1
|
Zhang Y, Ye Z, Liao W, Wu Q, Wei Z, Qiu R, Gao T, Xian W, Zhang K, Li M, Chen Y. Cellulose nanocrystals for green remediation of contaminated soil with multiple heavy metals. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:133. [PMID: 40131542 DOI: 10.1007/s10653-025-02450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
In soil contamination management, simultaneous remediation of soil contaminated with multiple heavy metals (MHM-contaminated soil) continues to present a substantial scientific challenge. This study utilized cellulose nanocrystals (CNC) as an environmentally friendly washing agent to remediate soil contaminated with cadmium (Cd), lead (Pb), copper (Cu), and zinc (Zn). We investigated how CNC affects heavy metals removal under various conditions through soil washing experiments and its impact on soil health (including heavy metal distribution and ecological risk, soil phytotoxicity, soil microbial abundance and diversity) and the metals removal mechanism determined via Fourier transform infrared and 2D correlation spectroscopy (FTIR-2D COS). The results showed that CNC's pH significantly influenced the removal of heavy metals. CNC treatment reduced mobile Cd fractions by > 20.7%, lowered ecological risk from moderate (RI = 153.9) to low (< 150), maintained seed germination rates (comparable to controls) with 1.57 cm longer roots, and enhanced microbial richness (Chao1/ACE) while preserving diversity (Shannon/Simpson). FTIR-2D COS results showed that functional groups (-COOH and O-H) of CNC play a critical role in metals removal through electrostatic adsorption, displacement, and complexation reaction. This study suggested that CNC holds considerable potential for green-remediating MHM-contaminated soil.
Collapse
Affiliation(s)
- Yaoyue Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zesen Ye
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Weishan Liao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Qitang Wu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zebin Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Rongliang Qiu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ting Gao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Weixuan Xian
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Kailong Zhang
- Center for Renewable Carbon, School of Natural Resources, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mi Li
- Center for Renewable Carbon, School of Natural Resources, University of Tennessee, Knoxville, TN, 37996, USA
| | - Yangmei Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
- Center for Renewable Carbon, School of Natural Resources, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
2
|
Wang T, Li B, Sun L, Li W, Chen M, Shang Z, Wu J, Liu L, Liu J, Liu S, Liu X, Zhang K, Wu P, Zhu N, Dang Z. Insights into the role of dissolved organic matter derived from paddy soils with different parent materials in the environmental behavior of heavy metal adsorbed by ferrihydrite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125744. [PMID: 39864647 DOI: 10.1016/j.envpol.2025.125744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
The interaction between dissolved organic matter (DOM) and ferrihydrite (Fh) is a crucial process to control the environmental behavior of heavy metals (HMs) in soil environments, with DOM playing a particularly strong role in HMs fate. Since chemical properties of DOM vary based on different soil parent materials, the underlying impact of DOM-Fh associations on HMs binding remains unclear. This study systematically investigated the interactions between DOM from three soil parent materials (fluvial alluvium: FDOM, sand-shale: SDOM and granite: GDOM) and Fh, and meanwhile understand their effects on the environmental behavior of Cd and Pb under various environmental conditions. An increased Cd and Pb binding during DOM-Fh interactions was observed and attributed to the introduction of additional binding sites by the organic functional groups with a variety of metal affinities. Specifically, more aromatic carboxyl groups in FDOM and more aliphatic groups in SDOM strongly promoted the adsorption of Pb and Cd, respectively. Meanwhile, Higher pH and increased C/Fe also promoted HMs adsorption, particularly in the presence of DOM. Further characterization indicated that electrostatic attraction, ion exchange and surface complexation were primary mechanisms of HMs adsorption. These finding highlight the significant impact of DOM-Fh interactions, dependent on different soil parent materials, on the mobility and fate of HMs in soils, providing valuable insights into the role of DOM composition in influencing HMs contamination, which offer theoretical guidance for environmental management, especially in agricultural and contaminated soils.
Collapse
Affiliation(s)
- Tianming Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Bo Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Leiye Sun
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Wei Li
- School of Mechanical Engineering, North University of China, Shanxi 030051, PR China
| | - Meiqing Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhongbo Shang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Linqing Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jieyu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Sheng Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xuan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Kejing Zhang
- School of Environmental Science and Engineering, China University of Geosciences, Wuhan 430074, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China.
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
3
|
Yang M, Wang W, Ma H, Chen L, Ma H, Shi F. Efficient tetracycline hydrochloride degradation via peroxymonosulfate activation by N doped coagulated sludge based biochar: Insights on the nonradical pathway. ENVIRONMENTAL RESEARCH 2025; 266:120554. [PMID: 39644985 DOI: 10.1016/j.envres.2024.120554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Coagulation could effectively remove microplastics (MPs). However, MPs coagulated sludge was still a hazardous waste that is difficult to degrade. Nitrogen-doped carbon composite (N-PSMPC) was prepared by carbonizing MPs coagulated aluminum sludge (MP-CA) doped with cheap urea in this study. Compared with the carbon material (PSMPC) produced by direct carbonization of MP-CA, N-PSMPC had a higher degree of defects, which could provide more active sites for peroxymonosulfate (PMS) activation. And then, the N-PSMPC was applied to the degradation of tetracycline hydrochloride (TC). The results showed that the N-PSMPC/PMS system exhibited excellent TC degradation performance at the pH range of 3-9, and the coexistence of CO32- and HCO3- inhibited the TC degradation. Moreover, the graphite N, pyridine N and carbonyl group were identified as the primary catalytic active sites. Three TC degradation pathways were speculated based on the intermediates detected by liquid chromatography-mass spectrometry, and the degradation mechanism was dominated by the nonradical pathway. In addition, the analysis of TC and intermediates by toxicity assessment software showed that N-PSMPC/PMS system could mitigate the TC toxicity. This study will provide a novel approach for the resourceful utilization of MP-CA and provide technical support for the removal of MPs and TC in water.
Collapse
Affiliation(s)
- Min Yang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Wenyu Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Huifang Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Lei Chen
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Hongfang Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Feng Shi
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
4
|
Chen M, Nan J, Breider F. A comparative study on the stability and coagulation removal of aged vs. nonaged nanoplastics in surface water. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136490. [PMID: 39547043 DOI: 10.1016/j.jhazmat.2024.136490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Nanoplastics (NPs) are released into surface water due to the widespread use of plastics, undergoing aging from environmental and human factors that alter their physical and chemical characteristics. However, detecting NPs remains challenging, resulting in limited research on their behavior in surface water and their removal efficiency by drinking water treatment. This study utilizes palladium-doped polystyrene nanoplastics (PSNPs) as tracers to enable precise detection and quantification through ICP-MS, thereby overcoming the limitations of conventional detection methods. PSNPs are aged using solar irradiation and ozone to simulate both natural and artificial aging processes, affecting the physical and chemical properties of NPs, which in turn influence their behavior in water treatment systems. Moreover, the study investigates the impact of various coagulation conditions, including different coagulants (AlCl3 and PACl), pH levels (4-9), and humic acid (HA) concentrations (0-10 mg/L), on the of both aged and nonaged NPs. The results demonstrate solar aging triggers significant morphological changes in PSNPs, while ozone aging induces more oxygen functional groups on PSNPs (CIozone=20.99; CIsolar=0.70), increasing sensitivity to HA concentrations and resulting in reduced removal efficiencies for ozone aged PSNPs by AlCl3 (68.68 %) and PACl (74.74 %). In addition, PACl achieves higher PSNPs removal efficiencies (REmin=88.59 %) than that of AlCl3 (REmin=85.57 %) under varied pH levels. This research fills a gap in understanding aged NPs behavior in surface water and offers practical solutions for optimizing coagulation for NPs removal, enhancing our ability to predict NPs environmental fate and manage NPs pollution to ensure drinking water safety.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China; Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, Station 2, CH-1015 Lausanne, Switzerland
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, Station 2, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
5
|
Zhang Y, Xu F, Yao J, Liu SS, Lei B, Tang L, Sun H, Wu M. Spontaneous interactions between typical antibiotics and soil enzyme: Insights from multi-spectroscopic approaches, XPS technology, molecular modeling, and joint toxic actions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135990. [PMID: 39357361 DOI: 10.1016/j.jhazmat.2024.135990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
A large amount of antibiotics enters the soil environment and accumulates therein as individuals and mixtures, threatening the soil safety. However, there is little information regarding the influence of single and mixed antibiotics on key soil proteins at molecular level. In this study, setting sulfadiazine (SD) and tetracycline hydrochloride (TC) as the representative antibiotics, the interactions between these agents and α-amylase (an important hydrolase in soil carbon cycle) were investigated through multi-spectroscopic approaches, X-ray photoelectron spectrometry, and molecular modeling. It was found that both SD and TC spontaneously bound to α-amylase with 1:1 stoichiometry mainly via forming stable chemical bonds. The interactions altered the polarity of aromatic amino acids, protein backbone, secondary structure, hydrophobicity and activity of α-amylase. The SD-TC mixtures were designed based on the direct equipartition ray to comprehensively characterize the possible concentration distribution, and interactive effects indicated that the mixtures antagonistically impacted α-amylase. These findings reveal the binding characteristics between α-amylase and typical antibiotics, which probably influence the ecological functions of α-amylase in soil. This study clarifies the potential harm of antibiotics on soil functional enzyme, which is significant for the environmental risk assessment of antibiotics and their mixtures.
Collapse
Affiliation(s)
- Yulian Zhang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Fangyu Xu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jingyi Yao
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shu-Shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo Lei
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
6
|
Han Y, Jin Y, Yang G, Ma X, Wang X, Qi D, Wang T, Jiang J. Covalent Organic Framework Controls the Aggregation of Metal Porphyrins for Enhanced Photocatalytic H 2 Evolution. Chem Asian J 2024:e202401342. [PMID: 39582073 DOI: 10.1002/asia.202401342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
Although different post modifications of covalent organic frameworks (COFs) have been developed for achieving hierarchical nanostructures and improved photocatalytic performance, the co-assemblies of COFs with small organic molecules were still rarely studied. Herein, COF/porphyrin composites, which were fabricated at room temperature, reveal that COFs surface can modulate the aggregation of metal porphyrins, which subsequently enhance the photocatalytic properties of COFs assemblies. Thus, the surface of COFs was decorated by porphyrins aggregations with varied thickness, dependent on the metal ions of porphyrins. Ni(II) meso-Tetra (4-carboxyphenyl) porphine (NiTCPP) formed discontinuous monolayer covering on COFs surface, while Pt(II) meso-Tetra (4-carboxyphenyl) porphine (PtTCPP) or Co(II) meso-Tetra (4-carboxyphenyl) porphine (CoTCPP) aggregated into multilayer coverage. Notably, even though NiTCPP did not show any advantages in terms of light absorption or HOMO/LUMO energy levels, COF/NiTCPP with the lowest porphyrin loading still exhibited the highest photocatalytic H2 evolution (29.71 mmol g-1 h-1), which is 2.5 times higher than that of COF/PtTCPP or COF/CoTCPP. These results open new possibilities for making highly efficient photocatalysts upon the co-assemblies of COFs with small organic molecules.
Collapse
Affiliation(s)
- Yuesheng Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Gengxiang Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaolin Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xinxin Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
7
|
Wang C, Guo K, Liu B, Gao Y, Yue Q, Xie H, Gao B. Multi-interface interaction mechanism of pulp reject-based flocculants for the removal of antibiotics and its combined pollutants. WATER RESEARCH 2024; 260:121966. [PMID: 38908312 DOI: 10.1016/j.watres.2024.121966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/25/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The efficient removal of antibiotics and its combined pollutants is essential for aquatic environment and human health. In this study, a lignin-based organic flocculant named PRL-VAc-DMC was synthesized using pulp reject as the raw material, with vinyl acetate (VAc) and methacryloxyethyltrimethyl ammonium chloride (DMC) as the grafting monomers. A series of modern characterization methods were used to confirm the successful preparation of PRL-VAc-DMC and elucidate its polymerization mechanism. It was found that the Ph-OH group and its contiguous carbon atoms of lignin served as the primary active sites to react with grafting monomers. Flocculation experiments revealed that PRL-VAc-DMC could react with tetracycline (TC) through π-π* interaction, hydrophobic interaction, hydrogen bonding, and electrostatic attraction. With the coexistence of humic acid (HA) and Kaolin, the aromatic ring, hydroxyl, and amide group of TC could react with the benzene ring, hydroxyl group, and carboxyl group of HA, forming TC@HA@Kaolin complexes with Kaolin particles acting as the hydrophilic shell. The increase in particle size, electronegativity, and hydrophily of TC@HA@Kaolin complexes facilitated their interaction with PRL-VAc-DMC through strong interfacial interactions. Consequently, the presence of HA and Kaolin promoted the removal of TC. The synergistic removal mechanism of TC, HA, and Kaolin by PRL-VAc-DMC was systematically analyzed from the perspective of muti-interface interactions. This paper is of great significance for the comprehensive utilization of pulp reject and provides new insights into the flocculation mechanism at the molecular scale.
Collapse
Affiliation(s)
- Chenxu Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Haijiao Xie
- Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province, 310003, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China.
| |
Collapse
|
8
|
Mu Q, Liu C, Guo Y, Wang K, Gao Z, Du Y, Cao C, Duan P, Kapusta K. Preparation of Supercapacitor Carbon Electrode Materials by Low-Temperature Carbonization of High-Nitrogen-Doped Raw Materials from Food Waste. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3984. [PMID: 39203161 PMCID: PMC11356624 DOI: 10.3390/ma17163984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024]
Abstract
To address the problem of the low nitrogen (N) content of carbon materials prepared through the direct carbonization of food waste, soybean meal and egg whites with high N contents were selected to carry out carbonization experiments on food waste. At 220 °C, the effects of hydrothermal carbonization and microwave carbonization on the properties of supercapacitor electrode materials were investigated. The results show that food waste doped with soybean meal and egg whites could achieve good N doping. At a current density of 1 A·g-1, the specific capacitance of the doped carbon prepared by hydrothermal doping is as high as 220.00 F·g-1, which is much greater than that of the raw material prepared through the hydrothermal carbonization of food waste alone, indicating that the hydrothermal carbonization reactions of soybean meal, egg white, and food waste promote the electrochemical properties of the prepared carbon materials well. However, when a variety of raw materials are mixed for pyrolysis carbonization, different raw materials cannot be fully mixed in the pyrolysis process, and under the etching action of potassium hydroxide, severe local etching and local nonetching occur, resulting in a severe increase in the pore size distribution and deterioration of the electrochemical performance of the prepared carbon materials. At a current density of 1 A·g-1, the specific capacitance of these prepared carbon materials is 157.70 F·g-1, whereas it is only 62.00 F·g-1 at a high current density of 20 A·g-1. Therefore, this study suggests that the hydrothermal carbonization process is superior to the microwave pyrolysis carbonization process for preparing supercapacitor electrode materials with multiple samples doped with each other.
Collapse
Affiliation(s)
- Qingnan Mu
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Q.M.); (C.L.); (Y.G.); (K.W.); (Z.G.); (Y.D.); (C.C.)
- Institute for Advanced Technology, Shandong University, Jinan 250100, China
| | - Chang Liu
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Q.M.); (C.L.); (Y.G.); (K.W.); (Z.G.); (Y.D.); (C.C.)
| | - Yao Guo
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Q.M.); (C.L.); (Y.G.); (K.W.); (Z.G.); (Y.D.); (C.C.)
| | - Kun Wang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Q.M.); (C.L.); (Y.G.); (K.W.); (Z.G.); (Y.D.); (C.C.)
| | - Zhijie Gao
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Q.M.); (C.L.); (Y.G.); (K.W.); (Z.G.); (Y.D.); (C.C.)
| | - Yuhan Du
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Q.M.); (C.L.); (Y.G.); (K.W.); (Z.G.); (Y.D.); (C.C.)
| | - Changqing Cao
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Q.M.); (C.L.); (Y.G.); (K.W.); (Z.G.); (Y.D.); (C.C.)
| | - Peigao Duan
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Q.M.); (C.L.); (Y.G.); (K.W.); (Z.G.); (Y.D.); (C.C.)
| | - Krzysztof Kapusta
- Główny Instytut Górnictwa (Central Mining Institute), Gwarków 1, 40-166 Katowice, Poland
| |
Collapse
|
9
|
Tong Y, Xiang H, Jiang J, Chen W. Interfacial interactions between minerals and organic matter: Mechanisms and characterizations. CHEMOSPHERE 2024; 359:142383. [PMID: 38768785 DOI: 10.1016/j.chemosphere.2024.142383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Minerals and organic matter are essential components of soil, with minerals acting as the "bone" and organic matter as the "skin". The interfacial interactions between minerals and organic matter result in changes in their chemical composition, structure, functional groups, and physical properties, possessing a significant impact on soil properties, functions, and biogeochemical cycles. Understanding the interfacial interactions of minerals and organic matter is imperative to advance soil remediation technologies and carbon targets. Consequently, there is a growing interest in the physicochemical identification of the interfacial interactions between minerals and organic matter in the academic community. This review provides an overview of the mechanisms underlying these interactions, including adsorption, co-precipitation, occlusion, redox, catalysis and dissolution. Moreover, it surveys various methods and techniques employed to characterize the mineral-organic matter interactions. Specifically, the up-to-date spectroscopic techniques for chemical information and advanced microscopy techniques for physical information are highlighted. The advantages and limitations of each method are also discussed. Finally, we outline future research directions for interfacial interactions and suggests areas for improvement and development of characterization techniques to better understand the mechanisms of mineral-organic matter interactions.
Collapse
Affiliation(s)
- Yang Tong
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Huiqin Xiang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
10
|
Wang Y, Nie B, Zheng S, Wu H, Chen N, Wang D. Emerging activated tungsten dust: Source, environmental behaviors, and health effects. ENVIRONMENT INTERNATIONAL 2024; 188:108774. [PMID: 38810497 DOI: 10.1016/j.envint.2024.108774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Fusion energy investigation has stepped to a new stage adopting deuterium and tritium as fuels from the previous stage concentrating hydrogen plasma physics. Special radiation safety issues would be introduced during this stage. In addition to industrial and military uses, tungsten is also regarded as the most promising plasma facing material for fusion reactors. During the operation of fusion reactors, tungsten-based plasma facing materials can be activated via neutron nuclear reaction. Meanwhile, activated tungsten dust can be produced when high-energy plasma interacts with the tungsten-based plasma facing materials, namely plasma wall interaction. Activated tungsten dust would be an emerging environmental pollutant with radiation toxicity containing various radionuclides in addition to the chemical toxicity of tungsten itself. Nonetheless, the historical underestimation of its environmental availability has led to limited research on tungsten compared to other environmental contaminants. This paper presents the first systematic review on the safety issue of emerging activated tungsten dust, encompassing source terms, environmental behaviors, and health effects. The key contents are as follows: 1) to detail the source terms of activated tungsten dust from aspects of tungsten basic properties, generation mechanism, physical morphology and chemical component, radioactivity, as well as potential release pathways, 2) to illustrate the environmental behaviors from aspects of atmospheric dispersion and deposition, transformation and migration in soil, as well as plant absorption and distribution, 3) to identify the toxicity and health effects from aspects of toxicity to plants, distribution in human body, as well as health effects by radiation and chemical toxicity, 4) based on the research progress, research and development issues needed are also pointed out to better knowledge of safety issue of activated tungsten dust, which would be beneficial to the area of fusion energy and ecological impact caused by the routine tungsten related industrial and military applications.
Collapse
Affiliation(s)
- Yuxuan Wang
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baojie Nie
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shanliang Zheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hanyu Wu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Ni Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Dezhong Wang
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Zhang X, Li J, Li M, Zhang W, Wang Y, Xian Q. The effects of co-existing acridine on adsorption-desorption behavior of carbazole in soils: Co-sorption and mechanism insight. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134205. [PMID: 38579583 DOI: 10.1016/j.jhazmat.2024.134205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Carbazole (CBZ) and acridine (ACR) are polycyclic aromatic nitrogen heterocycles (PANHs) widely found in combined contaminated soils, while investigations on organic-organic interactions have been very limited. In this study, batch experiments were carried out on five soils with different properties, taking CBZ as a representative of PANHs and ACR as a co-existing contaminant. The adsorption isotherms of CBZ (50-1000 μg/L) were nonlinear. Soil organic matter (SOM) and cation exchange capacity (CEC) showed positive correlations with CBZ adsorption-desorption coefficients. The adsorption mechanisms of CBZ involved hydrogen bonding, π-π interaction, and cation-π bonding. Different concentrations of ACR had varying effects on CBZ. The adsorption of CBZ was inhibited with 250 μg/L ACR. The cooperative adsorption was observed on three soils with increasing ACR concentration (1000 μg/L) and led to more pronounced nonlinear isotherms. The S-shaped isotherms of ACR indicated that ACR was adsorbed to the soil surface in a perpendicular configuration. New adsorption sites were created allowing for increased CBZ adsorption through π-π interaction with ACR. Therefore, variations in soil properties and potential impacts of co-existing contaminants should be well considered when assessing the combined pollution of site soil. This will contribute to a more accurate estimation of environmental and health risks.
Collapse
Affiliation(s)
- Xueqi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jianwei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mengting Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
12
|
Peng P, Zhou L, Yilimulati M, Zhang S. Unleashing the power of acetylacetone: Effective control of harmful cyanobacterial blooms with ecological safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168644. [PMID: 38000755 DOI: 10.1016/j.scitotenv.2023.168644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Harmful algal blooms resulting from eutrophication pose a severe threat to human health. Acetylacetone (AA) has emerged as a potential chemical for combatting cyanobacterial blooms, but its real-world application remains limited. In this study, we conducted a 42-day evaluation of AA's effectiveness in controlling blooms in river water, with a focus on the interplay between ecological community structure, organism functional traits, and water quality. At a concentration of 0.2 mM, AA effectively suppressed the growth of Cyanobacteria (88 %), Bacteroidia (49 %), and Alphaproteobacteria (52 %), while promoting the abundance of Gammaproteobacteria (5.0 times) and Actinobacteria (7.2 times) that are associated with the degradation of organic matter. Notably, after dosing of AA, the OD680 (0.07 ± 0.02) and turbidity (8.6 ± 2.1) remained at a satisfactory level. AA induced significant disruptions in two photosynthesis and two biosynthesis pathways (P < 0.05), while simultaneously enriching eight pathways of xenobiotics biodegradation and metabolism. This enrichment facilitated the reduction of organic pollutants and supported improved water quality. Importantly, AA treatment decreased the abundance of two macrolide-related antibiotic resistance genes (ARGs), ereA and vatE, while slightly increased the abundance of two aminoglycoside-related ARGs, aacA and strB. Overall, our findings establish AA as an efficient and durable algicide with favorable ecological safety. Moreover, this work contributes to the development of effective strategies for maintaining and restoring the health and resilience of aquatic ecosystems impacted by harmful algal blooms.
Collapse
Affiliation(s)
- Peng Peng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lang Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mihebai Yilimulati
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
13
|
Lan Y, Gai S, Cheng K, Liu Z, Antonietti M, Yang F. Artificial Humic Acid Mediated Carbon-Iron Coupling to Promote Carbon Sequestration. RESEARCH (WASHINGTON, D.C.) 2024; 7:0308. [PMID: 38375103 PMCID: PMC10875824 DOI: 10.34133/research.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/10/2024] [Indexed: 02/21/2024]
Abstract
Fe (hydr)oxides have a substantial impact on the structure and stability of soil organic carbon (SOC) pools and also drive organic carbon turnover processes via reduction-oxidation reactions. Currently, many studies have paid much attention to organic matter-Fe mineral-microbial interactions on SOC turnover, while there is few research on how exogenous carbon addition abiotically regulates the intrinsic mechanisms of Fe-mediated organic carbon conversion. The study investigated the coupling process of artificial humic acid (A-HA) and Fe(hydr)oxide, the mechanism of inner-sphere ligands, and the capacity for carbon sequestration using transmission electron microscopy, thermogravimetric, x-ray photoelectron spectroscopy, and wet-chemical disposal. Furthermore, spherical aberration-corrected scanning transmission electron microscopy-electron energy loss spectroscopy and Mössbauer spectra have been carried out to demonstrate the spatial heterogeneity of A-HA/Fe (hydr)oxides and reveal the relationship between the increase in Fe-phase crystallinity and redox sensitivity and the accumulation of organic carbon. Additionally, the dynamics of soil structures on a microscale, distribution of carbon-iron microdomains, and the cementing-gluing effect can be observed in the constructing nonliving anthropogenic soils, confirming that the formation of stable aggregates is an effective approach to achieving organic carbon indirect protection. We propose that exogenous organic carbon inputs, specifically A-HA, could exert a substantial but hitherto unexplored effect on the geochemistry of iron-carbon turnover and sequestration in anoxic water/solid soils and sediments.
Collapse
Affiliation(s)
- Yibo Lan
- School of Water Conservancy and Civil Engineering,
Northeast Agricultural University, Harbin 150030, China
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering,
Northeast Agricultural University, Harbin 150030, China
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Kui Cheng
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
- College of Engineering,
Northeast Agricultural University, Harbin 150030, China
| | - Zhuqing Liu
- School of Water Conservancy and Civil Engineering,
Northeast Agricultural University, Harbin 150030, China
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Markus Antonietti
- Department of Colloid Chemistry,
Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Fan Yang
- School of Water Conservancy and Civil Engineering,
Northeast Agricultural University, Harbin 150030, China
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| |
Collapse
|
14
|
Yang Q, Zhang J, Zhang N, Wang D, Yuan X, Tang CY, Gao B, Wang Z. Impact of nanoplastics on membrane scaling and fouling in reverse osmosis desalination process. WATER RESEARCH 2024; 249:120945. [PMID: 38043352 DOI: 10.1016/j.watres.2023.120945] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Nanoplastics (NPs) are a prevalent type of emerging pollutant in marine environment. However, their fouling behavior and impact on reverse osmosis (RO) membrane performance remain unexplored. We investigated the relationship between polystyrene (PS), one of the most abundant NPs, with silica scaling and humic acid (HA) fouling in RO. The results demonstrated that the surface potential of NPs played an important role in the combined scaling and fouling process. Compared with the negatively charged NPs (original PS and carboxyl group modified PS, PS-COOH), the amino-functionalized PS (PS-NH2) with positive surface charge significantly accelerated membrane scaling/fouling and induced a synergistic water flux decline, due to the strong electrostatic attraction between PS-NH2, foulants, and the membrane surface. The amino groups acted as binding sites, which promoted the heterogeneous nucleation of silica and adsorption of HA, then formed stable composite pollutants. Thermodynamic analysis via isothermal titration calorimetry (ITC) further confirmed the spontaneous formation of stable complexes between PS-NH2 and silicates/HA. Our study provides new insights into the combined NPs fouling with other scalants or foulants, and offers guidance for the accurate prediction of RO performance in the presence of NPs.
Collapse
Affiliation(s)
- Qinghao Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| | - Dong Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
15
|
Cai F, Ma F, Zhang X, Reimus P, Qi L, Wang Y, Lu D, Thanh HV, Dai Z. Investigating the influence of bentonite colloids on strontium sorption in granite under various hydrogeochemical conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165819. [PMID: 37506897 DOI: 10.1016/j.scitotenv.2023.165819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
The disposal of high-level radioactive waste in deep geological repositories is a critical environmental issue. The presence of bentonite colloids generated in the engineering barrier can significantly impact the transport of radionuclides, but their effect on radionuclide sorption in granite remains poorly understood. This study aimed to investigate the sorption characteristics of strontium (Sr) on granite as well as on the coexistence system of granite and colloids under various hydrogeochemical conditions, through batch experiments. Fourier transform infrared spectroscopy was employed to analyze the sorption forms of Sr on granite before and after sorption. Several hydrogeochemical factors were examined, including contact time, pH, ionic strength, coexisting ions, and bentonite and humic acid colloid concentration. Among these factors, the concentration of bentonite colloids exhibited a significant effect on Sr sorption. Within a specific range of colloid concentration, the sorption of Sr on the solid system increased linearly with the bentonite colloid concentration. pH and ionic strength were also found to play crucial roles in the sorption process. At low pH, Sr sorption primarily occurred through the outer sphere's surface complexation and Na+/H+ ion exchange. However, at high pH, inner sphere surface complexation dominated the process. As the ionic strength increased, electrostatic repulsion gradually increased, resulting in fewer binding sites for particle aggregation and Sr sorption on bentonite colloids. The results also indicate that with increasing pH, the predominant forms of Sr in the solution transitioned from SrHCO3+ and SrCl+ to SrCO3 and SrCl+. This was mainly due to the ion exchange of Ca2+/Mg2+ in plagioclase and biotite, forming SrCO3 precipitation. These findings provide valuable insights into the transport behavior of radionuclides in the subsurface environment of the repository and highlight the importance of considering bentonite colloids and other hydrogeochemical factors when assessing the environmental impact of high-level radioactive waste disposal.
Collapse
Affiliation(s)
- Fangfei Cai
- College of Construction Engineering, Jilin University, Changchun 130026, China
| | - Funing Ma
- College of Construction Engineering, Jilin University, Changchun 130026, China.
| | - Xiaoying Zhang
- College of Construction Engineering, Jilin University, Changchun 130026, China.
| | - Paul Reimus
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Linlin Qi
- College of Construction Engineering, Jilin University, Changchun 130026, China
| | - Yu Wang
- Institute of Nuclear and New Technology, Tsinghua University, Beijing 100084, China
| | - Di Lu
- Yantai Customs Technology Center, Yantai 264000, China
| | - Hung Vo Thanh
- Laboratory for Computational Mechanics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Viet Nam; MEU Research Unit, Middle East University, Amman, Jordan
| | - Zhenxue Dai
- College of Construction Engineering, Jilin University, Changchun 130026, China
| |
Collapse
|
16
|
Ma J, E T, Yang S, Chen L, Cheng Y, Yu J, Li Y. Stabilizing Cr(Ⅲ) deriving from tannery sludge with kaolin and organic matter. ENVIRONMENTAL RESEARCH 2023; 236:116798. [PMID: 37527748 DOI: 10.1016/j.envres.2023.116798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Stabilizing Cr(III) in tannery sludge (TS) via harmless method has always been the goal of environmental pollution treatment. In this study, a simple method to stabilize Cr(III) in TS is proposed via adding kaolin, based on the fact a large amount of organic matter contained in TS. Comprehensive characterizations confirm that kaolin can stabilize Cr(Ⅲ) via its abundant -OH and lamellar structure. Moreover, there are hydrogen bond interactions and ligand exchange-surface complexation between organic matter and kaolin, which is more conducive to form a stable ternary complex with Cr(III), in a state of organic matter-Cr(III)-kaolin. Simultaneously, the BCR sequential extraction experiment shows that the unstable water and acid soluble state of Cr(III) are reduced (from 0.61% to 0.35%), which further indicates that the stabilization of Cr(III) is successful.
Collapse
Affiliation(s)
- Junjun Ma
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Tao E
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China.
| | - Shuyi Yang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Liang Chen
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Ying Cheng
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Jia Yu
- Environmental Protection Monitoring Station of Haining, Haining, 330481, Zhejiang, China
| | - Yun Li
- Chemistry & Chemical Engineering of College, Yantai University, Yantai, 264005, Shandong, China.
| |
Collapse
|
17
|
Ahmed Z, Yusoff MS, Kamal NHM, Aziz HA. Humic acid recovery from stabilized leachate: Characterization and interference with chemical oxygen demand-colour removal. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1584-1593. [PMID: 37154233 DOI: 10.1177/0734242x231160687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Heterogeneous combinations of organic compounds (humic acid (HA) and fulvic acid) are the prime factor for the high concentration of colour and chemical oxygen demand (COD) in semi-aerobic stabilized landfill leachate. These organics are less biodegradable and cause a severe threat to environmental elements. Microfiltration and centrifugation processes were applied in this study to investigate the HA removal from stabilized leachate samples and its corresponding interference with COD and colour. The three-stage extraction process recovered a maximum of 1412 ± 2.5 mg/L (Pulau Burung landfill site (PBLS) leachate), 1510 ± 1.5 mg/L (Alor Pongsu landfill site (APLS leachate) at pH 1.5 and 1371 ± 2.5 mg/L (PBLS) and 1451 ± 1.5 mg/L (APLS) of HA (about 42% of the total COD concentration) at pH 2.5, which eventually indicates the process efficiency. Comparative characteristics analysis of recovered HA by scanning electron microscopy, energy-dispersive X-ray, X-ray photoelectron spectroscopy, and Fourier transform infrared significantly indicate the existence of identical elements in the recovered HA compared with the previous studies. The higher reduction (around 37%) in ultraviolet (UV) absorbance values (UV254 and UV280) in the final effluent indicates the elimination of aromaticity and conjugated double-bond compounds from leachate. Moreover, 36 and 39% COD and 39 and 44% colour removal exhibit substantial interference.
Collapse
Affiliation(s)
- Zaber Ahmed
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Mohd Suffian Yusoff
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Nurul Hana Mokhtar Kamal
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| |
Collapse
|
18
|
Rezaeinia S, Ebrahimi AA, Dalvand A, Ehrampoush MH, Fallahzadeh H, Mokhtari M. Application of artificial neural network and dynamic adsorption models to predict humic substances extraction from municipal solid waste leachate. Sci Rep 2023; 13:12421. [PMID: 37528123 PMCID: PMC10393967 DOI: 10.1038/s41598-023-39373-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Sustainable municipal solid waste leachate (MSWL) management requires a paradigm shift from removing contaminants to effectively recovering resources and decreasing contaminants simultaneously. In this study, two types of humic substances, fulvic acid (FA) and humic acid (HA) were extracted from MSWL. HA was extracted using HCl and NaOH solution, followed by FA using a column bed under diversified operations such as flow rate, input concentration, and bed height. Also, this work aims to evaluate efficiency of Artificial Neural Network (ANN) and Dynamic adsorption models in predicting FA. With the flow rate of 0.3 mL/min, bed height of 15.5 cm, and input concentration of 4.27 g/mL, the maximum capacity of FA was obtained at 23.03 mg/g. FTIR analysis in HA and FA revealed several oxygen-containing functional groups including carboxylic, phenolic, aliphatic, and ketone. The high correlation coefficient value (R2) and a lower mean squared error value (MSE) were obtained using the ANN, indicating the superior ability of ANN to predict adsorption capacity compared to traditional modeling.
Collapse
Affiliation(s)
- Salimeh Rezaeinia
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Asghar Ebrahimi
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Arash Dalvand
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossien Fallahzadeh
- Department of Biostatistics and Epidemiology, Research Center of Prevention and Epidemiology of Non‑Communicable Disease, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehdi Mokhtari
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
19
|
Wang W, Yang M, Ma H, Liu Z, Gai L, Zheng Z, Ma H. Removal behaviors and mechanism of polystyrene microplastics by coagulation/ultrafiltration process: Co-effects of humic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163408. [PMID: 37061054 DOI: 10.1016/j.scitotenv.2023.163408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Microplastics (MPs) have been detected in drinking water, which could absorb or accumulate humic acid (HA) and threaten the water quality. Coagulation-ultrafiltration (CUF) is a common drinking water treatment technology, but its behavior and mechanism of removing MPs and MPs-HA remain unclear. In this study, the removal mechanism of polystyrene (PS)-MPs coagulated by Al- and Fe-based salts with or without HA was investigated to optimize the CUF process. The results showed that Al-based salt (92.7 %) was better than Fe-based salt (91.2 %) in the removal efficiency of PS or HA, and the optimal coagulants dosage of PS-HA composite system (12 mg·L-1) was higher than that of the individual PS system (9 mg·L-1). Moreover, the coagulation mechanism was studied by Fourier transform infrared spectroscope (FTIR) and X-ray photoelectron spectroscopy (XPS). The oxygen group in PS and PS-HA was the main binding site of Al and Fe hydrolysate, and the effects of charge neutralization, adsorption bridging, and sweep flocculation became weaker in turn at the optimal dosage. In addition, the cake layer formed by coagulation and the presence of HA alleviated the irreversible membrane fouling by intercepting flow and re-adsorption. This study guides the improvement of the traditional drinking water treatment process to remove MPs.
Collapse
Affiliation(s)
- Wenyu Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Min Yang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Huifang Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhibao Liu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ligang Gai
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhishuo Zheng
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongfang Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
20
|
Zhang Y, Mei B, Shen B, Jia L, Liao J, Zhu W. Preparation of biochar@chitosan-polyethyleneimine for the efficient removal of uranium from water environment. Carbohydr Polym 2023; 312:120834. [PMID: 37059560 DOI: 10.1016/j.carbpol.2023.120834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023]
Abstract
A novel chitosan-based composite with rich active sites was synthesized by uniformly dispersing biochar into the cross-linked network structure formed by chitosan and polyethyleneimine. Due to the synergistic effect of biochar (minerals) and chitosan-polyethyleneimine interpenetrating network (amino and hydroxyl), the chitosan-based composite possessed an excellent adsorption performance for uranium(VI). It could rapidly (<60 min) achieve a high adsorption efficiency (96.7 %) for uranium(VI) from water and a high static saturated adsorption capacity (633.4 mg/g), which was far superior to other chitosan-based adsorbents. Moreover, the separation for uranium(VI) on the chitosan-based composite was suitable for a variety of actual water environments and the adsorption efficiencies all exceeded 70 % in different water bodies. The soluble uranium(VI) could be completely removed by the chitosan-based composite in the continuous adsorption process, which could meet the permissible limits of the World Health Organization. In sum, the novel chitosan-based composite could overcome the bottleneck of current chitosan-based adsorption materials and become a potential adsorbent for the remediation of actual uranium(VI) contaminated wastewater.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Bingyu Mei
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Binhao Shen
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jun Liao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China..
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China..
| |
Collapse
|
21
|
Yuan L, Wu Y, Fan Q, Li P, Liang J, Liu YH, Ma R, Li R, Shi L. Influence mechanism of organic matter and low-molecular-weight organic acids on the interaction between minerals and PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160872. [PMID: 36521591 DOI: 10.1016/j.scitotenv.2022.160872] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Investigate the effect of soil organic matter (SOM) and low molecular weight organic acids (LMWOAs) on minerals adsorption of PAHs. Batch adsorption experiments have been carried out to study the adsorption of PAHs (Naphthalene (NaP), Phenanthrene (Phe) and Pyrene (Pyr)) by minerals (Montmorillonite (Mnt), kaolinite (Kln) and calcite (Cal)). This research found that compared with Kln and Cal, Mnt showed the maximum adsorption capability for PAHs. And the order of PAHs adsorption by Mnt was: Pyr > Phe > Nap, which corresponds to the octanol-water partition coefficient (Kow) of different PAHs. The adsorption kinetic and isotherm were well fitted by Pseudo-second-order kinetic model, Freundlich and Linear isotherm model. Furthermore, inorganic ions (Ca2+) impacted PAHs adsorption by competitive adsorption and cation-π interactive. Cal has the maximum desorption of PAHs among three minerals, and there was desorption hysteresis phenomenon. Field emission-scanning electron microscope (Fe-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) analysis indicated that SOM enhanced the sorption of PAHs by van der Waals, hydrogen bonding, π-π interactions, and chemical bonding. LMWOAs significantly inhibited PAHs adsorption and promote PAHs desorption from the minerals. As a result, LMWOAs increased of PAHs bioavailability, which provide a new strategy to improve PAHs cleanup efficiency.
Collapse
Affiliation(s)
- Longmiao Yuan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingqin Wu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China.
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China.
| | - Ping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China
| | - Jianjun Liang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China
| | - Yan Hong Liu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China
| | - Rong Ma
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijie Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - LeiPing Shi
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Zuo S, Ding Y, Wu L, Yang F, Guan Z, Ding S, Xia D, Li X, Li D. Revealing the synergistic mechanism of the generation, migration and nearby utilization of reactive oxygen species in FeOCl-MOF yolk-shell reactors. WATER RESEARCH 2023; 231:119631. [PMID: 36682234 DOI: 10.1016/j.watres.2023.119631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/13/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Fenton-like reactions is attractive for environmental pollutant control, but there is an urgent need to improve the utilisation of hydroxyl radicals (·OH) in practical applications. Here, for the first time, FeOCl is encapsulated within a Metal Organic Framework (MOF) (Materials of Institut Lavoisier-101 (MIL-101(Fe))) as a yolk-shell reactor (FeOCl-MOF) by in situ growth. The interaction between FeOCl and the MOF not only increases the electron density of FeOCl, but also shifts down the d-band centre. The increase of electron density could promote the efficient conversion of H2O2 to ·OH catalysed by FeOCl. And the shift of the d-band centre to the lower energy level facilitates the desorption of ·OH. Experimental and theoretical calculations showed that the high catalytic performance was attributed to the unique yolk-shell structure that concentrates the catalytic and adsorption sites in a confinement space, as well as the improved electron density and d-band centre for efficient generation, rapid desorption and utilized nearby of ·OH. Which is utilized nearby by the organic pollutants adsorbed by the surface MOF, thus greatly improving the effective conversion of H2O2 and the ·OH utilisation (from 25.5% (Fe2+/H2O2) to 77.1% (FeOCl-MOF/H2O2)). In addition, a catalytic reactor was constructed to achieve continuous efficient treatment of organic pollutants. This work provides a Fenton-like microreactor for efficient generation, rapid desorption, and nearby utilization of ·OH to improve future technologies for deep water purification in complex environments.
Collapse
Affiliation(s)
- Shiyu Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou 430073, PR China
| | - Yichen Ding
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Li Wu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Fan Yang
- School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430073, PR China
| | - Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Su Ding
- College of Environmental and Bioengineering, Henan University of Engineering, Zhengzhou 451191, PR China
| | - Dongsheng Xia
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, PR China
| | - Xiaohu Li
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Dongya Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, PR China..
| |
Collapse
|
23
|
Removal of colloidal impurities by thermal softening-coagulation-flocculation-sedimentation in steam assisted gravity drainage (SAGD) produced water: performance, interaction effects and mechanism study. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
24
|
Yu K, Yang X, Wan M, Jiang H, Shao P, Yang L, Shi H, Luo X. Effect of soil pH on thermally enhanced desorption of m-xylene by zero-valent iron particles under an electromagnetic field. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130019. [PMID: 36166910 DOI: 10.1016/j.jhazmat.2022.130019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/18/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
This study, for the first time, evaluates a novel method for the desorption of contaminants from soil that uses the heat generated by zero-valent iron (ZVI) under low-frequency electromagnetic fields (EMF), and elucidates the specific effects of soil pH upon the process. It was found that the temperature of soil mixed with ZVI could reach up to ∼60 °C within 20 min under the applied EMF, and after 60 min the residual fraction of m-xylene in soil decreased by 86.4% compared to no-ZVI soil. The most efficient desorption of m-xylene occurred at a soil of pH 5. Desorption was related to the net heating capacity of the ZVI particles, which was defined by pH-dependent formation of surface corrosion products. The preservation of metal iron and formation of Fe(II) species was favored for heat generation. Soil pH also affected m-xylene retention and the local thermal conduction from ZVI to m-xylene by regulating the surface properties of fulvic acid and ZVI. This study provides valuable information regarding the impact of pH on the thermal desorption of soil contaminants by ZVI coupled with EMF and illustrates the potential of the method in the remediation of contaminated sites.
Collapse
Affiliation(s)
- Kai Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Xiuqiong Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Mao Wan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Haowen Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
25
|
Huang Q, Zhu J, Qu C, Wang Y, Hao X, Chen W, Cai P, Huang Q. Dichotomous Role of Humic Substances in Modulating Transformation of Antibiotic Resistance Genes in Mineral Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:790-800. [PMID: 36516830 DOI: 10.1021/acs.est.2c06410] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Widespread antibiotic resistance genes (ARGs) have emerged as a focus of attention for public health. Transformation is essential for ARGs dissemination in soils and associated environments; however, the mechanisms of how soil components contribute to the transformation of ARGs remain elusive. Here we demonstrate that three representative mineral-humic acid (HA) composites exert contrasting influence on the transformation of plasmid-borne ARGs in Bacillus subtilis. Mineral surface-bound HA facilitated transformation in kaolinite and montmorillonite systems, while an inhibitory effect of HA was observed for goethite. The elevated transformation by HA-coated kaolinite was mainly attributed to the enhanced activity of competence-stimulating factor (CSF), while increased transformation by montmorillonite-HA composites was assigned to the weakened adsorption affinity of DNA and enhanced gene expression induced by flagella-driven cell motility. In goethite system, HA played an overriding role in suppressing transformation via alleviation of cell membrane damage. The results obtained offer insights into the divergent mechanisms of humic substances in modulating bacterial transformation by soil minerals. Our findings would help for a better understanding on the fate of ARGs in soil systems and provide potentials for the utilization of soil components, particularly organic matter, to mitigate the spread of ARGs in a range of settings.
Collapse
Affiliation(s)
- Qiong Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaojiao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunhao Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
26
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121636. [PMID: 36229084 DOI: 10.1016/j.saa.2022.121636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
In this review, the comprehensive summary of two-dimensional correlation spectroscopy (2D-COS) for the last two years is covered. The remarkable applications of 2D-COS in diverse fields using many types of probes and perturbations for the last two years are highlighted. IR spectroscopy is still the most popular probe in 2D-COS during the last two years. Applications in fluorescence and Raman spectroscopy are also very popularly used. In the external perturbations applied in 2D-COS, variations in concentration, pH, and relative compositions are dramatically increased during the last two years. Temperature is still the most used effect, but it is slightly decreased compared to two years ago. 2D-COS has been applied to diverse systems, such as environments, natural products, polymers, food, proteins and peptides, solutions, mixtures, nano materials, pharmaceuticals, and others. Especially, biological and environmental applications have significantly emerged. This survey review paper shows that 2D-COS is an actively evolving and expanding field.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
27
|
He L, Huang Y, Xie Z, Guan W, Zeng Y. Adsorption Characteristics of Iron on Different Layered Loess Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16653. [PMID: 36554534 PMCID: PMC9778973 DOI: 10.3390/ijerph192416653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
In view of the problem of Fe3+ pollution in an iron sulfur mine, different layers of loess soil in the Bijie area were used for adsorption to alleviate the mine wastewater pollution by natural treatment. The effects of the initial concentration of Fe3+, adsorption time and pH value on the adsorption performance of top, core and subsoil layers of loess soils were studied by the oscillatory equilibrium method, and the adsorption mechanism of these three soils was analyzed through a kinetic adsorption experiment and infrared spectroscopy. The results showed that the adsorption capacity of Fe3+ was improved by increasing the initial concentration and reaction time, but the adsorption rate of the adsorption capacity of Fe3+ was reduced. The adsorption rate of Fe3+ in the subsoil layer was faster than that in the other two layers. The higher the pH, the higher the adsorption capacity. After the pH was higher than 3.06, it had little effect on the adsorption capacity, but the adsorption rate increased. The first-order kinetic equation, second-order kinetic equation and Elovich equation were suitable for iron adsorption kinetics of three soils. The fitting correlation coefficient of the second-order kinetic equation was close to one, indicating the main role of chemical adsorption. The adsorption rate constant of the subsoil layer was about two times and three times that of the core soil layer and the topsoil layer. The Langmuir model can better fit the isothermal adsorption process. The results of infrared spectroscopy of soil showed that the content of soil organic matter played an important role in the adsorption capacity of Fe3+. The subsoil layer had a higher concentration of organic matter and more abundant functional groups, so the adsorption capacity of Fe3+ was the highest. The results could provide a theoretical basis for the removal of iron in acid mine wastewater.
Collapse
Affiliation(s)
- Li He
- College of Resources and Environment, Zunyi Normal University, Zunyi 563006, China
| | | | - Zhigang Xie
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402171, China
| | - Wei Guan
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402171, China
| | - Yao Zeng
- Environment Monitoring Station of Dadukou District, Chongqing 400084, China
| |
Collapse
|
28
|
Yang S, Cheng Y, Zou H, Tao E. Synergistic roles of montmorillonite and organic matter in reducing bioavailable state of chromium in tannery sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87298-87309. [PMID: 35802330 DOI: 10.1007/s11356-022-21897-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Organic matter (OM) has an excellent retention effect on stabilizing chromium (Cr), and functional groups on OM play a predominant role in this process. Based on this result, it is found that a considerable amount of Cr in tannery sludge is immobilized from ion exchangeable species into bound species, benefiting from complexing reaction with functional groups. Especially, the mentioned immobilizing process is enhanced in way of adding with montmorillonite (MMT) which performs adsorption reaction with Cr, as well as plays interaction with functional groups. The result is confirmed by employing density functional theory (DFT) analysis, suggesting the binding ability among Cr, functional groups, and MMT is stronger (- 77.36503 eV) than that of the system of Cr and MMT (- 61.29942 eV), indicating the synergetic roles of OM and MMT. This synergetic role could also be illustrated by a new peak (Cr-OH 20.1%) shown in XPS result. Meanwhile, DFT analysis emphasizes that functional groups on OM give the response for binding with Cr in the order of hydroxyl (-OH) > carboxyl (-COOH) > epoxy (-COC), and all the functional groups tend to donate electron to bind with Cr. In addition, the stabilizing process shows a better fitting effect with pseudo second-order kinetic model (R2 > 0.94), indicating that exchangeable Cr mass transfer and chemical adsorption occur simultaneously.
Collapse
Affiliation(s)
- Shuyi Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Ying Cheng
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Hongtao Zou
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - E Tao
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| |
Collapse
|
29
|
Lu Y, Hu S, Zhang H, Song Q, Zhou W, Shen X, Xia D, Yang Y, Zhu H, Liu C. Effect of humic acid on bioreduction of facet-dependent hematite by Shewanella putrefaciens CN-32. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157713. [PMID: 35914600 DOI: 10.1016/j.scitotenv.2022.157713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Interfacial reactions between iron (Fe) (hydr)oxide surfaces and the activity of bacteria during dissimilatory Fe reduction affect extracellular electron transfer. The presence of organic matter (OM) and exposed facets of Fe (hydr)oxides influence this process. However, the underlying interfacial mechanism of facet-dependent hematite and its toxicity toward microbes during bioreduction in the presence of OM remains unknown. Herein, humic acid (HA), as typical OM, was selected to investigate its effect on the bioreduction of hematite {100} and {001}. When HA concentration was increased from 0 to 500 mg L-1, the bioreduction rates increased from 0.02 h-1 to 0.04 h-1 for hematite {100} and from 0.026 h-1 to 0.05 h-1 for hematite {001}. Since hematite {001} owned lower resistance than hematite {100} irrespective of the HA concentration, and hematite {100} was less favorable for reduction. Microscopy-based analysis showed that more hematite {001} nanoparticles adhered to the cell surface and were bound more closely to the bacteria. Moreover, less cell damage was observed in the HA-hematite {001} treatments. As the reaction progressed, some bacterial cells died or were inactivated; confocal laser scanning microscopy showed that bacterial survival was higher in the HA-hematite {001} treatments than in the HA-hematite {100} treatments after bioreduction. Spectroscopic analysis revealed that facet-dependent binding was primarily realized by surface complexation of carboxyl functional groups with structural Fe atoms, and that the binding order of HA functional groups and hematite was affected by the exposed facets. The exposed facets of hematite could influence the electrochemical properties and activity of bacteria, as well as the binding of bacteria and Fe oxides in the presence of OM, thereby governing the extracellular electron transfer and concomitant bioreduction of Fe (hydr)oxides. These results provide new insights into the interfacial reactions between OM and facet-dependent Fe oxides in anoxic, OM-rich soil and sediment environments.
Collapse
Affiliation(s)
- Yang Lu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), 7 West Street, Yuancun, Guangzhou, Guangdong 510655, People's Republic of China
| | - Shiwen Hu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Hanyue Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Qingmei Song
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), 7 West Street, Yuancun, Guangzhou, Guangdong 510655, People's Republic of China
| | - Wenjing Zhou
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Xinyue Shen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Di Xia
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), 7 West Street, Yuancun, Guangzhou, Guangdong 510655, People's Republic of China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Huiyan Zhu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Chongxuan Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
30
|
Iannarelli R, Ludwig C, Rossi MJ. The Kinetics of Adsorption and Desorption of Selected Semivolatile Hydrocarbons and H 2O Vapor on Two Mineral Dust Materials: A Molecular View. J Phys Chem A 2022; 126:8711-8726. [DOI: 10.1021/acs.jpca.2c04903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Riccardo Iannarelli
- École Polytechnique Fédérale de Lausanne (EPFL), Risk Prevention, EPFL VPO-SE OHS-PR, Station 6, CH-1015 Lausanne, Switzerland
| | - Christian Ludwig
- Paul Scherrer Institute (PSI), ENE LBK CPM, CH-5232 Villigen, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), ENAC IIE GR-LUD, Station 6, CH B2 397, CH-1015 Lausanne, Switzerland
| | - Michel J. Rossi
- École Polytechnique Fédérale de Lausanne (EPFL), ENAC IIE GR-LUD, Station 6, CH B2 397, CH-1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Nag S, Mondal U, Hirani H, Chakraborty D, Bhaumik A, Banerjee P. Strategic optimization of phase-selective thermochemically amended terra-firma originating from excavation-squander for geogenic fluoride adsorption: a combined experimental and in silico approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77821-77838. [PMID: 35687285 DOI: 10.1007/s11356-022-21178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
An inimitable adsorbent "FI-TM-BWCC," emanated from meta-phase-selective thermochemical modulation of excavation-squander (mine waste)-derived terra-firma (blackish white china clay, i.e., BWCC), is explored in the present work for fluoride (F-) adsorption purpose. FI-TM-BWCC portrayed an excellent adsorption efficiency (95% removal capacity and Qe: 99 mg/g, at initial adsorbate dose: 10 mg/L, pH: 7±0.5, adsorbent dosage: ~600 mg, exposure time: 60 min). At identical experimental conditions, the F- scavenging phenomenon was superior than two analogous adsorbents: (i) biopolymer chitosan and glutaraldehyde cross-linked BWCC (CG@BWCC, wherein F- removal efficiency: 74%) and (ii) meta-phase-selective thermally moduled BWCC (TM-BWCC, removal efficiency: 75%). BWCC predominantly comprises kaolinite and a trace amount of anatase along with prime elemental compositions: 41.71% Al2O3, 49.80 % SiO2, 4.25% Fe2O3, and 3.93% TiO2, as revealed by PXRD and XRF analyses. The thermochemical modulation pathway significantly escalated the BET surface area of BWCC (~11.92 m2/g, avg. pore radius: 23.64 Å, i.e., mesoporous in nature) to FI-TM-BWCC (216.95 m2/g, avg. pore radius: 31.41 Å). The fluoride-adsorbed F-•••FI-TM-BWCC species revealed a reduced surface area of 21.5 m2/g, which was explained in the light of ion exchange pathway on FI-TM-BWCC's non-uniform surface (surface roughness/SA of 1597 nm, reduced to 1179 nm after F- uptake). The spontaneous F-•••FI-TM-BWCC interaction (ΔG0 = -6.25 kJ) occurred following chemisorption-controlled ion exchange (CCIE) pathway as appearance of a F1s band at 685.5 eV was rationalized for Si-F bond formation; corroborating pseudo second-order (PSO) kinetics and resembling Freundlich isotherm. The usefulness of FI-TM-BWCC was diversified through field validation with natural groundwater specimens and proposition of a gravity-fed defluoridation unit. The flow rate was documented to be ~11 liters per hour (LPH) by implementing viscous turbulence fluent model. The experimental findings certainly followed the premise conventions of sustainability metrics upholding socio-economic equipoise.
Collapse
Affiliation(s)
- Somrita Nag
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Udayan Mondal
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Harish Hirani
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur, 713209, India
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Debabrata Chakraborty
- Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, 700 032, India
| | - Asim Bhaumik
- Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, 700 032, India
| | - Priyabrata Banerjee
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur, 713209, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
32
|
Li Y, Koopal LK, Tan W, Chai Y, Chen Y, Wu C, Tang X. Effect of humic acid on lysozyme interaction with montmorillonite and kaolinite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155370. [PMID: 35460783 DOI: 10.1016/j.scitotenv.2022.155370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Humic acid (HA) as a soil natural organic matter (NOM) can participate in the interaction between proteins and clay minerals, depending on clay type, HA and protein content, and solution conditions. The effect of HA on the interaction of lysozyme (LSZ) with kaolinite (Kao) and montmorillonite (Mont) was investigated at (initial) pHi 5 and 8. In the solutions containing both HA and LSZ, HA/LSZ complexes were formed with a net charge density depending on pH and HA/LSZ mass ratio f. LSZ adsorption on clays in the presence of HA is dominated by adsorption of HA/LSZ complexes. The HA/LSZ mass ratio (fIEP,pHi) at the isoelectric point (IEP) is pH dependent. At f <fIEP,pHi the HA/LSZ complexes are positively charged and adsorb well to the negatively charged Mont and Kao surface fractions. The adsorption levels on Mont are considerably larger than on Kao, which is mainly due to the much larger area fraction of modestly hydrophobic basal plates of Mont. The presence of HA increased the plateau adsorption of LSZ on Kao and Mont for both pHi values, and the LSZ adsorption increased with increasing HA content and pHi values due to a decreasing mutual repulsion of the bound HA/LSZ complexes. At pHi 8 complications arose for low initial LSZ concentrations, for f <fIEP,pHi the HA/LSZ complexes were only weakly positive and formed dispersed aggregates and for f >fIEP,pHi the HA/LSZ complexes were negative, both conditions caused relatively high equilibrium concentrations of LSZ in solution that decreased with increasing initial LSZ concentration. The present results enhance our insight in protein soil interactions for the case that clay particles are brought in contact with aqueous solutions that contain modest amounts of both NOM and protein and stress the importance of the NOM/protein mass ratio and solution pH.
Collapse
Affiliation(s)
- Yan Li
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; National Agricultural Experimental Station for Soil Quality, Jiaxing 314000, China.
| | - Luuk K Koopal
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Wenfeng Tan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanjun Chai
- Key Laboratory of Recycling and Ecological Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yi Chen
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; National Agricultural Experimental Station for Soil Quality, Jiaxing 314000, China
| | - Chunyan Wu
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; National Agricultural Experimental Station for Soil Quality, Jiaxing 314000, China
| | - Xu Tang
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; National Agricultural Experimental Station for Soil Quality, Jiaxing 314000, China
| |
Collapse
|
33
|
Bai X, Guo L, Jia T, Hao D, Wang C, Li H, Zong R. Perylene diimide growth on both sides of carbon nanotubes for remarkably boosted photocatalytic degradation of diclofenac. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128992. [PMID: 35489317 DOI: 10.1016/j.jhazmat.2022.128992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Perylene diimide and its derivatives are promising photocatalysts for clean and efficient production, but their practical application in the field of photocatalysis is still limited by the rapid photogenerated charge recombination. In this work, the confined photocatalysts were synthesized by using a gas-phase self-assembly method and comparing the morphology and photocatalytic properties of different photocatalysts after the confinement of carbon nanotubes. The confinement effect of carbon nanotubes acts to stabilize perylene diimide. Electrostatic interaction formed by a wide range of dispersion forces is dominant in the process of stabilization. Benefitting from the three-dimensional electron transfer pathway formed by the conjugation of perylene diimide with a large number of π electrons to the carbon nanotubes plane, the confined photocatalyst shows the pseudo-first-order kinetic constant k of 1.106 h-1 for the photocatalytic degradation of diclofenac under light, which is 6.11 times higher than that of perylene diimide. The electron transfer created an internal electric field at the interface from carbon nanotubes to perylene diimide, which greatly accelerated the separation of photogenerated electron-hole pairs and improved the photocatalytic activity. This study further expands the applicability of perylene diimide in the field of photocatalysis and provides a new approach for water environment treatment.
Collapse
Affiliation(s)
- Xiaojuan Bai
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Linlong Guo
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, China
| | - Tianqi Jia
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, China
| | - Derek Hao
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.
| | - Cong Wang
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, China
| | - Haiyan Li
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, China
| | - Ruilong Zong
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
Fang M, Zhao T, Zhao X, Tang Z, Liu S, Wang J, Niu L, Wu F. Effect of Tube Diameters and Functional Groups on Adsorption and Suspension Behaviors of Carbon Nanotubes in Presence of Humic Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1592. [PMID: 35564302 PMCID: PMC9100522 DOI: 10.3390/nano12091592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022]
Abstract
The adsorption and suspension behaviors of carbon nanotubes (CNTs) in the water environment determine the geochemical cycle and ecological risk of CNTs and the compounds attached to them. In this study, CNTs were selected as the research object, and the effect of tube diameters and functional groups (multiwall CNTs (MWNTs) and hydroxylated MWNTs (HMWNTs)) on the adsorption and suspension behaviors of the CNTs in the presence of humic acid (HA) was systematically analyzed. The results indicate that HA adsorption decreased with the increase in the solution pH, and the adsorption amount and rate were negatively correlated with the tube diameter of the CNTs. The surface hydroxylation of the CNTs prevented the adsorption of HA, and the maximum adsorption amounts on the MWNTs and HMWNTs were 195.95 and 74.74 mg g-1, respectively. HA had an important effect on the suspension of the CNTs, especially for the surface hydroxylation, and the suspension of the CNTs increased with the increase in the tube diameter. The characteristics of the CNTs prior to and after adsorbing HA were characterized by transmission electron microscopy, fluorescence spectroscopy, Fourier-transform infrared spectroscopy and Raman spectroscopy. The results indicate that surface hydroxylation of the CNTs increased the adsorption of aromatic compounds, and that the CNTs with a smaller diameter and a larger specific surface area had a disordered carbon accumulation microstructure and many defects, where the adsorption of part of the HA would cover the defects on the CNTs' surface. Density functional theory (DFT) calculations demonstrated that HA was more easily adsorbed on the CNTs without surface hydroxylation. This investigation is helpful in providing a theoretical basis for the scientific management of the production and application of CNTs, and the scientific assessment of their geochemical cycle and ecological risk.
Collapse
Affiliation(s)
- Mengyuan Fang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.F.); (T.Z.); (X.Z.); (J.W.); (L.N.); (F.W.)
- College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China
| | - Tianhui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.F.); (T.Z.); (X.Z.); (J.W.); (L.N.); (F.W.)
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.F.); (T.Z.); (X.Z.); (J.W.); (L.N.); (F.W.)
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.F.); (T.Z.); (X.Z.); (J.W.); (L.N.); (F.W.)
| | - Shasha Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.F.); (T.Z.); (X.Z.); (J.W.); (L.N.); (F.W.)
| | - Lin Niu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.F.); (T.Z.); (X.Z.); (J.W.); (L.N.); (F.W.)
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (M.F.); (T.Z.); (X.Z.); (J.W.); (L.N.); (F.W.)
| |
Collapse
|
35
|
Qiao X, Xia Y, Su X, Wang B, Chen G, Chen H. Preparation of biomass carbon material based on fulvic acid and its application in dye and antibiotic treatments. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Mosai AK, Tokwana BC, Tutu H. Computer simulation modelling of the simultaneous adsorption of Cd, Cu and Cr from aqueous solutions by agricultural clay soil: A PHREEQC geochemical modelling code coupled to parameter estimation (PEST) study. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.109872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Liao J, Ding L, Zhang Y, Zhu W. Efficient removal of uranium from wastewater using pig manure biochar: Understanding adsorption and binding mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127190. [PMID: 34844340 DOI: 10.1016/j.jhazmat.2021.127190] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
In this work, three kinds of biochars (PMBC-H2O, PMBC-PP and PMBC-HP) with excellent adsorption performance were obtained by carbonizing pig manure pre-treated with different agents. These biochars had the ordered mesoporous structures and possessed abundant active functional groups on their surface. The adsorption behaviors of the biochars towards UVI under various conditions were evaluated by batch experiment. The results showed that KMnO4 and H2O2 could enormously improve the adsorption performance of PMBC to UVI. After KMnO4 and H2O2 pretreatment, the maximum adsorption capacities of PMBC-PP (979.3 mg/g) and PMBC-HP (661.7 mg/g) were about 2.6 and 1.8 times higher than that of PMBC-H2O (369.9 mg/g), respectively, which was much higher than previously reported biochar-based materials. Obviously, KMnO4 pretreatment leaded to a higher enhancement than that of H2O2. The removal mechanism of UVI on PMBC-PP was discussed in-depth. The interaction between UVI species and PMBC-PP was mainly ascribed to the abundant active sites on the surface of PMBC-PP. In a word, conversion of pig manure pre-treated with KMnO4 into biochar not only demonstrates that PMBC-PP has great potential in the treatment of actual uranium-containing wastewater, but also provides a method for the rational utilization of pig manure to reduce the pollution.
Collapse
Affiliation(s)
- Jun Liao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China; Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Ling Ding
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China; Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
38
|
Zhao J, Tang J, Dang T. Influence of extracellular polymeric substances on the heteroaggregation between CeO 2 nanoparticles and soil mineral particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150358. [PMID: 34600214 DOI: 10.1016/j.scitotenv.2021.150358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/03/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Interaction with soil mineral particles (SMPs) and organic matters can significantly determine the fate of nanoparticles (NPs) in the environment such as waters, sediments, and soils. In this study, the heteroaggregation of CeO2 NPs with different soil minerals (kaolinite, montmorillonite, goethite and hematite) and the influence of extracellular polymeric substance (EPS) were studied. The obvious heteroaggregation between CeO2 NPs with different SMPs were demonstrated via co-settling and aggregation kinetics experiments. The variety in the heteroaggregation between CeO2 NPs with different SMPs is mainly induced by the difference in their surface properties, such as surface charge, specific surface areas and surface complexation. The presence of EPS can result in great inhibition on the heteroaggregation between CeO2 NPs with the positive charged goethite by enhancing the electrostatic repulsion between NPs and mineral colloids. However, the influence of EPS on the interaction between CeO2 NPs with negative charged SMPs is more dependent on the steric stabilization. The presence of EPS may promote the migration of CeO2 NPs in environment and then increase their risks to human health and ecosystems. These findings contribute to better understanding interactions between NPs and SMPs and have important implications on predicting the behaviors and risks of NPs in the natural environment.
Collapse
Affiliation(s)
- Jun Zhao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of water Water Resources, Yangling 712100, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Tinghui Dang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of water Water Resources, Yangling 712100, China
| |
Collapse
|
39
|
Yang Q, Xu L, He Q, Wu D. Reduced cathodic scale and enhanced electrochemical precipitation of Ca 2+ and Mg 2+ by a novel fenced cathode structure: Formation of strong alkaline microenvironment and favorable crystallization. WATER RESEARCH 2022; 209:117893. [PMID: 34872026 DOI: 10.1016/j.watres.2021.117893] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical precipitation is a promising technique for hardness abatement without the addition of external ions. However, the scale layer on cathode deteriorated the removal efficiency and limited the practical application. Herein, a fenced cathode structure was designed to prevent cathodic precipitation. The cathode was fenced by a crystallization-inducing material for separating the OH- production and crystallization processes. Precipitation on the cathode was confirmed to shift to the crystallization-inducing material, and the clean fenced cathode provided efficient long-term OH- production. At a current density of 40 A/m2, the Ca2+ or Mg2+ removal efficiency increased by 12.8% or 46.1%, respectively, compared to those of a traditional cathode. Thermodynamic equilibrium in synthetic water and mine water, mass transfer and the location of precipitation were analyzed to elucidate the electrochemical precipitation process. The enhanced mechanism was ascribed to the crystallization-inducing material, which remarkably promoted the crystallization process, and hindered OH- migration, thereby increased the pH of alkaline microenvironment. Notably, a recovery design was proposed to recover pure calcite and brucite from alkalinity-free wastewater. The design reveals a promising strategy for enhancing the crystallization process and reducing cathodic scale, also initiating a new research direction toward hardness removal.
Collapse
Affiliation(s)
- Qianyuan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Qunbiao He
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
40
|
Li S, Hong D, Chen W, Wang J, Sun K. Extracellular laccase-activated humification of phenolic pollutants and its application in plant growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:150005. [PMID: 34525729 DOI: 10.1016/j.scitotenv.2021.150005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Humification processes of phenolic pollutants may play a profound role in environment purification and plant growth. However, little literature is performed to explore exoenzyme-driven humification to polymerize 17β-estradiol (E2) and humic constituents (HCs), and the effects of their polymeric precipitates on plant growth are usually overlooked. Herein, E2 conversion and radish (Raphanus sativus L.) growth were systematically investigated under humification mediated by extracellular laccase (EL) of Trametes versicolor. Results disclosed that EL-assisted humification achieved a wonderful E2 conversion efficiency (>99%) within 2-h, but the presence of HCs such as humic acid (HA), vanillic acid (VA), and ferulic acid (FA) impeded E2 elimination significantly. Compared with HC-free, the kinetics constants declined by 2.84-, 5.72-, and 5.22-fold with HA, VA, and FA present, respectively. Intriguingly, three close-knit self/cross-linked precipitates (i.e., E2-HA, E2-VA, and E2-FA hybrid precipitates) in dark gray, dark brown, and deep yellow were created after a continuous humification by phenolic radical-initiated polymerization mechanisms. The formation of these humified precipitates was extremely effective on circumventing phytotoxicity caused by monomeric E2, VA, or FA. Furthermore, they acted as humic-like organic fertilizers, accelerating seed germination, root elongation, and enhancing NaCl-tolerance of radish through the combination of oxygen-contained functional components and auxin structural analogues with unstable and stubborn carbon skeletons. This is the first study reporting the pollution purification and plant growth promotion in EL-activated humification. Our findings frame valuable perspectives regarding the natural detoxification and carbon sequestration of phenolic pollutants and the application of their polymeric precipitates in global crop production.
Collapse
Affiliation(s)
- Shunyao Li
- School of Resources and Environmental Engineering, Anhui University, Jiulong Road 111, Hefei 230039, Anhui, China
| | - Dan Hong
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Wenjun Chen
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Jun Wang
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Kai Sun
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China.
| |
Collapse
|
41
|
Oh H, Lee JS, Lee HS, Sung D, Choi WI. A Novel Polyvinylpyrrolidone-Stabilized Illite Microparticle with Enhanced Antioxidant and Antibacterial Effect. Polymers (Basel) 2021; 13:4275. [PMID: 34960826 PMCID: PMC8707809 DOI: 10.3390/polym13244275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/29/2022] Open
Abstract
Illite is a clay mineral that shows antioxidant and antibacterial activities because of the abundance of important clay elements in its structure. However, illite has low bioactivity due to its low solubility and electron-donating ability in aqueous solutions. Therefore, we aimed to develop polyvinylpyrrolidone (PVP)-stabilized illite microparticles (P-lite MPs) via polymer adsorption on illite surfaces. An increasing amount of PVP was used to coat a fixed amount of illite to prepare P-lite MPs of different hydrodynamic diameters in the range of 4-9 μm. These sizes were maintained for 2 weeks during storage in a biological buffer without any noticeable changes. The stabilization of illite microparticles using a hydrophilic PVP polymer improved their aqueous dispersity and free radical-scavenging activity. Since the large surface area of microparticles provides several sites for interactions, the smallest P-lite MP exhibited the highest antioxidant and antibacterial activities. More importantly, the MPs showed effective free radical-scavenging activity in vitro without any cytotoxicity. Therefore, P-lite MPs with improved bioavailability may represent a suitable bioactive material for various industrial and biomedical applications.
Collapse
Affiliation(s)
- Hyeryeon Oh
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (H.O.); (J.S.L.); (H.S.L.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Korea
| | - Jin Sil Lee
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (H.O.); (J.S.L.); (H.S.L.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Korea
| | - Hye Sun Lee
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (H.O.); (J.S.L.); (H.S.L.)
| | - Daekyung Sung
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (H.O.); (J.S.L.); (H.S.L.)
| | - Won Il Choi
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (H.O.); (J.S.L.); (H.S.L.)
| |
Collapse
|
42
|
Zuo S, Li D, Guan Z, Yang F, Xu H, Xia D, Wan J. Tailored d-Band Facilitating in Fe Gradient Doping CuO Boosts Peroxymonosulfate Activation for High Efficiency Generation and Release of Singlet Oxygen. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49982-49992. [PMID: 34636557 DOI: 10.1021/acsami.1c15061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the field of heterogeneous catalysis, limitations of the surface reaction process inevitably make improving the catalytic efficiency to remove pollutants in water a major challenge. Here, we report a unique structure of Fe surface-gradient-doped CuO that improves the overall catalytic processes of adsorption, electron transfer, and desorption. Interestingly, gradient doping leads to an imbalanced charge distribution in the crystal structure, thereby promoting the adsorption and electron transport efficiency of peroxymonosulfate (PMS). The orbital hybridization of Fe also improves the electronic activity. More importantly, the occupied d-orbital distribution is closer to the lower energy level, which improves the desorption of the reaction intermediate (1O2). As a result, the production and desorption of 1O2 have been improved, resulting in excellent BPA degradation ability (kinetic rate increased by 67.3 times). Two-dimensional infrared correlation spectroscopy is used to better understand the doping process and catalytic mechanism of Fe-CuO. Fe-O changes before Cu-O and is more active. The Fe-required active sites, active species intensity, and kinetic reaction rates show a good correlation. This research provides a scientific basis for expanding the purification of toxic organic pollutants in complex water environments by heterogeneous catalytic oxidation.
Collapse
Affiliation(s)
- Shiyu Zuo
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, P. R. China
| | - Dongya Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, P. R. China
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, P. R. China
| | - Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, P. R. China
| | - Fan Yang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430073, P. R. China
| | - Haiming Xu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, P. R. China
| | - Dongsheng Xia
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, P. R. China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
43
|
Zhao P, Zhao Y, Cui L, Tian Y, Zhang Z, Zhu Q, Zhao W. Multiple antibiotics distribution in drinking water and their co-adsorption behaviors by different size fractions of natural particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145846. [PMID: 33631569 DOI: 10.1016/j.scitotenv.2021.145846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
In recent years, natural particles in drinking water have attracted attention due to their carry of toxic organic matter. However, the adsorption behavior of multiple antibiotics at very low concentrations on different sized particles has not been revealed. Here, the content of 17 antibiotics in water samples collected from four process stages of the water supply plant was detected. Results showed the concentration of antibiotics in water plant was in the range of 0-69.24 ng L-1. Characterization of natural particles obtained directly from raw water of waterworks showed that the surface of large particles (>1 μm) was rougher and the composition was more complex than that of small particles (0.05-1 μm). Besides, the adsorption experiments of four antibiotics (nalidixic acid (NAL), trimethoprim (TMP), roxithromycin (ROX), and penicillin G potassium salt (PG)) on small (0.05-1 μm) and large (>1 μm) natural particles were studied. The results indicated that in the binary antibiotic system, the competition and synergy between antibiotics made a greater proportion of antibiotics soluble in water comparing with single systems, and the particle-water partition coefficient (kp-w) of the total antibiotics ranged from 1.13-1.78 was reduced to 0.57-0.84. The competitive adsorption of antibiotics appeared in the binary system showed that ROX and PG had a higher adsorption capacity than NAL and TMP. Furthermore, in the binary antibiotic systems, small particles played an important role in adsorption, suggesting the urgency of their removing. This work could help predict the possible risks of drinking water and provide some insights into future drinking water treatment.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yuwei Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Limin Cui
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhe Zhang
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qiqi Zhu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Weigao Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
44
|
Zhu J, Gao W, Ge L, Zhao W, Zhang G, Niu Y. Immobilization properties and adsorption mechanism of nickel(II) in soil by biochar combined with humic acid-wood vinegar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112159. [PMID: 33799133 DOI: 10.1016/j.ecoenv.2021.112159] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Biochar (BC) combined with humic acid (HA) and wood vinegar (WV) was designed and prepared as an inexpensive, effective, and environmentally friendly immobilization material (BHW) for metal-polluted soil. The influences of the wood vinegar and humic acid on the immobilization properties and adsorption mechanism of this new material were also investigated. The remediation performance was evaluated using a laboratory-made, nickel-contaminated soil with a Ni2+ concentration of 200 mg per kg surface soil (top 20 cm from agricultural land). The results indicated that the immobilization ratio sequence of nickel (II) in the soil was BC< BH< BHW. The maximum adsorption capacity increased in the same order: BC< BH< BHW. All three adsorption isotherms were better fitted by the Freundlich model, which were consistent with the surface heterogeneity of the remediation materials. The cause of this surface heterogeneous migration may be due to the increase in oxygen-containing groups in the BC introduced by the HA and WV. The WV can increase the number of the oxygen-containing groups in the BC combined with HA, which enhanced the adsorption and immobilization of Ni2+ ions. The results suggested that BHW is recommended for the remediation of metal-contaminated soils, because of its high efficacy, economic feasibility, environmental and food safety.
Collapse
Affiliation(s)
- Junfeng Zhu
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural Resources of the People's Republic of China, 710075, China; Shaanxi Key Research Laboratory of Chemical Additives, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Weichun Gao
- Shaanxi Key Research Laboratory of Chemical Additives, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lei Ge
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural Resources of the People's Republic of China, 710075, China
| | - Wentian Zhao
- Shaanxi Key Research Laboratory of Chemical Additives, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Guanghua Zhang
- Shaanxi Key Research Laboratory of Chemical Additives, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yuhua Niu
- Shaanxi Key Research Laboratory of Chemical Additives, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
45
|
Bai X, Wang C, Wang X, Jia T, Sun B, Yang S, Li D, Li J, Li H. Strong electron affinity PDI supramolecules form anion radicals for the degradation of organic pollutants via direct electrophilic attack. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01982h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Strong electron affinity PDI supramolecules degrade organic pollutants efficiently through directly electrophilic attack.
Collapse
Affiliation(s)
- Xiaojuan Bai
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture)
- Ministry of Education
- China
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control
- Beijing University of Civil Engineering and Architecture
| | - Cong Wang
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture)
- Ministry of Education
- China
| | - Xuyu Wang
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture)
- Ministry of Education
- China
| | - Tianqi Jia
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture)
- Ministry of Education
- China
| | - Boxuan Sun
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture)
- Ministry of Education
- China
| | - Shengqi Yang
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture)
- Ministry of Education
- China
| | - Di Li
- School of Chemistry and Chemical Engineering
- Xi'an University of Architecture and Technology
- Xi'an
- China
| | - Junqi Li
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture)
- Ministry of Education
- China
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control
- Beijing University of Civil Engineering and Architecture
| | - Haiyan Li
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture)
- Ministry of Education
- China
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control
- Beijing University of Civil Engineering and Architecture
| |
Collapse
|
46
|
Rezazadeh L, Sharafi S, Schaffie M, Ranjbar M. Application of oxidation-reduction potential (ORP) as a controlling parameter during the synthesis of Fe 3O 4@PVA nanocomposites from industrial waste (raffinate). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32088-32099. [PMID: 32506412 DOI: 10.1007/s11356-020-09436-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study was to develop a process for the synthesis of magnetite nanocomposites from raffinate of hydrometallurgical plants containing iron ions. Towards this goal, a three-step process was developed. After the reduction of Fe(III) to Fe(II) in the first stage, Al3+ in the raffinate was precipitated as Al(OH)3 and finally magnetite NPs were synthesized by chemical co-precipitation method via controlling the oxidation-reduction potentials (ORPs). The produced nanomaterials were analyzed using XRD, TEM, VSM, TGA, and FTIR. The TG, XPS, and FTIR results affirmed the existence of PVA while TEM images illustrated the spherical nanoparticles with an average size of about 19 ± 4 nm. Evaluation of VSM data indicated the highly ferromagnetic behavior for Fe3O4 and Fe3O4@PVA products at the room temperature with a saturation magnetization of 46.98 and 35.78 emu/g, respectively.
Collapse
Affiliation(s)
- Laleh Rezazadeh
- Department of Metallurgy and Materials Science, School of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Shahriar Sharafi
- Department of Metallurgy and Materials Science, School of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahin Schaffie
- Mineral Industries Research Center, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Ranjbar
- Mineral Industries Research Center, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|