1
|
Contreras-Llin A, Oxa MP, Díaz-Cruz JM, Serrano N, Diaz-Cruz MS. Adsorption of benzophenone-3 and octocrylene UV filters on polyethylene: analysis by HPLC-MS/MS and voltammetry with screen-printed electrodes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 377:126468. [PMID: 40381681 DOI: 10.1016/j.envpol.2025.126468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/12/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Microplastics (MPs) are persistent pollutants that can adsorb contaminants, facilitating their accumulation in aquatic ecosystems. The presence of UV filters (UVFs) such as benzophenone-3 (BP3) and octocrylene (OC), exacerbates this issue, particularly in coastal areas. This study presents an innovative dual-method approach combining high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and differential pulse adsorptive stripping voltammetry (DPAdSV) to assess the adsorption of UVFs on polyethylene (PE), a widely found polymer in aquatic environments. Adsorption kinetics were analysed using pseudo-first-order (PFOM) and pseudo-second-order (PSOM) models, revealing a higher equilibrium sorption capacity for OC due to its stronger hydrophobic interactions with PE. A central composite design (CCD) was employed to enhance resources efficiency in experimentation and controlled experiments exposed the materials to both pure fresh water and synthetic seawater. The results indicate a higher adsorption affinity of OC on PE than BP3, attributed to its high octanol-water partition coefficient (log Kow 6.88) and stronger hydrophobic interactions. Exposure time was the most influential variable across both media, while pH and temperature had a significant effect on BP3 adsorption in synthetic seawater. Hydrophobic partitioning, aided by van der Waals forces, was identified as the dominant interaction mechanism for both UVFs, with π-π and electrostatic interactions playing minimal roles due to the nature of the polymer. The study provides new insights into how polymer-pollutant interactions vary across environmental conditions and offers a novel voltammetric alternative for in-situ UVFs monitoring.
Collapse
Affiliation(s)
- Albert Contreras-Llin
- ENFOCHEM, Department of Environmental Chemistry. Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain; Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Mariana Palape Oxa
- ENFOCHEM, Department of Environmental Chemistry. Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain; Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - José Manuel Díaz-Cruz
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028, Barcelona, Spain; Water Research Institute (IdRA), UB, Spain
| | - Núria Serrano
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028, Barcelona, Spain; Water Research Institute (IdRA), UB, Spain
| | - M Silvia Diaz-Cruz
- ENFOCHEM, Department of Environmental Chemistry. Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
2
|
Binda G, Carnati S, Passignani N, Hurley R, Nizzetto L, Spanu D, Kalčíková G, Pozzi A. A screening of metal(loid) content in conventional and compostable plastic polymers: understanding the sources and the connected environmental implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126364. [PMID: 40320125 DOI: 10.1016/j.envpol.2025.126364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/11/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
Plastic pollution is a well-known environmental issue, yet the ecotoxicological implications are still underexplored. In this context, attention towards the characterization of chemical additives in plastics and their potential risks to both human health and ecosystems is now increasing. While significant research has been conducted on organic chemicals, data on inorganic additives (e.g., metallic compounds) remain limited. In this study, we analyzed the metal(loid) content in different types of plastics to better understand the presence of inorganic additives in these materials, their distribution across different polymer types, and their potential impacts. We investigated pristine plastic pellets, single-use plastic materials and recycled plastic pellets made from both conventional and compostable polymers. We observed a notable enrichment of metal(loid)s (particularly Ti, Al, and Zn) across a range of plastic types, especially when comparing pre-production pellets with final consumer materials, suggesting that these additives are incorporated during the final stages of production. Samples of polyethylene terephthalate displayed elevated levels of Sb, while compostable plastics exhibited specific trends related to Sn and In: they are abundant in the pellets, since they are used as catalyst in polymer production. This study provides a comprehensive comparison of metal additives in different plastic polymers and across different production phases. It highlights the need for characterizing metal(loid) content in plastic to understand the potential connected risks. Additionally, the findings underscore the role of compostable plastics as potential carriers of metal(loid)s to terrestrial and aquatic environments, raising concerns about their degradation and impact.
Collapse
Affiliation(s)
- Gilberto Binda
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway; Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - Stefano Carnati
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Noemi Passignani
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Rachel Hurley
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway
| | - Luca Nizzetto
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway; RECETOX, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Davide Spanu
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Gabriela Kalčíková
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000, Ljubljana, Slovenia; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 61669, Brno, Czech Republic
| | - Andrea Pozzi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| |
Collapse
|
3
|
Liu H, Ma Y, Xiao J, Zhang Y, Li Y, Shen A, Niu Z, Chen Q, Chen B. Biofilm-mediated mass transfer of sorbed benzo[a]pyrene from polyethylene to seawater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126257. [PMID: 40239938 DOI: 10.1016/j.envpol.2025.126257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
Plastic waste, including microplastics (MPs), often serves as a carrier for hydrophobic organic contaminants (HOCs) and additives in aquatic environments. However, little is known about the fate of contaminants in plastics, especially under the influence of biofilm in field conditions. In this study, polyethylene (PE) was pre-sorbed with varying concentrations of benzo[a]pyrene (BaP), a non-polar contaminant, and deployed in situ to study desorption kinetics under natural biofilm colonization. Based on the desorption kinetics of BaP from PE, a mass transfer model was developed to describe the desorption of non-polar contaminants from PE under the influence of biofilm formation. This study proved that biofilm, acting as an intermediary between plastics and the aquatic environment, did not serve as a sink for plastic-sorbed BaP, but accelerated the desorption process of BaP by reducing the partition coefficient between the plastic and the boundary layer. Furthermore, based on our developed model (IABL-ODD), the effects of biofilm on the fate of other non-polar and weakly polar contaminants in PE were predicted. This study highlights the influence of biofilm on the desorption of hydrophobic contaminants from plastics in field conditions and also informs future work on more relevant processes such as additive leaching.
Collapse
Affiliation(s)
- Hongtao Liu
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yongzheng Ma
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China; The State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Jingen Xiao
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuan Li
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ao Shen
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhiguang Niu
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Qiqing Chen
- The State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Baizhu Chen
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, 510006, China; School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| |
Collapse
|
4
|
Iizuka M, Amano A, Itaki T. Accurate sampling of undisturbed top sediment from grab sampler collected using aluminum tube and stainless-steel containers for shallow and deep-sea applications. MethodsX 2025; 14:103213. [PMID: 40034834 PMCID: PMC11875680 DOI: 10.1016/j.mex.2025.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
This study describes a sediment sampling protocol using a Kinoshita-type grab (K-grab) sediment sampler to collect and analyze microplastics (<5 mm) and macroplastics (>5 mm) in marine sediments. During the GB24 geological survey cruise aboard the Bosei-maru, 133 surface sediment samples were collected from depths of 20-800 m. The K-grab, equipped with a head-slide weight mechanism, enhanced sampling efficiency across various sediment types. For microplastics, stainless steel containers and J-shaped aluminum tubes minimized contamination while maintaining sample integrity. Macroplastics were separated using a 5 mm mesh and analyzed on board. Method verification confirmed high-spatial-resolution sampling with minimal contamination. These results demonstrate that the K-grab is a reliable tool for microplastic and macroplastic analysis, providing valuable data on plastic pollution in marine sediments.•This study describes a sediment sampling protocol using a grab sampler to collect and analyze microplastics (<5 mm) and macroplastics (>5 mm) in marine sediments.•During the survey, 133 surface sediment samples were collected from depths of 20-800 m, with microplastics handled using J-shaped aluminum tubes and stainless steel containers to minimize contamination while maintaining sample integrity.•Macroplastics were separated using a 5 mm mesh and analyzed on board. Method verification confirmed high-spatial-resolution sampling with minimal contamination.
Collapse
Affiliation(s)
- Mutsumi Iizuka
- The Research Institute of Geology and Geoinformation, Geological Survey of Japan, AIST, Tsukuba Central 7 AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
| | - Atsuko Amano
- The Research Institute of Geology and Geoinformation, Geological Survey of Japan, AIST, Tsukuba Central 7 AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
| | - Takuya Itaki
- The Research Institute of Geology and Geoinformation, Geological Survey of Japan, AIST, Tsukuba Central 7 AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
- Estuary Research Center, Shimane University, 1060 Nishikawatu-cho, Matsue, Shimane, Japan
| |
Collapse
|
5
|
Mhapsekar S, Kalangutkar N, Joshi N. Microplastic contamination and ecological risk in a riverine system: A case study from the Valvanti River, Goa, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:706. [PMID: 40448863 DOI: 10.1007/s10661-025-14168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 05/20/2025] [Indexed: 06/02/2025]
Abstract
Microplastics (MPs) are emerging global pollutants of critical environmental concern due to their widespread distribution and ecological impact. Although numerous studies have focused on marine and estuarine ecosystems, riverine systems- particularly in Goa, remain underexplored. This research presents a comprehensive assessment of MP contamination in the Valvanti River, North Goa, including an evaluation of MP abundance, physical characteristics, polymer composition, ecological risks, surface degradation, and heavy metal associations. MP concentrations in surface water ranged from 1.1 to 7.5 MPs/L, with an average (± SD) of 2.91 ± 1.69 MPs/L. The majority were colourless (70.49%) and fibrous in shape (96.9%). MPs within the 0.1-0.3 mm size range were most common (40.53%), followed by 0.3-0.85 mm (37.50%) and 0.85-5 mm (21.97%). Polymer analysis revealed polypropylene (27.86%), polyamide (26.10%), polyethylene terephthalate (25.20%), and polyethylene (16.59%) as dominant types. Risk assessments using the Pollution Load Index (PLI = 1.53), Polymer Hazard Index (hazard level V), and Potential Ecological Risk Index (464.4) indicated that, despite moderate MP concentrations, the river is subject to high ecological risk. Surface analysis through SEM-EDS showed evidence of degradation and the presence of elemental contaminants, indicating potential chemical interactions that may heighten environmental threats. Given the importance of rivers as pathways for MPs to marine environments, these findings underscore the need for regular monitoring and mitigation strategies. This study provides the first detailed ecological risk assessment of MPs in the Valvanti River and offers critical insights into freshwater contamination within an underexplored riverine system of Goa.
Collapse
Affiliation(s)
- Shritesh Mhapsekar
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Taleigao, 403206, Goa, India
- Department of Geology, Government College of Arts, Science and Commerce, 403505, Sanquelim, Goa, India
| | - Niyati Kalangutkar
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Taleigao, 403206, Goa, India.
| | - Nitesh Joshi
- School of Chemical Sciences, Goa University, Taleigao Plateau, Taleigao, 403206, Goa, India
| |
Collapse
|
6
|
Tan G, Tang DWS, Silva V, Mu H, Qin S, Rima O, Geissen V, Yang X. Co-occurrence of multiple contaminants: Unentangling adsorption behaviour in agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126118. [PMID: 40132742 DOI: 10.1016/j.envpol.2025.126118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/26/2025] [Accepted: 03/22/2025] [Indexed: 03/27/2025]
Abstract
The co-occurrence of pesticides, pharmaceuticals, and MPs has resulted in combined toxicity and high risks to ecosystems and human health. However, understanding on the interactions among co-occurring pollutants in soils remains limited. This study focused on adsorption behaviour of a pesticide mixture (chlorpyrifos (CPF), pendimethalin (PDM) and pyraclostrobin (PCS)) in three soils (sandy soil (S1), loamy soil (S2), and silt soil (S3)) to examine the absorption behaviour of pesticides in the presence of the pharmaceutical compound albendazole (ALB) and starch-based microplastics (MPs). The results showed that ALB significantly decreased (p < 0.05) the adsorption of CPF, PDM, and PCS by 29 %-41 % in S1. The adsorption of CPF (+20 %) and PCS (+101 %) in S2 were significantly enhanced but PDM (-22 %) adsorption was inhibited by ALB. ALB also significantly (p < 0.05) promoted CPF and PCS adsorption in S3 by 39 % and 120 %, respectively, but did not change PDM adsorption. In soil-MP matrices, ALB significantly reduced the adsorption of CPF (-25 %), PDM (-26 %), and PCS (-21 %) in the S1-MP matrix, but no significant change in the S2 and S3-MP matrices was observed. Moreover, MPs significantly (p < 0.05) increased the adsorption of the pesticide mixture by 120-730 %, but reduced ALB adsorption by 11-24 % in soils. Further, regardless of ALB presence, correlation analysis suggested that Kd of pesticides showed positive correlations (p < 0.01) to soil organic matter, specific surface area, and clay content in soil matrices without MP-contamination, while no significant positive correlation between Kd of pesticides and soil properties was observed in soil-MPs matrices. This study indicates that co-occurring pollutants could alter the adsorption behaviour of pesticides in soil and thereby affect their bioavailability and mobility in the soil ecosystem. Further study is urgently needed to assess the ecotoxicity of co-occurring multi-contaminants, as well as their potential transport to other environmental compartments.
Collapse
Affiliation(s)
- Gaowei Tan
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Darrell W S Tang
- Water, Energy, and Environmental Engineering, University of Oulu, Finland
| | - Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Hongyu Mu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Shijie Qin
- College of Land Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Osman Rima
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Xiaomei Yang
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
7
|
Blewett TA, Ackerly KL, Sundin J, Clark TD, Rowsey LE, Griffin RA, Metz M, Kuchenmüller L, Leeuwis RHJ, Levet M, Martin S, Speers-Roesch B, Jutfelt F, Joudan S. Unintended Consequences of Aquatic Enrichment in Experimental Biology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8301-8307. [PMID: 40267917 DOI: 10.1021/acs.est.4c11276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Enrichment in aquatic animal studies is important for promoting welfare and maintaining animal health and can be categorized by physical, sensory, social, occupational, and dietary enrichment. However, the risk of potential chemical leaching associated with physical enrichment items has been largely overlooked (i.e., artificial plants or shelter). Most enrichment items lack information on their chemical composition and have not undergone testing for plastic or metal leachates that can alter water chemistry and impair animal physiology. In fish and invertebrate research, these leachates have the potential to modify the health of aquatic animals or their reproductive processes. Moreover, in toxicology research, altered chemical exposure concentrations and interactive effects with leachates could invalidate toxicity assays and lead to misleading results. We identify key contaminants associated with common enrichment items and highlight the substantial lack of empirical research focusing on the confounding factors associated with aquatic enrichment. We explore the mechanisms through which relevant leachates can complicate experimental outcomes, detailing the pathways by which these substances may interact with both the experimental environment and the animals themselves. We conclude that there is widespread potential for serious complications to research outcomes and chronic toxicity from enrichment materials. Therefore, we advocate for the establishment of standardized regulations and a global certification system for aquatic enrichment items to ensure the validity of studies and to safeguard animal welfare. We encourage researchers to critically consider the implications of leaching from aquatic enrichment when designing experimental systems.
Collapse
Affiliation(s)
- Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2G5, Canada
| | - Kerri Lynn Ackerly
- Marine Science Institute, The University of Texas at Austin, Port Aransas, Texas 78373, United States
| | - Josefin Sundin
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, 178 93 Drottningholm, Sweden
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Lauren E Rowsey
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5 Canada
| | - Robert A Griffin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2G5, Canada
| | - Moa Metz
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Luis Kuchenmüller
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Robine H J Leeuwis
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Marie Levet
- Département de Sciences Biologiques, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V0B3, Canada
| | - Sidney Martin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2G5, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5 Canada
| | - Fredrik Jutfelt
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Biological and Environmental Sciences, Faculty of Science, University of Gothenburg, 4050 30 Gothenburg, Sweden
| | - Shira Joudan
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
8
|
Galir A, Špoljarić Maronić D, Stević F, Žuna Pfeiffer T, Dent M, Minarik T. Microplastics and the freshwater plankton: Effects on grazing and mortality. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137497. [PMID: 39914337 DOI: 10.1016/j.jhazmat.2025.137497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
When studying the effects of microplastics (MP) on zooplankton in freshwater environments, there is a knowledge gap at the community level, as most studies use monocultures under laboratory conditions with limited comparability to field studies. The aim of our study was to investigate the uptake of MP at environmentally relevant concentrations by a natural zooplankton community feeding on native phytoplankton. Rotifers and cladocerans comprised more than 96 % of total zooplankton community, while nauplii and copepodites dominated the copepod community. To test the possible change in phytoplankton grazing and zooplankton mortality after MP exposure, zooplankton were exposed to three different polyethylene MP sizes: A (1-5 µm), B (27-32 µm), and C (45-53 µm) during 96 hours. Ingestion in group A was observed in 34 % of rotifers, 20 % of cladocerans and 67 % of copepods. In group B, only cladocerans ingested MP, and to a much lower extent (2 %), which could be due to the composition of the community. None of the zooplankton studied ingested MP particles in group C. The ingestion of MP decreased phytoplankton consumption, and phytoplankton abundance varied greatly between samples. The highest phytoplankton abundance was observed in the A samples with the highest proportion of ingested MP, indicating a significant reduction in grazing pressure that allowed phytoplankton to proliferate. This result, combined with the highest mortality of cladocerans in the A samples (12.7 ± 0.91 %), indicates the negative impact of MP on the normal functioning of the freshwater plankton food web.
Collapse
Affiliation(s)
- Anita Galir
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8/A, Osijek 31000, Croatia
| | - Dubravka Špoljarić Maronić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8/A, Osijek 31000, Croatia.
| | - Filip Stević
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8/A, Osijek 31000, Croatia
| | - Tanja Žuna Pfeiffer
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8/A, Osijek 31000, Croatia
| | - Matea Dent
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8/A, Osijek 31000, Croatia
| | - Tena Minarik
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8/A, Osijek 31000, Croatia
| |
Collapse
|
9
|
Dai H, Zhong Y, Xiang S, Dong S, Chen S. Biofilm colonization on non-degradable and degradable microplastics change the adsorption of Cu(II) and facilitate the dominance of pathogenic microbes. ENVIRONMENTAL RESEARCH 2025; 272:121169. [PMID: 39978626 DOI: 10.1016/j.envres.2025.121169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/22/2025]
Abstract
Microplastics (MPs) have become a global concern as they can accumulate pollutants in aquatic environments. In this research, Cu(II) and non-degradable (polyamide, PA), degradable (polylactic acid, PLA) MPs were employed to reveal the potential connection among different aged MPs and heavy metal pollutants. The aging processes of MPs induced alterations in the surface morphologies, led to an augmentation of the specific surface area, and formed more biofilm and oxygen-containing groups on the MPs surface. The Qe of PA and PLA MPs increased from 0.102 to 0.989 to 1.192 and 2.457 mg/g after aging, respectively. The analysis of site energy distribution further verified that the enhanced adsorption capacity resulted from more high-energy adsorption sites obtained during the aging processes of MPs. Moreover, pathogenic bacteria and resistant bacteria were accumulated on the surface of MPs regardless of the aging environment, and the abundance and diversity of pathogenic bacteria on the biofilm of the PA surface were greater than those on the PLA MPs. This research offers an insight into the mechanism underlying microbial colonization and adsorption in the relationship between MPs and Cu(II), which is beneficial for judging the enrichment of heavy metals on MPs within the aquatic environment.
Collapse
Affiliation(s)
- Huihui Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Sch Environm & Chem Engn, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yingying Zhong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Sch Environm & Chem Engn, Nanchang Hangkong University, Nanchang, 330063, China
| | - Shuyu Xiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Sch Environm & Chem Engn, Nanchang Hangkong University, Nanchang, 330063, China
| | - Shanshan Dong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Sch Environm & Chem Engn, Nanchang Hangkong University, Nanchang, 330063, China
| | - Suhua Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Sch Environm & Chem Engn, Nanchang Hangkong University, Nanchang, 330063, China.
| |
Collapse
|
10
|
Shekhar S, Sarkar S. Microplastic aging and adsorption in the atmosphere, and their associated impacts on various spheres of the earth: A review. CHEMOSPHERE 2025; 376:144256. [PMID: 40054284 DOI: 10.1016/j.chemosphere.2025.144256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/07/2025] [Accepted: 02/23/2025] [Indexed: 03/23/2025]
Abstract
Microplastic (MPs, size <5 mm) is an emerging category of contaminants with detrimental effects on human health, climate, and ecology. The atmospheric pathway is a crucial transport route for the migration of MPs from source to receptor locations. This long-range transport leads to the ubiquitous presence of MPs across all environmental matrices and constrains the source-transport pathway-sink interaction. During atmospheric transport, MPs experience aging and adsorption as a result of interactions with winds, solar radiation, moisture, pH, and atmospheric pollutants, which alters their hydrophilicity, structure, surface area, size, color, and the capacity for adsorption, often resulting in elevated toxicity and associated risks. However, the multifaceted dynamics of atmospheric aging of MPs and consequent impacts are poorly understood. This review presents a critical assessment of three major factors that determine the nature and degree of MP aging and adsorption in the atmosphere, namely: intrinsic MP properties such as the degree of unsaturation, crystallinity, presence of functional groups, charge, specific surface area, and structural defects; environmental factors such as temperature, pH, moisture, and the presence of chemical species; and pollutant characteristics such as charge and hydrophilicity/hydrophobicity that influence adsorption, with an emphasis on potential mechanisms. Additionally, the review presents a comparative assessment of the critical factors and mechanisms responsible for aging and adsorption in atmosphere with those in other environmental media. Further, the potential impacts of atmospherically aged MPs on climate, the biosphere, cryosphere, pedosphere, and hydrosphere are summarized. The review finally identifies key knowledge gaps and outlines perspectives for future research.
Collapse
Affiliation(s)
- Sneha Shekhar
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175075, India
| | - Sayantan Sarkar
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175075, India.
| |
Collapse
|
11
|
Li W, Meng F. Microplastics in marine systems: A review of sources and sinks, typical environmental behaviors, and biological effects. MARINE POLLUTION BULLETIN 2025; 214:117758. [PMID: 40037102 DOI: 10.1016/j.marpolbul.2025.117758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Marine microplastics (MPs), whether originating from household and industrial production or stemming from the degradation of larger plastic fragments, have currently attracted significant global attention among the scientific community. The transport and deposition of MPs, characterized by their small size and large quantity, under oceanic hydrodynamics result in the contamination of a wide range of areas. Furthermore, MPs are capable of carrying metals and organic pollutants that constitute composite pollutants. The additives it carries will gradually release harmful substances during the degradation process. Once ingested by aquatic organisms and amplified by the food chain, these pollutants can adversely affect the survival and growth of marine flora and fauna, ultimately posing potential threats to humans. In this review, the major sources and sinks of MPs are described, considering the pollution of marine ecosystems. Additionally, typical environmental behaviors of MPs including their migration and accumulation in the ocean, their combined ability with heavy metals and organic pollutants, their leaching of additives, and their abiotic and biotic degradation pathways are discussed. The adverse effects on marine organisms resulting from ingestion and translocation of MPs are also reviewed herein. Even though the number of studies on MPs-associated environmental impacts is increasing rapidly, this review underscores that there is a pressing necessity to achieve an integrated assessment of MPs' impacts on marine ecology in order to address existing and future knowledge gaps.
Collapse
Affiliation(s)
- Wenlu Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
12
|
Song D, Yao Q. Exploring the molecular mechanisms of herbicide adsorption on microplastics: A quantum chemical approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179173. [PMID: 40147235 DOI: 10.1016/j.scitotenv.2025.179173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/15/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025]
Abstract
The widespread presence of microplastics in the environment has raised significant concerns, particularly regarding their potential interactions with herbicides and the combined pollution effects on ecosystems. In this study, quantum chemical calculations were employed to investigate the interaction mechanisms between polyethylene (PE) and polyvinyl chloride (PVC) microplastics and phenoxyacetic herbicides. The results revealed that PVC exhibits a stronger adsorption capacity compared to PE, and that low ionic strength conditions weaken the interactions between microplastics and herbicides. The energy decomposition analysis indicates that dispersion and electrostatic interactions are the predominant components contributing to the interaction energy, thus positioning the herbicide adsorption sites on microplastics near the minima of van der Waals and electrostatic potentials. The presence of hydrogen bond acceptors in microplastics influences the formation of intramolecular or intermolecular hydrogen bonds with the carboxylic groups of herbicides, resulting in significant changes in vibrational modes and infrared spectral absorption peaks, which offers a potential method for in situ monitoring of herbicide adsorption on microplastics. Additionally, different charge transfer phenomena are observed during the adsorption process, with PVC tending to lose electrons and PE to gain electrons. These insights provide a theoretical foundation for a deeper understanding of the adsorption behavior of phenoxyacetic herbicides on microplastics and hold significant implications for the optimization of environmental remediation strategies.
Collapse
Affiliation(s)
- Dayong Song
- College of Resources and Environmental Engineering Department, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Qichao Yao
- Shandong Laboratory of Advanced Materials and Green Manufacturing At Yantai, Yantai 264006, China.
| |
Collapse
|
13
|
Sun X, Tian S, You L, Huang X, Su JQ. UV-aging reduces the effects of biodegradable microplastics on soil sulfamethoxazole degradation and sul genes development. J Environ Sci (China) 2025; 150:422-431. [PMID: 39306417 DOI: 10.1016/j.jes.2024.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 10/01/2024]
Abstract
In recent years, the biodegradable plastics has extensively used in industry, agriculture, and daily life. Herein, the effects of two biodegradable microplastics (BMPs), poly(butyleneadipate-co-terephthalate) (PBAT) and polyhydroxyalkanoate (PHA), on soil sulfamethoxazole (SMX) degradation and sul genes development were comparatively studied based on the type, dosage, and state. The addition of virgin BMPs significantly increased soil DOC following a sequential order PBAT > PHA and high dose > low dose. Meanwhile virgin PBAT significantly reduced soil pH. In general, the addition of BMPs not only promoted soil SMX degradation but also increased the abundance of sul genes, with an exception that pH reduction in virgin PBAT inhibited the proliferation of sul genes. The driving effects of BMPs on soil microbial diversity following the same order as that on DOC. Specific bacteria stimulated by BMPs, such as Arthrobacter and two genera affiliated with phylum TM7, accounted for the accelerated degradation of SMX. Intriguingly, UV-aging hindered the release of DOC from BMPs and the reduction in pH, mitigated the stimulation of microbial communities, and ultimately reduced the promotion effect of BMPs on SMX degradation and sul genes proliferation. Our results suggest that more attention should be paid to the proliferation risk of ARGs in the environment affected by BMPs and UV-aging can be employed sometimes to reduce this risk.
Collapse
Affiliation(s)
- Xuecong Sun
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lelan You
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Joseph A, Xie R, Feng Z, Wu H, Li J, Yuan X, Zhu N, Wang Y. Adsorption Behaviors of Cadmium Regulated by Microplastics Properties in a Forest Soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:56. [PMID: 40146376 DOI: 10.1007/s00128-025-04036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/21/2025] [Indexed: 03/28/2025]
Abstract
Co-contamination of microplastics (MPs) and cadmium (Cd) has attracted attentions in forest soils due to their complex behaviors and ecological risks. This study investigates the interactions between MPs and Cd2+, focusing on effects of different types (polyethylene: PE, polybutylene succinate: PBS, poly-11-bromoundecyl acrylate: PBA), sizes (75-150 and 150-300 μm) and concentrations (1% and 10%) of MPs on soil properties. Results showed that MPs significantly influence contents of soil dissolved organic carbon and available nitrogen, while increased MPs concentrations reduced the dissolved organic matter (DOM) availability and decomposition. Adsorption and desorption of Cd2+ were higher in biodegradable MPs (PBS and PBA), with the Freundlich model providing a better fit for Cd2+ adsorption. Pearson correlation and redundancy analysis identified soil DOM, number of humic-like substances, and microbial by-products as key factors influencing Cd2+ behavior. These findings contribute to understanding risks of co-contamination by MPs and heavy metals in forest soils.
Collapse
Affiliation(s)
- Akaninyene Joseph
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
- Department of Biosciences and Biotechnology, Faculty of Science, University of Medical Sciences, Ondo, 351101, Nigeria
| | - Rongxin Xie
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhiwang Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hanzhou Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jizhou Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xuyin Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
15
|
Shokunbi OS, Makanju F, Nneoma J, Shokunbi OS. From source to distribution channel: A baseline study of microplastic occurrence in drinking water in Ogun State, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:438. [PMID: 40108087 DOI: 10.1007/s10661-025-13929-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Microplastics (MPs) are emerging contaminants known to have contaminated not only surface and groundwater but also drinking water treatment plants (DWTPs) and tap water. Little is known about the occurrence of MPs in DWTPs in Africa, particularly in developing countries like Nigeria. To address this knowledge gap, this study investigated the prevalence and estimated daily intake of MPs in raw water, DWTPs, and tap water in a semi-urban area in Ogun State, Nigeria. Using Rose Bengal staining and optical microscopy, MPs in water samples were identified and characterised using standard methods. The abundances of MPs were 16.13 ± 3.83 particles/L in raw water, 10.74 ± 3.76 particles/L in treated water, and 12.43 ± 3.92 particles/L in tap water. Most of the MPs found in the water samples were classified as fibres, followed by fragments, with a size of < 1 mm. This study showed that the drinking water treatment plant reduced microplastics from raw water by 40%, however, there was an increase in the abundance of MPs in tap water. Residents estimated daily consumption of MPs from tap water varied between 0.31 and 0.44 particles for adults and between 1.2 and 1.69 particles for children. This study addresses a critical gap in understanding microplastic pollution in the water distribution systems and DWTPs. The results also indicated that MPs were not effectively removed, requiring a more sophisticated treatment method to lower human exposure to MPs through drinking water from DWTPs.
Collapse
Affiliation(s)
- Oluwatosin Sarah Shokunbi
- Department of Basic Sciences, School of Science and Technology, Babcock University, Ilishan-Remo, Ogun State, Nigeria.
| | - Favour Makanju
- Department of Biochemistry, School of Basic Medical Sciences, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Joshua Nneoma
- Department of Biochemistry, School of Basic Medical Sciences, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Olutayo Sunday Shokunbi
- Department of Biochemistry, School of Basic Medical Sciences, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| |
Collapse
|
16
|
Galahitigama H, Sandamali P, Jayapra T, Abesinghe N, Senavirathna MDHJ, Diola MBL, Tanchuling MA. Assessing the impact of micro and nanoplastics on the productivity of vegetable crops in terrestrial horticulture: a comprehensive review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:404. [PMID: 40095235 PMCID: PMC11914347 DOI: 10.1007/s10661-025-13820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
Micro and nano plastics (MNPs) pollution has emerged as a significant environmental issue in recent years. Plastic contamination in the environment poses risks to both human health and other organisms within the ecosystem. This review discusses the overall impact of MNPs on the performance of vegetable crops, including a global perspective on the topic. Bibliometric analysis reveals that most research on this subject has been concentrated in a few countries, although the number of studies has notably increased in recent years. MNPs accumulate in arable lands due to human activities, often altering the soil's physical, chemical, and biological properties in the rhizosphere. Vegetable crops absorb these MNPs mainly through their roots, leading to accumulation in the edible parts of the plants. Consequently, this results in phytotoxic symptoms and poor growth and development. The phytotoxic effects of MNPs are attributed to genetic and metabolic changes within the plant's cellular structure. Current research on MNPs has been limited to a few vegetable cultivars. Future studies should encompass a broader range of vegetable crops under both laboratory and field conditions to advance this burgeoning field of research. Additionally, examining various types of plastics is essential to comprehensively understanding their impact.
Collapse
Affiliation(s)
- Harshana Galahitigama
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama, 338-8570, Japan
| | - Poorni Sandamali
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, P.O. Box 02, Belihuloya, 70140, Sri Lanka
| | - Thilini Jayapra
- Department of Agricultural Technology, Faculty of Technology, University of Colombo, Pitipana, Homagama, Sri Lanka
| | - Nandula Abesinghe
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, P.O. Box 02, Belihuloya, 70140, Sri Lanka
| | | | - Ma Brida Lea Diola
- Institute of Civil Engineering, College of Engineering, University of the Philippines Diliman, Quezon City, Philippines
| | - Maria Antonia Tanchuling
- Institute of Civil Engineering, College of Engineering, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
17
|
Liu Y, Li B, Zhou J, Li D, Liu Y, Wang Y, Huang W, Ruan Z, Yao J, Qiu R, Chen G. Effects of naturally aged microplastics on arsenic and cadmium accumulation in lettuce: Insights into rhizosphere microecology. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136988. [PMID: 39731888 DOI: 10.1016/j.jhazmat.2024.136988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Naturally aged microplastics (NAMPs) are commonly found in farmland soils contaminated with heavy metals (HMs), such as arsenic (As) and cadmium (Cd); yet their combined effects on soil-plant ecosystems remain poorly understood. In this study, we investigated the toxic effects of NAMPs and As-Cd on lettuce, considering the influence of earthworm activity, and examined changes in As-Cd bioavailability in the rhizosphere. Four experimental systems were established: soil-only, soil-lettuce, soil-earthworms, and soil-lettuce-earthworms systems, with four NAMPs concentrations (0, 0.1, 0.5, 1 %). Our results showed that exposure to 0.1 % NAMPs reduced As accumulation in lettuce shoots (0.17-0.25 mg kg-1) and roots (1.13-1.72 mg kg-1), while increasing biomass and enhancing root growth by alleviating toxicity. In contrast, the combined stress of higher NAMPs concentration (0.5 %/1 %) and As-Cd caused a 28.4-58.4 % reduction in root activity, which stimulated low-molecular-weight organic acid (LMWOA) secretion in the rhizosphere, increasing the bioavailability of As and Cd and enhancing their absorption by lettuce. Partial least squares path modeling (PLS-PM) revealed that co-exposure altered LMWOA content, soil enzyme activity, and microbial community stability in the rhizosphere, ultimately influencing the bioavailability and uptake of As and Cd by lettuce.
Collapse
Affiliation(s)
- Yanwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Bingqian Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Juanjuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Dongqin Li
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 501640, China
| | - Yuanyang Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Weigang Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhepu Ruan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jun Yao
- School of Water Resource and Environmental Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), Beijing 100083, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Guikui Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Cai Y, Zheng B, Lin X, You X, Jia Q, Xue N. Efficient and stable extraction of nano-sized plastic particles enabled by bio-inspired magnetic "robots" in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125501. [PMID: 39746636 DOI: 10.1016/j.envpol.2024.125501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/24/2024] [Accepted: 12/07/2024] [Indexed: 01/04/2025]
Abstract
In this research, a rationally-designed strategy was employed to address the crucial issue of removing nano-plastics (NPs) from aquatic environments, which was based on fabricating sea urchin-like structures of Fe3O4 magnetic robots (MagRobots). Through imitating the sea urchin's telescopic tube foot movement and predation mechanism, the unique structures of the MagRobots were designed to adapt to the size and surface interactions of NPs, leading to a high efficiency of NPs removal (99%), as evidenced by the superior performance of 594.3 mg/g for the removal of polystyrene (PS) nanoparticles from water, with 3300% increase over magnetic Fe3O4 without structural design. The adsorption process was further analyzed using density functional theory (DFT) models and adsorption experiments, indicating that it was driven by electrostatic interactions. MagRobots maintained an adsorption capacity of up to 328 mg/g over four cyclic experiments and demonstrated high-capacity adsorption (close to 400 mg/g) in natural water bodies. The results of the simulations were supported by experiments that verified the excellent adsorption performance, regeneration effect, and environmental stability of the MagRobots under both simulated and real-world water conditions. This ingenious structural strategy provided valuable perspectives for the development of efficient magnetic porous materials for wastewater treatment, which would have potential applications for the treatment of NPs in real aquatic ecosystems. The unique sea urchin-like structures of the MagRobots could offer an innovative approach to tackle the challenge of NPs removal.
Collapse
Affiliation(s)
- Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Buyun Zheng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xin You
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qunpo Jia
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ni Xue
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
19
|
Patel T, Lata R, Arikibe JE, Rohindra D. Towards sustainable microplastic cleanup: Al/Fe ionotropic chitosan hydrogels for efficient PET removal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:228. [PMID: 39900689 DOI: 10.1007/s10661-025-13661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
Chitosan (CHI) was modified with iron and aluminum salts to create ionotropic beads, Fe-CHI and Al-CHI, for the removal of polyethylene terephthalate microplastics (PET-MP) from water. Infrared spectroscopy revealed reduced hydrogen bonding associated with N-H vibration of CHI (3500-3100 cm-1) due to the interaction with the metal ions, and absorption peaks between 500 and 916 cm⁻1 predominantly due to metal-oxygen stretching vibrations. The swelling behavior of the beads increased with temperature but decreased as pH and metal doping concentration increased. Conductivity and PET-MP removal efficiency improved with higher metal ion concentrations, with Al-CHI exhibiting greater swelling and conductivity compared to Fe-CHI. The highest efficiency for MP remediation was recorded at low pH levels. MP adsorption decreased with rising temperatures and varied with pH changes due to protonation and deprotonation reactions of CHI, along with the various cationic and anionic species formed by the metals. At pH 7, MP removal by Fe-CHI beads declined as the doping concentration increased, attributed to specific Fe species that emerged at this pH. The zeta potential measurements showed that both the beads and the MP were in an unstable range at low pH but shifted towards stability at higher pH levels. Re-adsorption efficiencies exceeded 70% for both low and high-doped Fe-CHI and Al-CHI beads when tested with ~ 40 MP/mL of MP suspension over three different cycles. Overall, the use of ionotropic CHI beads offers a promising, eco-friendly method for effectively reducing PET-MPs in water.
Collapse
Affiliation(s)
- Tejesvi Patel
- School of Agriculture, Geography, Environment, Oceans and Natural Sciences, The University of the South Pacific, Private Mail Bag, Suva, Fiji
| | - Roselyn Lata
- School of Agriculture, Geography, Environment, Oceans and Natural Sciences, The University of the South Pacific, Private Mail Bag, Suva, Fiji
| | - Joachim Emeka Arikibe
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padua, PD, Italy
| | - David Rohindra
- School of Agriculture, Geography, Environment, Oceans and Natural Sciences, The University of the South Pacific, Private Mail Bag, Suva, Fiji.
| |
Collapse
|
20
|
Pedroza RHP, David C, Barriada JL, Rey-Castro C, Lodeiro P. The role of photooxidation and organic matter in Cr(III) and Cr(VI) interactions with poly(lactic acid) microplastics in aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178431. [PMID: 39818155 DOI: 10.1016/j.scitotenv.2025.178431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter. The results indicate that pristine PLA has a low affinity for Cr (between 0.05 and 46 μg/g) across varying pH levels, ionic strengths, and microplastic concentrations. However, the presence of organic matter (OM), represented by humic and tannic acids, resulted in 5.2-fold and 620-fold increases for Cr(III) and Cr(VI) adsorption, respectively. Possible mechanisms for that behavior are discussed, including Cr-OM complexation and formation of surface coatings. Noteworthy, we demonstrate that Cr(VI) adsorption involves a coupled redox-complexation process that appears to be related to the antioxidant potential of OM. Indeed, the ratio of (poly)phenol content of tannic and humic acids (6.23) is consistent with the ratio of Cr(VI) reduction in presence of both acids (6.97). Finally, photooxidation of PLA enhanced Cr(III) and Cr(VI) adsorption by a factor of 60 and 15, respectively. This is primarily attributed to UV-induced changes in surface chemical groups (increased oxygen content), rather than a change in surface area. This research provides key insights into the behavior of PLA as a potential Cr carrier, revealing the importance of organic matter and the photoaging of microplastics in the mobility of trace metal pollutants in the environment.
Collapse
Affiliation(s)
- Ricardo H P Pedroza
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Calin David
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - José L Barriada
- Department of Chemistry, University of A Coruña, Rúa da Fraga 10, 15071 A Coruña, Spain
| | - Carlos Rey-Castro
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain.
| | - Pablo Lodeiro
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
21
|
Kapelewska J, Karpińska J, Klekotka U, Piotrowska-Niczyporuk A. Effect of polyethylene microplastic biodegradation by algae on their sorption properties and toxicity. CHEMOSPHERE 2025; 370:143993. [PMID: 39706491 DOI: 10.1016/j.chemosphere.2024.143993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Microplastics (MPs) in aquatic environments constitute an ideal surface for biofilm formation, facilitating or hindering the transport of contaminants. This study aims to provide knowledge on the sorption behavior of high-density polyethylene (μ-HDPE) after algal degradation toward UV filters. Up to now, the oxidation of μ-HDPE using the microalga Acutodesmus obliquus has not been studied. The results obtained by infrared spectroscopy (IR), scanning electron microscopy (SEM), and porosimetry analysis revealed a biofilm formation on the surface of μ-HDPE and the presence of carbonyl and double bond functional groups. Also, this is the first time that the simultaneous sorption of benzophenone (BPh), 4-methylbenzylidene camphor (4MBC), benzophenone 3 (BPh3), and benzophenone 2 (BPh2) onto biofilm-covered HDPE (biofilm-HDPE) in water have been studied. Filters' sorption on biofilm-HDPE particles follows pseudo-second-order kinetics, and film diffusion was the stage that limited the sorption rate. The Langmuir isothermal model describes the adsorption process for 4MBC, BPh, and BPh2 well, and the linear model is fit for the sorption of BPh3. Hydrophobic interactions, van der Waals forces, electrostatic, and π-π bon are the main mechanisms responsible for the sorption. Biological analysis indicated that HDPE at concentrations of 500 mg L-1 inhibits A. obliquus growth and reduces the levels of proteins, sugars, and chlorophylls. In contrast, the activity of antioxidant enzymes and the contents of small molecular weight antioxidants significantly increased in algal cells treated with microplastic. These findings confirm the toxicity of μ-HDPE and demonstrate the induction of defense mechanisms in A. obliquus as a response to environmental pollutants.
Collapse
Affiliation(s)
- Justyna Kapelewska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland.
| | - Joanna Karpińska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland
| | - Urszula Klekotka
- Department of Materials Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland
| | - Alicja Piotrowska-Niczyporuk
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245, Bialystok, Poland
| |
Collapse
|
22
|
Li Y, Wang Y, Yang S, Bao T, Su F, Qian J. Adsorption behavior of levofloxacin hydrochloride on non-degradable microplastics aging with H 2O 2. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70021. [PMID: 39901449 DOI: 10.1002/wer.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/05/2025]
Abstract
Plastics pollutants, especially microplastics (MPs, <5 mm in diameter) and levofloxacin hydrochloride (Lev-HCl) often co-exist in the aquatic environment. To explore the adsorption processes and mechanisms of Lev-HCl by non-degradable MPs, in this study, H2O2 oxidation was used to age polyvinyl chloride (PVC), polystyrene (PS), and polyethylene terephthalate (PET) MPs. The results demonstrated that the equilibrium adsorption capacity increased significantly after aging, as H2O2-PET (1.167 mg/g) > PET (0.995 mg/g), H2O2-PS (1.057 mg/g) > PS (0.957 mg/g), H2O2-PVC (1.107 mg/g) > PVC (0.975 mg/g). After H2O2 aging, the hydrogen bond (-OH) was more obvious, and π-π interactions were significantly enhanced. These non-degradable MPs mainly adsorbed Lev-HCl by micropore filling (contributions: PVC 65.9%, PS 56%, PET 63.5%). The current study highlights the potential of non-degradable MPs to act as a vector for Lev-HCl in the aquatic environment, especially after H2O2 aging. PRACTITIONER POINTS: Adsorption behavior of Lev-HCl onto three non-degradable MPs was elucidated. The adsorption capacity increased significantly after aging for PVC, PS, and PET MPs. The hydrogen bonding and π-π interactions of H2O2-aged MPs were more significant. Multi-layer adsorption on non-homogeneous surfaces via micropore filling was revealed.
Collapse
Affiliation(s)
- Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| | - Yiyan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| | - Shutong Yang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| | - Terun Bao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| | - Fei Su
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| | - Jie Qian
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| |
Collapse
|
23
|
Lai S, Fan C, Yang P, Fang Y, Zhang L, Jian M, Dai G, Liu J, Yang H, Shen L. Effects of different microplastics on the physicochemical properties and microbial diversity of rice rhizosphere soil. Front Microbiol 2025; 15:1513890. [PMID: 39911709 PMCID: PMC11796422 DOI: 10.3389/fmicb.2024.1513890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/10/2024] [Indexed: 02/07/2025] Open
Abstract
Biodegradable plastics, as alternatives to conventional waste plastics, are increasingly applied across various fields. However, the ecological risks associated with the widespread use of biodegradable plastics remain unclear. Additionally, biodegradable plastics tend to age in the environment, leading to changes in their physicochemical properties. The ecological risks brought by the aging of microplastics have also been scarcely studied. In this study, we selected conventional microplastics (PE-MPs), biodegradable microplastics (PLA-MPs), and aged biodegradable microplastics (aging-PLA-MPs) to explore their effects on the rhizosphere soil environment of rice. The results showed that microplastics reduced the soil N and P content, with PE slightly increasing the DOC content, while PLA and aging-PLA significantly increased DOC by 21.13 and 24.04%, respectively. Microplastics also decreased soil enzyme activity, with aging-PLA having a somewhat stimulatory effect on enzyme activity compared to PLA. Furthermore, microplastics reduced the soil bacterial diversity index and altered the community structure of dominant bacterial species, with DOC content and FDA hydrolase being the main factors influencing the soil bacterial community. Bacteria were most sensitive to PLA, and the stability of the bacterial microbial network structure decreased, although aging reduced the negative impact of PLA on the bacterial community. This study contributes to our understanding of the ecological risks posed by biodegradable plastics and their aging processes on the environment.
Collapse
Affiliation(s)
- Sheng Lai
- Jiangxi Academy of Water Science and Engineering, Nanchang, China
- College of Life Science, Jiangxi Normal University, Nanchang, China
- Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin, Nanchang, China
| | - Cunzhong Fan
- College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Ping Yang
- Jiangxi Academy of Water Science and Engineering, Nanchang, China
- Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin, Nanchang, China
| | - Yuanyuan Fang
- Jiangxi Academy of Water Science and Engineering, Nanchang, China
- Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin, Nanchang, China
| | - Lanting Zhang
- Jiangxi Academy of Water Science and Engineering, Nanchang, China
- Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin, Nanchang, China
| | - Minfei Jian
- College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Guofei Dai
- Jiangxi Academy of Water Science and Engineering, Nanchang, China
- Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin, Nanchang, China
| | - Jutao Liu
- Jiangxi Academy of Water Science and Engineering, Nanchang, China
- Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin, Nanchang, China
| | - Huilin Yang
- College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Liqin Shen
- Jiangxi Academy of Water Science and Engineering, Nanchang, China
- Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin, Nanchang, China
| |
Collapse
|
24
|
Jilili Y, Wang J, Xiang Q, Ma Y, Zhen W, Guo C, Xu W, You L, Wang L. Natural Degradation Behavior of Poly(lactic acid) Nanocomposite Films and the Adsorption Behavior of Degraded Products on Cu(II). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:116-129. [PMID: 39743339 DOI: 10.1021/acs.langmuir.4c03064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In this study, the degradation behavior of poly(lactic acid) nanocomposite films (PLA/Hec-g@PS) under extreme natural environments was investigated, and the degraded PLA based films were applied to adsorb Cu(II). During the early and midstages of degradation, the surface roughness and crack propagation rate of PLA/Hec-g@PS films were significantly lower than those of PLA films. This could be due to the fact that Hec-g@PS enhanced the interaction forces between C-O-C + CH3 and C═O in the PLA chains, thereby mitigating the degradation of PLA. Neural network predictions indicated that the molecular weight of PLA films decreased to 30% after 1344 days, whereas PLA/Hec-g@PS films reached the same reduction in 1451 days, extending the lifespan of PLA by 1.08 times. The environmental impact of PLA/Hec-g@PS was further assessed by their adsorption behavior toward Cu(II). It was found that PLA films adsorbed 244.51 μg/g of Cu(II), while PLA/Hec-g@PS films adsorbed 372.63 μg/g of Cu(II). The isotherm adsorption model showed that the maximum adsorption capacities (qm) of PLA and PLA/Hec-g@PS were 326.60 μg/g and 441.51 μg/g, respectively. This improvement offers PLA based films new possibilities for applications in wastewater treatment and soil remediation.
Collapse
Affiliation(s)
- Yikelamu Jilili
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Jiang Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Qianjin Xiang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Yumiao Ma
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Weijun Zhen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Chunyun Guo
- Natural Environment Experimental Research Center in Turpan, Xinjiang Uygur Autonomous Region, Turpan 838000, China
| | - Wei Xu
- Natural Environment Experimental Research Center in Turpan, Xinjiang Uygur Autonomous Region, Turpan 838000, China
| | - Liwu You
- Natural Environment Experimental Research Center in Turpan, Xinjiang Uygur Autonomous Region, Turpan 838000, China
| | - Li Wang
- Natural Environment Experimental Research Center in Turpan, Xinjiang Uygur Autonomous Region, Turpan 838000, China
| |
Collapse
|
25
|
Wang LC, Lin JCT, Ye JA, Lim YC, Chen CW, Dong CD, Liu TK. Enrichment of Persistent Organic Pollutants in Microplastics from Coastal Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22391-22404. [PMID: 39629940 DOI: 10.1021/acs.est.4c10835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Despite the adsorption of microplastics (MPs), the precise quantification of their concentrating effect on persistent organic pollutants (POPs) remains uncertain. Therefore, in this study, POPs in MPs, POPs in suspended particulate matter (SPM), and dissolved POPs in seawater were distinguished to quantify the enrichment factor (EF) for characterizing the concentrating effects of MPs and SPM on POPs. The results showed that the logarithm of EF (log EF) for POPs in MPs was 5.94 to 7.14. For POPs, the concentrating effect of MPs was 1 to 2 orders of magnitude greater than that of SPM. Moreover, for PCDD/Fs, PBDD/Fs, and PBDEs, the concentrating effect of MPs was roughly comparable to that of organic matter in SPM, while it was 1 to 2 orders of magnitude higher than that of organic matter for dioxin-like PCBs and PBBs. The MPs were prone to sorbing highly toxic POP congeners. When the logarithm of the n-octanol-water partition coefficient (log KOW) of POP homologues ranged from 5.5 to 8.25, the log EF for POP homologues in MPs approximately was between 5 and 7. The heterogeneous MPs from the field environment affected their capacity to sorb POPs, causing a nonsignificant correlation between the enrichment factor and log KOW.
Collapse
Affiliation(s)
- Lin-Chi Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 811213, Taiwan
| | - Justin Chun-Te Lin
- Department of Environmental Engineering and Science, Feng Chia University, Taichung City 407102, Taiwan
| | - Jia-An Ye
- Institute of Ocean Technology and Marine Affairs, National Cheng Kung University, No. 1, University Road, Tainan City 701401, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 811213, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 811213, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 811213, Taiwan
| | - Ta-Kang Liu
- Institute of Ocean Technology and Marine Affairs, National Cheng Kung University, No. 1, University Road, Tainan City 701401, Taiwan
| |
Collapse
|
26
|
Zhang Q, Xu P, Yan N, Ren Y, Liang X, Guo X. Adsorption of neonicotinoid insecticides by mulch film-derived microplastics and their combined toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177238. [PMID: 39490386 DOI: 10.1016/j.scitotenv.2024.177238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Mulch films allow for efficient crop production, yet their low recovery after use causes severe microplastics (MPs) pollution in agricultural soils. MPs in agricultural environments undergo complex ageing processes, which can alter their interactions with coexisting neonicotinoids and result in unpredictable ecological risks. Here, polyethylene (PE) and polybutylene adipate terephthalate (PBAT), typical mulch films, were chosen for the preparation of PE-MPs and PBAT-MPs. The adsorption of two common neonicotinoids, imidacloprid and dinotefuran, by the two MPs and their joint toxicity were examined. We found that the specific surface area of PBAT-MPs (7.59 m2 g-1) is greater than that of PE-MPs (2.83 m2 g-1), which results in a greater adsorption capacity for neonicotinoids. Additionally, ageing increased the adsorption capacity of MPs for neonicotinoids by 37.50-40.68 % for PBAT-MPs and 44.23-72.34 % for PE-MPs. This enhancement is attributed to the introduction of additional oxygen-containing functional groups on the MPs' surfaces, which can form hydrogen bonds with the amino groups in imidacloprid and dinotefuran. Furthermore, compared to single MPs and neonicotinoids, stronger inhibition in the growth of Escherichia coli and the germination of lettuce seeds was observed when they coexisted. This study highlights the importance of assessing the interactions between MPs and neonicotinoids and their joint toxicity, thereby improving our understanding of the potential risks of MPs towards the agricultural ecosystems.
Collapse
Affiliation(s)
- Quanxin Zhang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Pingfan Xu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China.
| | - Nana Yan
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Yujing Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
27
|
Cheng H, Zou Y, Lu B, Wang J, Magnuson JT, Xu B, Qiu W, Xuan R. Immunotoxic response of bio-based plastic on early life stage zebrafish (Danio rerio): A safe alternative to petroleum-based plastics? JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135846. [PMID: 39303614 DOI: 10.1016/j.jhazmat.2024.135846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Bio-based plastics are marketed as environmentally friendly alternatives to petroleum-based plastics, although they require specific composting conditions for degradation, which leads to their accumulation in the environment and potential risks to aquatic organisms. We hypothesized that the accumulation of bio-based plastics may induce immunotoxic responses in fish. Our research focused on the accumulation and immunotoxicity of 80 nm polylactic acid (PLA) and polystyrene (PS) (0.1-10 mg/L) on early life stage zebrafish (Danio rerio) exposed for 7 days. Compared to PS, there was a higher accumulation of PLA in larvae. Exposure to PLA resulted in a significant increase in neutrophils and macrophages, while immune protein levels such as Complement 3 (C3), Immunoglobulin M (IgM), and C-reactive protein (CRP) were significantly reduced. Furthermore, the mRNA expression of pro-inflammatory cytokines, including tnf-α and il-6, were significantly elevated in PLA treatments. Additionally, PLA-exposed zebrafish were more susceptible to infection by Vibrio parahaemolyticus. Interestingly, at the same concentration, exposures to PS did not induce significant changes in macrophages or immune protein levels, C3 and IgM. This suggests that PLA has a greater immunotoxic response relative to PS. Our research findings contradict the popular belief that bio-based plastics are non-toxic and harmless, which may have potential risk to aquatic organisms.
Collapse
Affiliation(s)
- Haodong Cheng
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Yao Zou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Society of Environmental Sciences, Guangzhou 510045, China
| | - Bin Lu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jiazhen Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China; Guangdong-Hong Kong Joint Laboratory for Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Jason T Magnuson
- US Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China; Guangdong-Hong Kong Joint Laboratory for Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China.
| | - Rongrong Xuan
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China.
| |
Collapse
|
28
|
Liu Y, Cai H, Wen Y, Song X, Wang X, Zhang Z. Research progress on degradation of biodegradable micro-nano plastics and its toxic effect mechanism on soil ecosystem. ENVIRONMENTAL RESEARCH 2024; 262:119979. [PMID: 39270956 DOI: 10.1016/j.envres.2024.119979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Biodegradable plastics (BPs) are known to decompose into micro-nano plastics (BMNPs) more readily than conventional plastics (CPs). Given the environmental risks posed by BMNPs in soil ecosystems, their impact has garnered increasing attention. However, research focusing on the toxic effects of BMNPs on soils remains relatively limited. The degradation process and duration of BMNPs in soil are influenced by numerous factors, which directly impact the toxic effects of BMNPs. This highlights the urgent need for further research. In this context, this review delineates the classification of BPs, investigates the degradation processes of BPs along with their influencing factors, summarizes the toxic effects on soil ecosystems, and explores the potential mechanisms that underlie these toxic effects. Finally, it provides an outlook on related research concerning BMNPs in soil. The results indicate that specific BMNPs release additives at a faster rate during decomposition, degradation, and aging, with certain compounds exhibiting increased bioavailability. Importantly, a substantial body of research has shown that BMNPs generally manifest more pronounced toxic effects in comparison to conventional micro-nano plastics (CMNPs). The toxic effects associated with BMNPs encompass a decline in soil quality and microbial biomass, disruption of nutrient cycling, inhibition of plant root growth, and negative impacts on invertebrate reproduction, survival, and fertilization rates. The rough and complex surfaces of BMNPs contribute to increased mechanical damage to tested organisms, enhance absorption by microorganisms, and disrupt normal physiological functions. Notably, the toxic effects of BMNPs on soil ecosystems are influenced by factors including concentration, type of BMNPs, exposure conditions, degradation products, and the nature of additives used. Therefore, it is crucial to standardize detection technologies and toxicity testing conditions for BMNPs. In conclusion, this review provides scientific evidence that supports effective prevention and management of BMNP pollution, assessment of its ecological risks, and governance of BMNPs-related products.
Collapse
Affiliation(s)
- Yuqing Liu
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Haoxuan Cai
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang, 110000, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang, 110000, China.
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Xiaochu Wang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Sichuan, 610000, China
| |
Collapse
|
29
|
Ai J, Wang B, Gao X, Yuan Y, Zhou S, Yin X, Wang J, Jia H, Sun H. Effect of biosurfactants on the transport of polyethylene microplastics in saturated porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176636. [PMID: 39357764 DOI: 10.1016/j.scitotenv.2024.176636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Microplastic (MP) pollution has become a significant global environmental issue, and the potential application of biosurfactants in soil remediation has attracted considerable attention. However, the effects of biosurfactants on the transport and environmental risks of MPs are not fully understood. This study investigated the transport of polyethylene (PE) in the presence of two types of biosurfactants: typical anionic biosurfactant (rhamnolipids) and non-ionic biosurfactant (sophorolipids) using column experiments. We explored the potential mechanisms involving PE surface roughness and the influence of dissolved organic matter (DOM) on PE transport in the column under the action of biosurfactants, utilizing the Wenzel equation and fluorescence analysis. The results revealed that both the concentration of biosurfactants and the surface roughness of PE were advantageous for the adhesion of biosurfactants to the PE surface, thereby enhancing the mobility of PE in the column. The proportion of hydrophobic substances in various DOM sources is a critical factor that enhances PE transport in the column. However, the biosurfactant-mediated enhancement of PE transport was inhibited by the biosurfactant-DOM mixture. This was mainly due to DOM occupying the adhesion sites of biosurfactants on PE surfaces. Moreover, the mobility of PE in the presence of sophorolipids is higher than that in the presence of rhamnolipids because the combined hydrophobic and electrostatic forces between PE and sophorolipids create synergistic effects that improve PE stability. Additionally, the mobility of PE increased with rising pH and decreasing ionic strength. These findings provide a more comprehensive understanding of MP transport when using biosurfactants for soil remediation.
Collapse
Affiliation(s)
- Juehao Ai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Binying Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaolong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yunning Yuan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
30
|
Muthuraja R, Ou B, Thangavelu M, Narhayanan TN, Chittamart N, Janjaroen D. Effects of particle size and aging on heavy metal adsorption by polypropylene and polystyrene microplastics under varying environmental conditions. CHEMOSPHERE 2024; 369:143843. [PMID: 39617328 DOI: 10.1016/j.chemosphere.2024.143843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Microplastics have become a major environmental issue because of their widespread presence and tendency to adsorb heavy metals, which can have harmful effects on aquatic ecosystems and human health. The present study investigates the adsorption mechanisms of Pb2+ and Cu2+ ions on both pristine and artificially aged microplastics (MPs) made of polystyrene (PS) and polypropylene (PP). Furthermore, the influence of MP size on the adsorption capacity under different environmental conditions was evaluated. According to the characterization of MPs, aging leads to physical damage and an increase in the number of oxygen-containing functional groups on their surface. The experimental results highlight the significantly higher adsorption ability of smaller and aged MPs compared with that of pristine MPs for both the heavy metal ions. The pseudo-second-order equation provided a better fit for the adsorption kinetics study (R2 = 0.95), suggesting that chemisorption governs the rate-limiting phase in the adsorption mechanism on the MP surfaces. The concordance between the adsorption isotherm model and Freundlich model (R2 > 0.95) indicated a predominance of multilayer adsorption. The environmental factors such as pH, humic acid, temperature, and SO42- concentration significantly affected the adsorption of Pb2⁺ and Cu2⁺ onto PP and PS MPs. These variables play a crucial role in determining the nature of the interactions between heavy metal ions and the microplastic particles under diverse environmental conditions. Electrostatic interactions, surface complexation and van der Waals forces were identified as two factors that could either improve or diminish the metal ion adsorption capacity of MPs.
Collapse
Affiliation(s)
- Raji Muthuraja
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Bunlong Ou
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Muthukumar Thangavelu
- Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Thaiyal Nayahi Narhayanan
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Natthapol Chittamart
- Department of Soil Science, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
| | - Dao Janjaroen
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Professor Aroon Sorathesn Center of Excellence in Environmental Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
31
|
Guo J, Jin X, Zhou Y, Gao B, Li Y, Zhou Y. Microplastic and antibiotics in waters: Interactions and environmental risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123125. [PMID: 39488185 DOI: 10.1016/j.jenvman.2024.123125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Antibiotics (ATs) are ubiquitously detected in natural waters worldwide, and their tendency to co-migrate with microplastics (MPs) post-adsorption leads to heightened environmental risk. Research on the adsorption of ATs on MPs and their subsequent effects on the environmental risks is gaining significant attention globally. This adsorption process predominantly occurs through hydrophobic forces, hydrogen bonds, and electrostatic interactions and is influenced by various environmental factors. The interaction between MPs and ATs exhibited varying degrees of efficiency across different pH levels and ionic strengths. Furthermore, this paper outlines the environmental risks associated with the co-presence of MPs and ATs in aquatic environments, emphasizing the potential effect of MPs on the distribution of antibiotic resistance genes (ARGs) and related environmental risks. The potential hazards posed by MPs and ATs in aquatic systems warrant serious consideration. Future research should concentrate on the adsorption of ATs/ARGs on MPs under real environmental conditions, horizontal gene transfer on MPs, as well as biofilm formation and agglomeration behavior on MPs that needs to be emphasized.
Collapse
Affiliation(s)
- Jiayi Guo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinbai Jin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China; Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, Shanghai, 200237, China
| | - Bowen Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China; School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
32
|
Shao X, Liang W, Gong K, Qiao Z, Zhang W, Shen G, Peng C. Effect of biodegradable microplastics and Cd co-pollution on Cd bioavailability and plastisphere in soil-plant system. CHEMOSPHERE 2024; 369:143822. [PMID: 39608653 DOI: 10.1016/j.chemosphere.2024.143822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Biodegradable plastics (BPs) are regarded as ecomaterials and are emerging as a substitute for traditional non-degradable plastics. However, the information on the interaction between biodegradable microplastics (BMPs) and cadmium (Cd) in agricultural soil is still limited. Here, lettuce plants were cultured in BMPs (polylactic acid (PLA) MPs and poly(butylene-adipate-co-terephthalate) (PBAT) MPs) and Cd co-polluted soil for 35 days. The results show that diffusive gradient in thin films technique (DGT) but not diethylenetriaminepentaacetic acid (DTPA) extraction method greatly improved the prediction reliability of Cd bioavailability in non-rhizosphere soil treated with BMPs (R2 = 0.902). BMPs increased the Cd bioavailability in non-rhizosphere soil indirectly by decreasing soil pH, cation exchange capacity (CEC), and dissolved organic carbon (DOC), rather than by directly adsorbing Cd on their surface. PLA MPs incubated in rhizosphere soil showed more considerable degradation with extremely obvious cavities and the fracture of ester functional groups on their surface than PBAT MPs. BMPs could provide ecological niches to colonize and induce microorganisms associated with BMPs' degradation to occupy a more dominant position. In addition, Cd only affected the composition and function of microbial communities in soil but not on BMPs. However, co-exposure to BMPs and Cd significantly reduced the degrees of co-occurrence network of fungal communities on PLA MPs and PBAT MPs by 37.7% and 26.7%, respectively, compared to single exposure to BMPs.
Collapse
Affiliation(s)
- Xuechun Shao
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhihua Qiao
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Genxiang Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
33
|
Capodaglio AG. Microplastics in the urban water cycle: A critical analysis of issues and of possible (needed?) solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176580. [PMID: 39349210 DOI: 10.1016/j.scitotenv.2024.176580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Microplastic (MP) contamination is a problem that affects even remote, scarcely populated regions of the world. This topic has recently been the subject of many published studies, however, these often adopt hyperbolic statements and do not actually provide definitive evidence that MPs are a cause of environmental risk in actual environmental conditions. New technologies to remove MPs from supply and waste water are being investigated, but they are able to intercept a minimal fraction of the MPs circulating in all environmental media. Recently, several pieces of legislation were introduced to reduce plastic production, use, and disposal, but it is not clear how such measures could achieve a significant environmental MP reduction. This paper addresses the MP issue within the urban water cycle, examining recent current literature on MP presence in drinking and waste water, and overviewing available recent treatment technologies for their removal. The ensuing discussion attempts to holistically assess the actual relevance of the issue in the light of the current scientific evidence.
Collapse
Affiliation(s)
- Andrea G Capodaglio
- Department of Civil Engineering & Architecture, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
34
|
Cao Z, Kim C, Li Z, Jung J. Comparing environmental fate and ecotoxicity of conventional and biodegradable plastics: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175735. [PMID: 39187074 DOI: 10.1016/j.scitotenv.2024.175735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Plastic pollution is a consequential problem worldwide, prompting the widespread use of biodegradable plastics (BPs). However, not all BPs are completely degradable under natural conditions, but instead produce biodegradable microplastics (BMPs), release chemical additives, and absorb micropollutants, thus causing toxicity to living organisms in similar manners to conventional plastics (CPs). The new problems caused by biodegradable plastics cannot be ignored and requires a thorough comparison of the differences between conventional and biodegradable plastics and microplastics. This review comprehensively compares their environmental fates, such as biodegradation and micropollutant sorption, and ecotoxicity in soil and water environments. The results showed that it is difficult to determine the natural conditions required for the complete biodegradation of BPs. Some chemical additives in BPs differ from those in CPs and may pose new threats to ecosystems. Because of functional group differences, most BMPs had higher micropollutant sorption capacities than conventional microplastics (CMPs). The ecotoxicity comparison showed that BMPs had similar or even greater adverse effects than CMPs. This review highlights several knowledge gaps in this new field and suggests directions for future studies.
Collapse
Affiliation(s)
- Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Changhae Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Zhihua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
35
|
Fu H, Zhu L, Chen L, Zhang L, Mao L, Wu C, Chang Y, Jiang J, Jiang H, Liu X. Metabolomics and microbiomics revealed the combined effects of different-sized polystyrene microplastics and imidacloprid on earthworm intestinal health and function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124799. [PMID: 39181306 DOI: 10.1016/j.envpol.2024.124799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The coexistence of pesticides and plastic film residues in agricultural soils poses a significant threat to soil organisms due to their potential long-term contamination and combined toxic effects. Specifically, earthworms are at risk of simultaneously ingesting residual pesticides and microplastics, yet the impact of this combined exposure on their intestinal health and function remains poorly understood. In this study, earthworm (Eisenia fetida) were single and combined exposed to three particle sizes (10 μm, 500 μm, and 2 mm) of polyethylene microplastics (PE MPs) and imidacloprid (IMI) for 28 days, respectively. Our findings underscore that compared to single exposures, the combined exposure inflicted more profound injuries on intestinal tissues and elicited a heightened activation of intestinal digestive enzymes. Furthermore, the combined exposure significantly perturbed the relative abundance of several pivotal metabolic-associated gut microbiota, fostering an enrichment of pathogenic species. Metabolomics analysis showed combined exposure increased differential metabolites, disrupting amino acid, fatty acid, and carbohydrate metabolism in earthworm intestines, potentially hindering nutrient absorption and causing toxic metabolite accumulation. An integrated omics analysis implies that combined exposures have the potential to disrupt the relative abundance of crucial gut microbiota in earthworms, thereby altering their intestinal metabolism and subsequently impacting intestinal health and functionality. Overall, the results reveal that combined exposure of IMI and PE MPs exacerbate the negative effects on earthworm gut health, and this study holds significant implications for the holistic understanding of the combined toxic effects of microplastics and pesticide on soil ecosystems.
Collapse
Affiliation(s)
- Huimin Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Lang Chen
- Environment Division, Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, 100125, PR China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Chi Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Yiming Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
36
|
Bian J, Peng N, Zhou Z, Yang J, Wang X. A critical review of co-pollution of microplastics and heavy metals in agricultural soil environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117248. [PMID: 39467422 DOI: 10.1016/j.ecoenv.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
The soil environment is a primary destination for contaminants such as microplastics (MPs) and heavy metals (HMs), which are frequently detected simultaneously. The long-term coexistence of MPs and HMs in the soil necessitates unavoidable interactions, affecting their environmental chemical behavior and bioavailability. These co-contaminants pose potential threats to soil organism growth and reproduction, crop productivity, food security, and may jeopardize human health via the food chain. This paper summarizes the sources and trends of MPs in the soil environment, along with the mechanisms and current research status of MP adsorption or desorption of HMs. Additionally, this paper reviews factors affecting HM adsorption on MPs, including MP properties, HM chemical properties, and other environmental factors. Lastly, the effects of MPs and HMs on soil ecology and human health are summarized. The interaction mechanisms and potential biological effects of their co-contamination require further exploration. Future research should delve deeper into the ecotoxic effects of MP-HM co-contamination at cellular and molecular levels, to provide a comprehensive reference for understanding the environmental behavior of their co-contamination in soil.
Collapse
Affiliation(s)
- Jianlin Bian
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China
| | - Nian Peng
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China.
| | - Ziyi Zhou
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China
| | - Junxing Yang
- Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Xuedong Wang
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China
| |
Collapse
|
37
|
Fei J, Zou T, Geng M, Luo G, Pang C, Huang Y, Yang P, Peng J, Jiang Y. Residual mulch-film characteristics affect heavy metal migration of different soil layers in the subtropical croplands of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124702. [PMID: 39127334 DOI: 10.1016/j.envpol.2024.124702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In recent years, as the abundance of residual mulch film (RMF) in agricultural soil continues to increase, whether the adsorption capacity of its surface affects the migration of heavy metals is a topic of current interest for scholars. Herein, this study investigated the distribution of RMF abundance and metal concentration in different soil layers of 75 plastic-mulching croplands in subtropical China; meanwhile, we also explored the associations of RMF characteristics with metal concentration. The results showed that land type, film mulching amount, and film mulching time were the main factors affecting RMF abundance, distribution, and particle size composition. The highest abundance of RMF was found in the garden soils (910 n·kg-1) with more than 15 years mulching period and more than 19.5 kg hm-2 of annual mulch amount. The lowest abundance of RMF was occurred in the group of field and conservation agricultural land (237 n·kg-1). Moreover, the concentrations of metals in soil, especially Cd, Cr, Cu, and Pb, were closely related to the extent of RMF contamination in the soil environment. In the 0-10 cm and 10-20 cm soil layers, microplastic abundance exhibited a negative correlation with Cr and Cu concentrations and a positive correlation with Pb concentration. Based on the above findings, it is demonstrated that RMF significantly influences the mobility of metals in soil via adsorption processes, with potential synergistic effects between RMF and heavy metals posing a heightened risk to the soil environment.
Collapse
Affiliation(s)
- Jiangchi Fei
- College of Resources, Hunan Agricultural University, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China; Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Zou
- College of Resources, Hunan Agricultural University, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Mengjiao Geng
- College of Resources, Hunan Agricultural University, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Gongwen Luo
- College of Resources, Hunan Agricultural University, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Chunyu Pang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Ying Huang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Pinling Yang
- Huaihua Meteorological Office, Huaihua, 418000, China
| | - Jianwei Peng
- College of Resources, Hunan Agricultural University, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Yuxin Jiang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| |
Collapse
|
38
|
Ma M, Han R, Han R, Xu D, Li F. Binding between Cu 2+/Zn 2+ and aged polyethylene and polyethylene terephthalate microplastics in swine wastewaters: Adsorption behavior, and mechanism insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124685. [PMID: 39111531 DOI: 10.1016/j.envpol.2024.124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Microplastics (MPs) have aroused growing environmental concerns due to their biotoxicity and vital roles in accelerating the spread of toxic elements. Illuminating the interactions between MPs and heavy metals (HMs) is crucial for understanding the transport and fate of HM-loaded MPs in specific environmentally relevant scenarios. Herein, the adsorption of copper (Cu2+) and zinc (Zn2+) ions over polyethylene (PE) and polyethylene terephthalate (PET) particulates before and after heat persulfate oxidation (HPO) treatment was comprehensively evaluated in simulated and real swine wastewaters. The effects of intrinsic properties (i.e., degree of weathering, size, type) of MPs and environmental factors (i.e., pH, ionic strength, and co-occurring species) on adsorption were investigated thoroughly. It was observed that HPO treatment expedites the fragmentation of pristine MPs, and renders MPs with a variety of oxygen-rich functional groups, which are likely to act as new active sites for binding both HMs. The adsorption of both HMs is pH- and ionic strength-dependent at a pH of 4-6. Co-occurring species such as humic acid (HA) and tetracycline (TC) appear to enhance the affinity of both aged MPs for Cu2+ and Zn2+ ions via bridging complexation. However, co-occurring nutrient species (e.g., phosphate and ammonia) demonstrate different impacts on the adsorption, improving uptake of Cu2+ by precipitation while lowering affinity for Zn2+ owing to the formation of soluble zinc-ammonia complex. Spectroscopic analysis indicates that the dominant adsorption mechanism mainly involves electrostatic interactions and surface complexation. These findings provided fundamental insights into the interactions between aged MPs and HMs in swine wastewaters and might be extended to other nutrient-rich wastewaters.
Collapse
Affiliation(s)
- Mengyu Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Ruxin Han
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Ruoqi Han
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Defu Xu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Feihu Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China; NUIST Reading Academy, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China.
| |
Collapse
|
39
|
Bi S, Liu S, Liu E, Xiong J, Xu Y, Wu R, Liu X, Xu J. Adsorption behavior and mechanism of heavy metals onto microplastics: A meta-analysis assisted by machine learning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124634. [PMID: 39084591 DOI: 10.1016/j.envpol.2024.124634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microplastics (MPs) have the potential to adsorb heavy metals (HMs), resulting in a combined pollution threat in aquatic and terrestrial environments. However, due to the complexity of MP/HM properties and experimental conditions, research on the adsorption of HMs onto MPs often yields inconsistent findings. To address this issue, we conducted a comprehensive meta-analysis assisted with machine learning by analyzing a dataset comprising 3340 records from 134 references. The results indicated that polyamide (PA) (ES = -1.26) exhibited the highest adsorption capacity for commonly studied HMs (such as Pb, Cd, Cu, and Cr), which can be primarily attributed to the presence of C=O and N-H groups. In contrast, polyvinyl chloride (PVC) demonstrated a lower adsorption capacity, but the strongest adsorption strength resulting from the halogen atom on its surface. In terms of HMs, metal cations were more readily adsorbed by MPs compared with metalloids and metal oxyanions, with Pb (ES = -0.78) exhibiting the most significant adsorption. As the pH and temperature increased, the adsorption of HMs initially increased and subsequently decreased. Using a random forest model, we accurately predicted the adsorption capacity of MPs based on MP/HM properties and experimental conditions. The main factors affecting HM adsorption onto MPs were HM and MP concentrations, specific surface area of MP, and pH. Additionally, surface complexation and electrostatic interaction were the predominant mechanisms in the adsorption of Pb and Cd, with surface functional groups being the primary factors affecting the mechanism of MPs. These findings provide a quantitative summary of the interactions between MPs and HMs, contributing to our understanding of the environmental behavior and ecological risks associated with their correlation.
Collapse
Affiliation(s)
- Shuangshuang Bi
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Shuangfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yun Xu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ruoying Wu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Xiang Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Jinling Xu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China.
| |
Collapse
|
40
|
Dike S, Apte SD. Impact of microplastics on strength parameters of clayey, Sandy, silty soil: A comparative assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174161. [PMID: 38909809 DOI: 10.1016/j.scitotenv.2024.174161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
The comparative assessment of a variety of microplastic contamination on various soil types hasn't been extensively explored in existing literature. The present study focuses on the comparative analysis of the impact of environmentally relevant concentrations of LDPE, HDPE, and PVC microplastic contamination (2 %, 4 %, and 6 %) on index properties and strength parameters of sandy, silty and clayey soil types at varying observation days 5,10,15,20,25, and 30 days. Extensive experimental investigations are carried out to understand the effect of contamination on moisture content, specific gravity, liquid limit, plastic limit, plasticity index, optimum moisture content, maximum dry density, and shear strength parameters of the respective soil type. It is observed that the depletion in Atterberg's limits is found more in the case of clayey soil as compared to silty soil because clayey soils consist of large specific surface areas leading to van der Waals force of attraction being the predominant force between particles, compared with silty soil which is affected by microplastic addition leading to decrease in net attractive forces. In the case of clayey soil maximum depletion of liquid limit up to 168 %, plastic limit up to 33 %, plasticity index (136 %), and optimum moisture content (9.04 %) is observed for PVC microplastic. The deduction in maximum dry density values is observed more for sandy soil (0.59 g/cc) followed by silty soil (0.21 g/cc) and clayey soil (0.12 g/cc). The maximum depletion of moisture content(delta-8 %), shear strength (delta-0.89 kg/cm2), and maximum dry density (delta-0.44 g/cc) is observed in the case of sandy soil for PVC and LDPE microplastic contamination. Significant depletion in optimum moisture content is observed in the case of clayey soil (9.57 %) compared to sandy (5.62 %) and silty soil (5.3 %). An increase in cohesion is observed for sandy soil (0.09 kg/cm2) and a decrease for clayey (0.19 kg/cm2) and silty soil (0.19 kg/cm2). The angle of internal friction is reduced in the case of clayey soil (∆-14.380) followed by silty soil (∆-11.230) and sandy soil (∆-11.020). For silty soil maximum depletion of specific gravity(delta-1.06) and cohesion (0.192 kg/cm2) is observed for LDPE and HDPE microplastic. The sandy soil type is most affected due to microplastic contamination irrespective of the type of microplastic contamination followed by clayey soil and the silty soil type is least affected. The maximum overall shear strength is reduced due to microplastic contamination in all the soil types.
Collapse
Affiliation(s)
- Sangita Dike
- Department of Civil Engineering, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Sayali D Apte
- Department of Civil Engineering, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India.
| |
Collapse
|
41
|
Zhang H, Zhu W, Zhang J, Müller C, Wang L, Jiang R. Enhancing soil gross nitrogen transformation through regulation of microbial nitrogen-cycling genes by biodegradable microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135528. [PMID: 39154476 DOI: 10.1016/j.jhazmat.2024.135528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Microplastics (MPs) in agricultural plastic film mulching system changes microbial functions and nutrient dynamics in soils. However, how biodegradable MPs impact the soil gross nitrogen (N) transformations and crop N uptake remain significantly unknown. In this study, we conducted a paired labeling 15N tracer experiment and microbial N-cycling gene analysis to investigate the dynamics and mechanisms of soil gross N transformation processes in soils amended with conventional (polyethylene, PE) and biodegradable (polybutylene adipate co-terephthalate, PBAT) MPs at concentrations of 0 %, 0.5 %, and 2 % (w/w). The biodegradable MPs-amended soils showed higher gross N mineralization rates (0.5-16 times) and plant N uptake rates (16-32 %) than soils without MPs (CK) and with conventional MPs. The MPs (both PE and PBAT) with high concentration (2 %) increased gross N mineralization rates compared to low concentration (0.5 %). Compare to CK, MPs decreased the soil gross nitrification rates, except for PBAT with 2 % concentration; while PE with 0.5 % concentration and PBAT with 2 % concentration increased but PBAT with 0.5 % concentration decreased the gross N immobilization rates significantly. The results indicated that there were both a concentration effect and a material effect of MPs on soil gross N transformations. Biodegradable MPs increased N-cycling gene abundance by 60-103 %; while there was no difference in the abundance of total N-cycling genes between soils without MPs and with conventional MPs. In summary, biodegradable MPs increased N cycling gene abundance by providing enriched nutrient substrates and enhancing microbial biomass, thereby promoting gross N transformation processes and maize N uptake in short-term. These findings provide insights into the potential consequences associated with the exposure of biodegradable MPs, particularly their impact on soil N cycling processes.
Collapse
Affiliation(s)
- Hao Zhang
- Research Center for cultural Landscape Protection and Ecological Restoration, China-Portugal Belt and Road Cooperation Laboratory of Cultural Heritage Conservation Science, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Zhu
- College of Civil and Architecture Engineering, Chuzhou University, Chuzhou 239000, China
| | - Jinbo Zhang
- School of Breeding and Multiplication, Hainan University, Sanya 570228, China; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
| | - Christoph Müller
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany; Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; School of Biology and Environmental Science and Earth Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Lifen Wang
- Research Center for cultural Landscape Protection and Ecological Restoration, China-Portugal Belt and Road Cooperation Laboratory of Cultural Heritage Conservation Science, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China
| | - Rui Jiang
- Research Center for cultural Landscape Protection and Ecological Restoration, China-Portugal Belt and Road Cooperation Laboratory of Cultural Heritage Conservation Science, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
42
|
Yang J, Peng Z, Sun J, Chen Z, Niu X, Xu H, Ho KF, Cao J, Shen Z. A review on advancements in atmospheric microplastics research: The pivotal role of machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173966. [PMID: 38897457 DOI: 10.1016/j.scitotenv.2024.173966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Microplastics (MPs), recognized as emerging pollutants, pose significant potential impacts on the environment and human health. The investigation into atmospheric MPs is nascent due to the absence of effective characterization methods, leaving their concentration, distribution, sources, and impacts on human health largely undefined with evidence still emerging. This review compiles the latest literature on the sources, distribution, environmental behaviors, and toxicological effects of atmospheric MPs. It delves into the methodologies for source identification, distribution patterns, and the contemporary approaches to assess the toxicological effects of atmospheric MPs. Significantly, this review emphasizes the role of Machine Learning (ML) and Artificial Intelligence (AI) technologies as novel and promising tools in enhancing the precision and depth of research into atmospheric MPs, including but not limited to the spatiotemporal dynamics, source apportionment, and potential health impacts of atmospheric MPs. The integration of these advanced technologies facilitates a more nuanced understanding of MPs' behavior and effects, marking a pivotal advancement in the field. This review aims to deliver an in-depth view of atmospheric MPs, enhancing knowledge and awareness of their environmental and human health impacts. It calls upon scholars to focus on the research of atmospheric MPs based on new technologies of ML and AI, improving the database as well as offering fresh perspectives on this critical issue.
Collapse
Affiliation(s)
- Jiaer Yang
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zezhi Peng
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Sun
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhiwen Chen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
43
|
Bhagat K, Doussiemo DRB, Mushro N, Rajwade K, Kumar A, Apul O, Perreault F. Effect of Biofouling on the Sorption of Organic Contaminants by Microplastics. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1973-1981. [PMID: 38924544 DOI: 10.1002/etc.5938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Microplastics in the aquatic environment are susceptible to colonization by surrounding microorganisms, which form biofilms over the microplastic's surface. These biofilm-laden microplastics can then interact with a diverse array of contaminants. In the present study, biofilms were grown on microplastics in a laboratory setting using Pseudomonas aeruginosa as a model biofilm-forming bacterium for periods of 5 to 15 days. The sorption of three organic compounds representing different levels of hydrophobicity, namely methylene blue (MB), phenanthrol, and phenanthrene, was used to evaluate the effect of biofilm biomass on the adsorption of organic contaminants to microplastics. The sorption of MB and phenanthrol was found to increase with biofouling time, indicating affinity between these contaminants and the biofilm biomass on the particle. However, the presence of a biofilm did not influence the sorption of phenanthrene on the microplastics. These results suggest that the hydrophobicity of organic contaminants plays a major role in how biofouling of microplastics will influence contaminant sorption by microplastics. For some contaminants, biofilm can enhance the role of microplastics as contaminant vectors. These findings emphasize the need to understand the biomass load on environmental microplastics and the contaminants that associate with it for an accurate representation of the risk associated with microplastics in the environment. Environ Toxicol Chem 2024;43:1973-1981. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kartik Bhagat
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | | | - Noelle Mushro
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | - Kimya Rajwade
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | - Abhishek Kumar
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | - Onur Apul
- Department of Civil and Environmental Engineering, University of Maine, Orono, Maine, USA
| | - François Perreault
- Department of Chemistry, University of Quebec in Montreal, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Prakash Ranjan V, Joseph A, Srivastava S, Bhakta Sharma H, Biswas B, Goel S, Kumar S. From cosmetics to Contamination: Microplastics in personal care products as vectors for chromium in aquatic environments. WASTE MANAGEMENT BULLETIN 2024; 2:229-240. [DOI: 10.1016/j.wmb.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
45
|
Razeghi N, Hamidian AH, Abbasi S, Mirzajani A. Distribution, flux, and risk assessment of microplastics at the Anzali Wetland, Iran, and its tributaries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54815-54831. [PMID: 39214944 DOI: 10.1007/s11356-024-34847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microplastic pollution has raised significant concerns among scientific communities and society in recent years due to its increase and lesser-known effects on the environment. To improve the knowledge of microplastic pollution in freshwater, we investigated microplastics in Anzali Wetland, a Ramsar site in northern Iran, as well as its nine main entering rivers. The extracted microplastics were characterized via visual identification, SEM-EDX, and μ-Raman methods. Microplastics (size range: 50-5000 μm) were found in all water and sediment samples with concentration of fibrous particles as well as polypropylene and polyethylene polymers. The mean concentration of microplastics in bottom sediment and surface water samples of the wetland was 301 ± 222 particles∙kg-1 d.w. and 235 ± 115 particles∙m-3 (0.23 particles∙L-1), respectively. The microplastic concentration in the central and eastern parts of the wetland was higher than in other areas; however, the mean concentrations revealed homogeneity across the wetland area. Water properties (dissolved oxygen, pH, temperature, electrical conductivity, and salinity in water) did not affect the concentration of microplastic particles, though correlational analysis revealed a strong positive association between microplastic quantity and turbidity. There was a significant positive relationship between microplastic concentration and the percentage of clay in sediment samples. The quantity of microplastics in river water was higher than in wetland water, but the difference between the results was not significant. However, the quantity of microplastics in the river's littoral sediment was higher than in the bottom sediment of the wetland where the difference between the results was significant. Microplastic ecological risk assessment showed high potential ecological risk. The findings underscore the importance of effective management strategies and the implementation of policies to mitigate the negative impact of MP pollution on ecosystems and human health.
Collapse
Affiliation(s)
- Nastaran Razeghi
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University College of Agriculture & Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University College of Agriculture & Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran.
| | - Sajjad Abbasi
- Department of Earth Sciences, School of Science, Shiraz University, Shiraz, 71454, Iran
- Centre for Environmental Studies and Emerging Pollutants (ZISTANO), Shiraz University, Shiraz, 714545, Iran
| | - Alireza Mirzajani
- Inland Waters Aquaculture Research Center, Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute, P.O. Box 66, Bandar-E Anzali, Iran
| |
Collapse
|
46
|
Zhang X, Zhang Y, Li D, Wang J, Ding Y, Wang Y, Feng L, Hu Y. Aging properties of polyethylene and polylactic acid microplastics and their adsorption behavior of Cd(II) and Cr(VI) in aquatic environments. CHEMOSPHERE 2024; 363:142833. [PMID: 39002654 DOI: 10.1016/j.chemosphere.2024.142833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
In this study, we examined the aging characteristics of polyethylene (PE) and polylactic acid (PLA) microplastics (MPs), examining the adsorption behaviors and mechanisms concerning Cd(II) and Cr(VI) under both single and binary systems. The results revealed that aging treatment changed the physicochemical properties of MPs. The aging mechanisms of PLA and PE MPs were shown to be similar by the 2D-FTIR-COS study. These mechanisms involve the formation of oxygen-containing functional groups through the combination of carbon chain breakdown and oxygen. Aged MPs had a greater ability to adsorb metal ions than pristine MPs, with PLA MPs outperforming PE MPs. After 30 days of aging, Cd(II) adsorption increased by 40.61 % and 25.49 % for PE and PLA MPs, respectively, while Cr(VI) adsorption increased by 37.50 % and 69.29 %, respectively. The adsorption ability of PE and PLA MPs with Cd(II) or Cr(VI) under binary systems was less than that under single systems, with Cd(II) exhibiting more adsorption competitiveness than Cr(VI). Humic acid (HA), ionic species and strength, solution pH, and adsorption of Cd(II) and Cr(VI) were found to be significantly correlated. Further investigation into the adsorption mechanisms of Cd(II) and Cr(VI) on PE and PLA MPs revealed that pore-filling, electrostatic interactions, complexation, and hydrogen bonding play important roles in the adsorption process. The study's conclusions are crucial for assessing the risk associated with concurrent contamination by metal ions and microplastics.
Collapse
Affiliation(s)
- Xinying Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China.
| | - Dong Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yiliang Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Liuyuan Feng
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yuliang Hu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| |
Collapse
|
47
|
Siwach S, Bharti M, Yadav S, Dolkar P, Modeel S, Yadav P, Negi T, Negi RK. Unveiling the ecotoxicological impact of microplastics on organisms - the persistent organic pollutant (POP): A comprehensive review. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104397. [PMID: 39059355 DOI: 10.1016/j.jconhyd.2024.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Microplastics have been ubiquitous in our environment for decades, and numerous studies have revealed their extensive dispersion, reaching far beyond the surface of the land, soil, aquatic ecosystems. They have infiltrated the food-chain, the food web, even the air we breathe, as well as the water we drink. Microplastics have been detected in the food we consume, acting as vectors for hazardous chemicals that adhere to their hydrophobic surfaces. This can result in the transfer of these chemicals to the aquatic life, posing a threat to their well-being. The release of microplastics into different environmental settings can give rise to various eco-toxicological implications. The substantial body of literature has led scientists to the consensus that microplastic pollution is a global problem with the potential to impact virtually any type of ecosystem. This paper aims to discuss crucial information regarding the occurrence, accumulation, and ecological effects of microplastics on organisms. It also highlights the new and emerging disease named "Plasticosis" that is directly linked to microplastics and its toxicological effects like permanent scarring and long-term inflammation in the digestive system of the seabirds. By comprehending the behaviour of these microplastic pollutants in diverse habitats and evaluating their ecological consequences, it becomes possible to facilitate a better understanding of this toxicological issue.
Collapse
Affiliation(s)
- Sneha Siwach
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Meghali Bharti
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Padma Dolkar
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sonakshi Modeel
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India.
| |
Collapse
|
48
|
Maruthupandy M, Jeon JH, Noh J, Yang SI, Cho WS. Mitigated toxicity of polystyrene nanoplastics in combination exposure with copper ions by transformation into copper (I) oxide: Inhibits the oxidative potential of nanoplastics. CHEMOSPHERE 2024; 364:143288. [PMID: 39243901 DOI: 10.1016/j.chemosphere.2024.143288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024]
Abstract
The combined impact of trace metals and polystyrene (PS) microplastics is extremely concerning for human health because PS microplastics can serve as a vehicle for other contaminants. Herein, we investigated the combined effect of copper ions (Cu2+) on the toxicity of PS nanoplastics in vivo and in vitro. The pristine PS (PPS) and ultraviolet irradiated oxidized PS (OPS) nanoplastics with 50 nm-size were conjugated with Cu2+ (13-27 mg/g) for 4 days to get four types of samples: PPS, OPS, PPS/Cu, and OPS/Cu. The comparative toxic potentials of test samples were evaluated using a mouse pharyngeal aspiration model and relevant human cell lines (A549 and differentiated THP-1 cells). The results showed an antagonistic effect in vivo and in vitro by the presence of Cu ions: PPS > PPS/Cu; OPS > OPS/Cu. Furthermore, the OPS produced significantly increased toxic potentials compared to the corresponding PPS: OPS > PPS; OPS/Cu > PPS/Cu. The antagonistic effect of Cu2+ on the toxicity of PS was due to the transformation of Cu2+ and balanced the surface charge of the nanoplastics, which inhibited the oxidative potential of corresponding nanoplastics. These antagonistic effects may provide a better understanding of the combined effects of metals on the intrinsic toxic potential of microplastics under natural conditions.
Collapse
Affiliation(s)
- Muthuchamy Maruthupandy
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
| | - Jun Hui Jeon
- Department of Applied Chemistry, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Jiyeon Noh
- Department of Applied Chemistry, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Sung Ik Yang
- Department of Applied Chemistry, Kyung Hee University, Yongin-si, 17104, Republic of Korea.
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
| |
Collapse
|
49
|
Liu Q, Wu D, Pan Y, Shen Y, Wang X, Xiong F, Han J, Zhang Z, Chen Y, Chen Z, Yuan S, Yu H, Yao W. Interaction behavior, mechanisms and hazardous changes of microplastics on single and binary component pesticide in the environment and food: Diethofencarb and pyrimethanil. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134809. [PMID: 38870852 DOI: 10.1016/j.jhazmat.2024.134809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
In order to investigate the adsorption behavior and mechanism of microplastics (MPs) on multiple coexisting pesticides in practical systems, as well as their hazardous changes upon binding, diethofencarb and pyrimethanil were selected to be studied with four MPs. The adsorption rate of both pesticides would be faster in the binary-component case, conforming to pseudo-second-order kinetics, with adsorption sites and chemical adsorption dominating. And the more hydrophobic the pesticide, the faster the adsorption rate and the higher the adsorption capacity. Diethofencarb belonged to monolayer adsorption, whereas pyrimethanil belonged to monomolecular combined with multilayer adsorption, depending on the size of pesticides. And the adsorption process was both competitive and synergistic when pesticides coexist. In addition, the adsorption process was a spontaneous heat absorption process. Electrostatic forces have little effect on adsorption, while the adsorption capacity can be altered by the adsorption sites and hydrophobicity of MPs. The salting-out effect also facilitated the adsorption process. As for changes in hazard, the bioluminescence of A. fischeri wasn't significantly inhibited, lacking of acute environmental toxicity. However, in vitro digestion experiments demonstrated a significant increase in bioavailability of diethofencarb and pyrimethanil in combination with MPs. These findings suggest the stronger adsorption behaviors and higher loading capacities between pesticides and MPs could lead more serious hazards to the human body, which deserves further attention.
Collapse
Affiliation(s)
- Qingrun Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Dajun Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yue Pan
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yao Shen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xiao Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Fukang Xiong
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Jinchi Han
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zixuan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yulun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Zhe Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| |
Collapse
|
50
|
Li H, Dong S, Chen H, Wang Q, Zhang Y, Wang Y, Wang G. Deficit irrigation of reclaimed water relieves oat drought stress while controlling the risk of PAEs pollution in microplastics-polluted soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121621. [PMID: 38972188 DOI: 10.1016/j.jenvman.2024.121621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Reclaimed water irrigation has emerged as a critical alternative in agricultural regions facing water scarcity. However, soil pollution with microplastics (MPs) greatly increases the exposure risk and toxic effects of reclaimed water contaminations, such as phthalate esters (PAEs). A field experiment consisting of soil column pots evaluated the feasibility of using PAEs-contaminated water to irrigate oats (Avena sativa L.) in drought seasons. Three irrigation regimens based on soil matric potential thresholds (-10 kPa, -30 kPa, -50 kPa) explored the impact of PAE-contaminated water on oat physiology and environmental pollution in soil with and without MPs contamination. The results showed that treating oats at the SMP of -30 kPa boosted shoot biomass by 3.1%-14.0% compared to the drought condition at -50 kPa, and the root biomass of oats was significantly increased. The physiological metrics of oats indicated that irrigation at -50 kPa induced drought stress and oxidative damage in oats, particularly during the milk stage. Different irrigation treatments influenced the accumulation of PAEs in plants, soil, and leachate. The ratios of leachate to irrigation water in -10 kPa treatment with and without MPs addition were 1.18% and 4.48%, respectively, which aggravated the accumulation of pollutants in deep soil layers and may cause groundwater pollution. MPs pollution in soil increased the content of PAEs in the harvested oats and reduced the transport and accumulation of PAEs in deep soil layers (20-50 cm) and leachate. The coupling of PAEs in irrigation water with soil MPs pollution may exacerbate plant damage. However, the damage can be minimized under the scheduled irrigation at -30 kPa which could balance crop yield and potential risks.
Collapse
Affiliation(s)
- Hanbo Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Ministry of Education Key Laboratory of Songliao Aquatic Environment, Jilin Jianzhu University, Changchun, Jilin, 130118, China
| | - Shide Dong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai Shandong, 264003, China
| | - Hongpeng Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Qian Wang
- School of Life Sciences, Ludong University, Yantai, 264025, China
| | - Yi Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai Shandong, 264003, China
| | - Ying Wang
- Ministry of Education Key Laboratory of Songliao Aquatic Environment, Jilin Jianzhu University, Changchun, Jilin, 130118, China
| | - Guangmei Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai Shandong, 264003, China.
| |
Collapse
|