most abundant pathogens. Furthermore, members of the Coronaviridae family exhibited a high degree of centrality values in the co-occurrence network, even connecting with unclassified viruses. The study emphasizes the importance of research in understanding the roles of unclassified viruses. In addition, we observed an association between Coronaviridae reads, rainfall, and the number of reported COVID-19 cases. Our study highlights the diversity and complexity of the viral community in wastewater and the need for research to understand better the ecological roles unclassified viruses play. Such advances will significantly contribute to our preparedness and response to future viral threats. Furthermore, our study contributes to knowledge of virosphere dynamics, offering insights that can contribute to the direction of future public health policies and interventions.
Collapse
Affiliation(s)
- Júlia Firme Freitas
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Thais Teixeira Oliveira
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Lucymara Fassarella Agnez-Lima
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
16
|
Fernandez-Cassi X, Kohn T. Comparison of Three Viral Nucleic Acid Preamplification Pipelines for Sewage Viral Metagenomics. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:1-22. [PMID: 38647859 PMCID: PMC11422458 DOI: 10.1007/s12560-024-09594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/01/2024] [Indexed: 04/25/2024]
Abstract
Viral metagenomics is a useful tool for detecting multiple human viruses in urban sewage. However, more refined protocols are required for its effective use in disease surveillance. In this study, we investigated the performance of three different preamplification pipelines (specific to RNA viruses, DNA viruses or both) for viral genome sequencing using spiked-in Phosphate Buffered Saline and sewage samples containing known concentrations of viruses. We found that compared to the pipeline targeting all genome types, the RNA pipeline performed better in detecting RNA viruses in both spiked and unspiked sewage samples, allowing the detection of various mammalian viruses including members from the Reoviridae, Picornaviridae, Astroviridae and Caliciviridae. However, the DNA-specific pipeline did not improve the detection of mammalian DNA viruses. We also measured viral recovery by quantitative reverse transcription polymerase chain reaction and assessed the impact of genetic background (non-viral genetic material) on viral coverage. Our results indicate that viral recoveries were generally lower in sewage (average of 11.0%) and higher in Phosphate Buffered Saline (average of 23.4%) for most viruses. Additionally, spiked-in viruses showed lower genome coverage in sewage, demonstrating the negative effect of genetic background on sequencing. Finally, correlation analysis revealed a relationship between virus concentration and genome normalized reads per million, indicating that viral metagenomic sequencing can be semiquantitative.
Collapse
Affiliation(s)
- Xavier Fernandez-Cassi
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Vaud, Lausanne, Switzerland.
- Departament of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Catalunya, Spain.
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Vaud, Lausanne, Switzerland
| |
Collapse
|
17
|
Wyler E, Lauber C, Manukyan A, Deter A, Quedenau C, Teixeira Alves LG, Wylezich C, Borodina T, Seitz S, Altmüller J, Landthaler M. Pathogen dynamics and discovery of novel viruses and enzymes by deep nucleic acid sequencing of wastewater. ENVIRONMENT INTERNATIONAL 2024; 190:108875. [PMID: 39002331 DOI: 10.1016/j.envint.2024.108875] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Wastewater contains an extensive reservoir of genetic information, yet largely unexplored. Here, we analyzed by high-throughput sequencing total nucleic acids extracted from wastewater samples collected during a 17 month-period in Berlin, Germany. By integrating global wastewater datasets and applying a novel computational approach to accurately identify viral strains within sewage RNA-sequencing data, we demonstrated the emergence and global dissemination of a specific astrovirus strain. Astrovirus abundance and sequence variation mirrored temporal and spatial patterns of infection, potentially serving as footprints of specific timeframes and geographical locations. Additionally, we revealed more than 100,000 sequence contigs likely originating from novel viral species, exhibiting distinct profiles in total RNA and DNA datasets and including undescribed bunyaviruses and parvoviruses. Finally, we identified thousands of new CRISPR-associated protein sequences, including Transposase B (TnpB), a class of compact, RNA-guided DNA editing enzymes. Collectively, our findings underscore the potential of high-throughput sequencing of total nucleic acids derived from wastewater for a broad range of applications.
Collapse
Affiliation(s)
- Emanuel Wyler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, A Joint Venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Artür Manukyan
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Aylina Deter
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Claudia Quedenau
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Luiz Gustavo Teixeira Alves
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Tatiana Borodina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Stefan Seitz
- Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Janine Altmüller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; Berlin Institute of Health at Charité, Berlin, Germany
| | - Markus Landthaler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
18
|
Mogotsi MT, Ogunbayo AE, Bester PA, O'Neill HG, Nyaga MM. Longitudinal analysis of the enteric virome in paediatric subjects from the Free State Province, South Africa, reveals early gut colonisation and temporal dynamics. Virus Res 2024; 346:199403. [PMID: 38776984 PMCID: PMC11169482 DOI: 10.1016/j.virusres.2024.199403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The gut of healthy neonates is devoid of viruses at birth, but rapidly becomes colonised by normal viral commensals that aid in important physiological functions like metabolism but can, in some instances, result in gastrointestinal illnesses. However, little is known about how this colonisation begins, its variability and factors shaping the gut virome composition. Thus, understanding the development, assembly, and progression of enteric viral communities over time is key. To explore early-life virome development, metagenomic sequencing was employed in faecal samples collected longitudinally from a cohort of 17 infants during their first six months of life. The gut virome analysis revealed a diverse and dynamic viral community, formed by a richness of different viruses infecting humans, non-human mammals, bacteria, and plants. Eukaryotic viruses were detected as early as one week of life, increasing in abundance and diversity over time. Most of the viruses detected are commonly associated with gastroenteritis and include members of the Caliciviridae, Picornaviridae, Astroviridae, Adenoviridae, and Sedoreoviridae families. The most common co-occurrences involved asymptomatic norovirus-parechovirus, norovirus-sapovirus, sapovirus-parechovirus, observed in at least 40 % of the samples. Majority of the plant-derived viruses detected in the infants' gut were from the Virgaviridae family. This study demonstrates the first longitudinal characterisation of the gastrointestinal virome in infants, from birth up to 6 months of age, in sub-Saharan Africa. Overall, the findings from this study delineate the composition and variability of the healthy infants' gut virome over time, which is a significant step towards understanding the dynamics and biogeography of viral communities in the infant gut.
Collapse
Affiliation(s)
- Milton Tshidiso Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Ayodeji Emmanuel Ogunbayo
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Phillip Armand Bester
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Hester Gertruida O'Neill
- Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Martin Munene Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| |
Collapse
|
19
|
Brinch C, Otani S, Munk P, van den Beld M, Franz E, Aarestrup FM. Discovery of Vibrio cholerae in Urban Sewage in Copenhagen, Denmark. MICROBIAL ECOLOGY 2024; 87:102. [PMID: 39085652 PMCID: PMC11291605 DOI: 10.1007/s00248-024-02419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
We report the discovery of a persistent presence of Vibrio cholerae at very low abundance in the inlet of a single wastewater treatment plant in Copenhagen, Denmark at least since 2015. Remarkably, no environmental or locally transmitted clinical case of V. cholerae has been reported in Denmark for more than 100 years. We, however, have recovered a near-complete genome out of 115 metagenomic sewage samples taken over the past 8 years, despite the extremely low relative abundance of one V. cholerae read out of 500,000 sequenced reads. Due to the very low relative abundance, routine screening of the individual samples did not reveal V. cholerae. The recovered genome lacks the gene responsible for cholerae toxin production, but although this strain may not pose an immediate public health risk, our finding illustrates the importance, challenges, and effectiveness of wastewater-based pathogen surveillance.
Collapse
Affiliation(s)
- Christian Brinch
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark.
| | - Saria Otani
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Patrick Munk
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Maaike van den Beld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| |
Collapse
|
20
|
Lenaker PL, Pronschinske MA, Corsi SR, Stokdyk JP, Olds HT, Dila DK, McLellan SL. A multi-marker assessment of sewage contamination in streams using human-associated indicator bacteria, human-specific viruses, and pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172505. [PMID: 38636851 DOI: 10.1016/j.scitotenv.2024.172505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Human sewage contaminates waterways, delivering excess nutrients, pathogens, chemicals, and other toxic contaminants. Contaminants and various sewage indicators are measured to monitor and assess water quality, but these analytes vary in their representation of sewage contamination and the inferences about water quality they support. We measured the occurrence and concentration of multiple microbiological (n = 21) and chemical (n = 106) markers at two urban stream locations in Milwaukee, Wisconsin, USA over two years. Five-day composite water samples (n = 98) were collected biweekly, and sewage influent samples (n = 25) were collected monthly at a Milwaukee, WI water reclamation facility. We found the vast majority of markers were not sensitive enough to detect sewage contamination. To compare analytes for monitoring applications, five consistently detected human sewage indicators were used to evaluate temporal patterns of sewage contamination, including microbiological (pepper mild mottle virus, human Bacteroides, human Lachnospiraceae) and chemical (acetaminophen, metformin) markers. The proportion of human sewage in each stream was estimated using the mean influent concentration from the water reclamation facility and the mean concentration of all stream samples for each sewage indicator marker. Estimates of instream sewage pollution varied by marker, differing by up to two orders of magnitude, but four of the five sewage markers characterized Underwood Creek (mean proportions of human sewage ranged 0.0025 % - 0.075 %) as less polluted than Menomonee River (proportions ranged 0.013 % - 0.14 %) by an order of magnitude more. Chemical markers correlated with each other and yielded higher estimates of sewage pollution than microbial markers, which exhibited greater temporal variability. Transport, attenuation, and degradation processes can influence chemical and microbial markers differently and cause variation in human sewage estimates. Given the range of potential human and ecological health effects of human sewage contamination, robust characterization of sewage contamination that uses multiple lines of evidence supports monitoring and research applications.
Collapse
Affiliation(s)
- Peter L Lenaker
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, USA.
| | - Matthew A Pronschinske
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Steven R Corsi
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Joel P Stokdyk
- U.S. Geological Survey, Laboratory for Infectious Disease and the Environment, 2615 Yellowstone Dr., Marshfield, WI 54449, USA
| | - Hayley T Olds
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Deborah K Dila
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, USA
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, USA
| |
Collapse
|
21
|
Martínez-Puchol S, Tarradas-Alemany M, Mejías-Molina C, Itarte M, Rusiñol M, Baliellas J, Abasolo N, Canela N, Monastiri A, López-Roig M, Serra-Cobo J, Abril JF, Bofill-Mas S. Target enrichment metaviromics enables comprehensive surveillance of coronaviruses in environmental and animal samples. Heliyon 2024; 10:e31556. [PMID: 38845944 PMCID: PMC11153099 DOI: 10.1016/j.heliyon.2024.e31556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
The COVID-19 pandemic has underscored the importance of understanding the role of animals in the transmission of coronaviruses (CoVs) and their impact on human health. A One Health approach, integrating human, animal, and environmental health, is essential for effective CoVs control. Next-generation sequencing has played a pivotal role in identifying and monitoring the evolution of novel CoVs strains, like SARS-CoV-2. However, viral occurrence and diversity studies in environmental and animal samples are challenging because of the complexity of viral communities and low abundance of viruses in these samples. Target enrichment sequencing (TES) has emerged as a valuable tool for investigating viral families in challenging samples. This approach involves the specific capture and enrichment of viral genomes using sequence-specific probes, thereby enhancing the efficiency of detection and characterization. In this study, we aimed to develop and validate a TES panel to study CoVs in various complex environmental and animal derived samples. The results demonstrated the panel's effectiveness in capturing and sequencing a wide diversity of CoVs providing valuable insights into their abundance and host diversity in urban wastewater, farm animal corpses lixiviates and bat guano samples. In sewage samples, CoVs were detected solely when TES was employed while in guano samples, sequencing of CoVs species was achieved in 2 out of 4 samples showing an almost three-logarithmic increase in the number of reads obtained in comparison with the untargeted approach. For animal lixiviates, only the TES application enabled the acquisition of CoVs reads. The information obtained can significantly contribute to early detection, surveillance, and control measures for CoVs, including viral discovery and potential spillover events. Additionally, this sequencing panel shows potential for studying other significant viral families and monitoring viral diversity in different animal populations.
Collapse
Affiliation(s)
- Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Vicerectorat de Recerca. Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Maria Tarradas-Alemany
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Computational Genomics Lab, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | - Nerea Abasolo
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Catalonia, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Catalonia, Spain
| | - Abir Monastiri
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBiO), Universitat de Barcelona, Catalonia, Spain
| | - Marc López-Roig
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBiO), Universitat de Barcelona, Catalonia, Spain
| | - Jordi Serra-Cobo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBiO), Universitat de Barcelona, Catalonia, Spain
| | - Josep F. Abril
- Computational Genomics Lab, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
22
|
Itarte M, Calvo M, Martínez-Frago L, Mejías-Molina C, Martínez-Puchol S, Girones R, Medema G, Bofill-Mas S, Rusiñol M. Assessing environmental exposure to viruses in wastewater treatment plant and swine farm scenarios with next-generation sequencing and occupational risk approaches. Int J Hyg Environ Health 2024; 259:114360. [PMID: 38555823 DOI: 10.1016/j.ijheh.2024.114360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Occupational exposure to pathogens can pose health risks. This study investigates the viral exposure of workers in a wastewater treatment plant (WWTP) and a swine farm by analyzing aerosol and surfaces samples. Viral contamination was evaluated using quantitative polymerase chain reaction (qPCR) assays, and target enrichment sequencing (TES) was performed to identify the vertebrate viruses to which workers might be exposed. Additionally, Quantitative Microbial Risk Assessment (QMRA) was conducted to estimate the occupational risk associated with viral exposure for WWTP workers, choosing Human Adenovirus (HAdV) as the reference pathogen. In the swine farm, QMRA was performed as an extrapolation, considering a hypothetical zoonotic virus with characteristics similar to Porcine Adenovirus (PAdV). The modelled exposure routes included aerosol inhalation and oral ingestion through contaminated surfaces and hand-to-mouth contact. HAdV and PAdV were widespread viruses in the WWTP and the swine farm, respectively, by qPCR assays. TES identified human and other vertebrate viruses WWTP samples, including viruses from families such as Adenoviridae, Circoviridae, Orthoherpesviridae, Papillomaviridae, and Parvoviridae. In the swine farm, most of the identified vertebrate viruses were porcine viruses belonging to Adenoviridae, Astroviridae, Circoviridae, Herpesviridae, Papillomaviridae, Parvoviridae, Picornaviridae, and Retroviridae. QMRA analysis revealed noteworthy risks of viral infections for WWTP workers if safety measures are not taken. The probability of illness due to HAdV inhalation was higher in summer compared to winter, while the greatest risk from oral ingestion was observed in workspaces during winter. Swine farm QMRA simulation suggested a potential occupational risk in the case of exposure to a hypothetical zoonotic virus. This study provides valuable insights into WWTP and swine farm worker's occupational exposure to human and other vertebrate viruses. QMRA and NGS analyses conducted in this study will assist managers in making evidence-based decisions, facilitating the implementation of protection measures, and risk mitigation practices for workers.
Collapse
Affiliation(s)
- Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Miquel Calvo
- Secció d'Estadística, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Lola Martínez-Frago
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Rosina Girones
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | | | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
23
|
Kohle S, Petersen TN, Vigre H, Johansson MHK, Aarestrup FM. Metagenomic analysis of sewage for surveillance of bacterial pathogens: A release experiment to determine sensitivity. PLoS One 2024; 19:e0300733. [PMID: 38753691 PMCID: PMC11098379 DOI: 10.1371/journal.pone.0300733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/04/2024] [Indexed: 05/18/2024] Open
Abstract
Accurate monitoring of gastro-enteric and other diseases in large populations poses a challenge for public health management. Sewage represents a larger population, is freely obtainable and non-subject to ethical approval. Metagenomic sequencing offers simultaneous, multiple-target analysis. However, no study has demonstrated the sensitivity of metagenomics for detecting bacteria in sewage. In this study, we spot-released 1013 colony-forming units (CFU) of Staphyloccus hyicus (non-pathogenetic strain 842J-88). The strain was flushed down a toilet into the sewer in the catchment area of a public wastewater treatment plant (WWTP), serving a population of 36,000 people. Raw sewage was continuously sampled at the WWTP's inlet over 30- and 60-minute intervals for a total period of seven hours. The experiment was conducted twice with one week in-between release days and under comparable weather conditions. For the metagenomics analyses, the pure single isolate of S. hyicus was sequenced, assembled and added to a large database of bacterial reference sequences. All sewage samples were analyzed by shotgun metagenome sequencing and mapped against the reference database. S. hyicus was identified in duplicate samples at both of two release days and these sequence fragment counts served as a proxy to estimate the minimum number of sick people or sensitivity required in order to observe at least one sick person at 95% probability. We found the sensitivity to be in the range 41-140 and 16-36 sick people at release days 1 and 2, respectively. The WWTP normally serves 36,000 people giving a normalized sensitivity in the range of one in 257 to 2,250 persons.
Collapse
Affiliation(s)
- Simon Kohle
- Research Group for Genomic Epidemiology, DTU-Food, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Thomas N. Petersen
- Research Group for Genomic Epidemiology, DTU-Food, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Håkan Vigre
- Research Group for Genomic Epidemiology, DTU-Food, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, DTU-Food, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
24
|
Jiang M, Wang ALW, Be NA, Mulakken N, Nelson KL, Kantor RS. Evaluation of the Impact of Concentration and Extraction Methods on the Targeted Sequencing of Human Viruses from Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8239-8250. [PMID: 38690747 PMCID: PMC11097627 DOI: 10.1021/acs.est.4c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Sequencing human viruses in wastewater is challenging due to their low abundance compared to the total microbial background. This study compared the impact of four virus concentration/extraction methods (Innovaprep, Nanotrap, Promega, and Solids extraction) on probe-capture enrichment for human viruses followed by sequencing. Different concentration/extraction methods yielded distinct virus profiles. Innovaprep ultrafiltration (following solids removal) had the highest sequencing sensitivity and richness, resulting in the successful assembly of several near-complete human virus genomes. However, it was less sensitive in detecting SARS-CoV-2 by digital polymerase chain reaction (dPCR) compared to Promega and Nanotrap. Across all preparation methods, astroviruses and polyomaviruses were the most highly abundant human viruses, and SARS-CoV-2 was rare. These findings suggest that sequencing success can be increased using methods that reduce nontarget nucleic acids in the extract, though the absolute concentration of total extracted nucleic acid, as indicated by Qubit, and targeted viruses, as indicated by dPCR, may not be directly related to targeted sequencing performance. Further, using broadly targeted sequencing panels may capture viral diversity but risks losing signals for specific low-abundance viruses. Overall, this study highlights the importance of aligning wet lab and bioinformatic methods with specific goals when employing probe-capture enrichment for human virus sequencing from wastewater.
Collapse
Affiliation(s)
- Minxi Jiang
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Audrey L. W. Wang
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Nicholas A. Be
- Physical
and Life Sciences Directorate, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| | - Nisha Mulakken
- Computing
and Global Security Directorates, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| | - Kara L. Nelson
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Rose S. Kantor
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
25
|
Kantor RS, Jiang M. Considerations and Opportunities for Probe Capture Enrichment Sequencing of Emerging Viruses from Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8161-8168. [PMID: 38691513 PMCID: PMC11097388 DOI: 10.1021/acs.est.4c02638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Until recently, wastewater-based monitoring for pathogens of public health concern primarily used PCR-based quantification methods and targeted sequencing for specific pathogens (e.g., SARS-CoV-2). In the past three years, researchers have expanded sequencing to monitor a broad range of pathogens, applying probe capture enrichment to wastewater. The goals of those studies included (1) monitoring and expanding fundamental knowledge of disease dynamics for known pathogens and (2) evaluating the potential for early detection of emerging diseases resulting from zoonotic spillover or novel viral variants. Several studies using off-the-shelf probe panels designed for clinical and environmental surveillance reported that enrichment increased virus relative abundance but did not recover complete genomes for most nonenteric viruses. Based on our experience and recent results reported by others using these panels for wastewater, clinical, and synthetic samples, we discuss challenges and technical factors that affect the rates of false positive and false negative results. We identify trade-offs and opportunities throughout the workflow, including in wastewater sample processing, probe panel design, and bioinformatic analysis. We suggest tailored methods of virus concentration and background removal, carefully designed probe panels, and multithresholded bioinformatics analysis.
Collapse
Affiliation(s)
- Rose S. Kantor
- Department of Civil and Environmental
Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Minxi Jiang
- Department of Civil and Environmental
Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Patnaik A, Rai SK, Dhaked RK. CRISPR-Cas12a assisted recombinase based strand invading isothermal amplification platform designed for targeted detection of Bacillus anthracis Sterne. Int J Biol Macromol 2024; 263:130216. [PMID: 38378112 DOI: 10.1016/j.ijbiomac.2024.130216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Detection of a pathogen is crucial prior to all prophylaxis and post exposure treatment, as it can prevent further disease manifestation. In this study, we have developed a nucleic acid pre-amplification based CRISPR diagnostic for detection and surveillance of Bacillus anthracis Sterne. Strand Invasion Based isothermal Amplification (SIBA) platform and Cas12a (CRISPR endo-nuclease) was used to develop CRISPR-SIBA, a multifaceted diagnostic platform. SIBA was employed as the isothermal pre-amplification platform. CRISPR-Cas12a based collateral trans-cleavage reaction was used to ensure and enhance the specificity of the system. Efficiency of the detection system was evaluated by detecting Bacillus anthracis Sterne in complex wastewater sample backgrounds. Previously reported, Prophage 3, Cya and Pag genes of Bacillus anthracis were used as targets for this assay. The amplification system provided reliable and specific detection readout, with a sensitivity limit of 100 colony forming units in 40 min. The endpoint fluorescence from CRISPR collateral cleavage reactions gave a detection limit of 105 to 106 CFUs. The experiments conducted in this study provide the evidence for SIBA's applicability and compatibility with CRISPR-Cas system and its efficiency to specifically detect Bacillus anthracis Sterne. CRISPR-SIBA can be translated into developing cost-effective diagnostics for pathogens in resource constrained settings.
Collapse
Affiliation(s)
- Abhinandan Patnaik
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, MP, India
| | - Sharad Kumar Rai
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, MP, India
| | - Ram Kumar Dhaked
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, MP, India.
| |
Collapse
|
27
|
Zhao H, Yang M, Fan X, Gui Q, Yi H, Tong Y, Xiao W. A Metagenomic Investigation of Potential Health Risks and Element Cycling Functions of Bacteria and Viruses in Wastewater Treatment Plants. Viruses 2024; 16:535. [PMID: 38675877 PMCID: PMC11054999 DOI: 10.3390/v16040535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
The concentration of viruses in sewage sludge is significantly higher (10-1000-fold) than that found in natural environments, posing a potential risk for human and animal health. However, the composition of these viruses and their role in the transfer of pathogenic factors, as well as their role in the carbon, nitrogen, and phosphorus cycles remain poorly understood. In this study, we employed a shotgun metagenomic approach to investigate the pathogenic bacteria and viral composition and function in two wastewater treatment plants located on a campus. Our analysis revealed the presence of 1334 amplicon sequence variants (ASVs) across six sludge samples, with 242 ASVs (41.22% of total reads) identified as pathogenic bacteria. Arcobacter was found to be the most dominant pathogen accounting for 6.79% of total reads. The virome analysis identified 613 viral genera with Aorunvirus being the most abundant genus at 41.85%. Approximately 0.66% of these viruses were associated with human and animal diseases. More than 60% of the virome consisted of lytic phages. Host prediction analysis revealed that the phages primarily infected Lactobacillus (37.11%), Streptococcus (21.11%), and Staphylococcus (7.11%). Furthermore, our investigation revealed an abundance of auxiliary metabolic genes (AMGs) involved in carbon, nitrogen, and phosphorus cycling within the virome. We also detected a total of 113 antibiotic resistance genes (ARGs), covering major classes of antibiotics across all samples analyzed. Additionally, our findings indicated the presence of virulence factors including the clpP gene accounting for approximately 4.78%, along with toxin genes such as the RecT gene representing approximately 73.48% of all detected virulence factors and toxin genes among all samples analyzed. This study expands our understanding regarding both pathogenic bacteria and viruses present within sewage sludge while providing valuable insights into their ecological functions.
Collapse
Affiliation(s)
- Haozhe Zhao
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China; (H.Z.); (M.Y.); (X.F.); (Q.G.); (H.Y.)
| | - Mingfei Yang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China; (H.Z.); (M.Y.); (X.F.); (Q.G.); (H.Y.)
| | - Xiang Fan
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China; (H.Z.); (M.Y.); (X.F.); (Q.G.); (H.Y.)
| | - Qian Gui
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China; (H.Z.); (M.Y.); (X.F.); (Q.G.); (H.Y.)
| | - Hao Yi
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China; (H.Z.); (M.Y.); (X.F.); (Q.G.); (H.Y.)
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Xiao
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China; (H.Z.); (M.Y.); (X.F.); (Q.G.); (H.Y.)
| |
Collapse
|
28
|
Nash D, Ellmen I, Knapp JJ, Menon R, Overton AK, Cheng J, Lynch MDJ, Nissimov JI, Charles TC. A Novel Tiled Amplicon Sequencing Assay Targeting the Tomato Brown Rugose Fruit Virus (ToBRFV) Genome Reveals Widespread Distribution in Municipal Wastewater Treatment Systems in the Province of Ontario, Canada. Viruses 2024; 16:460. [PMID: 38543825 PMCID: PMC10974707 DOI: 10.3390/v16030460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 05/23/2024] Open
Abstract
Tomato Brown Rugose Fruit Virus (ToBRFV) is a plant pathogen that infects important Solanaceae crop species and can dramatically reduce tomato crop yields. The ToBRFV has rapidly spread around the globe due to its ability to escape detection by antiviral host genes which confer resistance to other tobamoviruses in tomato plants. The development of robust and reproducible methods for detecting viruses in the environment aids in the tracking and reduction of pathogen transmission. We detected ToBRFV in municipal wastewater influent (WWI) samples, likely due to its presence in human waste, demonstrating a widespread distribution of ToBRFV in WWI throughout Ontario, Canada. To aid in global ToBRFV surveillance efforts, we developed a tiled amplicon approach to sequence and track the evolution of ToBRFV genomes in municipal WWI. Our assay recovers 95.7% of the 6393 bp ToBRFV RefSeq genome, omitting the terminal 5' and 3' ends. We demonstrate that our sequencing assay is a robust, sensitive, and highly specific method for recovering ToBRFV genomes. Our ToBRFV assay was developed using existing ARTIC Network resources, including primer design, sequencing library prep, and read analysis. Additionally, we adapted our lineage abundance estimation tool, Alcov, to estimate the abundance of ToBRFV clades in samples.
Collapse
Affiliation(s)
- Delaney Nash
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| | - Isaac Ellmen
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| | - Jennifer J. Knapp
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
| | - Ria Menon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
| | - Alyssa K. Overton
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
| | - Jiujun Cheng
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| | - Michael D. J. Lynch
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| | - Jozef I. Nissimov
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| |
Collapse
|
29
|
Li Y, Miyani B, Faust RA, David RE, Xagoraraki I. A broad wastewater screening and clinical data surveillance for virus-related diseases in the metropolitan Detroit area in Michigan. Hum Genomics 2024; 18:14. [PMID: 38321488 PMCID: PMC10845806 DOI: 10.1186/s40246-024-00581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Periodic bioinformatics-based screening of wastewater for assessing the diversity of potential human viral pathogens circulating in a given community may help to identify novel or potentially emerging infectious diseases. Any identified contigs related to novel or emerging viruses should be confirmed with targeted wastewater and clinical testing. RESULTS During the COVID-19 pandemic, untreated wastewater samples were collected for a 1-year period from the Great Lakes Water Authority Wastewater Treatment Facility in Detroit, MI, USA, and viral population diversity from both centralized interceptor sites and localized neighborhood sewersheds was investigated. Clinical cases of the diseases caused by human viruses were tabulated and compared with data from viral wastewater monitoring. In addition to Betacoronavirus, comparison using assembled contigs against a custom Swiss-Prot human virus database indicated the potential prevalence of other pathogenic virus genera, including: Orthopoxvirus, Rhadinovirus, Parapoxvirus, Varicellovirus, Hepatovirus, Simplexvirus, Bocaparvovirus, Molluscipoxvirus, Parechovirus, Roseolovirus, Lymphocryptovirus, Alphavirus, Spumavirus, Lentivirus, Deltaretrovirus, Enterovirus, Kobuvirus, Gammaretrovirus, Cardiovirus, Erythroparvovirus, Salivirus, Rubivirus, Orthohepevirus, Cytomegalovirus, Norovirus, and Mamastrovirus. Four nearly complete genomes were recovered from the Astrovirus, Enterovirus, Norovirus and Betapolyomavirus genera and viral species were identified. CONCLUSIONS The presented findings in wastewater samples are primarily at the genus level and can serve as a preliminary "screening" tool that may serve as indication to initiate further testing for the confirmation of the presence of species that may be associated with human disease. Integrating innovative environmental microbiology technologies like metagenomic sequencing with viral epidemiology offers a significant opportunity to improve the monitoring of, and predictive intelligence for, pathogenic viruses, using wastewater.
Collapse
Affiliation(s)
- Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI, 48823, USA
| | - Brijen Miyani
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI, 48823, USA
| | - Russell A Faust
- Oakland County Health Division, 1200 Telegraph Rd, Pontiac, MI, 48341, USA
| | - Randy E David
- School of Medicine, Wayne State University, Detroit, MI, 48282, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI, 48823, USA.
| |
Collapse
|
30
|
Shaheen MNF, Ahmed N, Rady Badr K, Elmahdy EM. Detection and quantification of adenovirus, polyomavirus, and papillomavirus in urban sewage. JOURNAL OF WATER AND HEALTH 2024; 22:401-413. [PMID: 38421633 PMCID: wh_2024_322 DOI: 10.2166/wh.2024.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The objective of this study was to assess the occurrence and seasonal frequency of human adenovirus (HAdV), human polyomavirus (HPyV), and human papillomavirus (HPV) in urban sewage. The detection of these viruses was carried out by polymerase chain reaction (PCR), and then the viral concentrations in the positive samples were quantified by quantitative PCR (qPCR). Additionally, HAdV and HPyV genotyping was also performed by PCR. A total of 38/60 (63.3%) positive samples were found. HAdV was the most prevalent virus (26/60; 43.3%), followed by HPyV (21/60; 35%) and HPV (21/60; 35%). The viral concentrations ranged from 3.56 × 102 to 7.55 × 107 genome copies/L. The most common dual viral agents was found between HAdV and HPyV, in eight samples (8/38, 21%). HAdV types 40 and 41 as well as HPyV types JC and BK were identified, with HAdV-40 and HPyV JC being the most prevalent types. Furthermore, the detection rates of HAdV, HPyV, and HPV were higher during the winter season than the other seasons. The high prevalence of HAdV and HPyV supports their suitability as viral indicators of sewage contamination. Furthermore, this study demonstrates the advantages of environmental surveillance as a tool to elucidate the community-circulating viruses.
Collapse
Affiliation(s)
- Mohamed N F Shaheen
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, 12622 Dokki, Cairo, Egypt E-mail: ;
| | - Nehal Ahmed
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, 12622 Dokki, Cairo, Egypt
| | - Kareem Rady Badr
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, 12622 Dokki, Cairo, Egypt
| | - Elmahdy Mohamed Elmahdy
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, 12622 Dokki, Cairo, Egypt
| |
Collapse
|
31
|
Li Y, Miyani B, Childs KL, Shiu SH, Xagoraraki I. Effect of wastewater collection and concentration methods on assessment of viral diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168128. [PMID: 37918732 DOI: 10.1016/j.scitotenv.2023.168128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Monitoring of potentially pathogenic human viruses in wastewater is of crucial importance to understand disease trends in communities, predict potential outbreaks, and boost preparedness and response by public health departments. High throughput metagenomic sequencing opens an opportunity to expand the capabilities of wastewater surveillance. However, there are major bottlenecks in the metagenomic enabled wastewater surveillance, including the complexities in selecting appropriate sampling and concentration/virus enrichment methods as well as in bioinformatic analysis of complex samples with low human virus concentrations. To evaluate the abilities of two commonly used sampling and concentration methods in virus identification, virus communities concentrated with Virus Adsorption-Elution (VIRADEL) and PolyEthylene Glycol (PEG) precipitation were compared for three interceptor sites. Results indicated that more viral reads were obtained by the VIRADEL concentration method, with 2.84 ± 0.57 % viral reads in the sample. For samples concentrated with PEG, the average proportion of viral reads in the sample was 0.63 ± 0.19 %. In all wastewater samples, bacteriophage affiliated with the families Siphoviridae, Myoviridae and Podoviridae were found to be the abundant populations. Comparison against a custom Swiss-Prot human virus database indicated that the relatively abundant human viruses (average proportions in human virus community greater than 1.00 %) in samples concentrated with the VIRADEL method were Orthopoxvirus, Rhadinovirus, Parapoxvirus, Varicellovirus, Hepatovirus, Simplexvirus, Molluscipoxvirus, Parechovirus, Lymphocryptovirus, and Spumavirus. In samples concentrated with the PEG method, fewer human viruses were found to be relatively abundant. These were Orthopoxvirus, Rhadinovirus, Varicellovirus, Simplexvirus, Molluscipoxvirus, Lymphocryptovirus, and Betacoronavirus. Contigs of Betacoronavirus, which contains severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), were identified in VIRADEL and PEG samples. Our study demonstrates the feasibility of using metagenomics in wastewater surveillance as a first screening tool and the need for selecting the appropriate virus concentration methods and optimizing bioinformatic approaches in analyzing metagenomic data of wastewater samples.
Collapse
Affiliation(s)
- Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI, United States
| | - Brijen Miyani
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI, United States
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States; Department of Energy (DOE) Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States; Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, United States
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI, United States.
| |
Collapse
|
32
|
Kanchan S, Ogden E, Kesheri M, Skinner A, Miliken E, Lyman D, Armstrong J, Sciglitano L, Hampikian G. COVID-19 hospitalizations and deaths predicted by SARS-CoV-2 levels in Boise, Idaho wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167742. [PMID: 37852488 DOI: 10.1016/j.scitotenv.2023.167742] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
The viral load of COVID-19 in untreated wastewater from Idaho's capital city Boise, ID (Ada County) has been used to predict changes in hospital admissions (statewide in Idaho) and deaths (Ada County) using distributed fixed lag modeling and artificial neural networks (ANN). The wastewater viral counts were used to determine the lag time between peaks in wastewater viral counts and COVID-19 hospitalizations as well as deaths (14 and 23 days, respectively). Quantitative measurement of SARS-CoV-2 viral RNA counts in the untreated wastewater was determined three times a week using RT-qPCR over a span of 13 months. To mitigate the effects of PCR inhibitors in wastewater, a series of dilution tests were conducted, and the 1/4 dilution was used to generate the most successful model. Wastewater SARS-CoV-2 viral RNA counts and hospitalization from June 7, 2021 to December 29, 2021 were used as training data to predict hospitalizations; and wastewater SARS-CoV-2 viral RNA counts and deaths from June 7, 2021 to December 20, 2021 were used as training data to predict deaths. These training data were used to make predictive ANN models for future hospitalizations and deaths. To the best of our knowledge, this is the first report of prediction of deaths from COVID-19 based on wastewater SARS-CoV-2 viral RNA counts using machine learning-based multilayered ANN. The applied modeling demonstrates that wastewater surveillance data can be combined with hospitalizations and death data to generate machine learning-based ANN models that predict future COVID-19 hospital admissions and deaths, providing an early warning for medical response teams and healthcare policymakers.
Collapse
Affiliation(s)
- Swarna Kanchan
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America; Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, 25701, United States of America
| | - Ernie Ogden
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America
| | - Minu Kesheri
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America; Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, 25701, United States of America
| | - Alexis Skinner
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America
| | - Erin Miliken
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America
| | - Devyn Lyman
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America
| | - Jacob Armstrong
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America
| | - Lawrence Sciglitano
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America
| | - Greg Hampikian
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America.
| |
Collapse
|
33
|
Shen L, Zhang Z, Wang R, Wu S, Wang Y, Fu S. Metatranscriptomic data mining together with microfluidic card uncovered the potential pathogens and seasonal RNA viral ecology in a drinking water source. J Appl Microbiol 2024; 135:lxad310. [PMID: 38130237 DOI: 10.1093/jambio/lxad310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/26/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
AIMS Despite metatranscriptomics becoming an emerging tool for pathogen surveillance, very little is known about the feasibility of this approach for understanding the fate of human-derived pathogens in drinking water sources. METHODS AND RESULTS We conducted multiplexed microfluidic cards and metatranscriptomic sequencing of the drinking water source in a border city of North Korea in four seasons. Microfluidic card detected norovirus, hepatitis B virus (HBV), enterovirus, and Vibrio cholerae in the water. Phylogenetic analyses showed that environmental-derived sequences from norovirus GII.17, genotype C of HBV, and coxsackievirus A6 (CA6) were genetically related to the local clinical isolates. Meanwhile, metatranscriptomic assembly suggested that several bacterial pathogens, including Acinetobacter johnsonii and V. cholerae might be prevalent in the studied region. Metatranscriptomic analysis recovered 349 species-level groups with substantial viral diversity without detection of norovirus, HBV, and CA6. Seasonally distinct virus communities were also found. Specifically, 126, 73, 126, and 457 types of viruses were identified in spring, summer, autumn, and winter, respectively. The viromes were dominated by the Pisuviricota phylum, including members from Marnaviridae, Dicistroviridae, Luteoviridae, Potyviridae, Picornaviridae, Astroviridae, and Picobirnaviridae families. Further phylogenetic analyses of RNA (Ribonucleic Acid)-dependent RNA polymerase (RdRp) sequences showed a diverse set of picorna-like viruses associated with shellfish, of which several novel picorna-like viruses were also identified. Additionally, potential animal pathogens, including infectious bronchitis virus, Bat dicibavirus, Bat nodavirus, Bat picornavirus 2, infectious bursal disease virus, and Macrobrachium rosenbergii nodavirus were also identified. CONCLUSIONS Our data illustrate the divergence between microfluidic cards and metatranscriptomics, highlighting that the combination of both methods facilitates the source tracking of human viruses in challenging settings without sufficient clinical surveillance.
Collapse
Affiliation(s)
- Lixin Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Department of Microbiology, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ziqiang Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Department of Microbiology, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Rui Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China
| | - Shuang Wu
- College of Food Technology and Sciences, Shanghai Ocean University, Shanghai 200093, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yongjie Wang
- College of Food Technology and Sciences, Shanghai Ocean University, Shanghai 200093, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 200093, China
| | - Songzhe Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Department of Microbiology, College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
34
|
Alissa M, Hjazi A. Utilising biosensor-based approaches for identifying neurotropic viruses. Rev Med Virol 2024; 34:e2513. [PMID: 38282404 DOI: 10.1002/rmv.2513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Neurotropic viruses, with their ability to invade the central nervous system, present a significant public health challenge, causing a spectrum of neurological diseases. Clinical manifestations of neurotropic viral infections vary widely, from mild to life-threatening conditions, such as HSV-induced encephalitis or poliovirus-induced poliomyelitis. Traditional diagnostic methods, including polymerase chain reaction, serological assays, and imaging techniques, though valuable, have limitations. To address these challenges, biosensor-based methods have emerged as a promising approach. These methods offer advantages such as rapid results, high sensitivity, specificity, and potential for point-of-care applications. By targeting specific biomarkers or genetic material, biosensors utilise technologies like surface plasmon resonance and microarrays, providing a direct and efficient means of diagnosing neurotropic infections. This review explores the evolving landscape of biosensor-based methods, highlighting their potential to enhance the diagnostic toolkit for neurotropic viruses.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz, Al-Kharj, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz, Al-Kharj, Saudi Arabia
| |
Collapse
|
35
|
Child HT, Airey G, Maloney DM, Parker A, Wild J, McGinley S, Evens N, Porter J, Templeton K, Paterson S, van Aerle R, Wade MJ, Jeffries AR, Bassano I. Comparison of metagenomic and targeted methods for sequencing human pathogenic viruses from wastewater. mBio 2023; 14:e0146823. [PMID: 37877702 PMCID: PMC10746264 DOI: 10.1128/mbio.01468-23] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Most public health initiatives that monitor viruses in wastewater have utilized quantitative polymerase chain reaction (PCR) and whole genome PCR sequencing, mirroring techniques used for viral epidemiology in individuals. These techniques require prior knowledge of the target viral genome and are limited to monitoring individual or small groups of viruses. Metagenomic sequencing may offer an alternative strategy for monitoring a broad spectrum of viruses in wastewater, including novel and emerging pathogens. In this study, while amplicon sequencing gave high viral genome coverage, untargeted shotgun sequencing of total nucleic acid samples was unable to detect human pathogenic viruses with enough sensitivity for use in genomic epidemiology. Enrichment of shotgun libraries for respiratory viruses using hybrid-capture technology provided genotypic information on a range of viruses simultaneously, indicating strong potential for wastewater surveillance. This type of targeted metagenomics could be used for monitoring diverse targets, such as pathogens or antimicrobial resistance genes, in environmental samples.
Collapse
Affiliation(s)
- Harry T. Child
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - George Airey
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Daniel M. Maloney
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Abby Parker
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Jonathan Wild
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Suzie McGinley
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Nicholas Evens
- Environment Agency, National Monitoring, Starcross, Exeter, United Kingdom
| | - Jonathan Porter
- Environment Agency, National Monitoring, Starcross, Exeter, United Kingdom
| | - Kate Templeton
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ronny van Aerle
- International Centre of Excellence for Aquatic Animal Health, Cefas, Weymouth, United Kingdom
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, United Kingdom
| | - Matthew J. Wade
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, United Kingdom
| | - Aaron R. Jeffries
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Irene Bassano
- Analytics & Data Science Directorate, UK Health Security Agency, London, United Kingdom
| |
Collapse
|
36
|
Andrianjakarivony FH, Bettarel Y, Cecchi P, Bouchard S, Chase E, Desnues C. Decoding the DNA and RNA viromes of a tropical urban lagoon. Environ Microbiol 2023; 25:2368-2387. [PMID: 37431274 DOI: 10.1111/1462-2920.16463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Human and livestock sewage is one of the major causes of excess nutrients, leading to the eutrophication of aquatic ecosystems and potentially to the emergence or spread of pathogenic viruses. This study aimed to investigate the composition and diversity of aquatic viromes in a highly anthropized lagoon, to identify the presence of pathogenic taxa and to explore their use as possible viral indicators of faecal contamination. For this, water and sediment samples were collected in the Ebrié Lagoon (Ivory Coast) at seven stations with contrasting levels of eutrophication. The DNA viromes of the planktonic and the benthic compartments were highly divergent, but were not influenced by the level of eutrophication. Conversely, the RNA viromes in the water column were comparable to those found in sediment, but showed significant differences between the stations. We detected the presence of viral DNA and RNA sequences we had assigned as indicators of faecal contamination (smacovirus, pecovirus and pepper mild mottle virus) as well as human pathogens (human cyclovirus, coxsackie B virus and picobirnavirus), which were all enriched in the most eutrophicated sites. These findings suggest that the examination of viromes represents a promising tool for assessing the state of human-induced contamination of aquatic ecosystems.
Collapse
Affiliation(s)
- Felana Harilanto Andrianjakarivony
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Yvan Bettarel
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Philippe Cecchi
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Sonia Bouchard
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Emily Chase
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Christelle Desnues
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| |
Collapse
|
37
|
Tisza M, Javornik Cregeen S, Avadhanula V, Zhang P, Ayvaz T, Feliz K, Hoffman KL, Clark JR, Terwilliger A, Ross MC, Cormier J, Moreno H, Wang L, Payne K, Henke D, Troisi C, Wu F, Rios J, Deegan J, Hansen B, Balliew J, Gitter A, Zhang K, Li R, Bauer CX, Mena KD, Piedra PA, Petrosino JF, Boerwinkle E, Maresso AW. Wastewater sequencing reveals community and variant dynamics of the collective human virome. Nat Commun 2023; 14:6878. [PMID: 37898601 PMCID: PMC10613200 DOI: 10.1038/s41467-023-42064-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/25/2023] [Indexed: 10/30/2023] Open
Abstract
Wastewater is a discarded human by-product, but its analysis may help us understand the health of populations. Epidemiologists first analyzed wastewater to track outbreaks of poliovirus decades ago, but so-called wastewater-based epidemiology was reinvigorated to monitor SARS-CoV-2 levels while bypassing the difficulties and pit falls of individual testing. Current approaches overlook the activity of most human viruses and preclude a deeper understanding of human virome community dynamics. Here, we conduct a comprehensive sequencing-based analysis of 363 longitudinal wastewater samples from ten distinct sites in two major cities. Critical to detection is the use of a viral probe capture set targeting thousands of viral species or variants. Over 450 distinct pathogenic viruses from 28 viral families are observed, most of which have never been detected in such samples. Sequencing reads of established pathogens and emerging viruses correlate to clinical data sets of SARS-CoV-2, influenza virus, and monkeypox viruses, outlining the public health utility of this approach. Viral communities are tightly organized by space and time. Finally, the most abundant human viruses yield sequence variant information consistent with regional spread and evolution. We reveal the viral landscape of human wastewater and its potential to improve our understanding of outbreaks, transmission, and its effects on overall population health.
Collapse
Affiliation(s)
- Michael Tisza
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sara Javornik Cregeen
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ping Zhang
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tulin Ayvaz
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Karen Feliz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kristi L Hoffman
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Justin R Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- TAILOR Labs, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Austen Terwilliger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- TAILOR Labs, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Matthew C Ross
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Juwan Cormier
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hannah Moreno
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Li Wang
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Katelyn Payne
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Henke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Catherine Troisi
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Fuqing Wu
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Texas Epidemiologic Public Health Institute (TEPHI), Houston, TX, USA
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth Houston School of Public Health, Houston, 77030, USA
| | - Janelle Rios
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Texas Epidemiologic Public Health Institute (TEPHI), Houston, TX, USA
| | - Jennifer Deegan
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Texas Epidemiologic Public Health Institute (TEPHI), Houston, TX, USA
| | - Blake Hansen
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Texas Epidemiologic Public Health Institute (TEPHI), Houston, TX, USA
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth Houston School of Public Health, Houston, 77030, USA
| | | | - Anna Gitter
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Texas Epidemiologic Public Health Institute (TEPHI), Houston, TX, USA
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth Houston School of Public Health, Houston, 77030, USA
| | - Kehe Zhang
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Department of Biostatistics and Data Science, UTHealth Houston School of Public Health, Houston, TX, 77030, USA
- Center for Spatial-temporal Modeling for Applications in Population Sciences, UTHealth Houston School of Public Health, Houston, TX, 77030, USA
| | - Runze Li
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Department of Biostatistics and Data Science, UTHealth Houston School of Public Health, Houston, TX, 77030, USA
- Center for Spatial-temporal Modeling for Applications in Population Sciences, UTHealth Houston School of Public Health, Houston, TX, 77030, USA
| | - Cici X Bauer
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Texas Epidemiologic Public Health Institute (TEPHI), Houston, TX, USA
- Department of Biostatistics and Data Science, UTHealth Houston School of Public Health, Houston, TX, 77030, USA
- Center for Spatial-temporal Modeling for Applications in Population Sciences, UTHealth Houston School of Public Health, Houston, TX, 77030, USA
| | - Kristina D Mena
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Texas Epidemiologic Public Health Institute (TEPHI), Houston, TX, USA
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth Houston School of Public Health, Houston, 77030, USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joseph F Petrosino
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Eric Boerwinkle
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Texas Epidemiologic Public Health Institute (TEPHI), Houston, TX, USA.
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth Houston School of Public Health, Houston, 77030, USA.
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- TAILOR Labs, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
Huang S, Kong Y, Chen Y, Huang X, Ma P, Liu X. Microbial denitrification characteristics of typical decentralized wastewater treatment processes based on 16S rRNA sequencing. Front Microbiol 2023; 14:1242506. [PMID: 37779708 PMCID: PMC10537219 DOI: 10.3389/fmicb.2023.1242506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Despite the widespread application of decentralized wastewater treatment (WWT) facilities in China, relatively few research has used the multi-media biological filter (MMBF) facilities to investigate the microorganism characteristics. This study utilizes 16S rRNA high-throughput sequencing (HTS) technology to examine the microbial biodiversity of a representative wastewater treatment (WWT) system in an expressway service area. The pathways of nitrogen removal along the treatment route were analyzed in conjunction with water quality monitoring. The distribution and composition of microbial flora in the samples were examined, and the dominant flora were identified using LEfSe analysis. The FAPROTAX methodology was employed to investigate the relative abundance of genes associated with the nitrogen cycle and to discern the presence of functional genes involved in nitrogen metabolism. On average, the method has a high level of efficiency in removing COD, TN, NH3-N, and TP from the effluent. The analysis of the microbial community identified a total of 40 phyla, 111 classes, 143 orders, 263 families, and 419 genera. The phyla that were predominantly observed include Proteobacteria, Acidobacteria, Chloroflexi, Actinobacteria, Nitrospirae, Bacteroidetes. The results show that the system has achieved high performance in nitrogen removal, the abundance of nitrification genes is significantly higher than that of other nitrogen cycle genes such as denitrification, and there are six nitrogen metabolism pathways, primarily nitrification, among which Nitrospirae and Nitrospira are the core differentiated flora that can adapt to low temperature conditions and participate in nitrification, and are the dominant nitrogen removal flora in cold regions. This work aims to comprehensively investigate the diversity and functional properties of the bacterial community in decentralized WWT processes.
Collapse
Affiliation(s)
- Shanqian Huang
- Center of Environment Protection, China Academy of Transportation Sciences, Beijing, China
| | - Yaping Kong
- Center of Environment Protection, China Academy of Transportation Sciences, Beijing, China
| | - Yao Chen
- Center of Environment Protection, China Academy of Transportation Sciences, Beijing, China
| | - Xuewen Huang
- Anhui Transportation Holding Group CO., LTD., Hefei, China
| | - Pengfei Ma
- Qinghai Expressway Maintenance Service CO., LTD., Xining, China
| | - Xuexin Liu
- Center of Environment Protection, China Academy of Transportation Sciences, Beijing, China
| |
Collapse
|
39
|
Prado T, Magalhães MGP, Moreira DA, Brandão ML, Fumian TM, Ferreira FC, Chame M, Leomil L, Degrave WMS, Leite JPG, Miagostovich MP. Microbiome and virome on indoor surfaces of an Antarctic research ship. Mem Inst Oswaldo Cruz 2023; 118:e230084. [PMID: 37672426 PMCID: PMC10481937 DOI: 10.1590/0074-02760230084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Few studies have focused on microbial diversity in indoor environments of ships, as well as the role of the microbiome and its ecological interconnections. In this study, we investigated the microbiome and virome present on the internal surfaces of a polar ship in different stages (beginning, during, and at the end) of the Brazilian Antarctic expedition in order to evaluate abundance of microorganisms in different periods. OBJECTIVES AND METHODS We used shotgun metagenomic analysis on pooled samples from sampling surfaces in the ship's interior to track the microbial diversity. FINDINGS Considering the total fraction of the microbiome, the relative abundance of bacteria, eukaryotes, viruses, and archaea was 83.7%, 16.2%, 0.04%, and 0.002%, respectively. Proteobacteria was the most abundant bacterial phyla, followed by Firmicutes, Actinobacteria, and Bacteroidetes. Concerning the virome, the greatest richness of viral species was identified during the middle of the trip, including ten viral families after de novo assembly: Autographiviridae, Chrysoviridae, Genomoviridae, Herelleviridae, Myoviridae, Partitiviridae, Podoviridae, Potyviridae, Siphoviridae, and Virgaviridae. MAIN CONCLUSIONS This study contributed to the knowledge of microbial diversity in naval transportation facilities, and variations in the abundance of microorganisms probably occurred due to factors such as the number of passengers and activities on the ship.
Collapse
Affiliation(s)
- Tatiana Prado
- Fundação Oswaldo Cruz-Fiocruz, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Laboratório de Genômica Aplicada e BioInovações, Rio de Janeiro, RJ, Brasil
| | | | - Daniel Andrade Moreira
- Fundação Oswaldo Cruz-Fiocruz, Laboratório de Genômica Aplicada e BioInovações, Rio de Janeiro, RJ, Brasil
| | - Martha Lima Brandão
- Fundação Oswaldo Cruz-Fiocruz, Projeto FioAntar/VPPIS, Rio de Janeiro, RJ, Brasil
| | - Tulio Machado Fumian
- Fundação Oswaldo Cruz-Fiocruz, Laboratório de Virologia Comparada e Ambiental, Rio de Janeiro, RJ, Brasil
| | - Fernando Cesar Ferreira
- Fundação Oswaldo Cruz-Fiocruz, Laboratório de Virologia Comparada e Ambiental, Rio de Janeiro, RJ, Brasil
| | - Marcia Chame
- Fundação Oswaldo Cruz-Fiocruz, Plataforma Institucional para Biodiversidade e Saúde Animal, Rio de Janeiro, RJ, Brasil
| | - Luciana Leomil
- Serviço Nacional de Aprendizagem Industrial, Centro Tecnológico para Indústria Química e Têxtil, Biotecnologia, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - José Paulo Gagliardi Leite
- Fundação Oswaldo Cruz-Fiocruz, Laboratório de Virologia Comparada e Ambiental, Rio de Janeiro, RJ, Brasil
| | | |
Collapse
|
40
|
Yang X, Cai S, Wu X, Zhang Y, Li D, Chen Y, Chen Q, Zhu S, Yan D, Xu W, Zhang H, Chen Z, Zhang S, Zhou Y, Zhang M, Zheng N, You N. Analysis of the distribution characteristics of enterovirus types based on environmental surveillance from 2013 to 2021 in Fujian Province, China. BIOSAFETY AND HEALTH 2023; 5:240-249. [PMID: 40078225 PMCID: PMC11894980 DOI: 10.1016/j.bsheal.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 03/14/2025] Open
Abstract
Environmental surveillance (ES) is a useful approach for monitoring circulating viruses, including polioviruses (PVs) and non-polio enteroviruses (NPEVs). In this study, the results of nine years of ES from 2013 to 2021 at six sampling sites in three cities in Fujian Province, China, were summarized. It showed that the sewage samples contained abundant viruses, but the positive rate was affected by different sampling sites. From the 520 samples, 431 PVs, 1,713 NPEVs, and 281 human adenoviruses (HAdVs) were isolated. PV isolates had been markedly affected following the adjustment of the immunization strategy. All but one PV isolate were Sabin-like strains without wild PVs. One isolate was vaccine-derived PV type 3 with 10 variation points in the VP1 region. After May 2016, PV type 2 was no longer detected, and PV type 3 became a superior serotype. Of 1,713 NPEVs, 24 serotypes were identified, including echovirus11 (E11), E6, coxsackievirus B3 (CVB3), CVB5, E7, and E3 were the predominant serotypes (37.65%, 20.96%, 11.50%, 8.87%, 8.23%, and 7.06%, respectively). The temporal dynamic of the six common serotypes was inconsistent. E3 was frequently isolated, but the number of isolates was low, with no obvious peaks. E6, E7, and CVB3 exhibited periodic changes with a high peak every three to four years, and E11 only had one high peak lasting four years. Summer-fall peaks of the echoviruses and spring-winter peaks of CVB were observed in the monthly distribution of virus isolation. The infectious isolates of various serotypes of different species identified from the sewage samples showed that ES is an essential part of pathogen surveillance.
Collapse
Affiliation(s)
- Xiuhui Yang
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Shaojian Cai
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Xiaoqian Wu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
| | - Dong Li
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Yahong Chen
- Quanzhou Center for Disease Control and Prevention, Quanzhou 362018, China
| | - Qianjing Chen
- Longyan Center for Disease Control and Prevention, Longyan 364000, China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
| | - Hairong Zhang
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Zhifei Chen
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Suhan Zhang
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Yong Zhou
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Mengping Zhang
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Ningxuan Zheng
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Na You
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
- Public Health School of Fujian Medical University, Fuzhou 350108, China
| |
Collapse
|
41
|
Wang L, Xu Y, Qin T, Wu M, Chen Z, Zhang Y, Liu W, Xie X. Global trends in the research and development of medical/pharmaceutical wastewater treatment over the half-century. CHEMOSPHERE 2023; 331:138775. [PMID: 37100249 PMCID: PMC10123381 DOI: 10.1016/j.chemosphere.2023.138775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
The COVID-19 pandemic has severely impacted public health and the worldwide economy. The overstretched operation of health systems around the world is accompanied by potential and ongoing environmental threats. At present, comprehensive scientific assessments of research on temporal changes in medical/pharmaceutical wastewater (MPWW), as well as estimations of researcher networks and scientific productivity are lacking. Therefore, we conducted a thorough literature study, using bibliometrics to reproduce research on medical wastewater over nearly half a century. Our primary goal is systematically to map the evolution of keyword clusters over time, and to obtain the structure and credibility of clusters. Our secondary objective was to measure research network performance (country, institution, and author) using CiteSpace and VOSviewer. We extracted 2306 papers published between 1981 and 2022. The co-cited reference network identified 16 clusters with well-structured networks (Q = 0.7716, S = 0.896). The main trends were as follows: 1) Early MPWW research prioritized sources of wastewater, and this cluster was considered to be the mainstream research frontier and direction, representing an important source and priority research area. 2) Mid-term research focused on characteristic contaminants and detection technologies. Particularly during 2000-2010, a period of rapid developments in global medical systems, pharmaceutical compounds (PhCs) in MPWW were recognized as a major threat to human health and the environment. 3) Recent research has focused on novel degradation technologies for PhC-containing MPWW, with high scores for research on biological methods. Wastewater-based epidemiology has emerged as being consistent with or predictive of the number of confirmed COVID-19 cases. Therefore, the application of MPWW in COVID-19 tracing will be of great interest to environmentalists. These results could guide the future direction of funding agencies and research groups.
Collapse
Affiliation(s)
- Ling Wang
- Department of Nursing, The Second Hospital of Nanjing, Nursing, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, 210003, China
| | - Yixia Xu
- Department of Nursing, The Second Hospital of Nanjing, Nursing, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, 210003, China
| | - Tian Qin
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Mengting Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Zhiqin Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Yalan Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Wei Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China.
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
42
|
Potapov S, Gorshkova A, Krasnopeev A, Podlesnaya G, Tikhonova I, Suslova M, Kwon D, Patrushev M, Drucker V, Belykh O. RNA-Seq Virus Fraction in Lake Baikal and Treated Wastewaters. Int J Mol Sci 2023; 24:12049. [PMID: 37569424 PMCID: PMC10418309 DOI: 10.3390/ijms241512049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, we analyzed the transcriptomes of RNA and DNA viruses from the oligotrophic water of Lake Baikal and the effluent from wastewater treatment plants (WWTPs) discharged into the lake from the towns of Severobaikalsk and Slyudyanka located on the lake shores. Given the uniqueness and importance of Lake Baikal, the issues of biodiversity conservation and the monitoring of potential virological hazards to hydrobionts and humans are important. Wastewater treatment plants discharge treated effluent directly into the lake. In this context, the identification and monitoring of allochthonous microorganisms entering the lake play an important role. Using high-throughput sequencing methods, we found that dsDNA-containing viruses of the class Caudoviricetes were the most abundant in all samples, while Leviviricetes (ssRNA(+) viruses) dominated the treated water samples. RNA viruses of the families Nodaviridae, Tombusviridae, Dicitroviridae, Picobirnaviridae, Botourmiaviridae, Marnaviridae, Solemoviridae, and Endornavirida were found in the pelagic zone of three lake basins. Complete or nearly complete genomes of RNA viruses belonging to such families as Dicistroviridae, Marnaviridae, Blumeviridae, Virgaviridae, Solspiviridae, Nodaviridae, and Fiersviridae and the unassigned genus Chimpavirus, as well as unclassified picorna-like viruses, were identified. In general, the data of sanitary/microbiological and genetic analyses showed that WWTPs inadequately purify the discharged water, but, at the same time, we did not observe viruses pathogenic to humans in the pelagic zone of the lake.
Collapse
Affiliation(s)
- Sergey Potapov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Anna Gorshkova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Andrey Krasnopeev
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Galina Podlesnaya
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Irina Tikhonova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Maria Suslova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Dmitry Kwon
- National Research Center Kurchatov Institute, Academician Kurchatov Square 1, 123098 Moscow, Russia
| | - Maxim Patrushev
- National Research Center Kurchatov Institute, Academician Kurchatov Square 1, 123098 Moscow, Russia
| | - Valentin Drucker
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Olga Belykh
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| |
Collapse
|
43
|
Pérez-Cataluña A, Randazzo W, Martínez-Blanch JF, Codoñer FM, Sánchez G. Sample and library preparation approaches for the analysis of the virome of irrigation water. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4450-4457. [PMID: 36823282 DOI: 10.1002/jsfa.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The virome (i.e. community of mainly RNA and DNA eukaryotic viruses and bacteriophages) of waters is yet to be extensively explored. In particular, the virome of waters used for irrigation could therefore potentially carry viral pathogens that can contaminate fresh produce. One problem in obtaining viral sequences from irrigation waters is the relatively low amount of virus particles, as well as the presence of human, bacterial and protozoan cells. The present aimed study was to compare different processing, amplification, and sequencing approaches for virome characterization in irrigation waters. RESULTS Our analyses considered percentages of viral reads, values for diversity indices and number of families found in sequencing results. The results obtained suggest that enrichment protocols using two (bezonase and microccocal nuclease) or four enzymes at once (bezonase, microccocal nuclease, DNAse and RNase), regardless of an Amicon filtration step, are more appropriate than separated enzymatic treatments for virome characterization in irrigation water. The NetoVIR protocol combined with the ScriptSeq v2 RNA-Seq Library (P0-L20 protocol) showed the highest percentages of RNA viruses and identified the higher number of families. CONCLUSION Although virome characterization applied in irrigation waters is an important tool for protecting public health by informing on circulating human and zoonotic infections, optimized and standardized procedures should be followed to reduce the variability of results related to either the sample itself and the downstream bioinformatics analyses. Our results show that virome characterization can be an important tool in the discovery of pathogenic viruses in the environment and can be used to inform and optimize reference-based detection methods provided that appropriate and rigorous controls are included. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| | | | - Francisco M Codoñer
- ADM-Lifesequencing - Health and Wellness - Adm Nutrition, Valencia, Spain
- Danone Nutricia Research, Singapore, Singapore
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| |
Collapse
|
44
|
Mehle N, Bačnik K, Bajde I, Brodarič J, Fox A, Gutiérrez-Aguirre I, Kitek M, Kutnjak D, Loh YL, Maksimović Carvalho Ferreira O, Ravnikar M, Vogel E, Vos C, Vučurović A. Tomato brown rugose fruit virus in aqueous environments - survival and significance of water-mediated transmission. FRONTIERS IN PLANT SCIENCE 2023; 14:1187920. [PMID: 37332729 PMCID: PMC10275568 DOI: 10.3389/fpls.2023.1187920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
Tomato brown rugose fruit virus (ToBRFV) has recently emerged as a major disease of tomatoes and peppers. ToBRFV is a seed- and contact-transmitted virus. In Slovenia, ToBRFV RNA was detected in samples of wastewater, river, and water used to irrigate plants. Even though the source of detected RNA could not be clearly established, this raised the question of the significance of the detection of ToBRFV in water samples and experimental studies were performed to address this question. The data presented here confirm that the release of virus particles from the roots of infected plants is a source of infectious ToBRFV particles in water and that the virus can remain infective up to four weeks in water stored at room temperature, while its RNA can be detected for much longer. These data also indicate that irrigation with ToBRFV-contaminated water can lead to plant infection. In addition, it has been shown that ToBRFV circulated in drain water in commercial tomato greenhouses from other European countries and that an outbreak of ToBRFV can be detected by regular monitoring of drain water. A simple method for concentrating ToBRFV from water samples and a comparison of the sensitivity of different methods, including the determination of the highest ToBRFV dilution still capable of infecting test plants, were also investigated. The results of our studies fill the knowledge gaps in the epidemiology and diagnosis of ToBRFV, by studying the role of water-mediated transmission, and provide a reliable risk assessment to identify critical points for monitoring and control.
Collapse
Affiliation(s)
- Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- School for Viticulture and Enology, University of Nova Gorica, Vipava, Slovenia
| | - Katarina Bačnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Irena Bajde
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Jakob Brodarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Adrian Fox
- Fera Science Ltd., York, United Kingdom
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Miha Kitek
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Olivera Maksimović Carvalho Ferreira
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Elise Vogel
- Scientia Terrae Research Institute VZW, Sint-Katelijne-Waver, Belgium
- De Ceuster Meststoffen NV (DCM), Grobbendonk, Belgium
| | - Christine Vos
- Scientia Terrae Research Institute VZW, Sint-Katelijne-Waver, Belgium
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
45
|
Gh Jeelani P, Muzammil Munawar S, Khaleel Basha S, Krishna P G, Joshua Sinclair B, Dharshini Jenifer A, Ojha N, Mossa AT, Chidambaram R. Exploring possible strategies for treating SARS-CoV-2 in sewage wastewater: A review of current research and future directions. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2023; 6:100056. [PMID: 37131485 PMCID: PMC10088352 DOI: 10.1016/j.heha.2023.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
The advent of acute respiratory coronavirus disease (COVID-19) is convoyed by the shedding of the virus in stool. Although inhalation from person-to-person and aerosol/droplet transmission are the main modes of SARS-Coronavirus-2 (SARS-CoV-2) transmission, currently available evidence indicates the presence of viral RNA in the sewerage wastewater, which highlights the need for more effective corona virus treatment options. In the existing COVID-19 pandemic, a substantial percentage of cases shed SARS-CoV-2 viral RNA in their faeces. Hence the treating this sewerage wastewater with proper surveillance is essential to contain this deadly pathogen from further transmission. Since, the viral disinfectants will not be very effective on sewerage waste as organic matter, and suspended solids in water can protect viruses that adsorb to these particles. More effective methods and measures are needed to prevent this virus from spreading. This review will explore some potential methods to treat the SARS-CoV-2 infected sewerage wastewater, current research and future directions.
Collapse
Affiliation(s)
- Peerzada Gh Jeelani
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Syed Muzammil Munawar
- C. Abdul Hakeem College, (Automous) Melvisharam - 632 509, Ranipet District, Tamilnadu, India
| | - S Khaleel Basha
- C. Abdul Hakeem College, (Automous) Melvisharam - 632 509, Ranipet District, Tamilnadu, India
| | - Gopi Krishna P
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Bruce Joshua Sinclair
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - A Dharshini Jenifer
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Nupur Ojha
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600036 Tamil Nadu, India
| | - Abdel-Tawab Mossa
- National Research Centre, Egypt | Cairo, Egypt | NRC 33 El Buhouth St 'Ad Doqi, Dokki, Cairo Governorate 12622, Egypt
| | - Ramalingam Chidambaram
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014 Tamil Nadu, India
| |
Collapse
|
46
|
Duarte MF, de Andrade IA, Silva JMF, de Melo FL, Machado AM, Inoue-Nagata AK, Nagata T. Metagenomic analyses of plant virus sequences in sewage water for plant viruses monitoring. TROPICAL PLANT PATHOLOGY 2023; 48:1-9. [PMID: 37362078 PMCID: PMC10147536 DOI: 10.1007/s40858-023-00575-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/25/2023] [Indexed: 06/28/2023]
Abstract
Frequent monitoring of emerging viruses of agricultural crops is one of the most important missions for plant virologists. A fast and precise identification of potential harmful viruses may prevent the occurrence of serious epidemics. Nowadays, high-throughput sequencing (HTS) technologies became an accessible and powerful tool for this purpose. The major discussion of this strategy resides in the process of sample collection, which is usually laborious, costly and nonrepresentative. In this study, we assessed the use of sewage water samples for monitoring the widespread, numerous, and stable plant viruses using HTS analysis and RT-qPCR. Plant viruses belonged to 12 virus families were found, from which Virgaviridae, Solemoviridae, Tymoviridae, Alphaflexiviridae, Betaflexiviridae, Closteroviridae and Secoviridae were the most abundant ones with more than 20 species. Additionally, we detected one quarantine virus in Brazil and a new tobamovirus species. To assess the importance of the processed foods as virus release origins to sewage, we selected two viruses, the tobamovirus pepper mild mottle virus (PMMoV) and the carlavirus garlic common latent virus (GarCLV), to detect in processed food materials by RT-qPCR. PMMoV was detected in large amount in pepper-based processed foods and in sewage samples, while GarCLV was less frequent in dried and fresh garlic samples, and in the sewage samples. This suggested a high correlation of virus abundance in sewage and processed food sources. The potential use of sewage for a virus survey is discussed in this study. Supplementary Information The online version contains supplementary material available at 10.1007/s40858-023-00575-8.
Collapse
Affiliation(s)
| | | | | | | | - Ana Maria Machado
- Companhia de Saneamento Ambiental Do DF, ETE-Norte, Brasília, DF 70800-130 Brazil
| | | | | |
Collapse
|
47
|
Kuo HWD, Zure D, Lin CR. Occurrences of similar viral diversity in campus wastewater and reclaimed water of a university dormitory. CHEMOSPHERE 2023; 330:138713. [PMID: 37088208 DOI: 10.1016/j.chemosphere.2023.138713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Water reuse from wastewater sources still remain some critical safety concerns associated with treacherous contaminants like pathogenic viruses. In this study, viral diversities in campus wastewater (CWW) and its reclaimed water (RCW) recycled for toilet flushing and garden irrigation of a university dormitory were assessed using metagenomic sequencing for acquisition of more background data. Results suggested majority (>80%) of gene sequences within assembled contigs predicted by open reading frame (ORF) finder were no-hit yet believed to be novel/unrevealed viral genomic information whereas hits matched bacteriophages (i.e., mainly Myoviridae, Podoviridae, and Siphoviridae families) were predominant in both CWW and RCW samples. Moreover, few pathogenic viruses (<1%) related to infections of human skin (e.g., Molluscum contagiosum virus, MCV), digestion system (e.g., hepatitis C virus, HCV), and gastrointestinal tract (e.g., human norovirus, HuNoV) were also noticed raising safety concerns about application of reclaimed waters. Low-affinity interactions of particular viral exterior proteins (e.g., envelope glycoproteins or spike proteins) for disinfectant ligand (e.g., chlorite) elucidated treatment limitations of current sewage processing systems even with membrane bioreactor and disinfectant contactor. Revolutionary disinfection approaches together with routine monitoring and new regulations are prerequisite to secure pathogen-correlated water quality for safer reuse of reclaimed waters.
Collapse
Affiliation(s)
- Hsion-Wen David Kuo
- Department of Environmental Science and Engineering, Tunghai University, Taiwan.
| | - Diaiti Zure
- Department of Environmental Science and Engineering, Tunghai University, Taiwan
| | - Chih-Rong Lin
- Department of Environmental Science and Engineering, Tunghai University, Taiwan
| |
Collapse
|
48
|
Santiago-Rodriguez TM, Hollister EB. Viral Metagenomics as a Tool to Track Sources of Fecal Contamination: A One Health Approach. Viruses 2023; 15:236. [PMID: 36680277 PMCID: PMC9863393 DOI: 10.3390/v15010236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The One Health framework recognizes that human, animal, and environmental health are linked and highly interdependent. Fecal contamination of water, soil, foodstuff, and air may impact many aspects of One Health, and culture, PCR-based, and sequencing methods are utilized in the detection of fecal contamination to determine source, load, and risk to inform targeted mitigation strategies. Viruses, particularly, have been considered as fecal contamination indicators given the narrow host range many exhibit and their association with other biological contaminants. Culture- and molecular-based methods are considered the gold-standards for virus detection and for determining specific sources of fecal contamination via viral indicators. However, viral metagenomics is also being considered as a tool for tracking sources of fecal contamination. In the present review, studies tracking potential sources of fecal contamination in freshwaters, marine waters, foodstuff, soil, and air using viral metagenomics are discussed to highlight the potential of viral metagenomics for optimizing fecal source tracking. Limitations of the use of viral metagenomics to track fecal contamination sources, including sample processing, nucleic acid recovery, sequencing depth, and bioinformatics are also discussed. Finally, the present review discusses the potential of viral metagenomics as part of the toolbox of methods in a One Health approach.
Collapse
|
49
|
Maryam S, Ul Haq I, Yahya G, Ul Haq M, Algammal AM, Saber S, Cavalu S. COVID-19 surveillance in wastewater: An epidemiological tool for the monitoring of SARS-CoV-2. Front Cell Infect Microbiol 2023; 12:978643. [PMID: 36683701 PMCID: PMC9854263 DOI: 10.3389/fcimb.2022.978643] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has prompted a lot of questions globally regarding the range of information about the virus's possible routes of transmission, diagnostics, and therapeutic tools. Worldwide studies have pointed out the importance of monitoring and early surveillance techniques based on the identification of viral RNA in wastewater. These studies indicated the presence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in human feces, which is shed via excreta including mucus, feces, saliva, and sputum. Subsequently, they get dumped into wastewater, and their presence in wastewater provides a possibility of using it as a tool to help prevent and eradicate the virus. Its monitoring is still done in many regions worldwide and serves as an early "warning signal"; however, a lot of limitations of wastewater surveillance have also been identified.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, The Commission on Science and Technology for Sustainable Development in the South (COMSATS) University Islamabad (CUI), Islamabad, Pakistan
| | - Ihtisham Ul Haq
- Department of Biosciences, The Commission on Science and Technology for Sustainable Development in the South (COMSATS) University Islamabad (CUI), Islamabad, Pakistan
- Department of Physical Chemistry and Polymers Technology, Silesian University of Technology, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mehboob Ul Haq
- Department of Biosciences, The Commission on Science and Technology for Sustainable Development in the South (COMSATS) University Islamabad (CUI), Islamabad, Pakistan
| | - Abdelazeem M. Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
50
|
Clark JR, Terwilliger A, Avadhanula V, Tisza M, Cormier J, Javornik-Cregeen S, Ross MC, Hoffman KL, Troisi C, Hanson B, Petrosino J, Balliew J, Piedra PA, Rios J, Deegan J, Bauer C, Wu F, Mena KD, Boerwinkle E, Maresso AW. Wastewater pandemic preparedness: Toward an end-to-end pathogen monitoring program. Front Public Health 2023; 11:1137881. [PMID: 37026145 PMCID: PMC10070845 DOI: 10.3389/fpubh.2023.1137881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 04/08/2023] Open
Abstract
Molecular analysis of public wastewater has great potential as a harbinger for community health and health threats. Long-used to monitor the presence of enteric viruses, in particular polio, recent successes of wastewater as a reliable lead indicator for trends in SARS-CoV-2 levels and hospital admissions has generated optimism and emerging evidence that similar science can be applied to other pathogens of pandemic potential (PPPs), especially respiratory viruses and their variants of concern (VOC). However, there are substantial challenges associated with implementation of this ideal, namely that multiple and distinct fields of inquiry must be bridged and coordinated. These include engineering, molecular sciences, temporal-geospatial analytics, epidemiology and medical, and governmental and public health messaging, all of which present their own caveats. Here, we outline a framework for an integrated, state-wide, end-to-end human pathogen monitoring program using wastewater to track viral PPPs.
Collapse
Affiliation(s)
- Justin R. Clark
- TAILOR Labs, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Austen Terwilliger
- TAILOR Labs, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Michael Tisza
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Alkek Center for Metagenomics and Microbiome Research, CMMR, Baylor College of Medicine, Houston, TX, United States
| | - Juwan Cormier
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Alkek Center for Metagenomics and Microbiome Research, CMMR, Baylor College of Medicine, Houston, TX, United States
| | - Sara Javornik-Cregeen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Alkek Center for Metagenomics and Microbiome Research, CMMR, Baylor College of Medicine, Houston, TX, United States
| | - Matthew Clayton Ross
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Alkek Center for Metagenomics and Microbiome Research, CMMR, Baylor College of Medicine, Houston, TX, United States
| | - Kristi Louise Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Alkek Center for Metagenomics and Microbiome Research, CMMR, Baylor College of Medicine, Houston, TX, United States
| | - Catherine Troisi
- UTHealth Houston School of Public Health, Houston, TX, United States
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, United States
| | - Blake Hanson
- UTHealth Houston School of Public Health, Houston, TX, United States
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, United States
- Center for Infectious Diseases, Department of Epidemiology, Human Genetics and Environmental Sciences, Houston, TX, United States
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Alkek Center for Metagenomics and Microbiome Research, CMMR, Baylor College of Medicine, Houston, TX, United States
| | - John Balliew
- El Paso Water Utility, El Paso, TX, United States
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Pediatrics Department, Baylor College of Medicine, Houston, TX, United States
| | - Janelle Rios
- UTHealth Houston School of Public Health, Houston, TX, United States
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, United States
| | - Jennifer Deegan
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, United States
- The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Cici Bauer
- UTHealth Houston School of Public Health, Houston, TX, United States
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, United States
- Department of Biostatistics and Data Science, UTHealth School of Public Health, Houston, TX, United States
| | - Fuqing Wu
- UTHealth Houston School of Public Health, Houston, TX, United States
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, United States
| | - Kristina D. Mena
- UTHealth Houston School of Public Health, Houston, TX, United States
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, United States
| | - Eric Boerwinkle
- UTHealth Houston School of Public Health, Houston, TX, United States
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, United States
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, Houston, TX, United States
| | - Anthony W. Maresso
- TAILOR Labs, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Anthony W. Maresso
| |
Collapse
|