1
|
Sun J, Yang W, Li M, Zhang S, Sun Y, Wang F. Metagenomic analysis reveals soil microbiome responses to microplastics and ZnO nanoparticles in an agricultural soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138164. [PMID: 40188549 DOI: 10.1016/j.jhazmat.2025.138164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/08/2025]
Abstract
Both microplastics (MPs) and engineered nanoparticles are pervasive emerging contaminants that can produce combined toxicity to terrestrial ecosystems, yet their effects on soil microbiomes remain inadequately understood. Here, metagenomic analysis was employed to investigate the impacts of three common MPs [i.e., polyethylene (PE), polystyrene (PS), and polylactic acid (PLA)] and zinc oxide nanoparticles (nZnO) on soil microbiomes. Both MPs and nZnO significantly altered the taxonomic, genetic, and functional diversity of soil microbes, with distinct effects depending on dosage or type. Archaea, fungi, and viruses exhibited more pronounced responses compared to bacteria. Higher doses of MPs and nZnO reduced gene abundance for nutrient cycles like C degradation and N cycling, but enhanced CO2 fixation and S metabolism. nZnO consistently decreased the complexity, connectivity, and modularity of microbial networks; however, these negative effects could be mitigated by co-existing MPs, particularly at elevated doses. Notably, PLA (10 %, w/w) exhibited greater harm to fungal communities and increased negative interactions between microbes and nutrient-cycling genes, posing unique risks compared to PE and PS. These findings demonstrate that MPs and nZnO interact synergistically, complicating ecological predictions and emphasizing the need to consider pollutant interactions in ecological risk assessments, particularly for biodegradable MPs.
Collapse
Affiliation(s)
- Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China; Shandong Vocational College of Science and Technology, Weifang, Shandong 261000, PR China
| | - Weiwei Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Mingwei Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China.
| |
Collapse
|
2
|
Li Z, Tong Y, Wu Z, Liao B, Liu G, Xia L, Liu C, Zhao L. Management strategies to reduce microbial mercury methylation in constructed wetlands: Potential routes and future challenges. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138009. [PMID: 40132266 DOI: 10.1016/j.jhazmat.2025.138009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Constructed wetlands (CWs) are widely recognized as the potential hotspots for producing highly toxic methylmercury (MeHg). This presents an obstacle to the widespread application of CWs. A comprehensive discussion on strategies to control mercury methylation in CWs is currently lacking. This review highlighted the potential impacts of differences in oxygen supply and consumption in various CWs, the characteristics of influent quality, the interactions between different substrates and mercury (including mercury adsorption, reduction), and plants on microbial mercury methylation in CWs. We also proposed the potential strategies for human intervention in regulating or controlling microbial mercury methylation in CWs, including oxygenation, nitrate inhibition, selection of substrates with high adsorption capacity, weak reducibility and low organic matter release, and plant management. Knowledge summarized in this review would help achieve a comprehensive understanding of various research gaps in previous studies and point out future research directions by focusing on CWs types, influent quality, substrates selection and plants management, to reduce the mercury methylation in CWs.
Collapse
Affiliation(s)
- Zhike Li
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China; Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bing Liao
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Guo Liu
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Lei Xia
- Department of Earth and Environmental Sciences, Kasteelpark Arenberg 20, Leuven 3001, Belgium
| | - Chang Liu
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China
| | - Li Zhao
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China
| |
Collapse
|
3
|
Li Y, Liu L, Meng X, Qiu J, Liu Y, Zhao F, Tan H. Microplastics affect the nitrogen nutrition status of soybean by altering the nitrogen cycle in the rhizosphere soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137803. [PMID: 40043389 DOI: 10.1016/j.jhazmat.2025.137803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Microplastics (MPs) are widely distributed in agricultural systems. However, studies on the comprehensive effects of MPs on nitrogen cycling in crop rhizosphere soil, and the changes this effect causes to crop growth is still limited. In this study, we investigated how three types of 5 % MPs (polystyrene, PS; polyethylene, PE; polyvinyl chloride, PVC) affect soybean growth by altering rhizosphere soil nitrogen cycling. These MPs have no direct toxic effects on soybean under hydroponic conditions. However, under soil cultivation conditions, PE and PS promoted soybean growth and increased soybean roots nitrogen content and nitrogen assimilation enzyme activity, while PVC does the opposite. Further study found that PE and PS increased the inorganic nitrogen content, and the activity of nitrogen cycle-related enzymes and the abundance of genes and microorganism in rhizosphere soil. Meanwhile, PVC significantly reduced the inorganic nitrogen contents, inhibited the activity of nitrogen cycling related enzymes, and destroyed the microbial community structure in rhizosphere soil. More importantly, PVC significantly reduced the abundance of nitrogen cycle-related genes and microorganisms, and increased the abundance of viruses. These results indicated that PE and PS promote soybean growth by activating the nitrogen cycle in the rhizosphere soil and increasing the soil nitrogen content, whereas PVC inhibits soybean growth by disrupting the nitrogen cycle in the rhizosphere soil and reducing its nitrogen content.
Collapse
Affiliation(s)
- Yuanfu Li
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Li Liu
- Guangxi Subtropical Crops Research Institute, Nanning, Guangxi 530004, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Nanning, Guangxi 530004, China
| | - Xiaoou Meng
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Jingsi Qiu
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanmei Liu
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Feng Zhao
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Huihua Tan
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
4
|
Zeng Y, Jiang Y, Li Y, Xu X, Yu W, Yu R. Climate warming will alter the impact of microplastics on the bioavailability of arsenic in a subtropical estuary. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137539. [PMID: 39938365 DOI: 10.1016/j.jhazmat.2025.137539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
The coupling of climate warming and microplastics may affect the dynamics of arsenic bioavailability in estuarine sediments, but the specific processes and regulatory mechanisms of this phenomenon remain poorly investigated. In this study, a typical subtropical estuary - Min River estuary was selected to explore the dynamics pattern, composition characteristics and regulatory mechanism of arsenic bioavailability in sediments under the coupled influence of climate warming and microplastics (type and dose) through incubation experiments by utilizing DGT techniques. The results showed that the high-dose PLA-MPs significantly enhanced the arsenic bioavailability after warming, while low-dose PET-MPs inhibited the effect. High-dose PET-MPs and low-dose PLA-MPs significantly promoted the oxidation of arsenic (III) after warming, while low-dose PET-MPs and high-dose PLA-MPs inhibited the effect. The interaction of temperature, type and dose of MPs significantly affected arsenic bioavailability. The abundances of Bacteroidota decreased, while the abundances of Chloroflexi and Desulfobacterota increased significantly after warming. The correlation between microorganisms and the bio-As was decreased by warming. These findings provide valuable insight for understanding the complex interplay of climate warming and MPs on As-contaminated estuary.
Collapse
Affiliation(s)
- Yue Zeng
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; Fujian Provincial Key Laboratory of Remote Sensing of Soil Erosion, Fuzhou University, Fuzhou 350108, China.
| | - Yajie Jiang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yunqin Li
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiang Xu
- Fujian Provincial Environmental Protection Design Institute Co., Ltd, Fuzhou 350025, China
| | - Wei Yu
- Fujian Provincial Environmental Protection Design Institute Co., Ltd, Fuzhou 350025, China
| | - Rong Yu
- Fujian Provincial Environmental Protection Design Institute Co., Ltd, Fuzhou 350025, China
| |
Collapse
|
5
|
Wael H, Vanessa EB, Mantoura N, Antonios DE. Tiny pollutants, big consequences: investigating the influence of nano- and microplastics on soil properties and plant health with mitigation strategies. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:860-877. [PMID: 40111751 DOI: 10.1039/d4em00688g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The impact of nanoplastics (NPs) and microplastics (MPs) on ecosystems and human health has recently emerged as a significant challenge within the United Nations Agenda 2030, drawing global attention. This paper provides a critical analysis of the influence of plastic particles on plants and soils, with the majority of data collected from recent studies, primarily over the past five years. The absorption and translocation mechanisms of NPs/MPs in plants are first described, followed by an explanation of their effects-especially particles like PE, PS, PVC, PLA, and PES, as well as those contaminated with heavy metals-on plant growth, physiology, germination, oxidative stress, and nutrient uptake. The study also links the characteristics of plastics (size, shape, concentration, type, degradability) to changes in the physical, chemical, and microbial properties of soils. Various mitigation strategies, including physical, chemical, and biological processes, are explored to understand how they address these changes. However, further research, including both laboratory and field investigations, is urgently needed to address knowledge gaps, particularly regarding the long-term effects of MPs, their underlying mechanisms, ecotoxicological impacts, and the complex interactions between MPs and soil properties. This research is crucial for advancing sustainability from various perspectives and should contribute significantly toward achieving sustainable development goals (SDGs).
Collapse
Affiliation(s)
- H Wael
- Chemical Engineering Department, Faculty of Engineering, University of Balamand, Koura Campus, Kelhat P.O. Box 33, 1355, Lebanon.
| | - E B Vanessa
- Chemical Engineering Department, Faculty of Engineering, University of Balamand, Koura Campus, Kelhat P.O. Box 33, 1355, Lebanon.
| | - N Mantoura
- FOE Dean's Office, Faculty of Engineering, University of Balamand, Koura Campus, Kelhat P.O. Box 100, Lebanon
| | - D Elie Antonios
- Laboratoire Chimie de la Matière Condensée de Paris LCMCP, Sorbonne Université, UPMC Paris 06, 4 Place Jussieu, 75005 Paris, France
- Solnil, 95 Rue de la République, Marseille 13002, France
| |
Collapse
|
6
|
Lan G, Huang X, Li T, Huang Y, Liao Y, Zheng Q, Zhao Q, Yu Y, Lin J. Effect of microplastics on carbon, nitrogen and phosphorus cycle in farmland soil: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125871. [PMID: 39971082 DOI: 10.1016/j.envpol.2025.125871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Farmland soil is a major sink for microplastics (MPs). Despite recognized potential impacts on soil ecosystems, comprehensive assessments of MPs' effects on carbon (C), nitrogen (N), and phosphorus (P) cycling in agricultural soils are limited. Data from 102 peer-reviewed studies were analyzed to elucidate the effects of MPs exposure on the C, N, and P cycles in soil. Results showed increased concentrations of soil organic carbon (SOC), dissolved organic carbon, microbial biomass carbon, and microbial biomass nitrogen, accompanied by elevated emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) after MPs introduction. A random forest model revealed that soil C, N, and P cycles are driven by MPs characteristics (biodegradability, size, concentration), soil properties (initial pH, SOC, total N, clay content), and experimental conditions (incubation period, soil moisture). Complex interactions between MPs and soil C, N, and P were illustrated, with increased CO2, CH4, and N2O emissions due to C mineralization and enhanced denitrification rates caused by MPs. These negative effects imply a need for strengthened management of C, N, and P cycles in agricultural soil to reduce farmland ecosystems' contributions to greenhouse gas emissions.
Collapse
Affiliation(s)
- Guoxin Lan
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Xiaohang Huang
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Tongqing Li
- Upper Changjiang River Bureau of Hydrological and Water Resources Survey, Bureau of Hydrology, Changjiang Water Resources Commission, Chongqing, 400025, PR China
| | - Yingjie Huang
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Yang Liao
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Qiushi Zheng
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Qin Zhao
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Yue Yu
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Junjie Lin
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China.
| |
Collapse
|
7
|
Wu H, Peng T, Li X, Zhao Y, Huang F, Guo P, Lyu M, Yin J, Liu Q, Gouda S, Mohamed I, Huang Q, Wang X. Effects of Aging Biodegradable Agricultural Films on Soil Physicochemical Properties and Heavy Metal Speciation. TOXICS 2025; 13:245. [PMID: 40278561 PMCID: PMC12030900 DOI: 10.3390/toxics13040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025]
Abstract
Through soil incubation experiments, the effects of aged PBAT + PLA (polybutylene adipate terephthalate + polylactic acid) film fragments were analyzed. Surface characteristics and chemical structures of the films changed significantly after one (T2) and two years (T1) of aging compared to new films (T3). Both new and aged fragments reduced soil pH, altered enzyme activities, and influenced dissolved organic matter (DOM) fluorescence. Alkaline phosphatase activity declined by 33.2%, 23.8%, and 11.6% for T1, T2, and T3, respectively, while urease and sucrase activities increased in a time-dependent manner. The degree of soil humification rose by 66.4%, 60.4%, 49.3%, and 88.6% for T1, T2, T3, and T4, respectively, compared to the control (CK). Aged films exhibited stronger DOM fluorescence intensity than new films. Tessier extraction analysis revealed a decrease in exchangeable Cd by 22.9%, 13.1%, and 10.2% for T1, T2, and T3, respectively, while organically bound Cu increased. Correlation analysis indicated a significant positive relationship between soil humification and heavy metal bioavailability. These findings provide insight into the ecological effects of biodegradable agricultural films, offering a theoretical foundation for assessing their environmental risks and safety.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Tianmu Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Xueya Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Yang Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Fengshuo Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Peng Guo
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China; (P.G.); (M.L.)
| | - Mingfu Lyu
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China; (P.G.); (M.L.)
| | - Junhua Yin
- Shandong Qingtian Plastic Co., Ltd., Zibo 255410, China;
| | - Qin Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Shaban Gouda
- Agricultural and Biosystems Engineering Department, Benha University, Banha 13511, Al-Qalyubia Governorate, Egypt; (S.G.); (I.M.)
| | - Ibrahim Mohamed
- Agricultural and Biosystems Engineering Department, Benha University, Banha 13511, Al-Qalyubia Governorate, Egypt; (S.G.); (I.M.)
| | - Qing Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Xu Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| |
Collapse
|
8
|
Shi J, Zhang Q, Sun Y, Peng Y, Wang J, Wang X. Microplastic induces microbial nitrogen limitation further alters microbial nitrogentransformation: Insights from metagenomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178825. [PMID: 39946886 DOI: 10.1016/j.scitotenv.2025.178825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/25/2024] [Accepted: 02/09/2025] [Indexed: 03/05/2025]
Abstract
Microplastic has a significant impact on soil microbial communities, which play crucial roles in soil nitrogen (N) cycles. However, there is a limited understanding of their influences on genes associated with the entire N cycling pathways. Through a 120-day soil incubation using conventional (PE and PET) and biodegradable microplastics (PLA and PBAT), coupled with 16S rRNA and metagenomic sequencing, we investigated the responses of N-cycling genes to microplastics in two contrasting soils (i.e. black soil and loess soil). We found that biodegradable microplastics strongly altered microbial N functional profiles, and enhanced the abundance of numerous key genes involved in N fixation, organic N mineralization, N reduction, and denitrification. Furthermore, biodegradable microplastics significantly decreased net N mineralization (Nm) compared to control and conventional microplastic treatments, suggesting microbial N immobilization outweighed N mineralization. Analysis of the function-taxon bipartite network showed that the Nm was well predicted for the abundances and diversity of bacteria within specific modules, with Nm decreasing, the abundances of specific taxa in a given network modules increasing. These results indicated that biodegradable microplastics act as a carbon source to select specific taxa involved in enhancing N bioavailability (e.g., N fixation and organic N mineralization) to meet microbial N demand, which in turn filtered the bacterial community (decreased diversity but increased abundances) and gradually formed specific function-taxon modules. Comparing the two soils, microbes in the less fertile alkaline loess soil were more sensitive to biodegradable microplastics than those in the nutrient-rich acid black soil. Our study indicated that increasing usage of biodegradable plastics in the future may lead to accelerated soil microbial N limitation and transformation.
Collapse
Affiliation(s)
- Jia Shi
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qian Zhang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yuanze Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yumei Peng
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Xiang Wang
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Zhang Z, Shi J, Yao X, Wang W, Zhang Z, Wu H. Comparative evaluation of the impacts of different microplastics on greenhouse gas emissions, microbial community structure, and ecosystem multifunctionality in paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135958. [PMID: 39342860 DOI: 10.1016/j.jhazmat.2024.135958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Although the increasing accumulation of microplastics (MPs) in terrestrial soil ecosystems has aroused worldwide concern, research remains limited on their potential impacts on soil processes and ecosystem functionality. Here, through a 41-day microcosm experiment, we found that polylactic acid (PLA), low-density polyethylene (LDPE), and polypropylene (PP) MPs consistently increased soil carbon nutrients and pH but had varying effects on soil nitrogen nutrients and the chemodiversity of dissolved organic matter (DOM). Different treatments led to notable shifts in the α-diversity and composition of soil microbial community, with phyla Proteobacteria and Ascomycota consistently enriched by MPs regardless of polymer type. The emissions of CO2 and N2O were suppressed by MPs in most cases, which in combination led to a decline in global warming potential. LDPE and 1 - 1.5 % of PLA MPs significantly improved the multifunctionality of the soil ecosystem, while PP and 0.5 % of PLA MPs exerted an opposite effect. Soil total organic carbon, pH, DOM molecular mass and condensation degree, and CO2 emissions were identified as the most important variables for predicting soil ecosystem multifunctionality. Results of this study can extend the current understanding of the impacts of MPs on soil biogeochemical cycling and ecosystem functionality.
Collapse
Affiliation(s)
- Zhiyu Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; College of Geographic Science and Tourism, Jilin Normal University, Siping 136000, China
| | - Jiaxing Shi
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; College of Geographic Science and Tourism, Jilin Normal University, Siping 136000, China
| | - Xiaochen Yao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China
| | - Wenfeng Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China.
| | - Zhongsheng Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China
| | - Haitao Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China.
| |
Collapse
|
10
|
Chang S, Chen C, Fu QL, Zhou A, Hua Z, Zhu F, Li S, He H. PBAT biodegradable microplastics enhanced organic matter decomposition capacity and CO 2 emission in soils with and without straw residue. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135872. [PMID: 39305590 DOI: 10.1016/j.jhazmat.2024.135872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 12/01/2024]
Abstract
Recent studies show that biodegradable microplastics (BMPs) could increase soil CO2 emission, but whether altered carbon emission results from modified soil organic matter (SOM) decomposition remains underexplored. In this study, the effect and mechanisms of BMPs on CO2 emission from soil were investigated, using poly(butylene adipate-co-terephthalate) (PBAT, the main component of agricultural film) as an example. Considering that straw returning is a common agronomic measure which may interact with microplastics through affecting microbial activity, both soils with and without wheat straw were included. After 120 d, 1 % (w/w) PBAT BMPs ificantly increased cumulative CO2 emission by 1605.6 and 1827.7 mg C kg-1 in soils without and with straw, respectively. Cracks occurred on the surface of microplastics, indicating that CO2 was partly originated from plastic degradation. Soil dissolved organic matter (DOM) content, carbon degradation gene abundance (such as abfA, xylA and manB for hemicellulose, mnp, glx and lig for lignin, and chiA for chitin) and enzyme activities increased, which significantly positively correlated with CO2 emission rate (p < 0.05), suggesting that PBAT enhanced carbon emission by stimulating the decomposition of SOM (and possibly the newly added straw) via co-metabolism and nitrogen mining. This is supported by DOM molecular composition analysis which also demonstrated stimulated turnover of carbohydrates, amino sugars and lignin following PBAT addition. The findings highlight the potential of BMPs to affect SOM stability and carbon emission.
Collapse
Affiliation(s)
- Sha Chang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Qing-Long Fu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Aoyu Zhou
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Zhuyao Hua
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
11
|
Gong K, Peng C, Hu S, Xie W, Chen A, Liu T, Zhang W. Aging of biodegradable microplastics and their effect on soil properties: Control from soil water. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136053. [PMID: 39395391 DOI: 10.1016/j.jhazmat.2024.136053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
The ecological risks of biodegradable microplastics (BMPs) to soil ecosystems have received increasing attention. This study investigates the impacts of polylactic acid microplastics (PLA-MPs) and polybutylene adipate terephthalate microplastics (PBAT-MPs) on soil properties of black soil (BS) and fluvo-aquic soil (FS) under three water conditions including dry (Dry), flooded (FL), and alternate wetting and drying (AWD). The results show that BMPs exhibited more evident aging under Dry and AWD conditions compared to FL condition. However, BMPs aging under FL condition induced more substantial changes in soil properties, especially dissolved organic carbon (DOC) concentrations, than under Dry and AWD conditions. BMPs also increased the humification degree of soil dissolved organic matter (DOM), particularly in BS. Metagenomic analysis of PBAT-MPs treatments showed different changes in microbial community structure depending on soil moisture. Under Dry conditions, PBAT-MPs enhance the ammonium-producing process of soil microbial communities. Genes related to N nitrification and benzene degradation were enriched under AWD conditions. In contrast, PBAT-MPs do not change the abundance of genes related to the N cycle under FL conditions but significantly reduce genes related to benzene degradation. This reduction in benzene degradation genes under FL condition might potentially slow down the degradation of PBAT-MPs, and could lead to temporary accumulation of benzene-related intermediates. These findings highlight the complex interactions between BMPs, soil properties, and microbial communities, emphasizing the need for comprehensive evaluations of BMPs' environmental impacts under varying soil water conditions.
Collapse
Affiliation(s)
- Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Anqi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianzi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
12
|
Feng Y, Duan J, Yang C, Zou Q, Chen Z, Pu J, Xiang Y, Chen M, Fan M, Zhang H. Microplastics and benthic animals reshape the geochemical characteristics of dissolved organic matter by inducing changes in keystone microbes in riparian sediments. ENVIRONMENTAL RESEARCH 2024; 262:119806. [PMID: 39151559 DOI: 10.1016/j.envres.2024.119806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Dissolved organic matter (DOM) in riparian sediments plays a vital role in regulating element cycling and pollutant behavior of river ecosystems. Microplastics (MPs) and benthic animals (BAs) have been frequently detected in riparian sediments, influencing the substance transformation in river ecosystems. However, there is still a lack of systematic investigation on the effects of MPs and BAs on sediment DOM. This study investigated the impact of MPs and BAs on the geochemical characteristics of DOM in riparian sediments and their microbial mechanisms. The results showed that MPs and BAs increased sediment DOC concentration by 34.24%∼232.97% and promoted the conversion of macromolecular components to small molecular components, thereby reducing the humification degree of DOM. Mathematical model verified that the changes of keystone microbes composition in sediments were direct factors affecting the characteristics of DOM in riparian sediment. Especially, MPs tolerant microbes, including Planctomicrobium, Rhodobacter, Hirschia and Lautropia, significantly increased DOC concentration and decreased humification degree (P < 0.05). In addition, MPs and BAs could also influence keystone microbes in sediments by altering the structure of microbial network, thereby indirectly affecting DOM characteristics. The study demonstrates the pollution behavior of MPs in river ecosystems and provides a basis for protecting the ecological function of riparian sediments from MPs pollution.
Collapse
Affiliation(s)
- Yuanyuan Feng
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Jinjiang Duan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Cheng Yang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qingping Zou
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Ziwei Chen
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Jia Pu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yu Xiang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Mengli Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Han Zhang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
13
|
Liu Y, Wang W, He J. Microplastic effects on carbon cycling in terrestrial soil ecosystems: Storage, formation, mineralization, and microbial mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176658. [PMID: 39370001 DOI: 10.1016/j.scitotenv.2024.176658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Soil is the largest environmental reservoir of microplastics (MPs) on the earth. Incremental accumulation of MPs in the soil can cause significant changes in soil physicochemical and microbial traits, which may in turn interfere with soil biogeochemical processes such as carbon cycling. With published research regarding MPs impacts on soil carbon cycling growing rapidly, a systematic review summarizing the current knowledge and highlighting future research needs is warranted. As carbon-rich polymers, MPs can contribute to soil organic carbon (SOC) storage via degradation and leaching. MPs can also affect the humification of dissolved organic matters (DOM), consequently influencing the stability of SOC. Exposure to MPs can cause substantial impacts on the growth performance, litter decomposition, and root secretion of terrestrial plants as well as soil microbial carbon turnover, inducing changes in the formation of SOC. The presence of MPs has contrasting effects on the emissions of both CO2 and CH4 from the soil. The diverse effects of MPs on soil carbon metabolism could be partly attributed to the varying changes in soil microbial community structure, functional gene expression, and enzyme activity under MPs exposure. Further research is still highly needed to clarify the pathways of MPs impacts on soil carbon cycling and the driving biological and physicochemical factors behind these processes.
Collapse
Affiliation(s)
- Yan Liu
- College of Geographic Sciences, Changchun Normal University, Changchun 130032, China
| | - Wenfeng Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China.
| | - Jianzhou He
- Department of Biochemistry, Chemistry & Physics, Georgia Southern University, Savannah, GA 31419, USA
| |
Collapse
|
14
|
Jia X, Yao Y, Tan G, Xue S, Liu M, Tang DWS, Geissen V, Yang X. Effects of LDPE and PBAT plastics on soil organic carbon and carbon-enzymes: A mesocosm experiment under field conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124965. [PMID: 39284406 DOI: 10.1016/j.envpol.2024.124965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Although the effects of plastic residues on soil organic carbon (SOC) have been studied, variations in SOC and soil carbon-enzyme activities at different plant growth stages have been largely overlooked. There remains a knowledge gap on how various varieties of plastics affect SOC and carbon-enzyme activity dynamics during the different growing stages of plants. In this study, we conducted a mesocosm experiment under field conditions using low-density polyethylene and poly (butylene adipate-co-terephthalate) debris (LDPE-D and PBAT-D, 500-2000 μm (pieces), 0%, 0.05%, 0.1%, 0.2%, 0.5%, 1%, 2%), and low-density polyethylene microplastics (LDPE-M, 500-1000 μm (powder), 0%, 0.05%, 0.1%, 0.5%) to investigate SOC and C-enzyme activities (β-xylosidase, cellobiohydrolase, β-glucosidase) at the sowing, seedling, flowering and harvesting stages of soybean (Glycine Max). The results showed that SOC in the LDPE-D treatments significantly increased from the flowering to harvesting stage, by 12.69%-13.26% (p < 0.05), but significantly decreased in the 0.05% and 0.1% LDPE-M treatments from the sowing to seedling stage (p < 0.05). However, PBAT-D had no significant effect on SOC during the whole growing period. For C-enzyme activities, only LDPE-D treatments inhibited GH (17.22-38.56%), BG (46.7-66.53%) and CBH (13.19-23.16%), compared to treatment without plastic addition, from the flowering stage to harvesting stage. Meanwhile, C-enzyme activities and SOC responded nonmonotonically to plastic abundance and the impacts significantly varied among the growing stages, especially in treatments with PBAT-D (p < 0.05). These risks to soil organic carbon cycling are likely mediated by the effects of plastic contamination and degradation soil microbe. These effects are sensitive to plastic characteristics such as type, size, and shape, which, in turn, affect the biogeochemical and mechanical interactions involving plastic particles. Therefore, further research on the interactions between plastic degradation processes and the soil microbial community may provide better mechanistic understanding the effect of plastic contamination on soil organic carbon cycling.
Collapse
Affiliation(s)
- Xinkai Jia
- College of Natural Resources and Environment, Northwest A&F University, 712100, Yangling, China
| | - Yu Yao
- College of Natural Resources and Environment, Northwest A&F University, 712100, Yangling, China
| | - Gaowei Tan
- Soil Physics and Land Management Group, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Sha Xue
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100, Yangling, China
| | - Mengjuan Liu
- College of Agronomy, Northwest A&F University, 712100, Yangling, China
| | - Darrell W S Tang
- Soil Physics and Land Management Group, Wageningen University & Research, 6700AA, Wageningen, the Netherlands; Water, Energy, and Environmental Engineering, University of Oulu, Finland
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Xiaomei Yang
- College of Natural Resources and Environment, Northwest A&F University, 712100, Yangling, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700AA, Wageningen, the Netherlands.
| |
Collapse
|
15
|
Liu Y, Chen X, Leng Y, Wang S, Liu H, Zhang W, Li W, Li N, Ning Z, Gao W, Fan C, Wu X, Zhang M, Li Q, Chen M. Molecular-level insight into the effect of fertilization regimes on the chemodiversity of dissolved organic matter in tropical cropland. ENVIRONMENTAL RESEARCH 2024; 262:119903. [PMID: 39245311 DOI: 10.1016/j.envres.2024.119903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Fertilization is a critical agronomic measure for croplands in tropical regions, owing to their low fertility. However, the effects of fertilization on the quantity and chemodiversity of latosolic dissolved organic matter (DOM) in tropical regions remain largely unknown. Therefore, in this study, the variations in latosol DOM concentrations and chemodiversity induced by inorganic fertilization and the co-application of inorganic fertilization with straw return, sheep manure, biochar, and vermicompost fertilizers at a molecular level were systematically investigated using multispectral techniques and ultrahigh-resolution mass spectrometry. In line with our expectations, the results showed that combined inorganic-organic fertilization improved soil quality by increasing soil organic carbon content compared to that under inorganic fertilization. However, as the most active and bioavailable organic carbon pool, dissolved organic carbonconcentrations between the fertilization treatments were not significantly different (p = 0.07). However, the dissolved organic carbon concentrations under combined inorganic-organic fertilization treatment (NPK plus straw return, 263.45 ± 37.51 mg/kg) were lower than those under inorganic fertilization treatment (282.10 ± 18.57 mg/kg). Spectral analysis showed that the DOM in the combined inorganic-organic fertilization treatments had a higher degree of humification and lower autogenetic contributions. Furthermore, Fourier transform ion cyclotron resonance mass spectrometry analysis indicated that the combined inorganic-organic fertilization increased the chemodiversity of latosolic DOM and promoted the production of large, oxidized, and stable molecules, including lignin, aromatic, and tannin compounds, which potentially benefits soil carbon sequestration in tropical regions. This study could provide a theoretical basis for elucidating on the potentially relevant ecological functions and environmental effects of DOM under fertilization regimes.
Collapse
Affiliation(s)
- Yuqin Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xin Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Youfeng Leng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Shuchang Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Huiran Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Wen Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Wei Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Ning Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Ziyu Ning
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Wenlong Gao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Changhua Fan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Xiaolong Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Meng Zhang
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China
| | - Miao Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou, 571101, China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou, 571737, Hainan, China.
| |
Collapse
|
16
|
Gao M, Peng H, Bai L, Ye B, Qiu W, Song Z. Response of wheat (Triticum aestivum L. cv.) to the coexistence of micro-/nanoplastics and phthalate esters alters its growth environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174484. [PMID: 38969134 DOI: 10.1016/j.scitotenv.2024.174484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Micro- and nano-plastics (MPs/NPs) have emerged as a global pollutant, yet their impact on the root environment of plants remains scarcely explored. Given the widespread pollution of phthalate esters (PAEs) in the environment due to the application of plastic products, the co-occurrence of MPs/NPs and PAEs could potentially threaten the growth medium of plants. This study examined the combined effects of polystyrene (PS) MPs/NPs and PAEs, specifically dibutyl phthalate and di-(2-ethylhexyl) phthalate, on the chemical properties and microbial communities in a wheat growth medium. It was observed that the co-pollution with MPs/NPs and PAEs significantly increased the levels of oxalic acid, formic acid, and total organic carbon (TOC), enhanced microbial activity, and promoted the indigenous input and humification of dissolved organic matter, while slightly reducing the pH of the medium solution. Although changes in chemical indices were primarily attributed to the addition of PAEs, no interaction between PS MPs/NPs and PAEs was detected. High-throughput sequencing revealed no significant change in microbial diversity within the media containing both PS MPs/NPs and PAEs compared to the media with PS MPs/NPs alone. However, alterations in energy and carbohydrate metabolism were noted. Proteobacteria dominated the bacterial communities in the medium solution across all treatment groups, followed by Bacteroidetes and Verrucomicrobia. The composition and structure of these microbial communities varied with the particle size of the PS in both single and combined treatments. Moreover, variations in TOC, oxalic acid, and formic acid significantly influenced the bacterial community composition in the medium, suggesting they could modulate the abundance of dominant bacteria to counteract the stress from exogenous pollutants. This research provides new insights into the combined effects of different sizes of PS particles and another abiotic stressor in the wheat root environment, providing a critical foundation for understanding plant adaptation in complex environmental conditions.
Collapse
Affiliation(s)
- Mingling Gao
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Hongchang Peng
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Linsen Bai
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Biting Ye
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 3230, Hamilton 3240, New Zealand
| | - Zhengguo Song
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China.
| |
Collapse
|
17
|
Huang J, Feng Y, Xie H, Liu X, Zhang Q, Wang B, Xing B. Biodegradable microplastics aging processes accelerated by returning straw in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173930. [PMID: 38879027 DOI: 10.1016/j.scitotenv.2024.173930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/20/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Biodegradable microplastics (MPs) have been released into agricultural soils and inevitably undergo various aging processes. Straw return is a popular agricultural management strategy in many countries. However, the effect of straw return on the aging process of biodegradable MPs in flooded paddy soil, which is crucial for studying the characteristics, fate, and environmental implications of biodegradable MPs, remains unclear. Here, we constructed a 180-day microcosm incubation to elucidate the aging mechanism of polylactic acid (PLA)-MPs in straw-enriched paddy soil. This study elucidated that the prominent aging characteristic of PLA-MPs occurred in the straw-enriched paddy soil, accompanied by increased chrominance (76.64-182.3 %), hydrophilicity (2.92-22.07 %), roughness (33.12-58.01 %), and biofilm formation (42.12-100.3 %) for the PLA-MPs, especially with 2 % (w/w) straw return treatment (P < 0.05). A 2 % straw return treatment has significantly impacted ester CO group changes in PLA-MPs, altered the MPs-attached soil bacterial communities composition, strengthened bacterial network structure, and increased soil proteinase K activity. The findings of this work demonstrated that flooded, straw-enriched paddy soil accelerated PLA-MPs aging affected by soil-water chemistry, soil microbe, and soil enzymatic. This study helps to deepen our understanding of the aging process of PLA-MPs in straw return paddy soil. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) are emerging contaminants in the global soil and terrestrial ecosystems. Biodegradable MPs are more likely to be formed and released into agricultural soils during aging. Straw return is a popular agricultural management strategy in many countries. Considering the wide use of plastic film, sewage sludge, plastic-coated fertilizer, and organic fertilizer in agricultural ecosystems, it is crucial to pay attention to the aging process of biodegradable MPs in straw-enriched paddy soil, which has not been adequately emphasized. This aspect has been overlooked in previous studies and threatens ecosystems. This study demonstrated that straw-enriched paddy soil accelerated polylactic acid (PLA)-MPs aging influenced by the dissolved organic matter, microorganisms, and enzyme activity associated with straw decomposition.
Collapse
Affiliation(s)
- Junxia Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaobo Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qiang Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
18
|
Liu X, Fang L, Gardea-Torresdey JL, Zhou X, Yan B. Microplastic-derived dissolved organic matter: Generation, characterization, and environmental behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174811. [PMID: 39032736 DOI: 10.1016/j.scitotenv.2024.174811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Microplastics (MPs) represent a substantial and emerging class of pollutants distributed widely in various environments, sparking growing concerns about their environmental impact. In environmental systems, dissolved organic matter (DOM) is crucial in shaping the physical, chemical, and biological processes of pollutants while significantly contributing to the global carbon budget. Recent findings have revealed that microplastic-derived dissolved organic matter (MP-DOM) constitutes approximately 10 % of the DOM present on the ocean surface, drawing considerable attention. Hence, this study's primary objective is to explore, the generation, characterization, and environmental behaviors of MP-DOM. The formation and characteristics of MP-DOM are profoundly influenced by leaching conditions and types of MPs. This review delves into the mechanisms of the generation of MP-DOM and provides an overview of a wide array of analytical techniques, including ultraviolet-visible (UV-Vis) spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), and mass spectroscopy, used to assess the MP-DOM characteristics. Furthermore, this review investigates the environmental behaviors of MP-DOM, including its impacts on organisms, photochemical processes, the formation of disinfection by-products (DBPs), adsorption behavior, and its interaction with natural DOM. Finally, the review outlines research challenges, perspectives for future MP-DOM research, and the associated environmental implications.
Collapse
Affiliation(s)
- Xigui Liu
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jorge L Gardea-Torresdey
- University of Texas at El Paso, Department of Chemistry and Biochemistry, El Paso, TX 79968, United States
| | - Xiaoxia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
19
|
Zhu Z, Cao X, Wang K, Guan Y, Ma Y, Li Z, Guan J. The environmental effects of microplastics and microplastic derived dissolved organic matter in aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173163. [PMID: 38735318 DOI: 10.1016/j.scitotenv.2024.173163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Currently, microplastics (MPs) have ubiquitously distributed in different aquatic environments. Due to the unique physicochemical properties, MPs exhibit a variety of environmental effects with the coexisted contaminants. MPs can not only alter the migration of contaminants via vector effect, but also affect the transformation process and fate of contaminants via environmental persistent free radicals (EPFRs). The aging processes may enhance the interaction between MPs and co-existed contaminants. Thus, it is of great significance to review the aging mechanism of MPs and the influence of coexisted substances, the formation mechanism of EPFRs, environmental effects of MPs and relevant mechanism. Moreover, microplastic-derived dissolved organic matter (MP-DOM) may also influence the elemental biogeochemical cycles and the relevant environmental processes. However, the environmental implications of MP-DOM are rarely outlined. Finally, the knowledge gaps on environmental effects of MPs were proposed.
Collapse
Affiliation(s)
- Zhichao Zhu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Xu Cao
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Kezhi Wang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yujie Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yuqi Ma
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Zhuoyu Li
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
20
|
Xu Z, Zheng B, Yang Y, Yang Y, Jiang G, Tian Y. Effects of biodegradable (PBAT/PLA) and conventional (LDPE) mulch film residues on bacterial communities and metabolic functions in different agricultural soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134425. [PMID: 38691998 DOI: 10.1016/j.jhazmat.2024.134425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Soil health is a crucial aspect of sustainable agriculture and food production, necessitating attention to the ecological risks associated with substantial amounts of mulch film residues. Biodegradable mulch films (BDMs) carry the same risk of mulch film residues formation as low-density polyethylene (LDPE) mulch films during actual use. More information is needed to elucidate the specific impacts of mulch film residues on the soil environment. Integrated 16S rRNA gene sequencing and non-targeted metabolomics, this study revealed the response patterns of bacterial communities, metabolites, and metabolic functions in the soil from three different agricultural regions to the presence of mulch film residues. LDPE mulch film residues negatively impacted the bacterial communities in the soils of Heilongjiang (HLJ) and Yunnan (YN) and had a lesser impact on the metabolic spectrum in the soils of HLJ, YN, and Xinjiang (XJ). BDM residues had a greater negative impact on all three soils in terms of both the bacterial communities and metabolites. The impact of BDM treatment on the soils of HLJ, YN, and XJ increased sequentially in that order. It is recommended that, when promoting the use of biodegradable mulch films, a fuller assessment should be made, accounting for local soil properties.
Collapse
Affiliation(s)
- Zhe Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
| | - Bijun Zheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
| | - Yichen Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
| | - Yi Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
| | - Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China.
| |
Collapse
|
21
|
Zhao S, Rillig MC, Bing H, Cui Q, Qiu T, Cui Y, Penuelas J, Liu B, Bian S, Monikh FA, Chen J, Fang L. Microplastic pollution promotes soil respiration: A global-scale meta-analysis. GLOBAL CHANGE BIOLOGY 2024; 30:e17415. [PMID: 39005227 DOI: 10.1111/gcb.17415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.
Collapse
Affiliation(s)
- Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yongxing Cui
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF- CSIC- UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Caalonia, Spain
| | - Baiyan Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Bian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Fazel Abdolahpur Monikh
- Department of Chemical Sciences, University of Padua, Padua, Italy
- Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec Bendlova 1409/7, Liberec, Czech Republic
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
22
|
Jiang K, Jiang D, Li S, Guo Z, Zhao L, Wang J, Hao X, Bai L, Qiu S, Kang B. Impacts of mixed ferrous sulfate-biochar additives on humification and bacterial community during electric field-assisted aerobic composting. BIORESOURCE TECHNOLOGY 2024; 404:130901. [PMID: 38801959 DOI: 10.1016/j.biortech.2024.130901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
This study assessed the impact of nine mixed ferrous sulfates and biochars on electric field-assisted aerobic composting (EAC), focusing on the spectroscopy of dissolved organic matter (DOM) and microbial communities. Adding 1.05% ferrous sulfate and 5.25% biochar to EAC increased the specific ultraviolet absorbances at 254 and 280 nm by 142.3% and 133.9% on day 35, respectively. This ratio accelerated the early response of carboxyl groups (-COOH) and lignin (CꘌC), enhancing the relative abundance of Thermobifida (4.0%) and Thermopolyspora (4.3%). The condition contributed to humus precursor formation on day 5, increasing the maximum fluorescence intensity of the humus-like component by 74.2% compared to the control on day 35. This study is the first to develop a combined and efficient organic and inorganic additive by multiple-variable experimentation for DOM humification. Consequently, it optimizes EAC for solid waste recycling.
Collapse
Affiliation(s)
- Kunhong Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Dongmei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China.
| | - Shuo Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Zhenzhen Guo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Liangbin Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Jie Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Xiaoxia Hao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Lin Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Shixiu Qiu
- Institute of Animal Husbandry, Chengdu Academy of Agriculture and Forestry Sciences, P.R. China
| | - Bo Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China.
| |
Collapse
|
23
|
Li Y, Hou F, Sun L, Lan J, Han Z, Li T, Wang Y, Zhao Z. Ecological effect of microplastics on soil microbe-driven carbon circulation and greenhouse gas emission: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121429. [PMID: 38870791 DOI: 10.1016/j.jenvman.2024.121429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Soil organic carbon (SOC) pool, the largest part of terrestrial ecosystem, controls global terrestrial carbon balance and consequently presented carbon cycle-climate feedback in climate projections. Microplastics, (MPs, <5 mm) as common pollutants in soil ecosystems, have an obvious impact on soil-borne carbon circulation by affecting soil microbial processes, which play a central role in regulating SOC conversion. In this review, we initially presented the sources, properties and ecological risks of MPs in soil ecosystem, and then the differentiated effects of MPs on the component of SOC, including dissolved organic carbon, soil microbial biomass carbon and easily oxidized organic carbon varying with the types and concentrations of MPs, the soil types, etc. As research turns into a broader perspective, greenhouse gas emissions dominated by the mineralization of SOC coming into view since it can be significantly affected by MPs and is closely associated with soil microbial respiration. The pathways of MPs impacting soil microbes-driven carbon conversion include changing microbial community structure and composition, the functional enzyme's activity and the abundance and expression of functional genes. However, numerous uncertainties still exist regarding the microbial mechanisms in the deeper biochemical process. More comprehensive studies are necessary to explore the affected footprint and provide guidance for finding the evaluation criterion of MPs affecting climate change.
Collapse
Affiliation(s)
- Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Fangwei Hou
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, 266071, China
| | - Lulu Sun
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhanghua Han
- Shandong Provincial Key Laboratory of Optics and Photonic Devices, Center of Light Manipulation and Applications, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Tongtong Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yiming Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
24
|
Wang J, Jia M, Zhang L, Li X, Zhang X, Wang Z. Biodegradable microplastics pose greater risks than conventional microplastics to soil properties, microbial community and plant growth, especially under flooded conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172949. [PMID: 38703848 DOI: 10.1016/j.scitotenv.2024.172949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Biodegradable plastics (bio-plastics) are often viewed as viable option for mitigating plastic pollution. Nevertheless, the information regarding the potential risks of microplastics (MPs) released from bio-plastics in soil, particularly in flooded soils, is lacking. Here, our objective was to investigate the effect of polylactic acid MPs (PLA-MPs) and polyethylene MPs (PE-MPs) on soil properties, microbial community and plant growth under both non-flooded and flooded conditions. Our results demonstrated that PLA-MPs dramatically increased soil labile carbon (C) content and altered its composition and chemodiversity. The enrichment of labile C stimulated microbial N immobilization, resulting in a depletion of soil mineral nitrogen (N). This specialized environment created by PLA-MPs further filtered out specific microbial species, resulting in a low diversity and simplified microbial community. PLA-MPs caused an increase in denitrifiers (Noviherbaspirillum and Clostridium sensu stricto) and a decrease in nitrifiers (Nitrospira, MND1, and Ellin6067), potentially exacerbating the mineral N deficiency. The mineral N deficit caused by PLA-MPs inhibited wheatgrass growth. Conversely, PE-MPs had less effect on soil ecosystems, including soil properties, microbial community and wheatgrass growth. Overall, our study emphasizes that PLA-MPs cause more adverse effect on the ecosystem than PE-MPs in the short term, and that flooded conditions exacerbate and prolong these adverse effects. These results offer valuable insights for evaluating the potential threats of bio-MPs in both uplands and wetlands.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Minghao Jia
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Long Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
25
|
Sun J, Zhang X, Gong X, Sun Y, Zhang S, Wang F. Metagenomic analysis reveals gene taxonomic and functional diversity response to microplastics and cadmium in an agricultural soil. ENVIRONMENTAL RESEARCH 2024; 251:118673. [PMID: 38493845 DOI: 10.1016/j.envres.2024.118673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Both microplastics (MPs) and heavy metals are common soil pollutants and can interact to generate combined toxicity to soil ecosystems, but their impact on soil microbial communities (e.g., archaea and viruses) remains poorly studied. Here, metagenomic analysis was used to explore the response of soil microbiome in an agricultural soil exposed to MPs [i.e., polyethylene (PE), polystyrene (PS), and polylactic acid (PLA)] and/or Cd. Results showed that MPs had more profound effects on microbial community composition, diversity, and gene abundances when compared to Cd or their combination. Metagenomic analysis indicated that the gene taxonomic diversity and functional diversity of microbial communities varied with MPs type and dose. MPs affected the relative abundance of major microbial phyla and genera, while their coexistence with Cd influenced dominant fungi and viruses. Nitrogen-transforming and pathogenic genera, which were more sensitive to MPs variations, could serve as the indicative taxa for MPs contamination. High-dose PLA treatments (10%, w/w) not only elevated nitrogen metabolism and pathogenic genes, but also enriched copiotrophic microbes from the Proteobacteria phylum. Overall, MPs and Cd showed minimal interactions on soil microbial communities. This study highlights the microbial shifts due to co-occurring MPs and Cd, providing evidence for understanding their environmental risks.
Collapse
Affiliation(s)
- Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China; Shandong Vocational College of Science and Technology, Weifang, Shandong Province, 261000, PR China
| | - Xiaoqing Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China
| | - Xiaoqiang Gong
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan Province, 621010, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China
| | - Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China.
| |
Collapse
|
26
|
Wang Y, Zhao C, Lu A, Dong D, Gong W. Unveiling the hidden impact: How biodegradable microplastics influence CO 2 and CH 4 emissions and Volatile Organic Compounds (VOCs) profiles in soil ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134294. [PMID: 38669928 DOI: 10.1016/j.jhazmat.2024.134294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Biodegradable plastics promise eco-friendliness, yet their transformation into microplastics (bio-MPs) raises environmental alarms. However, how those bio-MPs affect the greenhouse gases (GHGs) and volatile organic compounds (VOCs) in soil ecosystems remains largely unexplored. Here, we investigated the effects of diverse bio-MPs (PBAT, PBS, and PLA) on GHGs and VOCs emission in typical paddy or upland soils. We monitored the carbon dioxide (CO2) and methane (CH4) fluxes in-situ using the self-developed portable optical gas sensor and analyzed VOC profiles using a proton-transfer reaction mass spectrometer (PTR-MS). Our study has revealed that, despite their biodegradable nature, bio-MPs do not always promote soil GHG emissions as previously thought. Specifically, PBAT and PLA significantly increased CO2 and CH4 emissions up to 1.9-7.5 and 115.9-178.5 fold, respectively, compared to the control group. While PBS exhibited the opposite trend, causing a decrease of up to 39.9% for CO2 and up to 39.9% for CH4. In addition, different types of bio-MPs triggered distinct soil VOC emission patterns. According to the Mann-Whitney U-test and Partial Least Squares Discriminant Analysis (PLS-DA), a recognizable VOC pattern associated with different bio-MPs was revealed. This study claims the necessity of considering polymer-specific responses when assessing the environmental impact of Bio-MPs, and providing insights into their implications for climate change.
Collapse
Affiliation(s)
- Yihao Wang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chunjiang Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Anxiang Lu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Daming Dong
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Wenwen Gong
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
27
|
Yu H, Liu X, Qiu X, Sun T, Cao J, Lv M, Sui Z, Wang Z, Jiao S, Xu Y, Wang F. Discrepant soil microbial community and C cycling function responses to conventional and biodegradable microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134176. [PMID: 38569347 DOI: 10.1016/j.jhazmat.2024.134176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Biodegradable microplastics (MPs) are promising alternatives to conventional MPs and are of high global concern. However, their discrepant effects on soil microorganisms and functions are poorly understood. In this study, polyethylene (PE) and polylactic acid (PLA) MPs were selected to investigate the different effects on soil microbiome and C-cycling genes using high-throughput sequencing and real-time quantitative PCR, as well as the morphology and functional group changes of MPs, using scanning electron microscopy and Fourier transform infrared spectroscopy, and the driving factors were identified. The results showed that distinct taxa with potential for MP degradation and nitrogen cycling were enriched in soils with PLA and PE, respectively. PLA, smaller size (150-180 µm), and 5% (w/w) of MPs enhanced the network complexity compared with PE, larger size (250-300 µm), and 1% (w/w) of MPs, respectively. PLA increased β-glucosidase by up to 2.53 times, while PE (150-180 µm) reduced by 38.26-44.01% and PE (250-300 µm) increased by 19.00-22.51% at 30 days. Amylase was increased by up to 5.83 times by PLA (150-180 µm) but reduced by 40.26-62.96% by PLA (250-300 µm) and 16.11-43.92% by PE. The genes cbbL, cbhI, abfA, and Lac were enhanced by 37.16%- 1.99 times, 46.35%- 26.46 times, 8.41%- 69.04%, and 90.81%- 5.85 times by PLA except for PLA1B/5B at 30 days. These effects were associated with soil pH, NO3--N, and MP biodegradability. These findings systematically provide an understanding of the impact of biodegradable MPs on the potential for global climate change.
Collapse
Affiliation(s)
- Hui Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xin Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xiaoguo Qiu
- Shandong Provincial Eco-Environment Monitoring Center, Jinan 250101, China
| | - Tao Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Jianfeng Cao
- Taian Ecological Environment Monitoring Center of Shandong Province, Taian 271000, China
| | - Ming Lv
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Zhiyuan Sui
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Zhizheng Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shuying Jiao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuxin Xu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Fenghua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China.
| |
Collapse
|
28
|
He W, Huang J, Liu S, Yu H, Li E, Zhang W, Yi K, Zhang C, Pang H, Tan X. Effects of microplastics on sedimentary geochemical properties and microbial ecosystems combined with hydraulic disturbance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171350. [PMID: 38432377 DOI: 10.1016/j.scitotenv.2024.171350] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Microplastics (MPs) pollution is widely investigated owing to its potential threats to river ecosystems. However, it remains unclear whether hydraulic disturbance deepens or mitigates the effects of MPs-contaminated sediments on the river environment. Herein, we studied the impact of sediment aggregates, organic matter, and enzyme activity, with emphasis on microbial community structure and function in sediments exposed to MPs (1 %, 5 %, and 10 % w/w) in conjunction with hydraulic disturbance. The experimental results showed that the influence of MPs on the sediment under hydraulic disturbance is more significant than that of static culture, especially for various environmental factors (MWD, MBC, and sucrase activity etc.). The proportions of the >0.05 mm-fraction aggregates increased from 74-76 % to 82-88 % in the sediment throughout the entire disturbance process. It has been found that the disturbance generally promotes the interaction between MPs and sediments. FAPROTAX analysis demonstrated that the disturbance reduced the difference in effects on microbial functional genes between the control group and the MPs-added groups by up to 10 times, suggesting that the effects of disturbance on MPs-contaminated sediments are relatively complex. This work provides new insights into the effects of hydraulic disturbance on physicochemical properties and microbial communities of MPs-contaminated sediment.
Collapse
Affiliation(s)
- Wenjuan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hanbo Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic EcoEnvironmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Enjie Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Kaixin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
29
|
Piyathilake U, Lin C, Bolan N, Bundschuh J, Rinklebe J, Herath I. Exploring the hidden environmental pollution of microplastics derived from bioplastics: A review. CHEMOSPHERE 2024; 355:141773. [PMID: 38548076 DOI: 10.1016/j.chemosphere.2024.141773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/18/2024]
Abstract
Bioplastics might be an ecofriendly alternative to traditional plastics. However, recent studies have emphasized that even bioplastics can end up becoming micro- and nano-plastics due to their degradation under ambient environmental conditions. Hence, there is an urgent need to assess the hidden environmental pollution caused by bioplastics. However, little is known about the evolutionary trends of bibliographic data, degradation pathways, formation, and toxicity of micro- and nano-scaled bioplastics originating from biodegradable polymers such as polylactic acid, polyhydroxyalkanoates, and starch-based plastics. Therefore, the prime objective of the current review was to investigate evolutionary trends and the latest advancements in the field of micro-bioplastic pollution. Additionally, it aims to confront the limitations of existing research on microplastic pollution derived from the degradation of bioplastic wastes, and to understand what is needed in future research. The literature survey revealed that research focusing on micro- and nano-bioplastics has begun since 2012. This review identifies novel insights into microbioplastics formation through diverse degradation pathways, including photo-oxidation, ozone-induced degradation, mechanochemical degradation, biodegradation, thermal, and catalytic degradation. Critical research gaps are identified, including defining optimal environmental conditions for complete degradation of diverse bioplastics, exploring micro- and nano-bioplastics formation in natural environments, investigating the global occurrence and distribution of these particles in diverse ecosystems, assessing toxic substances released during bioplastics degradation, and bridging the disparity between laboratory studies and real-world applications. By identifying new trends and knowledge gaps, this study lays the groundwork for future investigations and sustainable solutions in the realm of sustainable management of bioplastic wastes.
Collapse
Affiliation(s)
- Udara Piyathilake
- Environmental Science Division, National Institute of Fundamental Studies (NIFS), Kandy, 2000, Sri Lanka
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jochen Bundschuh
- School of Engineering, Faculty of Health, Engineering and Sciences, The University of Southern Queensland, West Street, 4350, QLD, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Indika Herath
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
30
|
Su X, Zhang R, Cao H, Mu D, Wang L, Song C, Wei Z, Zhao Y. Adsorption of humic acid from different organic solid waste compost to phenanthrene, is fluorescence excitation or quenching? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123712. [PMID: 38460593 DOI: 10.1016/j.envpol.2024.123712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/09/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Humic acid (HA) from different organic solid waste (OSW) compost has been shown good adsorption properties for phenanthrene. However, the raw material of HA can affect its structure, resulting in differences in adsorption capacity. Therefore, this study focused on the adsorption characteristics of phenanthrene by HA from different OSW compost. In this work, chicken manure (CM), rice straw (RS) and lawn waste (LW) were selected as sources of composted HA. The adsorption mechanism of HA from different OSW compost were revealed through analytical techniques including three-dimensional fluorescence spectroscopy (EEM), two-dimensional correlation spectroscopy (2DCOS), and Fourier-transform infrared spectroscopy (FTIR). The results suggested that HA from LW compost had a better adsorption affinity for phenanthrene because of its more complex fluorescent component, where C1 as a simple component determined the adsorption process specifically. Furthermore, after HA from LW compost adsorbed phenanthrene, the increase in aromatic -COOH and -NH was the main reason for fluorescence quenching. These results indicated that HA from LW compost had better adsorption effect for phenanthrene. The results of this study were expected to provide a selection scheme for the control of phenanthrene pollution and environmental remediation.
Collapse
Affiliation(s)
- Xinya Su
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ruju Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Huan Cao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Daichen Mu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Caihong Song
- College of Life Sciences, Liaocheng University, Liaocheng, 25200, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
31
|
Wang W, Zhang Z, Gao J, Wu H. The impacts of microplastics on the cycling of carbon and nitrogen in terrestrial soil ecosystems: Progress and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169977. [PMID: 38215847 DOI: 10.1016/j.scitotenv.2024.169977] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
As contaminants of emerging concern, microplastics (MPs) are ubiquitously present in almost all environmental compartments of the earth, with terrestrial soil ecosystems as the major sink for these contaminants. The accumulation of MPs in the soil can trigger a wide range of effects on soil physical, chemical, and microbial properties, which may in turn cause alterations in the biogeochemical processes of some key elements, such as carbon and nitrogen. Until recently, the effects of MPs on the cycling of carbon and nitrogen in terrestrial soil ecosystems have yet to be fully understood, which necessitates a review to summarize the current research progress and propose suggestions for future studies. The presence of MPs can affect the contents and forms of soil carbon and nitrogen nutrients (e.g., total and dissolved organic carbon, dissolved organic nitrogen, NH4+-N, and NO3--N) and the emissions of CH4, CO2, and N2O by altering soil microbial communities, functional gene expressions, and enzyme activities. Exposure to MPs can also affect plant growth and physiological processes, consequently influencing carbon fixation and nitrogen uptake. Specific effects of MPs on carbon and nitrogen cycling and the associated microbial parameters can vary considerably with MP properties (e.g., dose, polymer type, size, shape, and aging status) and soil types, while the mechanisms of interaction between MPs and soil microbes remain unclear. More comprehensive studies are needed to narrow the current knowledge gaps.
Collapse
Affiliation(s)
- Wenfeng Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China
| | - Zhiyu Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Jilin Normal University, 1301 Haifeng Street, Siping 136000, China
| | - Jie Gao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China.
| |
Collapse
|
32
|
Zhang H, Huang Y, Shen J, Xu F, Hou H, Xie C, Wang B, An S. Mechanism of polyethylene and biodegradable microplastic aging effects on soil organic carbon fractions in different land-use types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168961. [PMID: 38042203 DOI: 10.1016/j.scitotenv.2023.168961] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Microplastics (MPs) are widely present in terrestrial ecosystems, but knowledge about the aging characteristics of MPs in different land-use types and their impact on soil organic carbon fractions is still limited. Polyethylene (PE) and biodegradable MPs (Poly propylene carbonate and Polybutylene adipate terephthalate synthetic material (PPC + PBAT, Bio)), at 0 %, 0.03 %, and 0.3 % (w/w) dosages, were added to grassland, farmland, and facility soils for eight-week incubation. The aging degree of MPs was explored by quantifying the carbonyl index (CI). Soil organic C fractions such as SOC, particulate organic carbon (POC), mineral-associated organic carbon (MAOC), and microbial-derived C were analyzed. MPs underwent rapid aging after incubation, and the CI value for 0.03 % PE-MPs increased from 0.05 to 0.27 (farmland) and 0.26 (facility) (p < 0.05). The aging degree of 0.03 % and 0.3 % Bio-MPs was most significant in grassland, with CI decreasing by 46.6 % and 69.0 %, respectively. The CI of MPs were negatively correlated with their dosage. The 0.03 % and 0.3 % PE-MPs decreased soil organic carbon (SOC) content by 7.4 % and 8.2 % in grassland, and 3.0 % and 6.0 % in the facility (p < 0.05). POC content of farmland and facility soil was negatively correlated with PE-MPs' CI (p < 0.05). The 0.03 % PE and Bio-MPs decreased fungal necromass C (FNC) by 0.40 and 0.05 g kg-1 in grassland and 0.48 and 0.21 g kg-1 in farmland. Besides, the dosage of MPs regulated FNC content through soil pH, nutrients, and extracellular enzyme activity, either directly or indirectly, ultimately affecting the soil C pool. Therefore, this study demonstrates that MPs strongly affect SOC dynamics by influencing soil microbial enzyme activity and fungal necromass.
Collapse
Affiliation(s)
- Haixin Zhang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China.
| | - Jikai Shen
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China
| | - Fengjing Xu
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China
| | - Hongyang Hou
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China
| | - Chunjiao Xie
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China
| | - Baorong Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
33
|
Xu Y, Ou Q, van der Hoek JP, Liu G, Lompe KM. Photo-oxidation of Micro- and Nanoplastics: Physical, Chemical, and Biological Effects in Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:991-1009. [PMID: 38166393 PMCID: PMC10795193 DOI: 10.1021/acs.est.3c07035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/04/2024]
Abstract
Micro- and nanoplastics (MNPs) are attracting increasing attention due to their persistence and potential ecological risks. This review critically summarizes the effects of photo-oxidation on the physical, chemical, and biological behaviors of MNPs in aquatic and terrestrial environments. The core of this paper explores how photo-oxidation-induced surface property changes in MNPs affect their adsorption toward contaminants, the stability and mobility of MNPs in water and porous media, as well as the transport of pollutants such as organic pollutants (OPs) and heavy metals (HMs). It then reviews the photochemical processes of MNPs with coexisting constituents, highlighting critical factors affecting the photo-oxidation of MNPs, and the contribution of MNPs to the phototransformation of other contaminants. The distinct biological effects and mechanism of aged MNPs are pointed out, in terms of the toxicity to aquatic organisms, biofilm formation, planktonic microbial growth, and soil and sediment microbial community and function. Furthermore, the research gaps and perspectives are put forward, regarding the underlying interaction mechanisms of MNPs with coexisting natural constituents and pollutants under photo-oxidation conditions, the combined effects of photo-oxidation and natural constituents on the fate of MNPs, and the microbiological effect of photoaged MNPs, especially the biotransformation of pollutants.
Collapse
Affiliation(s)
- Yanghui Xu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Qin Ou
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Jan Peter van der Hoek
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- Waternet,
Department Research & Innovation,
P.O. Box 94370, 1090 GJ Amsterdam, The Netherlands
| | - Gang Liu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kim Maren Lompe
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|
34
|
Withana PA, Li J, Senadheera SS, Fan C, Wang Y, Ok YS. Machine learning prediction and interpretation of the impact of microplastics on soil properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122833. [PMID: 37931672 DOI: 10.1016/j.envpol.2023.122833] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/05/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
The annual microplastic (MP) release into soils is 4-23 times higher than that into oceans, significantly impacting soil quality. However, the mechanisms underlying how MPs impact soil properties remain largely unknown. Soil-MP interactions are complex because of soil heterogeneity and varying MP properties. This lack of understanding was exacerbated by the diverse experimental conditions and soil types used in this study. Predicting changes in soil properties in the presence of MPs is challenging, laborious, and time-consuming. To address these issues, machine learning was applied to fit datasets from peer-reviewed publications to predict and interpret how MPs influence soil properties, including pH, dissolved organic carbon (DOC), total P, NO3--N, NH4+-N, and acid phosphatase enzyme activity (acid P). Among the developed models, the gradient boost regression (GBR) model showed the highest R2 (0.86-0.99) compared to the decision tree and random forest models. The GBR model interpretation showed that MP properties contributed more than 50% to altering the acid P and NO3--N concentrations in soils, whereas they had a negligible impact on total P and 10-20% impact on soil pH, DOC, and NH4+-N. Specifically, the size of MPs was the dominant factor influencing acid P (89.3%), pH (71.6%), and DOC (44.5%) in soils. NO3--N was mainly affected by the MP type (52.0%). The NH4+-N was mainly affected by the MP dose (46.8%). The quantitative insights into the impact of MPs on soil properties of this study could aid in understanding the roles of MPs in soil systems.
Collapse
Affiliation(s)
- Piumi Amasha Withana
- Korea Biochar Research Center, Association of Pacific Rim Universities (APRU) Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; International ESG Association (IESGA), Seoul, 06621, Republic of Korea
| | - Jie Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Sachini Supunsala Senadheera
- Korea Biochar Research Center, Association of Pacific Rim Universities (APRU) Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; International ESG Association (IESGA), Seoul, 06621, Republic of Korea
| | - Chuanfang Fan
- Korea Biochar Research Center, Association of Pacific Rim Universities (APRU) Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yin Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yong Sik Ok
- Korea Biochar Research Center, Association of Pacific Rim Universities (APRU) Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; International ESG Association (IESGA), Seoul, 06621, Republic of Korea; Institute of Green Manufacturing Technology, College of Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
35
|
Chen M, Cao M, Zhang W, Chen X, Liu H, Ning Z, Peng L, Fan C, Wu D, Zhang M, Li Q. Effect of biodegradable PBAT microplastics on the C and N accumulation of functional organic pools in tropical latosol. ENVIRONMENT INTERNATIONAL 2024; 183:108393. [PMID: 38118212 DOI: 10.1016/j.envint.2023.108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/17/2023] [Accepted: 12/15/2023] [Indexed: 12/22/2023]
Abstract
Microplastics (MPs) pollution is becoming an emerging global stressor for soil ecosystems. However, studies on the impacts of biodegradable MPs on soil C sequestration have been mainly based on bulk C quantity, without considering the storage form of C, its persistency and N demand. To address this issue, the common poly (butylene adipate-co-terephthalate) (PBAT) was used as the model, and its effects on soil functional organic pools, including mineral-associated (MAOM), particulate (POM) and dissolved organic matter (DOM), were investigated from the novel coupled perspective of C and N stocks. After adding PBAT-MPs, the contents of soil POM-C, DOM-C, and MAOM-C were increased by 546.9 %-697.8 %, 54.2 %-90.3 %, and 13.7 %-18.9 %, respectively. Accordingly, the total C increased by 116.0 %-191.1 %. Structural equation modeling showed that soil C pools were regulated by PBAT input and microbial metabolism associated with C and N enzymes. Specifically, PBAT debris could be disguised as soil C to promote POM formation, which was the main pathway for C accumulation. Inversely, the MAOM-C and DOM-C formation was attributed to the PBAT microbial product and the selective consumption in DOM-N. Random forest model confirmed that N-activated (e.g., Nitrospirae) and PBAT-degrading bacteria (e.g., Gemmatinadetes) were important taxa for soil C accumulation, and the key enzymes were rhizopus oryzae lipas, invertase, and ammonia monooxygenase. The soil N accumulation was mainly related to the oligotrophic taxa (e.g., Chloroflexi and Ascomycota) associated with aggregate formation, decreasing the DOM-N by 46.9 %-84.3 %, but did not significantly change the total N storage and other N pools. Collectively, the findings highlight the urgency to control the nutrient imbalance risk of labile N loss and recalcitrant C enrichment in POM to avoid the depressed turnover rate of organic matter in MPs-polluted soil.
Collapse
Affiliation(s)
- Miao Chen
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China
| | - Ming Cao
- Agro-Tech Extension and Service Center of Sanya, Sanya 572000, Hainan, China
| | - Wen Zhang
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China
| | - Xin Chen
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China
| | - Huiran Liu
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ziyu Ning
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China
| | - Licheng Peng
- School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Changhua Fan
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China
| | - Dongming Wu
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China.
| | - Meng Zhang
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
| | - Qinfen Li
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China
| |
Collapse
|
36
|
Chen C, Yin G, Li Q, Gu Y, Sun D, An S, Liang X, Li X, Zheng Y, Hou L, Liu M. Effects of microplastics on denitrification and associated N 2O emission in estuarine and coastal sediments: insights from interactions between sulfate reducers and denitrifiers. WATER RESEARCH 2023; 245:120590. [PMID: 37703755 DOI: 10.1016/j.watres.2023.120590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Global estuarine and coastal zones are facing severe microplastics (MPs) pollution. Sulfate reducers (SRB) and denitrifiers (DNB) are two key functional microorganisms in these zones, exhibiting intricate interactions. However, whether and how MPs modulate the interactions between SRB and DNB, with implications for denitrification and associated N2O emissions, remains poorly understood. Here, we simultaneously investigated the spatial response patterns of SRB-DNB interactions and denitrification and associated N2O emissions to different MPs exposure along an estuarine gradient in the Yangtze Estuary. Spatial responses of denitrification to polyvinyl chloride (PVC) and polyadipate/butylene terephthalate (PBAT) MPs exposure were heterogeneous, while those of N2O emissions were not. Gradient-boosted regression tree and multiple regression model analyses showed that sulfide, followed by nitrate (NO3-), controlled the response patterns of denitrification to MPs exposure. Further mechanistic investigation revealed that exposure to MPs resulted in a competitive and toxic (sulfide accumulation) inhibition of SRB on DNB, ultimately inhibiting denitrification at upstream zones with high sulfide but low NO3- levels. Conversely, MPs exposure induced a competitive inhibition of DNB on SRB, generally promoting denitrification at downstream zones with low sulfide but high NO3- levels. These findings advance the current understanding of the impacts of MPs on nitrogen cycle in estuarine and coastal zones, and provide a novel insight for future studies exploring the response of biogeochemical cycles to MPs in various ecosystems.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| | - Qiuxuan Li
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Youran Gu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Dongyao Sun
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Soonmo An
- Department of Oceanography, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| |
Collapse
|
37
|
Wang Q, Feng X, Liu Y, Li W, Cui W, Sun Y, Zhang S, Wang F, Xing B. Response of peanut plant and soil N-fixing bacterial communities to conventional and biodegradable microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132142. [PMID: 37515992 DOI: 10.1016/j.jhazmat.2023.132142] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Microplastics (MPs) occur and distribute widely in agroecosystems, posing a potential threat to soil-plant systems. However, little is known about their effects on legumes and N-fixing microbes. Here, we explored the effects of high-density polyethylene (HDPE), polystyrene (PS), and polylactic acid (PLA) on the growth of peanuts and soil N-fixing bacterial communities. All MPs treatments showed no phytotoxic effects on plant biomass, and PS and PLA even increased plant height, especially at the high dose. All MPs changed soil NO3--N and NH4+-N contents and the activities of urease and FDAse. Particularly, high-dose PLA decreased soil NO3--N content by 97% and increased soil urease activity by 104%. In most cases, MPs negatively affected plant N content, and high-dose PLA had the most pronounced effects. All MPs especially PLA changed soil N-fixing bacterial community structure. Symbiotic N-fixer Rhizoboales were greatly enriched by high-dose PLA, accompanied by the emergence of root nodulation, which may represent an adaptive strategy for peanuts to overcome N deficiency caused by PLA MPs pollution. Our findings indicate that MPs can change peanut-N fixing bacteria systems in a type- and dose-dependent manner, and biodegradable MPs may have more profound consequences for N biogeochemical cycling than traditional MPs.
Collapse
Affiliation(s)
- Quanlong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Xueying Feng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Yingying Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Wenguang Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Wenzhi Cui
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
38
|
Shi J, Wang Z, Peng Y, Fan Z, Zhang Z, Wang X, Zhu K, Shang J, Wang J. Effects of Microplastics on Soil Carbon Mineralization: The Crucial Role of Oxygen Dynamics and Electron Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13588-13600. [PMID: 37647508 DOI: 10.1021/acs.est.3c02133] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Although our understanding of the effects of microplastics on the dynamics of soil organic matter (SOM) has considerably advanced in recent years, the fundamental mechanisms remain unclear. In this study, we examine the effects of polyethylene and poly(lactic acid) microplastics on SOM processes via mineralization incubation. Accordingly, we evaluated the changes in carbon dioxide (CO2) and methane (CH4) production. An O2 planar optical sensor was used to detect the temporal behavior of dissolved O2 during incubation to determine the microscale oxygen heterogeneity caused by microplastics. Additionally, the changes in soil dissolved organic matter (DOM) were evaluated using a combination of spectroscopic approaches and ultrahigh-resolution mass spectrometry. Microplastics increased cumulative CO2 emissions by 160-613%, whereas CH4 emissions dropped by 45-503%, which may be attributed to the oxygenated porous habitats surrounding microplastics. Conventional and biodegradable microplastics changed the quantities of soil dissolved organic carbon. In the microplastic treatments, DOM with more polar groups was detected, suggesting a higher level of electron transport. In addition, there was a positive correlation between the carbon concentration, electron-donating ability, and CO2 emission. These findings suggest that microplastics may facilitate the mineralization of SOM by modifying O2 microenvironments, DOM concentration, and DOM electron transport capability. Accordingly, this study provides new insights into the impact of microplastics on soil carbon dynamics.
Collapse
Affiliation(s)
- Jia Shi
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zi Wang
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yumei Peng
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhongmin Fan
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Ziyun Zhang
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xiang Wang
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Kun Zhu
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianying Shang
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
39
|
Shi J, Wang Z, Peng Y, Zhang Z, Fan Z, Wang J, Wang X. Microbes drive metabolism, community diversity, and interactions in response to microplastic-induced nutrient imbalance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162885. [PMID: 36934915 DOI: 10.1016/j.scitotenv.2023.162885] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 05/06/2023]
Abstract
The impact of conventional and biodegradable microplastics on soil nutrients (carbon and nitrogen) has been widely examined, and the alteration of nutrient conditions further influences microbial biosynthesis processes. Nonetheless, the influence of microplastic-induced nutrient imbalances on soil microorganisms (from metabolism to community interactions) is still not well understood. We hypothesized that conventional and biodegradable microplastic could alter soil nutrients and microbial processes. To fill this knowledge gap, we conducted soil microcosms with polyethylene (PE, new and aged) and polylactic acid (PLA, new and aged) microplastics to evaluate their effects on the soil enzymatic stoichiometry, co-occurrence interactions, and success patterns of soil bacterial communities. New and aged PLA induced soil N immobilization, which decreased soil mineral N by 91-141 %. The biodegradation of PLA led to a higher bioavailable C and wider bioavailable C:N ratio, which further filtered out specific microbial species. Both new and aged PLA had a higher abundance of copiotrophic members (Proteobacteria, 35-51 % in PLA, 26-34 % in CK/PE treatments) and rrn copy number. The addition of PLA resulted in a lower alpha diversity and reduced network complexity. Conversely, because of the chemically stable hydrocarbon structure of PE polymers, the new and aged PE microplastics had a minor effect on soil mineral N, bacterial community composition, and network complexity, but led to microbial C limitation. Collectively, all microplastics increased soil C-, N-, and P -acquiring enzyme activities and reduced the number of keystone species and the robustness of the co-occurrence network. The PLA treatment enhanced nitrogen fixation and ureolysis, whereas the PE treatment increased the degradation of recalcitrant carbon. Overall, the alteration of soil nutrient conditions by microplastics affected the microbial metabolism and community interactions, although the effects of PE and PLA microplastics were distinct.
Collapse
Affiliation(s)
- Jia Shi
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zi Wang
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yumei Peng
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ziyun Zhang
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhongmin Fan
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xiang Wang
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
40
|
Wang H, Zhu J, He Y, Wang J, Zeng N, Zhan X. Photoaging process and mechanism of four commonly commercial microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131151. [PMID: 36889070 DOI: 10.1016/j.jhazmat.2023.131151] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are the widespread emerging pollutants in the terrestrial systems, and photo-oxidation is an effective process for aging MPs on land. Here, four common commercial MPs were exposed to ultraviolet (UV) light to simulate the photo-aging of MPs on soil, and the changes in surface properties and eluates of photoaging MPs were studied. Results revealed that polyvinyl chloride (PVC) and polystyrene (PS) exhibited more pronounced physicochemical changes than polypropylene (PP) and polyethylene (PE) during photoaging on the simulated topsoil, due to the dechlorination of PVC and the debenzene ring of PS. Oxygenated groups accumulated in aged MPs were strongly correlated with dissolved organic matters (DOMs) leaching. Through analysis of the eluate, we found that photoaging altered the molecular weight and aromaticity of DOMs. PS-DOMs showed the greatest increase in humic-like substances after aging, whereas PVC-DOMs exhibited the highest amount of additive leaching. The chemical properties of additives explained their differences in photodegradation responses, which also accounted for the greater importance of chemical structure of MPs to their structural stability. These findings demonstrate that the extensive presence of cracks in aged MPs facilitates DOMs formation and the complexity of DOMs composition poses a potential threat to soil and groundwater safety.
Collapse
Affiliation(s)
- Huiqian Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Yuan He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jiawei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Nengde Zeng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China.
| |
Collapse
|
41
|
Shen M, Liu S, Hu T, Zheng K, Wang Y, Long H. Recent advances in the research on effects of micro/nanoplastics on carbon conversion and carbon cycle: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117529. [PMID: 36801693 DOI: 10.1016/j.jenvman.2023.117529] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Massive production and spread application of plastics have led to the accumulation of numerous plastics in the global environment so that the proportion of carbon storage in these polymers also increases. Carbon cycle is of fundamental significance to global climate change and human survival and development. With the continuous increase of microplastics, undoubtedly, there carbons will continue to be introduced into the global carbon cycle. In this paper, the impact of microplastics on microorganisms involved in carbon transformation is reviewed. Micro/nanoplastics affect carbon conversion and carbon cycle by interfering with biological fixation of CO2, microbial structure and community, functional enzymes activity, the expression of related genes, and the change of local environment. Micro/nanoplastic abundance, concentration and size could significantly lead to difference in carbon conversion. In addition, plastic pollution can further affect the blue carbon ecosystem reduce its ability to store CO2 and marine carbon fixation capacity. Nevertheless, problematically, limited information is seriously insufficient in understanding the relevant mechanisms. Accordingly, it is required to further explore the effect of micro/nanoplastics and derived organic carbon on carbon cycle under multiple impacts. Under the influence of global change, migration and transformation of these carbon substances may cause new ecological and environmental problems. Additionally, the relationship between plastic pollution and blue carbon ecosystem and global climate change should be timely established. This work provides a better perspective for the follow-up study of the impact of micro/nanoplastics on carbon cycle.
Collapse
Affiliation(s)
- Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| | - Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Tong Hu
- Department of Environment Science, Zhejiang University, Hangzhou, 310058, China
| | - Kaixuan Zheng
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yulai Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Hongming Long
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| |
Collapse
|
42
|
Liu S, Huang J, He W, Zhang W, Yi K, Zhang C, Pang H, Huang D, Zha J, Ye C. Impact of microplastics on lead-contaminated riverine sediments: Based on the enzyme activities, DOM fractions, and bacterial community structure. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130763. [PMID: 36641852 DOI: 10.1016/j.jhazmat.2023.130763] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are able to interact with diverse contaminants in sediments. However, the impacts of MPs on sediment properties and bacterial community structure in heavy metal-contaminated sediments remain unclear. In this study, we investigated the adsorption of Pb(II) by sediment-MPs mixtures and the effects of different concentration MPs on sediment enzyme activities, DOM fractions, and Pb bioavailability in riverine sediments, and further explored the response of sediment microbial community to Pb in the presence of MPs. The results indicated that the addition of MPs significantly decreased the adsorption amount of Pb(II) by sediments, especially decreased by 12.6% at 10% MPs treatment. Besides, the changes in enzyme activities, DOM fractions exhibited dose-dependent effects of MPs. The higher level of MPs (5% and 10%) tends to transform Pb into more bioavailable fractions in sediments. Also, MPs amendment was observed to alter sediment bacterial community structures, and community differences were evident in the uncontaminated and lead-contaminated sediments. Therein, significant increase of Bacteroidota, Proteobacteria and decrease of Firmicutes abundance in Pb-contaminated sediment at the phylum level were observed. These findings are expected to provide comprehensive information for assessing the combined ecological risks of heavy metals and MPs in riverine sediments.
Collapse
Affiliation(s)
- Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - JinHui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - WenJuan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - KaiXin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - ChenYu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - HaoLiang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - DanLian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jun Zha
- Hunan Yixin Environmental Engineering Co., Ltd., Changsha 410004, Hunan, PR China
| | - Cong Ye
- Hunan Yixin Environmental Engineering Co., Ltd., Changsha 410004, Hunan, PR China
| |
Collapse
|
43
|
Current advances in interactions between microplastics and dissolved organic matters in aquatic and terrestrial ecosystems. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Sun Y, Li X, Li X, Wang J. Deciphering the Fingerprint of Dissolved Organic Matter in the Soil Amended with Biodegradable and Conventional Microplastics Based on Optical and Molecular Signatures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15746-15759. [PMID: 36301071 DOI: 10.1021/acs.est.2c06258] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biodegradable polymers are promoted as promising alternatives for conventional non-degradable plastics, but they may also negatively impact soil ecosystems. Here, we estimated the effects of biodegradable (polylactide (PLA) and polybutylene succinate (PBS)) and non-biodegradable (polyethylene (PE) and polystyrene (PS)) microplastics at a concentration of 1% (w/w) on dissolved organic matter (DOM) in two soil types, a black soil (BS) and a yellow soil (YS), by using fluorescence excitation-emission matrix spectroscopy and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). PBS significantly increased the contents of soil dissolved organic carbon (DOC) and the relative intensities of protein-like components. The turnover rates of soil DOM were statistically higher in PBS treatments (0.106 and 0.196, p < 0.001) than those in other microplastic groups. The FT-ICR-MS results indicated that more labile-active DOM molecules were preferentially obtained in biodegradable microplastic treatments, which may be attributed to the polymer degradation. The conventional microplastics showed no significant effects on the optical characteristics but changed the molecular compositions of the soil DOM. More labile DOM molecules were observed in BS samples treated with PE compared to the control, while the conventional microplastics decreased the DOM lability in YS soil. The distinct priming effects of plastic-leached DOM may trigger the DOM changes in different soils. This study provided important information for further understanding the impact of microplastics on soil carbon processes.
Collapse
Affiliation(s)
- Yuanze Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xinfei Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
45
|
Wu D, Ren D, Li Q, Zhu A, Song Y, Yin W, Wu C. Molecular linkages between chemodiversity and MCPA complexation behavior of dissolved organic matter in paddy soil: Effects of land conversion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119949. [PMID: 35970345 DOI: 10.1016/j.envpol.2022.119949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Complexation of dissolved organic matter (DOM) plays a crucial role in regulating the fate and risk of agrochemicals. Here, taking a toxic herbicide MCPA (4-chloro-2- methylphenoxyacetic acid) as the target, the effect of land conversion on complexation behavior of DOM to agrochemicals was investigated in paddy soil. Furthermore, the mechanisms were explored in a new perspective of DOM chemodiversity. Soil DOMs were selected from four long-term cropping systems, including paddy field (PF), vegetable field (VF), rice-vegetable rotation (RV) and abandoned land (AL). The results showed that the DOMs in PF and AL were rich in hydrophilic substances (e.g., carbohydrates or protein-like molecules) with low aromaticity. However, after converting PF to VF and RV, abundant aromatic macromolecules and aliphatic alkanes were observed in DOM. Due to those changes in DOM chemodiversity, the binding site and capability of DOM were highest in VF and RV, and were positively correlated with DOM aromaticity, MW, humus and polar groups (e.g., amino). This was because the complexation of "DOM-MCPA" was static binding via ligand exchange and H-bonding among polar groups and hydrophobic interaction among aromatic skeletons. The EEM-PARAFAC confirmed that microbial humic-like substances dominated the complexation of DOM rather than terrestrial humic-like and tryptophan-like matters. The 2D-COS analysis further revealed that the complexation of DOM preferentially occurred in amino, polysaccharide C-O and aliphatic C-H for PF and AL, but in aromatic C=C, amide C=N for RV and VF. In summary, these findings provide molecular insight into the effect of land conversion on DOM complexation activity, which highlight the importance of DOM chemodiversity. These results will contribute to the risk assessments of agrochemicals in paddy soil.
Collapse
Affiliation(s)
- Dongming Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation and Research Station, Danzhou, 571737, PR China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, PR China
| | - Qinfen Li
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation and Research Station, Danzhou, 571737, PR China; Hainan Key Laboratory of Tropical Eco-circuling Agriculture, Haikou, 571101, PR China
| | - Anhong Zhu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Yike Song
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Wenfang Yin
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Chunyuan Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation and Research Station, Danzhou, 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Haikou, 571101, PR China.
| |
Collapse
|
46
|
Liu L, Zou G, Zuo Q, Li C, Gu J, Kang L, Ma M, Liang K, Liu D, Du L. Soil bacterial community and metabolism showed a more sensitive response to PBAT biodegradable mulch residues than that of LDPE mulch residues. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129507. [PMID: 35999736 DOI: 10.1016/j.jhazmat.2022.129507] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Biodegradable mulch film (BDM) is considered as an environmentally sustainable alternative to low density polyethylene (LDPE) mulch film. However, the low degradation rate of BDM resulted in residues in soil after service period which were similar to LDPE mulch film. Distinguishing the differential responses of crop growth, soil bacteria and metabolism to residues of BDM and LDPE mulch films is favourable for comparing the environmental toxicities of the two materials. The results indicated that emergence rate and yield of Chinese cabbage (Brassica campestris L. ssp. chinensis Makino) were significantly inhibited by two types mulch residues. BDM residues significantly decreased bacterial diversity by 1.2-2.3% through the enrichment of dominant phyla and inhibition of inferior phyla, while LDPE mulch residues not. The effects of BDM residues on soil metabolite spectrum were stronger than LDPE mulch residues with significant increase (3.9% 5.8%) in the abundance of total metabolites. Besides the pathways of metabolism, organismal systems, environmental information processing influenced by LDPE mulch resides, differential pathways including human diseases and cellular processes were also determined in soil with BDM residues. According to all the results of the present study, prior to the promotion of BDM, its influences on soil safety must be carefully investigated through critical and systematic research.
Collapse
Affiliation(s)
- Liyuan Liu
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China
| | - Qiang Zuo
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China
| | - Chuanzong Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Jialin Gu
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China
| | - Lingyun Kang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China
| | - Maoting Ma
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China
| | - Kengyu Liang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China
| | - Dongsheng Liu
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China
| | - Lianfeng Du
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China
| |
Collapse
|