1
|
Wang Z, Thakur C, Bi Z, Qiu Y, Zhang W, Ji H, Venkatesan AK, Cherukuri S, Liu KJ, Haley JD, Mao X, Meliker J, Chen F. 1,4-Dioxane Induces Epithelial-Mesenchymal Transition and Carcinogenesis in an Nrf2-Dependent Manner. J Extracell Vesicles 2025; 14:e70072. [PMID: 40304624 PMCID: PMC12042698 DOI: 10.1002/jev2.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/22/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
The carcinogenic potential of the environmental pollutant 1,4-dioxane (1,4-D) in humans is not yet fully understood or recognised. In this study, we provide evidence that 1,4-D acts as a carcinogen in human epithelial cells. Using the human bronchial epithelial cell line BEAS-2B, with or without CRISPR-Cas9-mediated Nrf2 knockout, we demonstrate that continuous exposure to environmentally relevant concentrations of 1.25-20 ppm 1,4-D over 2 months induces malignant transformation in an Nrf2-dependent manner. Transformed cells exhibit enhanced anchorage-independent growth in soft agar, increased migration and invasion, and tumorigenic potential in a xenograft mouse model. Integrated RNA sequencing and proteomics analyses reveal that 1,4-D robustly activates Nrf2 signalling, driving extracellular vesicle (EV) biogenesis and cargo loading with syndecan 4 (SDC4) and other proteins, including COL12A1, CAPG and NNMT, which are associated with epithelial-mesenchymal transition (EMT) and cancer metastasis. Nrf2 knockout reduces SDC4 expression and its incorporation into EVs, leading to decreased EV uptake by recipient cells. Unlike EVs from 1,4-D-transformed WT cells, which enhance the proliferation, migration and invasion of recipient cells, EVs from 1,4-D-transformed Nrf2 KO cells exhibit a diminished capacity to promote these EMT properties. Furthermore, we demonstrate that the Nrf2 target gene SDC4, induced by 1,4-D and enriched in EVs, plays a critical role in EV uptake by recipient cells, thereby facilitating EMT propagation. Collectively, our findings suggest that 1,4-D is a human carcinogen, with its carcinogenicity largely dependent on Nrf2 activation, which orchestrates the biogenesis of EVs with EMT-promoting functions.
Collapse
Affiliation(s)
- Ziwei Wang
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Chitra Thakur
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Zhuoyue Bi
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Yiran Qiu
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Wenxuan Zhang
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Haoyan Ji
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Arjun K. Venkatesan
- Civil Engineering, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
- Department of Civil and Environmental EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| | - Sashank Cherukuri
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Ke Jian Liu
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - John D. Haley
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Xinwei Mao
- Department of Civil Engineering, College of Engineering and Applied SciencesStony Brook UniversityStony BrookNew YorkUSA
- New York State Center for Clean Water TechnologyStony Brook UniversityStony BrookNew YorkUSA
| | - Jaymie Meliker
- Department of Family, Population and Preventive Medicine, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Fei Chen
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| |
Collapse
|
2
|
Ashirov T, Lim J, Robles A, Puangsamlee T, Fritz PW, Crochet A, Wang X, Hewson C, Iacomi P, Miljanić OŠ, Coskun A. Porous Organic Polymers Incorporating Shape-Persistent Cyclobenzoin Macrocycles for Organic Solvent Separation. Angew Chem Int Ed Engl 2025; 64:e202423809. [PMID: 39804699 DOI: 10.1002/anie.202423809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
The recovery and separation of organic solvents is highly important for the chemical industry and environmental protection. In this context, porous organic polymers (POPs) have significant potential owing to the possibility of integrating shape-persistent macrocyclic units with high guest selectivity. Here, we report the synthesis of a macrocyclic porous organic polymer (np-POP) and the corresponding model compound by reacting the cyclotetrabenzil naphthalene octaketone macrocycle with 1,2,4,5-tetraaminobenzene and 1,2-diaminobenzene, respectively, under solvothermal conditions. Co-crystallization of the macrocycle and the model compound with various solvent molecules revealed their size-selective inclusion within the macrocycle. Building on this finding, the np-POP with a hierarchical pore structure and a surface area of 579 m2 g-1 showed solvent uptake strongly correlated with their kinetic diameters. Solvents with kinetic diameters below 0.6 nm - such as acetonitrile and dichloromethane - showed high uptake capacities exceeding 7 mmol g-1. Xylene separation tests revealed a high overall uptake (~34 wt %), with o-xylene displaying a significantly lower uptake (~10 wt % less than other isomers), demonstrating the possibility of size and shape selective separation of organic solvents.
Collapse
Affiliation(s)
- Timur Ashirov
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland
| | - Jay Lim
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, TX 77204-5003, United States
| | - Alexandra Robles
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, TX 77204-5003, United States
| | - Thamon Puangsamlee
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, TX 77204-5003, United States
| | - Patrick W Fritz
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland
| | - Aurelien Crochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland
| | - Xiqu Wang
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, TX 77204-5003, United States
| | - Connor Hewson
- Surface Measurement Systems Ltd., 5 Wharfside, Rosemont Road, Alperton, Middlesex, HA0 4PE, United Kingdom
| | - Paul Iacomi
- Surface Measurement Systems Ltd., 5 Wharfside, Rosemont Road, Alperton, Middlesex, HA0 4PE, United Kingdom
| | - Ognjen Š Miljanić
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, TX 77204-5003, United States
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71408, Vietnam
| | - Ali Coskun
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland
| |
Collapse
|
3
|
Phan H, Gueret R, Martínez‐Pardo P, Valiente A, Jaworski A, Slabon A, Martín‐Matute B. Synthesis of Benzoic Acids from Electrochemically Reduced CO 2 Using Heterogeneous Catalysts. CHEMSUSCHEM 2025; 18:e202401084. [PMID: 39310956 PMCID: PMC11790006 DOI: 10.1002/cssc.202401084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 11/06/2024]
Abstract
A method for the synthesis of benzoic acids from aryl iodides using two of the most abundant and sustainable feedstocks, carbon dioxide (CO2) and water, is disclosed. Central to this method is an effective and selective electrochemical reduction of CO2 (eCO2RR) to CO, which mitigates unwanted dehalogenation reactions occurring when H2 is produced via the hydrogen evolution reaction (HER). In a 3-compartment set-up, CO2 was reduced to CO electrochemically by using a surface-modified silver electrode in aqueous electrolyte. The ex-situ generated CO further underwent hydroxycarbonylation of aryl iodides by MOF-supported palladium catalyst in excellent yields at room temperature. The method avoids the direct handling of hazardous CO gas and gives a wide range of benzoic acid derivatives. Both components of the tandem system can be recycled for several consecutive runs while keeping a high catalytic activity.
Collapse
Affiliation(s)
- Ha Phan
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| | - Robin Gueret
- Department of Materials and Environmental ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| | - Pablo Martínez‐Pardo
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| | - Alejandro Valiente
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| | - Aleksander Jaworski
- Department of Materials and Environmental ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| | - Adam Slabon
- Department of Materials and Environmental ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
- Faculty of Mathematics and Natural SciencesChair of Inorganic ChemistryUniversity of WuppertalGaußstraße 2042219WuppertalGermany
| | - Belén Martín‐Matute
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| |
Collapse
|
4
|
Mooney FA, Kelly JR, Warren JL, Deziel NC. Demographic inequities and cumulative environmental burdens within communities near superfund sites on Long Island, New York. Health Place 2025; 91:103409. [PMID: 39799904 PMCID: PMC11792615 DOI: 10.1016/j.healthplace.2024.103409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
Nassau and Suffolk Counties of Long Island, New York are densely populated and contain 34 federally-designated and 449 state-designated Superfund sites, potentially exposing communities to toxic releases. We conducted a distributive justice analysis assessing proximity to Superfund sites, community socio-demographics, and other environmental burdens. Socio-demographic and environmental variables for 665 census tracts were obtained from the United States Census and Environmental Protection Agency's Environmental Justice Screening and Mapping Tool. Hierarchical Bayesian spatial Poisson regression models evaluated the relationship between socio-demographic and environmental variables and counts of Superfund sites per census tract. Analyses were further stratified by county and site type (Federal versus State). A 10% increase in low-income residents was associated with a 47% increase in Superfund sites (Risk Ratio [RR]: 1.47; 95% credible interval (CI): 1.20-1.81). A 10% increase in Hispanic/Latino residents was associated with a 20% increase (RR: 1.20; 95%CI: 1.02-1.42). Higher PM2.5 concentrations (RR:1.64, 95% CI: 1.09-2.48), higher toxic air releases (RR: 1.27, 95%CI: 1.03-1.61), and greater proximity to underground gas storage tanks (RR: 1.27, 95%CI: 1.09-1.48) were associated with increases in Superfund counts. Stratified analyses revealed that low-income residents are concentrated near state not federal Superfund sites. County stratification found that only Suffolk County residents near Superfund sites have increased lead exposure potential, and Black residents in Suffolk (not Nassau) were more likely to live near Superfund sites. We observed localized distributive inequities in community demographics near Superfund sites on Long Island, and communities near Superfund sites are more likely to experience other environmental burdens.
Collapse
Affiliation(s)
- Fintan A Mooney
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College St., New Haven, CT, USA
| | - Jill R Kelly
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College St., New Haven, CT, USA
| | - Joshua L Warren
- Yale School of Public Health, Department of Biostatistics, 60 College St., New Haven, CT, USA
| | - Nicole C Deziel
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College St., New Haven, CT, USA.
| |
Collapse
|
5
|
Wang Q, Du Y, Li W, Wang C, Zhang J, Yang M, Yu J. Treatability of odorous dioxanes/dioxolanes in source water: How does molecular flexibility and pre-oxidation affect odorant adsorption. WATER RESEARCH 2024; 266:122364. [PMID: 39276475 DOI: 10.1016/j.watres.2024.122364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Odorous dioxanes and dioxolanes, a class of cyclic acetals often produced as byproducts in polyester resin manufacturing, are problematic in drinking water treatment due to their low odor thresholds and resistance to conventional treatment technology. Our research focuses on the removal of ten dioxane/dioxolane compounds through oxidation and adsorption processes, exploring the key molecular properties that govern the treatmentability. We discovered that both chlorination and permanganate oxidation were largely ineffective at degrading cyclic acetals, achieving less than 20% removal even at high applicable doses. Conversely, powdered activated carbon (PAC) adsorption proved to be a more effective method, with a removal of > 90% at a PAC dosage of 10 mg/L for seven out of ten compounds. The presence of natural organic matter (NOM) reduced PAC adsorbability for all odorants, but the deterioration level substantially varied and mostly affected by structural flexibility as indicated by the number of rotatable bonds. The results of both the experimental investigation and molecular simulation corroborated the hypothesis that more rotatable bonds (from one to three here) are indicative of greater structural flexibility, which in consequence determines the susceptibility of cyclic acetals to NOM competitive adsorption. Increased structural flexibility could facilitate greater entry into silt-like micropores or achieve preferential adsorption sites with more compatible morphology against NOM competition. When pre-oxidation (chlorination and permanganate oxidation) and adsorption were applied sequentially, additional low molecular weight NOM components produced by pre-oxidation resulted in intensified NOM competition and decreased odorant adsorbability. If this combination is inevitably required for algae and odorant control, it would be beneficial to utilize a wise screen for oxidants and a reduced oxidant dose (less than 2 mg/L) to mitigate the deterioration of odorant adsorption. This study elucidates the roles of structural flexibility in influencing the treatability of dioxanes and dioxolanes, extending beyond the solely well-established effects of hydrophobicity. It also presents rational practice guidelines for the combination of pre-oxidation and adsorption in addressing odor incidents associated with dioxane and dioxolane compounds.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Yuning Du
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Wentao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, 210023 Nanjing, China
| | - Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Junzhi Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
6
|
Rafat M, Ghazy MA, Nasr M. Phycoremediation of 1,4 dioxane-laden wastewater: A Techno-economic and sustainable development approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122387. [PMID: 39243638 DOI: 10.1016/j.jenvman.2024.122387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Microalgal tolerance to emerging contaminants (ECs) such as 1,4 dioxane (DXN) and its impact on phycoremediation performance, algal growth, biomolecules generated, and recycling the produced biomass for biochar production has been rarely reported. Hence, Chlorella vulgaris was cultivated in DXN-free wastewater (WW1) and 100 mg L-1 DXN-laden wastewater (WW2) in 1-liter photobioreactors with an operating volume of 800 ml under controlled conditions: temperature (25 ± 1 °C), light intensity (351 μmol m-2s-1), and photoperiod (12 h light:12 h dark). Interestingly, this microalgal-based system achieved up to 32.79% removal efficiency of DXN in WW2. In addition, there was no significant difference in the removal of COD (90.6% and 86.8%) and NH4-N (74.5% and 76.8%) between WW1 and WW2, respectively. Moreover, the variation in C. vulgaris growth, pigments, lipid, and carbohydrate contents between the two applied wastewaters was negligible. However, there was a significant increase in the protein yield upon exposure to DXN, suggesting the ability of C. vulgaris to secrete various antioxidant and degrading enzymes to detoxify the contaminant. These results were validated by FTIR, SEM, and EDX analysis of C. vulgaris biomass with and without DXN exposure. The harvested biomass was thermally treated at 350 °C for 60 min in an oxygen-free environment. The biochars generated from both algal systems were characterized by comparable morphologies and elemental profiles with sufficient C and N contents, indicating their applicability to enhance the soil properties. The economic evaluation of the combined phycoremediation/pyrolysis system demonstrated a net profit of 596 USD⋅y-1 with a payback period of 6.2 years and fulfilled the objectives of several sustainable development goals (SDGs). This is the first study to point to C. vulgaris as a robust microalgal strain in remediating DXN-laden wastewater accompanied by the potential recyclability of the biomass produced for biochar production.
Collapse
Affiliation(s)
- May Rafat
- Biotechnology Program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt; Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, 21526, Egypt
| | - Mohamed A Ghazy
- Biotechnology Program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt; Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| | - Mahmoud Nasr
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt; Sanitary Engineering Department, Faculty of Engineering, Alexandria University, P.O. Box 21544, Alexandria, 21526, Egypt
| |
Collapse
|
7
|
Wang Y, Charkoftaki G, Orlicky DJ, Davidson E, Aalizadeh R, Sun N, Ginsberg G, Thompson DC, Vasiliou V, Chen Y. CYP2E1 in 1,4-dioxane metabolism and liver toxicity: insights from CYP2E1 knockout mice study. Arch Toxicol 2024; 98:3241-3257. [PMID: 39192018 PMCID: PMC11500436 DOI: 10.1007/s00204-024-03811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 08/29/2024]
Abstract
1,4-Dioxane (DX), an emerging water contaminant, is classified as a Group 2B liver carcinogen based on animal studies. Understanding of the mechanisms of action of DX liver carcinogenicity is important for the risk assessment and control of this environmental pollution. Previous studies demonstrate that high-dose DX exposure in mice through drinking water for up to 3 months caused liver mild cytotoxicity and oxidative DNA damage, a process correlating with hepatic CYP2E1 induction and elevated oxidative stress. To access the role of CYP2E1 in DX metabolism and liver toxicity, in the current study, male and female Cyp2e1-null mice were exposed to DX in drinking water (5000 ppm) for 1 week or 3 months. DX metabolism, redox and molecular investigations were subsequently performed on male Cyp2e1-null mice for cross-study comparisons to similarly treated male wildtype (WT) and glutathione (GSH)-deficient Gclm-null mice. Our results show that Cyp2e1-null mice of both genders were resistant to DX-induced hepatocellular cytotoxicity. In male Cyp2e1-null mice exposed to DX for 3 months, firstly, DX metabolism to β-hydroxyethoxyacetic acid was reduced to ~ 36% of WT levels; secondly, DX-induced hepatic redox dysregulation (lipid peroxidation, GSH oxidation, and activation of NRF2 antioxidant response) was substantially attenuated; thirdly, liver oxidative DNA damage was at a comparable level to DX-exposed WT mice, accompanied by suppression of DNA damage repair response; lastly, no aberrant proliferative or preneoplastic lesions were noted in DX-exposed livers. Overall, this study reveals, for the first time, that CYP2E1 is the main enzyme for DX metabolism at high dose and a primary contributor to DX-induced liver oxidative stress and associated cytotoxicity. High dose DX-induced genotoxicity may occur via CYP2E1-independent pathway(s), potentially involving impaired DNA damage repair.
Collapse
Affiliation(s)
- Yewei Wang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - David J Orlicky
- Department of Pathology, School of Medicine, Anschutz Medical Center, University of Colorado, University of Colorado, Aurora, CO, 80045, USA
| | - Emily Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Reza Aalizadeh
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Ning Sun
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Gary Ginsberg
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - David C Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA.
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA.
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA.
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA.
| |
Collapse
|
8
|
Day MW, Daley C, Wu Y, Pathmaraj M, Verner MA, Caron-Beaudoin É. Altered oxidative stress and antioxidant biomarkers concentrations in pregnant individuals exposed to oil and gas sites in Northeastern British Columbia. Toxicol Sci 2024; 201:73-84. [PMID: 38897649 PMCID: PMC11347777 DOI: 10.1093/toxsci/kfae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Northeastern British Columbia is a region of prolific unconventional oil and gas (UOG) activity. UOG activity can release volatile organic compounds (VOCs) which can elevate oxidative stress and disrupt antioxidant activity in exposed pregnant individuals, potentially increasing the risk of adverse pregnancy outcomes. This study measured biomarkers of oxidative stress and antioxidant activity in pooled urine samples of 85 pregnant individuals living in Northeastern British Columbia, to analyze associations between indoor air VOCs, oil and gas well density and proximity metrics, and biomarker concentrations. Concentrations of catalase, superoxide dismutase (SOD), glutathione S-transferase, total antioxidant capacity, 6-hydroxymelatonin sulfate (aMT6s), malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and 8-isoprostane were measured using assay kits. Associations between exposure metrics and biomarker concentrations were determined using multiple linear regression models adjusted for biomarker-specific covariables. UOG proximity was associated with decreased SOD and 8-OHdG. Decreased 8-OHdG was associated with increased proximity to all wells. Decreased aMT6s were observed with increased indoor air hexanal concentrations. MDA was negatively associated with indoor air 1,4-dioxane concentrations. No statistically significant associations were found between other biomarkers and exposure metrics. Although some associations linked oil and gas activity to altered oxidative stress and antioxidant activity, the possibility of chance findings due to the large number of tests cannot be discounted. This study shows that living near UOG wells may alter oxidative stress and antioxidant activity in pregnant individuals. More research is needed to elucidate underlying mechanisms and to what degree UOG activity affects oxidative stress and antioxidant activity.
Collapse
Affiliation(s)
- Matthew W Day
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Coreen Daley
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Yifan Wu
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Maduomethaa Pathmaraj
- Department of Health and Society, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Centre de Recherche en santé Publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC H3C 3J7, Canada
| | - Élyse Caron-Beaudoin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
- Department of Health and Society, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| |
Collapse
|
9
|
Del Regno R, Della Sala P, Santonoceta GDG, Neri P, De Rosa M, Talotta C, Sgarlata C, De Simone A, Gaeta C. Under the Influence of Water: Molecular Recognition of Organic Hydrophilic Molecules in Water with a Prismarene Host Driven by Hydration Effects. Chemistry 2024; 30:e202401734. [PMID: 38850206 DOI: 10.1002/chem.202401734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
A water-soluble prism[5]arene host can form endo-cavity complexes with hydrophilic organic substances in water by displacing frustrated water molecules from its deep cavity. Water molecules structured at both rims of the prismarene host can mediate hydrogen bonding interactions with the guest. Water-mediated hydrogen bonding interactions were invoked here to elucidate the elevated binding affinities and selectivity of the prismarene host toward hydrophilic organic guests. We show that water at the interface of a host-guest complex can act as an extension of the host structure, facilitating the accommodation of neutral guests within the binding site. This study highlights the crucial role of water in facilitating supramolecular interactions between a deep-cavity prismarene host and organic hydrophilic guests in aqueous medium.
Collapse
Affiliation(s)
- Rocco Del Regno
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II, Fisciano, I-84084, Italy
| | - Paolo Della Sala
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II, Fisciano, I-84084, Italy
| | - Giuseppina D G Santonoceta
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, I-95125, Catania, Italy
| | - Placido Neri
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II, Fisciano, I-84084, Italy
| | - Margherita De Rosa
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II, Fisciano, I-84084, Italy
| | - Carmen Talotta
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II, Fisciano, I-84084, Italy
| | - Carmelo Sgarlata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, I-95125, Catania, Italy
| | - Alfonso De Simone
- Dipartimento di Farmacia, Università di Napoli, Via Domenico Montesano, 49, I-80131, Napoli, Italy
| | - Carmine Gaeta
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II, Fisciano, I-84084, Italy
| |
Collapse
|
10
|
Bach C, Boiteux V, Dauchy X. France-Wide Monitoring of 1,4-Dioxane in Raw and Treated Water: Occurrence and Exposure Via Drinking Water Consumption. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:95-104. [PMID: 39085588 PMCID: PMC11377507 DOI: 10.1007/s00244-024-01078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024]
Abstract
In recent years, 1,4-dioxane has emerged as a pollutant of increasing concern following widespread detection in the aquatic environment of several countries. This persistent contaminant with specific physical and chemical properties can be rapidly dispersed and transported to river banks, groundwater and drinking water. Given the limited data on its occurrence in France, it was considered necessary to assess the potential exposure of the French population to this compound in drinking water. An analytical method based on solid-phase extraction (SPE) combined with gas chromatography tandem mass spectrometry (GC-MS/MS) was developed and validated during this study with a limit of quantification (LOQ) of 0.15 µg/L. Recoveries in natural water matrices ranged from 113 to 117% with a relative bias not exceeding 17%. This method was used for a nationwide campaign at almost 300 sites, evenly distributed over 101 French départements (administrative units), including some that were overseas. Of the 587 samples analysed, only 8% had a concentration that was greater than or equal to the LOQ. 1,4-Dioxane was detected mainly (63%) in raw and treated water from sites associated with historical industrial practices related to the use of chlorinated solvents. Concentrations of 1,4-dioxane ranging from 0.19 to 2.85 µg/L were observed in the raw water and from 0.18 to 2.46 µg/L in the treated water. Drinking water treatment plants using ozonation, granular activated carbon and chlorination have limited effectiveness in the removal of 1,4-dioxane. The results of this study are the first step towards bridging the knowledge gap in the occurrence of 1,4-dioxane in France.
Collapse
Affiliation(s)
- Cristina Bach
- Nancy Laboratory for Hydrology, Water Chemistry Unit, ANSES, 40 rue Lionnois, 54000, Nancy, France.
| | - Virginie Boiteux
- Nancy Laboratory for Hydrology, Water Chemistry Unit, ANSES, 40 rue Lionnois, 54000, Nancy, France
| | - Xavier Dauchy
- Nancy Laboratory for Hydrology, Water Chemistry Unit, ANSES, 40 rue Lionnois, 54000, Nancy, France
| |
Collapse
|
11
|
Sharlin S, Lozano RA, Josephson TR. Monte Carlo Simulations of Water Pollutant Adsorption at Parts-per-Billion Concentration: A Study on 1,4-Dioxane. J Chem Theory Comput 2024; 20:5854-5865. [PMID: 38984690 DOI: 10.1021/acs.jctc.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
1,4-dioxane, an emerging water pollutant with high production volumes, is a probable human carcinogen. The inadequacy of conventional treatment processes demonstrates the need for an effective remediation strategy. Crystalline nanoporous materials are cost-effective adsorbents due to their high capacity and selective separation in mixtures. This study explores the potential of all-silica zeolites for the separation of 1,4-dioxane from water. These zeolites are highly hydrophobic and can preferentially adsorb nonpolar molecules from mixtures. We investigated six zeolite frameworks (BEA, EUO, FER, IFR, MFI, and MOR) using Monte Carlo simulations in the Gibbs ensemble. The simulations indicate high selectivity by FER and EUO, especially at low pressures, which we attribute to pore sizes and shapes with a greater affinity to 1,4-dioxane. We also demonstrate a Monte Carlo simulation workflow using gauge cells to model the adsorption of an aqueous solution of 1,4-dioxane at a 0.35 ppb concentration. We quantify 1,4-dioxane and water coadsorption and observe selectivities ranging from 1.1 × 105 in MOR to 8.7 × 106 in FER. We also demonstrate that 1,4-dioxane is in the infinite dilution regime in the aqueous phase at this concentration. This simulation technique can be extended to model other emerging water contaminants such as perfluoroalkyl and polyfluoroalkyl substances (PFAS), chlorofluorocarbons, and others, which are also found in extremely low concentrations.
Collapse
Affiliation(s)
- Samiha Sharlin
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Rodrigo A Lozano
- Department of Chemistry, University of California Irvine, 1120 E Peltason Dr, Irvine, California 92617, United States
| | - Tyler R Josephson
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
12
|
Chen W, Rigby K, Lim HJ, Kim DJ, Kim JH. Tackling Challenges of Long-Term Electrode Stability in Electrochemical Treatment of 1,4-Dioxane in Groundwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39014918 PMCID: PMC11296307 DOI: 10.1021/acs.est.4c03189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Electrochemical advanced oxidation is an appealing point-of-use groundwater treatment option for removing pollutants such as 1,4-dioxane, which is difficult to remove by using conventional separation-based techniques. This study addresses a critical challenge in employing electrochemical cells in practical groundwater treatment─electrode stability over long-term operation. This study aims to simulate realistic environmental scenarios by significantly extending the experimental time scale, testing a flow-through cell in addition to a batch reactor, and employing an electrolyte with a conductivity equivalent to that of groundwater. We first constructed a robust titanium suboxide nanotube mesh electrode that is utilized as both anode and cathode. We then implemented a pulsed electrolysis strategy in which reactive oxygen species are generated during the anodic cycle, and the electrode is regenerated during the cathodic cycle. Under optimized conditions, single-pass treatment through the cell (effective area: 2 cm2) achieved a remarkable 65-70% removal efficiency for 1,4-dioxane in the synthetic groundwater for over 100 h continuous operation at a low current density of 5 mA cm-2 and a water flux of 6 L m-2 h-1. The electrochemical cell and pulse treatment scheme developed in this study presents a critical advancement toward practical groundwater treatment technology.
Collapse
Affiliation(s)
- Wensi Chen
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Zachry
Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kali Rigby
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Hyun Jeong Lim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department
of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic
of Korea
| | - David J. Kim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jae-Hong Kim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
13
|
Rasal RK, Badsha I, Shellaiah M, Subramanian K, Gayathri A, Hirad AH, Kaliaperumal K, Devasena T. Fabrication of Curcumin-Based Electrochemical Nanosensors for the Detection of Environmental Pollutants: 1,4-Dioxane and Hydrazine. BIOSENSORS 2024; 14:291. [PMID: 38920595 PMCID: PMC11202126 DOI: 10.3390/bios14060291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
This work reports the development of novel curcuminoid-based electrochemical sensors for the detection of environmental pollutants from water. In this study, the first set of electrochemical experiments was carried out using curcumin-conjugated multi-walled carbon nanotubes (MWCNT-CM) for 1,4-dioxane detection. The MWCNT-CM/GCE showed good sensitivity (103.25 nA nM-1 cm-2 in the linear range 1 nM to 1 µM), with LOD of 35.71 pM and LOQ of 108.21 pM. The second set of electrochemical experiments was carried out with bisdemethoxy curcumin analog quantum dots (BDMCAQD) for hydrazine detection. The BDMCAQD/GCE exhibited good sensitivity (74.96 nA nM-1 cm-2 in the linear range 100 nM to 1 µM), with LOD of 10 nM and LOQ of 44.93 nM. Thus, this work will serve as a reference for the fabrication of metal-free electrochemical sensors using curcuminoids as the redox mediator for the enhanced detection of environmental pollutants.
Collapse
Affiliation(s)
- Renjith Kumar Rasal
- Centre for Nanoscience and Technology, Anna University, Chennai 600025, India; (R.K.R.); (I.B.)
| | - Iffath Badsha
- Centre for Nanoscience and Technology, Anna University, Chennai 600025, India; (R.K.R.); (I.B.)
| | - Muthaiah Shellaiah
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, India;
| | - Kumaran Subramanian
- P. G. Research Department of Microbiology, Sri Sankara Arts and Science College (Autonomous), Kanchipuram 631561, India;
| | - Abinaya Gayathri
- Unit of Marine Biomaterials and Natural Product Chemistry Research, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, India;
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Kumaravel Kaliaperumal
- Unit of Marine Biomaterials and Natural Product Chemistry Research, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, India;
| | - Thiyagarajan Devasena
- Centre for Nanoscience and Technology, Anna University, Chennai 600025, India; (R.K.R.); (I.B.)
| |
Collapse
|
14
|
Gonçalves JO, Strieder MM, Silva LFO, Dos Reis GS, Dotto GL. Advanced technologies in water treatment: Chitosan and its modifications as effective agents in the adsorption of contaminants. Int J Biol Macromol 2024; 270:132307. [PMID: 38740151 DOI: 10.1016/j.ijbiomac.2024.132307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Chitosan, derived from the abundant biopolymer chitin, has emerged as a promising option for water treatment due to its intrinsic bioavailability. This review emphasizes the notable characteristics of chitosan, which allow for various modifications, expanding its applications. The polymer's effectiveness in adsorbing contaminants, particularly in advanced water treatment technologies, is highlighted. The review underscores the potential of chitosan-based hybrid materials, including nanocomposites, hydrogels, membranes, films, sponges, nanoparticles, microspheres, and flakes, as innovative alternatives to traditional chemical-based adsorbents. The advantages of using these materials in wastewater treatment, especially in removing heavy metals, dyes, and emerging compounds, are explored. The study delves into the mechanisms involved in wastewater treatment with chitosan, emphasizing the interactions between the polymer and various contaminants. Additionally, the application of chitosan as a contaminant removal agent in a post-pandemic context is addressed, considering the challenges related to waste management and environmental preservation. The analysis highlights the potential contribution of chitosan in mitigating environmental impacts post-pandemic, offering practical solutions for treating contaminated effluents and promoting sustainability. The study addresses current obstacles and prospects for chitosan-based wastewater treatment, emphasizing its promising role in sustainable water management.
Collapse
Affiliation(s)
- Janaína Oliveira Gonçalves
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia.
| | - Monique Martins Strieder
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, Rua Pedro Zaccaria 1300, Limeira, São Paulo 13484-350, Brazil
| | | | - Glaydson Simões Dos Reis
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
15
|
Samadi A, Kermanshahi Pour A, Beims RF, Xu CC. Delignified porous wood as biofilm support for 1,4-dioxane-degrading bacterial consortium. ENVIRONMENTAL TECHNOLOGY 2024; 45:2541-2557. [PMID: 36749305 DOI: 10.1080/09593330.2023.2178330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Delignified porous wood samples were used as carriers for biofilm formation of a bacterial consortium with the ability to degrade 1,4-dioxane (DX). The delignification treatment of the natural wood resulted in higher porosity, formation of macropores, increase in surface roughness and hydrophilicity of the treated wood pieces. These superior properties of two types of treated carriers (respectively, A and B) compared to the untreated wood resulted in 2.19 ± 0.52- and 2.66 ± 0.23-fold higher growth of biofilm. Moreover, analysis of the fatty acid profiles indicated an increase in proportion of the saturated fatty acids during the biofilm formation, characterising an enhancement in rigidity and hydrophobicity of the biofilms. DX initial concentration of 100 mg/L was completely degraded (detection limit 0.01 mg/L) in 24 and 32 h using the treated A and B woods, while only 25.84 ± 5.95% was removed after 32 h using the untreated wood. However, fitting the DX biodegradation data to the Monod model showed a lower maximum specific growth rate for biofilm (0.0276 ± 0.0018 1/h) versus planktonic (0.0382 ± 0.0024 1/h), because of gradual accumulation of inactive cells in the biofilm. Findings of this study can contribute to the knowledge of biofilm formation regarding the physical/chemical properties of biofilm carriers and be helpful to the ongoing research on bioremediation of DX.
Collapse
Affiliation(s)
- Aryan Samadi
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Canada
| | - Azadeh Kermanshahi Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Canada
| | - Ramon Filipe Beims
- Department of Biochemical and Chemical Engineering, University of Western Ontario, London, Canada
| | - Chunbao Charles Xu
- Department of Biochemical and Chemical Engineering, University of Western Ontario, London, Canada
| |
Collapse
|
16
|
Underhill V, Allison G, Huntzinger H, Mason C, Noreck A, Suyama E, Vera L, Wylie S. Increases in trade secret designations in hydraulic fracturing fluids and their potential implications for environmental health and water quality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119611. [PMID: 38056330 PMCID: PMC10872473 DOI: 10.1016/j.jenvman.2023.119611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
Hydraulic fracturing is an increasingly common method of oil and gas extraction across the United States. Many of the chemicals used in hydraulic fracturing processes have been proven detrimental to human and environmental health. While disclosure frameworks have advanced significantly in the last 20 years, the practice of withholding chemical identities as "trade secrets" or "proprietary claims" continues to represent a major absence in the data available on hydraulic fracturing. Here, we analyze rates of trade secret claims using FracFocus, a nationwide database of hydraulic fracturing data, from January 1, 2014 to December 31, 2022. We use the open-source tool Open-FF, which collates FracFocus data, makes it accessible for systematic analysis, and performs several quality-control measures. We found that the use by mass of chemicals designated as trade secrets has increased over the study time period, from 728 million pounds in 2014 to 2.96 billion pounds in 2022 (or a 43.7% average yearly increase). A total of 10.4 billion pounds of chemicals were withheld as trade secrets in this time period. The water volume used (and therefore total mass of fracturing fluid) per fracturing job has shown a large increase from 2014 to 2022, which partly explains the increase in mass of chemicals withheld as trade secrets over this time period, even as total fracturing jobs and individual counts of proprietary records have decreased. Our analysis also shows increasing rates of claiming proppants (which can include small grains of sand, ceramic, or other mineral substances used to prop open fractures) as proprietary. However, the mean and median masses of non-proppant constituents designated as trade secrets have also increased over the study period. We also find that the total proportion of all disclosures including proprietary designations has increased by 1.1% per year, from 79.3% in 2014 to 87.5% in 2022. In addition, most disclosures designate more than one chemical record as proprietary: trade secret withholding is most likely to apply to 10-25% of all records in an individual disclosure. We also show the top ten reported purposes that most commonly include proprietary designations, after removing vague or multiple entries, the first three of which are corrosion inhibitors, friction reducers, and surfactants. Finally, we report the top ten operators and suppliers using and supplying proprietary chemicals, ranked by mass used or supplied, over our study period. These results suggest the importance of revisiting the role of proprietary designations within state and federal disclosure mechanisms.
Collapse
Affiliation(s)
- Vivian Underhill
- Social Science Environmental Health Research Institute, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
| | - Gary Allison
- Department of Geography, The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA
| | - Holden Huntzinger
- University of Michigan School of Information, 105 S State St, Ann Arbor, MI 48109, USA
| | - Cole Mason
- Center for Environmental Studies, Williams College, 880 Main St, Williamstown, MA 01267, USA
| | - Abigail Noreck
- College of Science, Northeastern University, 115 Richards Hall, 360 Huntington Ave, Boston, MA 02115, USA
| | - Emi Suyama
- Bouvé College of Health Science, Northeastern University, Behrakis Health Sciences Center, 360 Huntington Ave, Boston, MA 02115, USA
| | - Lourdes Vera
- Department of Sociology, University at Buffalo, 430 Park Hall, Buffalo, NY 14260, USA; Department of Environment and Sustainability, University at Buffalo, 430 Park Hall, Buffalo, NY 14260, USA
| | - Sara Wylie
- Department of Sociology and Anthropology and Social Science Environmental Health Research Institute, Northeastern University, 1135 Tremont St, Boston, MA 02120, USA
| |
Collapse
|
17
|
Kim HB, Yoo JI, Kang SC, Song JK. Green Solvent Selection for All Solution-Processed Inverted Quantum Dot Light Emitting Diode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304051. [PMID: 37612793 DOI: 10.1002/smll.202304051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Quantum-dot light-emitting diodes (QD-LEDs) have gained attention as potential display technologies. However, the solvents used to dissolve a polymeric hole transport layer (HTL) are hazardous to both humans and the environment. Additionally, intermixing the HTL and QD layers presents a significant challenge when fabricating inverted QD-LEDs. Here, a green solvent selection procedure to achieve good device performance and environmental safety in QD-LEDs is established. This procedure utilizes Hansen solubility parameters and surface roughness to identify a set of solvents that do not lower the device performance by avoiding interlayer mixing or a rough interface. The CHEM21 solvent selection guide is used to screen for environmentally hazardous solvents. Finally, cyclopentanone (CPO) is selected as the optimal HTL solvent from among 16 candidates. Using CPO improves the maximum luminescence by ≈1.6 times and the maximum current efficiency by ≈12.6 times, compared to that of conventional devices using hazardous chlorobenzene. Solvent selection is critical for the fabrication of green and high-performance inverted QD-LEDs, particularly for large display panels that require n-type oxide thin-film transistors.
Collapse
Affiliation(s)
- Hyo-Bin Kim
- Department of Display Convergence Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae-In Yoo
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sung-Cheon Kang
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jang-Kun Song
- Department of Display Convergence Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
18
|
Tian K, Zhang Y, Chen R, Tan D, Zhong M, Yao D, Dong Y, Liu Y. Self-assembling a 1,4-dioxane-degrading consortium and identifying the key role of Shinella sp. through dilution-to-extinction and reculturing. Microbiol Spectr 2023; 11:e0178723. [PMID: 37882576 PMCID: PMC10714792 DOI: 10.1128/spectrum.01787-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/26/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Assembling a functional microbial consortium and identifying key degraders involved in the degradation of 1,4-dioxane are crucial for the design of synergistic consortia used in enhancing the bioremediation of 1,4-dioxane-contaminated sites. However, due to the vast diversity of microbes, assembling a functional consortium and identifying novel degraders through a simple method remain a challenge. In this study, we reassembled 1,4-dioxane-degrading microbial consortia using a simple and easy-to-operate method by combining dilution-to-extinction and reculture techniques. We combined differential analysis of community structure and metabolic function and confirmed that Shinella species have a stronger 1,4-dioxane degradation ability than Xanthobacter species in the enriched consortium. In addition, a new dioxane-degrading bacterium was isolated, Shinella yambaruensis, which verified our findings. These results demonstrate that DTE and reculture techniques can be used beyond diversity reduction to assemble functional microbial communities, particularly to identify key degraders in contaminant-degrading consortia.
Collapse
Affiliation(s)
- Kun Tian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Yue Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Environment, Hohai University, Nanjing, China
| | - Ruihuan Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ding Tan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Ming Zhong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Dandan Yao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Yuanhua Dong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Yun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
19
|
Hasan MMH, Rocky MMH, Niamat Ullah M, Khan MA, Naher SR, Akhtar S. Molecular interaction in the binary mixtures of tetrahydrofuran and 1,4-dioxane with methanol. New UNIFAC-VISCO interaction parameters for cyclic ethers. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
20
|
Lee CS, Wang M, Clyde PM, Mao X, Brownawell BJ, Venkatesan AK. 1,4-Dioxane removal in nitrifying sand filters treating domestic wastewater: Influence of water matrix and microbial inhibitors. CHEMOSPHERE 2023; 324:138304. [PMID: 36871806 DOI: 10.1016/j.chemosphere.2023.138304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/08/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
1,4-Dioxane is a recalcitrant pollutant in water and is ineffectively removed during conventional water and wastewater treatment processes. In this study, we demonstrate the application of nitrifying sand filters to remove 1,4-dioxane from domestic wastewater without the need for bioaugmentation or biostimulation. The sand columns were able to remove 61 ± 10% of 1,4-dioxane on average (initial concentration: 50 μg/L) from wastewater, outperforming conventional wastewater treatment approaches. Microbial analysis revealed the presence of 1,4-dioxane degrading functional genes (dxmB, phe, mmox, and prmA) to support biodegradation being the dominant degradation pathway. Adding antibiotics (sulfamethoxazole and ciprofloxacin), that temporarily inhibited the nitrification process during the dosing period, showed a minor effect in 1,4-dioxane removal (6-8% decline, p < 0.05), suggesting solid resilience of the 1,4-dioxane-degrading microbial community in the columns. Columns amended with sodium azide significantly (p < 0.05) depressed 1,4-dioxane removal in the early stage of dosing but followed by a gradual increase of the removal over time to >80%, presumably due to a shift in the microbial community toward azide-resistant 1,4-dioxane degrading microbes (e.g., fungi). This study demonstrated for the first time the resilience of the 1,4-dioxane-degrading microorganisms during antibiotic shocks, and the selective enrichment of efficient 1,4-dioxane-degrading microbes after azide poisoning. Our observation could provide insights into designing better 1,4-dioxane remediation strategies in the future.
Collapse
Affiliation(s)
- Cheng-Shiuan Lee
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794, USA; Research Center for Environmental Changes, Academia Sinica, Taipei, 11529, Taiwan
| | - Mian Wang
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794, USA; Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Patricia M Clyde
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794, USA; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Xinwei Mao
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794, USA; Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Bruce J Brownawell
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794, USA; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Arjun K Venkatesan
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794, USA; Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794, USA; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
21
|
Reid E, Igou T, Zhao Y, Crittenden J, Huang CH, Westerhoff P, Rittmann B, Drewes JE, Chen Y. The Minus Approach Can Redefine the Standard of Practice of Drinking Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7150-7161. [PMID: 37074125 PMCID: PMC10173460 DOI: 10.1021/acs.est.2c09389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chlorine-based disinfection for drinking water treatment (DWT) was one of the 20th century's great public health achievements, as it substantially reduced the risk of acute microbial waterborne disease. However, today's chlorinated drinking water is not unambiguously safe; trace levels of regulated and unregulated disinfection byproducts (DBPs), and other known, unknown, and emerging contaminants (KUECs), present chronic risks that make them essential removal targets. Because conventional chemical-based DWT processes do little to remove DBPs or KUECs, alternative approaches are needed to minimize risks by removing DBP precursors and KUECs that are ubiquitous in water supplies. We present the "Minus Approach" as a toolbox of practices and technologies to mitigate KUECs and DBPs without compromising microbiological safety. The Minus Approach reduces problem-causing chemical addition treatment (i.e., the conventional "Plus Approach") by producing biologically stable water containing pathogens at levels having negligible human health risk and substantially lower concentrations of KUECs and DBPs. Aside from ozonation, the Minus Approach avoids primary chemical-based coagulants, disinfectants, and advanced oxidation processes. The Minus Approach focuses on bank filtration, biofiltration, adsorption, and membranes to biologically and physically remove DBP precursors, KUECs, and pathogens; consequently, water purveyors can use ultraviolet light at key locations in conjunction with smaller dosages of secondary chemical disinfectants to minimize microbial regrowth in distribution systems. We describe how the Minus Approach contrasts with the conventional Plus Approach, integrates with artificial intelligence, and can ultimately improve the sustainability performance of water treatment. Finally, we consider barriers to adoption of the Minus Approach.
Collapse
Affiliation(s)
- Elliot Reid
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Thomas Igou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yangying Zhao
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - John Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and The Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Bruce Rittmann
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and The Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
22
|
Underhill V, Fiuza A, Allison G, Poudrier G, Lerman-Sinkoff S, Vera L, Wylie S. Outcomes of the Halliburton Loophole: Chemicals regulated by the Safe Drinking Water Act in US fracking disclosures, 2014-2021. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:120552. [PMID: 36368552 PMCID: PMC10187986 DOI: 10.1016/j.envpol.2022.120552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 05/18/2023]
Abstract
Hydraulic fracturing (fracking) has enabled the United States to lead the world in gas and oil production over the past decade; 17.6 million Americans now live within a mile of an oil or gas well (Czolowski et al., 2017). This major expansion in fossil fuel production is possible in part due to the 2005 Energy Policy Act and its "Halliburton Loophole," which exempts fracking activity from regulation under the Safe Drinking Water Act (SDWA). To begin quantifying the environmental and economic impacts of this loophole, this study undertakes an aggregate analysis of chemicals that would otherwise be regulated by SDWA within FracFocus, an industry-sponsored fracking disclosure database. This paper quantifies the total disclosures and total mass of these chemicals used between 2014 and 2021, examines trends in their use, and investigates which companies most use and supply them. We find that 28 SDWA-regulated chemicals are reported in FracFocus, and 62-73% of all disclosures (depending on year) report at least one SDWA-regulated chemical. Of these, 19,700 disclosures report using SDWA-regulated chemicals in masses that exceed their reportable quantities as defined under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Finally, while the most common direct-supplier category is "company name not reported," Halliburton is the second-most named direct supplier of SWDA regulated chemicals. Halliburton is also the supplier most frequently associated with fracks that use SDWA regulated chemicals. These results show the necessity of a more robust and federally mandated disclosure system and suggest the importance of revisiting exemptions such as the Halliburton Loophole.
Collapse
Affiliation(s)
- Vivian Underhill
- Social Science Environmental Health Research Institute, Northeastern University, USA.
| | - Angelica Fiuza
- Bouvé College of Health Sciences, Northeastern University, USA
| | | | - Grace Poudrier
- Department of Sociology & Anthropology, Northeastern University, USA
| | | | - Lourdes Vera
- Department of Sociology and Department of Environment and Sustainability, University at Buffalo, USA
| | - Sara Wylie
- Department of Sociology & Anthropology and Department of Health Sciences, Northeastern University, USA
| |
Collapse
|
23
|
Samadi A, Kermanshahi-Pour A, Budge SM, Huang Y, Jamieson R. Biodegradation of 1,4-dioxane by a native digestate microbial community under different electron accepting conditions. Biodegradation 2023; 34:283-300. [PMID: 36808270 DOI: 10.1007/s10532-023-10019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/06/2023] [Indexed: 02/21/2023]
Abstract
The potential of a native digestate microbial community for 1,4-dioxane (DX) biodegradation was evaluated under low dissolved oxygen (DO) concentrations (1-3 mg/L) under different conditions in terms of electron acceptors, co-substrates, co-contaminants and temperature. Complete DX biodegradation (detection limit of 0.01 mg/L) of initial 25 mg/L was achieved in 119 days under low DO concentrations, while complete biodegradation happened faster at 91 and 77 days, respectively in nitrate-amended and aerated conditions. In addition, conducting biodegradation at 30 ˚C showed that the time required for complete DX biodegradation in unamended flasks reduced from 119 days in ambient condition (20-25 °C) to 84 days. Oxalic acid, which is a common metabolite of DX biodegradation was identified in the flasks under different treatments including unamended, nitrate-amended and aerated conditions. Furthermore, transition of the microbial community was monitored during the DX biodegradation period. While the overall richness and diversity of the microbial community decreased, several families of known DX-degrading bacteria such as Pseudonocardiaceae, Xanthobacteraceae and Chitinophagaceae were able to maintain and grow in different electron-accepting conditions. The results suggested that DX biodegradation under low DO concentrations, where no external aeration was provided, is possible by the digestate microbial community, which can be helpful to the ongoing research for DX bioremediation and natural attenuation.
Collapse
Affiliation(s)
- Aryan Samadi
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada.
| | - Suzanne M Budge
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, NS, B3H 4R2, Canada
| | - Yannan Huang
- Centre for Water Resources Studies, Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS, Canada
| | - Rob Jamieson
- Centre for Water Resources Studies, Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
24
|
Tang Y. A Review of Challenges and Opportunities for Microbially Removing 1,4-Dioxane to Meet Drinking-Water and Groundwater Guidelines. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 31:100419. [PMID: 36582465 PMCID: PMC9794176 DOI: 10.1016/j.coesh.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
1,4-Dioxane is an emerging contaminant in drinking-water sources and contaminated sites. Microbial removal of 1,4-dioxane has attracted a lot of attention, but faces a challenge: being not able to continuously metabolize 1,4-dioxane to below most drinking-water and groundwater guidelines. The 1,4-dioxane concentrations in most drinking-water sources and contaminated sites are too low to sustain biomass growth. This minireview discusses strategies that may potentially address the challenge. The strategies include: 1) finding oligotrophs for which the minimum 1,4-dioxane concentrations to sustain biomass are low, 2) determining conditions that maximize 1,4-dioxane co-metabolism or co-oxidation, 3) creating novel materials as biomass carriers and contaminant concentrators, and 4) lowering the life-cycle costs of technologies that combine biodegradation with (electro)chemical oxidation or phytoremediation.
Collapse
Affiliation(s)
- Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street Suite A130, Tallahassee, Florida 32310, USA
| |
Collapse
|
25
|
Mustafa B, Mehmood T, Wang Z, Chofreh AG, Shen A, Yang B, Yuan J, Wu C, Liu Y, Lu W, Hu W, Wang L, Yu G. Next-generation graphene oxide additives composite membranes for emerging organic micropollutants removal: Separation, adsorption and degradation. CHEMOSPHERE 2022; 308:136333. [PMID: 36087726 DOI: 10.1016/j.chemosphere.2022.136333] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
In the past two decades, membrane technology has attracted considerable interest as a viable and promising method for water purification. Emerging organic micropollutants (EOMPs) in wastewater have trace, persistent, highly variable quantities and types, develop hazardous intermediates and are diffusible. These primary issues affect EOMPs polluted wastewater on an industrial scale differently than in a lab, challenging membranes-based EOMP removal. Graphene oxide (GO) promises state-of-the-art membrane synthesis technologies and use in EOMPs removal systems due to its superior physicochemical, mechanical, and electrical qualities and high oxygen content. This critical review highlights the recent advancements in the synthesis of next-generation GO membranes with diverse membrane substrates such as ceramic, polyethersulfone (PES), and polyvinylidene fluoride (PVDF). The EOMPs removal efficiencies of GO membranes in filtration, adsorption (incorporated with metal, nanomaterial in biodegradable polymer and biomimetic membranes), and degradation (in catalytic, photo-Fenton, photocatalytic and electrocatalytic membranes) and corresponding removal mechanisms of different EOMPs are also depicted. GO-assisted water treatment strategies were further assessed by various influencing factors, including applied water flow mode and membrane properties (e.g., permeability, hydrophily, mechanical stability, and fouling). GO additive membranes showed better permeability, hydrophilicity, high water flux, and fouling resistance than pristine membranes. Likewise, degradation combined with filtration is two times more effective than alone, while crossflow mode improves the photocatalytic degradation performance of the system. GO integration in polymer membranes enhances their stability, facilitates photocatalytic processes, and gravity-driven GO membranes enable filtration of pollutants at low pressure, making membrane filtration more inexpensive. However, simultaneous removal of multiple contaminants with contrasting characteristics and variable efficiencies in different systems demands further optimization in GO-mediated membranes. This review concludes with identifying future critical research directions to promote research for determining the GO-assisted OMPs removal membrane technology nexus and maximizing this technique for industrial application.
Collapse
Affiliation(s)
- Beenish Mustafa
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Zhiyuan Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Abdoulmohammad Gholamzadeh Chofreh
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - Andy Shen
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Bing Yang
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Jun Yuan
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Chang Wu
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | | | - Wengang Lu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Weiwei Hu
- Jiangsu Industrial Technology Research Institute, Nanjing, 210093, China
| | - Lei Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China; Collaborative Innovation Centre of Advanced Microsctructures, Nanjing University, Nanjing, 210093, China.
| | - Geliang Yu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China; Collaborative Innovation Centre of Advanced Microsctructures, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
26
|
Tusher TR, Inoue C, Chien MF. Efficient biodegradation of 1,4-dioxane commingled with additional organic compound: Role of interspecies interactions within consortia. CHEMOSPHERE 2022; 308:136440. [PMID: 36116621 DOI: 10.1016/j.chemosphere.2022.136440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/15/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Microbial consortia-mediated biodegradation of 1,4-dioxane (1,4-D), an emerging water contaminant, is always a superior choice over axenic cultures. Thus, better understanding of the functions of coexisting microbes and their interspecies interactions within the consortia is crucial for predicting biodegradation efficiency and designing efficient 1,4-D-degrading microbial consortia. This study evaluated how microbial community compositions and interspecies interactions govern the microbial consortia-mediated 1,4-D biodegradation by investigating the biodegradability and microbial community dynamics of both enriched (N112) and synthetic (SCDs and SCDNs) microbial consortia in the absence or presence of additional organic compound (AOC). In the absence of AOC, N112 exhibited 100% 1,4-D biodegradation efficiency at a rate of 12.5 mg/L/d, whereas the co-occurrence of AOC resulted in substrate-dependent biodegradation inhibition and thereby reduced the biodegradation efficiency and activity (2.0-10.0 mg/L/d). The coexistence and negative influence of certain low-abundant non-degraders on both 1,4-D-degraders and key non-degraders in N112 was identified as the prime cause behind such biodegradation inhibition. Comparing with N112, SCDN-1 composed of 1,4-D-degraders and key non-degraders significantly improved the 1,4-D biodegradation efficiency in the presence of AOC, confirming the absence of negative influence of low-abundant non-degraders and cooperative interactions between 1,4-D-degraders and key non-degraders in SCDN-1. On the contrary, both two-species and three-species SCDs comprised of only 1,4-D-degraders resulted in lower 1,4-D biodegradation efficiency as compared to SCDN-1 under all treatment conditions, while max. 91% 1,4-D biodegradation occurred by SCDs in the absence of AOC. These results were attributed to the negative interaction among 1,4-D-degraders and the absence of complementary roles of key non-degraders in SCDs. The findings improve our understanding of how interspecies interactions can regulate the intrinsic abilities and functions of coexisting microbes during biodegradation in complex environments and provide valuable guidelines for designing highly efficient and robust microbial consortia for practical bioremediation of 1,4-D like emerging organic contaminants.
Collapse
Affiliation(s)
- Tanmoy Roy Tusher
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan; Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
27
|
Precise measurement of 1,
4‐dioxane
concentration in cleaning products: A review of the current state‐of‐the‐art. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Balas M, Villanneau R, Launay F. Bibliographic survey of the strategies implemented for the one-pot synthesis of cyclic carbonates from styrene and other alkenes using CO2 and green oxidants. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
29
|
Kikani M, Satasiya GV, Sahoo TP, Kumar PS, Kumar MA. Remedial strategies for abating 1,4-dioxane pollution-special emphasis on diverse biotechnological interventions. ENVIRONMENTAL RESEARCH 2022; 214:113939. [PMID: 35921903 DOI: 10.1016/j.envres.2022.113939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
1,4-dioxane is a heterocyclic ether used as a polar industrial solvent and are released as waste discharges. 1,4-dioxane deteriorates health and quality, thereby attracts concern by the environment technologists. The need of attaining sustainable development goals have resulted in search of an eco-friendly and technically viable treatment strategy. This extensive review is aimed to emphasis on the (a) characteristics of 1,4-dioxane and their occurrence in the environment as well as their toxicity, (b) remedial strategies, such as physico-chemical treatment and advanced oxidation techniques. Special reference to bioremediation that involves diverse microbial strains and their mechanism are highlighted in this review. The role of macronutrients, stimulants and other abiotic cofactors in the biodegradation of 1,4-dioxane is discussed lucidly. We have critically discussed the inducible enzymes, enzyme-based remediation, distinct instrumental method of analyses to know the fate of intermediates produced from 1,4-dioxane biotransformation. This comprehensive survey also tries to put forth the different toxicity assessment tools used in evaluating the extent of detoxification of 1,4-dioxane achieved through biotransforming mechanism. Conclusively, the challenges, opportunities, techno-economic feasibility and future prospects of implementing 1,4-dioxane through biotechnological interventions are also discussed.
Collapse
Affiliation(s)
- Mansi Kikani
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India
| | - Gopi Vijaybhai Satasiya
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India
| | - Tarini Prasad Sahoo
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India; Academy of Scientific and Innovative Research, Ghaziabad-201 002 (Uttar Pradesh), India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai-603 110 (Tamil Nadu), India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai-603 110 (Tamil Nadu), India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India; Academy of Scientific and Innovative Research, Ghaziabad-201 002 (Uttar Pradesh), India.
| |
Collapse
|
30
|
Wang Y, Charkoftaki G, Davidson E, Orlicky DJ, Tanguay RL, Thompson DC, Vasiliou V, Chen Y. Oxidative stress, glutathione, and CYP2E1 in 1,4-dioxane liver cytotoxicity and genotoxicity: insights from animal models. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 29:100389. [PMID: 37483863 PMCID: PMC10361651 DOI: 10.1016/j.coesh.2022.100389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
1,4-Dioxane (DX) is an emerging drinking water contaminant worldwide, which poses a threat to public health due to its demonstrated liver carcinogenicity and potential for human exposure. The lack of drinking water standards for DX is attributed to undetermined mechanisms of DX carcinogenicity. This mini-review provides a brief discussion of a series of mechanistic studies, wherein unique mouse models were exposed to DX in drinking water to elucidate redox changes associated with DX cytotoxicity and genotoxicity. The overall conclusions from these studies support a direct genotoxic effect by high dose DX and imply that oxidative stress involving CYP2E1 activation may play a causal role in DX liver genotoxicity and potentially carcinogenicity. The mechanistic data derived from these studies can serve as important references to refine the assessment of carcinogenic pathways that may be triggered at environmentally relevant low doses of DX in future animal and human studies.
Collapse
Affiliation(s)
- Yewei Wang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Emily Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - David J. Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Center, University of Colorado, Aurora, CO 80045, USA
| | - Robyn L. Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - David C. Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
31
|
Inoue D, Hisada K, Ike M. Effectiveness of tetrahydrofuran at enhancing the 1,4-dioxane degradation ability of activated sludge lacking prior exposure to 1,4-dioxane. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1707-1718. [PMID: 36240306 DOI: 10.2166/wst.2022.296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
1,4-dioxane (DX) is a contaminant of emerging concern in water environments. The enrichment of DX-degrading bacteria indigenous to activated sludge is key for the efficient biological removal of DX in wastewater. To identify an effective substrate, which enables the selective enrichment of DX-degrading bacteria and has lower toxicity and persistence than DX, this study explored the effectiveness of tetrahydrofuran (THF) at enhancing the DX degradation ability of activated sludge without historical exposure to DX. Although the activated sludge initially exhibited negligible ability to degrade DX (100 mg-C/L) as the sole carbon source, the repeated batch cultivation on THF could enrich bacterial populations capable of degrading DX, inducing the DX degradation ability in activated sludge as effectively as DX did. The THF-enrichment culture after 4 weeks degraded 100 mg-C/L DX almost completely within 21 d. Sequencing analyses revealed that soluble di-iron monooxygenase group 5C, including THF/DX monooxygenase, would play a dominant role in the initial oxidation of DX in THF-enrichment culture, which completely differed from the enrichment culture cultivated on DX. The results indicate that THF can be applied as an effective substrate to enhance the DX degradation ability of microbial consortia, irrespective of the intrinsic ability.
Collapse
Affiliation(s)
- Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan E-mail:
| | - Kazuki Hisada
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan E-mail:
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan E-mail:
| |
Collapse
|
32
|
Liu T, Yao B, Luo Z, Li W, Li C, Ye Z, Gong X, Yang J, Zhou Y. Applications and influencing factors of the biochar-persulfate based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155421. [PMID: 35472360 DOI: 10.1016/j.scitotenv.2022.155421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/17/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Biochar (BC) is a low-cost material rich in carbon, which is being used increasingly as a catalyst in persulfate-based advanced oxidation processes (PS-AOPs) for the remediation of groundwater and soil contaminated with organic compounds. In this work, a general summary of preparation methods and applications of various BC (i.e., pristine BC, magnetic BC, and chemically modified BC) in PS-AOPs is presented. Different influence factors (e.g., pH, anions, natural organic matter) for the degradation of organic compounds are discussed. Meanwhile, the influence of external energy (e.g., solar irradiation, UV-Vis, ultrasonic) is also mentioned. Furthermore, the advantage of different BC in PS-AOPs are compared. Finally, potential problems, challenges, and prospects in the application of biochar-persulfate based advanced oxidation processes (BCPS-AOPs) are discussed in the conclusion and perspective.
Collapse
Affiliation(s)
- Tianhao Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Bin Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Zirui Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wei Li
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi 562400, China.
| | - Changwu Li
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha 410100, China
| | - Ziyi Ye
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha 410100, China
| | - Xiaoxiang Gong
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
33
|
Yang J, Li Y, Yang Z, Shih K, Ying GG, Feng Y. Activation of ozone by peroxymonosulfate for selective degradation of 1,4-dioxane: Limited water matrices effects. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129223. [PMID: 35739743 DOI: 10.1016/j.jhazmat.2022.129223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The presence of 1,4-dioxane in various water streams poses a threat to the health of human beings. In this study, the oxidative combination of ozone with peroxymonosulfate (PMS) was for the first time used to remove 1,4-dioxane from water. Near complete abatement of 1,4-dioxane was achieved by ozone-PMS after reaction of only 15 min and the degradation kinetics was found to be positively correlated with doses of PMS and ozone. Ozone-PMS oxidation had the optimum performance at slight base pH values. Both sulfate radicals and hydroxyl radicals were generated in ozone-PMS oxidation and these radicals resulted in the degradation of 1,4-dioxane. The effects of common water constituents and real water matrices were investigated. It was found that bicarbonate ions with a concentration up to 10 mM had a slight promoting effect, while either chloride ions or natural organic matter inhibited only slightly the degradation. Meanwhile, no obvious difference in the degradation of 1,4-dioxane was found among the real water matrices and deionized water, which demonstrates that ozone-PMS oxidation has high tolerance and stability. The results from this study demonstrate that ozone-PMS may be a promising technology for the removal of 1,4-dioxane from various water matrices.
Collapse
Affiliation(s)
- Jingdong Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zequn Yang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yong Feng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
34
|
Neuwald IJ, Hübner D, Wiegand HL, Valkov V, Borchers U, Nödler K, Scheurer M, Hale SE, Arp HPH, Zahn D. Occurrence, Distribution, and Environmental Behavior of Persistent, Mobile, and Toxic (PMT) and Very Persistent and Very Mobile (vPvM) Substances in the Sources of German Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10857-10867. [PMID: 35868007 DOI: 10.1021/acs.est.2c03659] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances have been recognized as a threat to both the aquatic environment and to drinking water resources. These substances are currently prioritized for regulatory action by the European Commission, whereby a proposal for the inclusion of hazard classes for PMT and vPvM substances has been put forward. Comprehensive monitoring data for many PMT/vPvM substances in drinking water sources are scarce. Herein, we analyze 34 PMT/vPvM substances in 46 surface water, groundwater, bank filtrate, and raw water samples taken throughout Germany. Results of the sampling campaign demonstrated that known PMT/vPvM substances such as 1H-benzotriazole, melamine, cyanuric acid, and 1,4-dioxane are responsible for substantial contamination in the sources of German drinking water. In addition, the results revealed the widespread presence of the emerging substances 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and diphenylguanidine (DPG). A correlation analysis showed a pronounced co-occurrence of PMT/vPvM substances associated predominantly with consumer or professional uses and also demonstrated an inhomogeneous co-occurrence for substances associated mainly with industrial use. These data were used to test the hypothesis that most PMT/vPvM substances pass bank filtration without significant concentration reduction, which is one of the main reasons for introducing PMT/vPvM as a hazard class within Europe.
Collapse
Affiliation(s)
- Isabelle J Neuwald
- Hochschule Fresenius gemGmbH, Limburger Straße 2, 65510 Idstein, Germany
| | - Daniel Hübner
- Hochschule Fresenius gemGmbH, Limburger Straße 2, 65510 Idstein, Germany
| | - Hanna L Wiegand
- IWW Zentrum Wasser, Moritzstraße 26, 45476 Mülheim a. d. Ruhr, Germany
| | - Vassil Valkov
- IWW Zentrum Wasser, Moritzstraße 26, 45476 Mülheim a. d. Ruhr, Germany
| | - Ulrich Borchers
- IWW Zentrum Wasser, Moritzstraße 26, 45476 Mülheim a. d. Ruhr, Germany
| | - Karsten Nödler
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | - Marco Scheurer
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | - Sarah E Hale
- Norwegian Geotechnical Institute, Postboks 3930 Ulleval Stadion, 0806 Oslo, Norway
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute, Postboks 3930 Ulleval Stadion, 0806 Oslo, Norway
- Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Daniel Zahn
- Hochschule Fresenius gemGmbH, Limburger Straße 2, 65510 Idstein, Germany
| |
Collapse
|
35
|
Dai C, Wu H, Wang X, Zhao K, Lu Z. Network and meta-omics reveal the cooperation patterns and mechanisms in an efficient 1,4-dioxane-degrading microbial consortium. CHEMOSPHERE 2022; 301:134723. [PMID: 35489450 DOI: 10.1016/j.chemosphere.2022.134723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/09/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
1,4-Dioxane is an emerging wastewater contaminant with probable human carcinogenicity. Our current understanding of microbial interactions during 1,4-dioxane biodegradation process in mixed cultures is limited. Here, we applied metagenomic, metatranscriptomic and co-occurrence network analyses to unraveling the microbial cooperation between degrader and non-degraders in an efficient 1,4-dioxane-degrading microbial consortium CH1. A 1,4-dioxane-degrading bacterium, Ancylobacter polymorphus ZM13, was isolated from CH1 and had a potential of being one of the important degraders due to its high relative abundance, highly expressed monooxygenase genes tmoABCDEF and high betweenness centrality of networks. The strain ZM13 cooperated obviously with 6 bacterial genera in the network, among which Xanthobacter and Mesorhizobium could be involved in the intermediates metabolism with responsible genes encoding alcohol dehydrogenase (adh), aldehyde dehydrogenase (aldh), glycolate oxidase (glcDEF), glyoxylate carboligase (gcl), malate synthase (glcB) and 2-isopropylmalate synthase (leuA) differentially high-expressed. Also, 1,4-dioxane facilitated the shift of biodiversity and function of CH1, and those cooperators cooperated with ZM13 in the way of providing amino acids or fatty acids, as well as relieving environmental stresses to promote biodegradation. These results provide new insights into our understandings of the microbial interactions during 1,4-dioxane degradation, and have important implications for predicting microbial cooperation and constructing efficient and stable synthetic 1,4-dioxane-degrading consortia for practical remediation.
Collapse
Affiliation(s)
- Chuhan Dai
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuejun Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
36
|
Fathima T K S, Banu A A, Devasena T, Ramaprabhu S. A novel, highly sensitive electrochemical 1,4-dioxane sensor based on reduced graphene oxide-curcumin nanocomposite. RSC Adv 2022; 12:19375-19383. [PMID: 35865592 PMCID: PMC9251910 DOI: 10.1039/d2ra01789j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
1,4-Dioxane is a carcinogenic, non-biodegradable, organic water pollutant which is used as a solvent in various industries. It is also formed as an undesired by-product in the cosmetic and pharmaceutical industry. Given its carcinogenicity and ability to pollute, it is desirable to develop a sensitive and selective sensor to detect it in drinking water and other water bodies. Current works on this sensor are very few and involve complex metal oxide composite systems. A sensitive electrochemical sensor for 1,4-dioxane was developed by modifying a glassy carbon electrode (GCE) with a reduced graphene oxide–curcumin (rGO–CM) nanocomposite synthesized by a simple solution approach. The prepared rGO–CM was characterized by X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy, Raman spectroscopy, UV-Vis spectroscopy, and Scanning Electron Microscopy (SEM). The rGO–CM/GCE sensor was employed for the detection of 1,4-dioxane in the range of 0.1–100 μM. Although, the detection range is narrower compared to reported literature, the sensitivity obtained for the proposed sensor is far superior. Moreover, the limit of detection (0.13 μM) is lower than the dioxane detection target defined by the World Health Organization (0.56 μM). The proposed rGO–CM/GCE also showed excellent stability and good recovery values in real sample (tap water and drinking water) analysis. Reduced graphene oxide–curcumin (rGO–CM) nanocomposite was prepared from graphite oxide using curcumin. The rGO–CM/GCE was used for highly sensitive 1,4-dioxane detection. The LOD obtained (0.13 μM) was lower than the WHO guideline value.![]()
Collapse
Affiliation(s)
- Sana Fathima T K
- Alternative Energy and Nanotechnology Laboratory, Nano Functional Materials and Technology Centre (NFMTC), Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| | - Arshiya Banu A
- Centre for Nanoscience and Technology, A.C. Tech Campus, Anna University Chennai 600025 India
| | - T Devasena
- Centre for Nanoscience and Technology, A.C. Tech Campus, Anna University Chennai 600025 India
| | - Sundara Ramaprabhu
- Alternative Energy and Nanotechnology Laboratory, Nano Functional Materials and Technology Centre (NFMTC), Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
37
|
Wang C, Yu J, Chen Y, Dong Y, Su M, Dong H, Wang Z, Zhang D, Yang M. Co-occurrence of odor-causing dioxanes and dioxolanes with bis(2-chloro-1-methylethyl) ether in Huangpu River source water and fates in O 3-BAC process. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128435. [PMID: 35183052 DOI: 10.1016/j.jhazmat.2022.128435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
In recent years, dioxanes and dioxolanes have been intermittently detected in water environment and have caused several offensive drinking water odor incidents worldwide. In this study, the co-occurrence of eight dioxanes, twelve dioxolanes and bis(2-chloro-1-methylethyl) ether was investigated in Huangpu River watershed to explore potential sources and contributions to septic/chemical odor. Totally 8 dioxanes and dioxolanes were detected in river, with 1,4-dioxane (212 -8310 ng/L) and 2,5,5-trimethyl-1,3-dioxane (n.d.-133 ng/L) as the dominated dioxanes, 2-methyl-1,3-dioxolane (49.5 -2278 ng/L), 2-ethy-4-methyl-1,3-dioxolane (n.d.-167 ng/L) and 1,3-dioxolane (n.d.-225 ng/L) as the major dioxolanes. Bis(2-chloro-1-methylethyl) ether was detected (n.d.-1094 ng/L) with significant correlation with dioxanes and dioxolanes, illustrating their similar polyester resin-related industrial origins. 2-Ethy-4-methyl-1,3-dioxolane, 2,5,5-trimethyl-1,3-dioxane and bis(2-chloro-1-methylethyl) ether with individual maximum odor activity value above 1, should contribute to septic/chemical odor in Huangpu River water. The increased concentrations of these chemicals in the downstream of some industrial areas illustrated the association with industrial discharge. Fates in a waterworks using the river water as source water were further explored. The adopting ozone-biological activated carbon treatment could permit a relatively high removal for bis(2-chloro-1-methylethyl) ether and 2,5,5-trimethyl-1,3-dioxane (> 80%), while limited removal for other chemicals. This study provides valuable information for the management of drinking source water and water environment.
Collapse
Affiliation(s)
- Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yi Chen
- Wuxi Water Group Co., Ltd., Wuxi 214031, China.
| | - Yunxing Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ming Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zheng Wang
- Shanghai National Engineering Research Center of Urban Water Resources Co., Ltd., Shanghai 200082, China.
| | - Dong Zhang
- Shanghai National Engineering Research Center of Urban Water Resources Co., Ltd., Shanghai 200082, China.
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
38
|
Satasiya GV, Bhojani G, Kikani M, Amit C, Dineshkumar R, Kumar MA. Response surface algorithm for improved biotransformation of 1,4-dioxane using Staphylococcus capitis strain AG. ENVIRONMENTAL RESEARCH 2022; 205:112511. [PMID: 34871598 DOI: 10.1016/j.envres.2021.112511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
The present investigation reports the biotransformation of an endrocrine disrupting agent; 1,4-dioxane through bacterial metabolism. Initially, potential bacterial isolates capable of surviving with minimum 1,4-dioxane were screened from industrial wastewater. Thereafter, screening was done to isolate a bacteria which can biotransform higher concentration (1000 mg/L) of 1,4-dioxane. Morphological and biochemical features were examined prior establishing their phylogenetic relationships and the bacterium was identified as Staphylococcus capitis strain AG. Biotransformation experiments were tailored using response surface tool and predictions were made to elucidate the opimal conditions. Critical factors influencing bio-transformation efficiency such as tetrahydrofuran, availability of 1,4-dioxane and inoculum size were varied at three different levels as per the central composite design for ameliorating 1,4-dioxane removal. Functional attenuation of 1,4-dioxane by S. capitis strain AG were understood using spectroscopic techniques were significant changes in the peak positions and chemical shifts were visualized. Mass spectral profile revealed that 1.5 (% v/v) S. capitis strain AG could completely (∼99%) remove 1000 mg/L 1,4-dioxane, when incubated with 2 μg/L tetrahydrofuran for 96 h. The toxicity of 1,4-dioxane and biotransformed products by S. capitis strain AG were tested on Artemia salina. The results of toxicity tests revealed that the metabolic products were less toxic as they exerted minimal mortality rate after 48 h exposure. Thus, this research would be the first to report the response prediction and precise tailoring of 1,4-dioxane biotransformation using S. captis strain AG.
Collapse
Affiliation(s)
- Gopi Vijaybhai Satasiya
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Gopal Bhojani
- Applied Phycology and Biotechnology Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Prades, India
| | - Mansi Kikani
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Chanchpara Amit
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Prades, India
| | - Ramalingam Dineshkumar
- Applied Phycology and Biotechnology Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Prades, India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Prades, India.
| |
Collapse
|
39
|
Efficacy of Continuous Flow Reactors for Biological Treatment of 1,4-Dioxane Contaminated Textile Wastewater Using a Mixed Culture. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The goal of this study was to evaluate the biodegradation of 1,4–dioxane using a mixed biological culture grown in textile wastewater sludge with 1,4–dioxane as the sole carbon source. The conditions for the long-term evaluation of 1,4–dioxane degradation were determined and optimized by batch scale analysis. Moreover, Monod’s model was used to determine the biomass decay rate and unknown parameters. The soluble chemical oxygen demand (sCOD) was used to determine the concentration of 1,4–dioxane in the batch test, and gas chromatography/mass spectrometry (GC/MS) was used to measure the concentrations via long-term wastewater analysis. Two types of reactors (continuous stirred reactor (CSTR) and plug flow reactor (PFR)) for the treatment of 1,4–dioxane from textile wastewater were operated for more than 120 days under optimized conditions. These used the mixed microbial culture grown in textile wastewater sludge and 1,4–dioxane as the sole carbon source. The results indicated efficient degradation of 1,4–dioxane by the mixed culture in the presence of a competitive inhibitor, with an increase in degradation time from 13.37 h to 55 h. A specific substrate utilization rate of 0.0096 mg 1,4–dioxane/mg MLVSS/h was observed at a hydraulic retention time of 20 h for 20 days of operation in a biomass concentration of 3000 mg/L produced by the mixed microbial culturing process. In the long-term analysis, effluent concentrations of 3 mg/L and <1 mg/L of 1,4–dioxane were observed for CSTR and PFR, respectively. The higher removal efficacy of PFR was due to the production of more MLVSS at 4000 mg/L compared to the outcome of 3000 mg/L in CSTR in a competitive environment.
Collapse
|
40
|
Environmental Potential for Microbial 1,4-Dioxane Degradation Is Sparse despite Mobile Elements Playing a Role in Trait Distribution. Appl Environ Microbiol 2022; 88:e0209121. [PMID: 35297726 DOI: 10.1128/aem.02091-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
1,4-Dioxane (dioxane) is an emerging contaminant of concern for which bioremediation is seen as a promising solution. To date, eight distinct gene families have been implicated in dioxane degradation, though only dioxane monooxygenase (DXMO) from Pseudonocardia dioxanivorans is routinely used as a biomarker in environmental surveys. In order to assess the functional and taxonomic diversity of bacteria capable of dioxane degradation, we collated existing, poorly-organized information on known biodegraders to create a curated suite of biomarkers with confidence levels for assessing 1,4-dioxane degradation potential. The characterized enzyme systems for dioxane degradation are frequently found on mobile elements, and we identified that many of the curated biomarkers are associated with other hallmarks of genomic rearrangements, indicating lateral gene transfer plays a role in dissemination of this trait. This is contrasted by the extremely limited phylogenetic distribution of known dioxane degraders, where all representatives belong to four classes within three bacterial phyla. Based on the curated set of expanded biomarkers, a search of more than 11,000 publicly available metagenomes identified a sparse and taxonomically limited distribution of potential dioxane degradation proteins. Our work provides an important and necessary structure to the current knowledge base for dioxane degradation and clarifies the potential for natural attenuation of dioxane across different environments. It further highlights a disconnect between the apparent mobility of these gene families and their limited distributions, indicating dioxane degradation may be difficult to integrate into a microorganism's metabolism. IMPORTANCE New regulatory limits for 1,4-dioxane in groundwater have been proposed or adopted in many countries, including the United States and Canada, generating a direct need for remediation options as well as better tools for assessing the fate of dioxane in an environment. A comprehensive suite of biomarkers associated with dioxane degradation was identified and then leveraged to examine the global potential for dioxane degradation in natural and engineered environments. We identified consistent differences in the dioxane-degrading gene families associated with terrestrial, aquatic, and wetland environments, indicating reliance on a single biomarker for assessing natural attenuation of dioxane is likely to miss key players. Most environments do not currently host the capacity for dioxane degradation-the sparse distribution of dioxane degradation potential highlights the need for bioaugmentation approaches over biostimulation of naturally occurring microbial communities.
Collapse
|
41
|
Li W, Xiao R, Lin H, Yang K, Li W, He K, Yang LH, Pu M, Li M, Lv S. Electro-activation of peroxymonosulfate by a graphene oxide/iron oxide nanoparticle-doped Ti 4O 7 ceramic membrane: mechanism of singlet oxygen generation in the removal of 1,4-dioxane. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127342. [PMID: 34634701 DOI: 10.1016/j.jhazmat.2021.127342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Electro-activation of peroxymonosulfate (PMS) has been widely investigated for the degradation of organic pollutants. Herein, we employ graphene oxide (GO)/Fe3O4 nanoparticles (NPs) doped into a Ti4O7 reactive electrochemical membrane through strong chemical bonding as the cathode to activate PMS for the degradation of 1,4-dioxane (1,4-D). The strong chemical interaction between GO, Fe3O4-NPs, and Ti4O7 via Fe-O---GO---O-Ti bonds enhances the electron-transfer efficiency and provides catalytically active sites that boost the electro-activation of PMS. As a result, the 1,4-D oxidation rate of the GO/Fe3O4-NPs@Ti4O7 REM cathode is ~3 times higher (7.21 × 10-3 min-1) than those of other Ti4O7 ceramic membranes, and 1O2 plays a key role (59.9%) in the degradation of 1,4-D. The 1O2 generation mechanism in the electro-activation process of PMS was systematically investigated, and we claimed that 1O2 is mainly generated from the precursors H2O2 and O2•-/HO2• rather than by O2 or •OH, as has been reported in previous studies. A flow-through mode test in the PMS electro-activation system is firstly reported, and the 1,4-D decay efficiency is 7.1 times higher than that obtained by a flow-by mode, showing that an improved PMS mass transfer efficiency enhances the conversion to reactive oxygen species.
Collapse
Affiliation(s)
- Wei Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Runlin Xiao
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Kui Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wei Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Kuanchang He
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Li-Hui Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Mengjie Pu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Mengyun Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Sihao Lv
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
42
|
Chen Y, Wang Y, Charkoftaki G, Orlicky DJ, Davidson E, Wan F, Ginsberg G, Thompson DC, Vasiliou V. Oxidative stress and genotoxicity in 1,4-dioxane liver toxicity as evidenced in a mouse model of glutathione deficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150703. [PMID: 34600989 PMCID: PMC8633123 DOI: 10.1016/j.scitotenv.2021.150703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 05/19/2023]
Abstract
1,4-Dioxane (DX) is a synthetic chemical used as a stabilizer for industrial solvents. Recent occurrence data show widespread and significant contamination of drinking water with DX in the US. DX is classified by the International Agency for Research on Cancer as a group 2B carcinogen with the primary target organ being the liver in animal studies. Despite the exposure and cancer risk, US EPA has not established a drinking water Maximum Contaminant Level (MCL) for DX and a wide range of drinking water targets have been established across the US and by Health Canada. The DX carcinogenic mechanism remains unknown; this information gap contributes to the varied approaches to its regulation. Our recent mice study indicated alterations in oxidative stress response accompanying DNA damage as an early change by high dose DX (5000 ppm) in drinking water. Herein, we report a follow-up study, in which we used glutathione (GSH)-deficient glutamate-cysteine ligase modifier subunit (Gclm)-null mice to investigate the role of redox homeostasis in DX-induced liver cytotoxicity and genotoxicity. Gclm-null and wild-type mice were exposed to DX for one week (1000 mg/kg/day by oral gavage) or three months (5000 ppm in drinking water). Subchronic exposure of high dose DX caused mild liver cytotoxicity. DX induced assorted molecular changes in the liver including: (i) a compensatory nuclear factor erythroid 2-related factor 2 (NRF2) anti-oxidative response at the early stage (one week), (ii) progressive CYP2E1 induction, (iii) development of oxidative stress, as evidenced by persistent NRF2 induction, oxidation of GSH pool, and accumulation of the lipid peroxidation by-product 4-hydroxynonenal, and (iv) elevations in oxidative DNA damage and DNA repair response. These DX-elicited changes were exaggerated in GSH-deficient mice. Collectively, the current study provides additional evidence linking redox dysregulation to DX liver genotoxicity, implying oxidative stress as a candidate mechanism of DX liver carcinogenicity.
Collapse
Affiliation(s)
- Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA.
| | - Yewei Wang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Center, University of Colorado, Aurora, CO 80045, USA
| | - Emily Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Fengjie Wan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Gary Ginsberg
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
43
|
Mondal U, Bej S, Hazra A, Mandal S, Pal TK, Banerjee P. Amine-substituent induced highly selective and rapid "turn-on" detection of carcinogenic 1,4-dioxane from purely aqueous and vapour phase with novel post-synthetically modified d 10-MOFs. Dalton Trans 2022; 51:2083-2093. [PMID: 35048912 DOI: 10.1039/d1dt03976h] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herein, an amine decorated Cd(II) metal-organic framework (MOF) with a uninodal 6-c topology was synthesized as a suitable platform for facile post-synthetic modification (PSM). The as-synthesized parent d10-MOF (1) with free -NH2 centers, when functionalized with two different carbonyl substituents (1-naphthaldehyde and benzophenone) of varying conjugation, produces two novel luminescent MOFs (LMOFs) viz.PSM-1 and PSM-2. The judicious incorporation of carbonyl substituents into the skeleton of 1 was rationalized via ESI-MS, 1H-NMR, FT-IR and PXRD analyses. Interestingly, both PSM-1 and PSM-2 show 'turn-on' luminescent behaviour in the presence of 1,4-dioxane with the limit of detection (LOD) as 1.079 ppm and 2.487 ppm, respectively, with prompt response time (∼55 s & ∼58 s, respectively). The inhibition of PET is comprehended to be the prime reason for luminescence enhancement upon interaction with the targeted analyte which was further validated from DFT calculations. In continuation, the PSM-MOFs were equally responsive towards 1,4-dioxane in several complex environmental matrices and cosmetic products. Additionally, vapor phase detection of 1,4-dioxane using PSM-MOFs has also been demonstrated as an additional advantage ensuring propagation of future research endeavour.
Collapse
Affiliation(s)
- Udayan Mondal
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India. .,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Sourav Bej
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India. .,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Abhijit Hazra
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India. .,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Sukdeb Mandal
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India. .,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Tapan K Pal
- Department of Chemistry, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar-382007, India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India. .,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| |
Collapse
|
44
|
Karges U, de Boer S, Vogel AL, Püttmann W. Implementation of initial emission mitigation measures for 1,4-dioxane in Germany: Are they taking effect? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150701. [PMID: 34634353 DOI: 10.1016/j.scitotenv.2021.150701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Since our comprehensive investigation of finished drinking water in Germany obtained from managed aquifer recharge systems in the period 2015-2016, which revealed widespread contamination with 1,4-dioxane, mitigation measures (integration of AOP units, shutdown or alteration of production processes) have been implemented at some sites. In this study, we conducted follow-up tests on surface water concentrations and associated finished drinking water concentrations in 2017/2018, to evaluate the effectiveness of these measures. Our findings demonstrate that the emission mitigation measures had considerably reducing effects on the average 1,4-dioxane drinking water concentrations for some of the previously severely affected areas (Lower Franconia: -54%, Passau: -88%). Conversely, at notoriously contaminated sites where neither monitoring nor mitigation measures were introduced, the drinking water concentrations stagnated or even increased. Drinking water concentrations determined via a modified US EPA method 522 ranged from below LOQ (0.034 μg/L) up to 1.68 μg/L in all drinking water samples investigated. In river water samples, the maximum concentration exceeded 10 μg/L. Effluents of wastewater treatments plants containing 1,4-dioxane (5 μg/L-1.75 mg/L) were also analyzed for other similar cyclic ethers by suspected target screening. Thus, 1,3-dioxolane and three other derivatives were tentatively identified in effluents from the polyester processing or manufacturing industry. 1,3-Dioxolane was present in concentrations >1.2 mg/L at one site, exceeding up to sevenfold the 1,4-dioxane concentration found there. At another site 2-methyl-1,3-dioxolane was still found 13 km downstream of the discharge point, indicating that ethers analogous to 1,4-dioxane should be further considered regarding their occurrence and fate in wastewater treatment and the aquatic environment.
Collapse
Affiliation(s)
- Ursula Karges
- Institute of Atmospheric and Environmental Sciences, Goethe-University Frankfurt am Main, Altenhöferallee 1, 60438 Frankfurt am Main, Germany.
| | - Sabrina de Boer
- Institute of Atmospheric and Environmental Sciences, Goethe-University Frankfurt am Main, Altenhöferallee 1, 60438 Frankfurt am Main, Germany; CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Alexander L Vogel
- Institute of Atmospheric and Environmental Sciences, Goethe-University Frankfurt am Main, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Wilhelm Püttmann
- Institute of Atmospheric and Environmental Sciences, Goethe-University Frankfurt am Main, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
45
|
Wu X, Rigby K, Huang D, Hedtke T, Wang X, Chung MW, Weon S, Stavitski E, Kim JH. Single-Atom Cobalt Incorporated in a 2D Graphene Oxide Membrane for Catalytic Pollutant Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1341-1351. [PMID: 34964609 DOI: 10.1021/acs.est.1c06371] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We introduce a new graphene oxide (GO)-based membrane architecture that hosts cobalt catalysts within its nanoscale pore walls. Such an architecture would not be possible with catalysts in nanoscale, the current benchmark, since they would block the pores or alter the pore structure. Therefore, we developed a new synthesis procedure to load cobalt in an atomically dispersed fashion, the theoretical limit in material downsizing. The use of vitamin C as a mild reducing agent was critical to load Co as dispersed atoms (Co1), preserving the well-stacked 2D structure of GO layers. With the addition of peroxymonosulfate (PMS), the Co1-GO membrane efficiently degraded 1,4-dioxane, a small, neutral pollutant that passes through nanopores in single-pass treatment. The observed 1,4-dioxane degradation kinetics were much faster (>640 times) than the kinetics in suspension and the highest among reported persulfate-based 1,4-dioxane destruction. The capability of the membrane to reject large organic molecules alleviated their effects on radical scavenging. Furthermore, the advanced oxidation also mitigated membrane fouling. The findings of this study present a critical advance toward developing catalytic membranes with which two distinctive and complementary processes, membrane filtration and advanced oxidation, can be combined into a single-step treatment.
Collapse
Affiliation(s)
- Xuanhao Wu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Kali Rigby
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Dahong Huang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Tayler Hedtke
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Xiaoxiong Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Myoung Won Chung
- School of Health and Environmental Science, Korea University, Seoul 02841, Republic of Korea
| | - Seunghyun Weon
- School of Health and Environmental Science, Korea University, Seoul 02841, Republic of Korea
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
46
|
Bhatt P, Ganesan S, Santhose I, Durairaj T. Phytoremediation as an effective tool to handle emerging contaminants. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Phytoremediation is a process which effectively uses plants as a tool to remove, detoxify or immobilize contaminants. It has been an eco-friendly and cost-effective technique to clean contaminated environments. The contaminants from various sources have caused an irreversible damage to all the biotic factors in the biosphere. Bioremediation has become an indispensable strategy in reclaiming or rehabilitating the environment that was damaged by the contaminants. The process of bioremediation has been extensively used for the past few decades to neutralize toxic contaminants, but the results have not been satisfactory due to the lack of cost-effectiveness, production of byproducts that are toxic and requirement of large landscape. Phytoremediation helps in treating chemical pollutants on two broad categories namely, emerging organic pollutants (EOPs) and emerging inorganic pollutants (EIOPs) under in situ conditions. The EOPs are produced from pharmaceutical, chemical and synthetic polymer industries, which have potential to pollute water and soil environments. Similarly, EIOPs are generated during mining operations, transportations and industries involved in urban development. Among the EIOPs, it has been noticed that there is pollution due to heavy metals, radioactive waste production and electronic waste in urban centers. Moreover, in recent times phytoremediation has been recognized as a feasible method to treat biological contaminants. Since remediation of soil and water is very important to preserve natural habitats and ecosystems, it is necessary to devise new strategies in using plants as a tool for remediation. In this review, we focus on recent advancements in phytoremediation strategies that could be utilized to mitigate the adverse effects of emerging contaminants without affecting the environment.
Collapse
Affiliation(s)
- Prasanth Bhatt
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| | - Swamynathan Ganesan
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| | - Infant Santhose
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| | - Thirumurugan Durairaj
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| |
Collapse
|
47
|
Chandra Bhoumick M, Roy S, Mitra S. Enrichment of 1, 4-dioxane from water by sweep gas membrane distillation on nano-carbon immobilized membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Claassen L, Hartmann J, Wuijts S. How to Address Consumers' Concerns and Information Needs about Emerging Chemical and Microbial Contaminants in Drinking Water; The Case of GenX in The Netherlands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10615. [PMID: 34682361 PMCID: PMC8535398 DOI: 10.3390/ijerph182010615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022]
Abstract
The perceived safety of tap water is an important condition for consumers to drink it. Therefore, addressing consumers' concerns should be included in the roadmap towards the UN SDG 6 on safe drinking water for all. This paper studies consumers' information needs regarding emerging contaminants in drinking water using a mental model approach for the development of targeted risk communication. As most consumers expect safe drinking water, free of contamination, communication on emerging contaminants may increase concerns. Here, we showed that communication strategies better tailored to consumers' information needs result in smaller increases in risk perception compared with existing strategies.
Collapse
Affiliation(s)
- Liesbeth Claassen
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands; (L.C.); (S.W.)
| | - Julia Hartmann
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands; (L.C.); (S.W.)
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands
| | - Susanne Wuijts
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands; (L.C.); (S.W.)
- Utrecht Centre for Water, Oceans and Sustainability Law, Utrecht University, Newtonlaan 231, 3584 BH Utrecht, The Netherlands
| |
Collapse
|
49
|
Wang Y, Ma F, Yang J, Guo H, Su D, Yu L. Adaption and Degradation Strategies of Methylotrophic 1,4-Dioxane Degrading Strain Xanthobacter sp. YN2 Revealed by Transcriptome-Scale Analysis. Int J Mol Sci 2021; 22:ijms221910435. [PMID: 34638775 PMCID: PMC8508750 DOI: 10.3390/ijms221910435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
Biodegradation of 1,4-dioxane (dioxane) contamination has gained much attention for decades. In our previous work, we isolated a highly efficient dioxane degrader, Xanthobacter sp. YN2, but the underlying mechanisms of its extraordinary degradation performance remained unresolved. In this study, we performed a comparative transcriptome analysis of YN2 grown on dioxane and citrate to elucidate its genetic degradation mechanism and investigated the transcriptomes of different dioxane degradation stages (T0, T24, T48). We also analyzed the transcriptional response of YN2 over time during which the carbon source switched from citrate to dioxane. The results indicate that strain YN2 was a methylotroph, which provides YN2 a major advantage as a pollutant degrader. A large number of genes involved in dioxane metabolism were constitutively expressed prior to dioxane exposure. Multiple genes related to the catabolism of each intermediate were upregulated by treatment in response to dioxane. Glyoxylate metabolism was essential during dioxane degradation by YN2, and the key intermediate glyoxylate was metabolized through three routes: glyoxylate carboligase pathway, malate synthase pathway, and anaplerotic ethylmalonyl-CoA pathway. Genes related to quorum sensing and transporters were significantly upregulated during the early stages of degradation (T0, T24) prior to dioxane depletion, while the expression of genes encoding two-component systems was significantly increased at late degradation stages (T48) when total organic carbon in the culture was exhausted. This study is the first to report the participation of genes encoding glyoxalase, as well as methylotrophic genes xoxF and mox, in dioxane metabolism. The present study reveals multiple genetic and transcriptional strategies used by YN2 to rapidly increase biomass during growth on dioxane, achieve high degradation efficiency and tolerance, and adapt to dioxane exposure quickly, which provides useful information regarding the molecular basis for efficient dioxane biodegradation.
Collapse
Affiliation(s)
- Yingning Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
- Correspondence:
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
| | - Haijuan Guo
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056107, China;
| | - Delin Su
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
| | - Lan Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
| |
Collapse
|
50
|
Charkoftaki G, Golla JP, Santos-Neto A, Orlicky DJ, Garcia-Milian R, Chen Y, Rattray NJW, Cai Y, Wang Y, Shearn CT, Mironova V, Wang Y, Johnson CH, Thompson DC, Vasiliou V. Identification of Dose-Dependent DNA Damage and Repair Responses From Subchronic Exposure to 1,4-Dioxane in Mice Using a Systems Analysis Approach. Toxicol Sci 2021; 183:338-351. [PMID: 33693819 PMCID: PMC8921626 DOI: 10.1093/toxsci/kfab030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1,4-Dioxane (1,4-DX) is an environmental contaminant found in drinking water throughout the United States. Although it is a suspected liver carcinogen, there is no federal or state maximum contaminant level for 1,4-DX in drinking water. Very little is known about the mechanisms by which this chemical elicits liver carcinogenicity. In the present study, female BDF-1 mice were exposed to 1,4-DX (0, 50, 500, and 5,000mg/L) in their drinking water for 1 or 4 weeks, to explore the toxic effects. Histopathological studies and a multi-omics approach (transcriptomics and metabolomics) were performed to investigate potential mechanisms of toxicity. Immunohistochemical analysis of the liver revealed increased H2AXγ-positive hepatocytes (a marker of DNA double-strand breaks), and an expansion of precholangiocytes (reflecting both DNA damage and repair mechanisms) after exposure. Liver transcriptomics revealed 1,4-DX-induced perturbations in signaling pathways predicted to impact the oxidative stress response, detoxification, and DNA damage. Liver, kidney, feces, and urine metabolomic profiling revealed no effect of 1,4-DX exposure, and bile acid quantification in liver and feces similarly showed no effect of exposure. We speculate that the results may be reflective of DNA damage being counterbalanced by the repair response, with the net result being a null overall effect on the systemic biochemistry of the exposed mice. Our results show a novel approach for the investigation of environmental chemicals that do not elicit cell death but have activated the repair systems in response to 1,4-DX exposure.
Collapse
Affiliation(s)
- Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06250, USA
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06250, USA
| | - Alvaro Santos-Neto
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06250, USA
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13566-590, SP, Brazil
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Center, University of Colorado, Aurora, Colorado, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, Connecticut 06250, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06250, USA
| | - Nicholas J W Rattray
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06250, USA
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Yuping Cai
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06250, USA
| | - Yewei Wang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06250, USA
| | - Colin T Shearn
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Varvara Mironova
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06250, USA
| | - Yensheng Wang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06250, USA
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06250, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06250, USA
| |
Collapse
|