1
|
Li L, Du H, Meng C, Fan L, Liu H, Han X, Ge T, Su L, Yao X, Wang X. The relationship between indoor airborne culturable bacteria with passenger flow in 132 traffic stations during 2019-2020, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123482. [PMID: 39612790 DOI: 10.1016/j.jenvman.2024.123482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/02/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
This study aims to provide technical support for the development of a rational administration strategy for indoor environment and passenger flow of stations. The analysis was conducted monitor data of long distance bus stations and train/high speed railway stations from the National project. The monitor and surveyed data included indoor airborne culturable bacteria (IAB), passenger flow, area and height of stations. Data analysis involved the use of paired non-parametric tests, correlation analysis, and mixed linear regression methods. A total of 132 pairs of stations were examined in this study. Additionally, significant variations were observed in the monitoring results for the IAB and passenger flow between 2019 and 2020 (p < 0.05). Specifically, the median values of these two factors in 2020 decreased by 50.52% and 48.33%, respectively, compared to 2019. (p < 0.05). A positive relationship between the daily average passenger flow and the IAB in long distance bus stations and train stations, particularly pronounced with medium sized waiting rooms, which located in subtropical cities with a general level of economic development. The mixed effect regression analysis revealed a significant association between passenger flow (OR = 1.564, 1.288-1.898), per capita volume (OR = 0.856, 0.733-0.998), and per capita area (OR = 0.806, 0.678-0.956) with the IAB (p < 0.05) just in long distance bus stations. It is crucial to regulate passenger flow and per capita area in the waiting room of long distance bus stations to mitigate the spread of airborne culturable bacteria during infectious disease epidemics.
Collapse
Affiliation(s)
- Li Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hang Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chong Meng
- China architecture design and research group, Beijing, China
| | - Lin Fan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hang Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xu Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tanxi Ge
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liqin Su
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoyuan Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xianliang Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
2
|
Cárdenas-Calle M, Patiño L, Pernia B, Erazo R, Muñoz C, Valencia-Avellan M, Lozada M, Regato-Arrata M, Barrera M, Aquino S, Fuentes S, Duque J, Velázquez-Araque L, Carpio B, Méndez-Roman C, Calle C, Cárdenas G, Guizado-Herrera D, Tello CL, Bravo-Basantes V, Francis J, Uyaguari M. Detection of thermotolerant coliforms and SARS-CoV-2 RNA in sewage and recreational waters in the Ecuadorian coast: A call for improving water quality regulation. PLoS One 2024; 19:e0302000. [PMID: 38709720 PMCID: PMC11073733 DOI: 10.1371/journal.pone.0302000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Wastewater surveillance represents an alternative approach to regulating contamination and the early detection of infectious agents and outbreaks of diseases of public health importance. This study evaluated domestic wastewater effects on recreational waters in estuarine and seawater bodies in Guayas and Santa Elena provinces in Ecuador, South America. Fecal indicator bacteria (thermotolerant coliforms) served as key indicators for evaluation. Physical, chemical, and microbiological quality markers following the Ecuadorian environmental quality standard and the discharge of effluents to the water resource were analyzed. Samples were collected from 44 coastal sites and 2 oxidation lagoons during the dry and rainy seasons of 2020 and 2021, respectively. SARS-CoV-2 RNA was detected in samples with higher E. coli concentrations using reverse transcription quantitative PCR to detect the genes N and ORF1ab. All samples analyzed for SARS-CoV-2 showed Ct ˂ 40 for at least one gene. Four samples showed at least 20 genome copies of gene N per reaction. These were at an artisanal fishing port, an estuarine area (Palmar), a recreational bay, and an oxidation lagoon. A moderate correlation was found between SARS-CoV-2 RNA, thermotolerant coliform and E. coli (p-value ≤ 0.0037), and a strong and positive correlation between thermotolerant coliform and E. coli. (p-value ≤ 0.00001), highlighting the utility of these established parameters as a proxy of the virus. Significant differences were found in the concentrations of thermotolerant coliforms between seasons (p-value = 0.016) and sites (p-value = 0.005). The highest levels of coliforms were found in the dry season (63000 MPN/100 mL) in Anconcito and during the rainy season (14000 MPN/100 mL) at Esterillo in Playas County. It is recommended that the decentralized autonomous governments of the surveyed provinces in Ecuador implement urgent corrective actions and establish medium-term mechanisms to minimize a potential contamination route. Additional parameters must be included in the monitoring, such as Enterococcus and intestinal parasites, due to their public health implications. In the oxidation lagoons, maintenance actions must be carried out, including the dissolution of sediments, an increase in water retention times, and in situ treatment of the sludge, to improve the system's performance.
Collapse
Affiliation(s)
- Maritza Cárdenas-Calle
- Interinstitutional Network for the Study of Aquatic Ecosystems of Ecuador, Guayaquil, Guayas, Ecuador
- Ambiente Sociedad & Empresa Research Group, University of Guayaquil, Guayaquil, Guayas, Ecuador
- Faculty of Chemical Engineering, University of Guayaquil, Guayaquil, Guayas, Ecuador
- Fundación Bioelit, Guayaquil, Guayas, Ecuador
| | - Leandro Patiño
- Interinstitutional Network for the Study of Aquatic Ecosystems of Ecuador, Guayaquil, Guayas, Ecuador
- Ambiente Sociedad & Empresa Research Group, University of Guayaquil, Guayaquil, Guayas, Ecuador
- Fundación Bioelit, Guayaquil, Guayas, Ecuador
- National Institute for Public Health Research–INSPI- Dr. Leopoldo Izquieta Pérez, Technical Direction of Research, Development and Innovation, Guayaquil, Guayas, Ecuador
| | - Beatriz Pernia
- Interinstitutional Network for the Study of Aquatic Ecosystems of Ecuador, Guayaquil, Guayas, Ecuador
- Ambiente Sociedad & Empresa Research Group, University of Guayaquil, Guayaquil, Guayas, Ecuador
- Fundación Bioelit, Guayaquil, Guayas, Ecuador
- Faculty of Natural Sciences, Natural Resources Research Institute, University of Guayaquil, Guayaquil, Guayas, Ecuador
| | - Roberto Erazo
- Interinstitutional Network for the Study of Aquatic Ecosystems of Ecuador, Guayaquil, Guayas, Ecuador
- Ambiente Sociedad & Empresa Research Group, University of Guayaquil, Guayaquil, Guayas, Ecuador
- Fundación Bioelit, Guayaquil, Guayas, Ecuador
- Labcestta, Guayaquil, Guayas, Ecuador
| | - Carlos Muñoz
- Faculty of Chemical Engineering, University of Guayaquil, Guayaquil, Guayas, Ecuador
| | - Magaly Valencia-Avellan
- Interinstitutional Network for the Study of Aquatic Ecosystems of Ecuador, Guayaquil, Guayas, Ecuador
- Fundación Bioelit, Guayaquil, Guayas, Ecuador
- Facultad del Mar y Medio Ambiente, Universidad del Pacífico, Guayaquil, Guayas, Ecuador
| | - Mariana Lozada
- Fundación Bioelit, Guayaquil, Guayas, Ecuador
- Environmental Microbiology Laboratory, Institute of Biology of Marine Organisms, CONICET, Puerto Madryn, Chubut, Argentina
| | - Mary Regato-Arrata
- National Institute for Public Health Research–INSPI- Dr. Leopoldo Izquieta Pérez, National Reference Center for Exanthematous, Gastroenteric and Vector-borne Viruses, Guayaquil, Guayas, Ecuador
| | - Miguel Barrera
- Ambiente Sociedad & Empresa Research Group, University of Guayaquil, Guayaquil, Guayas, Ecuador
- Faculty of Chemical Engineering, University of Guayaquil, Guayaquil, Guayas, Ecuador
| | - Segundo Aquino
- Faculty of Chemical Engineering, University of Guayaquil, Guayaquil, Guayas, Ecuador
| | - Stefania Fuentes
- Ambiente Sociedad & Empresa Research Group, University of Guayaquil, Guayaquil, Guayas, Ecuador
- Faculty of Chemical Engineering, University of Guayaquil, Guayaquil, Guayas, Ecuador
| | - Javier Duque
- Interinstitutional Network for the Study of Aquatic Ecosystems of Ecuador, Guayaquil, Guayas, Ecuador
- Ambiente Sociedad & Empresa Research Group, University of Guayaquil, Guayaquil, Guayas, Ecuador
- Faculty of Chemical Engineering, University of Guayaquil, Guayaquil, Guayas, Ecuador
- Fundación Bioelit, Guayaquil, Guayas, Ecuador
| | - Luis Velázquez-Araque
- Ambiente Sociedad & Empresa Research Group, University of Guayaquil, Guayaquil, Guayas, Ecuador
- Faculty of Chemical Engineering, University of Guayaquil, Guayaquil, Guayas, Ecuador
| | - Bertha Carpio
- Dirección del Medio Ambiente, Gobierno Provincial de Santa Elena, Santa Elena, Ecuador
| | - Carlos Méndez-Roman
- Área Nacional de Recreación Playas Villamil, Ministerio de Ambiente Agua y Transición Ecológica, Playas, Ecuador
| | - Carlos Calle
- Ambiente Sociedad & Empresa Research Group, University of Guayaquil, Guayaquil, Guayas, Ecuador
- Fundación Bioelit, Guayaquil, Guayas, Ecuador
| | - Guillermo Cárdenas
- Ambiente Sociedad & Empresa Research Group, University of Guayaquil, Guayaquil, Guayas, Ecuador
- Fundación Bioelit, Guayaquil, Guayas, Ecuador
| | - David Guizado-Herrera
- Faculty of Chemical Engineering, University of Guayaquil, Guayaquil, Guayas, Ecuador
- National Institute for Public Health Research–INSPI- Dr. Leopoldo Izquieta Pérez, Technical Direction of Research, Development and Innovation, Guayaquil, Guayas, Ecuador
| | - Clara Lucía Tello
- Fundación Bioelit, Guayaquil, Guayas, Ecuador
- National Institute for Public Health Research–INSPI- Dr. Leopoldo Izquieta Pérez, Technical Direction of Research, Development and Innovation, Guayaquil, Guayas, Ecuador
| | | | - Jhannelle Francis
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Miguel Uyaguari
- Ambiente Sociedad & Empresa Research Group, University of Guayaquil, Guayaquil, Guayas, Ecuador
- Fundación Bioelit, Guayaquil, Guayas, Ecuador
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Mousavi Aghdam M, Crowley Q. Application of GIS and spatiotemporal analyses in viral infection modelling using multiple datasets - A case study on the SARS-CoV-2 epidemic. Semergen 2024; 50:102159. [PMID: 38157755 DOI: 10.1016/j.semerg.2023.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/19/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION/OBJECTIVE Viral and infectious diseases such as COVID-19 continue to pose a significant public health threat. In order to create an early warning system for new pandemics or emerging versions of the virus, it is imperative to study its epidemiology. In this study, we created a geospatial model to predict the weekly contagion and lethality rates of COVID-19 in Ireland. METHODS More than forty parameters including atmospheric pollutants, metrological variables, sociodemographic factors, and lockdown phases were introduced as input variables to the model. The significant parameters in predicting the number of new cases and the death toll were identified. QGIS software was employed to process input data, and a principal component regression (PCR) model was developed using the statistical add-on XLSTAT. RESULTS AND CONCLUSIONS The developed models were able to predict more than half of the variations in contagion and lethality rates. This indicates that the proposed model can serve to help prediction systems for the identification of future high-risk conditions. Nevertheless, there are additional parameters that could be included in future models, such as the number of deaths in care homes, the percentage of contagion and mortality among health workers, and the degree of compliance with social distancing.
Collapse
Affiliation(s)
- M Mousavi Aghdam
- Department of Geology, School of Natural Sciences, Trinity College Dublin, Ireland
| | - Q Crowley
- Department of Geology, School of Natural Sciences, Trinity College Dublin, Ireland.
| |
Collapse
|
4
|
Cheng R, Xia JC, Shen LJ, Shen ZP, Shi L, Zheng X, Zheng JZ. Effect of humic acid on visible light photocatalytic inactivation of bacteriophage f2 with electrospinning Cu-TiO 2 nanofibers: insight into the mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30212-30227. [PMID: 38602633 DOI: 10.1007/s11356-024-33119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
Photocatalytic disinfection is a promising technology with low cost and high efficiency. However, most of the current studies on photocatalytic disinfection ignore the widespread presence of natural organic matter (NOM) in water bodies, so the incomplete conclusions obtained may not be applicable. Herein, this paper systematically studied the influence of humic acid (HA), one of the most important components of NOM, on the photocatalytic inactivation of bacteriophage f2 with electrospinning Cu-TiO2 nanofibers. We found that with the addition of HA, the light transmittance of the solution at 550 nm decreased from 94 to 60%, and the band gap of the photocatalyst was increased from 2.96 to 3.05 eV. Compared with reacting without HA, the degradation amount of RNA of f2 decreased by 88.7% after HA was added, and the RNA concentration increased from 1.95 to 4.38 ng·μL-1 after the reaction. Hence, we propose mechanisms of the effect of HA on photocatalytic disinfection: photo-shielding, passivation of photocatalysts, quenching of free radicals, and virus protection. Photo-shielding and photocatalyst passivation lead to the decrease of photocatalyst activity, and the reactive oxygen species (ROSs) (·OH, ·O2-, 1O2, H2O2) are further trapped by HA. The HA in water also can protect the shape of phage f2 and reduce the leakage of protein and the destruction of ribonucleic acid (RNA). This work provides an insight into the mechanisms for the influence of HA in photocatalytic disinfection process and a theoretical basis for its practical application.
Collapse
Affiliation(s)
- Rong Cheng
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Jin-Cheng Xia
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Liang-Jie Shen
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
- Shougang Environment Industry Co., Ltd, Beijing, 100041, China
| | - Zhi-Peng Shen
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Lei Shi
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Xiang Zheng
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Jian-Zhong Zheng
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
5
|
Wang W, Srivastava S, Garg A, Xiao C, Hawks S, Pan J, Duggal N, Isaacman-VanWertz G, Zhou W, Marr LC, Vikesland PJ. Digital Surface-Enhanced Raman Spectroscopy-Lateral Flow Test Dipstick: Ultrasensitive, Rapid Virus Quantification in Environmental Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4926-4936. [PMID: 38452107 PMCID: PMC10956432 DOI: 10.1021/acs.est.3c10311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
This study introduces a novel surface-enhanced Raman spectroscopy (SERS)-based lateral flow test (LFT) dipstick that integrates digital analysis for highly sensitive and rapid viral quantification. The SERS-LFT dipsticks, incorporating gold-silver core-shell nanoparticle probes, enable pixel-based digital analysis of large-area SERS scans. Such an approach enables ultralow-level detection of viruses that readily distinguishes positive signals from background noise at the pixel level. The developed digital SERS-LFTs demonstrate limits of detection (LODs) of 180 fg for SARS-CoV-2 spike protein, 120 fg for nucleocapsid protein, and 7 plaque forming units for intact virus, all within <30 min. Importantly, digital SERS-LFT methods maintain their robustness and their LODs in the presence of indoor dust, thus underscoring their potential for accurate and reliable virus diagnosis and quantification in real-world environmental settings.
Collapse
Affiliation(s)
- Wei Wang
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia
Tech Institute of Critical Technology and Applied Science (ICTAS)
Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States
| | - Sonali Srivastava
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia
Tech Institute of Critical Technology and Applied Science (ICTAS)
Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States
| | - Aditya Garg
- Department
of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chuan Xiao
- Department
of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Seth Hawks
- Department
of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jin Pan
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nisha Duggal
- Department
of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Gabriel Isaacman-VanWertz
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Wei Zhou
- Department
of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Linsey C. Marr
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia
Tech Institute of Critical Technology and Applied Science (ICTAS)
Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States
| | - Peter J. Vikesland
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia
Tech Institute of Critical Technology and Applied Science (ICTAS)
Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States
| |
Collapse
|
6
|
Ali S, Cella E, Johnston C, Rojas AC, Brown AN, Deichen M, Azarian T. Environmental surface monitoring as a noninvasive method for SARS-CoV-2 surveillance in community settings: Lessons from a university campus study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169456. [PMID: 38123097 DOI: 10.1016/j.scitotenv.2023.169456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Environmental testing of high-touch objects is a potential noninvasive approach for monitoring population-level trends of SARS-CoV-2 and other respiratory viruses within a defined setting. We aimed to determine the association between SARS-CoV-2 contamination on high-touch environmental surfaces, community level case incidence, and university student health data. Environmental swabs were collected from January 2022 to November 2022 from high-touch objects and surfaces from five locations on a large university campus in Florida, USA. RT-qPCR was used to detect and quantify viral RNA, and a subset of positive samples was analyzed by viral genome sequencing to identify circulating lineages. During the study period, we detected SARS-CoV-2 viral RNA on 90.7 % of 162 tested samples. Levels of environmental viral RNA correlated with trends in community-level activity and case reports from the student health center. A significant positive correlation was observed between the estimated viral gene copy number in environmental samples and the weekly confirmed cases at the university. Viral sequencing data from environmental samples identified lineages concurrently circulating in the local community and state based on genomic surveillance data. Further, we detected emerging variants in environmental samples prior to their identification by clinical genomic surveillance. Our results demonstrate the utility of viral monitoring on high-touch environmental surfaces for SARS-CoV-2 surveillance at a community level. In communities with delayed or limited testing facilities, immediate environmental surface testing may considerably inform epidemic dynamics.
Collapse
Affiliation(s)
- Sobur Ali
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Catherine Johnston
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Ana C Rojas
- Institute for Therapeutic Innovation, Department of Medicine, College of Medicine, University of Florida, Orlando, FL 32827, USA
| | - Ashley N Brown
- Institute for Therapeutic Innovation, Department of Medicine, College of Medicine, University of Florida, Orlando, FL 32827, USA
| | - Michael Deichen
- Student Health Services, University of Central Florida, Orlando, FL, USA
| | - Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
7
|
Rybarczyk Y, Zalakeviciute R, Ortiz-Prado E. Causal effect of air pollution and meteorology on the COVID-19 pandemic: A convergent cross mapping approach. Heliyon 2024; 10:e25134. [PMID: 38322928 PMCID: PMC10844283 DOI: 10.1016/j.heliyon.2024.e25134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Environmental factors have been suspected to influence the propagation and lethality of COVID-19 in the global population. However, most of the studies have been limited to correlation analyses and did not use specific methods to address the dynamic of the causal relationship between the virus and its external drivers. This work focuses on inferring and understanding the causal effect of critical air pollutants and meteorological parameters on COVID-19 by using an Empirical Dynamic Modeling approach called Convergent Cross Mapping. This technique allowed us to identify the time-delayed causation and the sign of interactions. Considering its remarkable urban environment and mortality rate during the pandemic, Quito, Ecuador, was chosen as a case study. Our results show that both urban air pollution and meteorology have a causal impact on COVID-19. Even if the strength and the sign of the causality vary over time, a general trend can be drawn. NO2, SO2, CO and PM2.5 have a positive causation for COVID-19 infections (ρ > 0.35 and ∂ > 9.1). Contrary to current knowledge, this study shows a rapid effect of pollution on COVID-19 cases (1 < lag days <24) and a negative impact of O3 on COVID-19-related deaths (ρ = 0.53 and ∂ = -0.3). Regarding the meteorology, temperature (ρ = 0.24 and ∂ = -0.4) and wind speed (ρ = 0.34 and ∂ = -3.9) tend to mitigate the epidemiological consequences of SARS-CoV-2, whereas relative humidity seems to increase the excess deaths (ρ = 0.4 and ∂ = 0.05). A causal network is proposed to synthesize the interactions between the studied variables and to provide a simple model to support the management of coronavirus outbreaks.
Collapse
Affiliation(s)
- Yves Rybarczyk
- School of Information and Engineering, Dalarna University, Falun, Sweden
| | | | | |
Collapse
|
8
|
Martín-Quintero I, Cervera-Sabater A, Cortés-Bretón Brinkmann J, Aragoneses-Lamas JM, Flores-Fraile J, Santos-Marino J. Reduction by air purifier of particulate concentration during orthodontic procedures: a pilot study. BMC Oral Health 2024; 24:199. [PMID: 38326811 PMCID: PMC10848394 DOI: 10.1186/s12903-024-03956-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND The SARS-CoV-2 pandemic has raised awareness of the importance of air quality. This pilot study arose from the need to reduce the concentration of particulate matter in the dental office during orthodontic procedures. To evaluate the efficacy of using an air purifier during orthodontic care in the dental office to reduce the concentration of ambient particulate matter. RESULTS Significant reductions in particle numbers were obtained for all particle sizes except the largest particles counted (10 μm) through use of the air filter. A marked association between higher humidity levels and higher particle counts was also observed. CONCLUSIONS Using an air purifier during dental care achieves a significant reduction in the concentration of ambient particles in the dental office. There is a correlation between higher relative humidity and higher particle concentration. The probability of obtaining a maximum particulate concentration level of 0.3 and 0.5 μm is 1000 times lower when using an air purifier.
Collapse
Affiliation(s)
| | - Alberto Cervera-Sabater
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Madrid, 28049, Spain
| | - Jorge Cortés-Bretón Brinkmann
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Madrid, 28049, Spain.
| | | | - Javier Flores-Fraile
- Department of Surgery, Faculty of Medicine, University of Salamanca, Salamanca, 37007, Spain
| | - Juan Santos-Marino
- Department of Surgery, Faculty of Medicine, University of Salamanca, Salamanca, 37007, Spain
| |
Collapse
|
9
|
Braggion A, Dugerdil A, Wilson O, Hovagemyan F, Flahault A. Indoor Air Quality and COVID-19: A Scoping Review. Public Health Rev 2024; 44:1605803. [PMID: 38273885 PMCID: PMC10810127 DOI: 10.3389/phrs.2023.1605803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024] Open
Abstract
Objectives: The COVID-19 pandemic has been a major public health concern for the past 3 years. Scientific evidence on the relationship between SARS-CoV-2 infection and indoor air quality still needs to be demonstrated. This scoping review aims to study the association between air quality indoors and COVID-19. Methods: A scoping review analyzing the association between indoor air quality and epidemiological outcomes was conducted. Papers published between 1 January 2020 and 31 October 2022 were included. Hospital settings were excluded from the study. Results: Eight relevant articles met the inclusion criteria. Indoor settings included workplaces, schools, restaurants, and public transport. Types of ventilation used to improve indoor air quality were dilution methods (opening windows) and mechanical systems with or without filtration or purifier. CO2 sensors were employed in one study. All the studies showed a positive association between indoor air quality and its improvement and epidemiological indicators. Conclusion: The findings of this scoping review indicate that indoor air quality, which can be improved with ventilation methods, may reduce the risk of developing COVID-19. Ventilation could thus be viewed as a possible effective mitigating method.
Collapse
Affiliation(s)
- Axelle Braggion
- Institut de Santé Globale, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| | - Adeline Dugerdil
- Institut de Santé Globale, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| | - Olwen Wilson
- Institut de Santé Globale, Faculté de Médecine, Université de Genève, Geneva, Switzerland
- School of Public Policy, London School of Economics, London, United Kingdom
| | - Francesca Hovagemyan
- Institut de Santé Globale, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| | - Antoine Flahault
- Institut de Santé Globale, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| |
Collapse
|
10
|
Ghosh A, Sanyal A, Mitra P, Dey T, Acharjee A, Pattnaik R, Nesa L. Transmission mechanism and clinical manifestations of SARS-CoV-2. DIAGNOSIS AND ANALYSIS OF COVID-19 USING ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING-BASED TECHNIQUES 2024:65-96. [DOI: 10.1016/b978-0-323-95374-0.00006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Houweling L, Maitland-Van der Zee AH, Holtjer JCS, Bazdar S, Vermeulen RCH, Downward GS, Bloemsma LD. The effect of the urban exposome on COVID-19 health outcomes: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 240:117351. [PMID: 37852458 DOI: 10.1016/j.envres.2023.117351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The global severity of SARS-CoV-2 illness has been associated with various urban characteristics, including exposure to ambient air pollutants. This systematic review and meta-analysis aims to synthesize findings from ecological and non-ecological studies to investigate the impact of multiple urban-related features on a variety of COVID-19 health outcomes. METHODS On December 5, 2022, PubMed was searched to identify all types of observational studies that examined one or more urban exposome characteristics in relation to various COVID-19 health outcomes such as infection severity, the need for hospitalization, ICU admission, COVID pneumonia, and mortality. RESULTS A total of 38 non-ecological and 241 ecological studies were included in this review. Non-ecological studies highlighted the significant effects of population density, urbanization, and exposure to ambient air pollutants, particularly PM2.5. The meta-analyses revealed that a 1 μg/m3 increase in PM2.5 was associated with a higher likelihood of COVID-19 hospitalization (pooled OR 1.08 (95% CI:1.02-1.14)) and death (pooled OR 1.06 (95% CI:1.03-1.09)). Ecological studies, in addition to confirming the findings of non-ecological studies, also indicated that higher exposure to nitrogen dioxide (NO2), ozone (O3), sulphur dioxide (SO2), and carbon monoxide (CO), as well as lower ambient temperature, humidity, ultraviolet (UV) radiation, and less green and blue space exposure, were associated with increased COVID-19 morbidity and mortality. CONCLUSION This systematic review has identified several key vulnerability features related to urban areas in the context of the recent COVID-19 pandemic. The findings underscore the importance of improving policies related to urban exposures and implementing measures to protect individuals from these harmful environmental stressors.
Collapse
Affiliation(s)
- Laura Houweling
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Dept. of Pulmonary Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Anke-Hilse Maitland-Van der Zee
- Dept. of Pulmonary Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Public Health, Amsterdam, the Netherlands
| | - Judith C S Holtjer
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Somayeh Bazdar
- Dept. of Pulmonary Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Public Health, Amsterdam, the Netherlands
| | - Roel C H Vermeulen
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - George S Downward
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lizan D Bloemsma
- Dept. of Pulmonary Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Public Health, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Romeo A, Pellegrini R, Gualtieri M, Benassi B, Santoro M, Iacovelli F, Stracquadanio M, Falconi M, Marino C, Zanini G, Arcangeli C. Experimental and in silico evaluations of the possible molecular interaction between airborne particulate matter and SARS-CoV-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165059. [PMID: 37353034 PMCID: PMC10284444 DOI: 10.1016/j.scitotenv.2023.165059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
During the early stage of the COVID-19 pandemic (winter 2020), the northern part of Italy has been significantly affected by viral infection compared to the rest of the country leading the scientific community to hypothesize that airborne particulate matter (PM) could act as a carrier for the SARS-CoV-2. To address this controversial issue, we first verified and demonstrated the presence of SARS-CoV-2 RNA genome on PM2.5 samples, collected in the city of Bologna (Northern Italy) in winter 2021. Then, we employed classical molecular dynamics (MD) simulations to investigate the possible recognition mechanism(s) between a newly modelled PM2.5 fragment and the SARS-CoV-2 Spike protein. The potential molecular interaction highlighted by MD simulations suggests that the glycans covering the upper Spike protein regions would mediate the direct contact with the PM2.5 carbon core surface, while a cloud of organic and inorganic PM2.5 components surround the glycoprotein with a network of non-bonded interactions resulting in up to 4769 total contacts. Moreover, a binding free energy of -207.2 ± 3.9 kcal/mol was calculated for the PM-Spike interface through the MM/GBSA method, and structural analyses also suggested that PM attachment does not alter the protein conformational dynamics. Although the association between the PM and SARS-CoV-2 appears plausible, this simulation does not assess whether these established interactions are sufficiently stable to carry the virus in the atmosphere, or whether the virion retains its infectiousness after the transport. While these key aspects should be verified by further experimental analyses, for the first time, this pioneering study gains insights into the molecular interactions between PM and SARS-CoV-2 Spike protein and will support further research aiming at clarifying the possible relationship between PM abundance and the airborne diffusion of viruses.
Collapse
Affiliation(s)
- Alice Romeo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Roberto Pellegrini
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy
| | - Maurizio Gualtieri
- Division of Models and Technologies for Risks Reduction, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 40129 Bologna, Italy; Department of Earth and Environmental Sciences, Piazza della Scienza 1, University of Milano-Bicocca, Milano
| | - Barbara Benassi
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy
| | - Massimo Santoro
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy
| | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Milena Stracquadanio
- Division of Models and Technologies for Risks Reduction, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 40129 Bologna, Italy
| | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Carmela Marino
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy
| | - Gabriele Zanini
- Division of Models and Technologies for Risks Reduction, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 40129 Bologna, Italy
| | - Caterina Arcangeli
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy.
| |
Collapse
|
13
|
Liobikienė G, Matiiuk Y, Krikštolaitis R. The concern about main crises such as the Covid-19 pandemic, the war in Ukraine, and climate change's impact on energy-saving behavior. ENERGY POLICY 2023:113678. [PMID: 37366494 PMCID: PMC10288316 DOI: 10.1016/j.enpol.2023.113678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
The number of crises experienced around the world forces people to reconsider and reassess various aspects of their lives. The energy crisis caused by the war in Ukraine and uncontrolled climate change revealed the importance of energy-saving behavior. Thus, the aim of this paper is to analyze the concerns about current crises such as the Covid-19 pandemic, the war in Ukraine, and climate change's impact on energy-saving behavior and changes in environmental concern. Referring to the survey conducted in Lithuania in 2022, where 1000 respondents participated, the results revealed that the war in Ukraine was the most concerning problem. The level of climate change concern was slightly lower. Meanwhile, the Covid-19 pandemic was the least important problem in Lithuania in 2022. Furthermore, respondents stated that the Covid-19 pandemic contributed to the changes in environmental concern and energy-saving actions more than the war in Ukraine did. Meanwhile, the Generalized Linear Model results revealed that only the war in Ukraine positively and significantly influenced energy-saving behavior. The Covid-19 pandemic concern negatively affected energy-saving behavior, while the climate change concern factor affected it indirectly, as the interaction of attitudes toward energy consumption. Thus, this study revealed the main aspect of and how to encourage energy-saving behavior in the context of the main current crises.
Collapse
Affiliation(s)
- Genovaitė Liobikienė
- Department of Environmental Sciences, Vytautas Magnus University, Vileikos st. 8, LT-44404, Kaunas, Lithuania
| | - Yuliia Matiiuk
- Department of Environmental Sciences, Vytautas Magnus University, Vileikos st. 8, LT-44404, Kaunas, Lithuania
| | - Ričardas Krikštolaitis
- Department of Mathematics and Statistics, Vytautas Magnus University, Universiteto str. 10, Akademija, LT, 53361, Kaunas Dist, Lithuania
- Lithuanian Energy Institute, Breslaujos str. 3, LT-44403, Kaunas, Lithuania
| |
Collapse
|
14
|
Pasalari H, Ataei-Pirkooh A, Gholami M, Azhar IR, Yan C, Kachooei A, Farzadkia M. Is SARS-CoV-2 a concern in the largest wastewater treatment plant in middle east? Heliyon 2023; 9:e16607. [PMID: 37251481 PMCID: PMC10207840 DOI: 10.1016/j.heliyon.2023.e16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
The surveillance of wastewater treatment plant (WWTP) as the end point of SARS-CoV-2 shed from infected people arise a speculation on transmission of this virus of concern from WWTP in epidemic period. To this end, the present study was developed to comprehensively investigate the presence of SARS-CoV-2 in raw wastewater, effluent and air inhaled by workers and employee in the largest WWTP in Tehran for one-year study period. The monthly raw wastewater, effluent and air samples of WWTP were taken and the SARS-CoV-2 RNA were detected using QIAamp Viral RNA Mini Kit and real-time RT-PCR assay. According to results, the speculation on the presence of SARS-CoV-2 was proved in WWTP by detection this virus in raw wastewater. However, no SARS-CoV-2 was found in both effluent and air of WWTP; this presents the low or no infection for workers and employee in WWTP. Furthermore, further research are needed for detection the SARS-CoV-2 in solid and biomass produced from WWTP processes due to flaks formation, followed by sedimentation in order to better understand the wastewater-based epidemiology and preventive measurement for other epidemics probably encountered in the future.
Collapse
Affiliation(s)
- Hasan Pasalari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Angila Ataei-Pirkooh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Rezaei Azhar
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Atefeh Kachooei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Deb Nath N, Khan MM, Schmidt M, Njau G, Odoi A. Geographic disparities and temporal changes of COVID-19 incidence risks in North Dakota, United States. BMC Public Health 2023; 23:720. [PMID: 37081453 PMCID: PMC10116449 DOI: 10.1186/s12889-023-15571-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND COVID-19 is an important public health concern due to its high morbidity, mortality and socioeconomic impact. Its burden varies by geographic location affecting some communities more than others. Identifying these disparities is important for guiding health planning and service provision. Therefore, this study investigated geographical disparities and temporal changes of the percentage of positive COVID-19 tests and COVID-19 incidence risk in North Dakota. METHODS COVID-19 retrospective data on total number of tests and confirmed cases reported in North Dakota from March 2020 to September 2021 were obtained from the North Dakota COVID-19 Dashboard and Department of Health, respectively. Monthly incidence risks of the disease were calculated and reported as number of cases per 100,000 persons. To adjust for geographic autocorrelation and the small number problem, Spatial Empirical Bayesian (SEB) smoothing was performed using queen spatial weights. Identification of high-risk geographic clusters of percentages of positive tests and COVID-19 incidence risks were accomplished using Tango's flexible spatial scan statistic. ArcGIS was used to display and visiualize the geographic distribution of percentages of positive tests, COVID-19 incidence risks, and high-risk clusters. RESULTS County-level percentages of positive tests and SEB incidence risks varied by geographic location ranging from 0.11% to 13.67% and 122 to 16,443 cases per 100,000 persons, respectively. Clusters of high percentages of positive tests were consistently detected in the western part of the state. High incidence risks were identified in the central and south-western parts of the state, where significant high-risk spatial clusters were reported. Additionally, two peaks (August 2020-December 2020 and August 2021-September 2021) and two non-peak periods of COVID-19 incidence risk (March 2020-July 2020 and January 2021-July 2021) were observed. CONCLUSION Geographic disparities in COVID incidence risks exist in North Dakota with high-risk clusters being identified in the rural central and southwest parts of the state. These findings are useful for guiding intervention strategies by identifying high risk communities so that resources for disease control can be better allocated to communities in need based on empirical evidence. Future studies will investigate predictors of the identified disparities so as to guide planning, disease control and health policy.
Collapse
Affiliation(s)
- Nirmalendu Deb Nath
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Md Marufuzzaman Khan
- Department of Public Health, College of Education, Health, and Human Sciences, University of Tennessee, Knoxville, TN, USA
| | - Matthew Schmidt
- North Dakota Department of Health and Human Services, Special Projects and Health Analytics, Bismarck, ND, USA
| | - Grace Njau
- North Dakota Department of Health and Human Services, Special Projects and Health Analytics, Bismarck, ND, USA
| | - Agricola Odoi
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
16
|
Amin N, Haque R, Rahman MZ, Rahman MZ, Mahmud ZH, Hasan R, Islam MT, Sarker P, Sarker S, Adnan SD, Akter N, Johnston D, Rahman M, Liu P, Wang Y, Shirin T, Rahman M, Bhattacharya P. Dependency of sanitation infrastructure on the discharge of faecal coliform and SARS-CoV-2 viral RNA in wastewater from COVID and non-COVID hospitals in Dhaka, Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161424. [PMID: 36623655 PMCID: PMC9822545 DOI: 10.1016/j.scitotenv.2023.161424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 05/25/2023]
Abstract
The detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA in wastewater can be used as an indicator of the presence of SARS-CoV-2 infection in specific catchment areas. We conducted a hospital-based study to explore wastewater management in healthcare facilities and analyzed SARS-CoV-2 RNA in the hospital wastewater in Dhaka city during the Coronavirus disease (COVID-19) outbreak between September 2020-January 2021. We selected three COVID-hospitals, two non-COVID-hospitals, and one non-COVID-hospital with COVID wards, conducted spot-checks of the sanitation systems (i.e., toilets, drainage, and septic-tank), and collected 90 untreated wastewater effluent samples (68 from COVID and 22 from non-COVID hospitals). E. coli was detected using a membrane filtration technique and reported as colony forming unit (CFU). SARS-CoV-2 RNA was detected using the iTaq Universal Probes One-Step kit for RT-qPCR amplification of the SARS-CoV-2 ORF1ab and N gene targets and quantified for SARS-CoV-2 genome equivalent copies (GEC) per mL of sample. None of the six hospitals had a primary wastewater treatment facility; two COVID hospitals had functional septic tanks, and the rest of the hospitals had either broken onsite systems or no containment of wastewater. Overall, 100 % of wastewater samples were positive with a high concentration of E. coli (mean = 7.0 log10 CFU/100 mL). Overall, 67 % (60/90) samples were positive for SARS-CoV-2. The highest SARS-CoV-2 concentrations (median: 141 GEC/mL; range: 13-18,214) were detected in wastewater from COVID-hospitals, and in non-COVID-hospitals, the median SARS-CoV-2 concentration was 108 GEC/mL (range: 30-1829). Our results indicate that high concentrations of E. coli and SARS-CoV-2 were discharged through the hospital wastewater (both COVID and non-COVID) without treatment into the ambient water bodies. Although there is no evidence for transmission of SARS-CoV-2 via wastewater, this study highlights the significant risk posed by wastewater from health care facilities in Dhaka for the many other diseases that are spread via faecal oral route. Hospitals in low-income settings could function as sentinel sites to monitor outbreaks through wastewater-based epidemiological surveillance systems. Hospitals should aim to adopt the appropriate wastewater treatment technologies to reduce the discharge of pathogens into the environment and mitigate environmental exposures.
Collapse
Affiliation(s)
- Nuhu Amin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; Institute for Sustainable Futures, University of Technology Sydney, 235 Jones St, Ultimo, NSW, 2007, Australia.
| | - Rehnuma Haque
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; School of Medicine, Stanford University, Stanford, CA, USA
| | - Md Ziaur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammed Ziaur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Zahid Hayat Mahmud
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rezaul Hasan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Tahmidul Islam
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE 114 28 Stockholm, Sweden; WaterAid, Bangladesh
| | - Protim Sarker
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Supriya Sarker
- Directorate General of Health Services (DGHS), Bangladesh
| | | | - Nargis Akter
- Water, Sanitation & Hygiene (WASH) section, UNICEF, Bangladesh
| | - Dara Johnston
- Water, Sanitation & Hygiene (WASH) section, UNICEF, Bangladesh
| | - Mahbubur Rahman
- Institute of Epidemiology, Disease Control and Research (IEDCR), Bangladesh
| | - Pengbo Liu
- Center for Global Safe Water, Sanitation, and Hygiene, Emory University, Atlanta, GA, USA
| | - Yuke Wang
- Center for Global Safe Water, Sanitation, and Hygiene, Emory University, Atlanta, GA, USA
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Bangladesh
| | - Mahbubur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE 114 28 Stockholm, Sweden
| |
Collapse
|
17
|
Zhang X, Chen Y, Pan Y, Ma X, Hu G, Li S, Deng Y, Chen Z, Chen H, Wu Y, Jiang Z, Li Z. Research progress of severe acute respiratory syndrome coronavirus 2 on aerosol collection and detection. CHINESE CHEM LETT 2023; 35:108378. [PMID: 37362323 PMCID: PMC10039702 DOI: 10.1016/j.cclet.2023.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 06/28/2023]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019 has negatively affected people's lives and productivity. Because the mode of transmission of SARS-CoV-2 is of great concern, this review discusses the sources of virus aerosols and possible transmission routes. First, we discuss virus aerosol collection methods, including natural sedimentation, solid impact, liquid impact, centrifugal, cyclone and electrostatic adsorption methods. Then, we review common virus aerosol detection methods, including virus culture, metabolic detection, nucleic acid-based detection and immunology-based detection methods. Finally, possible solutions for the detection of SARS-CoV-2 aerosols are introduced. Point-of-care testing has long been a focus of attention. In the near future, the development of an instrument that integrates sampling and output results will enable the real-time, automatic monitoring of patients.
Collapse
Affiliation(s)
- Xinyu Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yuting Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yueying Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xinye Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Gui Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yanqi Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Shenzhen Lemniscare Med Technol Co. Ltd., Shenzhen, 518000, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Zhiyang Li
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
18
|
Han J, Yin J, Wu X, Wang D, Li C. Environment and COVID-19 incidence: A critical review. J Environ Sci (China) 2023; 124:933-951. [PMID: 36182196 PMCID: PMC8858699 DOI: 10.1016/j.jes.2022.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 05/19/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is an unprecedented worldwide health crisis. Many previous research studies have found and investigated its links with one or some natural or human environmental factors. However, a review on the relationship between COVID-19 incidence and both the natural and human environment is still lacking. This review summarizes the inter-correlation between COVID-19 incidence and environmental factors. Based on keyword searching, we reviewed 100 relevant peer-reviewed articles and other research literature published since January 2020. This review is focused on three main findings. One, we found that individual environmental factors have impacts on COVID-19 incidence, but with spatial heterogeneity and uncertainty. Two, environmental factors exert interactive effects on COVID-19 incidence. In particular, the interactions of natural factors can affect COVID-19 transmission in micro- and macro- ways by impacting SARS-CoV-2 survival, as well as human mobility and behaviors. Three, the impact of COVID-19 incidence on the environment lies in the fact that COVID-19-induced lockdowns caused air quality improvement, wildlife shifts and socio-economic depression. The additional value of this review is that we recommend future research perspectives and adaptation strategies regarding the interactions of the environment and COVID-19. Future research should be extended to cover both the effects of the environment on the COVID-19 pandemic and COVID-19-induced impacts on the environment. Future adaptation strategies should focus on sustainable environmental and public policy responses.
Collapse
Affiliation(s)
- Jiatong Han
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Jie Yin
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Xiaoxu Wu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China.
| | - Danyang Wang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Chenlu Li
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
19
|
D'Aoust PM, Tian X, Towhid ST, Xiao A, Mercier E, Hegazy N, Jia JJ, Wan S, Kabir MP, Fang W, Fuzzen M, Hasing M, Yang MI, Sun J, Plaza-Diaz J, Zhang Z, Cowan A, Eid W, Stephenson S, Servos MR, Wade MJ, MacKenzie AE, Peng H, Edwards EA, Pang XL, Alm EJ, Graber TE, Delatolla R. Wastewater to clinical case (WC) ratio of COVID-19 identifies insufficient clinical testing, onset of new variants of concern and population immunity in urban communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158547. [PMID: 36067855 PMCID: PMC9444156 DOI: 10.1016/j.scitotenv.2022.158547] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/10/2022] [Accepted: 09/01/2022] [Indexed: 05/14/2023]
Abstract
Clinical testing has been the cornerstone of public health monitoring and infection control efforts in communities throughout the COVID-19 pandemic. With the anticipated reduction of clinical testing as the disease moves into an endemic state, SARS-CoV-2 wastewater surveillance (WWS) will have greater value as an important diagnostic tool. An in-depth analysis and understanding of the metrics derived from WWS is required to interpret and utilize WWS-acquired data effectively (McClary-Gutierrez et al., 2021; O'Keeffe, 2021). In this study, the SARS-CoV-2 wastewater signal to clinical cases (WC) ratio was investigated across seven cities in Canada over periods ranging from 8 to 21 months. This work demonstrates that significant increases in the WC ratio occurred when clinical testing eligibility was modified to appointment-only testing, identifying a period of insufficient clinical testing (resulting in a reduction to testing access and a reduction in the number of daily tests) in these communities, despite increases in the wastewater signal. Furthermore, the WC ratio decreased significantly in 6 of the 7 studied locations, serving as a potential signal of the emergence of the Alpha variant of concern (VOC) in a relatively non-immunized community (40-60 % allelic proportion), while a more muted decrease in the WC ratio signaled the emergence of the Delta VOC in a relatively well-immunized community (40-60 % allelic proportion). Finally, a significant decrease in the WC ratio signaled the emergence of the Omicron VOC, likely because of the variant's greater effectiveness at evading immunity, leading to a significant number of new reported clinical cases, even when community immunity was high. The WC ratio, used as an additional monitoring metric, could complement clinical case counts and wastewater signals as individual metrics in its potential ability to identify important epidemiological occurrences, adding value to WWS as a diagnostic technology during the COVID-19 pandemic and likely for future pandemics.
Collapse
Affiliation(s)
- Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Xin Tian
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | | | - Amy Xiao
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Elisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Jian-Jun Jia
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Wanting Fang
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Meghan Fuzzen
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Maria Hasing
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Minqing Ivy Yang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - Julio Plaza-Diaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Zhihao Zhang
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Aaron Cowan
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Sean Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Matthew J Wade
- Data, Analytics and Surveillance Group, UK Health Security Agency, London, United Kingdom
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
20
|
Dutta H, Kaushik G, Dutta V. Wastewater-based epidemiology: a new frontier for tracking environmental persistence and community transmission of COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85688-85699. [PMID: 34762243 PMCID: PMC8581603 DOI: 10.1007/s11356-021-17419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/04/2021] [Indexed: 05/14/2023]
Abstract
Recent research in many parts of the world has pointed towards evidence of SARS-CoV-2 RNA in both treated and raw municipal wastewater discharged by communities. Therefore, concerns regarding it being a possible enteric virus are abundant. Past history of SARS-CoV-1 outbreaks and viral survival information helps in establishing information regarding possible viral infectivity and survival of SARS-CoV-2. The paper examines the existing strategies and techniques including the efficacy of laboratory-based RT-qPCR technique for tracking environmental persistence and community transmission of COVID-19. Analysis of studies targeting untreated and treated wastewater as source of samples is carried out. The analysis shows that untreated samples were mostly positive for SARS-CoV-2 RNA in the target studies. Infectivity estimation from viral load data was found to be about two orders of magnitude higher than actual case data in one of the studies. Additionally, relevant research on environmental survivability of SARS-CoV-2 and possible gaps are examined. Biosensors and excretion metabolite tracking in viral detection are also examined, which hold tremendous importance for future research. Wastewater-based epidemiology (WBE) shows incredible promise in the near future for tracking environmental persistence and community transmission of highly infectious diseases such as SARS-CoV-2. With limited research available on SARS-CoV-2 with regard to WBE, it is imperative that focus be established on the evidence-based targeted studies.
Collapse
Affiliation(s)
- Harsh Dutta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Delhi, India
| | - Geetanjali Kaushik
- Department of Civil Engineering, Hi-Tech Institute of Technology, Aurangabad, Maharashtra, India
| | - Venkatesh Dutta
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
| |
Collapse
|
21
|
Ghaffari HR, Farshidi H, Alipour V, Dindarloo K, Azad MH, Jamalidoust M, Madani A, Aghamolaei T, Hashemi Y, Fazlzadeh M, Fakhri Y. Detection of SARS-CoV-2 in the indoor air of intensive care unit (ICU) for severe COVID-19 patients and its surroundings: considering the role of environmental conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85612-85618. [PMID: 34482469 PMCID: PMC8418690 DOI: 10.1007/s11356-021-16010-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/13/2021] [Indexed: 04/15/2023]
Abstract
There is ambiguity about the airborne transmission of the SARS-CoV-2. While a distance of 6 feet is considered a safe physical distance, new findings show that the virus can be transmitted more than that distance and cause infection. In hospitals, this may cause the virus to be transmitted from the treatment wards of COVID-19 patients to adjacent wards and infect medical staff, non-COVID-19 patients, and patient companions. The aim of this study was to investigate the presence of coronavirus in the air of ICU and adjacent wards. The low volume sampler (LVS) with two separate inlets for PM2.5 and PM10 was applied to collect indoor air of intensive care unit (ICU) with confirmed COVID- 19 patients and its surroundings. The samples were collected on 0.3μ PTFE filter fitted to the holder. Sampling was done at flow rate of 16.7 l/min for 24 h. The SRAS-CoV-2 virus was isolated using a SinaPure™ Virus Extraction Kit (SINACLON, Iran). The presence of SARS-CoV-2 genome was assessed using a commercially available SARS-CoV-2 Test Kit (Pishtaz-Iran), according to the manufacturer's instructions using One Step plus Real-Time PCR system tool (Applied Biosystems, USA). A total of sixteen samples were taken, and the positive test rate for SRAS-CoV-2 was 12.5 % (2/16). All samples from surrounding (rest room and hallway) were negative, but two air samples from indoor of ICU (next to the patient bed and nursing station) were found to be positive. The results support the possibility of transmitting the SRAS-CoV-2 through the air at a greater distance than what is known as a safe physical distance. Therefore, in addition to maintaining a safe physical distance, other precautions including wearing a face mask, preventing air recirculation, and maximizing the use of natural ventilation should be considered, especially in crowded and enclosed environments.
Collapse
Affiliation(s)
- Hamid Reza Ghaffari
- Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Farshidi
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vali Alipour
- Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kavoos Dindarloo
- Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mehdi Hassani Azad
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Marzieh Jamalidoust
- Department of Virology, Clinical Microbiology Research Center, Namazi Hospital, Shiraz, Iran.
| | - Abdolhossein Madani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Teamour Aghamolaei
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Yaser Hashemi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Bandar Abbas, Iran
| | - Mehdi Fazlzadeh
- Department of Environmental Health Engineering, Faculty of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Yadolah Fakhri
- Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
22
|
Saxena P, Kumar A, Mahanta SSK, Sreekanth B, Patel DK, Kumari A, Khan AH, Kisku GC. Chemical characterization of PM 10 and PM 2.5 combusted firecracker particles during Diwali of Lucknow City, India: air-quality deterioration and health implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88269-88287. [PMID: 35831653 PMCID: PMC9281250 DOI: 10.1007/s11356-022-21906-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/04/2022] [Indexed: 04/15/2023]
Abstract
Urban air pollution is a growing menace leading to human discomfort, increased hospitalizations, morbidity, and mortality. This study deals with deteriorated air quality due to firecracker bursting during Diwali in Lucknow. Inhalable particulates and gaseous pollutants were monitored during Diwali 2020 using air samplers. Elements, ions, and surface morphology of particles were analyzed using ICP-MS, ion chromatograph, and SEM-EDX, respectively. PM10, PM2.5, SO2, and NO2 were 558, 352, 44, and 86 μg/m3 during Diwali night and 233, 101, 17, and 40 μg/m3 on pre-Diwali night while 241, 122, 24, and 43 μg/m3 on Diwali day. Concentrations surged for PM10: 139% and 132%, PM2.5: 249% and 189%, SO2: 159% and 83%, and NO2: 115% and 100% on Diwali night compared to pre-Diwali night and corresponding Diwali day, respectively. Al, K, Ba, and B showed dominance in PM10 whereas Zn, Al, Ba, and K in PM2.5 on Diwali night. The order of metal abundance in PM2.5 was Cd < Co < Ag < As < Cr < Ni < Cu < Bi < Pb < Mn < Sr < Fe < B < Zn < Al < Ba < K. Cations NH4+, K+, Mg2+, Ca2+, and anions F-, Cl-, NO3-, Br-, NO2-, SO4-2, PO43- showed a 2-8 fold increase on Diwali night relative to pre-Diwali night. Average metal concentrations varied by 2.2, 1.6, and 0.09 times on Diwali than pre-Diwali in residential, commercial, and industrial areas, respectively. PM10 concentration increased by 458% and 1140% while PM2.5, 487%, and 2247% than respective NAAQS and WHO standards. Tiny firecracker particles vary in toxicity as compared to vehicular emissions and have enhanced bioavailability leading to severe threat in terms of LRI, COPD, and atherosclerosis for city dwellers. It is imperative to recognize the present status of ambient air quality and implement regulatory strategies for emission reduction.
Collapse
Affiliation(s)
- Priya Saxena
- Environmental Monitoring Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, UP, 226001, India
- Department of Botany, University of Lucknow, Lucknow, UP, 226007, India
| | - Ankit Kumar
- Environmental Monitoring Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - S S Kalikinkar Mahanta
- Environmental Monitoring Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Bojjagani Sreekanth
- Environmental Monitoring Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Devendra Kumar Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
- Analytical Chemistry Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, UP, 226001, India
| | - Alka Kumari
- Department of Botany, University of Lucknow, Lucknow, UP, 226007, India
| | - Altaf Husain Khan
- Environmental Monitoring Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, UP, 226001, India
| | - Ganesh Chandra Kisku
- Environmental Monitoring Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, UP, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
| |
Collapse
|
23
|
Paital B, Das K. Spike in pollution to ignite the bursting of COVID-19 second wave is more dangerous than spike of SAR-CoV-2 under environmental ignorance in long term: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85595-85611. [PMID: 34390474 PMCID: PMC8363867 DOI: 10.1007/s11356-021-15915-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/07/2021] [Indexed: 04/15/2023]
Abstract
Specific areas in many countries such as Italy, India, China, Brazil, Germany and the USA have witnessed that air pollution increases the risk of COVID-19 severity as particulate matters transmit the virus SARS-CoV-2 and causes high expression of ACE2, the receptor for spike protein of the virus, especially under exposure to NO2, SO2 and NOx emissions. Wastewater-based epidemiology of COVID-19 is also noticed in many countries such as the Netherlands, the USA, Paris, France, Australia, Spain, Italy, Switzerland China, India and Hungary. Soil is also found to be contaminated by the RNA of SARS-CoV-2. Activities including defecation and urination by infected people contribute to the source for soil contamination, while release of wastewater containing cough, urine and stool of infected people from hospitals and home isolation contributes to the source of SARS-CoV-2 RNA in both water and soil. Detection of the virus early before the outbreak of the disease supports this fact. Based on this information, spike in pollution is found to be more dangerous in long-term than the spike protein of SARS-CoV-2. It is because the later one may be controlled in future within months or few years by vaccination and with specific drugs, but the former one provides base for many diseases including the current and any future pandemics. Although such predictions and the positive effects of SARS-CoV-2 on environment was already forecasted after the first wave of COVID-19, the learnt lesson as spotlight was not considered as one of the measures for which 2nd wave has quickly hit the world.
Collapse
Grants
- ECR/2016/001984 Science and Engineering Research Board
- 1188/ST, Bhubaneswar, dated 01.03.17, ST- (Bio)-02/2017 Department of Biotechnology, DST, Govt. of Odisha, IN
- 36 Seed/2019/Philosophy-1, letter number 941/69/OSHEC/2019, dt 22.11.19 Department of Higher Education, Govt. of Odisha, IN
Collapse
Affiliation(s)
- Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India.
| | - Kabita Das
- Department of Philosophy, Utkal University, Bhubaneswar, India
| |
Collapse
|
24
|
Carriedo A, Cecchini JA, Fernández-Álvarez LE, González C. Physical Activity and Physical Fitness in Adolescents after the COVID-19 Lockdown and One Year Afterward. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14660. [PMID: 36429376 PMCID: PMC9691038 DOI: 10.3390/ijerph192214660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to analyze the changes in physical activity and physical fitness between the beginning of the first academic year after a confinement (November 2020) and the beginning of the second academic year after a confinement ("new normality": November 2021) in a cohort of adolescents. Moreover, the evolution of physical fitness after controlling for physical activity was examined. A total of 687 students (M = 15.35, SD = 1.677) from a high school located in a rural town in northern Spain gave information on their physical activity (PA) levels in two different periods. Linear mixed models were used to examine these changes. The results indicated that vigorous physical activity (VPA) and the metabolic equivalent of task (MET) significantly increased between the two periods. A growth tendency of several components of fitness (upper body power, strength endurance, cardiovascular fitness, flexibility, and eye-hand coordination) was also observed. Finally, the results indicated that belonging to a sports club and getting involved in more VPA better explained the development in cardiovascular and muscle fitness between the two time points. Thus, the results of this study highlighted the relevance of membership in a sports club and vigorous PA in order to mitigate the potential negative effect of social distancing measures on physical fitness.
Collapse
|
25
|
Reema G, Vijaya Babu B, Tumuluru P, Praveen SP. COVID-19 EDA analysis and prediction using SIR and SEIR models. INTERNATIONAL JOURNAL OF HEALTHCARE MANAGEMENT 2022. [DOI: 10.1080/20479700.2022.2130630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Gunti Reema
- Department of Computer Science and Engineering, KoneruLakshmaiah Education Foundation, KL University, Vaddeswaram, Andhra Pradesh, India
| | - B. Vijaya Babu
- Department of Computer Science and Engineering, KoneruLakshmaiah Education Foundation, KL University, Vaddeswaram, Andhra Pradesh, India
| | - Praveen Tumuluru
- Department of Computer Science and Engineering, KoneruLakshmaiah Education Foundation, KL University, Vaddeswaram, Andhra Pradesh, India
| | - S. Phani Praveen
- Department of Computer Science and Engineering, Prasad V. Potluri Siddhartha Institute of Technology, Jawaharlal Nehru Technological University Kakinada, Kakinada, Andhra Pradesh, India
| |
Collapse
|
26
|
Puertas R, Carracedo P, Marti L. Environmental policies for the treatment of waste generated by COVID-19: Text mining review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:1480-1493. [PMID: 35282720 DOI: 10.1177/0734242x221084073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rapid transmission of COVID-19 has meant that all economic and human efforts have been focused on confronting it, ignoring environmental aspects whose consequences are causing adverse situations all over the planet. The saturation of the sanitary system and confinement measures have multiplied the waste generated, which implies the need to adapt environmental policies to this new situation caused by the pandemic. It is a review article whose objective was to identify the environmental policies that would facilitate an adequate treatment of the waste generated by the pandemic. It was proposed to analyse the current lines of research developed on this paradigm, applying the text mining methodology. A systematic review of 111 studies published in environmental journals indexed in the Web of Science was carried out. The results identified three areas of interest: knowledge of transmission routes, management of the massive generation of plastics and appropriate treatment of solid waste in extreme situations. Leaders are called upon to implement the contingency plans to sustainably alleviate the enormous waste burden caused by society's adaptation to the restrictions imposed by the pandemic. Specifically, innovation aimed at achieving the reuse of medical products, the promotion of the circular economy and educational campaigns to promote clean environments should be encouraged.
Collapse
Affiliation(s)
- Rosa Puertas
- Universitat Politècnica de València, Valencia, Spain
| | | | - Luisa Marti
- Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
27
|
Sarangi MK, Padhi S, Patel LD, Rath G, Nanda SS, Yi DK. Theranostic efficiency of biosurfactants against COVID-19 and similar viruses - A review. J Drug Deliv Sci Technol 2022; 76:103764. [PMID: 36090183 PMCID: PMC9444339 DOI: 10.1016/j.jddst.2022.103764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
The world has witnessed an extreme vulnerability of a pandemic during 2020; originated from China. The coronavirus disease 2019 (COVID-19) is infecting and beginning deaths in thousands to millions, creating of the global economic crisis. Biosurfactants (BSs) can carry the prevention, control and management of pandemic out through diverse approaches, such as pharmaceutical, therapeutic, hygienic and environmental. The microbiotas having virulent intrinsic properties towards starting as easily as spreading of diseases (huge morbidity and mortality) could be inhibited via BSs. Such elements could be recognised for their antimicrobial activity, capability to interact with the immune system via micelles formation and in nanoparticulate synthesis. However, they can be used for developing novel and more effective therapeutics, pharmaceuticals, non-toxic formulations, vaccines, and effective cleaning agents. Such approaches can be utilized for product development and implemented for managing and combating the pandemic conditions. This review emphasized on the potentiality of BSs as key components with several ways for protecting against unknown and known pathogens, including COVID-19.
Collapse
Affiliation(s)
- Manoj Kumar Sarangi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, Pin-248001, India
| | - Sasmita Padhi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, Pin-248001, India
| | - L D Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, Pin-391760, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, 751030, Odisha, India
| | | | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin, 03674, South Korea
| |
Collapse
|
28
|
Guo Y, Li X, Luby S, Jiang G. Vertical outbreak of COVID-19 in high-rise buildings: The role of sewer stacks and prevention measures. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 29:100379. [PMID: 35856009 PMCID: PMC9279164 DOI: 10.1016/j.coesh.2022.100379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 05/25/2023]
Abstract
COVID-19 outbreaks in high-rise buildings suggested the transmission route of fecal-aerosol-inhalation due to the involvement of viral aerosols in sewer stacks. The vertical transmission is likely due to the failure of water traps that allow viral aerosols to spread through sewer stacks. This process can be further facilitated by the chimney effect in vent stack, extract ventilation in bathrooms, or wind-induced air pressure fluctuations. To eliminate the risk of such vertical disease spread, the installation of protective devices is highly encouraged in high-rise buildings. Although the mechanism of vertical pathogen spread through drainage pipeline has been illustrated by tracer gas or microbial experiments and numerical modeling, more research is needed to support the update of regulatory and design standards for sewerage facilities.
Collapse
Affiliation(s)
- Ying Guo
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xuan Li
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Stephen Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA 94305, USA
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
29
|
Reveil M, Chen YH. Predicting and preventing COVID-19 outbreaks in indoor environments: an agent-based modeling study. Sci Rep 2022; 12:16076. [PMID: 36168021 PMCID: PMC9514194 DOI: 10.1038/s41598-022-18284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
How to mitigate the spread of infectious diseases like COVID-19 in indoor environments remains an important research question. In this study, we propose an agent-based modeling framework to evaluate facility usage policies that aim to lower the probability of outbreaks. The proposed framework is individual-based, spatially-resolved with time resolution of up to 1 s, and takes into detailed account specific floor layouts, occupant schedules and movement. It enables decision makers to compute realistic contact networks and generate risk profiles of their facilities without relying on wearable devices, smartphone tagging or surveillance cameras. Our demonstrative modeling results indicate that not all facility occupants present the same risk of starting an outbreak, where the driver of outbreaks varies with facility layouts as well as individual occupant schedules. Therefore, generic mitigation strategies applied across all facilities should be considered inferior to tailored policies that take into account individual characteristics of the facilities of interest. The proposed modeling framework, implemented in Python and now available to the public in an open-source platform, enables such strategy evaluation.
Collapse
|
30
|
Cui Z, Cai M, Xiao Y, Zhu Z, Yang M, Chen G. Forecasting the transmission trends of respiratory infectious diseases with an exposure-risk-based model at the microscopic level. ENVIRONMENTAL RESEARCH 2022; 212:113428. [PMID: 35568232 PMCID: PMC9095069 DOI: 10.1016/j.envres.2022.113428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 05/03/2023]
Abstract
Respiratory infectious diseases (e.g., COVID-19) have brought huge damages to human society, and the accurate prediction of their transmission trends is essential for both the health system and policymakers. Most related studies focus on epidemic trend forecasting at the macroscopic level, which ignores the microscopic social interactions among individuals. Meanwhile, current microscopic models are still not able to sufficiently decipher the individual-based spreading process and lack valid quantitative tests. To tackle these problems, we propose an exposure-risk-based model at the microscopic level, including 4 modules: individual movement, virion-laden droplet movement, individual exposure risk estimation, and prediction of transmission trends. Firstly, the front two modules reproduce the movements of individuals and the droplets of infectors' expiratory activities, respectively. Then, the outputs are fed to the third module to estimate the personal exposure risk. Finally, the number of new cases is predicted in the final module. By predicting the new COVID- 19 cases in the United States, the performances of our model and 4 other existing macroscopic or microscopic models are compared. Specifically, the mean absolute error, root mean square error, and mean absolute percentage error provided by the proposed model are respectively 2454.70, 3170.51, and 3.38% smaller than the minimum results of comparison models. The quantitative results reveal that our model can accurately predict the transmission trends from a microscopic perspective, and it can benefit the further investigation of many microscopic disease transmission factors (e.g., non-walkable areas and facility layouts).
Collapse
Affiliation(s)
- Ziwei Cui
- School of Intelligent System Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Ming Cai
- School of Intelligent System Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Yao Xiao
- School of Intelligent System Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Zheng Zhu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Mofeng Yang
- Maryland Transportation Institute, Department of Civil and Environmental Engineering, University of Maryland at College Park, Maryland, USA.
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
31
|
Al Huraimel K, Alhosani M, Gopalani H, Kunhabdulla S, Stietiya MH. Elucidating the role of environmental management of forests, air quality, solid waste and wastewater on the dissemination of SARS-CoV-2. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2022; 3:100006. [PMID: 37519421 PMCID: PMC9095661 DOI: 10.1016/j.heha.2022.100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 11/29/2022]
Abstract
The increasing frequency of zoonotic diseases is amongst several catastrophic repercussions of inadequate environmental management. Emergence, prevalence, and lethality of zoonotic diseases is intrinsically linked to environmental management which are currently at a destructive level globally. The effects of these links are complicated and interdependent, creating an urgent need of elucidating the role of environmental mismanagement to improve our resilience to future pandemics. This review focused on the pertinent role of forests, outdoor air, indoor air, solid waste and wastewater management in COVID-19 dissemination to analyze the opportunities prevailing to control infectious diseases considering relevant data from previous disease outbreaks. Global forest management is currently detrimental and hotspots of forest fragmentation have demonstrated to result in zoonotic disease emergences. Deforestation is reported to increase susceptibility to COVID-19 due to wildfire induced pollution and loss of forest ecosystem services. Detection of SARS-CoV-2 like viruses in multiple animal species also point to the impacts of biodiversity loss and forest fragmentation in relation to COVID-19. Available literature on air quality and COVID-19 have provided insights into the potential of air pollutants acting as plausible virus carrier and aggravating immune responses and expression of ACE2 receptors. SARS-CoV-2 is detected in outdoor air, indoor air, solid waste, wastewater and shown to prevail on solid surfaces and aerosols for prolonged hours. Furthermore, lack of protection measures and safe disposal options in waste management are evoking concerns especially in underdeveloped countries due to high infectivity of SARS-CoV-2. Inadequate legal framework and non-adherence to environmental regulations were observed to aggravate the postulated risks and vulnerability to future waves of pandemics. Our understanding underlines the urgent need to reinforce the fragile status of global environmental management systems through the development of strict legislative frameworks and enforcement by providing institutional, financial and technical supports.
Collapse
Affiliation(s)
- Khaled Al Huraimel
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Mohamed Alhosani
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Hetasha Gopalani
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Shabana Kunhabdulla
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Mohammed Hashem Stietiya
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| |
Collapse
|
32
|
Manik S, Mandal M, Pal S, Patra S, Acharya S. Impact of climate on COVID-19 transmission: A study over Indian states. ENVIRONMENTAL RESEARCH 2022; 211:113110. [PMID: 35307373 PMCID: PMC8927053 DOI: 10.1016/j.envres.2022.113110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 05/05/2023]
Abstract
Coronavirus Disease-2019 (COVID-19) started in Wuhan province of China in November 2019 and within a short time, it was declared as a worldwide pandemic by World Health Organisation due to the very fast worldwide spread of the virus. There are a few studies that look for the correlation with infected individuals and different environmental parameters using early data of COVID-19 but there is no study so far that deals with the variation of effective reproduction number and environmental factors. Effective reproduction number is the driving parameter of the spread of a pandemic and it is important to study the effect of various environmental factors on effective reproduction number to understand the effect of those factors on the spread of the virus. We have used time-dependent models to investigate the variation of different time-dependent driving parameters of COVID-19 like effective reproduction number and contact rate using data from India as a test case. India is a large population country that is highly affected due to the COVID-19 pandemic and has a wide span of different temperature and humidity regions and is ideal for such study. We have studied the impact of temperature and humidity on the spread of the virus of different Indian states using time-dependent epidemiological models SIRD, and SEIRD for a long time scale. We have used a linear regression method to look for any dependency between the effective reproduction number with the relative humidity, absolute humidity, and temperature. The effective reproduction number shows a negative correlation with both relative and absolute humidity for most of the Indian states, which are statistically significant. This implies that relative and absolute humidity may have an important role in the variation of effective reproduction number. Most of the states (six out of ten) show a positive correlation while two (out of ten) show a negative correlation between effective reproduction number and average air temperature for both SIRD and SEIRD models.
Collapse
Affiliation(s)
- Souvik Manik
- Midnapore City College, Kuturia, Bhadutala, West Bengal, 721129, India
| | - Manoj Mandal
- Midnapore City College, Kuturia, Bhadutala, West Bengal, 721129, India
| | - Sabyasachi Pal
- Midnapore City College, Kuturia, Bhadutala, West Bengal, 721129, India.
| | - Subhradeep Patra
- Midnapore City College, Kuturia, Bhadutala, West Bengal, 721129, India
| | - Suman Acharya
- Midnapore City College, Kuturia, Bhadutala, West Bengal, 721129, India
| |
Collapse
|
33
|
Luque-Alcaraz OM, Gomera A, Ruíz Á, Aparicio-Martinez P, Vaquero-Abellan M. Validation of the Spanish Version of the Questionnaire on Environmental Awareness in Nursing (NEAT). Healthcare (Basel) 2022; 10:healthcare10081420. [PMID: 36011077 PMCID: PMC9408121 DOI: 10.3390/healthcare10081420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Environmental awareness of the ecological problems caused by this climate crisis and its impact on global health has been growing globally. Nurses are health care agents that usually hurt the environment and contribute to the unsustainability of the care system. Such behavior is perpetuated without the nurses’ awareness and is even magnified by the current pandemic, jeopardizing the health systems and the Sustainable Development Goals. However, there is no Spanish version of any survey that measures the awareness of these agents, only the Nurses Environmental Awareness Tool (NEAT) is available. The current research presents a unique investigation based on a mixed method, using the Spanish version of the NEAT, also called NEAT-es. The results of the mixed analysis (N = 376), a cognitive interview, and descriptive analysis indicated perfect consistency (Cronbach’s alpha > 0.80), better than the original. The survey validation achieved higher values and can be used to measure environmental awareness in Spain and Spanish-speaking countries.
Collapse
Affiliation(s)
- Olga María Luque-Alcaraz
- Neurosurgery Department, University Hospital Reina Sofia’s, Andalusian Health Care System, 14004 Cordoba, Spain
- Service of Environmental Protection, Environmental Protection Office (SEPA), University of Córdoba, 14071 Cordoba, Spain; (A.G.); (M.V.-A.)
- IMIBIC GC 12 Research Groups of Clinical-Epidemiological Research in Primary Care, Biomedical Program for Occupational Medicine, Occupational Epidemiology and Sustainability, Nursing, Pharmacology, and Physiotherapy, Faculty of Medicine and Nursing of Cordoba, 14071 Cordoba, Spain
- Correspondence: (O.M.L.-A.); (P.A.-M.)
| | - Antonio Gomera
- Service of Environmental Protection, Environmental Protection Office (SEPA), University of Córdoba, 14071 Cordoba, Spain; (A.G.); (M.V.-A.)
| | - África Ruíz
- Quantitative Methods for Economics and Business, Department of Applied Economics I. Sevilla University, 41004 Seville, Spain;
| | - Pilar Aparicio-Martinez
- IMIBIC GC 12 Research Groups of Clinical-Epidemiological Research in Primary Care, Biomedical Program for Occupational Medicine, Occupational Epidemiology and Sustainability, Nursing, Pharmacology, and Physiotherapy, Faculty of Medicine and Nursing of Cordoba, 14071 Cordoba, Spain
- Correspondence: (O.M.L.-A.); (P.A.-M.)
| | - Manuel Vaquero-Abellan
- Service of Environmental Protection, Environmental Protection Office (SEPA), University of Córdoba, 14071 Cordoba, Spain; (A.G.); (M.V.-A.)
- IMIBIC GC 12 Research Groups of Clinical-Epidemiological Research in Primary Care, Biomedical Program for Occupational Medicine, Occupational Epidemiology and Sustainability, Nursing, Pharmacology, and Physiotherapy, Faculty of Medicine and Nursing of Cordoba, 14071 Cordoba, Spain
| |
Collapse
|
34
|
Mascarenhas LAB, Dos Santos LMC, Oliveira FO, Rodrigues LDAP, Neves PRF, Moreira GAF, Santos AAB, Lobato GM, Nascimento C, Gerhardt M, Machado BAS. Evaluation of the microbial reduction efficacy and perception of use of an ozonized water spray disinfection technology. Sci Rep 2022; 12:13019. [PMID: 35906472 PMCID: PMC9335460 DOI: 10.1038/s41598-022-16953-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
The development of new approaches for the decontamination of surfaces is important to deal with the processes related to exposure to contaminated surfaces. Therefore, was evaluated the efficacy of a disinfection technology using ozonized water (0.7-0.9 ppm of O3) on the surfaces of garments and accessories of volunteers, aiming to reduce the spread of microbial pathogens in the workplace and community. A Log10 microbial reduction of 1.72-2.40 was observed between the surfaces tested. The microbial reductions remained above 60% on most surfaces, and this indicated that the disinfection technology was effective in microbial log reduction regardless of the type of transport used by the volunteers and/or their respective work activities. In association with the evaluation of efficacy, the analysis of the perception of use (approval percentage of 92.45%) was fundamental to consider this technology as an alternative for use as a protective barrier, in conjunction with other preventive measures against microbiological infections, allowing us to contribute to the availability of proven effective devices against the spread of infectious agents in the environment.
Collapse
Affiliation(s)
- Luis Alberto Brêda Mascarenhas
- University Center SENAI/CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), Salvador, Bahia, 41650-010, Brazil
| | - Laerte Marlon Conceição Dos Santos
- University Center SENAI/CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), Salvador, Bahia, 41650-010, Brazil
| | - Fabricia Oliveira Oliveira
- University Center SENAI/CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), Salvador, Bahia, 41650-010, Brazil
| | - Leticia de Alencar Pereira Rodrigues
- University Center SENAI/CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), Salvador, Bahia, 41650-010, Brazil
| | - Paulo Roberto Freitas Neves
- University Center SENAI/CIMATEC, SENAI Computational Modeling and Industrial Technology, Salvador, Bahia, 41650-010, Brazil
| | - Greta Almeida Fernandes Moreira
- University Center SENAI/CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), Salvador, Bahia, 41650-010, Brazil
| | - Alex Alisson Bandeira Santos
- University Center SENAI/CIMATEC, SENAI Computational Modeling and Industrial Technology, Salvador, Bahia, 41650-010, Brazil
| | - Gabriela Monteiro Lobato
- China Three Gorges Corporation-CTG Brazil, Rio Paraná Energia S.A. Rodovia MS-444 s/nº km 58, Ilha Solteira, Selviria, MS, Brazil
| | - Carlos Nascimento
- China Three Gorges Corporation-CTG Brazil, Rio Paraná Energia S.A. Rodovia MS-444 s/nº km 58, Ilha Solteira, Selviria, MS, Brazil
| | - Marcelo Gerhardt
- China Three Gorges Corporation-CTG Brazil, Rio Paraná Energia S.A. Rodovia MS-444 s/nº km 58, Ilha Solteira, Selviria, MS, Brazil
| | - Bruna Aparecida Souza Machado
- University Center SENAI/CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), Salvador, Bahia, 41650-010, Brazil.
| |
Collapse
|
35
|
Trivedi SK, Patra P, Singh A, Deka P, Srivastava PR. Analyzing the research trends of COVID-19 using topic modeling approach. JOURNAL OF MODELLING IN MANAGEMENT 2022. [DOI: 10.1108/jm2-02-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The COVID-19 pandemic has impacted 222 countries across the globe, with millions of people losing their lives. The threat from the virus may be assessed from the fact that most countries across the world have been forced to order partial or complete shutdown of their economies for a period of time to contain the spread of the virus. The fallout of this action manifested in loss of livelihood, migration of the labor force and severe impact on mental health due to the long duration of confinement to homes or residences.
Design/methodology/approach
The current study identifies the focus areas of the research conducted on the COVID-19 pandemic. Abstracts of papers on the subject were collated from the SCOPUS database for the period December 2019 to June 2020. The collected sample data (after preprocessing) was analyzed using Topic Modeling with Latent Dirichlet Allocation.
Findings
Based on the research papers published within the mentioned timeframe, the study identifies the 10 most prominent topics that formed the area of interest for the COVID-19 pandemic research.
Originality/value
While similar studies exist, no other work has used topic modeling to comprehensively analyze the COVID-19 literature by considering diverse fields and domains.
Collapse
|
36
|
Kumar M, Manna S, Jha AK, Mazumder P, Rastogi N. Game of transmissions (GoT) of SARS-CoV-2: Second wave of COVID-19 is here in India. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 27:100355. [PMID: 35340573 PMCID: PMC8933290 DOI: 10.1016/j.coesh.2022.100355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Corona virus disease (COVID-19) pandemic had taken the humankind by surprise, yet the world laid out a historical battle against all the odds. Laboratory findings have never been so rapidly made available to common public and authorities. Experimental data on COVID-19 from across the globe was directly made accessible worldwide. The second wave of the pandemic in India caused unprecedented havoc and it can be stated that all the knowledge of the game of transmission of COVID-19 acquired and shared was not played with right precision and preparations. Rapid spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the second phase made us rethink if the choice of information given to the common people pertaining to the selective transmission restriction pathways with pressing concern on lethality were inadequate. Most of the governmental and non-governmental organizations (NGOs) including the World Health Organization (WHO) recommended droplet-based and airborne transmission restrictions as the major steps to control rapid spread of the virus. While, no caution was advised for other plausible pathways like sewage, wastewater-based and non-ventilated indoor air-based transmissions, which are still unknown or not well investigated, and are equally dangerous. The main focus of this article is to analyse the past development about SARS-CoV-2 transmission pathway related recommendation(s) provided by WHO and track the trajectory to alert all the concerning stakeholders and policymakers to rethink and to collect adequate scientific data before they recommend or neglect any specific or all the possible transmission pathways to control the spread of infectious agents further.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Suvendu Manna
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Amritesh Kumar Jha
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Payal Mazumder
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Neeraj Rastogi
- Geosciences Division, Physical Research Laboratory, Ahmedabad 380009, India
| |
Collapse
|
37
|
Zamhuri SA, Soon CF, Nordin AN, Ab Rahim R, Sultana N, Khan MA, Lim GP, Tee KS. A review on the contamination of SARS-CoV-2 in water bodies: Transmission route, virus recovery and recent biosensor detection techniques. SENSING AND BIO-SENSING RESEARCH 2022; 36:100482. [PMID: 35251937 PMCID: PMC8889793 DOI: 10.1016/j.sbsr.2022.100482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
The discovery of SARS-CoV-2 virus in the water bodies has been reported, and the risk of virus transmission to human via the water route due to poor wastewater management cannot be disregarded. The main source of the virus in water bodies is the sewage network systems which connects to the surface water. Wastewater-based epidemiology has been applied as an early surveillance tool to sense SARS-CoV-2 virus in the sewage network. This review discussed possible transmission routes of the SARS-CoV-2 virus and the challenges of the existing method in detecting the virus in wastewater. One significant challenge for the detection of the virus is that the high virus loading is diluted by the sheer volume of the wastewater. Hence, virus preconcentration from water samples prior to the application of virus assay is essential to accurately detect traceable virus loading. The preparation time, materials and conditions, virus type, recovery percentage, and various virus recovery techniques are comprehensively discussed in this review. The practicability of molecular methods such as Polymer-Chain-Reaction (PCR) for the detection of SARS-CoV-2 in wastewater will be revealed. The conventional virus detection techniques have several shortcomings and the potential of biosensors as an alternative is also considered. Biosensing techniques have also been proposed as an alternative to PCR and have reported detection limits of 10 pg/μl. This review serves to guide the reader on the future designs and development of highly sensitive, robust and, cost effective SARS-CoV-2 lab-on-a-chip biosensors for use in complex wastewater.
Collapse
Affiliation(s)
- Siti Adibah Zamhuri
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Chin Fhong Soon
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Anis Nurashikin Nordin
- Department of Electrical and Computer Engineering, Kulliyah of Engineering, International University of Islam Malaysia, 53100, Jalan Gombak, Kuala Lumpur, Malaysia
| | - Rosminazuin Ab Rahim
- Department of Electrical and Computer Engineering, Kulliyah of Engineering, International University of Islam Malaysia, 53100, Jalan Gombak, Kuala Lumpur, Malaysia
| | | | - Muhammad Arif Khan
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Gim Pao Lim
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Kian Sek Tee
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
38
|
Su Y, Cheng H, Wang Z, Wang L. Impacts of the COVID-19 lockdown on building energy consumption and indoor environment: A case study in Dalian, China. ENERGY AND BUILDINGS 2022; 263:112055. [PMID: 35370351 PMCID: PMC8959662 DOI: 10.1016/j.enbuild.2022.112055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/12/2022] [Accepted: 03/23/2022] [Indexed: 05/03/2023]
Abstract
Restricting social distancing is an effective means of controlling the COVID-19 pandemic, resulting in a sharp drop in the utilization of commercial buildings. However, the specific changes in the operating parameters are not clear. This study aims to quantify the impact of COVID-19 lockdowns on commercial building energy consumption and the indoor environment, including correlation analysis. A large green commercial building in Dalian, China's only country to experience five lockdowns, has been chosen. We compared the performance during the lockdown to the same period last year. The study found that the first lockdown caused a maximum 63.5% drop in monthly energy consumption, and the second lockdown was 55.2%. The energy consumption per unit area in 2020 dropped by 55.4% compared with 2019. In addition, during the lockdown, the compliance rate of indoor thermal environment increased by 34.7%, and indoor air quality was 9.5%. These findings could partly explain the short-term and far-reaching effects of the lockdown on the operating parameters of large commercial buildings. Humans are likely to coexist with COVID-19 for a long time, and commercial buildings have to adapt to new energy and health demands. Effective management strategies need to be developed.
Collapse
Affiliation(s)
- Yuan Su
- School of Architecture & Fine Art, Dalian University of Technology, Dalian 116024, China
| | - Haoyuan Cheng
- School of Architecture & Fine Art, Dalian University of Technology, Dalian 116024, China
| | - Zhe Wang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, China
| | - Linwei Wang
- China Merchants Shekou Holdings Northeast Corporation, China
| |
Collapse
|
39
|
Foladori P, Cutrupi F, Cadonna M, Manara S. Coronaviruses and SARS-CoV-2 in sewerage and their removal: Step by step in wastewater treatment plants. ENVIRONMENTAL RESEARCH 2022; 207:112204. [PMID: 34656637 PMCID: PMC8516124 DOI: 10.1016/j.envres.2021.112204] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 05/25/2023]
Abstract
The fate of Coronaviruses (CoVs) and in particular SARS-CoV-2 in wastewater treatment plants (WWTPs) has not been completely understood yet, but an adequate knowledge on the removal performances in WWTPs could help to prevent waterborne transmission of the virus that is still under debate. CoVs and SARS-CoV-2 are discharged from faeces into the sewer network and reach WWTPs within a few hours. This review presents the fate of SARS-CoV-2 and other CoVs in the primary, secondary and tertiary treatments of WWTPs as well as in sludge treatments. The viral loads decrease progressively along with the treatments from 20 to 3.0E+06 GU/L (Genomic Units/L) in the influent wastewater to concentrations below 2.50E+05 GU/L after secondary biological treatments and finally to negative concentrations (below detection limit) in disinfected effluents. Reduction of CoVs is due to (i) natural decay under unfavourable conditions (solids, microorganisms, temperature) for relatively long hydraulic retention times and (ii) processes of sedimentation, filtration, predation, adsorption, disinfection. In primary and secondary settling, due to the hydrophobic properties, a partial accumulation of CoVs may occur in the separated sludge. In secondary treatment (i.e. activated sludge) CoVs and SARS-CoV-2 loads can be reduced only by about one logarithm (∼90%). To enhance this removal, tertiary treatment with ultrafiltration (Membrane Bioreactors) and chemical disinfection or UV light is needed. CoVs and SARS-CoV-2 in the sludge (1.2E+04-4.6E+08 GU/L) can be inactivated significantly in the thermophilic digestion (55 °C), while mesophilic temperatures (33-37 °C) are not efficient. Additional studies are required to investigate the infectivity of SARS-CoV-2 in WWTPs, especially in view of increasing interest in wastewater reclamation and reuse.
Collapse
Affiliation(s)
- Paola Foladori
- Department of Civil, Environmental and Mechanical Engineering (DICAM) - University of Trento, via Mesiano, n. 77, 38123, Trento, Italy.
| | - Francesca Cutrupi
- Department of Civil, Environmental and Mechanical Engineering (DICAM) - University of Trento, via Mesiano, n. 77, 38123, Trento, Italy
| | - Maria Cadonna
- ADEP - Agenzia per la Depurazione, Autonomous Province of Trento, via Gilli, n. 3, 38121, Trento, Italy
| | - Serena Manara
- Department of Cellular Computational and Integrative Biology (CIBIO) - University of Trento, via Sommarive, n. 9, 38123, Trento, Italy
| |
Collapse
|
40
|
Lv Y, Wang K, Li D, Li P, Chen X, Han W. Rare Ag nanoparticles loading induced surface-enhanced pollutant adsorption and photocatalytic degradation on Ti3C2Tx MXene-based nanosheets. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
Water Quality and Water Pollution in Time of COVID-19: Positive and Negative Repercussions. WATER 2022. [DOI: 10.3390/w14071124] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On 11 March 2020, the World Health Organization declared the new COVID-19 disease a pandemic. Most countries responded with a lockdown to reduce its effects, which brought beneficial consequences to the environment in many regions, but the pandemic also raised a series of challenges. This review proposes an assessment of the COVID-19 pandemic positive and negative impacts on water bodies on different continents. By applying a search protocol on the Web of Science platform, a scientific bank of 35 compatible studies was obtained out of the 62 open-access articles that were initially accessible. Regarding the positive impacts, the SARS-CoV-2 monitoring in sewage waters is a useful mechanism in the promptly exposure of community infections and, during the pandemic, many water bodies all over the world had lower pollution levels. The negative impacts are as follows: SARS-CoV-2 presence in untreated sewage water amplifies the risk to human health; there is a lack of adequate elimination processes of plastics, drugs, and biological pollution in wastewater treatment plants; the amount of municipal and medical waste that pollutes water bodies increased; and waste recycling decreased. Urgent preventive measures need to be taken to implement effective solutions for water protection.
Collapse
|
42
|
Ibarra-Espinosa S, Dias de Freitas E, Ropkins K, Dominici F, Rehbein A. Negative-Binomial and quasi-poisson regressions between COVID-19, mobility and environment in São Paulo, Brazil. ENVIRONMENTAL RESEARCH 2022; 204:112369. [PMID: 34767818 PMCID: PMC8577054 DOI: 10.1016/j.envres.2021.112369] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 05/08/2023]
Abstract
Brazil, the country most impacted by the coronavirus disease 2019 (COVID-19) on the southern hemisphere, use intensive care admissions per day, mobility and other indices to monitor quarantines and prevent the transmissions of SARS-CoV-2. In this study we quantified the associations between residential mobility index (RMI), air pollution, meteorology, and daily cases and deaths of COVID-19 in São Paulo, Brazil. We applied a semiparametric generalized additive model (GAM) to estimate: 1) the association between RMI and COVID-19, accounting for ambient particulate matter (PM2.5), ozone (O3), relative humidity, temperature and delayed exposure between 4 and 21 days, and 2) the association between COVID-19 and exposure to for ambient particulate matter (PM2.5), ozone (O3), accounting for relative humidity, temperature and mobility. We found that an RMI of 45.28% results in 1212 cases (95% CI: 1189 to 1235) and 44 deaths (95% CI: 40 to 47). Increasing the isolation from 45.28% to 50% would avoid 438 cases and 21 deaths. Also, we found that an increment of 10 μg⋅m-³ of PM2.5 results in a risk of 1.140 (95% CI: 1.021 to 1.274) for cases and 1.086 (95% CI: 1.008 to 1.170) for deaths, while O3 produces a relative risk of 1.075 (95% CI: 1.006 to 1.150) for cases and 1.063 (95% CI: 1.006 to 1.124) for deaths, respectively. We compared our results with observations and literature review, finding well agreement. Policymakers can use such mobility indices as tools to control social distance activities. Spatial distancing is an important factor to control COVID-19, however, measuring face-mask usage would enhance the understanding the pandemic dynamic. Small increments of air pollution result in an increased number of COVID-19 cases and deaths.
Collapse
Affiliation(s)
- Sergio Ibarra-Espinosa
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Brazil.
| | - Edmilson Dias de Freitas
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Brazil
| | - Karl Ropkins
- Institute for Transport Studies, University of Leeds, UK
| | - Francesca Dominici
- Harvard Data Science Initiative, Harvard University, Boston, MA, 02138, USA
| | - Amanda Rehbein
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Brazil
| |
Collapse
|
43
|
Ishmatov A. "SARS-CoV-2 is transmitted by particulate air pollution": Misinterpretations of statistical data, skewed citation practices, and misuse of specific terminology spreading the misconception. ENVIRONMENTAL RESEARCH 2022; 204:112116. [PMID: 34562486 PMCID: PMC8489301 DOI: 10.1016/j.envres.2021.112116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 05/03/2023]
Abstract
In epidemiology, there are still outdated myths associated with the spread of respiratory infections. Recently, we have witnessed the origination of a new misconception, to the effect that SARS-CoV-2 is transmitted in the open air by way of particulate air pollution (atmospheric particulate matter (PM)). There is no evidence to support the idea behind this misconception. Nevertheless, more and more people are involved in animated debate and the number of studies concerning atmospheric PM as a carrier of SARS-CoV-2 is growing rapidly. In this work, the origin of the misconception was investigated, and the published papers which have contributed to the spread of this myth were analyzed. The results show that the following factors lie behind the origin and spread of the misconception: a) The specific terminology is not always clearly defined or consistently used by scientists. In particular, the terms 'particulate matter', 'atmospheric aerosol particles', 'air pollutants', and 'atmospheric aerosols' need to be clarified, and besides they are often equated to 'infectious aerosols', 'virus-bearing aerosols', 'bio-aerosols', 'virus-laden particles', 'respiratory aerosol/droplets', and 'droplet nuclei'. b) Authors misinterpret statistical data and information from other sources. Interpretation of the correlation between PM levels and the increasing incidence and severity of COVID-19 infection, is often changed from "PM may reflect the indirect action of certain atmospheric conditions that maintain infectious nuclei suspended for prolonged periods, parameters that also act on atmospheric pollutants" to "PM could cause an increase in infectious droplets/aerosols containing SARS-CoV-2." This is a dramatic change to the meaning. Moreover, it is often not taken into account that PM may reflect activities in areas with high population density and this population density at the same time contributes to the spread COVID-19. c) Skewed citation practices. Many authors cite a hypothetical conclusion from an original study, then other authors cite the papers of these authors as primary sources. This practice leads to the effect that there are many witnesses to a 'phenomenon' that did not ever occur. Thus, the terminology used in interdisciplinary communications should be more nuanced and defined precisely. Authors should be more careful when citing unconfirmed data (and hypotheses) as well as in interpreting statistical data so as to avoid confusion and spreading false information. This is especially important now in the era of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Alexander Ishmatov
- Research Institute of Experimental and Clinical Medicine, Timakova St., Bild. 2., Novosibirsk, 630117, Russian Federation; Kazan Federal University, Kremlyovskaya St. 18, Kazan, 420008, Russian Federation; Togliatti State University, Belorusskaya St. 14, Togliatti, 445020, Russian Federation.
| |
Collapse
|
44
|
Martinez-Boubeta C, Simeonidis K. Airborne magnetic nanoparticles may contribute to COVID-19 outbreak: Relationships in Greece and Iran. ENVIRONMENTAL RESEARCH 2022; 204:112054. [PMID: 34547249 PMCID: PMC8450134 DOI: 10.1016/j.envres.2021.112054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 05/22/2023]
Abstract
This work attempts to shed light on whether the COVID-19 pandemic rides on airborne pollution. In particular, a two-city study provides evidence that PM2.5 contributes to the timing and severity of the epidemic, without adjustment for confounders. The publicly available data of deaths between March and October 2020, updated it on May 30, 2021, and the average seasonal concentrations of PM2.5 pollution over the previous years in Thessaloniki, the second-largest city of Greece, were investigated. It was found that changes in coronavirus-related deaths follow changes in air pollution and that the correlation between the two data sets is maximized at the lag time of one month. Similar data from Tehran were gathered for comparison. The results of this study underscore that it is possible, if not likely, that pollution nanoparticles are related to COVID-19 fatalities (Granger causality, p < 0.05), contributing to the understanding of the environmental impact on pandemics.
Collapse
Affiliation(s)
- C Martinez-Boubeta
- Ecoresources P.C, Giannitson-Santaroza Str. 15-17, 54627, Thessaloniki, Greece.
| | - K Simeonidis
- Ecoresources P.C, Giannitson-Santaroza Str. 15-17, 54627, Thessaloniki, Greece; Department of Physics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
45
|
Song L, Zhou J, Wang C, Meng G, Li Y, Jarin M, Wu Z, Xie X. Airborne pathogenic microorganisms and air cleaning technology development: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127429. [PMID: 34688006 DOI: 10.1016/j.jhazmat.2021.127429] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Transmission of pathogens through air is a critical pathway for the spread of airborne diseases, as airborne pathogenic microorganisms cause several harmful infections. This review summarizes the occurrence, transmission, and adverse impacts of airborne pathogenic microorganisms that spread over large distances via bioaerosols. Air cleaning technologies have demonstrated great potential to prevent and reduce the spread of airborne diseases. The recent advances in air cleaning technologies are summarized on the basis of their advantages, disadvantages, and adverse health effects with regard to the inactivation mechanisms. The application scope and energy consumption of different technologies are compared, and the characteristics of air cleaners in the market are discussed. The development of high-efficiency, low-cost, dynamic air cleaning technology is identified as the leading research direction of air cleaning. Furthermore, future research perspectives are discussed and further development of current air cleaning technologies is proposed.
Collapse
Affiliation(s)
- Lu Song
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, PR China; School of Environmental Science and Engineering, Tianjin University, Tianjin, PR China
| | - Jianfeng Zhou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, GA, USA
| | - Can Wang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, PR China; School of Environmental Science and Engineering, Tianjin University, Tianjin, PR China.
| | - Ge Meng
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, PR China; School of Environmental Science and Engineering, Tianjin University, Tianjin, PR China
| | - Yunfei Li
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, PR China; School of Environmental Science and Engineering, Tianjin University, Tianjin, PR China
| | - Mourin Jarin
- School of Civil and Environmental Engineering, Georgia Institute of Technology, GA, USA
| | - Ziyan Wu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, GA, USA
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, GA, USA.
| |
Collapse
|
46
|
Lutz CB, Giabbanelli PJ. When Do We Need Massive Computations to Perform Detailed COVID-19 Simulations? ADVANCED THEORY AND SIMULATIONS 2022; 5:2100343. [PMID: 35441122 PMCID: PMC9011599 DOI: 10.1002/adts.202100343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/01/2021] [Indexed: 12/25/2022]
Abstract
The COVID-19 pandemic has infected over 250 million people worldwide and killed more than 5 million as of November 2021. Many intervention strategies are utilized (e.g., masks, social distancing, vaccinations), but officials making decisions have a limited time to act. Computer simulations can aid them by predicting future disease outcomes, but they also require significant processing power or time. It is examined whether a machine learning model can be trained on a small subset of simulation runs to inexpensively predict future disease trajectories resembling the original simulation results. Using four previously published agent-based models (ABMs) for COVID-19, a decision tree regression for each ABM is built and its predictions are compared to the corresponding ABM. Accurate machine learning meta-models are generated from ABMs without strong interventions (e.g., vaccines, lockdowns) using small amounts of simulation data: the root-mean-square error (RMSE) with 25% of the data is close to the RMSE for the full dataset (0.15 vs 0.14 in one model; 0.07 vs 0.06 in another). However, meta-models for ABMs employing strong interventions require much more training data (at least 60%) to achieve a similar accuracy. In conclusion, machine learning meta-models can be used in some scenarios to assist in faster decision-making.
Collapse
Affiliation(s)
- Christopher B. Lutz
- Department of Computer Science & Software EngineeringMiami University205 Benton HallOxfordOH45056USA
| | - Philippe J. Giabbanelli
- Department of Computer Science & Software EngineeringMiami University205 Benton HallOxfordOH45056USA
| |
Collapse
|
47
|
Białek-Dratwa A, Szczepańska E, Grajek M, Całyniuk B, Staśkiewicz W. Health Behaviors and Associated Feelings of Remote Workers During the COVID-19 Pandemic-Silesia (Poland). Front Public Health 2022; 10:774509. [PMID: 35155324 PMCID: PMC8830281 DOI: 10.3389/fpubh.2022.774509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
During the COVID pandemic in Poland, lockdown and remote work affected a very large segment of the population. This situation has many negative consequences both in terms of health and also emotionally. In our study, we focused on eating behaviors as well as health behaviors such as alcohol consumption, smoking, physical activity while working remotely, but also the emotions that occur while being at home working for long periods of time and how these emotions affect diet, eating behaviors and overall well-being using the standardized WHO-5 and TFEQ13 questionnaires. Surveys completed by 225 individuals doing remote work from home or hybrid work. During lockdown and remote work, 64.4% people noticed changes in eating behaviors: of which 44.0% people eat more than before lockdown, while 20.0% eat less than before; 36.0% believe they did not notice a change regarding the amount of food consumed. Changes in eating behavior did not correlate with body weight (p = 0.37), but did correlate with changes in body weight (p = 0.00000). Body weight correlated with changes in body weight that occurred in the study group during lockdown (p = 0.000004). Individuals who restrict eating according to TFEQ 13 are more likely to report well-being (WHO-%), whereas individuals who are observed to lack control over eating and eat under emotional duress are more likely to report poor well-being (p = 0.000000). The study confirmed the change in dietary behavior and the occurrence of adverse health eating behaviors among remote and hybrid workers during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Agnieszka Białek-Dratwa
- Department of Human Nutrition, Department of Dietetics, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Elżbieta Szczepańska
- Department of Human Nutrition, Department of Dietetics, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Mateusz Grajek
- Department of Public Health, Department of Public Health Policy, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Beata Całyniuk
- Department of Human Nutrition, Department of Dietetics, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Wiktoria Staśkiewicz
- Department of Food Technology and Quality Evaluation, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|
48
|
Abdeldayem OM, Dabbish AM, Habashy MM, Mostafa MK, Elhefnawy M, Amin L, Al-Sakkari EG, Ragab A, Rene ER. Viral outbreaks detection and surveillance using wastewater-based epidemiology, viral air sampling, and machine learning techniques: A comprehensive review and outlook. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149834. [PMID: 34525746 PMCID: PMC8379898 DOI: 10.1016/j.scitotenv.2021.149834] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 05/06/2023]
Abstract
A viral outbreak is a global challenge that affects public health and safety. The coronavirus disease 2019 (COVID-19) has been spreading globally, affecting millions of people worldwide, and led to significant loss of lives and deterioration of the global economy. The current adverse effects caused by the COVID-19 pandemic demands finding new detection methods for future viral outbreaks. The environment's transmission pathways include and are not limited to air, surface water, and wastewater environments. The wastewater surveillance, known as wastewater-based epidemiology (WBE), can potentially monitor viral outbreaks and provide a complementary clinical testing method. Another investigated outbreak surveillance technique that has not been yet implemented in a sufficient number of studies is the surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in the air. Artificial intelligence (AI) and its related machine learning (ML) and deep learning (DL) technologies are currently emerging techniques for detecting viral outbreaks using global data. To date, there are no reports that illustrate the potential of using WBE with AI to detect viral outbreaks. This study investigates the transmission pathways of SARS-CoV-2 in the environment and provides current updates on the surveillance of viral outbreaks using WBE, viral air sampling, and AI. It also proposes a novel framework based on an ensemble of ML and DL algorithms to provide a beneficial supportive tool for decision-makers. The framework exploits available data from reliable sources to discover meaningful insights and knowledge that allows researchers and practitioners to build efficient methods and protocols that accurately monitor and detect viral outbreaks. The proposed framework could provide early detection of viruses, forecast risk maps and vulnerable areas, and estimate the number of infected citizens.
Collapse
Affiliation(s)
- Omar M Abdeldayem
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands.
| | - Areeg M Dabbish
- Biotechnology Graduate Program, Biology Department, School of Science and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mahmoud M Habashy
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Mohamed K Mostafa
- Faculty of Engineering and Technology, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Mohamed Elhefnawy
- CanmetENERGY, 1615 Lionel-Boulet Blvd, P.O. Box 4800, Varennes, Québec J3X 1P7, Canada; Department of Mathematics and Industrial Engineering, Polytechnique Montréal 2500 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Lobna Amin
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands; Department of Built Environment, Aalto University, PO Box 15200, FI-00076, Aalto, Finland
| | - Eslam G Al-Sakkari
- Chemical Engineering Department, Cairo University, Cairo University Road, 12613 Giza, Egypt
| | - Ahmed Ragab
- CanmetENERGY, 1615 Lionel-Boulet Blvd, P.O. Box 4800, Varennes, Québec J3X 1P7, Canada; Department of Mathematics and Industrial Engineering, Polytechnique Montréal 2500 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada; Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| |
Collapse
|
49
|
Sobsey MD. Absence of virological and epidemiological evidence that SARS-CoV-2 poses COVID-19 risks from environmental fecal waste, wastewater and water exposures. JOURNAL OF WATER AND HEALTH 2022; 20:126-138. [PMID: 35100160 DOI: 10.2166/wh.2021.182] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This review considers evidence for infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presence and COVID-19 infection and illness resulting from exposure to environmental fecal wastes and waters. There is no documented evidence that (1) infectious, replication-capable SARS-CoV-2 is present in environmental fecal wastes, wastewater or water, and (2) well-documented epidemiological evidence of COVID-19 infection, illness or death has never been reported for these exposure media. COVID-19 is transmitted mainly by direct personal contact and respiratory secretions as airborne droplets and aerosols, and less so by respiratory-secreted fomites via contact (touch) exposures. While SARS-CoV-2 often infects the gastrointestinal tract of infected people, its presence as infectious, replication-capable virus in environmental fecal wastes and waters has never been documented. There is only rare and unquantified evidence of infectious, replication-capable SARS-CoV-2 in recently shed feces of COVID-19 hospital patients. The human infectivity dose-response relationship of SARS-CoV-2 is unknown, thereby making it impossible to estimate evidence-based quantitative health effects assessments by quantitative microbial risk assessment methods requiring both known exposure assessment and health effects assessment data. The World Health Organization, Water Environment Federation, US Centers for Disease Control and Prevention and others do not consider environmental fecal wastes and waters as sources of exposure to infectious SARS-CoV-2 causing COVID-19 infection and illness.
Collapse
Affiliation(s)
- Mark D Sobsey
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA E-mail:
| |
Collapse
|
50
|
Sojobi AO, Zayed T. Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. ENVIRONMENTAL RESEARCH 2022; 203:111609. [PMID: 34216613 DOI: 10.1016/j.envres.2021.111609] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 05/09/2023]
Abstract
Sewer overflow (SO), which has attracted global attention, poses serious threat to public health and ecosystem. SO impacts public health via consumption of contaminated drinking water, aerosolization of pathogens, food-chain transmission, and direct contact with fecally-polluted rivers and beach sediments during recreation. However, no study has attempted to map the linkage between SO and public health including Covid-19 using scientometric analysis and systematic review of literature. Results showed that only few countries were actively involved in SO research in relation to public health. Furthermore, there are renewed calls to scale up environmental surveillance to safeguard public health. To safeguard public health, it is important for public health authorities to optimize water and wastewater treatment plants and improve building ventilation and plumbing systems to minimize pathogen transmission within buildings and transportation systems. In addition, health authorities should formulate appropriate policies that can enhance environmental surveillance and facilitate real-time monitoring of sewer overflow. Increased public awareness on strict personal hygiene and point-of-use-water-treatment such as boiling drinking water will go a long way to safeguard public health. Ecotoxicological studies and health risk assessment of exposure to pathogens via different transmission routes is also required to appropriately inform the use of lockdowns, minimize their socio-economic impact and guide evidence-based welfare/social policy interventions. Soft infrastructures, optimized sewer maintenance and prescreening of sewer overflow are recommended to reduce stormwater burden on wastewater treatment plant, curtail pathogen transmission and marine plastic pollution. Comprehensive, integrated surveillance and global collaborative efforts are important to curtail on-going Covid-19 pandemic and improve resilience against future pandemics.
Collapse
Affiliation(s)
| | - Tarek Zayed
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|