1
|
Forghani B, Svendsen TC, Pratap-Singh A, Jacobsen C, Undeland I. Biomass recovery from herring brines: Exploring quality and functionality of protein and n-3 polyunsaturated fatty acids. Food Chem 2025; 484:144403. [PMID: 40300404 DOI: 10.1016/j.foodchem.2025.144403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/06/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025]
Abstract
Protein-enriched biomasses recovered from herring brines using dissolved air flotation (DAF) at native or low pH were studied in terms of nutrients, volatile compounds, emulsion properties, foaming properties and protein structure. Dried biomasses from native or acidified 3 % pre-salting brine (SB and SB-A) and spice brine (SP and SP-A) contained 69-72 % and 20-31 % protein, respectively; 7.8-10.2 % and 9-18 % lipids, respectively, and 4.4-7.5 % and 33-36 % ash, respectively. Of total fatty acids, up to 44 % were long-chain monounsaturated fatty acids (LC MUFA) and 17 % LC n-3 polyunsaturated fatty acids (PUFA). Both emulsion activity index (EAI) and foaming capacity (FC) were higher for SP/SP-A than SB/SB-A. In both cases, there was a minimum at pH 5. The findings suggest that currently wasted herring brine side streams hold promise for production of sustainable, functional protein ingredients which can provide both flavor and nutrients.
Collapse
Affiliation(s)
- Bita Forghani
- Food and Nutrition Science, Life Sciences, Chalmers University of Technology, Gothenburg, Sweden; Faculty of Land and Food System, University of British Columbia, Vancouver, Canada; National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | | | - Anubhav Pratap-Singh
- Faculty of Land and Food System, University of British Columbia, Vancouver, Canada
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ingrid Undeland
- Food and Nutrition Science, Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
2
|
Zhu Y, Gao F, Jia H, Chen Z, Ni BJ, Wang J. Applications of membrane technology in the resource recovery of power lithium-ion battery precursor wastewater: A review. ENVIRONMENTAL RESEARCH 2025; 275:121372. [PMID: 40081651 DOI: 10.1016/j.envres.2025.121372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
New energy materials and technologies are developing rapidly, and the sales of electric vehicles are increasing significantly. The cathode material is the core of electric vehicle batteries. The production of electrode precursors generates a large amount of wastewater. Power lithium-ion battery precursor wastewater is highly toxic to the ecosystem and human health. For wastewater that cannot be treated biologically and for resource recovery, membrane technology demonstrates superior performance.The objective of this paper is to comprehensively organize and summarize the role of membrane processes in treating precursor wastewater from power lithium-ion batteries for water recovery and resource utilization. Firstly, by analyzing the sources and characteristics of various precursor wastewater and understanding the fundamentals of membrane technologies, this study aims to summarize the ability of different membrane processes to treat contaminants in precursor wastewater from power lithium-ion battery production. The performance of membrane filtration in removing heavy metals, recovering valuable salts, and water recycling is also discussed. Furthermore, the article emphasizes membrane fouling issues and reviews various strategies for mitigating contamination. Ultimately, the possible pathways for the resource reuse of power lithium-ion battery precursor wastewater were also proposed.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Fei Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhijie Chen
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Hebei Industrial Technology Research Institute of Membranes, Cangzhou Institute of Tiangong University, Cangzhou, 061000, China.
| |
Collapse
|
3
|
Aziz K, Raza N, Kanwal N, Khairy M, Ahmadi Y, Kim KH. Recent advances in nanomaterial-based adsorbents for removal of pharmaceutical pollutants from wastewater. MATERIALS HORIZONS 2025. [PMID: 40365702 DOI: 10.1039/d5mh00627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
To cope with the environmental risks posed by pharmaceutical waste, adsorption is considered a viable option due to its simplicity, cost-effectiveness, and reliability. This review explores the opportunities and challenges involved in applying nanomaterial-based adsorbents in their metallic, non-metallic, and hybrid forms for removal of common pharmaceuticals (e.g., antibiotics, beta-blockers, analgesics, non-steroidal anti-inflammatory drugs, endocrine disrupters, and anticancer drugs) from water. To improve the selectivity and scalability of diverse adsorbents against such targets, the adsorption capacity and partition coefficient (PC) of each adsorbent are evaluated. Among the reported materials, magnetic nitrogen-doped carbon displays the highest adsorption capacity (1563.7 mg g-1) for common targets such as ciprofloxacin, while carbon nanotube-SiO2-Al2O3 has the highest PC (1425 mg g-1 μM-1) for estradiol. Despite the advances in adsorption technologies, their commercial applications are yet limited by several defects such as low efficiency, high costs, and poor scalability. This review examines current strategies for addressing pharmaceutical contamination and outlines potential directions for future research.
Collapse
Affiliation(s)
- Khalid Aziz
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Nadeem Raza
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Natasha Kanwal
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Mohamed Khairy
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Younes Ahmadi
- Department of Chemistry, Sonoma State University, 1801 E Cotati Ave, Rohnert Park, CA 94928, USA
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea.
| |
Collapse
|
4
|
Rozario TV, Tarek M, Basith MA. BiFe 0.5Cr 0.5O 3 nanocatalysts for sustainable solar-light-driven purification of pharmaceutical wastewater. RSC Adv 2025; 15:16241-16256. [PMID: 40376660 PMCID: PMC12079425 DOI: 10.1039/d5ra01638j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025] Open
Abstract
Pharmaceutical wastewater contamination, particularly from antibiotics, poses severe environmental and health risks due to antibiotic-resistant bacteria and the inefficacy of conventional treatments. In this study, BiFe0.5Cr0.5O3 (BFCO) nanoparticles were synthesized via the sol-gel method and investigated as a visible-light-driven photocatalyst for ciprofloxacin (CIP) and levofloxacin (LFX) degradation under solar irradiation. The structural analysis confirmed a single-phase perovskite structure with Cr3+ incorporation, enhancing charge separation and visible-light absorption. The presence of oxygen vacancies, identified through XPS and Raman spectroscopy, played a crucial role in charge transfer and reactive oxygen species (ROS) generation. Comprehensive electrochemical and photoelectrochemical analyses, including CV, LSV, and EIS, confirmed enhanced charge transport and reduced interfacial resistance under illumination. BFCO, with a bandgap of 1.87 eV, exhibited efficient solar energy utilization, achieving 70.35% CIP and 94% LFX degradation within 240 minutes, following pseudo-first-order kinetics. The activation energy decreased from 33.61 ± 5.88 to 19.69 ± 3.94 kJ mol-1 K-1, confirming enhanced catalytic efficiency. An apparent quantum yield (AQY) of 34.9% for LFX further underscored its superior activity. Scavenger studies identified electron (e-) and superoxide (˙O2 -) radicals as key ROS driving antibiotic degradation, while oxygen vacancies improved charge separation and ROS formation. Reusability tests confirmed BFCO's stability across multiple cycles, maintaining its structural, morphological, and optical integrity. The degradation mechanism involves solar-induced electron-hole pair generation, charge transfer to oxygen vacancies, and subsequent redox reactions that break down antibiotics into non-toxic byproducts. The synergistic effects of Cr substitution, oxygen vacancies, and mixed-valence states significantly enhanced photocatalytic efficiency, demonstrating BFCO's potential for large-scale environmental remediation.
Collapse
Affiliation(s)
- Titas Vincent Rozario
- Nanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh
| | - Mohasin Tarek
- Nanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh
| | - M A Basith
- Nanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh
| |
Collapse
|
5
|
Khan AM, Russo F, Macedonio F, Criscuoli A, Curcio E, Figoli A. The State of the Art on PVDF Membrane Preparation for Membrane Distillation and Membrane Crystallization: Towards the Use of Non-Toxic Solvents. MEMBRANES 2025; 15:117. [PMID: 40277987 PMCID: PMC12029554 DOI: 10.3390/membranes15040117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025]
Abstract
Most parts of the earth are covered with water, but only 0.3% of it is available to living beings. Industrial growth, fast urbanization, and poor water management have badly affected the water quality. In recent years, a transition has been seen from the traditional (physical, chemical) wastewater treatment methods towards a greener, sustainable, and scalable membrane technology. Even though membrane technology offers a green pathway to address the wastewater treatment issue on a larger scale, the fabrication of polymeric membranes from toxic solvents is an obstacle in making it a fully green method. The concept of green chemistry has encouraged scientists to engage in research for new biodegradable and non-protic solvents to replace with already existing toxic ones. This review outlines the use of non-toxic solvents for the preparation of PVDF membranes and their application in membrane distillation and membrane crystallization.
Collapse
Affiliation(s)
- Aqsa Mansoor Khan
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
- Department of Environmental Engineering, DIAM, University of Calabria, Via P.Bucci-Cube 44/A, 87036 Rende, CS, Italy;
| | - Francesca Russo
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
| | - Francesca Macedonio
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
| | - Alessandra Criscuoli
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
| | - Efrem Curcio
- Department of Environmental Engineering, DIAM, University of Calabria, Via P.Bucci-Cube 44/A, 87036 Rende, CS, Italy;
| | - Alberto Figoli
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
| |
Collapse
|
6
|
Song L, Dai C, Chai Z, Cai M, Li H, Wu S, Zhang L, Wu Y, Zhu H. Hybrid Adsorption-Microfiltration Process for the Pretreatment of Sulfide-Containing Seawater: A Promising Strategy to Mitigate Membrane Fouling. MEMBRANES 2025; 15:100. [PMID: 40277970 PMCID: PMC12029300 DOI: 10.3390/membranes15040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
The presence of dissolved sulfides in feed seawater causes severe elemental sulfur fouling in the reverse osmosis (RO) process. However, current pretreatment methods suffer from large footprint, high energy consumption, and limitations in effluent quality. In this study, adsorption and microfiltration are merged into a single process for the pretreatment of sulfide-containing seawater. Powdered activated carbon (PAC) was selected for its superior adsorption capacity (14.6-fold) and faster kinetics (3.9-fold) for sulfide removal compared to granular activated carbon. The high surface area and multiple pore structures of PAC facilitate surface and intraparticle diffusion, as well as anion-π conjugation likely occur between PAC and sulfide. Polypropylene microporous membranes, capable of tolerating high PAC dosages, were used in the hybrid process. Long-term pilot tests demonstrated that the effluent (turbidity < 1 NTU and SDI15 ≈ 2.50) met the quality requirements for RO unit feedwater, achieving 100% sulfide removal efficiency over 101 h, with no risk of PAC leakage throughout the entire operation process. The formation of a loose, porous PAC cake layer alleviates membrane fouling and enhances the retention and adsorption of metal(loid)s and sulfide. Moreover, the low permeate flux of the polymeric membranes significantly mitigates filter cake formation. The hybrid system adapts to variations in feedwater quality, making it highly suitable for desalination plants with limited space and budget. These findings offer valuable insights and practical guidance for advancing seawater desalination pretreatment.
Collapse
Affiliation(s)
- Ludi Song
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China; (L.S.); (L.Z.)
- Hangzhou Water Treatment Technology Development Center Co., Ltd., Hangzhou 310012, China; (C.D.); (Z.C.); (M.C.); (H.L.); (S.W.)
- Key Laboratory of Seawater Desalination Technology Research of Zhejiang Province, Hangzhou 310012, China
| | - Chengyi Dai
- Hangzhou Water Treatment Technology Development Center Co., Ltd., Hangzhou 310012, China; (C.D.); (Z.C.); (M.C.); (H.L.); (S.W.)
| | - Zifei Chai
- Hangzhou Water Treatment Technology Development Center Co., Ltd., Hangzhou 310012, China; (C.D.); (Z.C.); (M.C.); (H.L.); (S.W.)
| | - Mengzhe Cai
- Hangzhou Water Treatment Technology Development Center Co., Ltd., Hangzhou 310012, China; (C.D.); (Z.C.); (M.C.); (H.L.); (S.W.)
| | - Huazhang Li
- Hangzhou Water Treatment Technology Development Center Co., Ltd., Hangzhou 310012, China; (C.D.); (Z.C.); (M.C.); (H.L.); (S.W.)
| | - Sifan Wu
- Hangzhou Water Treatment Technology Development Center Co., Ltd., Hangzhou 310012, China; (C.D.); (Z.C.); (M.C.); (H.L.); (S.W.)
- Key Laboratory of Seawater Desalination Technology Research of Zhejiang Province, Hangzhou 310012, China
| | - Lin Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China; (L.S.); (L.Z.)
| | - Yaqin Wu
- Hangzhou Water Treatment Technology Development Center Co., Ltd., Hangzhou 310012, China; (C.D.); (Z.C.); (M.C.); (H.L.); (S.W.)
- Key Laboratory of Seawater Desalination Technology Research of Zhejiang Province, Hangzhou 310012, China
| | - Haitao Zhu
- Hangzhou Water Treatment Technology Development Center Co., Ltd., Hangzhou 310012, China; (C.D.); (Z.C.); (M.C.); (H.L.); (S.W.)
- Key Laboratory of Seawater Desalination Technology Research of Zhejiang Province, Hangzhou 310012, China
| |
Collapse
|
7
|
Tarek M, Yasmeen F, Basith MA. Mechanistic insights into the enhanced photocatalytic efficiency of MoS 2-tuned DyFeO 3 heterojunction nanocomposites for pollutant degradation. NANOSCALE 2025; 17:6620-6636. [PMID: 39946114 DOI: 10.1039/d4nr05281a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
In this study, DyFeO3-MoS2 heterojunction nanocomposites were synthesized by integrating porous DyFeO3 nanoparticles (an n-type semiconductor) with MoS2 nanosheets (a p-type semiconductor). The resulting p-n heterojunction substantially improved the photocatalytic efficiency for degrading methylene blue (MB) and levofloxacin (LFX). This design introduces a built-in electric field at the interface, promoting efficient charge separation and suppressing electron-hole recombination, thereby significantly enhancing photocatalytic performance under solar irradiation compared to DyFeO3 alone. Characterization studies, including XRD, FESEM, TEM, XPS, UV-visible absorbance, photoluminescence, and Mott-Schottky analysis, confirmed the nanocomposites' crystalline structure, well-dispersed MoS2 nanosheets, oxygen vacancies, enhanced visible light absorption, and favorable band positions. The incorporation of MoS2 increased light absorption, enhanced charge separation, and improved surface area by mitigating DyFeO3 aggregation, leading to significantly higher photocatalytic degradation rates. Among the tested compositions, the DyFeO3-MoS2 (80 : 20) nanocomposite, containing 20 wt% MoS2, exhibited the highest efficiencies, with 96.5% degradation for MB and 88.7% for LFX. Further analyses, including activation energy determination, quantum yield measurement, scavenger tests, and reusability assessments, confirmed the optimized nanocomposite's performance and durability. The reduced activation energies and high quantum yields (35.5% for MB, 25.8% for LFX) indicate efficient photon conversion and radical generation, with superoxide radicals (˙O2-) identified as the primary reactive species. Stability tests revealed over 85% retention of activity after four cycles, underscoring the composite's robustness. Moreover, the photocatalytic mechanism revealed key insights into the degradation pathways of pollutants. This investigation demonstrates a viable solar-driven solution for efficient pollutant degradation in wastewater treatment by incorporating MoS2 into porous DyFeO3 nanostructures.
Collapse
Affiliation(s)
- Mohasin Tarek
- Nanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh.
| | - Ferdous Yasmeen
- Nanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh.
| | - M A Basith
- Nanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh.
| |
Collapse
|
8
|
Hoang VH, Nguyen TMP, Nguyen TD, Nguyen THV, Chu THH, Hoang LP, Thang PQ, Nguyen LH, Hoang TK, Van HT. Recycling paper sludge into hydrochar and ZnO nanocomposite for enhanced ammonium adsorption in aqueous solutions. RSC Adv 2025; 15:6634-6651. [PMID: 40017644 PMCID: PMC11866475 DOI: 10.1039/d5ra00493d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025] Open
Abstract
This study investigates the ammonium (NH4 +) adsorption capabilities of hydrochar derived from paper waste sludge (PWSH) and its modified variant with ZnO (PWSH@ZnO).This study investigates the ammonium (NH4 +) adsorption capabilities of hydrochar derived from paper waste sludge (PWSH) and its modified variant with ZnO (PWSH@ZnO). The adsorption behaviors were analyzed by varying parameters such as pH, contact time, initial NH4 + concentration, and ZnO modification ratios. The results indicate that ZnO modification significantly enhances the NH4 + adsorption capacity, with PWSH@ZnO achieving a maximum capacity of 23.08 mg g-1, compared to 20.09 mg g-1 for unmodified PWSH. The optimal pH for NH4 + removal was found to be 8, at which PWSH@ZnO demonstrated a superior removal efficiency of 80%, compared to 68.03% for PWSH. Kinetic studies revealed that the adsorption process followed a pseudo-first-order model for both materials, with PWSH@ZnO exhibiting faster adsorption rates. Isotherm analysis further indicated that the adsorption is best represented by the Langmuir model, suggesting monolayer adsorption on a homogeneous surface. Overall, the incorporation of ZnO nanoparticles enhanced the adsorption capacity and improved the material's stability, positioning PWSH@ZnO as a promising candidate for NH4 + removal in wastewater treatment applications. The synthesized PWSH@ZnO also demonstrates commendable reusability, maintaining nearly 50% of its initial adsorption capacity after five cycles.
Collapse
Affiliation(s)
- Van Hung Hoang
- Thai Nguyen University Tan Thinh Ward Thai Nguyen City Vietnam
| | - Thi Minh Phuong Nguyen
- Faculty of Environmental and Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
| | - Thi Dong Nguyen
- Faculty of Natural Resources and Environment, TNU - University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Thi Hong Vien Nguyen
- Faculty of Natural Resources and Environment, TNU - University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Thi Hong Huyen Chu
- Faculty of Natural Resources and Environment, TNU - University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Le Phuong Hoang
- Faculty of Civil and Environmental Engineering, Thai Nguyen University of Technology (TNUT) Tich Luong Ward Thai Nguyen City Vietnam
| | - Phan Quang Thang
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cay Giay District Ha Noi City Vietnam
| | - Lan Huong Nguyen
- Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade (HUIT) 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District Ho Chi Minh City Vietnam
| | - Trung Kien Hoang
- Faculty of Natural Resources and Environment, TNU - University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Huu-Tap Van
- Thai Nguyen University Tan Thinh Ward Thai Nguyen City Vietnam
| |
Collapse
|
9
|
Pakdaman S, Nouri G, Mulligan CN, Nasiri F. Integration of Membrane-Based Pretreatment Methods with Pressure-Retarded Osmosis for Performance Enhancement: A Review. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1020. [PMID: 40077246 PMCID: PMC11901225 DOI: 10.3390/ma18051020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
Osmotic energy provides an emerging renewable alternative by leveraging the salinity gradient between two solutions. Among these technologies, pressure-retarded osmosis (PRO) has attracted attention; however, its deployment is hindered by obstacles resulting from impurities in feed and draw solutions and lack of suitable membranes. This review explores the integration of membrane-based pretreatments with PRO, highlighting their influence on resolving the technical drawbacks of standalone PRO systems. Membrane-based pretreatments have shown considerable potential to overcome these challenges by improving the quality of water, reducing membrane fouling and enhancing its performance, and ultimately contributing to recovery of energy, resulting in higher power density. Additionally, the use of different nanomaterials has been proposed for membrane modification to optimize PRO performance. Moreover, the study investigates recent advancements in hybrid configurations for harnessing existing infrastructure and to enhance energy efficiency. Offering a comprehensive review on this integrated approach contributes to valuable insights for advancing membrane-based hybrid systems toward commercial viability. Consequently, investment in developing advanced computational modeling and experimental validation, utilization of advanced membrane materials with higher fouling resistance, and optimization of system configurations by using dual-stage and multi-stage designs are required to overcome these limitations.
Collapse
Affiliation(s)
| | | | - Catherine N. Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W., Montreal, QC H3G 1M8, Canada; (S.P.); (G.N.); (F.N.)
| | | |
Collapse
|
10
|
Al Harraq A, Brahana PJ, Bharti B. Colloid and Interface Science for Understanding Microplastics and Developing Remediation Strategies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4412-4421. [PMID: 39951827 DOI: 10.1021/acs.langmuir.4c03856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Microplastics (MPs) originate from industrial production of <1 mm polymeric particles and from the progressive breakdown of larger plastic debris. Their environmental behavior is governed by their interfacial properties, which dominate due to their small size. This Perspective highlights the complex surface chemistry of MPs under environmental stressors and discusses how physical attributes like shape and roughness could influence their fate. We further identify wastewater treatment plants (WWTPs) as critical hotspots for MP accumulation, where the MPs are inadvertently transferred to sewage sludge and reintroduced into the environment. We emphasize the potential of colloid and interfacial science not only to improve our fundamental understanding of MPs but also to advance mitigation strategies in hotspots such as WWTPs.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, United States
| | - Philip J Brahana
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
11
|
Pan J, Wang B, Liu S, Liu S, Yan W. Synthesis and Application of LTA Zeolite for the Removal of Inorganic and Organic Hazardous Substances from Water: A Review. Molecules 2025; 30:554. [PMID: 39942658 PMCID: PMC11820495 DOI: 10.3390/molecules30030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Industrialization and human activities have caused significant environmental challenges, with water pollution posing severe risks to human health. This underscores the urgent need for effective water treatment solutions. Zeolites, known for their high specific surface area and stability, have gained increasing attention as adsorbents for water treatment. Among zeolites, LTA varieties stand out due to their low Si/Al ratio, which enhances ion-exchange capacity, and their cost-effectiveness. This review focuses on the synthesis of low-silica LTA zeolites, particularly zeolite A, using natural materials and solid wastes without relying on organic-structure-directing agents (OSDAs). Common pretreatment processes for such synthesis are also highlighted. The review further explores the applications of LTA zeolites in water treatment, emphasizing their exceptional performance in adsorbing inorganic and organic pollutants. In particular, LTA zeolites are highly effective at removing inorganic cation pollutants through ion exchange. An updated ion-exchange selectivity order, based on previous studies, is provided to support these findings. Overall, this review aims to guide future research and development in water treatment technologies.
Collapse
Affiliation(s)
| | | | | | | | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China; (J.P.); (B.W.); (S.L.); (S.L.)
| |
Collapse
|
12
|
Hussein SA, Taha GM, Adam FA, Moghazy MA. Three different methods for ZnO-RGO nanocomposite synthesis and its adsorption capacity for methylene blue dye removal in a comparative study. BMC Chem 2025; 19:18. [PMID: 39827167 PMCID: PMC11743050 DOI: 10.1186/s13065-025-01381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Water is one of the vital needs of life. However, due to rapid industrialization, urbanization and lack of awareness, the world population now facing the threat of water shortage. To ensure that future living conditions are preserved, it is crucial to reduce water pollution and protect the ecosystem. Zinc oxide- reduced graphene oxide (ZnO-RGO) nanocomposite is used in this study as an adsorbent for the adsorption of methylene blue (MB) dye from an aqueous solution. An easy strategy was used for the synthesis of reduced graphene oxide nanoparticles (RGO), Zinc oxide nanoparticles (ZnO) and ZnO-RGO nanocomposite. The synthesis of reduced graphene oxide (RGO) was accomplished through the exothermic reaction of a modified Hummer's method. In a novel approach, zinc oxide nanoparticles (ZnO NPs) were synthesized using the green Leidenfrost technique. This study presents a comparative investigation of ZnO-RGO nanocomposite synthesis employing both green and chemical methods. Three distinct approaches were utilized to prepare the ZnO-RGO nanocomposite: (1) the innovative Leidenfrost green method for composite A1, (2) a chemical precipitation method for composite A2, and (3) a physical mixing sonication method for composite A3. This research marks the first application of the Leidenfrost technique in the synthesis of ZnO-RGO nanocomposites, contributing to the growing body of knowledge in this field. X-ray diffraction (XRD), Burnauer-Emmett-Teller (BET), Fourier transform infrared (FTIR), Zeta potential, transmittance electron microscope (TEM) and scanning electron microscope (SEM) analyses are conducted for synthesized sample characterization. Comparing the XRD patterns of the three synthesis methods, it is notable that the intensity peaks of composite A3 were the highest when ZnO was synthesized using a green method, indicating a higher degree of crystallinity. FTIR analysis approves that combining ZnO with RGO affects the functional groups of the three nanocomposite surfaces. The SEM analysis shows ZnO NPs and RGO sheets are incorporated together. In the case of A1 composite sharp angles make a flower shape was observed due to the unique synthesizing method. The surface area for A2 composite is the highest (7.29 m2/g) compared with A1 (2.91 m2/g) and A3(1.90 m2/g). A comparison study is made among the three nanocomposites for MB dye removal. The effect of adsorbent dose, pH, contact time and initial dye concentration on dye adsorption has been studied. The results show that A1 and A2 nanocomposites removed 85.5 and 87.5% of MB at the optimum adsorbent dose of 0.15 g/100 ml at pH8 and A3 removed 95% of MB at the optimum dose of 0.1 g/100 ml at pH 2. All three composites exhibited adherence to the Langmuir isotherm model, with correlation coefficients (R2) of 0.9858, 0.9904, and 0.9959 for A1, A2, and A3, respectively. Kinetic study results demonstrated that the pseudo-second-order model best described the adsorption process for all three composites, yielding R2 values of 0.9998, 0.9988, and 1.0000 for A1, A2, and A3, respectively. The A3 nanocomposite shows the highest adsorption capacity (104.5 mg/g) compared to the other composites (87.7 and 97.5 mg/g for A1 and A2, respectively). Desorption experiments revealed that the dye removal percentages varied with the ratio of the ethanol-water mixture used. Absolute ethanol achieved a 90% removal compared with 1:1 and 1:2 aqueous ethanol solutions (87.5% and 80%, respectively).
Collapse
Affiliation(s)
- Safaa A Hussein
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Gharib M Taha
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - F A Adam
- Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Marwa A Moghazy
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt.
| |
Collapse
|
13
|
Li X, Wu L, Macharia DK, He M, Han C, He H, Li M, Zhang L, Chen Z. Growth of sulfur-doped bismuth oxybromide nanosheets on carbon fiber cloth for photocatalytically purifying antibiotic wastewater. J Colloid Interface Sci 2025; 678:959-969. [PMID: 39226836 DOI: 10.1016/j.jcis.2024.08.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Bismuth oxybromide (BiOBr) nanomaterials are well-known efficient powder-shaped photocatalyst for degrading antibiotic wastewater, but their practical applications have been limited by unsatisfactory photo-absorption, weak photocatalytic activity and poor recyclability. To address these issues, we demonstrate that the growing of S-doped BiOBr nanosheets on carbon fiber cloth (CFC) can lead to efficient photocatalysis with recyclable features. With carbon fiber cloth as the substrate, S-doped BiOBr (BiOBr-Sx) nanosheets (diameter: ∼500 nm, thicknesses: ∼5-90 nm) was prepared by solvothermal method with thiourea as dopant. With the increase of thiourea (0-0.2 g) in the precursor solution, BiOBr-Sx nanosheets exhibit a significant shift in the photo-absorption edge from 420 to 461 nm and decreased thicknesses from 90 to 5 nm, accompanying by the increased proportion of (010) exposed surface. Amony them, CFC/BiOBr-S0.5 can degrade various contaminants (such as 98.7 % levofloxacin (LVFX), 95.6 % ciprofloxacin (CIP) and 95.9 % tetracycline (TC)) with most degradation efficiency within 120 min of visible light irradiation, which are 1.6, 1.9 and 1.4 times than that of CFC/BiOBr (61.4 % LVFX, 49.5 % CIP and 67.1 % TC), respectively. Significantly, when CFC/BiOBr-S0.05 photocatalytic fabric is combined with a multi-stage flow device to treat the flowing wastewater (10 mg/L LVFX, rate: 1 L/h), 91.0 % LVFX can be degraded after tenth grade. Therefore, this study not only demonstrates the controllable preparation of S-doped BiOBr nanosheets with different thickness on CFC but also highlights the practical applications of fabric-based photocatalysts for purifying the flowing sewage efficiently.
Collapse
Affiliation(s)
- Xiaolong Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lilin Wu
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Daniel K Macharia
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mengqiang He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chen Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hui He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Maoquan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lisha Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Zhigang Chen
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
14
|
Dahlquist E, Thorin E, Shenk A, Schwede S, Salman CA, Hakalehto E. Investigation of Upgrading of Products from Finnoflag Bio-refinery Pilot in Tampere. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2025; 189:213-240. [PMID: 39592490 DOI: 10.1007/10_2024_261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
In this study calculation over material and energy balances for bio-refinery product upgrading using membrane filtration (MF, UF, and RO), distillation, and ion-exchanger has been performed. Tests have been made with UF filtration in a pilot plant, separation tests made at lab with ion-exchanger and simulation using ASPEN plus simulator for distillation. Rough economic analysis has been made for the different solutions/techniques.
Collapse
|
15
|
Vistnes H, Sossalla NA, Uhl W, Sundsøy AW, Asimakopoulos AG, Spahr S, Escher BI, Meyn T. Effect of tunnel wash water treatment processes on trace elements, organic micropollutants, and biological effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136363. [PMID: 39504774 DOI: 10.1016/j.jhazmat.2024.136363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Tunnel wash water (TWW) contains high levels of trace elements and organic micropollutants, especially in the dissolved fraction. Discharge poses significant environmental risks. This field study aimed at improving conventional sedimentation treatment by addition of novel secondary treatments: bag filtration, ceramic microfiltration, or granular activated carbon (GAC) filtration. Removal of nine trace elements, 16 polycyclic aromatic hydrocarbons (PAHs), 38 per- and polyfluoroalkyl substances (PFASs), seven benzothiazoles (BTHs), seven benzotriazoles (BTRs), five bisphenols (BPs), and five benzophenones was investigated. Primary sedimentation significantly reduced particles and associated contaminants, achieving over 73 % average removal for trace elements, 65 % for PAHs, and 71 % for PFASs. Subsequent GAC removed over 70 % of dissolved Cr, Cu, Pb, and Zn and over 92 % of dissolved PFASs, BTHs, BTRs, and BPs, including several persistent, mobile and toxic compounds. Following GAC filtration, Cr, Ni, Pb, anthracene, fluoranthene, perfluorooctanesulfonic acid, and bisphenol-A were below environmental quality standards (EQS). GAC consistently reduced responses in in vitro bioassays with endpoints activation of the aryl hydrocarbon receptor, oxidative stress response, and neurotoxicity below effect-based trigger values for surface water. GAC filtration is thus recommended for future TWW treatment. Assessing water quality remains a challenging task due to lack of EQSs for many chemicals.
Collapse
Affiliation(s)
- Hanne Vistnes
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), S. P. Andersens veg 5, 7031 Trondheim, Norway
| | - Nadine A Sossalla
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), S. P. Andersens veg 5, 7031 Trondheim, Norway
| | | | - Adrian W Sundsøy
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7034 Trondheim, Norway
| | - Alexandros G Asimakopoulos
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7034 Trondheim, Norway
| | - Stephanie Spahr
- Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ Leipzig, Permoserstraβe 15, 04318 Leipzig, Germany; Department of Geosciences, Eberhard Karls University Tübingen, Schnarrenbergstraβe 94-96, 72076 Tübingen, Germany
| | - Thomas Meyn
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), S. P. Andersens veg 5, 7031 Trondheim, Norway.
| |
Collapse
|
16
|
Wiegmann ME, Zhao K, Hube S, Ge L, Lisak G, Wu B. Integrating gravity-driven ceramic membrane filtration with hydroponic system for nutrient recovery from primary municipal wastewater. J Environ Sci (China) 2024; 146:91-102. [PMID: 38969465 DOI: 10.1016/j.jes.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2024]
Abstract
In this study, a gravity-driven membrane (GDM) filtration system and hydroponic system (cultivating basil and lettuce) were combined for nutrient recovery from primary municipal wastewater. The GDM system was optimized by increasing the periodic air sparging flow rate from 1 to 2 L/min (∼15 hr per 3-4 days), resulting in a ∼52% reduction of irreversible fouling. However, the total fouling was not alleviated, and the water productivity remained comparable. The GDM-filtrated water was then delivered to hydroponic systems, and the effects of hydroponic operation conditions on plant growth and heavy metal uptake were evaluated, with fertilizer- and tap water-based hydroponic systems and soil cultivation system (with tap water) for comparison. It was found that (i) the hydroponic system under batch mode facilitated to promote vegetable growth with higher nutrient uptake rates compared to that under flow-through feed mode; (ii) a shift in nutrient levels in the hydroponic system could impact plant growth (such as plant height and leaf length), especially in the early stages. Nevertheless, the plants cultivated with the GDM-treated water had comparable growth profiles to those with commercial fertilizer or in soils. Furthermore, the targeted hazard quotient levels of all heavy metals for the plants in the hydroponic system with the treated water were greatly lower than those with the commercial fertilizer. Especially, compared to the lettuce, the basil had a lower heavy metal uptake capability and displayed a negligible impact on long-term human health risk, when the treated water was employed for the hydroponic system.
Collapse
Affiliation(s)
- Megan Elizabeth Wiegmann
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland
| | - Ke Zhao
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Selina Hube
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland
| | - Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland.
| |
Collapse
|
17
|
Zhang J, Zhao W, Shi C, Zhao L, Chu Y, Ren Y, Wang Q, Chi Y, Zhou S. A Novel PVDF Ultrafiltration Membrane Modified by C 60(OH) n-Ag. Polymers (Basel) 2024; 16:3359. [PMID: 39684103 DOI: 10.3390/polym16233359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Ultrafiltration membranes in the fields of water treatment and biomedicine should have high permeability as well as antibacterial and antifouling capabilities. In this study, based on the hydrophilicity of fullerol (C60(OH)n) and the bacteriostatic properties of silver (Ag), a fullerol-silver (C60(OH)n-Ag) complex was prepared as a multifunctional additive. A polyvinylidene fluoride (PVDF)-composited C60(OH)n-Ag ultrafiltration membrane (C60(OH)n-Ag/PVDF) was prepared by immersion precipitation phase transformation. Addition of the C60(OH)n-Ag complex improved the permeability and retention of the traditional PVDF membrane. Compared with the traditional PVDF membrane, the surface water contact angle of the modified PVDF and C60(OH)n-Ag ultrafiltration membrane was reduced from 75.05° to 34.50°, its pure water flux increased from 224.11 L·m-2·h-1 to 804.05 L·m-2·h-1, the retention rate on bovine serum protein was increased from 75.00% to 96.44% and the flux recovery rate increased from 64.91% to 79.08%. The C60(OH)n-Ag/PVDF ultrafiltration membrane had good inhibitory effects on Escherichia coli and Staphylococcus aureus, while the PVDF ultrafiltration membrane had no obvious inhibitory effects.
Collapse
Affiliation(s)
- Jie Zhang
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Wenjun Zhao
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Chengyang Shi
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Liman Zhao
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Yudi Chu
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Yanan Ren
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Qun Wang
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Yanxia Chi
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Shujing Zhou
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
18
|
Nadagouda MN, Varshney G, Varshney V, Hejase CA. Recent Advances in Technologies for Phosphate Removal and Recovery: A Review. ACS ENVIRONMENTAL AU 2024; 4:271-291. [PMID: 39582759 PMCID: PMC11583102 DOI: 10.1021/acsenvironau.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 11/26/2024]
Abstract
Phosphorus is a nonrenewable resource, yet an essential nutrient in crop fertilizers that helps meet growing agricultural and food demands. As a limiting nutrient for primary producers, an excess amount of phosphorus entering water sources through agricultural runoff can lead to eutrophication events downstream. Therefore, to address global issues associated with the depletion of phosphate rock reserves and minimize the eutrophication of water bodies, numerous studies have investigated the removal and recovery of phosphates in usable forms using various chemical, physical, and biological methods. This review provides a comprehensive and critical evaluation of the literature, focusing on the widely employed adsorption and chemical precipitation for phosphate recovery from various wastewaters. Several experimental performance parameters including temperature, pH, coexisting ions (e.g., NO3 -, HCO3 -, Cl-, SO4 2-), surface area, porosity, and calcination are highlighted for their importance in optimizing adsorption capacity and struvite crystallization/precipitation. Furthermore, the morphological and structural characterization of various selected adsorbents and precipitated struvite crystals is discussed.
Collapse
Affiliation(s)
- Mallikarjuna N. Nadagouda
- Center
for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Gaiven Varshney
- Center
for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, Ohio 45268, United States
- Department
of Engineering Physics, Nuclear Expertise
for Advanced Technology (NEAT) Center, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Vikas Varshney
- Materials
and Manufacturing Directorate, Air Force
Research Laboratory, Wright-Patterson
Air Force Base, Ohio 45433, United States
| | - Charifa A. Hejase
- Department
of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
- Pegasus
Technical Services INC., Cincinnati, Ohio 45219, United States
| |
Collapse
|
19
|
Li P, Xu D, Gao Y, Liu P, Liu Z, Ding J, Zhu J, Liang H. Nano-confined catalysis with Co nanoparticles-encapsulated carbon nanotubes for enhanced peroxymonosulfate oxidation in secondary effluent treatment: Water quality improvement and membrane fouling alleviation. WATER RESEARCH 2024; 266:122357. [PMID: 39241381 DOI: 10.1016/j.watres.2024.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Despite widespread deployment and investigation of ultrafiltration (UF) for secondary effluent purification, the challenge of membrane fouling due to effluent organic matter (EfOM) remains formidable. This study introduced a novel pretreatment method utilizing Co nanoparticles-encapsulated carbon nanotubes activated peroxymonosulfate (Co@CNT/PMS) to degrade EfOM and mitigate membrane fouling. Characterization of Co@CNT revealed the efficient encapsulation of Co nanoparticles within nanotubes, which notably enhanced the catalytic degradation of bisphenol A and typical organics. The tube-encapsulated structure increased the concentration of reactive species within the confined nanoscopic space, thereby improving the probability of collisions with pollutants and promoting their degradation. The Co@CNT/PMS pretreatment led to substantial reductions in aromatic compounds, fluorescent components, and both high and middle molecular weight substances. These changes proved crucial in diminishing the fouling potential in subsequent UF processes, where reversible and irreversible fouling resistances decreased by 97.1 % and 72.8 %, respectively. The transition volume from pore blocking to cake filtration markedly increased, prolonging the formation of a dense fouling layer. Surface properties analysis indicated a significant reduction of pollutants on membrane surfaces after the Co@CNT/PMS pretreatment. This study underscored the efficacy of confinement-based advanced oxidization pretreatment in enhancing UF performance, presenting a viable resolution to membrane fouling.
Collapse
Affiliation(s)
- Peijie Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yunfei Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Peng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zihan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junwen Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
20
|
Wang C, Ren Y, Chen A, Li X, Ding D, Yan J, Sun L, Chi RA. Facile electrospinning-electrospray method to fabricate flexible rice straw-derived cellulose acetate/TiO 2 nanofibrous membrane with excellent photocatalytic performance. Int J Biol Macromol 2024; 282:137501. [PMID: 39528179 DOI: 10.1016/j.ijbiomac.2024.137501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
A novel and facile electrospinning-electrospray (EE) method that based on electrospinning technique and simultaneous electrospray was proposed to anchor TiO2 (P25) nanoparticles on the surface of rice straw-derived cellulose acetate (CA) nanofiber, a series of EE-CA/P25 nanofibrous membranes with different P25 dosage were successfully fabricated, which were characterized in terms of SEM, TEM, FI-IR, XRD, DRS, PL, UV-vis and 3D-EMMs, etc. Results confirmed that P25 nanoparticles were anchored on the surface of CA nanofiber. For different organic dyes of Methylene blue (MB), Rhodamine B (RhB) and Methyl orange (MO), EE-CA/P25(0.05) nanofibrous membrane toward MB dye showed the best photocatalytic degradation efficiency of 99.13 % after 30 min of light exposure. For the different antibiotics of Tetracycline (TC), Ciprofloxacin (CIP) and Sulfamethoxazole (SMX), EE-CA/P25(0.05) exhibited the best photocatalytic degradation efficiency of 83.59 % for TC after 30 min of light exposure. Moreover, EE-CA/P25(0.05) exhibited a good antimicrobial efficiency of 98.42 % for E. coli, and maintained 97.49 % after 5 cycles. The reactive radical trapping experiments revealed that h+, •O2-, and •OH participated in the reaction, and h+ and •O2- played a major role in the photocatalytic degradation process. Moreover, EE-CA/P25(0.05) flexible membrane was easy to recycle and transform rice straw waste into treasure.
Collapse
Affiliation(s)
- Chunlei Wang
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yufeng Ren
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Anqi Chen
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaofang Li
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Deng Ding
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Juntao Yan
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Linbing Sun
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ru An Chi
- Hubei Three Gorges Laboratory, China
| |
Collapse
|
21
|
Anuwa-Amarh NA, Dizbay-Onat M, Venkiteshwaran K, Wu S. Carbon-Based Adsorbents for Microplastic Removal from Wastewater. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5428. [PMID: 39597251 PMCID: PMC11595638 DOI: 10.3390/ma17225428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024]
Abstract
Plastics are widely used across various industries due to their flexibility, cost-effectiveness, and durability. This extensive use has resulted in significant plastic pollution, with microplastics (MPs) becoming pervasive contaminants in water bodies worldwide, adversely affecting aquatic ecosystems and human health. This review explores the surface characteristics of carbon-based adsorbents, including biochar, activated carbon, carbon nanotubes (CNTs), and graphene, and their influence on MP removal efficiency. Key surface characteristics such as the carbon content, surface area, pore size, and particle size of adsorbents influenced adsorption efficiency. Additionally, hydrophobic interaction, van der Waals forces, π-π interactions and electrostatic interaction were found to be mechanisms by which microplastics are trapped onto adsorbents. Modified biochar and activated carbon demonstrated high adsorption efficiencies, while CNTs and graphene, with their high carbon contents and well-defined mesopores, showed outstanding performance in MP removal. Although a high surface area was generally associated with better adsorption performance, modifications significantly enhanced efficiency regardless of the initial surface area. This review emphasizes the importance of understanding the relationship between surface characteristics and adsorption efficiency to develop optimized adsorbents for MP removal from wastewater. However, challenges such as the lack of standardized testing methods, variability in biochar performance, and the high cost of regenerating carbon adsorbents remain. Future research should focus on developing cost-effective production methods, optimizing biochar production, and exploring advanced modifications to broaden the application of carbon adsorbents. Integrating advanced adsorbents into existing water treatment systems could further enhance MP removal efficiency. Addressing these challenges can improve the effectiveness and scalability of carbon-based adsorbents, significantly contributing to the mitigation of microplastic pollution in wastewater.
Collapse
Affiliation(s)
- Nii Ashitey Anuwa-Amarh
- William B. Burnsed, Jr. Department of Mechanical, Aerospace, and Biomedical Engineering, University of South Alabama, Mobile, AL 36688, USA;
| | - Melike Dizbay-Onat
- William B. Burnsed, Jr. Department of Mechanical, Aerospace, and Biomedical Engineering, University of South Alabama, Mobile, AL 36688, USA;
| | - Kaushik Venkiteshwaran
- Department of Civil, Coastal, and Environmental Engineering, University of South Alabama, Mobile, AL 36688, USA; (K.V.); (S.W.)
| | - Shenghua Wu
- Department of Civil, Coastal, and Environmental Engineering, University of South Alabama, Mobile, AL 36688, USA; (K.V.); (S.W.)
| |
Collapse
|
22
|
Jayasekara AS, Mazzaferro L, O'Hara R, Asatekin A, Cebe P. Hydrophobic fouling-resistant electrospun nanofiber membranes from poly(vinylidene fluoride)/polyampholyte blends. SOFT MATTER 2024; 20:8654-8662. [PMID: 39436385 DOI: 10.1039/d4sm00817k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
This study reports the fabrication of non-woven fibrous membranes from electrospinning blended solutions of PVDF with polyampholytes in N,N-dimethylformamide and methanol. Polyampholytes are macromolecules that have both positive and negative charged units in different side groups attached to the backbone. In this study, we used a random polyampholyte amphiphilic copolymer (r-PAC) synthesized by co-polymerizing a hydrophobic monomer in addition to the positive and negative charged monomer units, to reduce the fouling propensity of PVDF electrospun membranes while preserving its inherent hydrophobicity. Blends of PVDF/r-PAC were electrospun across the full range of compositions from 0/100 to 100/0. Scanning electron microscopic analysis showed formation of beaded fibers with average fibril diameters from 0.09-0.18 μm. The variation in the fiber diameters is caused by the change in surface charge density, dynamic viscosity of the solution, and the instability of the Taylor cone. Bead formation was observed in the mats electrospun from less viscous solutions. Wide angle X-ray scattering showed that electrospun fibers of PVDF crystallized into the electro-active β and γ crystal phases, whereas polyampholytes were amorphous. Thermogravimetry showed that the PVDF/r-PAC blends have a multi-step thermal degradation mechanism while PVDF homopolymer showed single-step thermal degradation. Sessile drop contact angle measurements confirmed that fibers possess high hydrophobicity and super-oleophilicity. Adsorptive fouling experiments with a fluorescently labeled protein confirmed that the fiber mats obtained from the PVDF/r-PAC blends resist protein adsorption, exhibiting highly enhanced fouling resistance compared to the fibers obtained from homopolymer PVDF.
Collapse
Affiliation(s)
- Anuja S Jayasekara
- Department of Physics & Astronomy, Tufts University, Medford, MA 02155, USA.
| | - Luca Mazzaferro
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA 02155, USA
| | - Ryan O'Hara
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA 02155, USA
| | - Ayse Asatekin
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA 02155, USA
| | - Peggy Cebe
- Department of Physics & Astronomy, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
23
|
Jha S, Mishra BK. An overview of deploying different treatment processes with membrane bioreactor for enhanced treatment of wastewaters: synergistic performances and reduced fouling of membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63603-63634. [PMID: 39538077 DOI: 10.1007/s11356-024-35459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The membrane bioreactor (MBR) process synergistically combines biological treatment with membrane filtration, offering a compact design and enhanced operational flexibility. However, membrane fouling remains a critical bottleneck, limiting its widespread application, particularly in treating high-strength wastewater. Recent advances have demonstrated that integrating MBR systems with auxiliary processes such as adsorption, electrochemical treatments, algal-assisted systems, and others can significantly mitigate fouling and enhance treatment efficacy. This paper critically reviews various MBR hybrid configurations, examining their mechanisms, advantages, and limitations in terms of treatment performance and fouling control, while highlighting their potential to extend conventional MBR's applicability to challenging wastewaters and addressing operational challenges like economic viability and sustainability. Elaborated tables incorporating a wide variety of research studies within the realm of synchronization have been meticulously compiled to generate a comprehensive literature review.
Collapse
Affiliation(s)
- Shikha Jha
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Brijesh Kumar Mishra
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
24
|
Mottola S, Viscusi G, Tohamy HAS, El-Sakhawy M, Gorrasi G, De Marco I. Application of electrospun N-doped carbon dots loaded cellulose acetate membranes as cationic dyes adsorbent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122714. [PMID: 39383756 DOI: 10.1016/j.jenvman.2024.122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
This work aims to apply carbon quantum dots (CQDs) from agriculture cellulosic waste (agro wastes), produced via an economically and eco-friendly single-step method, to be used into cellulose acetate composite microfibrous membranes as an innovative solution specifically designed to adsorb methylene blue (MB) and other cationic dyes that are present in various water effluents. Batch adsorption tests were conducted, with variations in contact time (1-24 h), initial MB concentration (25-300 ppm), and adsorbent doses (1-20 g/L). The maximum adsorption capacity of the membrane was 198 mg/g with an initial concentration of 300 ppm at 298 K. Thermodynamic parameters showed that the process is endothermic. Equilibrium experimental data for MB adsorption onto electrospun adsorbent were fitted using different isothermal models, with the Freundlich model showing the best fit. The pseudo-second-order model accurately described the kinetic data with high reliability (R2 > 0.99), and the calculated adsorption capacity was very close to the experimental data. N-CQDs loaded membranes were also tested for removing methyl violet and rhodamine B, demonstrating remarkably high dye removal efficiency. The underlying adsorption mechanism was also reported. Finally, it is worth mentioning that composite adsorbents can be efficiently applied to actual industrial cases because of the possibility of reusing them, opening the route to the fabrication of novel and highly performant adsorbents. These findings underscore N-CQDs' effectiveness in enhancing pollutant removal efficiency from wastewater, highlighting their environmental benefits and promoting a more sustainable approach to water treatment. Therefore, the prepared adsorbent, showing excellent adsorption performance, places them among adsorbents for practical applications in wastewater purification.
Collapse
Affiliation(s)
- Stefania Mottola
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Hebat-Allah S Tohamy
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza P.O. 12622, Egypt
| | - Mohamed El-Sakhawy
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza P.O. 12622, Egypt
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
| |
Collapse
|
25
|
Hoti G, Caldera F, Trotta F, Zoccola M, Patrucco A, Anceschi A. A Novel Approach for Nanosponge: Wool Waste as a Building Block for the Synthesis of Keratin-Based Nanosponge and Perspective Application in Wastewater Treatment. ACS OMEGA 2024; 9:43319-43330. [PMID: 39493986 PMCID: PMC11525742 DOI: 10.1021/acsomega.3c09133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 11/05/2024]
Abstract
Wool waste is a huge environmental problem that needs to be addressed in order to avoid the continuous accumulation of biohazardous waste in landfills. In recent years, wool has proven to be an excellent source of keratin that can be used for various purposes. But never before has keratin from wool waste been used as a building block to synthesize a well-known class of biopolymers called nanosponges. Typically, nanosponges are produced by the reaction of cyclodextrins with an appropriate cross-linker to obtain an insoluble hyper-cross-linked polymer, which has applications in various fields. For this reason, a novel, affordable approach for the synthesis of a novel class of nanosponge using wool keratin as the building block has been presented. The keratin nanosponge was synthesized by reacting keratin with pyromellitic dianhydride as a cross-linking agent. The formation of a cross-linked polymer was successfully confirmed by CHNS-elemental analysis, TGA, DSC, FTIR-ATR, SEM, and water absorption capacity measurements. Surprisingly, the keratin-based nanosponge showed ∼50% uptake of heavy metals after only 24 h of contact time. The adsorption kinetics was also evaluated, indicating a pseudo-second-order model fit and the mechanism is predominantly the intraparticle diffusion process. The novel synthesized nanosponge proved to be a possible alternative for wastewater treatment.
Collapse
Affiliation(s)
- Gjylije Hoti
- Department
of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria
9, 10125 Turin, Italy
| | - Fabrizio Caldera
- Department
of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Francesco Trotta
- Department
of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Marina Zoccola
- CNR-STIIMA,
Italian National Research Council, Institute
of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900, Biella (BI), Italy
| | - Alessia Patrucco
- CNR-STIIMA,
Italian National Research Council, Institute
of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900, Biella (BI), Italy
| | - Anastasia Anceschi
- CNR-STIIMA,
Italian National Research Council, Institute
of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900, Biella (BI), Italy
| |
Collapse
|
26
|
Mujahid M, Umar Farooq M, Wang C, Arkook B, Harb M, Ren LF, Shao J. An Opportunity for Synergizing Desalination by Membrane Distillation Assisted Reverse-Electrodialysis for Water/Energy Recovery. CHEM REC 2024; 24:e202400098. [PMID: 39289830 DOI: 10.1002/tcr.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Indexed: 09/19/2024]
Abstract
Industry, agriculture, and a growing population all have a major impact on the scarcity of clean-water. Desalinating or purifying contaminated water for human use is crucial. The combination of thermal membrane systems can outperform conventional desalination with the help of synergistic management of the water-energy nexus. High energy requirement for desalination is a key challenge for desalination cost and its commercial feasibility. The solution to these problems requires the intermarriage of multidisciplinary approaches such as electrochemistry, chemical, environmental, polymer, and materials science and engineering. The most feasible method for producing high-quality freshwater with a reduced carbon footprint is demanding incorporation of industrial low-grade heat with membrane distillation (MD). More precisely, by using a reverse electrodialysis (RED) setup that is integrated with MD, salinity gradient energy (SGE) may be extracted from highly salinized MD retentate. Integrating MD-RED can significantly increase energy productivity without raising costs. This review provides a comprehensive summary of the prospects, unresolved issues, and developments in this cutting-edge field. In addition, we summarize the distinct physicochemical characteristics of the membranes employed in MD and RED, together with the approaches for integrating them to facilitate effective water recovery and energy conversion from salt gradients and freshwater.
Collapse
Affiliation(s)
- Muhammad Mujahid
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Muhammad Umar Farooq
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Bassim Arkook
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Moussab Harb
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
27
|
Moradi O, Mirzaian M, Sedaghat S. Poly(methyl methacrylate) functionalized graphene oxide/CuO as nanocomposite for efficient removal of dye pollutants. Sci Rep 2024; 14:22318. [PMID: 39333146 PMCID: PMC11436928 DOI: 10.1038/s41598-024-72937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
In this research, the use of a three-component nanocomposite of graphene oxide-methyl methacrylate and copper(II) oxide (PMMA-GO-CuO) was investigated. The aim of synthesizing this nanocomposite is to removal dye pollutants, specifically methylene blue (MB) and methyl orange (MO), which are commonly used in dyeing industries, through adsorption. The study focuses on creating GO-CuO and PMMA-GO-CuO nanocomposites as effective adsorbents. A simple and quick method led to the development of the PMMA-GO-CuO nanocomposite, which shows enhanced physical and chemical properties. Key materials include graphene oxide, methyl methacrylate, and copper(II) oxide nanoparticles. Characterization techniques such as FT-IR, XRD, SEM, and TGA were used to analyze the nanocomposite. Results indicate that dye adsorption is more effective at lower pH levels, suggesting that the PMMA-GO-CuO nanocomposite can efficiently remove dyes from industrial wastewater. The experimental data showed that the Langmuir isotherm model accurately represented the equilibrium adsorption, with maximum capacities of 285.71 mg g-1 for methylene blue and 256.41 mg g-1 for methyl orange, indicating a single layer of adsorption. The kinetics followed a pseudo-second order model, suggesting that the adsorption process involves chemical bonding. Additionally, thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicated that the adsorption is spontaneous. The adsorption mechanism involves hydrogen bonding, π-π interactions, and electrostatic interactions. This study investigates how factors like pH, temperature, contact time, and dye concentration affect the adsorption of methyl orange and methylene blue dyes. A PMMA-GO-CuO nanocomposite was used, achieving 84% removal of MB and 35% removal of MO from industrial wastewater. This study highlights the promising potential of PMMA-GO-CuO nanocomposite as an effective material for the removal of dye pollutants from industrial wastewater. The results showed that the graphene oxide in the composite is effective for removing cationic dyes due to its negative charge. Further research will focus on the optimization of the synthesis process with the aim of achieving competitive performance of this nanocomposite on a large scale. These findings not only advance the field of nanocomposite materials but also provide a practical solution to an important environmental issue, demonstrating the innovation of the present study in the literature.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Masoud Mirzaian
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Sajjad Sedaghat
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
28
|
Cairone S, Hasan SW, Choo KH, Li CW, Zarra T, Belgiorno V, Naddeo V. Integrating artificial intelligence modeling and membrane technologies for advanced wastewater treatment: Research progress and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173999. [PMID: 38879019 DOI: 10.1016/j.scitotenv.2024.173999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Membrane technologies have become proficient alternatives for advanced wastewater treatment, ensuring high contaminant removal and sustainable resource recovery. Despite significant progress, ongoing research efforts aim to further optimize treatment performance. Among the challenges faced, membrane fouling persists as a relevant obstacle in membrane technologies, necessitating the development of more effective mitigation strategies. Mathematical models, widely employed for predicting treatment performance, generally exhibit low accuracy and suffer from uncertainties due to the complex and variable nature of wastewater. To overcome these limitations, numerous studies have proposed artificial intelligence (AI) modeling to accurately predict membrane technologies' performance and fouling mechanisms. This approach aims to provide advanced simulations and predictions, thereby enhancing process control, optimization, and intensification. This literature review explores recent advancements in modeling membrane-based wastewater treatment processes through AI models. The analysis highlights the enormous potential of this research field in enhancing the efficiency of membrane technologies. The role of AI modeling in defining optimal operating conditions, developing effective strategies for membrane fouling mitigation, enhancing the performance of novel membrane-based technologies, and improving membrane fabrication techniques is discussed. These enhanced process optimization and control strategies driven by AI modeling ensure improved effluent quality, optimized resource consumption, and minimized operating costs. The potential contribution of this cutting-edge approach to a paradigm shift toward sustainable wastewater treatment is examined. Finally, this review outlines future perspectives, emphasizing the research challenges that require attention to overcome the current limitations hindering the integration of AI modeling in wastewater treatment plants.
Collapse
Affiliation(s)
- Stefano Cairone
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II #132, 84084 Fisciano, SA, Italy
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO, Box 127788, Abu Dhabi, United Arab Emirates
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University (KNU), 80 Daehak-ro, Bukgu, Daegu 41566, Republic of Korea
| | - Chi-Wang Li
- Department of Water Resources and Environmental Engineering, Tamkang University, 151 Yingzhuan Road Tamsui District, New Taipei City 25137, Taiwan
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II #132, 84084 Fisciano, SA, Italy
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II #132, 84084 Fisciano, SA, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II #132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
29
|
Koul S, Singhvi M, Kim BS. Green Synthesis of Cobalt-Doped CeFe 2O 5 Nanocomposites Using Waste Gossypium arboreum L. Stalks and Their Application in the Removal of Toxic Water Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1339. [PMID: 39195377 DOI: 10.3390/nano14161339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 08/29/2024]
Abstract
Currently, there is an increasing need to find new ways to purify water by eliminating bacterial biofilms, textile dyes, and toxic water pollutants. These contaminants pose significant risks to both human health and the environment. To address this issue, in this study, we have developed an eco-friendly approach that involves synthesizing a cobalt-doped cerium iron oxide (CCIO) nanocomposite (NC) using an aqueous extract of Gossypium arboreum L. stalks. The resulting nanoparticles can be used to effectively purify water and tackle the challenges associated with these harmful pollutants. Nanoparticles excel in water pollutant removal by providing a high surface area for efficient adsorption, versatile design for the simultaneous removal of multiple contaminants, catalytic properties for organic pollutant degradation, and magnetic features for easy separation, offering cost-effective and sustainable water treatment solutions. A CCIO nanocomposite was synthesized via a green co-precipitation method utilizing biomolecules and co-enzymes extracted from the aqueous solution of Gossypium arboreum L. stalk. This single-step synthesis process was accomplished within a 5-h reaction period. Furthermore, the synthesis of nanocomposites was confirmed by various characterization techniques such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and energy dispersive X-ray (EDX) technology. CCIO NCs were discovered to have a spherical shape and an average size of 40 nm. Based on DLS zeta potential analysis, CCIO NCs were found to be anionic. CCIO NCs also showed significant antimicrobial and antioxidant activity. Overall, considering their physical and chemical properties, the application of CCIO NCs for the adsorption of various dyes (~91%) and water pollutants (chromium = ~60%) has been considered here since they exhibit great adsorption capacity owing to their microporous structure, and represent a step forward in water purification.
Collapse
Affiliation(s)
- Saloni Koul
- Department of Biotechnology (with Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Mamata Singhvi
- Department of Biotechnology (with Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
30
|
Ayach J, El Malti W, Duma L, Lalevée J, Al Ajami M, Hamad H, Hijazi A. Comparing Conventional and Advanced Approaches for Heavy Metal Removal in Wastewater Treatment: An In-Depth Review Emphasizing Filter-Based Strategies. Polymers (Basel) 2024; 16:1959. [PMID: 39065274 PMCID: PMC11280771 DOI: 10.3390/polym16141959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Various industrial activities release heavy metal ions into the environment, which represent one of the major toxic pollutants owing to their severe effects on the environment, humans, and all living species. Despite several technological advances and breakthroughs, wastewater treatment remains a critical global issue. Traditional techniques are dedicated to extracting heavy metal ions from diverse wastewater origins, encompassing coagulation/flocculation, precipitation, flotation, and ion exchange. Their cost, side toxicity, or ineffectiveness often limit their large-scale use. Due to their adaptable design, simple operation, and reasonable cost, membrane filtration and adsorption have proven their efficiency in removing metals from wastewater. Recently, adsorption-based filters have appeared promising in treating water. Within this range, filters incorporating natural, synthetic, or hybrid adsorbents present an appealing alternative to conventional approaches. This review aims to list and describe the conventional and advanced wastewater treatment methods by comparing their efficiency, cost, and environmental impact. Adsorption-based filters were highlighted due to the significant advantages they can provide.
Collapse
Affiliation(s)
- Jana Ayach
- Research Platform for Environmental Science (PRASE), Doctoral School of Science and Technology, Lebanese University, Beirut P.O. Box 6573/14, Lebanon; (J.A.); (M.A.A.); (A.H.)
- CNRS, ICMR UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France;
| | - Wassim El Malti
- College of Health Sciences, American University of the Middle East, Egaila 54200, Kuwait
| | - Luminita Duma
- CNRS, ICMR UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France;
| | - Jacques Lalevée
- CNRS, IS2M, UMR 7361, Université de Haute-Alsace, 68100 Mulhouse, France
| | - Mohamad Al Ajami
- Research Platform for Environmental Science (PRASE), Doctoral School of Science and Technology, Lebanese University, Beirut P.O. Box 6573/14, Lebanon; (J.A.); (M.A.A.); (A.H.)
| | - Hussein Hamad
- Research Platform for Environmental Science (PRASE), Doctoral School of Science and Technology, Lebanese University, Beirut P.O. Box 6573/14, Lebanon; (J.A.); (M.A.A.); (A.H.)
| | - Akram Hijazi
- Research Platform for Environmental Science (PRASE), Doctoral School of Science and Technology, Lebanese University, Beirut P.O. Box 6573/14, Lebanon; (J.A.); (M.A.A.); (A.H.)
| |
Collapse
|
31
|
Aldana JC, Agudelo C, Álvarez PM, Acero JL. Removal of Micropollutants in Water Reclamation by Membrane Filtration: Impact of Pretreatments and Adsorption. MEMBRANES 2024; 14:146. [PMID: 39057654 PMCID: PMC11278704 DOI: 10.3390/membranes14070146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Organic micropollutants (OMPs) present in water and wastewater are in the spotlight because of their potentially harmful effects even at low concentrations and the difficulties of their elimination in urban wastewater treatment plants (UWWTPs). This study explores the impact of some membrane filtration processes on the removal of a group of 11 OMPs with an eye on the effects of two pretreatments (i.e., coagulation and adsorption onto powdered activated carbon (PAC)) and the adsorption of OMPs onto the membranes on the overall removal. For this purpose, ultrafiltration (UF) and nanofiltration (NF) experiments were conducted with selected OMPs spiked in ultrapure water and secondary effluents from UWWTPs. It was observed that the adsorption of OMPs onto the membranes was influenced by the characteristics of the membranes, as well as the presence of effluent organic matter (EfOM). Since adsorption was the dominant mechanism for the rejection of OMPs by UF membranes, a study of the adsorption equilibrium of the micropollutants using UF membrane pieces as the adsorbent was conducted. The adsorption isotherms for the most hydrophobic OMPs fitted the Langmuir model. The efficiency of coagulation and powdered activated carbon (PAC) adsorption coupled with UF were also investigated. Both pretreatments alleviated membrane fouling and improved the rejection of organic and inorganic matter. The PAC pretreatment significantly improved the removal of OMPs in the combined PAC/UF process. The best options for achieving reclaimed water with satisfactory physicochemical quality, nearly devoid of OMPs and microorganisms, and suitable for diverse reuse purposes are either the NF treatment or the combination of PAC/UF.
Collapse
Affiliation(s)
| | | | | | - Juan L. Acero
- Departamento de Ingeniería Química y Química Física, Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain; (J.C.A.); (C.A.); (P.M.Á.)
| |
Collapse
|
32
|
Wang L, Cheng WC, Xue ZF, Rahman MM, Xie YX. Struvite and ethylenediaminedisuccinic acid (EDDS) enhance electrokinetic-biological permeable reactive barrier removal of copper and lead from contaminated loess. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121100. [PMID: 38744205 DOI: 10.1016/j.jenvman.2024.121100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/02/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Removal of heavy metals using the electrokinetic (EK) remediation technology is restricted by soils containing a fraction of clay particles above 12%. Furthermore, it is also affected by hydroxide precipitation (focusing phenomenon) close to the cathode. A modified EK reactor containing a permeable reactive barrier (PRB) was proposed herein where the enzyme-induced carbonate precipitation (EICP) treatment was incorporated into the PRB. Despite that, NH4+-N pollution induced by the urea hydrolysis resulting from the EICP treatment causes serious threats to surrounding environments and human health. There were four types of tests applied to the present work, including CP, TS1, TS2, and TS3 tests. CP test neglected the bio-PRB, while TS1 test considered the bio-PRB. TS2 test based on TS1 test tackled NH4+-N pollution using the struvite precipitation technology. TS3 test based on TS2 test applied EDDS to enhance the removal of Cu and Pb. In CP test, the removal efficiency applied to Cu and Pb removals was as low as approximately 10%, presumably due to the focusing phenomenon. The removal efficiency was elevated to approximately 24% when the bio-PRB and the electrolyte reservoir were involved in TS1 test. TS2 test indicated that the rate of struvite precipitation was 40 times faster than the ureolysis rate, meaning that the struvite precipitate had sequestered NH4+ before it started threatening surrounding environments. The chelation between Cu2+ and EDDS took place when EDDS played a part in TS3 test. It made Cu2+ negatively surface charged by transforming Cu2+ into EDDSCu2-. The chelation caused those left in S4 and S4 to migrate toward the bio-PRB, whereas it also caused those left in S1 and S2 to migrate toward the anode. Due to this reason, the fraction of Cu2+ removed by the bio-PRB and the electrolyte reservoir is raised to 32% and 26% respectively, and the fraction of remaining Cu was reduced to 41%. Also, the removal efficiency applied to Pb removal was raised to 50%. Results demonstrate the potential of struvite and EDDS-assisted EK-PRB technology as a cleanup method for Cu- and Pb-contaminated loess.
Collapse
Affiliation(s)
- Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Md Mizanur Rahman
- Professor in Geotechnical Engineering, UniSA, STEM, ScaRCE, University of South Australia, SA 5000, Australia.
| | - Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| |
Collapse
|
33
|
Fang K, Li P, Zhang B, Liu S, Zhao X, Kou L, Xu W, Guo X, Li J. Insights on updates in sodium alginate/MXenes composites as the designer matrix for various applications: A review. Int J Biol Macromol 2024; 269:132032. [PMID: 38702004 DOI: 10.1016/j.ijbiomac.2024.132032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Advancements in two-dimensional materials, particularly MXenes, have spurred the development of innovative composites through their integration with natural polymers such as sodium alginate (SA). Mxenes exhibit a broad specific surface area, excellent electrical conductivity, and an abundance of surface terminations, which can be combined with SA to maximize the synergistic effect of the materials. This article provides a comprehensive review of state-of-the-art techniques in the fabrication of SA/MXene composites, analyzing the resulting structural and functional enhancements with a specific focus on advancing the design of these composites for practical applications. A detailed exploration of SA/MXene composites is provided, highlighting their utility in various sectors, such as wearable electronics, wastewater treatment, biomedical applications, and electromagnetic interference (EMI) shielding. The review identifies the unique advantages conferred by incorporating MXene in these composites, examines the current challenges, and proposes future research directions to understand and optimize these promising materials thoroughly. The remarkable properties of MXenes are emphasized as crucial for advancing the performance of SA-based composites, indicating significant potential for developing high-performance composite materials.
Collapse
Affiliation(s)
- Kun Fang
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Pei Li
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China,.
| | - Bing Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Si Liu
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Xiaoyang Zhao
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Linxuan Kou
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Xiangyang Guo
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
34
|
Baratta M, Nezhdanov AV, Mashin AI, Nicoletta FP, De Filpo G. Carbon nanotubes buckypapers: A new frontier in wastewater treatment technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171578. [PMID: 38460681 DOI: 10.1016/j.scitotenv.2024.171578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Occurrence of contaminants in water is one of the major global concerns humanity is still facing today: most of them are extremely toxic and dangerous for human health, obliging their removal for a proper and correct process of sanitation. Among wastewater treatment technologies, in the view of development of sustainable and environmentally friendly processes, membrane adsorption has proved to be a fast and simple method in the removal of pollutants, offering great contaminants recovery percentages, fast adsorbent regeneration and recycle, and easy scale-up. Due to their large surface area and tunable chemistry, carbon nanotubes (CNTs)-based materials revealed to be extraordinary adsorbents, exceeding by far performances of ordinary organic and inorganic membranes such as polyethersulfone, polyvinylidene fluoride, polytetrafluoroethylene, ceramics, currently employed in membrane technologies for wastewater treatment. In consideration of this, the review aims to summarize recent developments in the field of carbon nanotubes-based materials for pollutants recovery from water through adsorption processes. After a brief introduction concerning what adsorption phenomenon is and how it is performed and governed by using carbon nanotubes-based materials, the review discusses into detail the employment of three common typologies of CNTs-based materials (CNTs powders, CNTs-doped polymeric membranes and CNTs membranes) in adsorption process for the removal of water pollutants. Particularly focus will be devoted on the emergent category of self-standing CNTs membranes (buckypapers), made entirely of carbon nanotubes, exhibiting superior performances than CNTs and CNTs-doped polymeric membranes in terms of preparation strategy, recovery percentages of pollutants and regeneration possibilities. The extremely encouraging results presented in this review aim to support and pave the way to the introduction of alternative and more efficient pathways in wastewater treatment technologies to contrast the problem of water pollution.
Collapse
Affiliation(s)
- Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | | | - Alexandr Ivanovic Mashin
- Applied Physics & Microelectronics, Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod 603105, Russia
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
35
|
Mandal RR, Bashir Z, Mandal JR, Raj D. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:502. [PMID: 38700594 DOI: 10.1007/s10661-024-12680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
Water pollution is an inextricable problem that stems from natural and human-related factors. Unfortunately, with rapid industrialization, the problem has escalated to alarming levels. The pollutants that contribute to water pollution include heavy metals (HMs), chemicals, pesticides, pharmaceuticals, and other industrial byproducts. Numerous methods are used for treating HMs in wastewater, like ion exchange, membrane filtration, chemical precipitation, adsorption, and electrochemical treatment. But the remediation through the plant, i.e., phytoremediation is the most sustainable approach to remove the contaminants from wastewater. Aquatic plants illustrate the capacity to absorb excess pollutants including organic and inorganic compounds, HMs, and pharmaceutical residues present in agricultural, residential, and industrial discharges. The extensive exploitation of these hyperaccumulator plants can be attributed to their abundance, invasive mechanisms, potential for bioaccumulation, and biomass production. Post-phytoremediation, plant biomass can be toxic to both water bodies and soil. Therefore, the circular bioeconomy approach can be applied to reuse and repurpose the toxic plant biomass into different circular bioeconomy byproducts such as biochar, biogas, bioethanol, and biodiesel is essential. In this regard, the current review highlights the potential strategies for the phytoremediation of HMs in wastewater and various strategies to efficiently reuse metal-enriched biomass material and produce commercially valuable products. The implementation of circular bioeconomy practices can help overcome significant obstacles and build a new platform for an eco-friendlier lifestyle.
Collapse
Affiliation(s)
- Rashmi Ranjan Mandal
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Jyoti Ranjan Mandal
- Electro-Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India.
| |
Collapse
|
36
|
Liu Y, Xiong YS, Li MX, Li W, Li K. Polyethyleneimine-functionalized magnetic sugarcane bagasse cellulose film for the efficient adsorption of ibuprofen. Int J Biol Macromol 2024; 265:130969. [PMID: 38508562 DOI: 10.1016/j.ijbiomac.2024.130969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Polyethyleneimine-modified magnetic sugarcane bagasse cellulose film (P-SBC/Fe3O4 film) was simply fabricated for the removal of ibuprofen (IBP), a typical emerging organic contaminant. The P-SBC/Fe3O4 film exhibited an equilibrium adsorption amount of 370.52 mg/g for IBP and a corresponding removal efficiency of 92.63 % under following adsorption conditions: 318 K, pH 4, and 0.25 mg/mL dosage. Thermodynamic studies indicated that adsorption of IBP on the P-SBC/Fe3O4 film was spontaneous (∆G < 0) and endothermic (∆H > 0). The adsorption data conformed to the Freundlich isotherm model and multilayer adsorption model (two layers), and an average of 3-4 active sites on the P-SBC/Fe3O4 film share an IBP molecule. Both the EDR-IDR and AOAS models vividly described the dynamic characteristics of adsorption process. Model fitting results, theoretical calculations, and comprehensive characterization revealed that adsorption is driven by electrostatic interactions between the primary amine of P-SBC/Fe3O4 film and the carboxyl group of IBP molecule, while other weak interactions are also non-ignorable. Furthermore, quantitative calculations based on density functional theory (DFT) underscored the importance of PEI functionalization. In conclusion, P-SBC/Fe3O4 film is an environmentally friendly and cost-effective adsorbent with significant potential for effectively removing IBP, while maintaining its efficacy over multiple cycles.
Collapse
Affiliation(s)
- Yang Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yan-Shu Xiong
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ming-Xing Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Wen Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China; Province and Ministry Cosponsored Collaborative Innovation Center of Canesugar Industry, Nanning, China; Engineering Research Centre for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, China.
| |
Collapse
|
37
|
Parasnis M, Deng E, Yuan M, Lin H, Kordas K, Paltseva A, Frimpong Boamah E, Judelsohn A, Nalam PC. Heavy Metal Remediation by Dry Mycelium Membranes: Approaches to Sustainable Lead Remediation in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6317-6329. [PMID: 38483835 PMCID: PMC10977094 DOI: 10.1021/acs.langmuir.3c03811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Lead contamination poses significant and lasting health risks, particularly in children. This study explores the efficacy of dried mycelium membranes, distinct from live fungal biomass, for the remediation of lead (Pb(II)) in water. Dried mycelium offers unique advantages, including environmental resilience, ease of handling, biodegradability, and mechanical reliability. The study explores Pb(II) removal mechanisms through sorption and mineralization by dried mycelium hyphae in aqueous solutions. The sorption isotherm studies reveal a high Pb(II) removal efficiency, exceeding 95% for concentrations below 1000 ppm and ∼63% above 1500 ppm, primarily driven by electrostatic interactions. The measured infrared peak shifts and the pseudo-second-order kinetics for sorption suggests a correlation between sorption capacity and the density of interacting functional groups. The study also explores novel surface functionalization of the mycelium network with phosphate to enhance Pb(II) removal, which enables remediation efficiencies >95% for concentrations above 1500 ppm. Scanning electron microscopy images show a pH-dependent formation of Pb-based crystals uniformly deposited throughout the entire mycelium network. Continuous cross-flow filtration tests employing a dried mycelium membrane demonstrate its efficacy as a microporous membrane for Pb(II) removal, reaching remediation efficiency of 85-90% at the highest Pb(II) concentrations. These findings suggest that dried mycelium membranes can be a viable alternative to synthetic membranes in heavy metal remediation, with potential environmental and water treatment applications.
Collapse
Affiliation(s)
- Mruganka
Sandip Parasnis
- Department
of Materials Design and Innovation, University
at Buffalo, Buffalo, New York 14203, United States
| | - Erda Deng
- Department
of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14203, United States
| | - Mengqi Yuan
- Department
of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14203, United States
| | - Haiqing Lin
- Department
of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14203, United States
| | - Katarzyna Kordas
- Department
of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York 14214, United States
| | - Anna Paltseva
- School
of Geosciences, University of Louisiana,104 East University Avenue, Lafayette, Louisiana 70504, United States
| | - Emmanuel Frimpong Boamah
- Department
of Urban and Regional Planning, University
at Buffalo, Buffalo, New York 14214, United States
| | - Alexandra Judelsohn
- Department
of Urban and Regional Planning, University
at Buffalo, Buffalo, New York 14214, United States
| | - Prathima C. Nalam
- Department
of Materials Design and Innovation, University
at Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
38
|
Wang H, Yu Z, Liao M, Wu C, Yang J, Zhao J, Wang J, Bai L, Li G, Liang H. Replacing traditional pretreatment in one-step UF with natural short-distance riverbank filtration: Continuous contaminants removal and TMP increase relief. WATER RESEARCH 2024; 249:120948. [PMID: 38064787 DOI: 10.1016/j.watres.2023.120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/30/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Scientists have been focusing on applying more natural processes instead of industrial chemicals in drinking water treatment to achieve the purpose of carbon emissions reduction. In this study, we shortened the infiltration range of riverbank filtration, a natural water purification process, to form the short-distance riverbank filtration (sRBF) which retained its ability in water quality improvement and barely influenced the groundwater environment, and integrated it with ultrafiltration (UF) to form a one-step sRBF-UF system. This naturalness-artificiality combination could realize stable contaminants removal and trans-membrane pressure (TMP) increase relief for over 30 days without dosing chemicals. Generally, both sRBF and UF played the important role in river water purification, and the interaction between them made the one-step sRBF-UF superior in long-term operation. The sRBF could efficiently remove contaminants (90 % turbidity, 60 % total nitrogen, 30 % ammonia nitrogen, and 25 % total organic carbon) and reduce the membrane fouling potential of river water under its optimum operation conditions, i.e., a hydraulic retention time of 48 h, an operation temperature of 20 °C, and a synergistic filter material of aquifer and riverbank soil. Synergistic adsorption, interception, and microbial biodegradation were proved to be the mechanisms of contaminants and foulants removal for sRBF. The sequential UF also participated in the reduction of impurities and especially played a role in intercepting microbial metabolism products and possibly leaked microorganisms from sRBF, assuring the safety of product water. To date, the one-step sRBF-UF was a new attempt to combine a natural process with an artificial one, and realized a good and stable product quality in long-term operation without doing industrial chemicals, which made it a promised alternative for water purification for cities alongside the river.
Collapse
Affiliation(s)
- Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhangjie Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Mengzhe Liao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chuandong Wu
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin 150090, PR China
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
39
|
Gidstedt S, Betsholtz A, Cimbritz M, Davidsson Å, Hagman M, Karlsson S, Takman M, Svahn O, Micolucci F. Chemically enhanced primary treatment, microsieving, direct membrane filtration and GAC filtration of municipal wastewater: a pilot-scale study. ENVIRONMENTAL TECHNOLOGY 2024; 45:28-39. [PMID: 35815380 DOI: 10.1080/09593330.2022.2099307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Chemically enhanced primary treatment (CEPT) followed by microsieving and direct membrane filtration (DMF) as ultrafiltration, was evaluated on pilot scale at a municipal wastewater treatment plant. In addition, a granular activated carbon (GAC) filter downstream of DMF was evaluated for the removal of organic micropollutants. Up to 80% of the total organic carbon (TOC) and 96% of the total phosphorus were removed by CEPT with microsieving. The additional contribution of subsequent DMF was minor, and only five days of downstream GAC filtration was possible due to fouling of the membrane. Of the 21 organic micropollutants analysed, all were removed (≥ 98%) by the GAC filter until 440 bed volumes, while CEPT with microsieving and DMF removed only a few compounds. Measurements of the oxygen uptake rate indicated that the required aeration for supplementary biological treatment downstream of CEPT with microsieving, both with and without subsequent DMF, was 20-25% of that in the influent wastewater. This study demonstrated the potential of using compact physicochemical processes to treat municipal wastewater, including the removal of organic micropollutants.
Collapse
Affiliation(s)
- Simon Gidstedt
- Department of Chemical Engineering, Lund University, Lund, Sweden
- Sweden Water Research AB, Ideon Science Park, Lund, Sweden
| | | | - Michael Cimbritz
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Åsa Davidsson
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Marinette Hagman
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Stina Karlsson
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Maria Takman
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Ola Svahn
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | | |
Collapse
|
40
|
Radoor S, Karayil J, Jayakumar A, Kandel DR, Kim JT, Siengchin S, Lee J. Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review. Carbohydr Polym 2024; 323:121339. [PMID: 37940239 DOI: 10.1016/j.carbpol.2023.121339] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 11/10/2023]
Abstract
From the environmental perspective, it is essential to develop cheap, eco-friendly, and highly efficient materials for water and wastewater treatment. In this regard, hydrogels and hydrogel-based composites have been widely employed to mitigate global water pollution as this methodology is simple and free from harmful by-products. Notably, alginate and cellulose, which are natural carbohydrate polymers, have gained great attention for their availability, price competitiveness, excellent biodegradability, biocompatibility, hydrophilicity, and superior physicochemical performance in water treatment. This review outlined the recent progress in developing and applying alginate- and cellulose-based hydrogels to remove various pollutants such as dyes, heavy metals, oils, pharmaceutical contaminants, and pesticides from wastewater streams. This review also highlighted the effects of various physical or chemical methods, such as crosslinking, grafting, the addition of fillers, nanoparticle incorporation, and polymer blending, on the physiochemical and adsorption properties of hydrogels. In addition, this review covered the alginate- and cellulose-based hydrogels' current limitations such as low mechanical performance and poor stability, while presenting strategies to improve the drawbacks of the hydrogels. Lastly, we discussed the prospects and future directions of alginate- and cellulose-based hydrogels. We hope this review provides valuable insights into the efficient preparations and applications of hydrogels.
Collapse
Affiliation(s)
- Sabarish Radoor
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Jasila Karayil
- Department of Applied Science, Government Engineering College West Hill, Kozhikode, Kerala, India
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dharma Raj Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Suchart Siengchin
- Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Jaewoo Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
| |
Collapse
|
41
|
Arcas-Pilz V, Gabarrell X, Orsini F, Villalba G. Literature review on the potential of urban waste for the fertilization of urban agriculture: A closer look at the metropolitan area of Barcelona. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167193. [PMID: 37741375 DOI: 10.1016/j.scitotenv.2023.167193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/20/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
Urban agriculture (UA) activities are increasing in popularity and importance due to greater food demands and reductions in agricultural land, also advocating for greater local food supply and security as well as the social and community cohesion perspective. This activity also has the potential to enhance the circularity of urban flows, repurposing nutrients from waste sources, increasing their self-sufficiency, reducing nutrient loss into the environment, and avoiding environmental cost of nutrient extraction and synthetization. The present work is aimed at defining recovery technologies outlined in the literature to obtain relevant nutrients such as N and P from waste sources in urban areas. Through literature research tools, the waste sources were defined, differentiating two main groups: (1) food, organic, biowaste and (2) wastewater. Up to 7 recovery strategies were identified for food, organic, and biowaste sources, while 11 strategies were defined for wastewater, mainly focusing on the recovery of N and P, which are applicable in UA in different forms. The potential of the recovered nutrients to cover existing and prospective UA sites was further assessed for the metropolitan area of Barcelona. Nutrient recovery from current composting and anaerobic digestion of urban sourced organic matter obtained each year in the area as well as the composting of wastewater sludge, struvite precipitation and ion exchange in wastewater effluent generated yearly in existing WWTPs were assessed. The results show that the requirements for the current and prospective UA in the area can be met 2.7 to 380.2 times for P and 1.7 to 117.5 times for N depending on the recovery strategy. While the present results are promising, current perceptions, legislation and the implementation and production costs compared to existing markets do not facilitate the application of nutrient recovery strategies, although a change is expected in the near future.
Collapse
Affiliation(s)
- Verónica Arcas-Pilz
- Sostenipra Research Group (2021 SGR 00734), Institut de Ciència i Tecnologia Ambientals ICTA-UAB (CEX2019-0940-M), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Xavier Gabarrell
- Sostenipra Research Group (2021 SGR 00734), Institut de Ciència i Tecnologia Ambientals ICTA-UAB (CEX2019-0940-M), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Francesco Orsini
- DISTAL-Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy
| | - Gara Villalba
- Sostenipra Research Group (2021 SGR 00734), Institut de Ciència i Tecnologia Ambientals ICTA-UAB (CEX2019-0940-M), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
42
|
Xia S, Liu M, Yu H, Zou D. Pressure-driven membrane filtration technology for terminal control of organic DBPs: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166751. [PMID: 37659548 DOI: 10.1016/j.scitotenv.2023.166751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Disinfection by-products (DBPs), a series of undesired secondary contaminants formed during the disinfection processes, deteriorate water quality, threaten human health and endanger ecological safety. Membrane-filtration technologies are commonly used in the advanced water treatment and have shown a promising performance for removing trace contaminants. In order to gain a clearer understanding of the behavior of DBPs in membrane-filtration processes, this work dedicated to: (1) comprehensively reviewed the retention efficiency of microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) for DBPs. (2) summarized the mechanisms involved size exclusion, electrostatic repulsion and adsorption in the membrane retention of DBPs. (3) In conjunction with principal component analysis, discussed the influence of various factors (such as the characteristics of membrane and DBPs, feed solution composition and operating conditions) on the removal efficiency. In general, the characteristics of the membranes (salt rejection, molecular weight cut-off, zeta potential, etc.) and DBPs (molecular size, electrical property, hydrophobicity, polarity, etc.) fundamentally determine the membrane-filtration performance on retaining DBPs, and the actual operating environmental factors (such as solute concentration, coexisting ions/NOMs, pH and transmembrane pressure) exert a positive/negative impact on performance to some extent. Current researches indicate that NF and RO can be effective in removing DBPs, and looking forward, we recommend that multiple factors should be taken into account that optimize the existed membrane-filtration technologies, rationalize the selection of membrane products, and develop novel membrane materials targeting the removal of DBPs.
Collapse
Affiliation(s)
- Shuai Xia
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Meijun Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Haiyang Yu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Donglei Zou
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| |
Collapse
|
43
|
Mugwili ME, Waanders FB, Masindi V, Fosso-Kankeu E. An update on sustainabilities and challenges on the removal of ammonia from aqueous solutions: A state-of-the-art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119172. [PMID: 37793297 DOI: 10.1016/j.jenvman.2023.119172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
An insightful attempt has been made in this review and the primary objective was to meticulously provide an update on the sustainabilities, advances and challenges pertaining the removal of ammonia from water and wastewater. Specifically, ammonia is a versatile compound that prevails in various spheres of the environment, and if not properly managed, this chemical species could pose severe ecological pressure and toxicity to different receiving environments and its biota. The notorious footprints of ammonia could be traced to anoxic conditions, an infestation of aquatic ecosystems, hyperactivity, convulsion, and methaemoglobin, popularly known as the "blue baby syndrome". In this review, latest updates regarding the sustainabilities, advancements and challenges for the removal of ammonia from aqueous solutions, i.e., river and waste waters, are briefly elucidated in light of future perspectives. Viable routes and ideal hotspots, i.e., wastewater and drinking water, for ammonia removal under the cost-effective options have been unpacked. Key mechanisms for the removal of ammonia were grossly bioremediation, oxidation, adsorption, filtration, precipitation, and ion exchange. Finally, this review denoted biological nutrient removal, struvite precipitation, and breakpoint chlorination as the most effective and promising technologies for the removal of ammonia from aquatic environments, although at the expense of energy and operational cost. Lastly, the future perspective, avenues of exploitation, and technical facets that deserve in-depth exploration are duly underscored.
Collapse
Affiliation(s)
- Muyahavho Enemiah Mugwili
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa; Magalies Water, Scientific Services, Research & Development Division, Erf 3475, Stoffberg Street, Brits, 0250, South Africa
| | - Frans Boudewijn Waanders
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa
| | - Vhahangwele Masindi
- Magalies Water, Scientific Services, Research & Development Division, Erf 3475, Stoffberg Street, Brits, 0250, South Africa; Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), P. O. Box 392, Florida, 1710, South Africa.
| | - Elvis Fosso-Kankeu
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology (CSET), University of South Africa, Florida Science Campus, South Africa; Department of Mining Engineering, College of Science Engineering and Technology, University of South Africa, Florida Science Campus, South Africa
| |
Collapse
|
44
|
Yarahmadi H, Salamah SK, Kheimi M. Synthesis of an efficient MOF catalyst for the degradation of OPDs using TPA derived from PET waste bottles. Sci Rep 2023; 13:19136. [PMID: 37932417 PMCID: PMC10628211 DOI: 10.1038/s41598-023-46635-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023] Open
Abstract
In this study, a method for degrading PET-waste plastic bottles using ZnCl2:Urea as a catalyst was developed, resulting in high conversion (87%). The terephthalic acid obtained from the degradation of Waste PET Bottles (WPTs) was combined with copper and zinc salts to synthesize bimetallic metal-organic frameworks (MOF). The effectiveness of a bimetallic Cu-Zn(BDC)-MOF in catalyzing the reduction reaction of organic pollutant dyes (OPDs) was investigated, and the degradation efficiency of individual dyes was optimized, achieving over 95% degradation within 6-12 min under optimal conditions. Various techniques, including FT-IR, XRD, FE-SEM, EDS, and TEM were used to characterize the synthesized MOF. Results showed that the catalytic activity of Cu-Zn-MOF in reduction reaction of OPDs was enhanced by increasing the copper content. The reaction kinetics were investigated following pseudo-first-order kinetics with rate constants of 0.581, 0.43, 0.37, and 0.30 min-1 for Methylene Blue (MB), Methyl Orange (MO), 4-Nitrophenol (4-NP), and 4-Nitroaniline (4-NA), respectively. The investigations revealed that the produced catalyst exhibited excellent stability and recoverability, while its activity remained well-preserved even after undergoing three reuse cycles.
Collapse
Affiliation(s)
- Hossein Yarahmadi
- Department of Chemical Engineering, Sirjan University of Technology, Sirjan, Iran.
| | - Sultan K Salamah
- Civil Engineering Department, College of Engineering, Taibah University, P.O. Box 30002, 41447, Al-Madina, Saudi Arabia
| | - Marwan Kheimi
- Department of Civil and Environmental Engineering, Faculty of Engineering-Rabigh Branch, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
45
|
Liu B, Ma H, Huang Q, Chen J, Huang Y, Huang H, Wei Q, Wang H, Lv W. Internal reuse of methanol-to-olefin wastewater based on micro-channel separation coupling hydrocyclone regeneration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118791. [PMID: 37683379 DOI: 10.1016/j.jenvman.2023.118791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Methanol-to-olefin (MTO) is a typical new coal chemical industry example. Due to the large volume of generated wastewater, complex composition including catalysts, aromatics and various oxygen-containing compounds, and serious environmental hazard, wastewater recycling is critical for sustainable industrial development and ecological protection. Herein, a swirl regenerating micro-channel separation (SRMS) technology was proposed to integrate deep filtration and hydrocyclone-enhanced regeneration. A small-scale experimental investigation was first conducted to verify the feasibility of the MTO wastewater treatment. A pilot SRMS device with a treatment capacity of 20 m3/h was constructed, and the device's continuous operation effect and stability were comprehensively evaluated. The separation performance of the SRMS device at different solution pH values and the impact of the hydrocyclone-enhanced regeneration of separation media were discussed in detail. At low solution pH values (<7), the SRMS device exhibits an average separation efficiency of 92.0% for fine particulate matter in wastewater, and the median particle size, d50, decreases from 1.55 to 0.6 μm. As the solution pH increases, the repulsive energy barrier for the medium-contaminant and contaminant-contaminant increases, inhibiting the deposition behavior of particulate pollutants. In addition, hydrocyclone desorbs contaminants deposited on the separation media and the average contaminant residual rate decreases from 3.3 to 0.2 wt%. We propose an industrial application for treating and reusing MTO wastewater (200 m3/h) using the SRMS technology based on the experimental results. The costs of the wastewater treatment process are as low as 0.25 CNY/m3, and the wastewater reuse rate is over 97% without chemical consumption. This work can provide an environmentally friendly and economically sustainable approach to the source management of MTO wastewater.
Collapse
Affiliation(s)
- Bing Liu
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongpeng Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qizhong Huang
- China Energy Group Yulin Chemical Co., Ltd., Yulin, 719300, China
| | - Jianqi Chen
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuan Huang
- Institution of Environmental Pollution and Health, Shanghai University, Shanghai, 200444, China
| | - Haitao Huang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, China
| | - Qi Wei
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, China
| | - Hualin Wang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China.
| | - Wenjie Lv
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
46
|
Kodama K, Thao NTT, Saitoh T. Effect of air bubbles on the membrane filtration of rhodamine B. ANAL SCI 2023; 39:1601-1605. [PMID: 37256501 DOI: 10.1007/s44211-023-00366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
Effect of air bubbles on the membrane filtration of a basic dye, rhodamine B (RB), using a hydrophilic PTFE membrane filter (pore size: 0.20 μm) was studied. The air bubbles were generated by vigorously mixing the aqueous solution containing 0.05% (v/v) of 1-butanol with a shaft generator of a homogenizer. RB being far smaller than the pore size of the membrane filter could not be rejected without air bubbles, but it was rejected by the membrane filter in the presence of air bubbles. The rejection ratio increased with increasing the rotation speed of the shaft generator because of the increase in the amount of air bubbles and therefore the increase in the surface area of air bubbles for the adsorption of RB. On the other hand, another basic dye, methylene blue (MB), was negligibly rejected in the same condition. Dynamic surface tension measurement of aqueous solutions containing different amounts of dye indicated that RB strongly adsorbed to the air-water interface, while MB hardly adsorbed. The results obtained in the present study strongly suggest the potential usefulness of air bubbles for the selective microfiltration of dissolved organic molecules or ions.
Collapse
Affiliation(s)
- Koki Kodama
- Graduate School of Engineering, Kitami Institute of Technology, 165 Koen-Cho, Kitami , Hokkaido, 090-8507, Japan
| | - Ngo Thi Thu Thao
- Graduate School of Engineering, Kitami Institute of Technology, 165 Koen-Cho, Kitami , Hokkaido, 090-8507, Japan
| | - Tohru Saitoh
- Graduate School of Engineering, Kitami Institute of Technology, 165 Koen-Cho, Kitami , Hokkaido, 090-8507, Japan.
| |
Collapse
|
47
|
El-Saadony MT, Saad AM, El-Wafai NA, Abou-Aly HE, Salem HM, Soliman SM, Abd El-Mageed TA, Elrys AS, Selim S, Abd El-Hack ME, Kappachery S, El-Tarabily KA, AbuQamar SF. Hazardous wastes and management strategies of landfill leachates: A comprehensive review. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2023; 31:103150. [DOI: 10.1016/j.eti.2023.103150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
48
|
Tamiru Mengistu M, Wondimu TH, Andoshe DM, Kim JY, Zelekew OA, Hone FG, Tegene NA, Gultom NS, Jang HW. g-C 3N 4-Co 3O 4 Z-Scheme Junction with Green-Synthesized ZnO Photocatalyst for Efficient Degradation of Methylene Blue in Aqueous Solution. Bioinorg Chem Appl 2023; 2023:2948342. [PMID: 37313425 PMCID: PMC10260312 DOI: 10.1155/2023/2948342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 05/20/2023] [Indexed: 06/15/2023] Open
Abstract
A simple wet chemical ultrasonic-assisted synthesis method was employed to prepare visible light-driven g-C3N4-ZnO-Co3O4 (GZC) heterojunction photocatalysts. X-ray diffraction (XRD), scanning electromicroscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), ultraviolet (UV), and electrochemical impedance spectroscopy (EIS) are used to characterize the prepared catalysts. XRD confirms the homogenous phase formation of g-C3N4, ZnO, and Co3O4, and the heterogeneous phase for the composites. The synthesized ZnO and Co3O4 by using cellulose as a template show a rod-like morphology. The specific surface area of the catalytic samples increases due to the cellulose template. The measurements of the energy band gap of a g-C3N4-ZnO-Co3O4 composite showed red-shifted optical absorption to the visible range. The photoluminescence (PL) intensity decreases due to the formation of heterojunction. The PL quenching and EIS result shows that the reduction of the recombination rate and interfacial resistance result in charge carrier kinetic improvement in the catalyst. The photocatalytic performance in the degradation of MB dye of the GZC-3 composite was about 8.2-, 3.3-, and 2.5-fold more than that of the g-C3N4, g-C3N4-ZnO, and g-C3N4-Co3O4 samples. The Mott-Schottky plots of the flat band edge position of g-C3N4, ZnO, Co3O4, and Z-scheme g-C3N4-ZnO-Co3O4 photocatalysts may be created. Based on the stability experiment, GZC-3 shows greater photocatalytic activity after four recycling cycles. As a result, the GZC composite is environmentally friendly and efficient photocatalyst and has the potential to consider in the treatment of dye-contaminated wastewater.
Collapse
Affiliation(s)
- Mintesinot Tamiru Mengistu
- Department of Materials Science and Engineering, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Tadele Hunde Wondimu
- Department of Materials Science and Engineering, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Dinsefa Mensur Andoshe
- Department of Materials Science and Engineering, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Jung Yong Kim
- Department of Materials Science and Engineering, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Osman Ahmed Zelekew
- Department of Materials Science and Engineering, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Fekadu Gashaw Hone
- Physics Department, Addis Ababa University, Addis Ababass 1176, Ethiopia
| | | | - Noto Susanto Gultom
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ho Won Jang
- Department of Materials Science and Engineering Research Institute of Advanced Materials Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
49
|
Li J, Shi Q, Sun M, Liu J, Zhao R, Chen J, Wang X, Liu Y, Gong W, Liu P, Chen K. Peroxymonosulfate Activation by Facile Fabrication of α-MnO 2 for Rhodamine B Degradation: Reaction Kinetics and Mechanism. Molecules 2023; 28:molecules28114388. [PMID: 37298863 DOI: 10.3390/molecules28114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The persulfate-based advanced oxidation process has been an effective method for refractory organic pollutants' degradation in aqueous phase. Herein, α-MnO2 with nanowire morphology was facially fabricated via a one-step hydrothermal method and successfully activated peroxymonosulfate (PMS) for Rhodamine B (RhB) degradation. Influencing factors, including the hydrothermal parameter, PMS concentration, α-MnO2 dosage, RhB concentration, initial pH, and anions, were systematically investigated. The corresponding reaction kinetics were further fitted by the pseudo-first-order kinetic. The RhB degradation mechanism via α-MnO2 activating PMS was proposed according to a series of quenching experiments and the UV-vis scanning spectrum. Results showed that α-MnO2 could effectively activate PMS to degrade RhB and has good repeatability. The catalytic RhB degradation reaction was accelerated by increasing the catalyst dosage and the PMS concentration. The effective RhB degradation performance can be attributed to the high content of surface hydroxyl groups and the greater reducibility of α-MnO2, and the contribution of different ROS (reactive oxygen species) was 1O2 > O2·- > SO4·- > ·OH.
Collapse
Affiliation(s)
- Juexiu Li
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qixu Shi
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Maiqi Sun
- International Education College, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinming Liu
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Rui Zhao
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Jianjing Chen
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Xiangfei Wang
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Yue Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Weijin Gong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Panpan Liu
- School of Ecology & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Kongyao Chen
- Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
50
|
Forghani B, Mihnea M, Svendsen TC, Undeland I. Protein and Long-Chain n-3 Polyunsaturated Fatty Acids Recovered from Herring Brines upon Flocculation and Flotation-A Case Study. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:6523-6534. [PMID: 37152072 PMCID: PMC10155211 DOI: 10.1021/acssuschemeng.2c06795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/03/2023] [Indexed: 05/09/2023]
Abstract
A novel integrated process for recovery of protein-enriched biomasses from 5% presalting brines and spice brines of herring (Clupea harengus) was investigated by combining carrageenan- and/or acid-driven flocculation (F) plus dissolved air flotation (DAF). The F-DAF technique with carrageenan resulted in protein and lipid recoveries from 5% presalting brine of 78 and 38%, respectively. Without flocculation or with only acidification, protein and lipid recoveries in DAF were only 13 and 10%, respectively. Low protein and lipid recoveries, 8-12 and 1.8-8.2%, respectively, were also obtained when spice brine was subjected to only acidification and DAF. The protein content in dry biomasses from 5% presalting brine and spice brine was 36-43 and 13-16%, respectively. The corresponding lipid levels were 23-31 and 9-18%, respectively, with ash levels of 11-20 and 38-45%, respectively. Biomass proteins contained ≤45% essential amino acids, and the lipids had ≤16% long-chain n-3 polyunsaturated fatty acids. Freeze-dried spice brine biomasses were characterized by anchovy- and spice-related sensory attributes. 5% presalting brine biomasses were connected to fish and seafood attributes and showed gel forming capacity. The outlined F-DAF recovery system can thus recover both nutrients and interesting flavors from the herring process waters, which are currently lost from the food chain.
Collapse
Affiliation(s)
- Bita Forghani
- Food
and Nutrition Science, Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Mihaela Mihnea
- Perception &
Design Unit, Department of Material and Surface Design, RISE Research Institutes of Sweden, SE-41296 Gothenburg, Sweden
| | - Tore C. Svendsen
- Bio-Aqua
A/S, Stroebjergvej 29, DK-3600 Frederikssund, Denmark
- Aquarden
Technologies ApS, Industrivej
17, 3320 Skævinge, Denmark
| | - Ingrid Undeland
- Food
and Nutrition Science, Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|