1
|
Kakade A, Zhang Q, Wu T, Yang X, Mi J, Jing X, Long R. An integrated evaluation of potentially toxic elements and microplastics in the highland soils of the northeastern Qinghai-Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137453. [PMID: 39933466 DOI: 10.1016/j.jhazmat.2025.137453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
As gateways to the scenic Qinghai-Tibetan Plateau (QTP), some underexplored five grassland (GLs) and three farmland (FLs) soil locations of northeastern counties were investigated. Preliminary detection showed that in the grazing and agricultural soils, elemental concentrations (Fe>Zn>Cr>Cu>Pb>Co>As>Cd) were up to 37 and 10 mg/g, but within the China soil standards, except Cd, while microplastics (MPs) abundances were 200-3640 and 280-973 particles/kg, respectively. Polypropylene (PP: 40-55 %) dominated in GLs mostly as fragments, whereas polyethylene (PE: 72-92 %) in FLs as films. Adsorption results demonstrated that potentially toxic elements (PTEs)-MPs' interaction may chiefly depend on their types and speciation in soils, the physiochemical structure of MPs, and surrounding conditions. The integrated two-dimensional risk assessment categorized three of five GLs under Risk Level VI (high pollution), whereas one of three FLs displayed Risk Level III (moderate pollution). Correlation analysis revealed that altitude, organic matter, soil clay content, and precipitation significantly affected PTEs (p ≤ 0.01), whereas MPs were influenced by altitude, soil clay content, precipitation (p ≤ 0.001), and population density (p ≤ 0.05). Comparison with low-land soils globally designated QTP as a vulnerable region to MPs due to the expanding development. Overall, our study provides a data set to understand the pollution scenario of highlands for its targeted management.
Collapse
Affiliation(s)
- Apurva Kakade
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Lanzhou 730000, China
| | - Qunying Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Lanzhou 730000, China
| | - Tao Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Lanzhou 730000, China
| | - Xin Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Lanzhou 730000, China
| | - Jiandui Mi
- International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Lanzhou 730000, China; State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Lanzhou 730000, China
| | - Ruijun Long
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
2
|
Castro G, Fernández-Fernández V, Cobo-Golpe M, Ramil M, Blázquez-Blázquez E, Cerrada ML, Bernabé I, Martínez Urreaga J, de la Orden MU, Rodriguez I. The fingerprint of pesticides in agricultural used polyethylene. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 200:114767. [PMID: 40158255 DOI: 10.1016/j.wasman.2025.114767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
The widespread use of polyethylene (PE) materials in agriculture through mulch films, tunnels, greenhouse covers, irrigation pipes and tying tapes has been instrumental in increasing crop productivity and reducing water demand. However, it raised concerns regarding the interaction between PE and pesticides sprayed on crops. This research strives to study the fingerprint of pesticides in agricultural PE by analyzing new items, end-of-life agricultural plastics and a range of samples corresponding to the recycling of aged PE, from sized and washed flakes to second-hand pellets and plant protection tubes elaborated from recycled plastic. Total concentrations determined for a selection of fungicides and insecticides in the abovementioned materials varied between 4.7 ng g-1 and 4179 ng g-1, with the fungicides cyprodinil and difenoconazole showing the highest concentrations. Furthermore, transformation products of pesticides phased out more than 40 years ago, e.g., p,p'-DDE, were found in some PE items. The survival of pesticides at temperatures above the melting point of this polymer was confirmed in laboratory-scale melting experiments, as well as through the analysis of second-hand pellets. Experiments carried out using pesticide-polluted dripline pipes confirmed the migration of these compounds from PE to flowing water.
Collapse
Affiliation(s)
- Gabriela Castro
- Department of Analytical Chemistry, Nutrition and Food Sciences. Aquatic One Health Research Center (ARCUS). Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain.
| | - Victoria Fernández-Fernández
- Department of Analytical Chemistry, Nutrition and Food Sciences. Aquatic One Health Research Center (ARCUS). Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain
| | - Miguel Cobo-Golpe
- Department of Analytical Chemistry, Nutrition and Food Sciences. Aquatic One Health Research Center (ARCUS). Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain
| | - María Ramil
- Department of Analytical Chemistry, Nutrition and Food Sciences. Aquatic One Health Research Center (ARCUS). Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain
| | | | - María L Cerrada
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - I Bernabé
- Department of Industrial and Environmental Chemical Engineering, E.T.S.I. Industriales, Universidad Politécnica de Madrid, Spain
| | - J Martínez Urreaga
- Department of Industrial and Environmental Chemical Engineering, E.T.S.I. Industriales, Universidad Politécnica de Madrid, Spain; Research Group "Polímeros: Caracterización y Aplicaciones" (U. A. del ICTP-CSIC), E.T.S.I. Industriales, Universidad Politécnica de Madrid, Madrid, Spain
| | - M U de la Orden
- Department of Organic Chemistry, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Spain; Research Group "Polímeros: Caracterización y Aplicaciones" (U. A. del ICTP-CSIC), E.T.S.I. Industriales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isaac Rodriguez
- Department of Analytical Chemistry, Nutrition and Food Sciences. Aquatic One Health Research Center (ARCUS). Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Yang L, Yang W, Li Q, Zhao Z, Zhou H, Wu P. Microplastics in Agricultural Soils: Sources, Fate, and Interactions with Other Contaminants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40377166 DOI: 10.1021/acs.jafc.5c03682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Microplastics (MPs) are recognized as emerging soil contaminants. However, the potential risks of MPs to agroecosystems have not been fully revealed, especially the compound toxic effects of MPs with co-existing organic or inorganic pollutants (OPs/IPs) in agricultural fields. In this study, we quantified the contributions of different agronomic practices to the sources of MPs in soil and highlighted the important influences of long-term tillage and fertilization on the migration and aging of MPs in agricultural fields. In addition, the antagonistic and synergistic interactions between MPs and OPs/IPs in soil were explored. We emphasized that the degree of adsorption of MPs and soil particles to OPs/IPs is a key determinant of the co-toxicity of those contaminants in soil. Finally, several directions for future research are proposed, and these knowledge gaps provide an important basis for understanding the contamination process of MPs in agricultural soils.
Collapse
Affiliation(s)
- Liyu Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Qihang Li
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Rede D, Vilarinho R, Moreira JA, Nizzetto L, Delerue-Matos C, Fernandes VC. Screening for microplastics in agricultural soils: Applying green chemistry principles in extraction and analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125550. [PMID: 39701367 DOI: 10.1016/j.envpol.2024.125550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
In recent years, microplastic (MP) pollution has garnered significant attention owing to its ability to permeate various ecosystems, including soil. These particles can infiltrate the environment, either directly or through the degradation of larger plastic items. Despite growing concerns, standardized methods for quantification are still lacking. This study aimed to screen for the presence of MPs in agricultural soils while incorporating green analytical principles in the methodology. A density separation followed by centrifugation was employed, based on the principles of the QuEChERS extraction method. This approach minimized sample quantities, reagent consumption, and waste production, ensuring efficient extraction and analysis. Recovery tests using certified soils spiked with pristine MPs, specifically polystyrene, polypropylene (PP), and ethylene-vinyl acetate for larger MPs (3-5 mm), and low-density polyethylene, polyamide 6, and tire wear particles for smaller MPs (15-300 μm), achieved recovery levels exceeding 69% for smaller MPs and over 91% for larger particles. Spectroscopic analysis revealed slight alterations in the Raman spectra of MPs after extraction. Transitioning to agricultural soil analysis has revealed challenges, including spectral interferences. Nine mesoplastics (5-20 mm) were detected, predominantly consisting of PP and polyethylene (PE), along with seven MPs, three of which were individually identified as PE-based, while the remainder were inconclusive, including one fiber. The evaluation of the method's sustainability using the Analytical Eco-Scale and Analytical Greenness Calculator Metric (AGREE), with scores of 82 out of 100 and 0.66 out of 1, respectively, demonstrated its potential as a reliable approach to MP analysis in soils. This study highlights the potential of integrating green analytical chemistry principles into MP extraction methodologies and emphasizes the value of the proposed QuEChERs-based approach for improving the sustainability and efficiency of MP monitoring in agricultural soils.
Collapse
Affiliation(s)
- Diana Rede
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015, Porto, Portugal; Departamento de Química e Bioquimica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169- 007 Porto, Portugal
| | - Rui Vilarinho
- Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169- 007 Porto, Portugal; IFIMUP-Instituto de Física dos Materiais Avançados, Nanotecnologia e Fotónica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169- 007 Porto, Portugal
| | - Joaquim Agostinho Moreira
- Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169- 007 Porto, Portugal; IFIMUP-Instituto de Física dos Materiais Avançados, Nanotecnologia e Fotónica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169- 007 Porto, Portugal
| | - Luca Nizzetto
- Norwegian Institute for Water Research (NIVA), Gaustadelléen 21, 0349, Oslo, Norway; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masarik University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015, Porto, Portugal
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015, Porto, Portugal; Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal.
| |
Collapse
|
5
|
Khan H, Usama M, Khan MI, Wahab F, Ahmad I, Hamid A, Hussain S, Maqbool A. From pollutant to purifier: Leveraging plastic waste-derived activated carbon for sustainable water remediation solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124202. [PMID: 39884200 DOI: 10.1016/j.jenvman.2025.124202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/06/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025]
Abstract
The ubiquitous presence of plastic waste presents a significant environmental challenge, characterized by its persistence and detrimental impacts on ecosystems. The valorization of plastic waste through conversion into high-value carbon materials offers a promising circular economy approach. This review critically examines the potential of plastic waste-derived activated carbon (PAC) as a sustainable and effective adsorbent for water remediation. The manuscript commences with a concise overview of the multifaceted nature of plastic pollution, highlighting its classification, environmental implications, and the limitations of existing waste management frameworks. Subsequently, it delves into the intricacies of PAC production, critically analyzing various preparation methods and their associated challenges. A comprehensive exploration of modification strategies, including chemical activation and surface functionalization, is undertaken to elucidate their role in enhancing PAC's adsorption selectivity and capacity for diverse pollutants. The effectiveness of PAC in removing a diverse array of pollutants, including emerging contaminants and recalcitrant organic compounds, is thoroughly examined. While acknowledging the influence of key factors such as pollutant characteristics and solution chemistry on adsorption efficiency, the review also identifies critical challenges, including the high production costs associated with PAC synthesis, variability of plastic waste composition, the potential for leaching of residual monomers, and the complexities of multi-pollutant adsorption. Future research directions are outlined, emphasizing the need for advanced characterization techniques, computational modeling to optimize adsorbent design, and rigorous life cycle assessments to evaluate the environmental sustainability of PAC production. By addressing these challenges, PAC offers a promising pathway towards a circular economy, mitigating plastic pollution while providing a sustainable and effective solution for water remediation.
Collapse
Affiliation(s)
- Hammad Khan
- Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan.
| | - Muhammad Usama
- Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan
| | - Mohammad Ilyas Khan
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 62521, Saudi Arabia
| | - Fazal Wahab
- Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan
| | - Izhar Ahmad
- Department of Civil Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan
| | - Ali Hamid
- Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan
| | - Sajjad Hussain
- Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan
| | - Arslan Maqbool
- Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan
| |
Collapse
|
6
|
Xu Z, Deng X, Lin Z, Wang L, Lin L, Wu X, Wang Y, Li H, Shen J, Sun W. Microplastics in agricultural soil: Unveiling their role in shaping soil properties and driving greenhouse gas emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177875. [PMID: 39644637 DOI: 10.1016/j.scitotenv.2024.177875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Microplastics (MPs) contamination is pervasive in agricultural soils, significantly influencing carbon and nitrogen biogeochemical cycles and altering greenhouse gas (GHG) fluxes. This review examines the sources, status, mechanisms, and ecological consequences of MPs pollution in agricultural soils, with a focus on how MPs modified soil physicochemical properties and microbial gene expression, ultimately impacting GHG emissions. MPs were found to reduce soil water retention, decreasing soil respiration and increasing emissions of CO2, CH₄, and N2O. They also enhanced soil aggregate stability and influenced soil organic carbon (SOC) sequestration, contributing further to GHG emissions. MPs-induced increases in soil pH were associated with suppressed CH₄ and N2O emissions, whereas the abundance of genes encoding enzymes for cellulose and lignin decomposition (e.g., abfA and mnp) stimulated enzyme activity, intensifying N2O release. Additionally, a reduced soil C/N ratio promoted denitrification processes. Changes in microbial communities, including increases in Actinomycetes and Proteobacteria, were observed, with a rise in genes associated with carbon cycling (abfA, manB, xylA) and nitrification-denitrification (nifH, amoA, nirS, nirK), further exacerbating CO2 and N2O emissions. This review provides valuable insights into the complex roles of MPs in GHG dynamics in agricultural soils, offering perspectives for improving environmental management strategies.
Collapse
Affiliation(s)
- Zhimin Xu
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zheng Lin
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Huankai Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Jianlin Shen
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
7
|
Wrigley O, Braun M, Amelung W. Global soil microplastic assessment in different land-use systems is largely determined by the method of analysis: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177226. [PMID: 39481568 DOI: 10.1016/j.scitotenv.2024.177226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/30/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Although microplastics (1 μm - 5 mm, MP) are increasingly recognised as a novel entity of pollutants, we still lack a basic understanding of their prevalence in different terrestrial environments. Here, we aimed at performing comparisons of MP concentrations (items kg-1) in different agro-ecosystems, with specific focus on input pathways and land uses, while accounting for the plethora of method variations available, such as analysed MP sizes, sampling depths, density separation solutions, as well as removal of organic matter. We found that the current global means of MP loads, from 89 studies (553 sites), benchmarks 2900 ± 7600 MP items kg-1 soil, substantially more than the global median of 480 MP items kg-1. Roughly 81 % of the studies were conducted in Asia; hence, continent-wide comparisons are still hampered by low study numbers for most regions. Maximum MP numbers were found for soils under both greenhouses and plastic mulching (5200 ± 8300 items kg-1), followed by arable soils with sludge amendments (3700 ± 8800 items kg-1), surprisingly without evidence of elevated MP loads in horticultural fields relative to other agricultural management practices. Intriguingly, global MP loads significantly increased with decreasing levels of urbanisation, i.e., they were highest in rural areas. Yet, quantitative comparisons among sites are biased by the methodology selected for MP analyses. Apart from inconsistencies in sampling depth and size of screened MP particles, across all sites and treatments, largest MP loads were commonly found when using high-density solutions rather than low-density ones, and when soil organic matter removal was performed after, and not before, the density separation step.
Collapse
Affiliation(s)
- Olivia Wrigley
- Institute of Crop Science and Resource Conservation (INRES) - Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany.
| | - Melanie Braun
- Institute of Crop Science and Resource Conservation (INRES) - Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany.
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES) - Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany
| |
Collapse
|
8
|
Zantis LJ, Kazour M, Borchi C, Agati R, Colpaert R, Gimbert F, Vijver MG, Peijnenburg W, Bosker T. Quantitative tracking of nanoplastics along the food chain from lettuce (Lactuca sativa) to snails (Cantareus aspersus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176848. [PMID: 39393690 DOI: 10.1016/j.scitotenv.2024.176848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Terrestrial systems are a significant sink for plastic contamination, including nano- and microplastics (NMPs). To date, limited information is available about the transfer of NMPs up the food web via trophic transfer, however, concerns about this exposure pathway for invertebrates and higher-level organisms have been raised. We aim to examine and quantify the trophic transfer of europium doped polystyrene nanoplastics (Eu-PS; NPs) within a terrestrial food chain. The uptake of 100 nm spherical Eu-PS particles from water through the roots of the plants to the leaves and finally to garden snails (Cantareus aspersus) was assessed. Lettuce (Lactuca sativa) was cultivated in Hoagland solution spiked with different concentrations of Eu-PS (15, 150 and 1500 μg/L) for three weeks. Then, lettuce shoots were used as food for snails for 19 days at a rate of 1 g of shoots per day. The Eu-PS primarily accumulated in the lettuce roots for all treatments, with a limited transfer to the shoots (only quantifiable in the highest treatment; translocation factor: TF < 1). No detectable levels of Eu-PS were found in the snails' digestive gland; however, the Eu-PS particles were detected in their feces (trophic transfer factor: TFF > 1). Moreover, only limited effects were observed on lettuce biomass by NPs treatments. No effects of the Eu-PS particles on snails were observed, with the exception of a consistent decrease in the shell diameter. Overall, our research illustrates that NPs can be absorbed by plants through their roots, subsequently transported to the shoots. However, our findings show limited transfer of NPs into snail tissues, but direct excretion into their feces. We provide an important insight into the potential transfer within the human food chain.
Collapse
Affiliation(s)
- Laura J Zantis
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Maria Kazour
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands
| | - Caterina Borchi
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Rebecca Agati
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Romain Colpaert
- UMR 6249 Chrono-Environnement CNRS - Université de Franche-Comté Usc INRAE, 16 route de Gray, 25030 cedex Besançon, France.
| | - Frédéric Gimbert
- UMR 6249 Chrono-Environnement CNRS - Université de Franche-Comté Usc INRAE, 16 route de Gray, 25030 cedex Besançon, France.
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Willie Peijnenburg
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands.
| | - Thijs Bosker
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| |
Collapse
|
9
|
Sima J, Song J, Du X, Lou F, Zhu Y, Lei J, Huang Q. Complete degradation of polystyrene microplastics through non-thermal plasma-assisted catalytic oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136313. [PMID: 39515143 DOI: 10.1016/j.jhazmat.2024.136313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/27/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
In this study, a two-stage system, involving plasma degradation coupled with plasma-assisted catalytic oxidation, was developed for the degradation of polystyrene microplastics (PS-MPs) at low temperatures. The dielectric barrier discharge (DBD) plasma contributed reactive oxygen species (ROS) for the degradation of PS-MPs, and the plasma-assisted Hopcalite catalyst selectively facilitated the final oxidation of by-products to CO2. Within 60 min, the conversion rate of PS-MPs to CO2, α(CO2), reached an impressive 98.4 %, indicating nearly complete and harmless degradation. It was found that relying solely on the thermal activation induced by plasma heating was insufficient for achieving complete conversion, emphasizing the multifaceted synergy of plasma-catalysis. Subsequently, the cycling experiments revealed that the assistance of plasma enhanced the deactivation resistance and stability of the catalyst. When dealing with PS-MPs at a concentration of 5 wt%, the plasma-assisted Hopcalite still exhibited 93.2 % α(COx) and 99.5 % relative CO2 content after 10 cycles. Additionally, characterization of the plasma-modified Hopcalite using various techniques suggested an enhancement in surface-adsorbed oxygen species. On the other hand, the packed catalyst improved the uniformity of the discharge plasma, while micro-discharges within the pores could further facilitate the oxidation reaction. This work provides new insights into the comprehensive treatment of MP pollution.
Collapse
Affiliation(s)
- Jingyuan Sima
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiaxing Song
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xudong Du
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fangfang Lou
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Youqi Zhu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiahui Lei
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qunxing Huang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
10
|
Hoang VH, Nguyen MK, Hoang TD, Ha MC, Huyen NTT, Bui VKH, Pham MT, Nguyen CM, Chang SW, Nguyen DD. Sources, environmental fate, and impacts of microplastic contamination in agricultural soils: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175276. [PMID: 39102948 DOI: 10.1016/j.scitotenv.2024.175276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The pervasive presence of microplastics has emerged as a pressing global environmental concern, posing threats to food security and human health upon infiltrating agricultural soils. These microplastics primarily originate from agricultural activities, including fertilizer inputs, compost-based soil remediation, irrigation, and atmospheric deposition. Their remarkable durability and resistance to biodegradation contribute to their persistent presence in the environment. Microplastics within agricultural soils have prompted concerns regarding their potential impacts on agricultural practices. Functioning as significant pollutants and carriers of microcontaminants within agricultural ecosystems, microplastics and their accompanying contaminants represent ongoing challenges. Within these soil ecosystems, the fate and transportation of microplastics can detrimentally affect plant growth, microbial communities, and, subsequently, human health via the food chain. Specifically, microplastics interact with soil factors, impacting soil health and functionality. Their high adsorption capacity for hazardous microcontaminants exacerbates soil contamination, leading to increased adverse effects on organisms and human health. Due to their tiny size, microplastic debris is easily ingested by soil organisms and can transfer through the food chain, causing physiological and/or mechanical damage. Additionally, microplastics can affect plant growth and have the potential to accumulate and be transported within plants. Efforts to mitigate these impacts are crucial to safeguarding agricultural sustainability and environmental health. Future research should delve into the long-term impacts of environmental aging processes on microplastic debris within agricultural soil ecosystems from various sources, primarily focusing on food security and human beings.
Collapse
Affiliation(s)
- Van-Hiep Hoang
- Vietnam National University, Hanoi - School of Interdisciplinary Sciences and Arts, 144 Xuan Thuy Street, Cau Giay District, Hanoi 100000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam.
| | - Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Viet Nam; Vietnam National University, Hanoi, VNU Town, Hoa Lac, Thach That District, Hanoi 155500, Viet Nam
| | - Minh Cuong Ha
- School of Aerospace Engineering (SAE), University of Engineering and Technology (UET), Vietnam National University (VNU), Hanoi 100000, Viet Nam
| | - Nguyen Thi Thanh Huyen
- Faculty of International Economics, Foreign Trade University, Vietnam, Dong Da District, Hanoi, Viet Nam
| | - Vu Khac Hoang Bui
- Laboratory for Advanced Nanomaterials and Sustainable Energy Technologies, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Minh-Thuan Pham
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan; Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Cong-Manh Nguyen
- Department of Aquatic and Atmospheric Environment Research, Research Institute of Biotechnology and Environment, Nong Lam University, Ho Chi Minh City 700000, Viet Nam
| | - S Woong Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
11
|
Hattab S, Boughattas I, Alaya C, Gaaied S, Romdhani I, El Gaied F, Abouda S, Mokni M, Banni M. Assessing the presence of microplastic in agriculture soils irrigated with treated waste waters using Lumbricus sp.: Ecotoxicological effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175096. [PMID: 39079648 DOI: 10.1016/j.scitotenv.2024.175096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024]
Abstract
Global water scarcity entailed the use of treated wastewater (TWW) in agriculture, however, this water can vehiculate numerous pollutants into soil and further crops such as microplastics (MPs). To date, few studies had quantified the accumulation of MPs in soils and earthworms after irrigation with TWW as well as their toxicological effects. Hence, the main objective of the present work is to evaluate the toxicity of MPs using Lumbricus sp. earthworms collected from TWW irrigated soils with an increasing gradient of time (5 years, 16 years and 24 years). MPs determination in soil, as well as in earthworms were performed. The intestinal mucus was quantified, and cytotoxicity (Lysosomal membrane stability (LMS), Catalase (CAT) and glutathione-S-Transferase (GST) activities), neurotoxicity (Acetylcholinesterase activity (AChE)) and genotoxicity (Micronuclei frequency (MNi)) biomarker were assessed. Our results revealed that the use of TWW rendered MPs accumulation in earthworms' tissues and induce alteration on the intestinal mucus. An important cytotoxicity time-depending was observed being associated with an increase on genotoxicity. Overall, the present investigation highlights the ecotoxicological risk associated with the use of TWWs as an important driver of MPs and consequently measures are necessary to reduce MPs in wastewater treatment plans to improve this non-conventional water quality.
Collapse
Affiliation(s)
- Sabrine Hattab
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Mariem, Sousse University, Tunisia; Regional Research Centre in Horticulture and Organic Agriculture, Chott-Mariem, 4042 Sousse, Tunisia
| | - Iteb Boughattas
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Mariem, Sousse University, Tunisia; Regional Field Crops Research Center of Beja, IRESA, Tunisia
| | - Chaima Alaya
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Mariem, Sousse University, Tunisia
| | - Sonia Gaaied
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Mariem, Sousse University, Tunisia
| | - Ilef Romdhani
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Mariem, Sousse University, Tunisia
| | - Farah El Gaied
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Mariem, Sousse University, Tunisia
| | - Siwar Abouda
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Mariem, Sousse University, Tunisia
| | - Moncef Mokni
- Department of Pathology, CHU Farhat Hached, Sousse, Tunisia
| | - Mohamed Banni
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Mariem, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Tunisia.
| |
Collapse
|
12
|
Forsell V, Saartama V, Turja R, Haimi J, Selonen S. Reproduction, growth and oxidative stress in earthworm Eisenia andrei exposed to conventional and biodegradable mulching film microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174667. [PMID: 38992384 DOI: 10.1016/j.scitotenv.2024.174667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Plastic contamination in agricultural soils has become increasingly evident. Plastic mulching films are widely used in agricultural practices. However, the increased use of biodegradable plastics has, to some extent, replaced their non-degradable counterparts. The fragmentation of plastics generates microplastics (MPs), posing risk to soil functions and organisms. In this study the effects of low-density polyethylene microplastics (PE-MP) and polybutylene adipate terephthalate biodegradable microplastics (PBAT-BD-MP) originating from mulching films on the earthworm Eisenia andrei were studied. The earthworms were exposed to seven concentrations (0, 0.005, 0.05, 0.1, 0.5, 1, and 5 % w/w) based on environmentally relevant levels and worst-case scenarios on soil contamination. Survival, growth, reproduction, and biomarkers for oxidative stress [superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), glutathione (GSH), and lipid peroxidation (LPO)] were analysed. Additionally, the Integrated Biomarker Response Index (IBR) was calculated to assess the overall oxidative stress status of the earthworms. Results showed that PE-MP exposure slightly decreased the biomass of the earthworms towards higher concentrations, whereas PBAT-BD-MPs induced growth at lower concentrations. MPs did not have a significant effect on Eisenia andrei reproduction; however, a slight negative trend was observed in juvenile production with increasing PE-MP concentrations. Both PE-MP and PBAT-BD-MP affected antioxidant system, PE-MPs with changes in CAT and GR levels and PBAT-BD-MPs inducing effects on SOD and LPO levels. Additionally, both MPs exhibited effects on soil parameters, resulting in increased soil pH and water-holding capacity at 5 % concentration. Changes in soil parameters can further affect soil organisms such as earthworms. This study provides understanding of the ecotoxicological effects of conventional and biodegradable microplastics on the earthworm Eisenia andrei. It also shows that MP particles of both conventional and biodegradable mulching films induce oxidative stress, considered as an early-warning indicator for adverse ecological effects, in environmentally relevant concentrations.
Collapse
Affiliation(s)
- Venla Forsell
- Finnish Environmental Institute Syke, Latokartanonkaari 11, 00790 Helsinki, Finland; University of Helsinki, Faculty of Biological and Environmental Sciences, P.O. Box 4, 00014 University of Helsinki, Helsinki, Finland
| | - Vili Saartama
- Finnish Environmental Institute Syke, Latokartanonkaari 11, 00790 Helsinki, Finland; University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Jyväskylä, Finland
| | - Raisa Turja
- Finnish Environmental Institute Syke, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Jari Haimi
- University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Jyväskylä, Finland
| | - Salla Selonen
- Finnish Environmental Institute Syke, Latokartanonkaari 11, 00790 Helsinki, Finland.
| |
Collapse
|
13
|
Kwak JI, Rhee H, Kim L, An YJ. In vivo visualization of environmentally relevant microplastics and evaluation of gut barrier damages in Artemia franciscana. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135596. [PMID: 39178784 DOI: 10.1016/j.jhazmat.2024.135596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Although irregularly-shaped label-free microplastics (MPs) are predominantly distributed in the environment, non-destructive analysis of environmentally relevant MPs in organisms is still challenging. The purpose of the study is to suggest in vivo visual evidence of the uptake and effect of environmentally relevant MPs in organism. Transparent irregularly-shaped high-density polyethylene was selected as an environmentally relevant model MP and exposed to brine shrimp (Artemia franciscana). As a result, we suggest the application of SEM/EDX and coherent anti-Stokes Raman scattering (CARS) microspectroscopy as complementary tools to secure in vivo visual evidence of irregularly-shaped unlabeled MPs in living organisms without chemical digestion for biodistribution observations. Biological transmission electron microscopy also provides how ingested MPs physically affects the digestive tract in the brine shrimp which is rarely reported. In terms of environmental implications, this study would advance ecotoxicological research on microplastic pollution by providing a cutting-edge tool for investigating the bioavailability and ecotoxicity of environmentally relevant MPs in ecosystems.
Collapse
Affiliation(s)
- Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Hanju Rhee
- Metropolitan Seoul Center, Korea Basic Science Institute, Seoul 02841, Republic of Korea
| | - Lia Kim
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
14
|
Weltmeyer A, Roß-Nickoll M. Different mulch films, consistent results: soil fauna responses to microplastic. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:943. [PMID: 39289215 PMCID: PMC11408579 DOI: 10.1007/s10661-024-13096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Agricultural activities contribute to plastic pollution, with unintentional introduction and intentional use of plastic mulch films leading to the accumulation of microplastic particles in soils. The lack of removal techniques and scarce information on the effects on soil organisms, especially for biodegradable mulch films, necessitate an assessment of potential effects. This study aimed to elucidate the effects of mulch film microplastic on soil fauna by investigating reproduction output and subcellular responses before and after recovery from exposure. Two common soil organisms, Folsomia candida and Eisenia fetida, were exposed to petroleum-based polyethylene (PE) and biodegradable polylactic acid/polybutylene adipate terephthalate (PLA/PBAT) microplastic for 28 days, according to OECD guidelines 232 and 222, respectively. Juvenile numbers revealed no polymer- or concentration-dependent effects on E. fetida and F. candida reproduction after exposure to up to 5 and 10 g/kgdw soil, respectively. To provide a more sensitive and early indication of sublethal effects, subcellular responses in E. fetida were analyzed. Glutathione S-transferase (GST) activity increased with rising microplastic concentration; however, catalase (CAT), acetylcholine esterase (AChE) activity, and reactive oxygen species (ROS) did not differ from control levels. Further, the more environmentally relevant PE polymer was chosen for in-depth assessment of subcellular response after 28-day microplastic exposure and subsequent 28 days in uncontaminated soil with E. fetida. No significant differences in biomarker activity and stress levels were observed. We conclude that mulch film-derived microplastic did not adversely affect earthworm and collembolan species in this scenario, except for a slight induction in the detoxification enzyme glutathione S-transferase.
Collapse
Affiliation(s)
- Antonia Weltmeyer
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany.
| | - Martina Roß-Nickoll
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
15
|
Chebbi L, Boughattas I, Helaoui S, Mkhinini M, Jabnouni H, Ben Fadhl E, Alphonse V, Livet A, Giusti-Miller S, Banni M, Bousserrhine N. Environmental microplastic interact with heavy metal in polluted soil from mine site in the North of Tunisia: Effects on heavy metal accumulation, growth, photosynthetic activities, and biochemical responses of alfalfa plants (Medicago saliva L.). CHEMOSPHERE 2024; 362:142521. [PMID: 38857630 DOI: 10.1016/j.chemosphere.2024.142521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
As emerging persistent pollutants, microplastic (MPs) pollution attracted increasing attention worldwide since it is posing several environmental concerns. MPs interact with heavy metals in soil and may provoke damages on soil properties and ultimately impaired plants and human health. The present study aims to evaluate alfalfa plants (Medicago sativa) response after exposure to heavy metal polluted soils from mine site in the North of Tunisia in presence of environmental microplastic. For that, soils were sampled from two sites of Jebel Ressass mine in addition to a control soil. Plants were exposed to the three soils in presence of two increasing rates of microplastics D1 (1 mg/kg of soil) and D2 (100 mg/kg of soil) for 60 days. After harvest, agronomic parameters, chlorophyll content as well as heavy metal accumulation in plants were analyzed. Furthermore, oxidative status was evaluated in terms of malondialdehyde accumulation (MDA), catalase (CAT) activities and glutathion-S-transferase (GST). Overall, our finding highlights that MPs disrupted agronomic parameters and the photosynthetic activities of alfalfa plants. Additionally, our results revealed that the presence of MPs in polluted soils cause an increase on heavy metal accumulation in alfalfa shoots. Biochemical analyses demonstrated that the combined exposure to MPs and heavy metal induced oxidative stress in alfalfa plants by increasing CAT activity and MDA accumulation. The present investigation highlights the ecological risks of microplastics in terrestrial environment.
Collapse
Affiliation(s)
- Lina Chebbi
- LEESU, Université Paris Est Créteil, Ecole des ponts, Créteil, France; Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia
| | - Iteb Boughattas
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia; Regional Field Crops Research Center of Beja, IRESA, Tunisia.
| | - Sondes Helaoui
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia
| | - Marouane Mkhinini
- LEESU, Université Paris Est Créteil, Ecole des ponts, Créteil, France; Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia
| | - Hiba Jabnouni
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia
| | - Eya Ben Fadhl
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia
| | - Vanessa Alphonse
- LEESU, Université Paris Est Créteil, Ecole des ponts, Créteil, France
| | - Alexandre Livet
- LEESU, Université Paris Est Créteil, Ecole des ponts, Créteil, France
| | | | - Mohamed Banni
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Tunisia
| | | |
Collapse
|
16
|
Hattab S, Cappello T, Boughattas I, Sassi K, Mkhinini M, Zitouni N, Missawi O, Eliso MC, Znaidi A, Banni M. Toxicity assessment of animal manure composts containing environmental microplastics by using earthworms Eisenia andrei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172975. [PMID: 38705298 DOI: 10.1016/j.scitotenv.2024.172975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Nowadays, animal manure composting constitutes a sustainable alternative for farmers to enhance the level of nutrients within soils and achieve a good productivity. However, pollutants may be present in manures. This study focuses on the detection of environmental microplastics (EMPs) into composts, as well as on the assessment of their potential toxicity on the earthworm Eisenia andrei. To these aims, animals were exposed to two types of compost, namely bovine (cow) and ovine (sheep) manure, besides to their mixture, for 7 and 14 days. The presence and characterization of EMPs was evaluated in all the tested composts, as well as in tissues of the exposed earthworms. The impact of the tested composts was assessed by a multi-biomarker approach including cytotoxic (lysosomal membrane stability, LMS), genotoxic (micronuclei frequency, MNi), biochemical (activity of catalase, CAT, and glutathione-S-transferase, GST; content of malondialdehyde, MDA), and neurotoxic (activity of acetylcholinesterase, AChE) responses in earthworms. Results indicated the presence of high levels of EMPs in all the tested composts, especially in the sheep manure (2273.14 ± 200.89 items/kg) in comparison to the cow manure (1628.82 ± 175.23 items/kg), with the size <1.22 μm as the most abundant EMPs. A time-dependent decrease in LMS and AChE was noted in exposed earthworms, as well as a concomitant increase in DNA damages (MNi) after 7 and 14 days of exposure. Also, a severe oxidative stress was recorded in animals treated with the different types of compost through an increase in CAT and GST activities, and LPO levels, especially after 14 days of exposure. Therefore, it is necessary to carefully consider these findings for agricultural good practices in terms of plastic mitigation in compost usage, in order to prevent any risk for environment health.
Collapse
Affiliation(s)
- Sabrine Hattab
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia; Regional Research Centre in Horticulture and Organic Agriculture of Chott-Meriem, Sousse, Tunisia
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Iteb Boughattas
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia; Regional Field Crops Research Center of Beja, IRESA, Tunisia
| | - Khaled Sassi
- Laboratory of Agronomy, National Agronomy Institute of Tunisia (INAT), University of Carthage, Tunis, Tunisia
| | - Marouane Mkhinini
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia; LEESU, Université Paris Est Créteil, Ecole des ponts, Créteil, France
| | - Nesrine Zitouni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Omayma Missawi
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Maria Concetta Eliso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Akram Znaidi
- Department of Animal Production, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia; Higher Institute of Biotechnology, ISBM, University of Monastir, Monastir, Tunisia
| |
Collapse
|
17
|
De Felice B, Gazzotti S, Roncoli M, Conterosito E, Gianotti V, Ortenzi MA, Parolini M. Exposure to Microplastics Made of Plasmix-Based Materials at Low Amounts Did Not Induce Adverse Effects on the Earthworm Eisenia foetida. TOXICS 2024; 12:300. [PMID: 38668523 PMCID: PMC11054649 DOI: 10.3390/toxics12040300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/23/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
The implementation of recycling techniques represents a potential solution to the plastic pollution issue. To date, only a limited number of plastic polymers can be efficiently recycled. In the Italian plastic waste stream, the residual, non-homogeneous fraction is called 'Plasmix' and is intended for low-value uses. However, Plasmix can be used to create new materials through mechanical recycling, which need to be tested for their eco-safety. This study aimed to investigate the potential toxicity of two amounts (0.1% and 1% MPs in soil weight) of microplastics (MPs) made of naïve and additivated Plasmix-based materials (Px and APx, respectively) on the earthworm Eisenia foetida. Changes in oxidative status and oxidative damage, survival, gross growth rate and reproductive output were considered as endpoints. Although earthworms ingested both MP types, earthworms did not suffer an oxidative stress condition or growth and reproductive impairments. The results suggested that exposure to low amounts of both MPs can be considered as safe for earthworms. However, further studies testing a higher amount or longer exposure time on different model species are necessary to complete the environmental risk assessment of these new materials.
Collapse
Affiliation(s)
- Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, I-20133 Milan, Italy;
| | - Stefano Gazzotti
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milan, Italy; (S.G.); (M.A.O.)
| | - Maddalena Roncoli
- Department of Sustainable Development and Ecological Transition, University of Piemonte Orientale, Via T. Michel 11, I-13100 Vercelli, Italy; (M.R.); (E.C.); (V.G.)
| | - Eleonora Conterosito
- Department of Sustainable Development and Ecological Transition, University of Piemonte Orientale, Via T. Michel 11, I-13100 Vercelli, Italy; (M.R.); (E.C.); (V.G.)
| | - Valentina Gianotti
- Department of Sustainable Development and Ecological Transition, University of Piemonte Orientale, Via T. Michel 11, I-13100 Vercelli, Italy; (M.R.); (E.C.); (V.G.)
| | - Marco Aldo Ortenzi
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milan, Italy; (S.G.); (M.A.O.)
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, I-20133 Milan, Italy;
| |
Collapse
|
18
|
Palazot M, Soccalingame L, Froger C, Jolivet C, Bispo A, Kedzierski M, Bruzaud S. First national reference of microplastic contamination of French soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170564. [PMID: 38311079 DOI: 10.1016/j.scitotenv.2024.170564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
The recent emergence of studies on plastic contamination of terrestrial environments has revealed the presence of microplastics (MP) in a variety of soil types, from the most densely populated areas to the most remote ones. However, the concentrations and chemical natures of MP in soils vary between studies, and only a few ones have focused on this issue in France. The MICROSOF project aimed to establish the first national references for French soil contamination by microplastics. 33 soil samples randomly chosen on the French soil quality-monitoring network were analyzed. The study collected data on the abundance of microplastics in the [315-5000] μm range, their chemical nature and size, as well as mass abundance estimates and other relevant information. Results demonstrated that 76 % of the soil samples contained microplastics, in concentrations ranging from <6.7 to 80 MP.kg-1 (dry soil). Most samples from croplands, grasslands and vineyards and orchards were contaminated, whereas only one sample from forest contained MP, suggesting an increased risk of microplastic contamination in soils exposed to agricultural practices. The MP abundances are not statistically different from similar studies, indicating an intermediate level of contamination in French soils. Despite intervention reports and surveys, the sources remain unclear at this stage. For the first time, an overview of the state of soil contamination in France, as well as the potential risks is provided.
Collapse
Affiliation(s)
- Maialen Palazot
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| | - Lata Soccalingame
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| | | | | | | | - Mikaël Kedzierski
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France.
| | - Stéphane Bruzaud
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| |
Collapse
|
19
|
Boughattas I, Vaccari F, Zhang L, Bandini F, Miras-Moreno B, Missawi O, Hattab S, Mkhinini M, Lucini L, Puglisi E, Banni M. Co-exposure to environmental microplastic and the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) induce distinctive alterations in the metabolome and microbial community structure in the gut of the earthworm Eisenia andrei. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123213. [PMID: 38158010 DOI: 10.1016/j.envpol.2023.123213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Microplastics (MPs) are recognized as emergent pollutants and have become a significant environmental concern, especially when combined with other contaminants. In this study, earthworms, specifically Eisenia andrei, were exposed to MPs (at a concentration of 10 μg kg-1 of soil), herbicide 2,4-D (7 mg kg-1 of soil), and a combination of the two for 7 and 14 days. The chemical uptake in the earthworms was measured, and the bacterial and archaeal diversities in both the soil and earthworm gut were analyzed, along with the metabolomic profiles. Additionally, data integration of the two omics approaches was performed to correlate changes in gut microbial diversity and the different metabolites. Our results demonstrated that earthworms ingested MPs and increased 2,4-D accumulation. More importantly, high-throughput sequencing revealed a shift in microbial diversity depending on single or mixture exposition. Metabolomic data demonstrated an important modulation of the metabolites related to oxidative stress, inflammatory system, amino acids synthesis, energy, and nucleic acids metabolism, being more affected in case of co-exposure. Our investigation revealed the potential risks of MPs and 2,4-D herbicide combined exposure to earthworms and soil fertility, thus broadening our understanding of MPs' toxicity and impacts on terrestrial environments.
Collapse
Affiliation(s)
- Iteb Boughattas
- Laboratory of Ecotoxicology and Agrobiodiversity, Sousse University, Tunisia; Regional Field Crops Research Center of Beja, IRESA, Tunisia
| | - Filippo Vaccari
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Francesca Bandini
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Omayma Missawi
- Laboratory of Ecotoxicology and Agrobiodiversity, Sousse University, Tunisia
| | - Sabrine Hattab
- Laboratory of Ecotoxicology and Agrobiodiversity, Sousse University, Tunisia; Regional Research Centre in Horticulture and Organic Agriculture, Chott-Mariem, 4042 Sousse, Tunisia
| | - Marouane Mkhinini
- Laboratory of Ecotoxicology and Agrobiodiversity, Sousse University, Tunisia
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Mohamed Banni
- Laboratory of Ecotoxicology and Agrobiodiversity, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Tunisia
| |
Collapse
|
20
|
Kataria N, Yadav S, Garg VK, Rene ER, Jiang JJ, Rose PK, Kumar M, Khoo KS. Occurrence, transport, and toxicity of microplastics in tropical food chains: perspectives view and way forward. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:98. [PMID: 38393462 DOI: 10.1007/s10653-024-01862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/06/2024] [Indexed: 02/25/2024]
Abstract
Microplastics, which have a diameter of less than 5 mm, are becoming an increasingly prevalent contaminant in terrestrial and aquatic ecosystems due to the dramatic increase in plastic production to 390.7 million tonnes in 2021. Among all the plastics produced since 1950, nearly 80% ended up in the environment or landfills and eventually reached the oceans. Currently, 82-358 trillion plastic particles, equivalent to 1.1-4.9 million tonnes by weight, are floating on the ocean's surface. The interactions between microorganisms and microplastics have led to the transportation of other associated pollutants to higher trophic levels of the food chain, where microplastics eventually reach plants, animals, and top predators. This review paper focuses on the interactions and origins of microplastics in diverse environmental compartments that involve terrestrial and aquatic food chains. The present review study also critically discusses the toxicity potential of microplastics in the food chain. This systematic review critically identified 206 publications from 2010 to 2022, specifically reported on microplastic transport and ecotoxicological impact in aquatic and terrestrial food chains. Based on the ScienceDirect database, the total number of studies with "microplastic" as the keyword in their title increased from 75 to 4813 between 2010 and 2022. Furthermore, various contaminants are discussed, including how microplastics act as a vector to reach organisms after ingestion. This review paper would provide useful perspectives in comprehending the possible effects of microplastics and associated contaminants from primary producers to the highest trophic level (i.e. human health).
Collapse
Affiliation(s)
- Navish Kataria
- Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, 121006, India
| | - Sangita Yadav
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Vinod Kumar Garg
- Department of Environmental Sciences and Technology, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601 DA, Delft, The Netherlands
| | - Jheng-Jie Jiang
- Advanced Environmental Ultra Research Laboratory (ADVENTURE), Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Center for Environmental Risk Management (CERM), Chung Yuan Christian University, Taoyuan, Taiwan
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, Haryana, 125055, India
| | - Mukesh Kumar
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
21
|
Bernat P, Jasińska A, Niedziałkowska K, Słaba M, Różalska S, Paraszkiewicz K, Sas-Paszt L, Heipieper HJ. Adaptation of the metolachlor-degrading fungus Trichoderma harzianum to the simultaneous presence of low-density polyethylene (LDPE) microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115656. [PMID: 37944463 DOI: 10.1016/j.ecoenv.2023.115656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Although it is known that microplastics (MPs) in soils cause a threat to this complex environment, the actual effects of MPs on soil microorganisms and their catabolic activities, particularly with the biodegradation of herbicides, remain unclear. Hence, the objective of this study was to investigate the effects of a simultaneous presence of metolachlor and low-density polyethylene (LDPE) microplastics on growth inhibition and adaptive responses of Trichoderma harzianum in soil microcosms. Using ergosterol content as an indicator of fungal biomass, it was observed that MPs alone had a marginal inhibitory effect on the growth of the fungus, whereas MET exhibited a dose-dependent inhibitory effect on T. harzianum. However, the presence of MPs did not influence the fungal transforming activity toward the herbicide. Conversely, analysis of lipid profiles in the presence of MPs and herbicides revealed a reduction in the overall fluidity of phospholipid fatty acids, primarily attributed to an increase in lysophospholipids. The activities of six extracellular enzymes in the soil, measured using methylumbelliferone-linked substrates, were significantly enhanced in the presence of MET. These findings contribute to a broader understanding of the alterations in fungal activity in soil resulting from the influence of MPs and MET.
Collapse
Affiliation(s)
- Przemysław Bernat
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Industrial Microbiology and Biotechnology, Banacha Street 12/16, 90-237, Lodz, Poland.
| | - Anna Jasińska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Industrial Microbiology and Biotechnology, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Katarzyna Niedziałkowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Industrial Microbiology and Biotechnology, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Mirosława Słaba
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Industrial Microbiology and Biotechnology, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Sylwia Różalska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Industrial Microbiology and Biotechnology, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Katarzyna Paraszkiewicz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Industrial Microbiology and Biotechnology, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Lidia Sas-Paszt
- Department of Microbiology and Rhizosphere, The National Institute of Horticultural Research, Pomologiczna 18, 96-100 Skierniewice, Poland
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
22
|
Ling Q, Yang B, Jiao J, Ma X, Zhao W, Zhang X. Response of microplastic occurrence and migration to heavy rainstorm in agricultural catchment on the Loess plateau. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132416. [PMID: 37657328 DOI: 10.1016/j.jhazmat.2023.132416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Microplastics have received widespread attention as an emerging pollutant in recent years, but limited studies have explored their response to extreme weather. This study surveyed and analyzed the occurrence and distribution of microplastics in a typical agricultural catchment located on the Loess Plateau, focusing on their response to heavy rainstorms. Microplastics were detected in all soil samples with an abundance of 70-4020 items/kg, and particles less than 0.5 mm accounted for 81.61 % of the total microplastics. The main colors of microplastic were white, yellow, and transparent, accounting for 38.50 %, 32.90 %, and 21.05 % respectively, and the main shapes were film and fragment, accounting for 47.65 % and 30.81 %. Low density polyethylene was the main component of microplastics identified using Fourier transform infrared spectrometry. The extensive use of plastic mulch film is a major contributor to microplastic pollution in this catchment. The differences and connections observed in microplastics imply mutual migration and deposition within the catchment. A check dam at the outlet effectively intercepts microplastics during the rainstorm, reducing the microplastic by at least 6.1 × 1010 items downstream. This study provides a reference for the effects of rainstorms on the sources and pathways of MP pollution in regions prone to severe soil erosion.
Collapse
Affiliation(s)
- Qi Ling
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Yang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sci and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Reso Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juying Jiao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sci and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Reso Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaowu Ma
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenting Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinhan Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
23
|
Luqman M, Shahid T, Awan MUF, Kashif SUR, Arooj F, Awan AR. Quantification and characterization of microplastics (MPs) pollution in peri-uburban agricultural lands of Lahore, Pakistan. PLoS One 2023; 18:e0291760. [PMID: 37788245 PMCID: PMC10547192 DOI: 10.1371/journal.pone.0291760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Microplastics (MPs) contaminate every conceivable terrestrial and aquatic environment including high peaks and deep marine trenches. Agricultural lands alone are expected to receive plastic up to 23 times more than ocean basins. In this study, soil samples were collected from peri-urban agricultural lands of Lahore on four sides including Kala Shah Kaku (KSK), Punjab University (PU), Dera Gujran (DG), and Sagian (SG). National Oceanic and Atmospheric Administration (NOAA) protocol was used for MPs extraction and analysis. Extracted MPs were analyzed under microscope at 40X magnification and their composition was analyzed using Fourier Transform Infrared (FTIR) spectroscopy. A considerable concentration of MPs was recorded at all sites. The highest contamination was found at SG with 876 ±194 MPs/kg of soil, and the lowest contamination was recorded at PU with 672 ±235 MPs/kg of soil. However, these differences among the sites were not statistically significant (p = 0.29). The overall predominant shape of MPs was fibers (613±71, 79.73%) followed by sheets (125±55, 16.28%), fragments (30±5, 3.9%) and foam particles (1±2, .09%). The differences in the distribution of MPs in various types were statistically significant (p = 0), while differences between sites were insignificant (p = 0.13). About 95% of MPs were less than 2 mm and 85% were less than 1 mm size. The distribution of MPs in various sizes (p = 0) and differences of this distribution between sites (p = 0.037) were both statistically significant. A good diversity of nine colored MPs was recorded, however majority of the MPs were transparent (89.57%). Six polymer including Polyethylene (PE), Polyethylene terephthalate (PET), Polypropylene (PP), Polystyrene (PS), Polycarbonate (PC), and Polyvinyl Chloride (PVC) were identified by FTIR. The current levels of MPs pollution are higher than in many other parts of the world. Composition of MPs (types, colors, sizes, and polymer types) indicates the diversity of their sources and their possible implications on agricultural ecosystem.
Collapse
Affiliation(s)
- Muhammad Luqman
- Department of Environmental Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Tehreem Shahid
- Department of Environmental Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | | | - Saif Ur Rehman Kashif
- Department of Environmental Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Fariha Arooj
- Department of Environmental Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Ali Raza Awan
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| |
Collapse
|
24
|
Mészáros E, Bodor A, Kovács E, Papp S, Kovács K, Perei K, Feigl G. Impacts of Plastics on Plant Development: Recent Advances and Future Research Directions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3282. [PMID: 37765446 PMCID: PMC10538034 DOI: 10.3390/plants12183282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Plastics have inundated the world, with microplastics (MPs) being small particles, less than 5 mm in size, originating from various sources. They pervade ecosystems such as freshwater and marine environments, soils, and the atmosphere. MPs, due to their small size and strong adsorption capacity, pose a threat to plants by inhibiting seed germination, root elongation, and nutrient absorption. The accumulation of MPs induces oxidative stress, cytotoxicity, and genotoxicity in plants, which also impacts plant development, mineral nutrition, photosynthesis, toxic accumulation, and metabolite production in plant tissues. Furthermore, roots can absorb nanoplastics (NPs), which are then distributed to stems, leaves, and fruits. As MPs and NPs harm organisms and ecosystems, they raise concerns about physical damage and toxic effects on animals, and the potential impact on human health via food webs. Understanding the environmental fate and effects of MPs is essential, along with strategies to reduce their release and mitigate consequences. However, a full understanding of the effects of different plastics, whether traditional or biodegradable, on plant development is yet to be achieved. This review offers an up-to-date overview of the latest known effects of plastics on plants.
Collapse
Affiliation(s)
- Enikő Mészáros
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
| | - Attila Bodor
- Department of Biotechnology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary; (A.B.); (K.P.)
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
| | - Etelka Kovács
- Department of Biotechnology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary; (A.B.); (K.P.)
| | - Sarolta Papp
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
| | - Kamilla Kovács
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary; (A.B.); (K.P.)
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
| |
Collapse
|
25
|
Sruthi SN, Ramasamy EV, Shyleshchandran MN. Bioaccumulation of pesticide residue in earthworms collected from the agricultural soils of Kuttanad-a unique agroecosystem in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94940-94949. [PMID: 37542694 DOI: 10.1007/s11356-023-28944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Earthworms encompass significant soil faunal biomass and have tremendous potential to provide vital ecosystem services. Earthworms are considered bioindicators of chemical contaminants and can provide early warnings of ecosystem deterioration. Studies pertaining to the accumulation of pesticide residues in earthworm in biomass in agrarian ecosystems are scarce. The Kuttanad agroecosystem (KAE), situated on the southwest coast of India, is one of the few regions globally supporting farming on land below the mean sea level. This investigation was conducted to assess the bioaccumulation of pesticide residues in earthworms from the KAE. The earthworms species Glyphidrilus annandalei collected from agricultural soils of the study area were analyzed for the presence of pesticides residues such as α-BHC, γ-BHC, atrazine, heptachlor, α-chlordane, γ-chlordane, 4,4-DDE, 4,4-DDD, 4,4-DDT, β-endosulfan, and endrin ketone in their biomass. Analysis of the earthworm samples using a gas chromatograph revealed the presence of ten pesticide residues with notable concentrations (α-BHC, 0.36 ng/g; γ-BHC, 0.41 ng/g; heptachlor, 0.10 ng/g; atrazine, 0.89 ng/g; α-chlordane, 0.07 ng/g; γ-chlordane, 0.10 ng/g; 4,4-DDE, 0.05 ng/g; 4,4-DDD, 0.11 ng/g; 4,4-DDT, 0.31 ng/g; β-endosulfan, 0.19 ng/g; and endrin ketone, 0.13 ng/g). Six groups of pesticide residues are ΣBHC, ΣDDT, atrazine, Σchlordane, endrin ketone, and β-endosulfan were observed during bioaccumulation factor analysis, and the results show the following trend: atrazine > ΣBHC > ΣDDT > Σchlordane > Σendosulfan > Σendrin. As earthworms are a crucial component of this region's food chains, bioaccumulation of pesticide residues in earthworms can pause adverse consequences. Increasing trends in pesticide application in the KAE and bioaccumulation of pesticide residues in earthworm biomass can affect the entire food web.
Collapse
|
26
|
Kedzierski M, Cirederf-Boulant D, Palazot M, Yvin M, Bruzaud S. Continents of plastics: An estimate of the stock of microplastics in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163294. [PMID: 37028674 DOI: 10.1016/j.scitotenv.2023.163294] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 05/27/2023]
Abstract
While there are estimates of the stock of microplastics in the marine environment, there are no estimates for soils. The main objective of this work is to estimate the total mass of microplastics in global agricultural soils. Microplastic abundance data from 442 sampling sites were collected from 43 articles. From these, the median of the abundance values, as well as the abundance profile of microplastics in soils were calculated. Thus, 1.5 to 6.6 Mt of microplastics would be present in soils on a global scale, i.e. one to two orders of magnitude higher than the estimated ocean surface microplastic stock. However, many limitations exist to accurately calculate these stocks. This work should therefore be considered as a first step in addressing this question. In the long term, in order to better assess this stock, it seems important to obtain more diversified data, e.g. better representing certain countries, or certain land uses.
Collapse
Affiliation(s)
- Mikaël Kedzierski
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France.
| | | | - Maialen Palazot
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| | - Marion Yvin
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| | - Stéphane Bruzaud
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| |
Collapse
|
27
|
Vinay, Surana D, Ghosh P, Kumar M, Varjani S, Kumar V, Mannina G. Contemporary Drift in Emerging Micro(nano)plastics Removal and Upcycling Technologies from Municipal Wastewater Sludge: Strategic Innovations and Prospects. CURRENT POLLUTION REPORTS 2023; 9:174-197. [PMID: 37292232 PMCID: PMC10201030 DOI: 10.1007/s40726-023-00261-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/10/2023]
Abstract
Purpose of Review Annually, huge amounts of microplastics (MPs) are added to farmlands through sewage sludge (SS)/biosolid applications as a fertilizer. Most research emphasizes the enormity of the problem and demonstrates the fate, impacts, and toxicity of MPs during SS treatment processes and land applications. None has addressed the management strategies. To address the gaps, the current review evaluates the performance analysis of conventional and advanced sludge treatment methods in eliminating MPs from sludge. Recent Findings The review uncovers that the occurrence and characteristics of MPs in SS are highly governed by factors such as population density, speed and level of urbanization, citizens' daily habits, and treatment units in wastewater treatment plants (WWTPs). Furthermore, conventional sludge treatment processes are ineffective in eliminating MPs from SS and are accountable for the increased small-sized MPs or micro(nano)plastics (MNPs) along with altered surface morphology facilitating more co-contaminant adsorption. Simultaneously, MPs can influence the operation of these treatment processes depending on their size, type, shape, and concentration. The review reveals that research to develop advanced technology to remove MPs efficiently from SS is still at a nascent stage. Summary This review provides a comprehensive analysis of MPs in the SS, by corroborating state-of-the-knowledge, on different aspects, including the global occurrence of MPs in WWTP sludge, impacts of different conventional sludge treatment processes on MPs and vice versa, and efficiency of advanced sludge treatment and upcycling technologies to eliminate MPs, which will facilitate the development of mitigation measures from the systematic and holistic level. Graphical Abstract
Collapse
Affiliation(s)
- Vinay
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, New Delhi-110016, India
| | - Deepti Surana
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, New Delhi-110016, India
| | - Pooja Ghosh
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, New Delhi-110016, India
| | - Manish Kumar
- Engineering Department, Palermo University, Viale Delle Scienze, Ed.8, Palermo, 90128 Italy
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007 India
| | - Vivek Kumar
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, New Delhi-110016, India
| | - Giorgio Mannina
- Engineering Department, Palermo University, Viale Delle Scienze, Ed.8, Palermo, 90128 Italy
| |
Collapse
|
28
|
Rezaei Rashti M, Hintz J, Esfandbod M, Bahadori M, Lan Z, Chen C. Detecting microplastics in organic-rich materials and their potential risks to earthworms in agroecosystems. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 166:96-103. [PMID: 37167710 DOI: 10.1016/j.wasman.2023.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/23/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Microplastics (MPs) are a major emerging contaminant in agroecosystems, due to their significant resistance to degradation in terrestrial environments. Although previous investigations have reported the harmful effects of MPs contamination on soil biological properties, still little is known about the characteristics and fate of MPs in biosolid-amended soils and their risks to soil biota, particularly earthworms. We determined microplastics' concentration, size distribution, and chemical composition in 3 sewage sludge biosolids and 6 biosolid-amended agricultural soils. In addition, we assessed the potential short-term risks of MPs to earthworms' (Amynthas Gracilis and Eisenia Fetida) survival rate and fitness in an environmentally relevant exposure study (28 days). Biosolid-amended soils (1000-3100 MPs kg-1 dry mass) showed ≈30 times lower MPs content than investigated biosolids (55400-73800 MPs kg-1 dry mass), with microplastic fragment to fibre ratios between 0.2 and 0.6 and 0.3-0.4 in soils and biosolids, respectively. Total MPs dry mass was also ≈19 times lower in assessed soils (12-26 mg kg-1) than biosolids (328-440 mg kg-1). On average 77% and 80% of plastic fragments had a lower dimension than 500 µm, while 50% and 67% of plastic fibres had a length of less than 1000 µm in soil and biosolid samples, respectively. Polyethylene (23.6%) was the major source of microplastic contamination in biosolid-amended soils, while polyethylene terephthalate (41.6%) showed the highest concentration in biosolid samples. Spiked polyethylene MPs did not show any significant effect on earthworms' survival rate (93-99%). However, biosolid application significantly (P < 0.05) decreased survival rate of Eisenia Fetida (81%) but showed no significant effect on Amynthas Gracilis (93%). Biosolid amendment significantly (P < 0.05) decreased earthworms' growth rate, with higher impact on Eisenia Fetida than Amynthas Gracilis, while there were no significant differences between control and microplastic spiked treatments. The overall decrease in MPs concentration of earthworm casts, compared with initial MPs concentrations in soil, indicated that the investigated species did not bioaccumulate MPs during the exposure experiment.
Collapse
Affiliation(s)
- Mehran Rezaei Rashti
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia; School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia.
| | - Jessica Hintz
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Maryam Esfandbod
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Mohammad Bahadori
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Zhongming Lan
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Chengrong Chen
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia; School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
29
|
Malli A, Shehayeb A, Yehya A. Occurrence and risks of microplastics in the ecosystems of the Middle East and North Africa (MENA). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64800-64826. [PMID: 37086319 PMCID: PMC10122206 DOI: 10.1007/s11356-023-27029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The ubiquitous nature of microplastics (MPs) in nature and the risks they pose on the environment and human health have led to an increased research interest in the topic. Despite being an area of high plastic production and consumption, studies on MPs in the Middle East and North Africa (MENA) region have been limited. However, the region witnessed a research surge in 2021 attributed to the COVID-19 pandemic. In this review, a total of 97 studies were analyzed based on their environmental compartments (marine, freshwater, air, and terrestrial) and matrices (sediments, water columns, biota, soil, etc.). Then, the MP concentrations and polymer types were utilized to conduct a risk assessment to provide a critical analysis of the data. The highest MP concentrations recorded in the marine water column and sediments were in the Mediterranean Sea in Tunisia with 400 items/m3 and 7960 items/kg of sediments, respectively. The number of MPs in biota ranged between 0 and 7525 per individual across all the aquatic compartments. For the air compartment, a school classroom had 56,000 items/g of dust in Iran due to the confined space. Very high risks in the sediment samples (Eri > 1500) were recorded in the Caspian Sea and Arab/Persian Gulf due to their closed or semi-closed nature that promotes sedimentation. The risk factors obtained are sensitive to the reference concentration which calls for the development of more reliable risk assessment approaches. Finally, more studies are needed in understudied MENA environmental compartments such as groundwater, deserts, and estuaries.
Collapse
Affiliation(s)
- Ali Malli
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon.
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Ameed Shehayeb
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
- CIRAIG, Department of Chemical Engineering, Polytechnique Montréal, Montréal, Canada
| | - Alissar Yehya
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA, Cambridge, USA
| |
Collapse
|
30
|
Khan MA, Huang Q, Khan S, Wang Q, Huang J, Fahad S, Sajjad M, Liu Y, Mašek O, Li X, Wang J, Song X. Abundance, spatial distribution, and characteristics of microplastics in agricultural soils and their relationship with contributing factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:117006. [PMID: 36521215 DOI: 10.1016/j.jenvman.2022.117006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Agro-ecosystem contamination with microplastics (MPs) is of great concern. However, limited research has been conducted on the agricultural soil of tropical regions. This paper investigated MPs in the agro-ecosystem of Hainan Island, China, as well as their relationships with plastic mulching, farming practices, and social and environmental factors. The concentration of MPs in the study area ranged from 2800 to 82500 particles/kg with a mean concentration of 15461.52 particles/kg. MPs with sizes between 20 and 200 μm had the highest abundance of 57.57%, fragment (58.16%) was the most predominant shape, while black (77.76%) was the most abundant MP colour. Polyethylene (PE) (71.04%) and polypropylene (PP) (19.83%) were the main types of polymers. The mean abundance of MPs was significantly positively correlated (p < 0.01) with all sizes, temperature, and shapes except fibre, while weakly positively correlated with the population (p = 0.21), GDP (p = 0.33), and annual precipitation (p = 0.66). In conclusion, plastic mulching contributed to significant contamination of soil MPs in the study area, while environmental and social factors promoted soil MPs fragmentation. The current study results indicate serious contamination with MPs, which poses a concern regarding ecological and environmental safety.
Collapse
Affiliation(s)
- Muhammad Amjad Khan
- College of Ecology and Environment, Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, 570228, China; Department of Environmental Sciences, University of Peshawar, Khyber Pakhtunkhwa, Peshawar, 25120, Pakistan
| | - Qing Huang
- College of Ecology and Environment, Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, 570228, China.
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Khyber Pakhtunkhwa, Peshawar, 25120, Pakistan
| | - Qingqing Wang
- College of Ecology and Environment, Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, 570228, China
| | - Jingjing Huang
- College of Ecology and Environment, Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, 570228, China
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| | - Muhammad Sajjad
- College of Ecology and Environment, Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, 570228, China
| | - Yin Liu
- College of Ecology and Environment, Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, 570228, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, Crew Building, The King's Buildings, University of Edinburgh, EH9 3FF, Edinburgh, United Kingdom
| | - Xiaohui Li
- Hainan Inspection and Detection Center for Modern Agriculture, Haikou, 570100, China
| | - Junfeng Wang
- College of Ecology and Environment, Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, 570228, China
| | - Xiaomao Song
- Pujin Environmental Engineering (Hainan) Co., Ltd. Haikou, 570125, China
| |
Collapse
|
31
|
Gong W, Li H, Wang J, Zhou J, Zhao H, Wang X, Qu H, Lu A. Global Research Activities on Micro(nano)plastic Toxicity to Earthworms. TOXICS 2023; 11:112. [PMID: 36850987 PMCID: PMC9966243 DOI: 10.3390/toxics11020112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Micro(nano)plastics are emerging contaminants that have been shown to cause various ecotoxicological effects on soil biota. Earthworms, as engineers of the ecosystem, play a fundamental role in soil ecosystem processes and have been used as model species in ecotoxicological studies. Research that evaluates micro(nano)plastic toxicity to earthworms has increased greatly over the last decade; however, only few studies have been conducted to highlight the current knowledge and evolving trends of this topic. This study aims to visualize the research status and knowledge structure of the relevant literature. Bibliometrics and visualization analyses were conducted using co-citations, cooperation networks and cluster analysis. The results showed that micro(nano)plastic toxicity to earthworms is an emerging and increasingly popular topic, with 78 articles published from 2013 to 2022, the majority of which were published in the last two years. The most prolific publications and journals involved in this topic were also identified. In addition, the diversity of cooperative relationships among different countries and institutions confirmed the evolution of this research field, in which China contributed substantially. The high-frequency keywords were then determined using co-occurrence analysis, and were identified as exposure, bioaccumulation, soil, pollution, toxicity, oxidative stress, heavy metal, microplastic, Eisenia foetida and community. Moreover, a total of eight clusters were obtained based on topic knowledge clustering, and these included the following themes: plastic pollution, ingestion, combined effects and the biological endpoints of earthworms and toxic mechanisms. This study provides an overview and knowledge structure of micro(nano)plastic toxicity to earthworms so that future researchers can identify their research topics and potential collaborators.
Collapse
Affiliation(s)
- Wenwen Gong
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Haifeng Li
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Jiachen Wang
- Institute of Plan Nutrition, Resources and Environment, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Jihua Zhou
- Beijing Agricultural Technology Promotion Station, Beijing 100029, China
| | - Haikang Zhao
- Beijing Agricultural Technology Promotion Station, Beijing 100029, China
| | - Xuexia Wang
- Institute of Plan Nutrition, Resources and Environment, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Han Qu
- Key Laboratory of Eco-Environment of Three Gorges Region of Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Anxiang Lu
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| |
Collapse
|
32
|
Bhatt V, Chauhan JS. Microplastic in freshwater ecosystem: bioaccumulation, trophic transfer, and biomagnification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9389-9400. [PMID: 36508090 DOI: 10.1007/s11356-022-24529-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Plastic wastes in the environment ultimately reach to the aquatic habitats and become available to aquatic organisms. The pathway of microplastic in aquatic ecosystem is very less investigated specially in freshwater. There have been evidences of MPs ingestion by freshwater biota but the fate of these MPs further in the food chain is unexplored. Thus, we reviewed the status of MPs in freshwater biota and tried to compare the studies to merge the available information, concepts, and perspectives in order to draw a conclusion on bioaccumulation potential, trophic transfer possibilities, biomagnification, and trends of ingesting MPs by the biota. In this review, the previously available information about MPs in aquatic biota is arranged, analyzed, and interpreted to understand all possible routes of MPs in freshwater habitats. The review further provides a better understanding about the lack of information and research gaps that are needed to be explored to develop a solution to the problem of MPs in near future.
Collapse
Affiliation(s)
- Vaishali Bhatt
- Aquatic Ecology Lab, Department of Himalayan Aquatic Biodiversity, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar-Garhwal, Uttarakhand, 246174, India
| | - Jaspal Singh Chauhan
- Aquatic Ecology Lab, Department of Himalayan Aquatic Biodiversity, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar-Garhwal, Uttarakhand, 246174, India.
| |
Collapse
|
33
|
Gündoğdu R, Önder D, Gündoğdu S, Gwinnett C. Plastics derived from disposable greenhouse plastic films and irrigation pipes in agricultural soils: a case study from Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87706-87716. [PMID: 35819676 DOI: 10.1007/s11356-022-21911-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Plastics are ubiquitous. It has been used in human activities, from agriculture to packaging, infrastructure, and health. The wide range of usage makes plastics an omnipresent pollutant in the environment. This study investigated the abundance and type of plastics in agricultural soil in the Adana/Karataş region in Turkey, where disposable low-tunnel greenhouse plastic films and irrigation pipes were in use. For this purpose, 1 kg of soil samples from the top 5 cm (from the surface) was taken from 10 different sampling locations. An average of 16.5 ± 2.4 pcs/kg was found in the soil samples. The highest amount of plastics was seen at the Bahçe-4 location with 39.7 ± 12 pcs/kg and the lowest amount of plastics at the Karataş-1 location with 0.7 ± 0.3 pcs/kg. The average size of plastics was found to be 18.2 ± 1.3 mm. The average size of plastics originating from greenhouse cover was 18.9 ± 1.4 mm, and from disposable irrigation pipes was 12.5 ± 3.5 mm. It was determined that 41.9% of extracted plastics were microplastics, 36.3% were mesoplastics, 16.3% were macroplastics, and 5.6% were megaplastics. Results indicated that residual plastics decreased in the soil where used plastics were removed after usage. As a result, it is worth noting that a significant amount of plastics remain in soil due to plastics being used in agricultural areas.
Collapse
Affiliation(s)
- Rezan Gündoğdu
- Faculty of Agriculture, Department of Agricultural Structures and Irrigation, Çukurova University, Adana, Turkey.
| | - Derya Önder
- Faculty of Agriculture, Department of Agricultural Structures and Irrigation, Çukurova University, Adana, Turkey
| | - Sedat Gündoğdu
- Faculty of Fisheries, Department of Basic Sciences, Cukurova University, 01330, Adana, Turkey
| | - Claire Gwinnett
- School for Justice, Security and Sustainability, Staffordshire University, Stoke-on-Trent, ST4 2DF, UK
| |
Collapse
|
34
|
Park SY, Kim CG. A comparative study on the distribution behavior of microplastics through FT-IR analysis on different land uses in agricultural soils. ENVIRONMENTAL RESEARCH 2022; 215:114404. [PMID: 36154862 DOI: 10.1016/j.envres.2022.114404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Plastic materials have been variously exposed to arable land for decades through soil mulching, plastic housing, and sewage sludge composting. Their mechanical abrasion and biochemical degradation induce the proliferation of myriad microplastics that can further be broken into smaller nano-sized pieces that can be further accumulated in living organisms (including soil invertebrates, fruits, and vegetables); they can also be widely dispersed in neighboring environments. Despite the intensive use of plastics in agriculture, little is known about their origin of occurrence and environmental fate, especially with a size below 100 μm. Therefore, in this study, microplastics with a size in the range of 20-2,000 μm were investigated in soil samples obtained from three different conditions of land uses: tilled with plastic mulch, bare ground (i.e., uncultivated land), and in between the greenhouses of the farmland D located in Namyangju-si, Gyeonggi-do, Republic of Korea. They were primarily identified using Fourier transform infrared (FT-IR) spectroscopy coupled with a microscope. Prior to performing the analysis, microplastic extraction from the soil samples was validated using standardized high-density polyethylene (HDPE) microplastics of various sizes ranging from 20 to 500 μm. As a result, the number of microplastics was estimated to be (241 ± 52), (195 ± 37), and (306 ± 56) particles per kg of dry soil in tillage, bare ground, and in between greenhouses, respectively. They consist of polyethylene (PE), polypropylene (PP), and poly(ethylene terephthalate) (PET), which are the basic constituents of commonly used agricultural products. The particle size distribution depends on the type of plastic, the time elapsed since their usage, and the degree and duration of environmental exposure; the plastic particle sizes were smaller in tillage and around the greenhouses since agricultural films have been weathered for a long time, whereas those with relatively large sizes were found in the uncultivated.
Collapse
Affiliation(s)
- Seon Yeong Park
- Institute of Environmental Research, INHA University, Incheon, 22212, Republic of Korea; Program in Environmental and Polymer Engineering, INHA University, Incheon, 22212, Republic of Korea.
| | - Chang Gyun Kim
- Program in Environmental and Polymer Engineering, INHA University, Incheon, 22212, Republic of Korea; Department of Environmental Engineering, INHA University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
35
|
Cui W, Gao P, Zhang M, Wang L, Sun H, Liu C. Adverse effects of microplastics on earthworms: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158041. [PMID: 35973535 DOI: 10.1016/j.scitotenv.2022.158041] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Microplastics are widely distributed in terrestrial environments and have been known to adversely affect earthworms. Based on 65 publications, we summarized the effects of microplastics on the growth, behavior, oxidative responses, gene expression, and gut microbiota of earthworms. Since microplastics are often present simultaneously with other pollutants, especially heavy metals and hydrophobic organic chemicals (HOCs), the interactions and combined effects of microplastics and these pollutants on earthworms have also been discussed. It has been shown that earthworms can selectively ingest microplastics, preferring to those with smaller particle size (especially smaller than 50 μm) and biodegradable compositions. Generally, microplastics with higher concentrations (especially those > 0.5%, w/w) and smaller sizes (e.g., 100 nm) have greater adverse effects on earthworms. Additionally, microplastics can facilitate the accumulation of heavy metals and organic pollutants by earthworms and pose severer damages. Current knowledge gaps and perspectives for future work are pointed out.
Collapse
Affiliation(s)
- Weizhen Cui
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Panpan Gao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Miaoyuan Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chunguang Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
36
|
Chang J, Fang W, Liang J, Zhang P, Zhang G, Zhang H, Zhang Y, Wang Q. A critical review on interaction of microplastics with organic contaminants in soil and their ecological risks on soil organisms. CHEMOSPHERE 2022; 306:135573. [PMID: 35797912 DOI: 10.1016/j.chemosphere.2022.135573] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The pollution of microplastics (MPs) in soil has become a global environmental problem. Due to high sorption capacity and persistence in environment, the MPs exhibit combined effects with organic pollutants in soil, thereby posing a potential risk to soil ecology and human health. However, limited reviews are available on this subject. Therefore, in response to this issue, this review provides an in-depth account of interaction of MPs with organic contaminants in soil and the combined risks to soil environment. The sorption of organic contaminants onto MPs is mainly through hydrophobic and π-π interactions, hydrogen bonding, pore filling and electrostatic and van der Waals forces. The intrinsic characteristics of MPs, organic contaminants and soil are the key factors influencing the sorption of organic pollutants onto MPs. Importantly, the presence of MPs changes the sorption, degradation and transport behaviors of organic contaminants in soil, and affects the toxic effects of organic contaminants on soil organisms including animals, plants and soil microorganisms through synergistic or antagonistic effects. Source control, policy implementation and plastic removal are the main preventive and control measures to reduce soil MPs pollution. Finally, priorities for future research are proposed, such as field investigations of co-pollution, contribution of plastisphere to organic contaminant degradation, and mechanisms of MPs effects on organic contaminant toxicity.
Collapse
Affiliation(s)
- Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China.
| | - Yajie Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
37
|
Yu H, Shi L, Fan P, Xi B, Tan W. Effects of conventional versus biodegradable microplastic exposure on oxidative stress and gut microorganisms in earthworms: A comparison with two different soils. CHEMOSPHERE 2022; 307:135940. [PMID: 35963381 DOI: 10.1016/j.chemosphere.2022.135940] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The ecotoxicity of microplastics (MPs) to soil animals is widely recognized; however, most studies have only focused on conventional MPs. This study compared the effects of various concentrations (0.5%, 1%, 2%, 5%, 7%, and 14%, w/w) of polyethylene (PE) and biodegradable polylactic acid (PLA) MPs on oxidative stress and gut microbes in Eisenia fetida (E. fetida) from two different soils (black and yellow soils). The results indicated that the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione S-transferase (GST), and acetylcholinesterase (AchE) decreased after exposure to PE and PLA MPs for 14 days, whereas malondialdehyde (MDA) levels increased. This level of decrease or increase exhibited a "decrease-increase" trend with increasing MP exposure doses. After 28 days, the activities of SOD, CAT, POD, AchE, and GST increased, whereas MDA levels decreased, and the level of increase or decrease increased with increasing MP dose. The integrated biological response index revealed that the toxic effects of MPs were concentration-dependent, and MP concentration was more important than MP type or soil type. The toxicity of PE MPs was generally higher than that of PLA MPs on day 14, with no significant difference on day 28. Moreover, MPs did not alter the dominant gut microbiota of E. fetida, but altered the relative abundances of Actinobacteriota, Bacteroidota, Ascomycota, and Rozellomycota. Furthermore, different gut microbial phyla exhibited discrepant responses to MPs. Our results demonstrated that both conventional and biodegradable MPs induced oxidative stress in E. fetida, and biodegradable MPs showed no less toxicity compared to conventional MPs. Additionally, MP-induced toxic effects did not differ significantly between black and yellow soils, suggesting that MP-induced toxic effects were less affected by soil type.
Collapse
Affiliation(s)
- Hong Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Lingling Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ping Fan
- College of Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
38
|
Jasińska A, Różalska S, Rusetskaya V, Słaba M, Bernat P. Microplastic-Induced Oxidative Stress in Metolachlor-Degrading Filamentous Fungus Trichoderma harzianum. Int J Mol Sci 2022; 23:12978. [PMID: 36361770 PMCID: PMC9658726 DOI: 10.3390/ijms232112978] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 09/07/2023] Open
Abstract
While there has been intensive research on the influence of microplastics (MPs) on aquatic organisms and humans, their effect on microorganisms is relatively little-known. The present study describes the response of the Trichoderma harzianum strain to low-density polyethylene (LDPE) microparticles. MPs, either separately or with metolachlor (MET), were added to the cultures. Initially, MP was not found to have a negative effect on fungal growth and MET degradation. After 72 h of cultivation, the content of fungal biomass in samples with MPs was almost three times higher than that in the cultures without MPs. Additionally, a 75% degradation of the initial MET was observed. However, due to the qualitative and quantitative changes in individual classes of phospholipids, cell membrane permeability was increased. Additionally, MPs induced the overproduction of reactive oxygen species. The activity of superoxide dismutase and catalase was also increased in response to MPs. Despite these defense mechanisms, there was enhanced lipid peroxidation in the cultures containing the LDPE microparticles. The results of the study may fill the knowledge gap on the influence of MPs on filamentous fungi. The findings will be helpful in future research on the biodegradation of contaminants coexisting with MPs in soil.
Collapse
Affiliation(s)
| | | | | | | | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| |
Collapse
|
39
|
Zhang F, Wang Z, Vijver MG, Peijnenburg WJGM. Theoretical investigation on the interactions of microplastics with a SARS-CoV-2 RNA fragment and their potential impacts on viral transport and exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156812. [PMID: 35738381 PMCID: PMC9212631 DOI: 10.1016/j.scitotenv.2022.156812] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 02/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease-19 (COVID-19) pandemic spread across the world and remains difficult to control. Environmental pollution and habitat conditions do facilitate SARS-CoV-2 transmission as well as increase the risk of exposure to SARS-CoV-2. The coexistence of microplastics (MPs) with SARS-CoV-2 affects the viral behavior in the indoor and outdoor environment, and it is essential to study the interactions between MPs and SARS-CoV-2 because they both are ubiquitously present in our environment. To determine the mechanisms underlying the impact of MPs on SARS-CoV-2, we used molecular dynamic simulations to investigate the molecular interactions between five MPs and a SARS-CoV-2 RNA fragment at temperatures ranging from 223 to 310 K in vacuum and in water. We furthermore compared the interactions of MPs and SARS-CoV-2 RNA fragment to the performance of SARS-CoV-1 and Hepatitis B virus (HBV) RNA fragments in interacting with the MPs. The interaction affinity between the MPs and the SARS-CoV-2 RNA fragment was found to be greater than the affinity between the MPs and the SARS-CoV-1 or HBV RNA fragments, independent of the environmental media, temperature, and type of MPs. The mechanisms of the interaction between the MPs and the SARS-CoV-2 RNA fragment involved electrostatic and hydrophobic processes, and the interaction affinity was associated with the inherent structural parameters (i.e., molecular volume, polar surface area, and molecular topological index) of the MPs monomers. Although the evidence on the infectious potential of SARS-CoV-2 RNA is not fully understood, humans are exposed to MPs via their lungs, and the strong interaction with the gene materials of SARS-CoV-2 likely affects the exposure of humans to SARS-CoV-2.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands.
| |
Collapse
|
40
|
Li T, Lu M, Xu B, Chen H, Li J, Zhu Z, Yu M, Zheng J, Peng P, Wu S. Multiple perspectives reveal the gut toxicity of polystyrene microplastics on Eisenia fetida: Insights into community signatures of gut bacteria and their translocation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156352. [PMID: 35654182 DOI: 10.1016/j.scitotenv.2022.156352] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The gut is the primary pathway by which soil animals are exposed to microplastics (MPs). However, the gut toxicity of MPs has not been elucidated in earthworms. Herein, we aimed to study the gut toxicity (e.g., gut barrier dysfunction, gut bacterial translocation, and pathogen invasion) of polystyrene microplastics (PS-MPs) on Eisenia fetida and its relationship with gut bacteria. We found that PS-MPs exposure caused gut barrier damage to Eisenia fetida. This damage included apparent injury of gut epithelial cells and significantly lower transcription levels of genes coding for gut tight junction (TJ)-related proteins. We then observed significantly increased levels of bacterial lipopolysaccharide (LPS) and gut bacterial load, indicating the occurrence of gut bacterial translocation and related barrier damage. Subsequently, antibacterial immune responses were activated and accompanied by a failure of the antioxidant defense system, indicating that pathogen invasion might occur. Gut barrier damage could weaken host selective pressures (deterministic process) on gut bacteria, such as particular pathogens. Indeed, members of Proteobacteria, e.g., Aeromonas and Escherichia/Shigella, regarded as potential opportunistic pathogens, were remarkable signatures of groups exposed to PS-MPs. These potential opportunistic gut bacteria were pivotal contributors to gut TJ damage and gut bacterial translocation resulting from PS-MPs exposure. In addition, the gut bacterial networks of PS-MPs exposure groups were more uncomplicated than those of the control group, but more negative interactions were easy to observe. In conclusion, our work sheds light on the molecular mechanism of earthworm gut toxicity caused by PS-MPs exposure and provides a prospective risk assessment of MPs in soil ecosystems.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengtian Lu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Baohua Xu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Chen
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhenzhen Zhu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengwei Yu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiaoyang Zheng
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peilong Peng
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shijin Wu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
41
|
Jaouani R, Mouneyrac C, Châtel A, Amiard F, Dellali M, Beyrem H, Michelet A, Lagarde F. Seasonal and spatial distribution of microplastics in sediments by FTIR imaging throughout a continuum lake - lagoon- beach from the Tunisian coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156519. [PMID: 35690197 DOI: 10.1016/j.scitotenv.2022.156519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Plastics pollution in marine environment has become an issue of increasing scientific concern. This work aims to study the temporal and spatial distribution of plastics in sediments from three different Tunisian ecosystems; Rimel Beach, Bizerta lagoon and Ichkeul lake. Sediment sampling was conducted in surface (2 cm) and depth (15 cm) during spring, summer and winter. Plastics debris were separated by size fractions: macro (>5 mm), meso (1-5 mm) and microplastics (<1 mm) to optimize the time necessary for their characterisation. Macroplastics and mesoplastics were identified using an IR Attenuated total reflectance (ATR) and microplastics with Imaging Fourier transform infrared spectroscopy (FTIR) spectroscopy after an optimized extraction protocol. Results indicate that, the lowest contamination degree with macroplastics was recorded in Ichkeul lake, 2 macro debris/m2 (marine protected area, national parc of Ichkeul). Mesoparticles were only detected in lagoon of Bizerte in large quantities (4900 item/kg of sediment in surface and 680 item/kg of sediment in depth) and were identified principally as paint products. For microplastics, the repartition was quite homogeneous between the three sites with an average abundance was 130.55 ± 65.61 items/kg for all seasons. The variations of microplastics abundances on the three sites could not be clearly related to the seasons. Whereas the polymer characterisation in the surface and depth sediments of the three studied areas were principally due to eight types of polymers (PVC, PET, PP, PE PS, Polyamide (PA) and polymeric methyl methacrylate (PMMA)) as reported in many other studies, surprisingly all MPs recovered in the study were smaller than 300 μm, >70 % being fragments. This study brings new results as regards to the state of plastic contamination in Tunisian coast and shows the importance of investigating different ecosystems in such studies.
Collapse
Affiliation(s)
- Rihab Jaouani
- Institut des Molécules et Matériaux du Mans (IMMM, UMR CNRS 6283), Le Mans Université, Avenue Olivier Messiaen, F-72085 Le Mans, France; Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), Université Catholique de l'Ouest, F-49000 Angers, France; Laboratoire de biosurveillance de l'environnement, Faculté des Sciences de Bizerte, Zarzouna 7021, Tunisie.
| | - Catherine Mouneyrac
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), Université Catholique de l'Ouest, F-49000 Angers, France
| | - Amélie Châtel
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), Université Catholique de l'Ouest, F-49000 Angers, France
| | - Frédéric Amiard
- Institut des Molécules et Matériaux du Mans (IMMM, UMR CNRS 6283), Le Mans Université, Avenue Olivier Messiaen, F-72085 Le Mans, France
| | - Mohamed Dellali
- Laboratoire de biosurveillance de l'environnement, Faculté des Sciences de Bizerte, Zarzouna 7021, Tunisie
| | - Hamouda Beyrem
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), Université Catholique de l'Ouest, F-49000 Angers, France
| | - Alexandre Michelet
- Perkin Elmer, ZA Courtaboeuf, 12, 14 Avenue de la Baltique, 91140 Villebon sur Yvette, France
| | - Fabienne Lagarde
- Institut des Molécules et Matériaux du Mans (IMMM, UMR CNRS 6283), Le Mans Université, Avenue Olivier Messiaen, F-72085 Le Mans, France
| |
Collapse
|
42
|
Romdhani I, De Marco G, Cappello T, Ibala S, Zitouni N, Boughattas I, Banni M. Impact of environmental microplastics alone and mixed with benzo[a]pyrene on cellular and molecular responses of Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128952. [PMID: 35472537 DOI: 10.1016/j.jhazmat.2022.128952] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The hazard of microplastic (MP) pollution in marine environments is a current concern. However, the effects of environmental microplastics combined with other pollutants are still poorly investigated. Herein, impact of ecologically relevant concentrations of environmental MP alone (50 µg/L) or combined with B[a]P (1 µg/L) was assessed in mussel Mytilus galloprovincialis after a short-term exposure (1 and 3 days) to environmental MP collected from a north-Mediterranean beach. Raman Microspectroscopy (RMS) revealed bioaccumulation in mussel hemolymph of MP, characterized by polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polyethylene vinyl acetate (PEVA) and high-density polyethylene (HDPE), with abundance of MP sized 1.22-0.45 µm. An increase of B[a]P was detected in mussels after 3-day exposure, particularly when mixed with MP. Both contaminants induced cytotoxic and genotoxic effects on hemocytes as determined by lysosomal membrane stability (LMS), micronuclei frequency (FMN), and DNA fragmentation rate by terminal dUTP nick-end labeling (TUNEL). About apoptosis/DNA repair processes, P53 and DNA-ligase increased at 1-day exposure in all conditions, whereas after 3 days increase of bax, Cas-3 and P53 and decrease of Bcl-2 and DNA-ligase were revealed, suggesting a shift towards a cell apoptotic event in exposed mussels. Overall, this study provides new insights on the risk of MP for the marine ecosystem, their ability to accumulate xenobiotics and transfer them to marine biota, with potential adverse repercussion on their health status.
Collapse
Affiliation(s)
- Ilef Romdhani
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy.
| | - Samira Ibala
- Faculty of Medicine of Sousse, University of Sousse, Tunisia
| | - Nesrine Zitouni
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| | - Iteb Boughattas
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| |
Collapse
|
43
|
Li S, Ding F, Flury M, Wang Z, Xu L, Li S, Jones DL, Wang J. Macro- and microplastic accumulation in soil after 32 years of plastic film mulching. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118945. [PMID: 35122919 DOI: 10.1016/j.envpol.2022.118945] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Plastic film mulch (PFM) is a double-edged-sword agricultural technology, which greatly improves global agricultural production but can also cause severe plastic pollution of the environment. Here, we characterized and quantified the amount of macro- and micro-plastics accumulated after 32 years of continuous plastic mulch film use in an agricultural field. An interactive field trial was established in 1987, where the effect of plastic mulching and N fertilization on maize yield was investigated. We assessed the abundance and type of macroplastics (>5 mm) at 0-20 cm soil depth and microplastic (<5 mm) at 0-100 cm depth. In the PFM plot, we found about 10 times more macroplastic particles in the fertilized plots than in the non-fertilized plots (6796 vs 653 pieces/m2), and the amount of film microplastics was about twice as abundant in the fertilized plots than in the non-fertilized plots (3.7 × 106 vs 2.2 × 106 particles/kg soil). These differences can be explained by entanglement of plastics with plant roots and stems, which made it more difficult to remove plastic film after harvest. Macroplastics consisted mainly of films, while microplastics consisted of films, fibers, and granules, with the films being identified as polyethylene originating from the plastic mulch films. Plastic mulch films contributed 33%-56% to the total microplastics in 0-100 cm depth. The total number of microplastics in the topsoil (0-10 cm) ranged as 7183-10,586 particles/kg, with an average of 8885 particles/kg. In the deep subsoil (80-100 cm) the plastic concentration ranged as 2268-3529 particles/kg, with an average of 2899 particles/kg. Long-term use of plastic mulch films caused considerable pollution of not only surface, but also subsurface soil. Migration of plastic to deeper soil layers makes removal and remediation more difficult, implying that the plastic pollution legacy will remain in soil for centuries.
Collapse
Affiliation(s)
- Shitong Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Fan Ding
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Markus Flury
- Department of Crop and Soil Sciences, Washington State University, Pullman 99164 And, Puyallup, WA, 98371, USA
| | - Zhan Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Li Xu
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100095, China
| | - Shuangyi Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Davey L Jones
- Environment Centre Wales, Bangor University, Bangor, LL57 2UW, UK; Soils West, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, 6105, Australia
| | - Jingkuan Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
44
|
Ziajahromi S, Leusch FDL. Systematic assessment of data quality and quality assurance/quality control (QA/QC) of current research on microplastics in biosolids and agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118629. [PMID: 34871641 DOI: 10.1016/j.envpol.2021.118629] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/04/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Although a growing number of studies have reported microplastics (MPs) in biosolids and soils, there are significant differences in the concentrations found across different regions worldwide. This has raised questions about the quality of studies due to a lack of standardized sampling and analysis methods for detecting MPs in such complex samples. In this study, we applied a systematic quantitative literature review (SQLR) methodology to analyze studies reporting MPs in sludge/biosolids and agricultural soils. We also assessed the quality of individual studies on MPs in sludge/biosolids and soils based on the inclusion of quality assurance/quality control (QA/QC) procedures. There is limited understanding about MPs in soils with a history of biosolid application with only 9% of publications reporting MPs in biosolid-amended soil. There was almost eight orders of magnitude difference (3.4 × 10-5 to 9.4 × 103 particles/g) between the highest concentrations of MPs in sludge/biosolid samples compared to the lowest virgin soil samples. The literature shows a consistency in the polymer types (polyester, PP and PE) and morphotypes (fibres and fragments) of MPs most frequently detected in biosolids and soils, suggesting a potential role of biosolids in soils MP pollution. Despite the large variations in the sizes of MPs, there was a negative correlation between the lowest size detected and concentrations reported. This indicates that current concentrations of MPs are influenced by the detection size. Our assessment shows that the majority of studies to-date lack critical QA/QC measures, particularly field blank, positive control and method validation. This highlights an urgent need for quality improvement of future research in this field to produce reliable data, ultimately crucial to assess the risk of MPs and derive suitable environmental guidelines. It is recommended that MPs studies methodically include QA/QC protocols at every step of the process to ensure the integrity of the data that is published.
Collapse
Affiliation(s)
- Shima Ziajahromi
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia
| |
Collapse
|
45
|
Plastic Pollution, Waste Management Issues, and Circular Economy Opportunities in Rural Communities. SUSTAINABILITY 2021. [DOI: 10.3390/su14010020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rural areas are exposed to severe environmental pollution issues fed by industrial and agricultural activities combined with poor waste and sanitation management practices, struggling to achieve the United Nations’ Sustainable Development Goals (SDGs) in line with Agenda 2030. Rural communities are examined through a “dual approach” as both contributors and receivers of plastic pollution leakage into the natural environment (through the air–water–soil–biota nexus). Despite the emerging trend of plastic pollution research, in this paper, we identify few studies investigating rural communities. Therefore, proxy analysis of peer-reviewed literature is required to outline the significant gaps related to plastic pollution and plastic waste management issues in rural regions. This work focuses on key stages such as (i) plastic pollution effects on rural communities, (ii) plastic pollution generated by rural communities, (iii) the development of a rural waste management sector in low- and middle-income countries in line with the SDGs, and (iv) circular economy opportunities to reduce plastic pollution in rural areas. We conclude that rural communities must be involved in both future plastic pollution and circular economy research to help decision makers reduce environmental and public health threats, and to catalyze circular initiatives in rural areas around the world, including less developed communities.
Collapse
|