1
|
Zhang Z, Liu S, Zeng D, Gu J, Cai T, Chen K, Zhou H, Dang Z, Yang C. Adsorption and desorption of phenanthrene and 1-hydroxyphenanthrene by goethite-coated polyvinyl chloride. J Environ Sci (China) 2025; 154:833-846. [PMID: 40049919 DOI: 10.1016/j.jes.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 05/13/2025]
Abstract
Microplastics loaded with phenanthrene and derivatives are widely detected in aquatic environments, and the coating of natural minerals or organic macromolecules may change the environmental behavior of microplastics. In this study, three kinds of composites with different coverage were prepared by coating goethite on the surface of polyvinyl chloride microplastics to investigate the adsorption and desorption behavior of phenanthrene (PHE) and 1-hydroxyphenanthrene (1-OHPHE), and the effect of mucin on desorption was investigated. The results showed that goethite promoted the adsorption of PHE and 1-OHPHE by increasing the specific surface area of the composites. With the increase of the cover degree, the adsorption of PHE decreased because of the decrease in hydrophobicity; while the adsorption of 1-OHPHE initially increased and then decreased with the contributions of hydrophobic interaction and hydrogen bond. The adsorption of 1-OHPHE could be influenced by the pH and ionic strength primarily through electrostatic interactions and Ca2+ bridging. The goethite significantly increased the desorption hysteresis for two chemicals due to the complicated pore structures and increased adsorption affinity. Mucin promoted the desorption of PHE through competitive adsorption, and inhibit the desorption of 1-OHPHE through hydrophobic interaction, hydrogen bonding and Ca2+ bridging. This study elucidated the effects of natural minerals on the adsorption and desorption behavior of organic pollutants on microplastics, briefly discussed the effects of organic macromolecules on the desorption behavior of pollutants with different properties, and emphasized the different environmental behaviors of pollutants.
Collapse
Affiliation(s)
- Zhiyu Zhang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shuyue Liu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Dehua Zeng
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jingyi Gu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tingting Cai
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ketong Chen
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hong Zhou
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Chen Yang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
2
|
Huang J, Liang H, Huang L, Li Q, Ji L, Xing Y, Zhou C, Wang J, Fu X. Natural Revegetation Alters Habitat Conditions, Bacterial Components, and Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Communities in Aged PAH-Polluted Soils. Microorganisms 2025; 13:1098. [PMID: 40431271 PMCID: PMC12114558 DOI: 10.3390/microorganisms13051098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
The vegetation restoration of contaminated sites plays a critical role in ensuring the sustained stability and functional integrity of natural ecosystems. However, during the natural revegetation process, the variations in habitat conditions, bacterial community structure, and metabolic functions in aged, polluted soil are still unclear. In the present study, we investigated aged, polycyclic aromatic hydrocarbon (PAH)-polluted soils at closed, abandoned oil well sites from the Yellow River Delta. Using gene amplification and real-time qPCR methods, the abundance, taxonomy, and diversity characteristics of indigenous bacterial communities and functional bacteria carrying C12O genes in both vegetated soils and bare soils were investigated. The results show that natural revegetation significantly changes the physicochemical parameters, PAH content, and bacterial community structure of aged, PAH-polluted soils. When comparing the abundance and components of PAH-degrading bacterial communities in vegetated and bare soils, the PAH-degrading potential was revealed to be stimulated by vegetation communities. Through correlation analysis, dual stress from soil salinity and PAH contamination in bacterial communities was revealed to be mediated through alterations in the soil's physicochemical properties by local vegetation. The network analysis revealed that bacterial communities in vegetated soils have higher network connectivity. These results elucidate the alterations in habitat conditions, bacterial components, and PAH-degrading communities following vegetation restoration, providing critical insights for optimizing ecological rehabilitation strategies in salinized and contaminated ecosystems.
Collapse
Affiliation(s)
- Jinrong Huang
- Shandong Province Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.H.); (Q.L.); (L.J.); (Y.X.); (C.Z.); (J.W.)
| | - Heng Liang
- Shandong Environmental Sciences Environmental Engineering Co., Ltd., Jinan 250109, China;
| | - Lilong Huang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| | - Qi Li
- Shandong Province Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.H.); (Q.L.); (L.J.); (Y.X.); (C.Z.); (J.W.)
| | - Lei Ji
- Shandong Province Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.H.); (Q.L.); (L.J.); (Y.X.); (C.Z.); (J.W.)
| | - Yingna Xing
- Shandong Province Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.H.); (Q.L.); (L.J.); (Y.X.); (C.Z.); (J.W.)
| | - Chang Zhou
- Shandong Province Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.H.); (Q.L.); (L.J.); (Y.X.); (C.Z.); (J.W.)
| | - Jianing Wang
- Shandong Province Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.H.); (Q.L.); (L.J.); (Y.X.); (C.Z.); (J.W.)
| | - Xiaowen Fu
- Shandong Province Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.H.); (Q.L.); (L.J.); (Y.X.); (C.Z.); (J.W.)
| |
Collapse
|
3
|
Niño-Zambrano ER, Bahia PVB, Nascimento MM, Sampaio FXA, Duarte RDS, Hatje V, Machado ME, Andrade JBD, Rocha GOD. Unconventional polycyclic aromatic compounds distribution profiles in sediment cores collected from Todos os Santos Bay, Northeastern Brazil. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137438. [PMID: 39892141 DOI: 10.1016/j.jhazmat.2025.137438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Polycyclic aromatic compounds (PACs) include conventional polycyclic aromatic hydrocarbons (PAHs) and nitrated (NHPAs), oxygenated (OHPAs), heterocyclic polycyclic aromatic sulfur (PASHs) derivatives, considered unconventional. Sediment cores were collected at four Todos os Santos Bay sites (BTS, Northeastern Brazil). Eighteen NPAHs, six OPAHs, seven PASHs, and nineteen PAHs were determined. The total concentrations of NPAHs, PASHs, and PAHs increased from the bottom towards the top of the cores, ranging from
Collapse
Affiliation(s)
- Eileen Rocio Niño-Zambrano
- Instituto de Química da Universidade Federal da Bahia, Salvador, Bahia 40170-110, Brazil; Centro Interdisciplinar de Energia e Ambiente-CIEnAm, Universidade Federal da Bahia, Salvador, Bahia 40170-115, Brazil
| | - Pedro V B Bahia
- Instituto de Química da Universidade Federal da Bahia, Salvador, Bahia 40170-110, Brazil; Centro Interdisciplinar de Energia e Ambiente-CIEnAm, Universidade Federal da Bahia, Salvador, Bahia 40170-115, Brazil
| | - Madson M Nascimento
- Centro Interdisciplinar de Energia e Ambiente-CIEnAm, Universidade Federal da Bahia, Salvador, Bahia 40170-115, Brazil; Centro Universitário SENAI-CIMATEC, Salvador, Bahia 41650-010, Brazil
| | - Fábio X A Sampaio
- Instituto de Química da Universidade Federal da Bahia, Salvador, Bahia 40170-110, Brazil; Centro Interdisciplinar de Energia e Ambiente-CIEnAm, Universidade Federal da Bahia, Salvador, Bahia 40170-115, Brazil
| | - Ricardo da S Duarte
- Instituto de Química da Universidade Federal da Bahia, Salvador, Bahia 40170-110, Brazil
| | - Vanessa Hatje
- Instituto de Química da Universidade Federal da Bahia, Salvador, Bahia 40170-110, Brazil; Centro Interdisciplinar de Energia e Ambiente-CIEnAm, Universidade Federal da Bahia, Salvador, Bahia 40170-115, Brazil
| | - Maria Elisabete Machado
- Instituto de Química da Universidade Federal da Bahia, Salvador, Bahia 40170-110, Brazil; Centro Interdisciplinar de Energia e Ambiente-CIEnAm, Universidade Federal da Bahia, Salvador, Bahia 40170-115, Brazil; INCT em Energia e Ambiente, Universidade Federal da Bahia, Salvador, Bahia 40170-11, Brazil
| | - Jailson B de Andrade
- Centro Interdisciplinar de Energia e Ambiente-CIEnAm, Universidade Federal da Bahia, Salvador, Bahia 40170-115, Brazil; Centro Universitário SENAI-CIMATEC, Salvador, Bahia 41650-010, Brazil; INCT em Energia e Ambiente, Universidade Federal da Bahia, Salvador, Bahia 40170-11, Brazil
| | - Gisele O da Rocha
- Instituto de Química da Universidade Federal da Bahia, Salvador, Bahia 40170-110, Brazil; Centro Interdisciplinar de Energia e Ambiente-CIEnAm, Universidade Federal da Bahia, Salvador, Bahia 40170-115, Brazil; INCT em Energia e Ambiente, Universidade Federal da Bahia, Salvador, Bahia 40170-11, Brazil.
| |
Collapse
|
4
|
Balogh C, Faragó N, Faludi T, Kovács Z, Kobak J, Serfőző Z. Organic pollutants in a large shallow lake, and the potential of the local quagga mussel population for their removal. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118201. [PMID: 40249979 DOI: 10.1016/j.ecoenv.2025.118201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Filter feeders, like mussels, can significantly lower the concentration of harmful substances in the water body. In the present study, we examined the distribution of organic pollutants (polycyclic aromatic hydrocarbons [PAHs], non-steroidal anti-inflammatory drugs [NSAIDs]) in Lake Balaton, the largest shallow lake of Central Europe. We also investigated the sensitivity of the invasive quagga mussel to these substances and its potential to reduce their concentration in the water column. Our findings show that organic pollutant levels in Lake Balaton were generally below concentrations known to harm mussels, as indicated by the stress gene activity patterns observed along the lake's longitudinal axis. However, in the most urbanized eastern part of the lake, especially in spring, we detected signs of environmental contamination from certain pollutants (e.g. diclofenac), highlighting potential risks to local ecosystems and communities. Removal capacity of the mussels for PAHs reached the maximum after four days of exposure to 5-10 % diluted water accommodated fraction of fuel-oil fraction #4 when the mussels (20 ind. L-1) reduced the PAH level by 100-85 %. Mussels (50 ind. L-1) removed 28 % and 21 % of ibuprofen and ketoprofen, respectively, from 1 µg L-1 concentrated solutions within 24 h. Many of the stress response genes were activated in the quagga mussel after their exposure to PAHs. These results suggest a significant role of gregarious invasive bivalves in the removal of organic pollutants from lake water.
Collapse
Affiliation(s)
- Csilla Balogh
- Balaton Limnological Institute, Hungarian Research Network (HUN-REN), Klebelsberg Kuno u. 3, Tihany, Hungary
| | - Nóra Faragó
- Biological Research Center, Institute of Genetics, Hungarian Research Network (HUN-REN), Szeged, Hungary
| | - Tamás Faludi
- Department of Analytical Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Zsófia Kovács
- Sustainability Solutions Research Laboratory, Research Centre for Biochemical, Environmental and Chemical Engineering, University of Pannonia, Veszprém 8200, Hungary; National Laboratory for Water Science and Water Security, University of Pannonia, Veszprém 8200, Hungary
| | - Jarosław Kobak
- Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Invertebrate Zoology and Parasitology, Toruń, Poland
| | - Zoltán Serfőző
- Balaton Limnological Institute, Hungarian Research Network (HUN-REN), Klebelsberg Kuno u. 3, Tihany, Hungary.
| |
Collapse
|
5
|
Berríos-Rolón PJ, Cotto MC, Márquez F. Polycyclic Aromatic Hydrocarbons (PAHs) in Freshwater Systems: A Comprehensive Review of Sources, Distribution, and Ecotoxicological Impacts. TOXICS 2025; 13:321. [PMID: 40278637 PMCID: PMC12031217 DOI: 10.3390/toxics13040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
This comprehensive review offers new perspectives on the distribution, sources, and ecotoxicological impacts of polycyclic aromatic hydrocarbons (PAHs) in freshwater systems. Unlike previous reviews, this work integrates recent findings on PAH dynamics within environmental matrices and emphasizes spatiotemporal variability across geographic regions. It critically examines both anthropogenic and natural sources, as well as the physical, chemical, and biological mechanisms driving PAH transport and fate. Special attention is given to the ecotoxicological effects of PAHs on freshwater organisms, including bioaccumulation, endocrine disruption, and genotoxicity. Notably, this review identifies key knowledge gaps and proposes an interdisciplinary framework to assess ecological risk and guide effective monitoring and management strategies for the protection of freshwater ecosystems.
Collapse
Affiliation(s)
| | - María C. Cotto
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA;
| | - Francisco Márquez
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA;
| |
Collapse
|
6
|
Enalbes CJ, Njagi DM, Luo C, Olago D, Routh J. Reconstructing Historical Land Use and Anthropogenic Inputs in Lake Victoria Basin: Insights from PAH and n-Alkane Trends. TOXICS 2025; 13:130. [PMID: 39997945 PMCID: PMC11860610 DOI: 10.3390/toxics13020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025]
Abstract
Over the past century, human activities have profoundly transformed global ecosystems. Lake Victoria in East Africa exemplifies these challenges, showcasing the interplay of anthropogenic pressures driven by land use changes, urbanization, agriculture, and industrialization. Our comprehensive study investigates polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in the lake and its catchment to trace their sources and historical deposition. Sediment cores were collected from six sites within the catchment, representing diverse landforms and human activities, ensuring a comprehensive understanding of the basin. The results indicate significant spatial and temporal variations in both PAH and n-alkane profiles, reflecting diverse land use changes and development trajectories in the basin. Urban sites often exhibited higher concentrations of PAHs and short-chain n-alkanes, indicative of anthropogenic sources such as fossil fuel combustion, the input of petroleum hydrocarbons, and industrial emissions. In contrast, rural areas showed low PAH levels and a dominance of long-chain n-alkanes from terrestrial plant waxes. The n-alkane ratios, including the Carbon Preference Index and the Terrigenous-Aquatic Ratio, suggested shifts in organic matter sources over time, corresponding with land use changes and increased human activities. A mid-20th century shift toward increased anthropogenic contributions was observed across sites, coinciding with post-independence development. The mid-lake sediment core integrated inputs from multiple sub-catchments, providing a comprehensive record of basin-scale changes. These findings highlight three distinct periods of organic matter input: pre-1960s, dominated by natural and biogenic sources; 1960s-1990s, marked by increasing anthropogenic influence; and post-1990s, characterized by complex mixtures of pyrogenic, petrogenic, and biogenic sources. This study underscores the cumulative environmental and aquatic ecosystem effects of urbanization (rural vs. urban sites), industrialization, and land use changes over the past century. The combined analyses of PAHs and n-alkanes provide a comprehensive understanding of historical and ongoing environmental impacts, emphasizing the need for integrated management strategies that address pollutant inputs to preserve Lake Victoria's ecological integrity.
Collapse
Affiliation(s)
- Camille Joy Enalbes
- Department of Thematic Studies—Environmental Change, Linköping University, 581 83 Linköping, Sweden; (C.J.E.); (D.M.N.); (C.L.)
| | - Dennis M. Njagi
- Department of Thematic Studies—Environmental Change, Linköping University, 581 83 Linköping, Sweden; (C.J.E.); (D.M.N.); (C.L.)
- Department of Geology, University of Nairobi, Nairobi 30197, Kenya;
| | - Chen Luo
- Department of Thematic Studies—Environmental Change, Linköping University, 581 83 Linköping, Sweden; (C.J.E.); (D.M.N.); (C.L.)
| | - Daniel Olago
- Department of Geology, University of Nairobi, Nairobi 30197, Kenya;
| | - Joyanto Routh
- Department of Thematic Studies—Environmental Change, Linköping University, 581 83 Linköping, Sweden; (C.J.E.); (D.M.N.); (C.L.)
| |
Collapse
|
7
|
Zhang Q, Hu R, Xie J, Hu X, Guo Y, Fang Y. Effects of microplastics on polycyclic aromatic hydrocarbons migration in Baiyangdian Lake, northern China: Concentrations, sorption-desorption behavior, and multi-phase exchange. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125408. [PMID: 39613180 DOI: 10.1016/j.envpol.2024.125408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) have been found in all environment matrices and are of concern worldwide. In this study, PAHs were determined in Baiyangdian Lake, China, and the effects of MPs on the migration of PAHs at the lake interfaces were analyzed. The average abundances of detected MPs were 9595 items m-3 for water and 1023 items kg-1 for sediment. The detected MPs were polyamide 6, polypropylene, polyethylene, and polyethylene terephthalate. The average Σ16PAHs in the water, sediment, and air were 1338 ng L-1, 751 ng g-1 dry weight, and 395 ng m-3, respectively. At the air-water interface, naphthalene, and phenanthrene volatilized from water to air, whereas benzo(b)fluoranthene, benzo(k)fluoranthene, and dibenzo(a,h)anthracene deposited from air to water. The fugacity fraction between sediment and bottom water ranged from 0.88 to 0.99, which indicated net volatilization at the water-sediment interface. The adsorption capacities of the four MPs for the PAHs ranged from 39.4 to 99.8 μg g-1 with a desorption efficiency range of 0.01%-44.3% under oscillation. According to the distribution of PAHs on the MPs, the exchange fluxes of PAHs at the water-air and sediment-water interfaces were recalculated. The results showed that the MPs could increase deposition of the PAHs from air to the water (ΔFA-W: -221 × 10-2 to -0.01 × 10-2 ng m-2 d-1) and the volatilization of PAHs from sediment to water (ΔFW-S: -79.7 × 105 to 180 × 105 ng m-2 d-1), which suggests that MPs increase the risk of PAHs in water and to aquatic organisms.
Collapse
Affiliation(s)
- Qiuxia Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China
| | - Ruonan Hu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China
| | - Jixing Xie
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China
| | - Xiufeng Hu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China
| | - Yiding Guo
- Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui, 053000, PR China
| | - Yanyan Fang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China.
| |
Collapse
|
8
|
Zhang S, Xing X, Yu H, Du M, Zhang Y, Li P, Li X, Zou Y, Shi M, Liu W, Qi S. Fate of polycyclic aromatic hydrocarbon (PAHs) in urban lakes under hydrological connectivity: A multi-media mass balance approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125556. [PMID: 39701362 DOI: 10.1016/j.envpol.2024.125556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of organic pollutants widely present in various environmental media. Some PAHs have carcinogenic, teratogenic, and mutagenic effects. Urban lakes are severely polluted by PAHs due to human activities. Longyang Lake (LL) and Moshui Lake (ML), which serve as entry lakes for Wuhan's "Six Lakes Connectivity" project, were chosen as the study areas to learn about the migration of PAHs. Water flows from LL to ML through the Mingzhu River. Multi-Media Mass Balance Model (MMBM) and fugacity fractions (ff) were used to characterize the migration of PAHs under the hydrological connectivity project. Compared to ff, the MMBM can describe the migration of PAHs in a more detailed and quantitative way. The concentration of PAHs in water of LL decreased from 36.5 ng L-1 to 26.59 ng L-1 over 43 days, while those in ML increased from 46.8 ng L-1 to 198.25 ng L-1 over 141 days. Sediment takes a longer time to decrease to stabilization. The concentration of PAHs in the sediment of LL decreased from 932 ng g-1 to 0.95 ng g-1 over 13.33 years, while those in ML decreased from 4812 ng g-1 to 1.04 ng g-1 over 16.96 years. The stabilized concentrations were consistently lower than the observed concentrations and fell below the modeled stabilized concentrations obtained in the unconnected case (2170 ng L-1 in water and 40.81 ng g-1 in sediment). The MMBM showed that PAHs in the lake are mainly exported through runoff. However, modeling results indicated that upstream LL did not increase total PAHs concentrations in the ML because the output from ML was significantly higher. Sediment parameters sensitively influenced the results of the model. Although the simulation results showed reductions of PAHs pollution in two lakes under the hydrological connectivity project, long-term monitoring results are needed to optimize the model.
Collapse
Affiliation(s)
- Shizhao Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xinli Xing
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China.
| | - Haikuo Yu
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Minkai Du
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Peng Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Resources and Eco-Environment Geology (Hubei Geological Bureau), Wuhan 430034, China
| | - Xin Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yanmin Zou
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Mingming Shi
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Weijie Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Shihua Qi
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
9
|
Li Q, Tian Y, Hao Y, Qu C, Tagun R, Iwata H, Guo J. Environmental DNA-based assessment of multitrophic biodiversity in a typical river located in the Loess Plateau, China: Influence of PAHs and suspended sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117568. [PMID: 39700766 DOI: 10.1016/j.ecoenv.2024.117568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollution and high suspended sediment (SS) contents are significant anthropogenic and natural stressors that threaten aquatic biodiversity. However, the characteristics of multitrophic biological communities and their co-occurrence patterns in response to PAHs in sediment-laden rivers remain unclear. This study investigated the spatial distribution of species across three trophic levels, including algae, metazoan, and fish, in the Beiluo River on the Loess Plateau, China, using environmental DNA metabarcoding. Biodiversity was assessed in relation to 16 PAHs, SS, and environmental variables. The PAH in the dissolved phase ranged from 19.70 to 1613.30 ng/L dominated by low molecular weight (LMW) PAHs. Partial least squares path modeling (PLS-PM) revealed a negative correlation between PAH distribution and SS in the river. In terms of biodiversity, the richness and Shannon index of algae (Chlorophyta and Dinophyceae) were positively associated with acenaphthene (ACE) levels. Conversely, the Shannon index and richness of metazoans (Rotifera and Arthropoda) appeared to decline in response to Benzo[a]anthracene (BaA) and pyrene (PYR). Fishes (Cypriniformes and Clupeiformes) demonstrated greater tolerance to PAH contamination than algae and metazoans, and their reduced richness and Shannon index were linked to the high SS loads (> 0.45 μm). The co-occurrence patterns highlighted a stronger association connection between algae and metazoan communities than fish. This study provides valuable insights into how PAHs could reshape the structure of riverine multitrophic communities under conditions of elevated SS loads.
Collapse
Affiliation(s)
- Qian Li
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yulu Tian
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yongrong Hao
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Rungnapa Tagun
- Department of Biology, Chiang Mai Rajabhat University, Chiang Mai 50180, Thailand
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture 790-8577, Japan
| | - Jiahua Guo
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
10
|
Luo H, Yang Y, Shao Y, Schäffer A, Chen Z. Air-water exchange: Toxicities, risks and PAHs compounds in the three gorges reservoir of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177981. [PMID: 39657345 DOI: 10.1016/j.scitotenv.2024.177981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Air-water exchange is inevitably accompanied by the transportation of contaminants between atmosphere and water, which significantly leads to the alterations of toxicity and risks. However, the resulting changes of toxicity and risk in water and air due to the cross-interfacial transport of pollutants are still unclear. In this study, the water and atmospheric samples at the Pengxi River located in the Three Gorges Reservoir (TGR), China, were collected in winter and summer seasons respectively. The contaminated water exhibited higher toxicity effects than air in multiple toxicity endpoint tests. Besides, waters collected during winter exhibited greater toxicity effects than in summer. The concentrations of ΣPAHs were 48.0-445 ng L-1 in the water and 9.44-82.3 ng/m3 in the air, with ΣPAHs significantly higher in winter than in summer for water samples. Notably, the 2-3 ring PAHs showed a tendency to volatilize from water to air and may increase atmospheric toxicity, whereas the 4-6 ring PAHs tend to be deposited from air to water and may heighten toxicity in the water. Correlation analysis indicated that PAHs were important toxicants in the air, posing higher incremental carcinogenic risk, particularly during winter. Thus, the changes in toxicity and risk caused by the water-air exchange of pollutants cannot be ignored. This research contributes to a deeper understanding of the changes in toxicity effects and health risks caused by the air-water exchange of pollutants. The importance of considering the toxic effects and health concerns of micropollutants in the air as important as in water is emphasized.
Collapse
Affiliation(s)
- Hongyan Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 174 Shazheng Street Shapingba, 400045 Chongqing, China
| | - Yinjie Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 174 Shazheng Street Shapingba, 400045 Chongqing, China
| | - Ying Shao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 174 Shazheng Street Shapingba, 400045 Chongqing, China
| | - Andreas Schäffer
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 174 Shazheng Street Shapingba, 400045 Chongqing, China; Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 174 Shazheng Street Shapingba, 400045 Chongqing, China.
| |
Collapse
|
11
|
Nord MA, Maier MA, Bijak AL, Crane JL, Pollard AI. Assessment of recent lake sediment conditions in the conterminous U.S. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177315. [PMID: 39488294 PMCID: PMC11788910 DOI: 10.1016/j.scitotenv.2024.177315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
This study provides the largest sediment quality assessment of lakes in the conterminous United States (U.S.). A variety of lakes (n = 1005) were selected based on the randomized, probabilistic sampling design of the broader 2017 National Lakes Assessment study. Surficial sediment samples (0-5 cm) were collected at one representative site (generally the deepest point) for each lake (n = 969). The samples were analyzed for 16 metal(loid)s, 25 polycyclic aromatic hydrocarbons (PAHs), 53 polychlorinated biphenyl (PCB) congeners, 27 legacy pesticides and metabolites, total organic carbon, and grain size. Metal(loid)s and PAHs were widely distributed due to natural and potential anthropogenic sources, with regional variations observed for lakes in the nine ecoregions encompassing the U.S. Most sites did not have detectable PCB congeners or legacy pesticides. An integrative chemical index of mean probable effect concentration quotients, composed of seven metal(loid)s and ƩPAH13, was used to assess sediment quality for the estimated population of 224,916 lakes in the conterminous U.S. Nationally, 26.5% (CI of 20-33%) of lakes were in good condition (corresponding to predicted low incidences of toxicity to benthic organisms), 69.3% (CI of 63-76%) of lakes were in fair condition, and 1.8% (CI of 0.6-3%) of lakes were in poor condition (corresponding to predicted high incidences of sediment toxicity). Unweighted metal(loid) and ƩPAH13 concentrations were compared to lake, watershed, and land use data. Deeper lakes were significantly more contaminated (or naturally enriched) with As, Cd, Cu, Pb, Hg, Zn, and ƩPAH13 than shallow lakes. Lakes at lower elevation were also associated with more contamination (or natural enrichment) of As, Cr, Pb, Hg, Ni, Zn, and ƩPAH13 than higher elevation lakes. Greater contamination was associated with watersheds containing larger percentages of developed land. This study demonstrates an approach which can be used by others to assess sediment quality in their jurisdictions.
Collapse
Affiliation(s)
- Mari A Nord
- Region 5, U.S. Environmental Protection Agency, 77 West Jackson Boulevard, Chicago, IL 60604, USA.
| | - Michelle A Maier
- U.S. Environmental Protection Agency, 1301 Constitution Avenue Northwest, Washington, DC 20460, USA.
| | - Alexandra L Bijak
- ORISE Research Participant, Office of Water, Office of Wetlands, Oceans and Watersheds, U.S. Environmental Protection Agency, 1301 Constitution Avenue Northwest, Washington, DC 20460, USA.
| | - Judy L Crane
- Minnesota Pollution Control Agency, 520 Lafayette Road North, St. Paul, MN 55155-4194, USA
| | - Amina I Pollard
- U.S. Environmental Protection Agency, 1301 Constitution Avenue Northwest, Washington, DC 20460, USA.
| |
Collapse
|
12
|
Fang Q, Li K, Zhang X, Liu X, Jiao S, Sun L, Li M, Wang G, Kong Y. Proanthocyanidins mitigate the toxic effects in loach (Misgurnus anguillicaudatus) exposed to phenanthrene via Nrf2/NF-κB signaling pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107158. [PMID: 39546968 DOI: 10.1016/j.aquatox.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Phenanthrene (PHE) is a typical polycyclic aromatic hydrocarbon compound that is ubiquitous in the environment and accumulates in aquatic products, thereby posing a risk to food safety. Oligomeric proanthocyanidins (OPC) is widely distributed powerful antioxidants with potent antioxidant and anti-inflammatory properties. This study aimed to evaluate the alleviating effects of dietary OPC on oxidative stress, inflammatory suppression, and tissue damage caused by PHE exposure in loach (Misgurnus anguillicaudatus). In the study, loach was continuously exposed to 2.36 mg/L PHE for 28 days, after which they were fed a basal diet supplemented with 0, 200, 400, or 800 mg/kg OPC. The results displayed that PHE exposure resulted in significantly increased levels of liver health parameters (AST, ALT, COR, LDH, and ADA) compared to the control group (P < 0.05). The PHE-exposed fish showed the lowest levels of antioxidant enzymes (CAT, SOD, GSH, GST, GSH-Px, and GR) and the greatest levels of oxidative stress parameters (ROS and MDA). PHE exposure resulted in down-regulation of nrf2, ho-1, gsh-px, gst, and nqo-1, and up-regulation of keap-1 gene expressions in loach (P < 0.05). Moreover, PHE-induced decreased the levels of immunity indicators (CRP, MPO, C3, C4, IgM, and LYS). An up-regulation of pro-inflammatory genes (nf-κb, il-1β, il-8, il-6, il-12, and tnf-α) and a down-regulation of anti-inflammatory gene il-10 were the consequences of the PHE exposure. In addition, tissues showed histopathological alterations including vacuolization (liver), displaced nuclei (liver), atrophy (gills), glomerular congestion (kidney), and inflammatory cell infiltration (spleen) caused by PHE. Notably, dietary supplementation of OPC augmented immuno-antioxidant parameters, including their key genes, reduced oxidative stress and immunosuppression, and ameliorated tissue damage compared to fish exposed to PHE. In summary, supplementation with 400 mg/kg OPC in the diets could effectively alleviate the oxidative damage and inflammatory response induced by PHE exposure in loach through the Nrf2/NF-κB signaling pathway and enhance the defense ability against toxic substances of loach.
Collapse
Affiliation(s)
- Qiongya Fang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ke Li
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xinyu Zhang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaorui Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Siqi Jiao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Li Sun
- Testing Center of Quality and Safety in Aquatic Product, Changchun 130118, China
| | - Min Li
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Guiqin Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yidi Kong
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
13
|
Tian Y, Hao Y, Qu C, Yang F, Iwata H, Guo J. Biodiversity of multi-trophic biological communities within riverine sediments impacted by PAHs contamination and land use changes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124884. [PMID: 39236841 DOI: 10.1016/j.envpol.2024.124884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
River ecosystems currently face a significant threat of degradation and loss of biodiversity resulting from continuous emissions of persistent organic pollutants and human activities. In this study, multi-trophic communities were assessed using DNA metabarcoding in a relatively stable riverine sediment compartment to investigate the biodiversity dynamics in the Beiluo River, followed by an evaluation of their response to polycyclic aromatic hydrocarbons (PAHs) and land use changes. A total of 48 bacterial phyla, 4 fungal phyla, 4 protist phyla, 9 algal phyla, 31 metazoan phyla, and 12 orders of fish were identified. The total concentration of PAHs in the Beiluo River sediments ranged from 25.95 to 1141.35 ng/g, with low molecular weight PAHs constituting the highest proportion (68.67%), followed by medium (22.19%) and high (9.14%) molecular weight PAHs. Notably, in contrast to lower trophic level aquatic communities such as bacteria, algae, and metazoans, PAHs exhibited a significant inhibitory effect on fish. Furthermore, the diversity of aquatic communities displayed obvious heterogeneity across distinct land use groups. A high proportion of cultivated land reduced the biodiversity of fish communities but increased that of metazoans. Conversely, an elevated proportion of built-up land reduced metazoan biodiversity, while simultaneously enhancing that of fungi and bacteria. Generally, land use changes exert both indirect and direct effects on aquatic communities. The direct effects primarily influence the abundance of aquatic communities rather than their diversity. Nevertheless, PAHs pollution may have limited potential to disrupt community structures through complex species interactions, as the hub species identified in the co-occurrence network did not align with those significantly affected by PAHs. This study indicates the potential of PAHs and land use changes to cause biodiversity losses. However, it also highlights the possibility of mitigating these negative effects in riverine sediments through optimal land use management and the promotion of enhanced species interactions.
Collapse
Affiliation(s)
- Yulu Tian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| | - Yongrong Hao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Fangshe Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime Prefecture, 790-8577, Japan
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
14
|
Lei D, Chen T, Fan C, Xie Q. Exposure to BaA inhibits trophoblast cell invasion and induces miscarriage by regulating the DEC1/ARHGAP5 axis and promoting ubiquitination-mediated degradation of MMP2. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135594. [PMID: 39191013 DOI: 10.1016/j.jhazmat.2024.135594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Benz[a]anthracene (BaA), a hazardous polycyclic aromatic hydrocarbon classified by the EPA, is a probable reproductive toxicant. Epidemiological studies suggest that BaA exposure may be a risk factor for recurrent miscarriage (RM). However, the underlying mechanisms are not well understood. This study identified DEC1 as a key gene through RNA-seq and single-cell RNA sequencing analysis. DEC1 expression was found to be downregulated in villous tissues from women with RM and in primary extravillous trophoblasts (EVTs) exposed to BaA. BaA suppressed DEC1 expression by promoting abnormal methylation patterns. Further analysis revealed that ARHGAP5 is a direct target of DEC1 in EVTs, where DEC1 inhibits trophoblast invasion by directly regulating ARHGAP5 transcription. Additionally, BaA destabilized matrix metalloproteinase 2 (MMP2) by activating the aryl hydrocarbon receptor (AhR) and promoting E3 ubiquitin ligase MID1-mediated degradation. In a mouse model, BaA induced miscarriage by modulating the DEC1/ARHGAP5 and MID1/MMP2 axes. Notably, BaA-induced miscarriage in mice was prevented by DEC1 overexpression or MID1 knockdown. These findings indicate that BaA exposure leads to miscarriage by suppressing the DEC1/ARHGAP5 pathway and enhancing the MID1/MMP2 pathway in human EVTs.
Collapse
Affiliation(s)
- Di Lei
- Centre for Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan 430000, China; Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Tingting Chen
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Cuifang Fan
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Qingzhen Xie
- Centre for Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| |
Collapse
|
15
|
Adade SYSS, Lin H, Johnson NAN, Qianqian S, Nunekpeku X, Ahmad W, Kwadzokpui BA, Ekumah JN, Chen Q. Rapid qualitative and quantitative analysis of benzo(b)fluoranthene (BbF) in shrimp using SERS-based sensor coupled with chemometric models. Food Chem 2024; 454:139836. [PMID: 38810447 DOI: 10.1016/j.foodchem.2024.139836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Benzo(b)fluoranthene (BbF), a polycyclic aromatic hydrocarbon (PAH), is a carcinogenic contaminant of concern in seafood. This study developed a simple, rapid, sensitive, and cost-effective surface-enhanced Raman scattering (SERS) sensor (AuNPs) coupled with chemometric models for detecting BbF in shrimp samples. Partial least squares (PLS) regression models were optimized using uninformative variable elimination (UVE), bootstrapping soft shrinkage (BOSS), and competitive adaptive reweighted sampling (CARS). Qualitative analysis was performed using principal component analysis (PCA), linear discriminant analysis (LDA), and k-nearest neighbors (KNN) to differentiate between BbF-contaminated and uncontaminated shrimp samples. The SERS-sensor exhibited excellent sensitivity (LOD = 0.12 ng/mL), repeatability (RSD = 6.21%), and anti-interference performance. CARS-PLS model demonstrated superior predictive ability (R2 = 0.9944), and qualitative analysis discriminated between contaminated and uncontaminated samples. The sensor's accuracy was validated using HPLC, demonstrating the ability of the SERS-sensor coupled with chemometrics to rapidly and reliably detect BbF in shrimp samples.
Collapse
Affiliation(s)
- Selorm Yao-Say Solomon Adade
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; Department of Nutrition and Dietetics, Ho Teaching Hospital, P. O. Box MA 374, Ho, Ghana; Centre for Agribusiness Development and Mechanization in Africa (CADMA AgriSolutions), Ho 00233, Ghana
| | - Hao Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Nana Adwoa Nkuma Johnson
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; Centre for Agribusiness Development and Mechanization in Africa (CADMA AgriSolutions), Ho 00233, Ghana
| | - Sun Qianqian
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Xorlali Nunekpeku
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Bridget Ama Kwadzokpui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Centre for Agribusiness Development and Mechanization in Africa (CADMA AgriSolutions), Ho 00233, Ghana
| | - Quansheng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
16
|
Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX. Plant Defense Mechanisms against Polycyclic Aromatic Hydrocarbon Contamination: Insights into the Role of Extracellular Vesicles. TOXICS 2024; 12:653. [PMID: 39330582 PMCID: PMC11436043 DOI: 10.3390/toxics12090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants that pose significant environmental and health risks. These compounds originate from both natural phenomena, such as volcanic activity and wildfires, and anthropogenic sources, including vehicular emissions, industrial processes, and fossil fuel combustion. Their classification as carcinogenic, mutagenic, and teratogenic substances link them to various cancers and health disorders. PAHs are categorized into low-molecular-weight (LMW) and high-molecular-weight (HMW) groups, with HMW PAHs exhibiting greater resistance to degradation and a tendency to accumulate in sediments and biological tissues. Soil serves as a primary reservoir for PAHs, particularly in areas of high emissions, creating substantial risks through ingestion, dermal contact, and inhalation. Coastal and aquatic ecosystems are especially vulnerable due to concentrated human activities, with PAH persistence disrupting microbial communities, inhibiting plant growth, and altering ecosystem functions, potentially leading to biodiversity loss. In plants, PAH contamination manifests as a form of abiotic stress, inducing oxidative stress, cellular damage, and growth inhibition. Plants respond by activating antioxidant defenses and stress-related pathways. A notable aspect of plant defense mechanisms involves plant-derived extracellular vesicles (PDEVs), which are membrane-bound nanoparticles released by plant cells. These PDEVs play a crucial role in enhancing plant resistance to PAHs by facilitating intercellular communication and coordinating defense responses. The interaction between PAHs and PDEVs, while not fully elucidated, suggests a complex interplay of cellular defense mechanisms. PDEVs may contribute to PAH detoxification through pollutant sequestration or by delivering enzymes capable of PAH degradation. Studying PDEVs provides valuable insights into plant stress resilience mechanisms and offers potential new strategies for mitigating PAH-induced stress in plants and ecosystems.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
17
|
Tulcan RXS, Liu L, Lu X, Ge Z, Fernández Rojas DY, Mora Silva D. PAHs contamination in ports: Status, sources and risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134937. [PMID: 38889461 DOI: 10.1016/j.jhazmat.2024.134937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) constitute important organic contaminants that have been degrading coastal ecosystems over the years. Evaluating PAH status in port ecosystems aligns with societal goals of maintaining clean habitats and sustainability. This comprehensive review systematically analyzed 123 articles, exploring the global distribution, sources, and ecological risks linked to PAH contamination in ports, focusing on water, sediment, and biota. The mean concentrations of 16 PAHs in water, sediment, and biota across worldwide ports were 175.63 ± 178.37 ng/L, 1592.65 ± 1836.5 μg/kg, and 268.47 ± 235.84 μg/kg, respectively. In line with PAH emissions and use in Asia, Asian ports had the highest PAH concentrations for water and biota, while African ports had the highest PAH concentrations for sediment. The temporal trend in PAH accumulation in sediments globally suggests stability. However, PAH concentrations in water and biota of global ports exhibit increasing trends, signaling aggravating PAH contamination within port aquatic ecosystems. Some ports exhibited elevated PAH levels, particularly in sediments with 4.5 %, 9.5 %, and 21 % of the ports categorized as very poor, poor, and moderate quality. Some PAH isomers exceeded guidelines, including the carcinogenic Benzo(a)pyrene (BaP). Coal, biomass, and petroleum combustion were major sources for PAHs. The structure of ports significantly influences the concentrations of PAHs. PAH concentrations in sediments of semi-enclosed ports were 3.5 times higher than those in open ports, while PAH concentrations in water and biota of semi-enclosed ports were lower than those in open ports. Finally, risk analyses conducted through Monte Carlo simulation indicated moderate to high risks to aquatic species, with probabilities of 74.8 % in water and 34.4 % in sediments of ports worldwide. This review underscores the imperative to delve deeper into the accumulation of PAHs and similar pollutants in ports for effective management and environmental protection.
Collapse
Affiliation(s)
- Roberto Xavier Supe Tulcan
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Lianhua Liu
- Institute of environment and sustainable development in agriculture, Chinese academy of agricultural sciences, Beijing, China
| | - Xiaoxia Lu
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| | - Zaiming Ge
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Denise Yeazul Fernández Rojas
- Institute of Engineering, National Autonomous University of Mexico, External Circuit, University City, Mayoralty Coyoacan, Mexico City, Mexico
| | - Demmy Mora Silva
- YASUNI-SDC, Escuela Superior Politécnica de Chimborazo, El Coca 220001, Orellana, Ecuador
| |
Collapse
|
18
|
Long S, Hamilton PB, Wang C, Li C, Zhao Z, Wu P, Hua L, Wang X, Uddin MM, Xu F. Key role of plankton species and nutrients on biomagnification of PAHs in the micro-food chain: A case study in plateau reservoirs of Guizhou, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134890. [PMID: 38876023 DOI: 10.1016/j.jhazmat.2024.134890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
There is considerable inconsistency in results pertaining to the biomagnification of PAHs in aquatic systems. Zooplankton specifically play an important role controlling the fate and distribution of organic contaminants up the food chain, particularly in large plateau reservoirs. However, it remains largely unknown how secondary factors affect the magnification of organic compounds in zooplankton. The present study assessed plankton species and nutrients affecting the trophic transfer of PAHs through the micro-food chain in plateau reservoirs, Guizhou Province China. Results show soluble ∑PAHs range from 99.9 - 147.3 ng L-1, and concentrations of ∑PAHs in zooplankton range from 1003.2 - 22441.3, with a mean of 4460.7 ng g-1 dw. Trophic magnification factors (TMFs) > 1 show biomagnifications of PAHs from phytoplankton to zooplankton. The main mechanisms for trophic magnification > 1 are 1) small Copepoda, Cladocera and Rotifera are prey for larger N. schmackeri and P. tunguidus, and 2) the δ15N and TLs of zooplankton are increasing with the increasing nutrients TN, NO3- and CODMn. As a result, log PAHs concentrations in zooplankton are positively correlated with the trophic levels (TLs) of zooplankton, and log BAFs of the PAHs in zooplankton are increasing with increasing TLs and log Kow. Temperature further enhances TMFs and biomagnifications of PAHs as noted by temperature related reductions in δ15N. There are also available soluble PAHs in the water column which are assimilated with increasing phytoplankton biomass within the taxa groups, diatoms, dinoflagellates and chlorophytes. Notable TMFs of PAHs in zooplankton in Guizhou plateau reservoirs are not significantly affected by phytoplankton and zooplankton biomass dilutions. The present study demonstrates the important roles of species selection, nutrients and temperature in the environmental fate of PAHs in freshwaters.
Collapse
Affiliation(s)
- Shengxing Long
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Eudcation, Peking University, Beijing 100871, China
| | - Paul B Hamilton
- Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada
| | - Chaonan Wang
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Eudcation, Peking University, Beijing 100871, China
| | - Cunlu Li
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Eudcation, Peking University, Beijing 100871, China
| | - Zhiwei Zhao
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Eudcation, Peking University, Beijing 100871, China
| | - Peizhao Wu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Eudcation, Peking University, Beijing 100871, China
| | - Liting Hua
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Eudcation, Peking University, Beijing 100871, China
| | - Xueru Wang
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Eudcation, Peking University, Beijing 100871, China
| | - Mohammad M Uddin
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Eudcation, Peking University, Beijing 100871, China
| | - Fuliu Xu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Eudcation, Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Kazemi A, Parvaresh H, Ghanatghestani MD, Ghasemi S. A study on source identification of contaminated soil with total petroleum hydrocarbons (aromatic and aliphatic) in the Ahvaz oil field. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:776. [PMID: 39095670 DOI: 10.1007/s10661-024-12924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
The oil industry in Khuzestan province (Southwest Iran) is one of the main reasons contributing to the pollution of the environment in this area. TPH, including both aromatic and aliphatic compounds, are important parameters in creating pollution. The present study aimed to investigate the source of soil contamination by TPH in the Ahvaz oil field in 2022. The soil samples were collected from four oil centers (an oil exploitation unit, an oil desalination unit, an oil rig, and a pump oil center). An area outside the oil field was determined as a control area. Ten samples with three replicates were taken from each area according to the standard methods. Aromatic and aliphatic compounds were measured by HPLC and GC methods. The positive matrix factorization (PMF) model and isomeric ratios were used to determine the source apportionment of aromatic compounds in soil samples. The effects range low and effects range median indices were also used to assess the level of ecological risk of petroleum compounds in the soil samples. The results showed that Benzo.b.fluoranthene had the highest concentration with an average of 5667.7 ug/kg in soil samples in the Ahvaz oil field. The highest average was found in samples from the pump oil center area at 7329.48 ug/kg, while the lowest was found in control samples at 1919.4 ug/kg-1. The highest level of aliphatic components was also found in the pump oil center, with a total of 3649 (mg. Kg-1). The results of source apportionment of petroleum compounds in soil samples showed that oil activities accounted for 51.5% of the measured PAHs in soil. 38.3% of other measured compounds had anthropogenic origins, and only 10.1% of these compounds were of biotic origin. The results of the isomeric ratios also indicated the local petroleum and pyrogenic origin of PAH compounds, which is consistent with the PMF results. The analysis of ecological risk indices resulting from the release of PAHs in the environment showed that, except for fluoranthene, other PAHs in the oil exploitation unit area were above the effects range median level (ERM) and at high risk. The results of the study showed that soil pollution by total petroleum hydrocarbons (TPH), both aromatic and aliphatic, is at a high level, and is mainly caused by human activities, particularly oil activities.
Collapse
Affiliation(s)
- Ali Kazemi
- Department of Environmental Management, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| | - Hossein Parvaresh
- Department of Environmental Management, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran.
| | | | - Saber Ghasemi
- Department of Environmental Management, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| |
Collapse
|
20
|
Ge H, Peng Z, Lu D, Yang Z, Li H. Biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Sarocladium terricola strain PYR-233 isolated from petrochemical contaminated sediment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121419. [PMID: 38852405 DOI: 10.1016/j.jenvman.2024.121419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/03/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were frequently found in sediment and were primarily treated through microbial degradation. Thus, efficient management of PAH pollution requires exploring the molecular degradation mechanisms of PAHs and expanding the pool of available microbial resources. A fungus (identified as Sarocladium terricola strain RCEF778) with the remarkable ability to degrade pyrene was screened from sediment near a petrochemical plant, and its growth and pyrene degradation characteristics were comprehensively investigated. The results showed that the fungus exhibited great effectiveness in pyrene degradation, with a degradation ratio of 88.97% at 21 days at the conditions: 35 °C, pH 7, 10 mg L-1 initially pyrene concentration, 3% supplementary salt, and glucose supplementation. The generation and concentration variation of the intermediate products were identified, and the results revealed that the fungus degraded pyrene through two pathways: by salicylic acid and by phthalic acid. Three sediments (M1, M2, M3), each exhibiting different levels of PAH pollution, were employed to examine the effectiveness of fungal degradation of PAHs in practical sediment samples. These data showed that with the fungus, the degradation ratios ranged from 13.64% to 23.50% for 2-3 rings PAHs, 40.93%-49.41% for 4 rings PAHs, and 39.59%-48.07% for 5-6 rings PAHs, which were significantly higher than those for the sediment without the fungus and confirmed the excellent performance of the fungal. Moreover, the Gompertz model was employed to analyze the degradation kinetics of 4-rings and 5-6 rings PAHs in these sediments, and the results demonstrated that the addition of the fungus could significantly increase the maximum degradation ratio, degradation start-up rate and maximum degradation rate of 4-rings and 5-6 rings PAHs and shorten the time required to reach the maximum degradation rate. This study not only supplied fungal materials but also established crucial theoretical foundations for the development of bioremediation technologies aimed at high molecular weight PAH-contaminated sediments.
Collapse
Affiliation(s)
- Huanying Ge
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| | - Zhaoxia Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Denglong Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| |
Collapse
|
21
|
Zhao H, Chen W, Li F, Wang X, Pan X, Liu Y, Wang L, Sun W, Li F, Jiang S. Dissecting the long-term neurobehavioral impact of embryonic benz[a]anthracene exposure on zebrafish: Social dysfunction and molecular pathway activation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172615. [PMID: 38657801 DOI: 10.1016/j.scitotenv.2024.172615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Benz[a]anthracene (BaA), a prevalent environmental contaminant within the polycyclic aromatic hydrocarbon class, poses risks to both human health and aquatic ecosystems. The impact of BaA on neural development and subsequent social behavior patterns remains inadequately explored. In this investigation, we employed the zebrafish as a model to examine the persisting effects of BaA exposure on social behaviors across various developmental stages, from larvae, juveniles to adults, following embryonic exposure. Our findings indicate that BaA exposure during embryogenesis yields lasting neurobehavioral deficits into adulthood. Proteomic analysis highlights that BaA may impair neuro-immune crosstalk in zebrafish larvae. Remarkably, our proteomic data also hint at the activation of the aryl hydrocarbon receptor (AHR) and cytochrome P450 1A (CYP1A) pathway by BaA, leading to the hypothesis that this pathway may be implicated in the disruption of neuro-immune interactions, contributing to observable behavioral disruptions. In summary, our findings suggest that early exposure to BaA disrupts social behaviors, such as social ability and shoaling behaviors, from the larval stage through to maturity in zebrafish, potentially through the detrimental effects on neuro-immune processes mediated by the AHR-CYP1A pathway.
Collapse
Affiliation(s)
- Haichu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Weiran Chen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei Li
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Xiaoyang Wang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Xin Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yang Liu
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Wei Sun
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Fei Li
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shan Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
22
|
Hashemi M, Bahrami A, Ghorbani-Shahna F, Afkhami A, Farhadian M, Poormohamadi A. Development of a needle trap device packed with modified PAF-6-MNPs for sampling and analysis of polycyclic aromatic compounds in air. RSC Adv 2024; 14:18588-18598. [PMID: 38860255 PMCID: PMC11163952 DOI: 10.1039/d4ra01651c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
The aim of this study was to develop a new method for sampling and analyzing polycyclic aromatic hydrocarbons in the air. This was achieved by utilizing a needle trap device packed with a modified porous aromatic framework coated with magnetic nanoparticles (PAF-6-MNPs). The modified adsorbent underwent qualitative evaluation using Fourier-transform infrared spectroscopy and X-ray diffraction, as well as scanning and transmission electron microscopy. The optimal conditions for sampling polycyclic aromatic hydrocarbons compounds were determined using a dynamic atmosphere chamber. The method was validated by taking various samples from the standard chamber, and then analyzed under different environmental sampling conditions using a gas chromatography device. The limit of detection (LOD) and limit of quantification (LOQ) values for the analytes of interest, including naphthalene, anthracene, and pyrene, ranged from 0.0034-0.0051 and 0.010-0.015 μg L-1, respectively. Also, the repeatability and reproducibility of the method expressed as relative standard deviation, for the mentioned analyses were found to be in the range of 17.8-20.5% and 20-22.9%. The results indicated that over a 20 day storage period (with the needle trap device containing the analytes of interest kept in the refrigerator), there was no significant decrease in the amount of analytes compared to the initial amount. These findings suggest that, the needle trap packed with the proposed adsorbent offers a reliable, highly-sensitive, easy-to-use, and cost-effective method for sampling polycyclic aromatic hydrocarbons in the air compared to the conventional method recommended by the National Institute of Occupational Safety and Health (NIOSH), method 5515.
Collapse
Affiliation(s)
- Mobina Hashemi
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Abdulrahman Bahrami
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Farshid Ghorbani-Shahna
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Abas Afkhami
- Department of Chemistry, Bu-Ali-Sina University Hamedan Iran
| | - Maryam Farhadian
- Department of Biostatistics, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences Hamadan Iran
| | - Ali Poormohamadi
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|
23
|
Liu Y, Zhou S, Kuang Y, Feng X, Wang Z, Shen Z, Zhou N, Zheng J, Ouyang G. Nitrogen-rich covalent organic framework as a practical coating for effective determinations of polycyclic aromatic hydrocarbons. Talanta 2024; 271:125655. [PMID: 38237278 DOI: 10.1016/j.talanta.2024.125655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are high-profile organic pollutants to be poisonous, carcinogenic, and mutagenic, and widely distributed at trace levels in the environment. In order to effectively enrich PAHs, two stable covalent organic frameworks (COFs, TAPT-OMe-PDA and TPB-DMTP) were prepared by combining 2,4,6-tri(4-aminophenyl)-1,3,5-triazine (TAPT) and 1,3,5-tri(4-aminophenyl) benzene (TAPB) with 2,5-dimethoxy-phenyl-1,4-diformaldehyde (OMe-PDA), respectively. Even though the surface area of TAPT-OMe-PDA was much lower than that of TPB-DMTP, it still demonstrated much better extraction efficiencies towards PAHs as the solid phase microextraction (SPME) coating. Therefore, the TAPT-OMe-PDA coated fiber was coupled with gas chromatography-mass spectrometry (GC-MS) to establish a practical and sensitive method, after the extraction parameters (extraction time, extraction temperature, desorption temperature, desorption time, salt concentration and pH) were optimized. This developed analytical method showed wide linear ranges, low limits of detection, good repeatability and reproducibility. Finally, five PAHs in three water samples were detected and quantified precisely (2.72-38.7 ng·L-1) with satisfactory recoveries (88.3%-118%).
Collapse
Affiliation(s)
- Yuefan Liu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, PR China
| | - Suxin Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China
| | - Yixin Kuang
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China
| | - Xiaoying Feng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, PR China
| | - Zhuo Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China
| | - Zitao Shen
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China
| | - Ningbo Zhou
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, PR China.
| | - Juan Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, PR China.
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, PR China; School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China
| |
Collapse
|
24
|
Pan Y, Jia X, Ding R, Xia S, Zhu X. Interference of two typical polycyclic aromatic hydrocarbons on the induced anti-grazing defense of Tetradesmus obliquus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116263. [PMID: 38547727 DOI: 10.1016/j.ecoenv.2024.116263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
Anthropogenic emissions of polycyclic aromatic hydrocarbons (PAHs) cause severe ecological impacts by contaminating natural water bodies, affecting various biological groups, and altering interspecies relationships and ecological functions. This study examined the effects of two typical PAHs, phenanthrene (Phe) and naphthalene (Nap), on the anti-grazing defense mechanisms of Tetradesmus obliquus, a primary producer in freshwater food chains. Four non-lethal concentrations (0.01, 0.1, 1, and 10 mg L-1) of Phe and Nap were tested and the population growth, photosynthetic capacity, pigment content, and morphological defense of T. obliquus were analyzed. The results indicated that Phe and Nap inhibited both the growth rate and formation of defensive colonies of T. obliquus induced by Daphnia grazing cues, and the inhibition ratio increased with concentration. Phe and Nap significantly shortened the defense colony formation time of T. obliquus. Phe and Nap significantly suppressed photosynthesis in the early stages; however, the photosynthetic efficiency recovered over time. These findings highlight the high sensitivity of grazing-induced colony formation in T. obliquus to Phe and Nap at non-lethal concentrations, which could affect the interactions between phytoplankton and zooplankton in aquatic ecosystems. Our study underscores the influence of Phe and Nap on the defense mechanisms of phytoplankton and the consequential effects on ecological interactions within freshwater ecosystems, providing insight into the complex impacts of pollutants on phytoplankton-zooplankton relationships. Therefore, it is necessary to consider interspecific interactions when assessing the potential negative effects of environmental pollutants on aquatic ecosystems.
Collapse
Affiliation(s)
- Yueqiang Pan
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Xuanhe Jia
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Ruowen Ding
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Siyu Xia
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Xuexia Zhu
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; The First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, 6 Xianxialing Road, Qingdao 266061, China.
| |
Collapse
|
25
|
Ge H, Liu X, Lu D, Yang Z, Li H. Degradation of pyrene by Xanthobacteraceae bacterium strain S3 isolated from the rhizosphere sediment of Vallisneria natans: active conditions, metabolite identification, and proposed pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25659-25670. [PMID: 38483714 DOI: 10.1007/s11356-024-32724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were typical environmental contaminants that accumulated continuously in sediment. Microbial degradation is the main way of PAH degradation in the natural environment. Therefore, expanding the available pool of microbial resources and investigating the molecular degrading mechanisms of PAHs are critical to the efficient control of PAH-polluted sites. Here, a strain (identified as Xanthobacteraceae bacterium) with the ability to degrade pyrene was screened from the rhizosphere sediment of Vallisneria natans. Response surface analysis showed that the strain could degrade pyrene at pH 5-7, NaCl addition 0-1.5%, and temperature 25-40 °C, and the maximum pyrene degradation (~ 95.4%) was obtained under the optimum conditions (pH 7.0, temperature 28.5 °C, and NaCl-free addition) after 72 h. Also, it was observed that the effect of temperature on the degradation ratio was the most significant. Furthermore, eighteen metabolites were identified by mass spectrometry, among which (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid, 7-(carboxymethyl)-8-formyl-1-naphthyl acetic acid, phthalic acid, naphthalene-1,2-diol, and phenol were the main metabolites. And the degradation pathway of pyrene was proposed, suggesting that pyrene undergoes initial ortho-cleavage under the catalysis of metapyrocatechase to form (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid. Subsequently, this intermediate was progressively oxidized and degraded to phthalic acid or phenol, which could enter the tricarboxylic acid cycle. Furthermore, the pyrene biodegradation by the strain followed the first-order kinetic model and the degradation rate changed from fast to slow, with the rate remaining mostly slow in the later stages. The slow biodegradation rate was probably caused by a significant amount of phenol accumulation in the initial stage of degradation, which resulted in a decrease in bacterial activity or death.
Collapse
Affiliation(s)
- Huanying Ge
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Xinghao Liu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Denglong Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China.
| |
Collapse
|
26
|
Meng B, Min XZ, Xiao MY, Xie WX, Li WL, Cai MG, Xiao H, Zhang ZF. Multimedia distribution, dynamics, and seasonal variation of PAHs in Songhua wetland: Implications for ice-influenced conditions. CHEMOSPHERE 2024; 354:141641. [PMID: 38460850 DOI: 10.1016/j.chemosphere.2024.141641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/04/2024] [Accepted: 03/02/2024] [Indexed: 03/11/2024]
Abstract
The knowledge of polycyclic aromatic hydrocarbons (PAHs) in wetlands remains limited. There is a research need for the dynamics between interfaces of multimedia when ice is present in this fragile ecosystem. In this study, sediment, open-water, sub-ice water, and ice samples were collected from the Songhua wetland to study the behaviors of PAHs with and without influences from ice. The concentration of all individual PAHs in sub-ice water (370-1100 ng/L) were higher than the open-water collected from non-ice-covered seasons (50-250 ng/L). Enrichment of PAHs in the ice of wetland was found, particularly for high-molecular-weight PAHs (HMW). This could be attributed to the relatively lower polarity of hydrocarbons compounds, making them more likely to remain in the ice layer during freezing. Source assessments reveal common sources for sub-ice water and ice, which differ from those in the open water in non-ice-covered seasons. This difference is primarily attributed to heating activities in the Harbin during winter. The average percentage contributions were 79% for sub-ice water and 36% for ice related to vehicle exhausts and coal combustion. Additionally, wood burning contributed 25% to sub-ice water and 62% to ice. Sediment in the wetland was found to serve as a final deposit particularly for heavier PAHs, especially those with 6 rings. Sediment also has the potential to act as a source for the secondary emission of low-molecular-weight PAHs (LMW) congeners into the water. PAHs in wetland displayed low ecological risk, while HMW PAHs with relative higher ecological risk is recommended to be further monitored.
Collapse
Affiliation(s)
- Bo Meng
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Cold Region Wetland Ecology and Environment Research Key Laboratory, Harbin University, Harbin, 150086, China
| | - Xi-Ze Min
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China.
| | - Meng-Yuan Xiao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Wen-Xi Xie
- Qiqihar Environmental Monitoring Station, No. 571 Bukunan Street, Longsha District, Qiqihar City, Heilongjiang Province, China
| | - Wen-Long Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States
| | - Ming-Gang Cai
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China.
| |
Collapse
|
27
|
Li D, Zhu Z, Cao X, Yang T, An S. Ecological risk of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in the sediment of a protected karst plateau lake (Caohai) wetland in China. MARINE POLLUTION BULLETIN 2024; 201:116199. [PMID: 38422826 DOI: 10.1016/j.marpolbul.2024.116199] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Understanding PAH and OCP distributions and sources in lakes is necessary for developing pollutant control policies. Here, we assessed the occurrence, risk, and sources of PAHs and OCPs in the sediment of Caohai Lake. The PAHs were predominantly high-molecular-weight compounds (mean 57.5 %), and the diagnostic ratios revealed that coal, biomass burning, and traffic were the sources of PAHs. HCHs (6.53 ± 7.22 ng g-1) and DDTs (10.86 ± 12.16 ng g-1) were the dominant OCPs and were primarily sourced from fresh exogenous inputs. RDA showed that sediment properties explained 74.12 % and 65.44 % of the variation in PAH and OCP concentrations, respectively. Incremental lifetime cancer risk (ILCR) assessment indicated that hazardous PAHs in Caohai Lake sediment posed moderate risks to children and adults (ILCR>1.0 × 10-4), while the risk from OCPs was low; however, the recent influx of HCHs and DDTs requires additional attention.
Collapse
Affiliation(s)
- Dianpeng Li
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China
| | - Zhengjie Zhu
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China; Nanjing University Ecological Research Institute of Changshu, Suzhou 215500, Jiangsu, China
| | - Xuecheng Cao
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China
| | - Tangwu Yang
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China; Nanjing University Ecological Research Institute of Changshu, Suzhou 215500, Jiangsu, China
| | - Shuqing An
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China; Nanjing University Ecological Research Institute of Changshu, Suzhou 215500, Jiangsu, China.
| |
Collapse
|
28
|
Wei Z, Wei Y, Liu Y, Niu S, Xu Y, Park JH, Wang JJ. Biochar-based materials as remediation strategy in petroleum hydrocarbon-contaminated soil and water: Performances, mechanisms, and environmental impact. J Environ Sci (China) 2024; 138:350-372. [PMID: 38135402 DOI: 10.1016/j.jes.2023.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 12/24/2023]
Abstract
Petroleum contamination is considered as a major risk to the health of humans and environment. Biochars as low-cost and eco-friendly carbon materials, have been widely used for the removal of petroleum hydrocarbon in the environment. The purpose of this paper is to review the performance, mechanisms, and potential environmental toxicity of biochar, modified biochar and its integration use with other materials in petroleum contaminated soil and water. Specifically, the use of biochar in oil-contaminated water and soil as well as the factors that could influence the removal ability of biochar were systematically evaluated. In addition, the modification and integrated use of biochar for improving the removal efficiency were summarized from the aspects of sorption, biodegradation, chemical degradation, and reusability. Moreover, the functional impacts and associated ecotoxicity of pristine and modified biochars in various environments were demonstrated. Finally, some shortcoming of current approaches, and future research needs were provided for the future direction and challenges of modified biochar research. Overall, this paper gain insight into biochar application in petroleum remediation from the perspectives of performance enhancement and environmental sustainability.
Collapse
Affiliation(s)
- Zhuo Wei
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China; School of Plant, Environment & Soil Sciences, Louisiana State University AgCenter. Baton Rouge, LA 70803, USA
| | - Yi Wei
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Yang Liu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Shuai Niu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Yaxi Xu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Jong-Hwan Park
- Department of Life Resources Industry, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, South Korea
| | - Jim J Wang
- School of Plant, Environment & Soil Sciences, Louisiana State University AgCenter. Baton Rouge, LA 70803, USA.
| |
Collapse
|
29
|
Wang Z, Liu Y, Zhang A, Yang L, Wei C, Chen Y, Liu Z, Li Z. Occurrence characteristics, environmental trend, and source analysis of polycyclic aromatic hydrocarbons in the water environment of industrial zones. ENVIRONMENTAL RESEARCH 2024; 245:118053. [PMID: 38160976 DOI: 10.1016/j.envres.2023.118053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
The middle reaches of the Yellow River are rich in energy resources, with the Kuye River, a first-class river in this region, serving as a vital hub for the coal chemical industry within China. This study investigated the occurrence patterns, environmental trends, and ecological risks associated with polycyclic aromatic hydrocarbons (PAHs) in the Kuye River Basin, offering insights into the environmental dynamics of regions. The findings indicated that the river sediments primarily contained PAHs with medium to high-molecular weights, exhibiting levels ranging from 402.92 ng/g dw to 16,783.72 ng/g dw, while water bodies predominantly featured PAHs with low to medium molecular weights, ranging from 299.34 ng/L to 10,930.9 ng/L. The source analysis of PAHs indicated that industrial and traffic exhaust emissions were the primary contributors to PAHs in the Kuye basin, with sediments serving as a secondary release source based on fugacity fraction. The content of PAHs in sediment correlated closely with the environmental factors, and the PAHs inventory of the basin was 19.97 tons. The increased overall PAH concentration in the basin posed significant ecological and public health concerns, necessitating urgent attention.
Collapse
Affiliation(s)
- Zhu Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chunxiao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yiping Chen
- Institute of Earth Environment, Chinese Academy of Sciences, Yan Xiang Road. No.97, Xi'an, 710061, China
| | - Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
30
|
Nie N, Li T, Miao Y, Wei X, Zhao D, Liu M. Environmental fate and health risks of polycyclic aromatic hydrocarbons in the Yangtze River Delta Urban Agglomeration during the 21st century. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133407. [PMID: 38185085 DOI: 10.1016/j.jhazmat.2023.133407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Understanding the spatiotemporal distribution and behavior of Polycyclic Aromatic Hydrocarbons (PAHs) in the context of climate change and human activities is essential for effective environmental management and public health protection. This study utilized an integrated simulation system that combines land-use, hydrological, and multimedia fugacity models to predict the concentrations, transportation, and degradation of 16 priority-controlled PAHs across six environmental compartments (air, water, soil, sediment, vegetation, and impermeable surfaces) within one of the world's prominent urban agglomerations, the Yangtze River Delta Urban Agglomeration (YRDUA), under future Shared Socio-economic Pathways (SSP)-Representative Concentration Pathways (RCP) scenarios. Incremental lifetime carcinogenic risk for adults and children exposed to PAHs were also evaluated. The results show a declining trend in PAHs concentrations and associated health risks during the 21st century. Land use types, hydrological characteristics, population, and GDP, have significant correlations with the fate of PAHs. The primary removal for PAHs is determined to be driven by advection through air and water. PAHs covering on impermeable surfaces pose a relatively higher health risk compared to those in other environmental media. This study offers valuable insights into PAHs pollution in the YRDUA, aiming to ensure public health safety, with the potential for application in other urban areas.
Collapse
Affiliation(s)
- Ning Nie
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| | - Ting Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Yiyi Miao
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Xinyi Wei
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Dengzhong Zhao
- Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| |
Collapse
|
31
|
Shen Q, Yu H, Cao Y, Guo Z, Hu L, Duan L, Sun X, Lin T. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of the East China marginal seas: Significance of the terrestrial input and shelf mud deposition. MARINE POLLUTION BULLETIN 2024; 199:115920. [PMID: 38113801 DOI: 10.1016/j.marpolbul.2023.115920] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023]
Abstract
To investigate the distribution, sources, influencing factors, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in East China Marginal Seas (ECMSs) sediments, we measured the concentrations of 16 PAHs in 104 surface sediment samples collected from the ECMSs in 2014 and 2016. Total PAH concentration (∑PAHs) ranged from 4.49 to 163.66 ng/g dry weight (dry w), with 65.98 ± 33.00 (mean ± SD) ng/g dry w. The highest PAH concentrations and total organic carbon were observed in areas with fine-grained sediments in the Bohai Sea (BS), Yellow Sea (YS), and coastal East China Sea (ECS), indicating the prominent influence of regional hydrodynamics and sediment properties. The dominant PAH congener in BS and YS was BbF, whereas coastal ECS was Phe. The heterogeneity of PAH sources implies that terrestrial PAH input and shelf mud deposition have crucial roles in the source-sink processes of PAHs in a strongly human-influenced marginal sea.
Collapse
Affiliation(s)
- Qi Shen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China; State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan 250101, China
| | - Huimin Yu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Yibo Cao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Zhigang Guo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China; State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan 250101, China; Institute of Eco-Chongming (IEC), Shanghai, 202162, China.
| | - Limin Hu
- College of Marine Geosciences, Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ocean University of China, Qingdao 266100, China
| | - Lian Duan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Xueshi Sun
- College of Marine Geosciences, Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ocean University of China, Qingdao 266100, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
32
|
Han X, Li D, Du W, Shi J, Li S, Xie Y, Deng S, Wang Z, Tian S, Ning P. Particulate polycyclic aromatic hydrocarbons in rural households burning solid fuels in Xuanwei County, Southwest China: occurrence, size distribution, and health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15398-15411. [PMID: 38294651 DOI: 10.1007/s11356-024-32077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
The study is about the size distribution and health risks of polycyclic aromatic hydrocarbons (PAHs) in indoor environment of Xuanwei, Southwest China particle samples were collected by Anderson 8-stage impactor which was used to gather particle samples to nine size ranges. Size-segregated samples were collected in indoor from a rural village in Xuanwei during the non-heating and heating seasons. The results showed that the total concentrations of the indoor particulate matter (PM) were 757 ± 60 and 990 ± 78 μg/m3 in non-heating and heating seasons, respectively. The total concentration of indoor PAHs reached to 8.42 ± 0.53 μg/m3 in the heating season, which was considerably greater than the concentration in the non-heating season (2.85 ± 1.72 μg/m3). The size distribution of PAHs showed that PAHs were mainly enriched in PMs with the diameter <1.1 μm. The diagnostic ratios (DR) and principal component analysis (PCA) showed that coal and wood for residential heating and cooking were the main sources of indoor PAHs. The results of the health risk showed that the total deposition concentration (DC) in the alveolar region (AR) was 0.25 and 0.68 μg/m3 in the non-heating and heating seasons respectively. Throughout the entire sampling periods, the lifetime cancer risk (R) based on DC of children and adults varied between 3.53 ×10-5 to 1.79 ×10-4. During the heating season, the potential cancer risk of PAHs in adults was significant, exceeding 10-4, with a rate of 96%.
Collapse
Affiliation(s)
- Xinyu Han
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, 650500, China
| | - Dingshuang Li
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei Du
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jianwu Shi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Shuai Li
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuqi Xie
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shihan Deng
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhihao Wang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
33
|
Gong X, Xiong L, Xing J, Deng Y, Qihui S, Sun J, Qin Y, Zhao Z, Zhang L. Implications on freshwater lake-river ecosystem protection suggested by organic micropollutant (OMP) priority list. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132580. [PMID: 37738851 DOI: 10.1016/j.jhazmat.2023.132580] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Lake-river complex systems represent interconnected ecosystems wherein inflow rivers significantly influence the migration of terrigenous contaminants, particularly organic micropollutants (OMPs), into lakes. Given the extensive array of OMPs, screening for those with the highest potential hazard is crucial for safeguarding freshwater lake-river ecosystems. In this study, an optimized multi-criteria scoring method was applied to prioritize OMPs. Flux estimation was then performed to identify the contamination load contributed by the Le'an River to Poyang Lake. Higher concentrations of phthalate esters (PAEs) were detected in the lake-river system, ranging from 1154.5 to 22,732.8 ng/L, followed by antibiotics and polycyclic aromatic hydrocarbons (PAHs), while historical pollutant residues were comparably lower. Based on the prioritization methodology, 27 compounds, encompassing eight PAEs, six organochlorine pesticides (OCPs), six polychlorinated biphenyls (PCBs), five PAHs and two antibiotics, emerged as priority pollutants. Multiple risk assessments revealed that priority PAEs posed relatively high ecological and human health risks; concurrently, the annual fluxes of individual priority PAEs into the lake all exceeded 1000 kg, with DBP, DEHP and BBP fluxes reaching 18,352, 10,429, and 7825 kg, respectively. This research offers valuable insights stemming from OMP prioritization to aid in the conservation of freshwater lake ecosystems, particularly concerning lake-river system integrity.
Collapse
Affiliation(s)
- Xionghu Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Lili Xiong
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Jiusheng Xing
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Yanqing Deng
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Su Qihui
- Xinjiang and Raohe Hydrology and Water Resources Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Jing Sun
- Xinjiang and Raohe Hydrology and Water Resources Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Yu Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
34
|
Li B, Zhao L, Zhong S, An R, Ma R, Xu X, Chen Q. Occurrence, distribution and risk assessment of polycyclic aromatic hydrocarbons in soils around main water source areas of Beijing, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7569-7584. [PMID: 37391576 DOI: 10.1007/s10653-023-01673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in urban environments have been globally concerned due to their significant health impacts on residents. However, little is known about potential risks of PAHs from centralized water source areas. In the present study, 326 soils samples from the main water source areas of Beijing were collected and the occurrence, source appointment, and risks of PAHs were systematically investigated based on the monitoring results from high-performance liquid chromatography (HPLC). The total PAHs (∑16 PAHs) concentrations ranged from 5.70 to 1512 ng/g with median value of 44.2 ng/g, in which 4-ring and 5-ring groups were the major components. PAHs concentrations in the cultivated land were significantly higher than other areas, which could reflect significant impact of soil organic matter and total nitrogen contents on the spatial variations of PAHs. Further source identifications through positive matrix factorization model (PMF) revealed that biomass (22.5%), coal (21.4%), gasoline (17.6%) and diesel (16.4%) combustion were dominant sources of soil PAHs in the study area. Moreover, the risk assessment indicated that total ecological and health risk of PAHs were negligible, but individual PAH, including pyrene and benzo(b)fluoranthene, should be concerned due to their potential risks in several monitored stations located in the secondary protection area of four reservoirs. Our study provided new insights into environmental risks of soils in main water source areas from PAHs and could be helpful for organic micropollutant controlling and drinking water safety in rapidly urbanizing cities.
Collapse
Affiliation(s)
- Bin Li
- Department of Environmental Engineering, Peking University, Beijing, 100871, People's Republic of China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, People's Republic of China
| | - Liang Zhao
- Beijing Water Authority, Beijing, 100036, People's Republic of China
| | - Sining Zhong
- Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Rui An
- Department of Environmental Engineering, Peking University, Beijing, 100871, People's Republic of China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, People's Republic of China
| | - Ruoqi Ma
- General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, Beijing, 100120, People's Republic of China
| | - Xuming Xu
- Department of Environmental Engineering, Peking University, Beijing, 100871, People's Republic of China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, People's Republic of China
| | - Qian Chen
- Department of Environmental Engineering, Peking University, Beijing, 100871, People's Republic of China.
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, People's Republic of China.
| |
Collapse
|
35
|
Xia Y, Zhang Y, Ji Q, Cheng X, Wang X, Sabel CE, He H. Sediment core records and impact factors of polycyclic aromatic hydrocarbons in Chinese lakes. ENVIRONMENTAL RESEARCH 2023; 235:116690. [PMID: 37474088 DOI: 10.1016/j.envres.2023.116690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Lake sediment is a natural sink for polycyclic aromatic hydrocarbons (PAHs). PAH sedimentation characteristics and their impact factors of Chinese lakes have mainly been qualitative assessed. However, quantitative impacts of PAH sedimentation from different factors have not been well analyzed. To fill this gap, we screened PAH sedimentation records from the literature, for 51 lakes in China and other regions of the world, to identify historical concentration variation and the impact factors of PAHs in different regions, in lake sediment. The results show that PAH concentrations in the sediment core in the selected Chinese lakes (478 ± 812 ng/g dry weight (dw)) were significantly lower than those in North America (5518 ± 6572 ng/g dw) and Europe (3817 ± 4033 ng/g dw). From 1900 to 2015, most of the lakes in China showed an increasing trend of PAH sedimentation concentrations, with the lakes in Southeastern China showed a decreasing trend of PAH concentration in the period of 2001-2015, which was later than the peak times shown in Western countries (1941-1970). The 2-3-ring PAHs were the main components in the sediment core of Chinese lakes, but the proportion to the total PAHs decreased from 72% in 1900-1940 to 55% in 2001-2015. Generalized additive modeling (GAM) was adopted to simulate the associations between PAH sedimentation records and the impact factors. There are large regional variations of economic and industrial development in China. The impact factors of PAH accumulation in the lake sediments differ in different regions. However, population and the consumption of coal, pesticides, and fertilizer were identified to be the most important impact factors influencing PAH sedimentation. The Chinese government needs to strengthen control measures on pollutant discharge to reduce the anthropogenic impact of PAH sedimentation in lakes.
Collapse
Affiliation(s)
- Yubao Xia
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, PR China
| | - Yanxia Zhang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, PR China; Aarhus Institute of Advanced Studies, Aarhus University, 8000, Aarhus, Denmark; BERTHA - Big Data Centre for Environment and Health, Department of Public Health, Aarhus University, 8000, Aarhus, Denmark.
| | - Qingsong Ji
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, PR China
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, PR China
| | - Xinkai Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Clive E Sabel
- BERTHA - Big Data Centre for Environment and Health, Department of Public Health, Aarhus University, 8000, Aarhus, Denmark; Department of Public Health, Aarhus University, 8000, Aarhus, Denmark
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, PR China; College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, Fujian, 354300, PR China.
| |
Collapse
|
36
|
Zhao Z, Chen W, Cheng Y, Li J, Chen Z. Burkholderia cepacia immobilized onto rGO as a biomaterial for the removal of naphthalene from wastewater. ENVIRONMENTAL RESEARCH 2023; 235:116663. [PMID: 37451574 DOI: 10.1016/j.envres.2023.116663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
As one of the polycyclic aromatic hydrocarbons (PAHs), naphthalene is of serious environmental concern due to its carcinogenicity, persistence and refractory degradation. In this study, a new functional biomaterial based on Burkholderia cepacia (BK) immobilized on reduced graphene oxide (rGO) was prepared, resulting in the removal of 99.0% naphthalene within 48 h. This was better than the 67.3% for free BK and 55.6% for rGO alone. Various characterizations indicated that reduced graphene oxide-Burkholderia cepacia (rGO-BK) was successfully synthesized and secreted non-toxic and degradable surfactants which participated in the degradation of naphthalene. The adsorption kinetics and degradation kinetics conformed best to non-linear pseudo-second-order and pseudo-first-order kinetic models, respectively. Demonstrated in this work is that removing naphthalene by rGO-BK involved both chemically dominated adsorption and biodegradation. As well, GC-MS analysis revealed two things: firstly, that the degraded products of naphthalene were dibutyl phthalate, diethyl phthalate, phthalic acid, and benzoic acid; and secondly, two potentially viable biodegradation pathways of naphthalene by rGO-BK could be proposed. Finally, for practical application experiment, the rGO-BK was exposed to river water samples and generated 99% removal efficiency of naphthalene, so this study offers new insights into biomaterials that can remove naphthalene.
Collapse
Affiliation(s)
- Zhihao Zhao
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Wei Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Ying Cheng
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabing Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| |
Collapse
|
37
|
Saravanan A, Ragini YP, Kumar PS, Thamarai P, Rangasamy G. A critical review on the removal of toxic pollutants from contaminated water using magnetic hybrids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105099-105118. [PMID: 37740158 DOI: 10.1007/s11356-023-29811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
The persistence of organic/inorganic pollutants in the water has become a serious environmental issue. Among the different pollutants, dyes and heavy metal pollution in waterways are viewed as a global ecological problem that can have an impact on humans, plants, and animals. The necessity to develop a sustainable and environmentally acceptable approach to remove these toxic contaminants from the ecosystem has been raised. In the past two decades, rapid industrialization and anthropogenic activities in developed countries have aggravated environmental pollution. Industrial effluents that are discharged directly into the natural environment taint the water, which has a consequence for the water resources. Magnetic nanohybrids are broadly investigated materials used in the adsorption and photocatalytic degradation of poisonous pollutants present across water effluents. In the present review, the toxic health effects of heavy metals and dyes from the water environment have been discussed. This paper reviews the role of magnetic nanohybrids in the removal of pollutants from the water environment, providing an adequate point of view on their new advances regarding their qualities, connection methodologies, execution, and their scale-up difficulties.
Collapse
Affiliation(s)
- Anbalagan Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | | | - Ponnusamy Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Chinna Kalapet, Puducherry-605014, India.
| | - Packiyam Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
38
|
Alves ICB, Dos Santos JRN, Marques EP, Sousa JKC, Beluomini MA, Stradiotto NR, Marques ALB. Electrochemical sensor based on carbon nanotube decorated with manganese oxide nanoparticles for naphthalene determination. ANAL SCI 2023; 39:1681-1692. [PMID: 37269536 DOI: 10.1007/s44211-023-00374-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
In this work, an electrochemical sensor was developed for the determination of naphthalene (NaP) in well water samples, based on a glass carbon electrode (GCE) modified as a nanocomposite of manganese oxides (MnOx) and COOH-functionalized multi-walled carbon nanotubes (MWCNT). The synthesis of MnOx nanoparticles was performed by the sol-gel method. The nanocomposite was obtained by mixing MnOx and MWCNT with the aid of ultrasound, followed by stirring for 24 h. Surface modification facilitated the electron transfer process through the MnOx/MWCNT/GCE composite, which was used as an electrochemical sensor. The sensor and its material were characterized by cyclic voltammetry (CV), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Important parameters influencing electrochemical sensor performance (pH, composite ratios) were investigated and optimized. The MnOx/MWCNT/GCE sensor showed a wide linear range of 2.0-16.0 μM, a detection limit of 0.5 μM and a quantification limit of 1.8 μM, in addition to satisfactory repeatability (RSD of 7.8%) and stability (900 s) in the determination of NaP. The determination of NaP in a sample of water from a gas station well using the proposed sensor showed results with recovery between 98.1 and 103.3%. The results obtained suggest that the MnOx/MWCNT/GCE electrode has great potential for application in the detection of NaP in well water.
Collapse
Affiliation(s)
| | | | - Edmar Pereira Marques
- NEEP (LPQA & LAPQAP), PPG-BIONORTE, Federal University of Maranhão (UFMA), São Luis, MA, Brazil
| | | | | | | | | |
Collapse
|
39
|
Zeng Y, Ma HM, Zhang QY, Tao L, Wang T, Wan C, Chen SJ, Mai BX. Complex polycyclic aromatic compound mixtures in PM 2.5 in a Chinese megacity: Spatio-temporal variations, toxicity, and source apportionment. ENVIRONMENT INTERNATIONAL 2023; 179:108159. [PMID: 37607426 DOI: 10.1016/j.envint.2023.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Polycyclic aromatic compounds (PACs) are important toxic organic components in fine particulate matter (PM2.5), whereas the links between PM2.5 toxicity and associated PACs in ambient air are poorly understood. This study investigated the spatial-temporal variations of PACs in PM2.5 collected from 11 sampling sites across a Chinese megacity and characterized the reactive oxygen species (ROS) generation and cytotoxicity induced by organic extracts of PM2.5 based on cellular assays. The extra trees regression model based on machine learning and ridge regression were used to identify the key toxicants among complex PAC mixtures. The total concentrations of these PACs varied from 2.12 to 71.7 ng/m3 across the study city, and polycyclic aromatic hydrocarbons (PAHs) are the main PACs. The spatial variations of the toxicological indicators generally resembled those of the PAC concentrations, and the PM2.5 related to waste treatment facilities exhibited the strongest toxic potencies. The ROS generation was highly correlated with high molecular weight PAHs (MW302 PAHs), followed by PAHs with MW<302 amu and oxygenated PAHs, but not with nitrated PAHs and the plastics additives. The cell mortality showed weak correlations with these organic constituents. The associations between the biological endpoints and these PM2.5-bound contaminants were further confirmed by exposure to authentic chemicals. Four primary sources of PACs were identified, among which coal and biomass combustion sources (30.2% of the total PACs) and industrial sources (31.0%) were predominant. PACs emitted from industrial sources were highly associated with ROS generation in this city. Our findings highlight the potent ROS-generating potential of MW302 PAHs and the importance of industrial sources contributing to PM2.5 toxicity in this megacity, raising public concerns and further administration.
Collapse
Affiliation(s)
- Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Hui-Min Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qian-Yu Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Tao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Tao Wang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Cong Wan
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - She-Jun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
40
|
Luo Y, Tong G, Song Q, Tao P, Jin M, Gu N, Zheng M, Yu X, Yu X. Impacts of shipyard oil leakage on the PAHs and PCBs occurrence in Xiangshan Bay, China. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106057. [PMID: 37422993 DOI: 10.1016/j.marenvres.2023.106057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023]
Abstract
Here, we studied the shipyard impacts on the distribution of PAHs and PCBs in the semi-enclosed Xiangshan Bay, an important mariculture zone in China. The results showed that the shipyard caused a pollution plume for PAHs but not for PCBs. As characteristic pollutants of oil leakage, the PAHs had concentrations of up to 55.82 ng L-1 in the water, 2235.04 ng g-1 in suspended particulate matter (SPM), and 1489.60 ng g-1 in sediment. The PAHs in water and SPM were dominated by phenanthrene and pyrene that were mostly derived from lubricant and diesel, while those in sediments were dominated by the high-molecular-weight PAHs, such as indeno[1,2,3-c,d]pyrene. In contrast, the PCBs concentrations reached up to 10.17 ng L-1, 79.72 ng g-1, and 124.33 ng g-1 in the seawater, SPM, and sediment samples, respectively, and they did not show spatial patterns affected by the shipyard. Moreover, the health risk assessment indicated that the shipyard discharge caused a substantial PAHs ecological risk to the adjacent and downstream water environment. Therefore, point source discharge in semi-enclosed bays should be paid close attention to due to the strong pollutant transport effect.
Collapse
Affiliation(s)
- Yi Luo
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, PR China
| | - Ganghui Tong
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, PR China
| | - Qingbin Song
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, PR China
| | - Peiran Tao
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, PR China
| | - Meng Jin
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, PR China
| | - Nitao Gu
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo, 315000, PR China
| | - Meiling Zheng
- Meishan Street Office, Beilun District, Ningbo, 315832, PR China
| | - Xinwei Yu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, 316021, PR China
| | - Xubiao Yu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, PR China; Donghai Academy, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
41
|
Wang Z, Liu YJ, Yang L, Yang ZZ, Zhang AN, Li ZH, Liu Z. Distribution, sources, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in Kaokaowusu river sediments near a coal industrial zone. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6853-6867. [PMID: 36566469 DOI: 10.1007/s10653-022-01454-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
This study systematically analyzed the contents, compositions, and sources of polycyclic aromatic hydrocarbons (PAHs) in river sediments near an important energy and chemical base in northwest China. In addition, their possible adverse effects on the ecology and human health were assessed. The PAH concentrations in this study area ranged from 2641.28 to 16783.72 (ng/g dw). PAHs of medium molecular weight (3-ring and 4-ring) showed the largest proportion, followed by PAHs of higher molecular weight (5-ring and 6-ring). The results of molecular diagnostic ratios and principal component analysis revealed that PAHs in the region have complex sources, with incomplete combustion of local fossil fuels and traffic exhaust factors being the main sources. The total toxic equivalent concentration of PAHs varied from 10.05 to 760.26 ng/g, and according to the sediment quality guidelines, PAHs have high potential ecological risk in the lower reaches of the river. The mean effect range-median quotient for the region was 0.46, and the combined ecological risk was at moderate to high levels (21% probability of toxicity). The lifetime carcinogenic risks for adults and children exposed to PAHs were 2.95 × 10-3 and 1.87 × 10-2, respectively, which are much higher than the limit of 10-4, indicating moderate to high potential cancer risks. Therefore, the local government should consider taking some environmental remediation measures. This study can provide theoretical support for pollution prevention measures and ecological restoration strategies for rivers in resource-rich areas.
Collapse
Affiliation(s)
- Zhu Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yong Jun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Lu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhuang Zhuang Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ai Ning Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhi Hua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
42
|
Ren S, Jin X, Bekele TG, Lv M, Ding J, Tan F, Chen L. Development and application of diffusive gradients in thin films for in situ sampling of the organic UV filter 4-methylbenzylidene camphor (4-MBC) in waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92651-92661. [PMID: 37493909 DOI: 10.1007/s11356-023-28844-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
4-Methylbenzylidene camphor (4-MBC), a typical organic UV filter (OUVF) in personal care products, is considered to be a potential endocrine disruptor due to its estrogenic activity and bioaccumulation. Although 4-MBC residues have been extensively identified in aquatic waters, little is known about their occurrence, levels, and potential risk in coastal waters. This study developed a reliable sampling approach, based on diffusive gradients in thin films (DGT) with XAD-2 as the binding agent, for monitoring 4-MBC in coastal waters. The diffusion coefficients of 4-MBC in freshwater and artificial seawater were 3.65 × 10-6 cm2/s and 3.83 × 10-6 cm2/s, respectively. XAD-2 binding gel showed rapid adsorption to 4-MBC. The accumulated masses of 4-MBC in XAD-2 DGT increased linearly with deployed time for 7 days in freshwater and seawater, which agreed well with theoretical predictions. The sampling performance was independent of ionic strength (0.0001-0.5 M), pH (4.0-8.5), and dissolved organic matter (0-20 mg/L). Field deployment in the river estuary and bathing beach showed that DGT-measured 4-MBC concentrations were consistent in comparison with grab sampling. Environmental risk assessment showed that 4-MBC may pose a medium risk to aquatic organisms based on computed risk quotient (RQ) values. Sewage discharge is the main source of 4-MBC risk, while the residue in recreation beaches contributes more significantly in summer. The established DGT sampling is suitable for seasonal monitoring, source identification, and risk assessment of 4-MBC in coastal waters.
Collapse
Affiliation(s)
- Suyu Ren
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Xiaojie Jin
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| |
Collapse
|
43
|
Sun X, Ding TT, Wang ZJ, Huang P, Liu SS. Optimized Derivation of Predicted No-Effect Concentrations (PNECs) for Eight Polycyclic Aromatic Hydrocarbons (PAHs) Using HC 10 Based on Acute Toxicity Data. TOXICS 2023; 11:563. [PMID: 37505529 PMCID: PMC10384761 DOI: 10.3390/toxics11070563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
For persistent organic pollutants, a concern of environmental supervision, predicted no-effect concentrations (PNECs) are often used in ecological risk assessment, which is commonly derived from the hazardous concentration of 5% (HC5) of the species sensitivity distribution (SSD). To address the problem of a lack of toxicity data, the objectives of this study are to propose and apply two improvement ideas for SSD application, taking polycyclic aromatic hydrocarbons (PAHs) as an example: whether the chronic PNEC can be derived from the acute SSD curve; whether the PNEC may be calculated by HC10 to avoid solely statistical extrapolation. In this study, the acute SSD curves for eight PAHs and the chronic SSD curves for three PAHs were constructed. The quantity relationship of HC5s between the acute and chronic SSD curves was explored, and the value of the assessment factor when using HC10 to calculate PNEC was derived. The results showed that, for PAHs, the chronic PNEC can be estimated by multiplying the acute PNEC by 0.1, and the value of the assessment factor corresponding to HC10 is 10. For acenaphthene, anthracene, benzo[a]pyrene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene, the chronic PNECs based on the acute HC10s were 0.8120, 0.008925, 0.005202, 0.07602, 2.328, 12.75, 0.5731, and 0.05360 μg/L, respectively.
Collapse
Affiliation(s)
- Xiao Sun
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ze-Jun Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
44
|
Khan S, Qamar Z, Khan A, Waqas M, Nawab J, Khisroon M, Khan A. Genotoxic effects of polycyclic aromatic hydrocarbons (PAHs) present in vehicle-wash wastewater on grass carp (Ctenopharyngodon idella) and freshwater mussels (Anodonta cygnea). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121513. [PMID: 37030598 DOI: 10.1016/j.envpol.2023.121513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Vehicle-wash wastewater (VWW) contains high levels of various petrochemicals such as polycyclic aromatic hydrocarbons (PAHs), a carcinogenic category of organic substances. However, the genotoxic effects of PAHs present in VWW remain largely unknown. We explored the genotoxic effects of PAHs present in VWW on fish grass carp (Ctenopharyngodon idella) and freshwater mussels (Anodonta cygnea). Fish and freshwater mussels were divided into control and exposed groups, the prior groups were treated at weekly intervals with clean water, and the latter with Σ16PAHs contaminated VWW for up to four weeks. The samples of blood from fish and haemolymph from freshwater mussels were collected and analyzed using the comet assay technique. Results exhibited that in control fish and freshwater mussel groups the genotoxicity decreased with every week passing following the order of W1 > W2 > W3 > W4, ranging from 8.33 ± 3.06 to 25.3 ± 4.62 and from 46.0 ± 6.93 to 7.67 ± 3.79, respectively. The exposed fish and freshwater mussel groups indicated an increase in genotoxicity with increasing week intervals with an order of W4 > W3 > W2 > W1, ranging from 55.7 ± 11.9 to 128.3 ± 10.0 and from 112.7 ± 8.50 to 183.3 ± 10.1, respectively. The genotoxic effect of Σ16PAHs on fish was comparatively lower than on freshwater mussels. This study elucidates that VWW is highly genotoxic and should be treated before discharging into aquatic ecosystems.
Collapse
Affiliation(s)
- Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan; Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan.
| | - Zahir Qamar
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Ajmal Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan; Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Waqas
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan; Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Javed Nawab
- Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhmmmad Khisroon
- Department of Zoology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Ajmal Khan
- Department of Zoology, University of Peshawar, Peshawar, 25120, Pakistan
| |
Collapse
|
45
|
Umeh CT, Nduka JK, Omokpariola DO, Morah JE, Mmaduakor EC, Okoye NH, Lilian EEI, Kalu IF. Ecological pollution and health risk monitoring assessment of polycyclic aromatic hydrocarbons and heavy metals in surface water, southeastern Nigeria. Environ Anal Health Toxicol 2023; 38:e2023007-0. [PMID: 37114474 PMCID: PMC10628405 DOI: 10.5620/eaht.2023007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) are predominant pollutants linked with anthropogenic activities across a host of environmental mediums. The level of pollution, ecological and health risk were assessed in surface water from Ekulu in Enugu metropolis, Nigeria for 17 PAHs and selected HMs (As, Cd, Cr, Cu, Pb, Ni, Zn) components. PAHs and HMs were determined using a gas chromatography-flame ionization detector (GC-FID) and atomic adsorption spectrophotometer (AAS). The total PAHs in station A (3.17mg/l), B (1.51mg/l), and C (1.83mg/l) were due to high molecular weight (HMW) PAHs than low molecular weight (HMW) PAHs. HMs contents were within USEPA and WHO minimum contamination levels (MCL) except Cr and Pb. The molecular diagnostics of PAHs showed that incomplete combustion of carbonaceous compounds was dominant, while petrogenic was insignificant across all samples. The ecological indices of PAHs and HMs varied from medium to high pollution due to anthropogenic activities that pose a threat to the ecosystem. The non-carcinogenic models showed that hazard index (HI) ranged from PAHs (0.027 - 0.083) and HMs (0.0067 - 0.087) which is less than unity implying no adverse health issues. The lifetime cancer risk (LCR) for PAHs (4.21×10-4 - 9.61×10-4) and HMs (1.72×10-5 - 3.98×10-5) suggested significant cancer risk is possible over some time for a population of 1 in 10,000 and 100,000 for both PAHs and HMs exposure for 70 years. Therefore, there is an urgent need for proper pollution control and mitigation plan to preserve both age groups from being continuously exposed to anthropogenic activities in the Ekulu River and further study should be carried out to monitor the available toxicants.
Collapse
Affiliation(s)
- Chisom Theresa Umeh
- Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Anambra State, Nigeria
| | | | | | - Joy Ebele Morah
- Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Anambra State, Nigeria
| | | | - Nkechi Helen Okoye
- Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Anambra State, Nigeria
| | | | - Ifeanyi Favor Kalu
- Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Anambra State, Nigeria
| |
Collapse
|
46
|
Sujitha SB, Lopez-Hernandez JF, García-Alamilla P, Morales-García SS, Márquez-Rocha FJ. Evaluation of polycyclic aromatic hydrocarbons in sediments of Balsas River Mouth, Pacific Coast, Mexico: Sources, risks, and genotoxicity. CHEMOSPHERE 2023; 332:138898. [PMID: 37169094 DOI: 10.1016/j.chemosphere.2023.138898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were assessed in sediments (n = 7) collected from the mouth of the Balsas River, Pacific Coast, Mexico. The total PAH levels ranged between 142.1 and 3944.07 μg kg-1 in the summer and 137.65-3967.38 μg kg-1 in the winter, probably reflecting the anthropogenic activities of the region. Calculation of the four analytical ratios of [Anthracene/(Anthracene + Phenanthrene)]: [Fluoranthene/(Fluoranthene + Pyrene)], [Fluoranthene/Pyrene: Fluoranthene/(Fluoranthene + Pyrene)], [Indeno [123-cd]Pyrene/(Indeno [123-cd]Pyrene + Benzo [ghi]Perylene)]: [Benzo [a]anthracene/(Benzo [a]Anthracene + Chrysene)], and [Anthracene/Phenanthrene]: [Fluoranthene/(Fluoranthene + Pyrene)] revealed a mixed PAH source, from petroleum and biomass combustion. Significant statistical correlations (r2 = 0.90) between the 4 and 5 ringed PAHs denote that adsorption is the principal mechanism for accumulation in sedimentary archives. Ecotoxicological indices (Mean Effect Range Medium Quotient and Mean Probable Effect Level Quotient) indicated moderate pollution with adverse biological impacts on ambient benthonic organisms. The calculations of Toxicity Equivalent Quotient and Mutagen Equivalent Quotient values proposed that the region is highly polluted by mutagenic and carcinogenic PAH compounds. The genotoxic evaluation of Lutjanus guttatus (Spotted rose snapper) presented significant DNA damage and discrepancies in Ethoxyresorufin-O-Deethylase activity. Based on the toxicological and genotoxicological evaluation of PAHs in sediments, the region was observed to be largely impacted from biological damage.
Collapse
Affiliation(s)
- S B Sujitha
- Escuela Superior de Ingeniería y Arquitectura (ESIA), Unidad Ticoman, Instituto Politécnico Nacional (IPN), Calz. Ticomán 600, Delg. Gustavo A. Madero, C.P. 07340, Ciudad de México (CDMX), Mexico
| | - Jenny-Fabiola Lopez-Hernandez
- Centro Mexicano para La Producción Más Limpia-Unidad Tabasco, Instituto Politécnico Nacional, Cunduacán, Tabasco, CP 86691, Mexico
| | - Pedro García-Alamilla
- Divison Académica de Ciencias Agropecuaria, Universidad Autónoma Juárez de Tabasco, Carretera Villahermosa -Teapa Km 25, Ranchería La Huasteca 2da Sección, C.P. 86298 Villahermosa, Tabasco, Mexico
| | - S S Morales-García
- Centro Mexicano para La Producción Más Limpia, Instituto Politécnico Nacional, Av. Acueducto S/n, Col. Barrio La Laguna Ticomán, Del Gustavo A. Madero, C.P. 07340, Ciudad de México (CDMX), Mexico
| | - Facundo J Márquez-Rocha
- Centro Mexicano para La Producción Más Limpia-Unidad Tabasco, Instituto Politécnico Nacional, Cunduacán, Tabasco, CP 86691, Mexico.
| |
Collapse
|
47
|
Na M, Zhao Y, Rina S, Wang R, Liu X, Tong Z, Zhang J. Residues, potential source and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface water of the East Liao River, Jilin Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163977. [PMID: 37164080 DOI: 10.1016/j.scitotenv.2023.163977] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
The environmental risks posed by polycyclic aromatic hydrocarbons (PAHs) and the diversity of their anthropogenic origins make them a global issue. Therefore, it is of utmost significance for protecting the aquatic environment and the growth of neighboring populations to identify their possible origins and ecological risk. Here, we detail the contamination profiles of 15 PAHs found in the East Liao River's surface waters in Jilin Province and use the receptor model Absolute Principal Component Analysis - Multiple Linear Regression (APCS-MLR) and diagnostic ratios method to identify the primary potential sources of pollution. Based on the natural hazard risk formation theory (NHRFT), an ecological risk assessment (ERA) model for PAHs in the East Liao River was developed. The method assesses the ecological risk status of PAHs by integrating the risk quotient (RQ) approach and the DPSIRM (driving force, pressure, state, impact, response, management) conceptual framework. Total concentrations in the surface water body were between 396.42 and 624.06 ng/L, with an average of 436.99 ng/L. The source research revealed that coal, biomass, and traffic emission sources are the most likely PAH contributors to the East Liao River. The ERA found that the majority of the sites' locations of the study were at low risk for PAHs in surface water bodies (30.7 % and 32.2 %, respectively), while only a tiny percentage of sites were at high or very high risk (1.8 % and 13.6 %). The study results provide theoretical support for the East Liao River's ecological, environmental protection, and policy formulation.
Collapse
Affiliation(s)
- Mula Na
- College of Environment, Northeast Normal University, Changchun 130024, China; Department of Environment, Institute of Natural Hazards, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Yunmeng Zhao
- College of Environment, Northeast Normal University, Changchun 130024, China; Department of Environment, Institute of Natural Hazards, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Su Rina
- College of Environment, Northeast Normal University, Changchun 130024, China; Department of Environment, Institute of Natural Hazards, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Rui Wang
- College of Environment, Northeast Normal University, Changchun 130024, China; Department of Environment, Institute of Natural Hazards, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Xingpeng Liu
- College of Environment, Northeast Normal University, Changchun 130024, China; Department of Environment, Institute of Natural Hazards, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Zhijun Tong
- College of Environment, Northeast Normal University, Changchun 130024, China; Department of Environment, Institute of Natural Hazards, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Jiquan Zhang
- College of Environment, Northeast Normal University, Changchun 130024, China; Department of Environment, Institute of Natural Hazards, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| |
Collapse
|
48
|
Yu Z, Xiang M, Ma R, Yi C, Hu G, Chen X, Liu Y, Yu Y. Development of human health criteria in China for benzo[a]pyrene: A comparison of deterministic and probabilistic approaches. CHEMOSPHERE 2023; 320:138104. [PMID: 36773677 DOI: 10.1016/j.chemosphere.2023.138104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Human health water quality criteria (HHWQC) for benzo[a]pyrene (BaP) in Chinese rivers and lakes were established using both deterministic and probabilistic approaches. Results showed that the national bioaccumulation factor (BAF) values for BaP at trophic levels 2, 3, and 4 were 342 L/kg, 199 L/kg, and 196 L/kg, respectively. The probabilistic HHWQC for BaP was 0.00407 μg/L for both water and organisms consumption and 0.00488 μg/L for organisms consumption only, which provide a more adequate protection than the deterministic HHWQC. Approximately 32.1% of the studied waters in China exceeded the derived HHWQC, which is likely to have adverse health effects and need be considered more attention. The derived HHWQC for BaP is soly based on Chinese exposure-related activity patterns and field-measured BAFs in surface freshwaters in China, which is important to provide a scientific basis for establishing or revising water quality standards (WQS) and risk management of BaP in water.
Collapse
Affiliation(s)
- Ziling Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Chuan Yi
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Hubei Academy of Ecological and Environmental Sciences, Wuhan, 430072, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xichao Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yupei Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Ecology and Environment, Guangzhou, 510655, China.
| |
Collapse
|
49
|
Wu Y, Hu Q, Zeng X, Xu L, Liang Y, Yu Z. Co-occurrence of polycyclic aromatic hydrocarbons and their oxygenated derivatives in indoor dust from various microenvironments in Guangzhou, China: levels, sources, and potential human health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57006-57016. [PMID: 36930318 DOI: 10.1007/s11356-023-26476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
For decades, the presence and potential health risk of polycyclic aromatic hydrocarbons (PAHs) in indoor dust have been extensively investigated while with limited attention to oxygenated PAHs (OPAHs). In this study, we collected 45 indoor dust from four microenvironments in Guangzhou City, China, and then focused on the co-occurrence of 16 PAHs and 8 OPAHs and their potential carcinogenic risk to humans. The ΣPAHs concentrations, dominated by 4-6 ring PAHs, ranged from 1761 to 14,290 ng/g (mean of 6058 ng/g) without significant difference in the different microenvironments (Tukey, p > 0.05). The OPAHs were observed with concentrations from 250 to 5160 ng/g (mean of 1646 ng/g), and anthraquinone (AQ) was identified as the main OPAHs with significantly high levels in the residential environment than in instrumental rooms. Notably, AQ dominated over the other target analytes in dust in this study. Our results indicated that PAHs and OPAHs in indoor dust were from outdoor environments, which mainly originated from vehicular exhaust and biomass/coal combustion. A potential cancer risk of PAHs and OPAHs to local adults and children was observed via inhalation, ingestion, and dermal absorption, with the main contribution from benzo[a]pyrene and dibenz[a,h]anthracene.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Qiongpu Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Liang Xu
- Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330029, China
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
50
|
Chakravarty P, Deka H, Chowdhury D. Anthracene removal potential of green synthesized titanium dioxide nanoparticles (TiO 2-NPs) and Alcaligenes faecalis HP8 from contaminated soil. CHEMOSPHERE 2023; 321:138102. [PMID: 36764617 DOI: 10.1016/j.chemosphere.2023.138102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Anthracene biodegradation potential has been studied in liquid culture and soil microcosm environment by employing green synthesized TiO2 nanoparticles (NPs) and Alcaligenes faecalis HP8. The bacterium was isolated from crude oil contaminated soil, while TiO2 nanoparticles were synthesized using Paenibacillus sp. HD1PAH and Cyperus brevifolius which have PAHs remediation abilities. The dual application of TiO2 nanoparticles and Alcaligenes faecalis HP8 decreases anthracene concentration up to 21.3% in liquid at the end of 7 days and 37.9% in the soil treatments after completion of 30 days. Besides, the GC-MS analysis revealed production of five metabolites including 1,2-anthracenedihydrodiol; 6,7-benzocoumarin; 3-hydroxy-2-naphthoic acid; salicylic acid and 9,10-anthraquinone at different time interval of the treatments. Anthracene degradation pathway confirms the breakdown of three ring anthracene to one ring salicylic acid. Additionally, soil dehydrogenase, urease, alkaline phosphatase, catalase and amylase activities increased up to 4.09 folds, 8.6 folds, 4.4 folds, 3.6 folds and 2.1 folds respectively after the combined treatments of TiO2 nanoparticles and Alcaligenes faecalis HP8. The bacterial biomass and residual anthracene concentration were found to be negatively correlated. Finally, the study brings into light a novel anthracene biodegradation pathway and provides a new dimension in nano assisted bacterial remediation.
Collapse
Affiliation(s)
- Paramita Chakravarty
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati, 781014, Assam, India
| | - Hemen Deka
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati, 781014, Assam, India.
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati, 781035, India
| |
Collapse
|