1
|
Wang Z, Liu N, Wu A. Ultrasensitive colorimetric detection of deoxynivalenol in infant milk powder based on the inhibitory effect of silver ions on the peroxidase-like activity of Ni@Pt nanoparticles. Food Chem 2025; 472:142947. [PMID: 39827553 DOI: 10.1016/j.foodchem.2025.142947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Deoxynivalenol, a hazardous mycotoxin, poses significant health risks to humans and animals, necessitating highly sensitive detection methods due to its low abundance in food. Herein, we present a colorimetric sensing strategy for deoxynivalenol detection based on the inhibitory effect of silver ions on the peroxidase-like activity of Ni@Pt nanoparticles. Silver ions adsorb onto the surface of Ni@Pt nanoparticles, blocking the active site and consequently impeding their catalytic activity. By integrating antigen-antibody interactions with the biotin-streptavidin system, a specific aptamer can be introduced to chelate silver ions, thereby modulating the activity of Ni@Pt nanoparticles for signal readout through the 3,3',5,5'-tetramethylbenzidine/hydrogen peroxide system. This method achieves a detection limit of 47.4 pg/mL, surpassing traditional enzyme-linked immunosorbent assays and rivaling the sensitivity of precision instrumental analysis. Furthermore, this colorimetric method demonstrates robust recovery and has been successfully challenged deoxynivalenol detection in infant milk powder samples, highlighting its potential for practical applications.
Collapse
Affiliation(s)
- Zhilong Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Na Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Aibo Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
2
|
Yuan J, Hao J, Yu Z, Hu S, Zhai C, Liu J, Cai K. Fabrication of a hierarchical PtIr@Rh hollow trimetallic nanozyme with a higher specific activity than that of HRP for sensitive colorimetric detection. Dalton Trans 2025; 54:6694-6700. [PMID: 40165477 DOI: 10.1039/d5dt00083a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Nanozymes have emerged as promising alternatives to natural enzymes in various fields, owing to their advantages in terms of stability, cost-effectiveness, and multifunctionality. However, their relatively low catalytic activity compared to natural enzymes remains a major challenge for practical applications. Here, we developed hierarchical PtIr@Rh hollow trimetallic nanorods, where Rh served as the substrate and the surface was decorated with numerous Pt nanoparticles doped with a small amount of Ir. The resulting nanorods exhibited remarkable peroxidase-like activity, with a specific activity of 2287 U mg-1, surpassing that of horseradish peroxidase (HRP). Additionally, the maximum reaction velocity (Vmax) was 1.024 × 10-6 M s-1, and the Michaelis-Menten constant (Km) was 1.706 mM. The enhanced catalytic performance was attributed to the unique hierarchical structure and the small amount of Ir doping, as supported by density functional theory (DFT) calculations. The PtIr@Rh nanozyme was successfully applied for the colorimetric detection of L-ascorbic acid, achieving a rapid detection with a limit of detection (LOD) of 0.12 μM. This study introduces a novel nanozyme with superior specific activity compared to natural enzymes, highlighting its potential for colorimetric sensing applications.
Collapse
Affiliation(s)
- Jincheng Yuan
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Jian Hao
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Zeyang Yu
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Shengyang Hu
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Chenghui Zhai
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China.
| | - Kai Cai
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| |
Collapse
|
3
|
Thangudu S, Su CH. Review of light activated antibacterial nanomaterials in the second biological window. J Nanobiotechnology 2025; 23:293. [PMID: 40229882 PMCID: PMC11998224 DOI: 10.1186/s12951-025-03333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Bacterial infections continue to pose a major threat to public health, contributing to high mortality rates worldwide. The growing ineffectiveness of conventional antibiotics has created an urgent need for alternative solutions. Nanomaterials (NMs) have emerged as a promising approach to combating bacterial infections due to their unique physicochemical properties, and extensive research has been conducted to address this crisis, yielding notable results. However, challenges such as limited light absorption and inherent cytotoxicity remain significant concerns. Furthermore, the clinical adoption of single-mode phototherapy is often restricted by the shallow tissue penetration of traditional light sources. The second biological window (NIR-II, 950-1450 nm) offers a groundbreaking opportunity for therapeutic and diagnostic applications by enabling deeper tissue penetration. As a result, growing research efforts are dedicated to developing NIR-II activated photosensitizers and nanomaterials to overcome challenges such as poor light absorption, limited tissue penetration, and suboptimal activation. Despite significant advancements, a comprehensive review of antibacterial nanomaterials specifically designed for the NIR-II window is still lacking in literature. This review aims to fill that gap by discussing the latest advancements, challenges, and potential of light-activated antibacterial nanomaterials within the BW-II region. The goal is to enhance understanding and guide the development of more efficient nanomaterials for future biomedical and clinical applications.
Collapse
Affiliation(s)
- Suresh Thangudu
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan.
- Canary Center for Cancer Early Detection, Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Palo Alto, CA, USA.
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan.
- Institute for Radiological Research, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
4
|
Cheng Z, Fahy KM, Peterson GW, Kirlikovali KO, Farha OK. Advancing Metal-Organic Framework-Based Composites for Effective Chemical Warfare Agent Detoxification under Real-World Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413848. [PMID: 40207733 DOI: 10.1002/adma.202413848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/09/2025] [Indexed: 04/11/2025]
Abstract
Threats from toxic chemical warfare agents (CWAs) persist due to war and terrorist attacks, endangering both human beings and the environment. Metal-organic frameworks (MOFs), which feature ordered pore structures and excellent tunability at both metal/metal cluster nodes and organic linkers, are regarded as the best candidates to directly remove CWAs and their simulants via both physical adsorption and chemically catalyzed hydrolysis or oxidization. MOFs have attracted significant attention in the last two decades that has resulted from the rapid development of MOF-based materials in both fundamental research and real-world applications. In this review, the authors focus on the recent advancements in designing and constructing functional MOF-based materials toward CWAs detoxification and discuss how to bridge the gap between fundamental science and real-world applications. With detailed summaries from different points of view, this review provides insights into design rules for developing next-generation MOF-based materials for protection from both organophosphorus and organosulfur CWAs to mitigate potential threats from CWAs used in wars and terrorism attacks.
Collapse
Affiliation(s)
- Zhihua Cheng
- Department of Chemistry, Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
| | - Kira M Fahy
- Department of Chemistry, Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
| | - Gregory W Peterson
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Kent O Kirlikovali
- Department of Chemistry, Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
- International Institute for Nanotechnology (IIN), Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
- Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL, 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
- International Institute for Nanotechnology (IIN), Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
- Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
| |
Collapse
|
5
|
Cao S, Pang Y, Wei Y, Wang D, Xiong A, Yang J, Zeng H. Nanozymes in biomedicine: Unraveling trends, research foci, and future trajectories via bibliometric insights (from 2007 to 2024). Int J Biol Macromol 2025; 309:142798. [PMID: 40185460 DOI: 10.1016/j.ijbiomac.2025.142798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Nanozymes, a new generation of artificial enzymes, have attracted significant attention in biomedical applications due to their multifunctional properties, multi-enzyme mimicking abilities, cost-effectiveness, and high stability. Leveraging these diverse catalytic activities, an increasing number of nanozyme-based therapeutic strategies have been developed for the treatment of various diseases. Despite substantial research efforts, a significant gap remains in comprehensive studies examining the progression, key areas, current trends, and future directions in this field. This study provides a comprehensive overview of nanozyme applications in biomedical research over the past 17 years, utilizing data from the Web of Science Core Collection, covering the period from January 1, 2007, to October 8, 2024. Advanced bibliometric and visualization tools were employed to facilitate a comprehensive analysis. The results highlight China's dominant role in this field, accounting for 76.83 % of total publications, significantly influencing the evolution of research in this area. Key contributions were made by institutions such as the Chinese Academy of Sciences, the University of Chinese Academy of Sciences, and the University of Science and Technology of China, with Qu Xiaogang as the leading author. The journal ACS Applied Materials & Interfaces has become the most prolific publisher in this field. Keyword analysis indicates that since 2022, research hotspots in this field have increasingly focused on areas such as photothermal therapy, chemodynamic therapy, and ferroptosis. Challenges such as obstacles to clinical translation, limitations in recyclability, and insufficient targeting ability were addressed. The potential applications of emerging interdisciplinary technologies, such as artificial intelligence, machine learning, and organoids, in advancing nanozyme development were explored. This study offers a data-driven roadmap for researchers to navigate the evolving landscape of nanozyme innovation, emphasizing interdisciplinary collaboration in impactful biomedical applications.
Collapse
Affiliation(s)
- Siyang Cao
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yingchen Pang
- Department of Pulmonary and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Pulmonary and Critical Care Medicine, Shenzhen Xinhua Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yihao Wei
- Department of Rehabilitation Science, The Hong Kong Polytechnic University, Hong Kong; Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, People's Republic of China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, People's Republic of China
| | - Deli Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Ao Xiong
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Qiu M, Man C, Zhao Q, Yang X, Zhang Y, Zhang W, Zhang X, Irudayaraj J, Jiang Y. Nanozymes meet hydrogels: Fabrication, progressive applications, and perspectives. Adv Colloid Interface Sci 2025; 338:103404. [PMID: 39884113 DOI: 10.1016/j.cis.2025.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/19/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Nanozyme, a class of emerging enzyme mimics, is the nanomaterials with enzyme-mimicking activity, which has obtained significant and widespread applications in various fields. However, they still face many challenges in practical applications (e.g., instability and low biocompatibility in the physiological environments), which affect their widespread applications to a certain extent. Hydrogels with superior performances (e.g., the controllable degradability, good biocompatibility, hydrophilic properties, and adjustable physical properties) may provide a promising strategy to make up the existing deficiencies of nanozymes in practical applications. Thus, the sapiential combination of nanozymes with hydrogels endows nanozyme hydrogels with both characteristics of nanozymes and properties of hydrogels, making nanozyme hydrogels become novel multifunctional materials. In this review, we comprehensively summarizes the preparation, properties, and progressive applications of nanozyme hydrogels. First of all, the main design and preparation strategies of nanozyme hydrogels are considerately summarized. Then, the properties of different nanozyme hydrogels are introduced. In addition, sophisticated applications of nanozyme hydrogels in the fields of biosensing, biomedicine applications, and environmental are comprehensively summarized. Most importantly, future obstacles and chances in this emerging field are profoundly proposed. This review will provide a new horizon for the development and future applications of novel nanozyme hydrogels.
Collapse
Affiliation(s)
- Manyan Qiu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xianlong Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Joseph Irudayaraj
- Department of Bioengineering, Grainger College of Engineering, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China.
| |
Collapse
|
7
|
Zhang F, Wang J, Liu W, Shi Q, Liu H, Sang Y, Wang X. A "four-in-one" immunochromatographic strip for multi-readout detection of diazepam in lake water and fish via nanozyme-mediated colorimetric, catalytic, and photothermal activities. Talanta 2025; 285:127275. [PMID: 39616754 DOI: 10.1016/j.talanta.2024.127275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/23/2025]
Abstract
The presence of psychotropic drugs (PDs) in aquatic ecosystems represents an increasing environmental problem, posing a serious threat to human health and aquatic organisms. Lateral flow immunoassays (LFIA) have been widely used in the detection of PD contaminants. However, maintaining signaling tag reporting activity and achieving LFIA's multi-readout capability remain significant challenges to meeting a range of detection scenarios. Here, a rapid multifunctional LFIA has been developed for detecting diazepam (DAP), an emerging environmental and food safety PD contaminant, in lake water and fish samples. Copper hexacyanoferrate nanoparticles doped with Au and Pt (AuPt@Cu-HCF) were designed and manufactured as a multi-signal reporter with exceptional photothermal conversion efficiency and peroxidase-like enzymatic activity. This study integrates the colorimetric, photothermal, catalytic colorimetric, and catalytic photothermal effects of the AuPt@Cu-HCF nanozyme to form a "four-in-one" multi-readout LFIA. The multifunctional detection approach achieved four different detection signal outputs for DAP, with detection limits of 0.82 ng/mL, 12.82 pg/mL, 12.26 pg/mL, and 4.43 pg/mL for the basic colorimetric, photothermal, catalytic colorimetric, and colorimetric photothermal readout modes, respectively. This quadruplex-functional LFIA offers four different options with varying sensitivities and detection ranges, suitable for various application scenarios. It also allows multiple verifications for a single sample, enhancing detection accuracy.
Collapse
Affiliation(s)
- Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Jing Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Weihua Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Qingge Shi
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Hangrui Liu
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
8
|
Dadigala R, Bandi R, Han SY, Cho SW, Kwon GJ, Lee SH. Fabrication of a novel reusable nanozyme by immobilizing Co-doped carbon dots on nanocellulose aerogels for efficient dyes degradation. Int J Biol Macromol 2025; 297:139824. [PMID: 39809404 DOI: 10.1016/j.ijbiomac.2025.139824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Carbon dot-based nanozymes have gained significant attention, but their application in dye degradation remains limited due to low activity and challenges in recovery and reuse. To overcome these limitations, high peroxidase-active Co-doped carbon dots (CoCDs) with surface amines were synthesized via hydrothermal method and immobilized onto TEMPO-oxidized cellulose nanofibrils (TOCNF) aerogels using EDC/NHS coupling. For the first time, this study investigates the dye degradation efficiency of CDs nanozyme. CoCDs with 1.456 % Co content exhibited excellent peroxidase-like activity with favorable kinetics (Km = 1.746 mM, Vmax = 22.05 × 10-8 Ms-1 for TMB and Km = 1.542 mM, Vmax = 23.54 × 10-8 Ms-1 for H2O2). The immobilized CoCDs enhanced the structural stability, and shape recovery of aerogels, even after multiple compressions. CoCDs/TOCNF aerogel with maximum CoCDs (114.7 mg/g) exhibited superior degradation efficiency for various dyes, including methyl orange (MO), methylene blue (MB), and rhodamine B (RhB), with rate constants of 12.7 × 10-3, 17.4 × 10-3, and 12.2 × 10-3 min-1, respectively. Mechanistic studies revealed the major role of hydroxyl radicals in dye degradation. The aerogels exhibited exceptional recyclability with all dyes. This stable and recyclable nanozyme with high catalytic activity presents a promising avenue for environmental remediation.
Collapse
Affiliation(s)
- Ramakrishna Dadigala
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Song-Yi Han
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung-Woo Cho
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gu-Joong Kwon
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
9
|
Tian Q, Li S, Tang Z, Zhang Z, Du D, Zhang X, Niu X, Lin Y. Nanozyme-Enabled Biomedical Diagnosis: Advances, Trends, and Challenges. Adv Healthc Mater 2025; 14:e2401630. [PMID: 39139016 DOI: 10.1002/adhm.202401630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/24/2024] [Indexed: 08/15/2024]
Abstract
As nanoscale materials with the function of catalyzing substrates through enzymatic kinetics, nanozymes are regarded as potential alternatives to natural enzymes. Compared to protein-based enzymes, nanozymes exhibit attractive characteristics of low preparation cost, robust activity, flexible performance adjustment, and versatile functionalization. These advantages endow them with wide use from biochemical sensing and environmental remediation to medical theranostics. Especially in biomedical diagnosis, the feature of catalytic signal amplification provided by nanozymes makes them function as emerging labels for the detection of biomarkers and diseases, with rapid developments observed in recent years. To provide a comprehensive overview of recent progress made in this dynamic field, here an overview of biomedical diagnosis enabled by nanozymes is provided. This review first summarizes the synthesis of nanozyme materials and then discusses the main strategies applied to enhance their catalytic activity and specificity. Subsequently, representative utilization of nanozymes combined with biological elements in disease diagnosis is reviewed, including the detection of biomarkers related to metabolic, cardiovascular, nervous, and digestive diseases as well as cancers. Finally, some development trends in nanozyme-enabled biomedical diagnosis are highlighted, and corresponding challenges are also pointed out, aiming to inspire future efforts to further advance this promising field.
Collapse
Affiliation(s)
- Qingzhen Tian
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Shu Li
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Zheng Tang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Ziyu Zhang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiao Zhang
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
10
|
Cao H, Jiang J, Chen L, Gao L. Mimicomes: Mimicking Multienzyme System by Artificial Design. Adv Healthc Mater 2025; 14:e2402372. [PMID: 39380346 DOI: 10.1002/adhm.202402372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Enzymes are widely distributed in organelles of cells, which are capable of carrying out specific catalytic reactions. In general, several enzymes collaborate to facilitate complex reactions and engage in vital biochemical processes within cells, which are also called cascade systems. The cascade systems are highly efficient, and their dysfunction is associated with a multitude of endogenous diseases. The advent of nanotechnology makes it possible to mimic these cascade systems in nature and realize partial functions of natural biological processes both in vitro and in vivo. To emphasize the significance of artificial cascade systems, mimicomes is first proposed, a new concept that refers to the artificial cascade catalytic systems. Typically, mimicomes are able to mimic specific natural biochemical catalytic processes or facilitate the overall catalytic efficiency of cascade systems. Subsequently, the evolution and development of different types of mimicomes in recent decades are elucidated exhaustedly, from the natural enzyme-based mimicomes (immobilized enzyme and vesicle mimicomes) to the nanozyme-based mimicomes and enzyme-nanozyme hybrid mimicomes. In conclusion, the remaining challenges in the design of multifunctional mimicomes and their potential applications are summarized, offering insights into their future prospects.
Collapse
Affiliation(s)
- Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
11
|
Guo X, Sun H, Yang Y, Zhong W, Wang M, Wang G, Zhang Y. Nanozyme-based colorimetric and smartphone imaging advanced sensing platforms for tetracycline detection and removal in food. Talanta 2025; 283:127028. [PMID: 39476792 DOI: 10.1016/j.talanta.2024.127028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/10/2024] [Accepted: 10/09/2024] [Indexed: 12/11/2024]
Abstract
The presence of antibiotic residues poses a significant threat to food assurance, triggering widespread concerns. Therefore, the prompt and accurate detection and removal of antibiotic residues are essential for ensuring food safety. In this study, an aptmer modified triple-metal nanozyme (apt-TMNzyme) sensor was developed, which achieved a portable, visual, intelligent, and fast determination for tetracycline (TET). The proposed apt-TMNzyme exhibited willow leaf-like morphology, high specific surface area and excellent TET adsorption and removal properties. The experiments showed that the apt-TMNzyme had outstanding peroxidase activity and could catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue product in the presence of H2O2, which provided a visual response signal to TET. This sensor was capable of quantifying TET within a concentration range of 0.2 nM-70 μM, achieving a detection limit of 7.1 nM under optimal conditions. When tested on real food samples, our sensor produced results that closely paralleled those achieved through high-performance liquid chromatography. To improve accessibility and user-friendliness, we also designed a colorimetric testing paper integrated with a smartphone application for intuitive and intelligent detection of TET, which enables the quantitative determination of TET in the concentration range of 0.003-60 μM, the detection limit was 5.1 μM. This integrated portable sensor not only streamlines the testing process, saving time and costs, but also offers a promising solution for rapid and sensitive detection of antibiotic residues.
Collapse
Affiliation(s)
- Xinli Guo
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, People's Republic of China
| | - He Sun
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, People's Republic of China
| | - Yuanzhen Yang
- School of Stomatology, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, People's Republic of China
| | - Wenbin Zhong
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, People's Republic of China
| | - Mengmeng Wang
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, People's Republic of China
| | - Guannan Wang
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, People's Republic of China; Liaoning Province Key Laboratory for Phenomics of Human Ethnic Specificity and Critical Illness, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Yang Zhang
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, People's Republic of China; Liaoning Province Key Laboratory for Phenomics of Human Ethnic Specificity and Critical Illness, Shenyang Medical College, Shenyang, 110034, People's Republic of China.
| |
Collapse
|
12
|
Jia X, Wang E, Wang J. Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy. Chem Rev 2025. [PMID: 39869790 DOI: 10.1021/acs.chemrev.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) in situ, thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects. This area has shown remarkable progress. This Perspective provides a comprehensive overview of nanozymes, covering their classification and fundamentals. The regulation of nanozyme activity and efficient strategies of rational design are discussed in detail. Furthermore, representative paradigms for the successful construction of cascade catalytic systems for cancer treatment are summarized with a focus on revealing the underlying catalytic mechanisms. Finally, we address the current challenges and future prospects for the development of nanozyme-based cascade catalytic systems in biomedical applications.
Collapse
Affiliation(s)
- Xiuna Jia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jin Wang
- Center for Theoretical Interdisciplinary Sciences Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
13
|
Ren K, Li Y, Liu Q. Rapid on-site colorimetric detection of arsenic(V) by NH 2-MIL-88(Fe) nanozymes-based ultraviolet-visible spectroscopic and smartphone-assisted sensing platforms. Anal Chim Acta 2025; 1336:343523. [PMID: 39788676 DOI: 10.1016/j.aca.2024.343523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Because arsenate (As(V)) is a highly toxic pollutant, timely on-site monitoring of its concentration is crucial for mitigating potential environmental and health hazards. Traditional on-site detection methods for As(V) often face limitations of long response time and low sensitivity. Nanozymes are nanomaterials that exhibit enzyme-like catalytic activity. Nanozyme-based colorimetric detection can amplify signals and improve detection sensitivity by catalytically converting a minimal substrate quantity into a substantial amount. However, current nanozymes-based As(V) detection methods still suffer from prolonged response time and the lack of convenient detection tools. RESULTS We develop a rapid and sensitive strategy for on-site colorimetric As(V) detection using a metal-organic framework (MOF) nanozyme, NH2-MIL-88(Fe). NH2-MIL-88(Fe) featured abundant Fe unsaturated metal centers (UMCs) and ordered porous structure, exhibiting excellent peroxidase-like activity, rapid As(V) adsorption, and high water dispersity. Fe UMCs efficiently catalyzed the oxidization of colorless tetramethylbenzidine (TMB) to blue oxTMB in the presence of H2O2. As(V) selectively inhibited this activity, reducing Ultraviolet-visible (UV-vis) absorption at 650 nm and fading the solution color. Mechanistically, As(V) interacted with Fe UMCs through As-O-Fe bonds, impeding Fe3+ reduction and Fe2+ catalytic ability, reducing •OH production. Under optimized conditions, As(V) was detected within 15 min, with detection limits of 2.78 μg L-1 via UV-vis and 13.56 μg L-1 via smartphone-assisted platform, covering a linear range of 5.00-600.00 μg L-1. Additionally, NH2-MIL-88(Fe) was incorporated into an agarose hydrogel to create a portable composite for smartphone-based colorimetric analysis As(V). SIGNIFICANCE AND NOVELTY This study addresses the existing issues of nanozyme-based As(V) sensors, elucidates the molecular mechanism by which As(V) affects NH2-MIL-88(Fe) nanozymes activity, and confirms the precision and accuracy of the established method in spiked river samples. Our rapid, sensitive, and facile approach offers a practical and efficient solution for on-site As(V) detection, facilitating swift intelligent risk identification and effective pollution prevention and remediation.
Collapse
Affiliation(s)
- Kewei Ren
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Yuanfang Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China; Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Qingqing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400716, China; Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
14
|
Dai S, Hu M, Zhang W, Lei Z. Selective colorimetric detection of carbosulfan based on its hydrolysis behavior and Ti 3C 2/AuPt nanozyme. Anal Chim Acta 2025; 1336:343519. [PMID: 39788672 DOI: 10.1016/j.aca.2024.343519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Carbosulfan (CBS) is a widely used carbamate pesticide in agricultural production, its easy decomposition into hypertoxic carbofuran poses serious threats to human health and food safety. Therefore, sensitive and accurate detection of CBS is of significant importance. Conventional chromatography-based techniques require expensive instruments and complicated sample pretreatment, limiting their application for fast detection. Current electrochemical and colorimetric methods for detection of pesticides based on the cascade catalytic reactions between acetylcholinesterase (AChE) and nanozymes, which exhibit inferior selectivity. Hence, selective, sensitive and fast detection of CBS is still challenging. RESULTS In this work, an AChE-free colorimetric method was proposed for selective detection of CBS based on its unique hydrolysis behavior and nanozyme. Ti3C2 nanosheets/AuPt nanoparticles (Ti3C2/AuPt NPs) with enhanced peroxidase-like activity were prepared via one-step self-reduction reaction. CBS can be hydrolyzed under acidic condition and produce -SH moieties, which could bond to Pt atoms of Ti3C2/AuPt NPs and shield the active sites of nanozyme, resulting in decreased catalytic activity. Based on the inhibitory effect on the peroxidase-like activity of Ti3C2/AuPt NPs, a colorimetric method was proposed for direct detection of CBS. Under optimal conditions, the method showed wide linear range (0.5 ng mL-1-5 μg mL-1), low limit of detection (0.342 nM), good selectivity and anti-interference ability. The feasibility of this method for practical use was confirmed by analysis of CBS in real lake water samples. SIGNIFICANCE This work proposed a simple colorimetric method for selective and fast detection of CBS, which avoided employing AChE and cascade catalytic reactions, significantly lowering the detection cost and improving detection efficiency. The method showed great potential for accurate detection of CBS in actual samples, and provided a new avenue for developing nanozyme-based colorimetric method for detection of other pesticide residues.
Collapse
Affiliation(s)
- Shuxian Dai
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Mengting Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wen Zhang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
15
|
Wang X, Tang X, Ji C, Wu L, Zhu Y. Advances and Future Trends in Nanozyme-Based SERS Sensors for Food Safety, Environmental and Biomedical Applications. Int J Mol Sci 2025; 26:709. [PMID: 39859423 PMCID: PMC11765993 DOI: 10.3390/ijms26020709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Nanozymes, a kind of nanoparticles with enzyme-mimicking activities, have attracted considerable attention due to their robust catalytic properties, ease of preparation, and resistance to harsh conditions. By combining nanozymes with surface-enhanced Raman spectroscopy (SERS) technology, highly sensitive and selective sensors have been developed. These sensors are capable of detecting a wide range of analytes, such as foodborne toxins, environmental pollutants, and biomedical markers. This review provides an overview of recent advancements in the synthesis and surface modification of nanozymes, highlighting their ability to mimic multiple enzymes and enhance catalytic performance. In addition, we explore the development and applications of nanozyme-based SERS sensors in food contaminants, environmental pollutants, and biomedical markers. The review concludes with perspectives and challenges facing the field, involving the need for deeper understanding of nanozyme principles and mechanisms, development of standardized systems for characterization, and the engineering of nanozymes with tailored properties for specific applications. Finally, we discuss the potential for integrating various techniques with nanozymes to create multi-modal detection platforms, paving the way for the next generation of analytical tools in the fields of food safety, environmental monitoring, and biomedical diagnostics.
Collapse
Affiliation(s)
- Xingyu Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Xuemei Tang
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chengzhen Ji
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Long Wu
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| |
Collapse
|
16
|
Gu Y, Yan H, Bai T, Rao D, Yang Y, Hu H, Li L, Guo L, Zeng Y. Sensitive and selective colorimetric detection of thiophanate-methyl based on a novel Ru-Fe 3O 4 nanozyme with enhanced peroxidase-like activity. Mikrochim Acta 2025; 192:64. [PMID: 39789155 DOI: 10.1007/s00604-024-06907-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
A novel Ru-Fe3O4 nanozyme with enhanced peroxidase-like (POD-like) activity was synthesized through a hydrothermal method. Ru-Fe3O4 nanozyme was effectively utilized for the detection of thiophanate-methyl (TM) using a colorimetric technique. The POD-like activity of Ru-Fe3O4 was found to be superior compared to Fe3O4, Rh-Fe3O4, and Pd-Fe3O4. Ru-Fe3O4 provided excellent POD-like activity with Michaelis constants of 0.00645 mM and 0.66714 mM for substrates of 3,3',5,5'-tetramethylbenzidine and H2O2, respectively. The density functional theory calculation showed that Ru-Fe3O4 had better H2O2 decomposition reactivity compared to Fe3O4. Compared with Fe3O4, the adsorbed H2O2 molecules underwent decomposition more readily on the Ru-Fe3O4 catalytic surface facilitating the occurrence of the H2O2 catalytic reaction, further suggesting the excellent POD-like activity of Ru-Fe3O4. The coordination and electrostatic interactions of Ru-Fe3O4 and TM promoted their binding, contributing to TM covering Ru-Fe3O4 catalytic site and inhibiting the POD-like activity of Ru-Fe3O4. As a result, the sensitive and selective detection of TM using Ru-Fe3O4 by a colorimetric method was achieved. The Ru-Fe3O4 nanozyme displayed a good linear correlation, with a linear detection range and a detection limit of 0.1-100 and 0.03 μg/mL, respectively. The Ru-Fe3O4 nanozyme was used for the determination of TM in soil and water samples with success.
Collapse
Affiliation(s)
- Yiwen Gu
- College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Huixiang Yan
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314001, People's Republic of China
| | - Tianwen Bai
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Daoyuan Rao
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Yiwen Yang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Hongyu Hu
- College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| |
Collapse
|
17
|
Zhang W, Yang Y, Meng X, Wang F, Lin YW, Xu J. Construction of artificial peroxidase based on myoglobin scaffold for efficient degradation of meloxicam. J Inorg Biochem 2025; 262:112733. [PMID: 39293327 DOI: 10.1016/j.jinorgbio.2024.112733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
A novel artificial peroxidase has been developed for the efficient degradation of the non-steroidal anti-inflammatory drug meloxicam by combining computer simulation and genetic engineering techniques. The results showed that the artificial peroxidase was able to completely degrade meloxicam within 90 s, with a degradation rate of 100 %, which was much higher than that of natural lacquer (46 %). The reaction time of the artificial enzyme was significantly shorter than that of natural peroxidase (10 min) and laccase (48 h). Further studies showed that the amino acid arrangement of the active site of the protein plays an important role in the catalytic performance. The degradation pathway of meloxicam was revealed using UPLC-MS analysis. In vitro toxicity assay showed complete disappearance of toxicity after meloxicam degradation. Therefore, the biocatalytic system proved to be an effective route for the green degradation of meloxicam with important application potential.
Collapse
Affiliation(s)
- Weikang Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China; College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yadan Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China; College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiangmin Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Fang Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Jiakun Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
18
|
Nakahara H, Hitomi Y. Designing Artificial Laccase Catalysts by Introducing Substrate Oxidation Metals into Oxygen-Reducing Metal-Organic Frameworks: Cu-Doped ZIF-67. Chemistry 2024; 30:e202402953. [PMID: 39422299 DOI: 10.1002/chem.202402953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 10/18/2024] [Indexed: 10/19/2024]
Abstract
Laccase, a multi-copper oxidase, is limited by its optimal temperature range and isolation costs. To overcome these challenges, we synthesized copper-doped zeolitic imidazolate framework-67 (Cu-doped ZIF-67) with 16 mol % Cu as an artificial laccase catalyst. The introduced Cu site acts as the phenol oxidation site, and Co-based ZIF-67 is the four-electron oxygen reduction site. Laccase also employs this division of oxidation and reduction sites. Cu-doped ZIF-67 demonstrated significant catalytic activity, superior to natural laccase, especially at elevated temperatures, and maintained stability across multiple reaction cycles. These findings suggest that Cu-doped ZIF-67 is a robust, reusable alternative for industrial applications requiring high thermal stability and efficient catalysis.
Collapse
Affiliation(s)
- Hiroki Nakahara
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, 610-0321, Kyotanabe, Kyoto, Japan
| | - Yutaka Hitomi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, 610-0321, Kyotanabe, Kyoto, Japan
| |
Collapse
|
19
|
Said R, Ghazzy A, Shakya AK, hunaiti AA. Iron oxide nanozymes as versatile analytical tools: an overview of their application as detection technique. Bioanalysis 2024; 16:1261-1278. [PMID: 39589819 PMCID: PMC11727870 DOI: 10.1080/17576180.2024.2415779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/09/2024] [Indexed: 11/28/2024] Open
Abstract
Iron oxide nanozymes (IONzymes) have become fundamental components in various analyte detection methodologies such as colorimetric, electrochemistry, fluorescence and luminescence. Their tunability, stability and the possibility of modification, alongside their ability to mimic the catalytic properties of natural enzymes like peroxidase, render them invaluable in analytical chemistry. This review explores the diverse applications of IONzymes across analytical chemistry, with a particular highlighting on their roles in different detection techniques and their potential in biomedical and diagnostic applications. This information would be valuable for researchers and practitioners in the fields of analytical chemistry, biochemistry, biotechnology and materials science who are interested in applying IONzymes in their work. In essence, this review article on iron oxide nanozymes in analytical chemistry would serve as a valuable resource for researchers, educators and industry professionals, offering insights, guidance and inspiration for further study and application of this promising class of nanomaterials.
Collapse
Affiliation(s)
- Rana Said
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Asma Ghazzy
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ashok K. Shakya
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, 11191, Jordan
| | - Afnan Al hunaiti
- Department of Chemistry, University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
20
|
Liao X, Li B, Wang L, Chen Y. Boric acid functionalized Fe 3O 4@CeO 2/Tb-MOF as a luminescent nanozyme for fluorescence detection and degradation of caffeic acid. Biosens Bioelectron 2024; 264:116637. [PMID: 39146768 DOI: 10.1016/j.bios.2024.116637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Caffeic acid (CA) is a natural polyphenol that can have various positive effects on human health. However, its extraction and processing can cause significant ecological issues. Therefore, it is crucial to detect and degrade CA effectively in the environment. In this study, we have developed a multifunctional magnetic luminescent nanozyme, Fe3O4@CeO2/Tb-MOF, which combines peroxidase activity to detect and degrade CA. The fluorescence of the nanozyme was significantly attenuated due to the specific nucleophilic reaction between its boronic acid moiety and the o-diphenol hydroxyl group of CA, energy competition absorption and photo-induced electron transfer (PET) effect. This nanozyme demonstrates a linear detection range from 50 nM to 500 μM and an exceptionally low detection limit of 18.9 nM, along with remarkable selectivity and stability. Moreover, the synergistic catalysis of Fe3O4 and CeO2 within Fe3O4@CeO2/Tb-MOF fosters peroxidase activity, leading to the generation of substantial free radicals catalyzed by H2O2, which ensures the efficient degradation of CA (∼95%). The superparamagnetic property of Fe3O4 further enables the efficient reuse and recycling of the nanozyme. This research provides a novel approach for the concurrent detection and remediation of environmental contaminants.
Collapse
Affiliation(s)
- Xiaochen Liao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Bai Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Li Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| | - Yang Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
21
|
Zhuang Z, Yu Y, Dong S, Sun X, Mao L. Carbon-based nanozymes: design, catalytic mechanisms, and environmental applications. Anal Bioanal Chem 2024; 416:5949-5964. [PMID: 38916795 DOI: 10.1007/s00216-024-05405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
Carbon-based nanozymes are synthetic nanomaterials that are predominantly constituted of carbon-based materials, which mimic the catalytic properties of natural enzymes, boasting features such as tunable catalytic activity, robust regenerative capacity, and exceptional stability. Due to the impressive enzymatic performance similar to various enzymes such as peroxidase, superoxide dismutase, and oxidase, they are widely used for detecting and degrading pollutants in the environment. This paper presents an exhaustive review of the fundamental design principles, catalytic mechanisms, and prospective applications of carbon-based nanozymes in the environmental field. These studies not only serve to augment the comprehension on the intricate operational mechanism inherent in these synthetic nanostructures, but also provide essential guidelines and illuminating perspectives for advancing their development and practical applications. Future studies that are imperative to delve into the untapped potential of carbon-based nanozymes within the environmental domain was needed to be explored to fully harness their ability to deliver broader and more impactful environmental preservation and management outcomes.
Collapse
Affiliation(s)
- Zheqi Zhuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Yanni Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Shipeng Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xiaolin Sun
- Aviation Engineering Institute, Nanjing Vocational University of Industry Technology, Nanjing, 210023, P. R. China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China.
| |
Collapse
|
22
|
Mathur P, Kumawat M, Nagar R, Singh R, Daima HK. Tailoring metal oxide nanozymes for biomedical applications: trends, limitations, and perceptions. Anal Bioanal Chem 2024; 416:5965-5984. [PMID: 39009769 DOI: 10.1007/s00216-024-05416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Nanomaterials with enzyme-like properties are known as 'nanozymes'. Nanozymes are preferred over natural enzymes due to their nanoscale characteristics and ease of tailoring of their physicochemical properties such as size, structure, composition, surface chemistry, crystal planes, oxygen vacancy, and surface valence state. Interestingly, nanozymes can be precisely controlled to improve their catalytic ability, stability, and specificity which is unattainable by natural enzymes. Therefore, tailor-made nanozymes are being favored over natural enzymes for a range of potential applications and better prospects. In this context, metal oxide nanoparticles with nanozyme-mimicking characteristics are exclusively being used in biomedical sectors and opening new avenues for future nanomedicine. Realising the importance of this emerging area, here, we discuss the mechanistic actions of metal oxide nanozymes along with their key characteristics which affect their enzymatic actions. Further, in this critical review, the recent progress towards the development of point-of-care (POC) diagnostic devices, cancer therapy, drug delivery, advanced antimicrobials/antibiofilm, dental caries, neurodegenerative diseases, and wound healing potential of metal oxide nanozymes is deliberated. The advantages of employing metal oxide nanozymes, their potential limitations in terms of nanotoxicity, and possible prospects for biomedical applications are also discussed with future recommendations.
Collapse
Affiliation(s)
- Parikshana Mathur
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindari, Kishangarh 305817, Ajmer, Rajasthan, India
| | - Mamta Kumawat
- Department of Biotechnology, JECRC University, Sitapura Extension, Jaipur, 303905, Rajasthan, India
| | - Rashi Nagar
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindari, Kishangarh 305817, Ajmer, Rajasthan, India
| | - Ragini Singh
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, 522302, Andhra Pradesh, India.
| | - Hemant Kumar Daima
- Nanomedicine and Nanotoxicity Research Laboratory, Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindari, Kishangarh 305817, Ajmer, Rajasthan, India.
| |
Collapse
|
23
|
Park YS, Park BU, Jeon HJ. Advances in machine learning-enhanced nanozymes. Front Chem 2024; 12:1483986. [PMID: 39483853 PMCID: PMC11524833 DOI: 10.3389/fchem.2024.1483986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Nanozymes, synthetic nanomaterials that mimic the catalytic functions of natural enzymes, have emerged as transformative technologies for biosensing, diagnostics, and environmental monitoring. Since their introduction, nanozymes have rapidly evolved with significant advancements in their design and applications, particularly through the integration of machine learning (ML). Machine learning (ML) has optimized nanozyme efficiency by predicting ideal size, shape, and surface chemistry, reducing experimental time and resources. This review explores the rapid advancements in nanozyme technology, highlighting the role of ML in improving performance across various bioapplications, including real-time monitoring and the development of chemiluminescent, electrochemical and colorimetric sensors. We discuss the evolution of different types of nanozymes, their catalytic mechanisms, and the impact of ML on their property optimization. Furthermore, this review addresses challenges related to data quality, scalability, and standardization, while highlighting future directions for ML-driven nanozyme development. By examining recent innovations, this review highlights the potential of combining nanozymes with ML to drive the development of next-generation diagnostic and detection technologies.
Collapse
Affiliation(s)
- Yeong-Seo Park
- Department of Advanced Mechanical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Byeong Uk Park
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Hee-Jae Jeon
- Department of Advanced Mechanical Engineering, Kangwon National University, Chuncheon, Republic of Korea
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
24
|
Kumar JV, Sakthinathan S, Lee D, Chiu TW, Muthukutty B. Innovative Use of Carbon Nanofibers/Praseodymium Cobaltite for Targeted Detection of Hematologic Sulfamethazine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21618-21628. [PMID: 39361808 DOI: 10.1021/acs.langmuir.4c02638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Antibiotics are essential for treating illnesses, but abuse has resulted in serious consequences. Rapid and precise detection of antibiotic residues, such as sulfamethazine (SFZ), in water and biological samples is critical for public health and environmental safety. To address this challenge, we have introduced a pioneering electrochemical sensor incorporating a nanocomposite of perovskite-structured praseodymium cobaltite (PrCoO3) integrated with carbon nanofibers (CNFs) on a glassy carbon electrode (GCE|CNF/PrCoO3). We synthesized the CNF/PrCoO3 nanocomposite using ultrasonic fabrication and confirmed its formation with advanced techniques. GCE|CNF/PrCoO3 offer superior SFZ detection with a 2.889 nM/L limit and high selectivity, due to PrCoO3's electrocatalytic properties and CNF's enhanced conductivity. We validated the sensor's effectiveness in detecting SFZ in various real-water samples, demonstrating its repeatability, reproducibility, and stability. This confirms its reliability for environmental monitoring. The study highlights the potential of perovskite-carbon composites and paves the way for developing cost-effective sensors for pharmaceutical contaminants.
Collapse
Affiliation(s)
- Jeyaraj Vinoth Kumar
- Nano Inspired Laboratory, School of Integrated Technology, Yonsei University, Incheon 21983, Republic of Korea
| | - Subramanian Sakthinathan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Daeho Lee
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Balamurugan Muthukutty
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| |
Collapse
|
25
|
Zeng Q, Zhong H, Liao J, Huo Q, Miao B, Zeng L, Zhang B, Nie G. Antioxidant activities of metal single-atom nanozymes in biomedicine. Biomater Sci 2024; 12:5150-5163. [PMID: 39254215 DOI: 10.1039/d4bm00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nanozymes are a class of nanomaterials with enzyme-like activity that can mimic the catalytic properties of natural enzymes. The small size, high catalytic activity, and strong stability of nanozymes compared to those of natural enzymes allow them to not only exist in a wide temperature and pH range but also maintain stability in complex environments. Recently developed single-atom nanozymes have metal active sites composed of a single metal atom fixed to a carrier. These metal atoms can act as independent catalytically active centers. Metal single-atom nanozymes have a homogeneous single-atom structure and a suitable coordination environment for stronger catalytic activity and specificity than traditional nanozymes. The antioxidant metal single-atom nanozymes with the ability of removing reactive oxygen species (ROS) can simulate superoxidase dismutase, catalase, and glutathione peroxidase to show different effects in vivo. Furthermore, due to the similar structure of antioxidant enzymes, a metal single-atom nanozyme often has multiple antioxidant activities, and this synergistic effect can more efficiently remove ROS related to oxidative stress. The versatility of single-atom nanozymes encompasses a broad spectrum of biomedical applications such as anti-oxidation, anti-infection, immunomodulatory, biosensing, bioimaging, and tumor therapy applications. Herein, the nervous, circulatory, digestive, motor, immune, and sensory systems are considered in order to demonstrate the role of metal single-atom nanozymes in biomedical antioxidants.
Collapse
Affiliation(s)
- Qingdong Zeng
- Graduate Collaborative Training Base of Shenzhen Second People's Hospital, Heng Yang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Huihai Zhong
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Jiahao Liao
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Qin Huo
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Beiping Miao
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Li Zeng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| |
Collapse
|
26
|
Han F, Cheng C, Zhao J, Wang H, Zhao G, Zhang Y, Zhang N, Wang Y, Zhang J, Wei Q. Single-atom nanozymes: Emerging talent for sensitive detection of heavy metals. Colloids Surf B Biointerfaces 2024; 242:114093. [PMID: 39029248 DOI: 10.1016/j.colsurfb.2024.114093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
In recent years, the increasingly severe pollution of heavy metals has posed a significant threat to the environment and human safety. Heavy metal ions are highly non-biodegradable, with a tendency to accumulate through biomagnification. Consequently, accurate detection of heavy metal ions is of paramount importance. As a new type of synthetic nanomaterials, single-atom nanozymes (SANs) boast exceptional enzyme-like properties, setting them apart from natural enzymes. This unique feature affords SANs with a multitude of advantages such as dispersed active sites, low cost and variety of synthetic methods over natural enzymes, making them an enticing prospect for various applications in industrial, medical and biological fields. In this paper, we systematically summarize the synthetic methods and catalytic mechanisms of SANs. We also briefly review the analytical methods for heavy metal ions and present an overall overview of the research progress in recent years on the application of SANs in the detection of environmental heavy metal ions. Eventually, we propose the existing challenges and provide a vision for the future.
Collapse
Affiliation(s)
- Fangqin Han
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Chunfang Cheng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Jingyu Zhao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Huixin Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Guanhui Zhao
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, People's Republic of China.
| | - Yong Zhang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.
| | - Jie Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
27
|
Yan X, Zou R, Lin Q, Ma Y, Li A, Sun X, Lu G, Li H. Glutathione‑iron hybrid nanozyme-based colorimetric sensor for specific and stable detection of thiram pesticide on fruit juices. Food Chem 2024; 452:139569. [PMID: 38744131 DOI: 10.1016/j.foodchem.2024.139569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Given the potential dangers of thiram to food safety, constructing a facile sensor is significantly critical. Herein, we presented a colorimetric sensor based on glutathione‑iron hybrid (GSH-Fe) nanozyme for specific and stable detection of thiram. The GSH-Fe nanozyme exhibits good peroxidase-mimicking activity with comparable Michaelis constant (Km = 0.551 mM) to the natural enzyme. Thiram pesticides can specifically limit the catalytic activity of GSH-Fe nanozyme via surface passivation, causing the change of colorimetric signal. It is worth mentioning that the platform was used to prepare a portable hydrogel kit for rapid qualitative monitoring of thiram. Coupling with an image-processing algorithm, the colorimetric image of the hydrogel reactor is converted into the data information for accurate quantification of thiram with a detection limit of 0.3 μg mL-1. The sensing system has good selectivity and high stability, with recovery rates in fruit juice samples ranging from 92.4% to 106.9%.
Collapse
Affiliation(s)
- Xu Yan
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Ruiqi Zou
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Qiqi Lin
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Yuan Ma
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Aixin Li
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Xun Sun
- Institute of Guizhou Aerospace Measuring and Testing Technology, Guiyang 550009, PR China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Hongxia Li
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China; Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
28
|
Alguacil FJ, Alonso M, Robla JI. Removal of Hazardous Organic Dyes from Liquid Wastes Using Advanced Nanomaterials. Int J Mol Sci 2024; 25:9671. [PMID: 39273617 PMCID: PMC11396100 DOI: 10.3390/ijms25179671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The presence of organic dyes in aqueous environments is extremely hazardous to life due to the toxicity of these compounds. Thus, its removal from these various aquatic media is of the utmost importance, and several technologies are constantly being tested to meet this goal. Among these technologies, various types of degradation and adsorption techniques are typically used, and of the various types of materials used within these technologies, nanomaterials are constantly being developed and investigated, likely due to the various properties that these nanomaterials have. This work reviewed recent developments (in 2023) about the use of these nanomaterials in the treatment of solutions contaminated with these toxic organic dyes.
Collapse
Affiliation(s)
- Francisco Jose Alguacil
- Centro Nacional de Investigaciones Metalurgicas (CSIC), Avda. Gregorio del Amo 8, 28040 Madrid, Spain
| | - Manuel Alonso
- Centro Nacional de Investigaciones Metalurgicas (CSIC), Avda. Gregorio del Amo 8, 28040 Madrid, Spain
| | - Jose Ignacio Robla
- Centro Nacional de Investigaciones Metalurgicas (CSIC), Avda. Gregorio del Amo 8, 28040 Madrid, Spain
| |
Collapse
|
29
|
Feng K, Wang G, Wang S, Ma J, Wu H, Ma M, Zhang Y. Breaking the pH Limitation of Nanozymes: Mechanisms, Methods, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401619. [PMID: 38615261 DOI: 10.1002/adma.202401619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Although nanozymes have drawn great attention over the past decade, the activities of peroxidase-like, oxidase-like, and catalase-like nanozymes are often pH dependent with elusive mechanism, which largely restricts their application. Therefore, a systematical discussion on the pH-related catalytic mechanisms of nanozymes together with the methods to overcome this limitation is in need. In this review, various nanozymes exhibiting pH-dependent catalytic activities are collected and the root causes for their pH dependence are comprehensively analyzed. Subsequently, regulatory concepts including catalytic environment reconstruction and direct catalytic activity improvement to break this pH restriction are summarized. Moreover, applications of pH-independent nanozymes in sensing, disease therapy, and pollutant degradation are overviewed. Finally, current challenges and future opportunities on the development of pH-independent nanozymes are suggested. It is anticipated that this review will promote the further design of pH-independent nanozymes and broaden their application range with higher efficiency.
Collapse
Affiliation(s)
- Kaizheng Feng
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Guancheng Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Shi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Jingyuan Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Haoan Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Ming Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| |
Collapse
|
30
|
Feng K, Wang Z, Wang S, Wang G, Dong H, He H, Wu H, Ma M, Gao X, Zhang Y. Elucidating the catalytic mechanism of Prussian blue nanozymes with self-increasing catalytic activity. Nat Commun 2024; 15:5908. [PMID: 39003316 PMCID: PMC11246500 DOI: 10.1038/s41467-024-50344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Although Prussian blue nanozymes (PBNZ) are widely applied in various fields, their catalytic mechanisms remain elusive. Here, we investigate the long-term catalytic performance of PBNZ as peroxidase (POD) and catalase (CAT) mimetics to elucidate their lifespan and underlying mechanisms. Unlike our previously reported Fe3O4 nanozymes, which exhibit depletable POD-like activity, the POD and CAT-like activities of PBNZ not only persist but slightly enhance over prolonged catalysis. We demonstrate that the irreversible oxidation of PBNZ significantly promotes catalysis, leading to self-increasing catalytic activities. The catalytic process of the pre-oxidized PBNZ can be initiated through either the conduction band pathway or the valence band pathway. In summary, we reveal that PBNZ follows a dual-path electron transfer mechanism during the POD and CAT-like catalysis, offering the advantage of a long service life.
Collapse
Affiliation(s)
- Kaizheng Feng
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Shi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China
| | - Guancheng Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China
| | - Haijiao Dong
- Nanjing Institute of Measurement and Testing Technology, Nanjing, China
| | - Hongliang He
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China
| | - Haoan Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ming Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China.
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China.
| |
Collapse
|
31
|
Shi K, Tian Y, Liu S, Luo W, Liu K, Zhang L, Zhang Y, Chang J, Zhang J, Wang S. Phosphorothioate-modified G-quadruplex as a signal-on dual-mode reporter for CRISPR/Cas12a-based portable detection of environmental pollutants. Anal Chim Acta 2024; 1308:342649. [PMID: 38740457 DOI: 10.1016/j.aca.2024.342649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-powered biosensor with a G-quadruplex (G4) reporter offer the benefits of simplicity and sensitivity, making them extensively utilized in detection applications. However, these biosensors used for monitoring pollutants in environmental water samples may face the problem of high background signal and easy interference due to the "signal-off" output. It is obvious that a biosensor based on the CRISPR/Cas12a system and G4 with a "signal on" output mode needs to be designed for detecting environmental pollutants. RESULTS By using phosphorothioate-modified G4 as a reporter and catalytic hairpin assembly (CHA) integrated with Cas12a as an amplification strategy, a "signal-on" colorimetric/photothermal biosensor (psG4-CHA/Cas) for portable detection of environmental pollutants was developed. With the help of functional nucleotides, the target pollutant (kanamycin or Pb2+) triggers a CHA reaction to produce numerous double-strand DNA, which can activate Cas12a's trans-cleavage activity. The active Cas12a cleaves locked DNA to release caged psG-rich sequences. Upon binding hemin, the psG-rich sequence forms a psG4/hemin complex, facilitating the oxidation of the colorless 3,3',5,5'-tetramethylbenzidine (TMB) into the blue photothermal agent (oxTMB). The smartphone was employed for portable colorimetric detection of kanamycin and Pb2+. The detection limits were found to be 100 pM for kanamycin and 50 pM for Pb2+. Detection of kanamycin and Pb2+ was also carried out using a portable thermometer with a detection limit of 10 pM for kanamycin and 8 pM for Pb2+. SIGNIFICANCE Sensitive, selective, simple and robust detection of kanamycin and Pb2+ in environmental water samples is achieved with the psG4-CHA/Cas system. This system not only provides a new perspective on the development of efficient CRISPR/Cas12a-based "signal-on" designs, but also has a promising application for safeguarding human health and environmental monitoring.
Collapse
Affiliation(s)
- Kai Shi
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China.
| | - Yi Tian
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China
| | - Sujun Liu
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China
| | - Wenjie Luo
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China
| | - Keer Liu
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China
| | - Lin Zhang
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China
| | - Ying Zhang
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China
| | - Jiali Chang
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China.
| | - Jiaheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Shuo Wang
- National Innovation Center for Advanced Medical Devices, Shenzhen, Guangdong, 518110, PR China.
| |
Collapse
|
32
|
Patil PD, Karvekar A, Salokhe S, Tiwari MS, Nadar SS. When nanozymes meet enzyme: Unlocking the dual-activity potential of integrated biocomposites. Int J Biol Macromol 2024; 271:132357. [PMID: 38772461 DOI: 10.1016/j.ijbiomac.2024.132357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
Integrating enzymes and nanozymes in various applications is a topic of significant interest. The researchers have explored the encapsulation of enzymes using diverse nanostructures to create nanomaterial-enzyme hybrids. These nanomaterials introduce unique properties that contribute to the additional activity along with the stabilization of enzymes in immobilized form, enabling a cascade of second-order reactions. This review centers on dual-activity nanozymes, providing insights into their applications in biosensors and biocatalysis. These applications leverage the enhanced catalytic activity and stability offered by dual-activity nanozymes. These nanozymes find promising applications in fields like bioremediation, offering eco-friendly solutions for mitigating environmental pollution while showing potential in medical diagnostics. The review delves into various techniques for creating enzyme-nanozyme hybrid catalysts, including adsorption, encapsulation, and incorporation methods. The review also addresses the challenges that must be overcome, such as overlapping catalytic surfaces and disparities in reaction rates in multi-enzyme cascade reactions. It concludes by presenting strategies to tackle these issues and offers insights into the field's promising future, suggesting that machine learning may drive further advancements in enzyme-nanozyme integration. This comprehensive exploration illuminates the present and charts a promising course for future innovations in the seamless integration of enzymes and nanozymes, heralding a new era of catalytic possibilities.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Aparna Karvekar
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Sakshi Salokhe
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Manishkumar S Tiwari
- Department of Data Science, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
33
|
Wang G, Guo J, Zou J, Lei Z. CeO 2 nanocages with tetra-enzyme mimetic activities for dual-channel ratiometric colorimetric detection of microcystins-LR. Anal Chim Acta 2024; 1306:342599. [PMID: 38692792 DOI: 10.1016/j.aca.2024.342599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/08/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Microcystin-leucine-arginine (MC-LR) produced by various cyanobacteria during harmful algal bloom poses serious threats to drinking water safety and human health. Conventional chromatography-based detection methods require expensive instruments and complicated sample pretreatment, limiting their application for on-site detection. Colorimetric aptasensors are simple and rapid, and are amenable to fast detection. However, they provide only one output signal, resulting in poor sensitivity and accuracy. Dual-channel ratiometric colorimetric method based on the peroxidase-like activity of nanozyme can achieve self-calibration by recording two reverse signals, providing significantly enhanced sensitivity and accuracy. RESULTS CeO2 nanocages (CeO2 NCs) with tetra-enzyme mimetic activities (oxidase-, peroxidase-, catalase- and superoxide dismutase-like activities) were facilely synthesized using zeolitic imidazolate framework-67 (ZIF-67) as sacrificial template. The peroxidase-like activity of CeO2 NCs can be regulated by DNA, and it showed opposite response to two chromogenic substrates (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB)), which was mainly attributed to the changed affinity. On the basis of MC-LR aptamer-tunable peroxidase-like activity of CeO2 NCs in TMB and ABTS channel, a dual-channel ratiometric colorimetric aptasensor was constructed for detection of MC-LR. Compared with conventional single-signal colorimetric assays, the proposed method showed lower limit of detection (0.66 pg mL-1) and significantly enhanced sensitivity. Moreover, the practicability of the ratiometric colorimetric assay was demonstrated by detecting MC-LR in real water samples, and satisfactory recoveries (94.9-101.9 %) and low relative standard deviations (1.6-6.3 %) were obtained. SIGNIFICANCE This work presents a nanozyme-based ratiometric colorimetric aptasensor for MC-LR detection by recording the reverse responses of two chromogenic reactions. Benefiting from the self-calibration function, the method can achieve higher sensitivity and accuracy. The short detection time and practical application in real water samples show great potential for environmental monitoring.
Collapse
Affiliation(s)
- Guodong Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Jingfang Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Jing Zou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
34
|
Wei Y, Tang Y, Zhang Y, Liu C, Ren P, Liu C, Shi C, Zhang Z, Liu Z. Wave type fiber SPR sensor for rapid and highly sensitive detection of hyperoside. BIOMEDICAL OPTICS EXPRESS 2024; 15:3859-3868. [PMID: 38867779 PMCID: PMC11166449 DOI: 10.1364/boe.527368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 06/14/2024]
Abstract
The fiber surface plasmon resonance (SPR) sensor used for the detection of active ingredients in traditional Chinese medicine has the problems of low sensitivity and difficult specific recognition. This paper proposed a wave type fiber SPR sensor, which reduced the mode of transmitted light through a periodic wave structure and caused concentrated and total reflection of the transmitted beam at the interface between the bent peak cladding and the air. A 50 nm gold film was coated on the surface of the cladding in the wave structure area to form the SPR sensing area. By controlling the width and height of the wave structure to control the total reflection angle of the transmitted light, i.e., the SPR incidence angle, the sensitivity of the fiber SPR sensor was effectively improved to 4972 nm/RIU. Furthermore, HSP90AA protein was modified on the gold film of the sensor to achieve specific detection of hyperoside. The longest single detection time was only 3 minutes, and the detection sensitivity was 0.53 nm/(µg/ml), with a detection limit as low as 0.68µg/ml, which is comparable to liquid chromatography. The proposed wave type fiber SPR sensor is fast in production and has high structural mechanical strength, providing a new approach for the rapid, highly sensitive, and specific detection of active ingredients in traditional Chinese medicine.
Collapse
Affiliation(s)
- Yong Wei
- College of Electronic, Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Yixiong Tang
- College of Electronic, Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Yonghui Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Chunlan Liu
- College of Electronic, Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Puxi Ren
- College of Electronic, Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Chunbiao Liu
- College of Electronic, Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Chen Shi
- College of Electronic, Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Ziqiang Zhang
- College of Electronic, Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Zhihai Liu
- Key Laboratory of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
35
|
Gao X, Chen H, Qiu H, Zhang Y, Cheng J, Shen Y. Portable hydrogel kit driven by bimetallic carbon dots nanozyme for H 2O 2-self-supplying dual-modal monitoring of atmospheric CH 3SH. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133871. [PMID: 38428301 DOI: 10.1016/j.jhazmat.2024.133871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Due to the typical volatility of gaseous pollutant methyl mercaptan (CH3SH), the development of a facile, reliable, and accurate onsite environmental surveillance of highly toxic CH3SH faces many challenges, but it is critical to environmental atmosphere assessment and safeguarding public health. Here, we prepared a novel bimetallic carbon dots (Fe&Cu@CDs) nanozyme with high peroxidase-mimicking activity to design a portable hydrogel kit for onsite visual H2O2-self-supplying enzymatic cascade catalytic colorimetric and photothermal signal synergistic amplification dual-modal monitoring of CH3SH in atmospheric environment. Assisted by alcohol oxidase (AOX), CH3SH could be specifically converted into H2O2 for oxidizing chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) catalyzed by Fe&Cu@CDs to produce dark blue ox-TMB with absorption at 652 nm and photothermal characters. Consequently, a CH3SH concentration-dependent change both in naked-eye color and photothermal effect-triggered temperature were observed. By hybridizing AOX-assisted Fe&Cu@CDs + TMB with agarose, a H2O2-self-supplying colorimetric and photothermal signal synergistic amplification sensory hydrogel kit integrated with Color Picker APP-installed smartphone and 660 nm laser-equipped handheld thermal imager for CH3SH was proposed with acceptable results in atmospheric environment around wastepile (e.g., solid waste and food waste piles), which exhibited great potentials to further develop commercial onsite monitoring platforms in warning-early abnormal atmospheric CH3SH for safeguarding environmental health.
Collapse
Affiliation(s)
- Xiang Gao
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huanhuan Chen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huimin Qiu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technologies for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yizhong Shen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
36
|
Elsharkawi ASA, Elazab HA, Askar MA, Abdelrahman IY, Arafa AA, Gomma LR, Lo YL. Biocompatibility and radiosensitivity of a fiber optical-based dosimeter: biological applications. BIOMEDICAL OPTICS EXPRESS 2024; 15:3492-3506. [PMID: 38855686 PMCID: PMC11161350 DOI: 10.1364/boe.523849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 06/11/2024]
Abstract
This study introduces a cutting-edge fiber-optic dosimetry (FOD) sensor designed for measuring radiation in biological settings. The accuracy and precision of dosimeters for small animals, particularly prolonged exposure to nonuniform radiation fields, are always challenging. A state-of-the-art in-vivo dosimeter utilizing glass-encapsulated Thermoluminescence cylindrical detector (TLD) was introduced. The FODs are implanted into the rat during a prolonged irradiation scenario involving 137Cs where the rat has the freedom to move within a heterogeneous radiation domain. The implantation surgery was verified with X-ray computed tomography (CT) in addition to biochemical and pathological tests to assess the biocompatibility of FOD in vivo. A versatile FOD is designed for industrial and medical fields, which demand accurate and resilient radiation dosimeters. The dose measurements are associated with precise two-dimensional (2D) radiation distribution imaging. Three cylindrical FODs and three standards TLD_100 for each rat were tested. The measurements of peak irradiation before and after exposure reveal greater stability and superior sensitivity when compared to standard thermo-luminescence detectors in an in-vivo animal test. To the best of our knowledge, FOD testing on live animals is presented for the first time in this paper. Regarding the safety and biocompatibility of FOD, no morphological signs with any kind of inflammation or sensitivity toward the FOD material have been remarked. Moreover, with the current FOD, there is no oedema between the epidermal, dermal, and subdermal sections at the site of implantation. The results also show the stable levels of white blood cells (lymphocytes, granulocytes, MID) as blood inflammatory markers before surgery and at the time of extraction of the implanted dosimeters, thus confirming the biocompatibility for each optical fiber cylinder dosimeter. As a result, the new dosimeters have excellent biocompatibility in living tissues and have 100% accurate reusability intensity of the delivered radiation doses compared to TLD_100 which demonstrated a 45% reduction in its intensity accuracy.
Collapse
Affiliation(s)
- Adel S A Elsharkawi
- Department of Radiation Engineering, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo 11787, Egypt
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Huda A Elazab
- Nuclear and Radiological Safety Research Center, Egyptian Atomic Energy Authority, Cairo 9621, Egypt
| | - Mostafa A Askar
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Ibrahim Y Abdelrahman
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Amany A Arafa
- Department of Radiation Engineering, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Lofty R Gomma
- Faculty of Engineering at Shoubra, Banha University, Cairo 11672, Egypt
| | - Yu-Lung Lo
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
37
|
Gebremedhin KH, Kahsay MH, Wegahita NK, Teklu T, Berhe BA, Gebru AG, Tesfay AH, Asgedom AG. Nanomaterial-based optical colorimetric sensors for rapid monitoring of inorganic arsenic species: a review. DISCOVER NANO 2024; 19:38. [PMID: 38421536 PMCID: PMC10904709 DOI: 10.1186/s11671-024-03981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Health concerns about the toxicity of arsenic compounds have therefore encouraged the development of new analytical tools for quick monitoring of arsenic in real samples with improved sensitivity, selectivity, and reliability. An overview of advanced optical colorimetric sensor techniques for real-time monitoring of inorganic arsenic species in the environment is given in this review paper. Herein, several advanced optical colorimetric sensor techniques for arsenite (As+3) and arsenate (As+5) based on doping chromogenic dyes/reagents, biomolecule-modified nanomaterials, and arsenic-binding ligand tethered nanomaterials are introduced and discussed. This review also highlights the benefits and limitations of the colorimetric sensor for arsenic species. Finally, prospects and future developments of an optical colorimetric sensor for arsenic species are also proposed. For future study in this sector, particularly for field application, authors recommend this review paper will be helpful for readers to understand the design principles and their corresponding sensing mechanisms of various arsenic optical colorimetric sensors.
Collapse
Affiliation(s)
- Kalayou Hiluf Gebremedhin
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia.
| | - Mebrahtu Hagos Kahsay
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Nigus Kebede Wegahita
- Department of Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Tesfamariam Teklu
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Berihu Abadi Berhe
- School of Earth Science, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Asfaw Gebretsadik Gebru
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Amanuel Hadera Tesfay
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Abraha Geberekidan Asgedom
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
38
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
39
|
Ma X, Tang W, Yang R. Bioinspired nanomaterials for the treatment of bacterial infections. NANO RESEARCH 2024; 17:691-714. [DOI: 10.1007/s12274-023-6283-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 01/04/2025]
|
40
|
Deshwal A, Saxena K, Sharma G, Rajesh, Sheikh FA, Seth CS, Tripathi RM. Nanozymes: A comprehensive review on emerging applications in cancer diagnosis and therapeutics. Int J Biol Macromol 2024; 256:128272. [PMID: 38000568 DOI: 10.1016/j.ijbiomac.2023.128272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Nanozymes, a new class of nanomaterials-based artificial enzymes, have gained huge attraction due to their high operational stability, working efficiency in extreme conditions, and resistance towards protease digestion. Nowadays, they are effectively substituted for natural enzymes for catalysis by closely resembling the active sites found in natural enzymes. Nanozymes can compensate for natural enzymes' drawbacks, such as high cost, poor stability, low yield, and storage challenges. Due to their transforming nature, nanozymes are of utmost importance in the detection and treatment of cancer. They enable precise cancer detection, tailored drug delivery, and catalytic therapy. Through enhanced diagnosis, personalized therapies, and reduced side effects, their adaptability and biocompatibility can transform the management of cancer. The review focuses on metal and metal oxide-based nanozymes, highlighting their catalytic processes, and their applications in the prevention and treatment of cancer. It emphasizes their potential to alter diagnosis and therapy, particularly when it comes to controlling reactive oxygen species (ROS). The article reveals the game-changing importance of nanozymes in the future of cancer care and describes future research objectives, making it a useful resource for researchers, and scientists. Lastly, outlooks for future perspective areas in this rapidly emerging field have been provided in detail.
Collapse
Affiliation(s)
- Akanksha Deshwal
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rajesh
- CSIR-National Physical Laboratory, New Delhi, India
| | - Faheem A Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir 190006, India
| | | | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Noida 201313, India.
| |
Collapse
|
41
|
Ta KM, Cooke DJ, Gillie LJ, Parker SC, Seal S, Wilson PB, Phillips RM, Skelton JM, Molinari M. Infrared and Raman Diagnostic Modeling of Phosphate Adsorption on Ceria Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:20183-20193. [PMID: 37850082 PMCID: PMC10577678 DOI: 10.1021/acs.jpcc.3c05409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Indexed: 10/19/2023]
Abstract
Cerium dioxide (CeO2; ceria) nanoparticles (CeNPs) are promising nanozymes that show a variety of biological activity. Effective nanozymes need to retain their activity in the face of surface speciation in biological environments, and characterizing surface speciation is therefore critical to understanding and controlling the therapeutic capabilities of CeNPs. In particular, adsorbed phosphates can impact the enzymatic activity exploited to convert phosphate prodrugs into therapeutics in vivo and also define the early stages of the phosphate-scavenging processes that lead to the transformation of active CeO2 into inactive CePO4. In this work, we utilize ab initio lattice-dynamics calculations to study the interaction of phosphates with the three major surfaces of ceria and to predict the infrared (IR) and Raman spectral signatures of adsorbed phosphate species. We find that phosphates adsorb strongly to CeO2 surfaces in a range of stable binding configurations, of which 5-fold coordinated P species in a trigonal bipyramidal coordination may represent a stable intermediate in the early stages of phosphate scavenging. We find that the phosphate species show characteristic spectral fingerprints between 500 and 1500 cm-1, whereas the bare CeO2 surfaces show no active modes above 600 cm-1, and the 5-fold coordinated P species in particular show potential diagnostic P-O stretching modes between 650 and 700 cm-1 in both IR and Raman spectra. This comprehensive exploration of different binding modes for phosphates on CeO2 and the set of reference spectra provides an important step toward the experimental characterization of phosphate speciation and, ultimately, control of its impact on the performance of ceria nanozymes.
Collapse
Affiliation(s)
- Khoa Minh Ta
- Department
of Chemistry, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| | - David J. Cooke
- Department
of Chemistry, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| | - Lisa J. Gillie
- Department
of Chemistry, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| | - Stephen C. Parker
- Department
of Chemistry, University of Bath, Claverton
Down, Bath BA2 7AY, U.K.
| | - Sudipta Seal
- Department
of Materials Science & Engineering, Advanced Materials Processing
and Analysis Centre (AMPAC), Nanoscience Technology Centre (NSTC), University of Central Florida, Orlando, Florida 32816, United States
- Bionix
Cluster, College of Medicine, University
of Central Florida, Orlando, Florida 32827, United States
| | - Philippe B. Wilson
- School
of Animal, Rural and Environmental Sciences, Brackenhurst Campus, Nottingham Trent University, Southwell NG25 0QF, U.K.
| | - Roger M. Phillips
- Department
of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, U.K.
| | | | - Marco Molinari
- Department
of Chemistry, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| |
Collapse
|
42
|
Chai TQ, Wang JL, Chen GY, Chen LX, Yang FQ. Tris-Copper Nanozyme as a Novel Laccase Mimic for the Detection and Degradation of Phenolic Compounds. SENSORS (BASEL, SWITZERLAND) 2023; 23:8137. [PMID: 37836965 PMCID: PMC10575388 DOI: 10.3390/s23198137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Phenolic compounds are one of the main organic pollutants in the environment that can seriously affect ecosystems, even at very low concentrations. Due to the resistance of phenolic compounds to microorganisms, conventional biological treatment methods face challenges in effectively addressing this pollution problem. In this study, a novel laccase mimic (Tris-Cu nanozyme) is prepared using a simple and rapid synthesis strategy based on the coordination of copper ions and amino groups in Tris(hydroxymethyl)aminomethane (Tris). It is found that the Tris-Cu nanozyme exhibits good catalytic activity against a variety of phenolic compounds, the Km, Vmax and Kcat are determined to be 0.18 mM, 15.62 μM·min-1 and 1.57 × 107 min-1 using 2,4-dichlorophenol (2,4-DP) as the substrate, respectively. Then, based on the laccase-like activity of the Tris-Cu nanozyme, a novel colorimetric method for 2,4-DP (the limit of detection (LOD) = 2.4 μM, S/N = 3) detection in the range of 10-400 μM was established, and its accuracy was verified by analyzing tap and lake water samples. In addition, the Tris-Cu nanozyme shows excellent removal abilities for six phenolic compounds in experiments. The removal percentages for 2,4-DP, 2-chlorophenol (2-CP), phenol, resorcinol, 2,6-dimethoxyphenol (2,6-DOP), and bisphenol A (BPA) are 100%, 100%, 100%, 100%, 87%, and 81% at 1 h, respectively. In the simulated effluent, the Tris-Cu nanozyme maintains its efficient catalytic activity towards 2,4-DP, with a degradation percentage of 76.36% at 7 min and a reaction rate constant (k0) of 0.2304 min-1. Therefore, this metal-organic complex shows promise for applications in the monitoring and degrading of environmental pollutants.
Collapse
Affiliation(s)
| | | | | | | | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (T.-Q.C.); (J.-L.W.); (G.-Y.C.); (L.-X.C.)
| |
Collapse
|
43
|
Shukla AK, Morya V, Datta B. Bacteria-derived topologies of Cu 2O nanozymes exert a variable antibacterial effect. RSC Adv 2023; 13:28767-28772. [PMID: 37790108 PMCID: PMC10543649 DOI: 10.1039/d3ra05411j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
The ability of bacteria to facilitate fabrication of nanomaterials has been adapted towards bacterial sensing applications. In this work, we fabricate spherical, cubic and truncated octahedron topologies of Cu2O nanoparticles via E. coli-facilitated redox reaction in an electrochemical setup. The Cu2O nanoparticles exhibit cytochrome c oxidase-like activity with the spherical topology displaying higher catalytic rate compared to the other geometries. The topology-dependent catalytic behavior of Cu2O nanoparticles has not been reported previously. The Cu2O nanozymes also display E. coli killing activity in a topology-correlated manner. The E. coli mediated redox reaction in an electrochemical setup is being reported for the first time for synthesis of different topologies of Cu2O which also exert a variable antibacterial effect.
Collapse
Affiliation(s)
- Ashish Kumar Shukla
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gandhinagar 382055 India
| | - Vinod Morya
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gandhinagar 382055 India
| | - Bhaskar Datta
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gandhinagar 382055 India
- Department of Chemistry, Indian Institute of Technology Gandhinagar Gandhinagar 382055 India
| |
Collapse
|
44
|
Jeyachandran S, Srinivasan R, Ramesh T, Parivallal A, Lee J, Sathiyamoorthi E. Recent Development and Application of "Nanozyme" Artificial Enzymes-A Review. Biomimetics (Basel) 2023; 8:446. [PMID: 37754197 PMCID: PMC10526256 DOI: 10.3390/biomimetics8050446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Nanozymes represent a category of nano-biomaterial artificial enzymes distinguished by their remarkable catalytic potency, stability, cost-effectiveness, biocompatibility, and degradability. These attributes position them as premier biomaterials with extensive applicability across medical, industrial, technological, and biological domains. Following the discovery of ferromagnetic nanoparticles with peroxidase-mimicking capabilities, extensive research endeavors have been dedicated to advancing nanozyme utilization. Their capacity to emulate the functions of natural enzymes has captivated researchers, prompting in-depth investigations into their attributes and potential applications. This exploration has yielded insights and innovations in various areas, including detection mechanisms, biosensing techniques, and device development. Nanozymes exhibit diverse compositions, sizes, and forms, resembling molecular entities such as proteins and tissue-based glucose. Their rapid impact on the body necessitates a comprehensive understanding of their intricate interplay. As each day witnesses the emergence of novel methodologies and technologies, the integration of nanozymes continues to surge, promising enhanced comprehension in the times ahead. This review centers on the expansive deployment and advancement of nanozyme materials, encompassing biomedical, biotechnological, and environmental contexts.
Collapse
Affiliation(s)
- Sivakamavalli Jeyachandran
- Laboratory in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Ramachandran Srinivasan
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India;
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Arumugam Parivallal
- Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | |
Collapse
|
45
|
Sha H, Yan B. Eu 3+ functionalized metal-organic framework for selective monitoring of emerging environmental pollutants non-steroidal anti-inflammatory drugs. Anal Chim Acta 2023; 1272:341525. [PMID: 37355323 DOI: 10.1016/j.aca.2023.341525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/27/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs), as a new water pollutant emerging in recent years, has potential hazards to the environment. The difficult degradation characteristics of NSAIDs lead to long-term accumulation in the natural environment, which will inevitably cause incalculable damage to human health. In this work, for practical application considerations, MIL-53(Al) type MOF [Al(OH)(TDC)]‧1.5H2O‧0.7DMF (MIL-53-TDC, TDC = 2,5-thiophene dicarboxylic acid) with good water stability is selected as the sensing main body. The ligand TDC was chosen for two reasons: one is as an antenna ligand, which can sensitize Eu3+ ions to emit characteristic fluorescence; the other is as binding site that the sulfur atoms on the thiophene ring can introduce Eu3+ ions through coordination. Thus, Eu3+ functionalized MIL-53-TDC hybrid materials (Eu@MIL-53-TDC) were developed as a fluorescence sensor for the detection of two kinds of NSAIDs, S-ibuprofen (S-IBP) and diclofenac (DCF). The concentration range of S-IBP and DCF detected by the prepared sensors is 0.001-0.07 mM (LOD = 0.5 μM) and 0.0005-0.1 mM (LOD = 0.2 μM), respectively. Moreover, this sensor not only can achieve rapid (3 min) and sensitive analysis of these two NSAIDs but also has a satisfactory recovery for the detection of S-IBP and DCF in serum and tap water.
Collapse
Affiliation(s)
- Haifeng Sha
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China.
| |
Collapse
|
46
|
Aldrich JL, Panicker A, Ovalle R, Sharma B. Drug Delivery Strategies and Nanozyme Technologies to Overcome Limitations for Targeting Oxidative Stress in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:1044. [PMID: 37513955 PMCID: PMC10383173 DOI: 10.3390/ph16071044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress is an important, but elusive, therapeutic target for osteoarthritis (OA). Antioxidant strategies that target oxidative stress through the elimination of reactive oxygen species (ROS) have been widely evaluated for OA but are limited by the physiological characteristics of the joint. Current hallmarks in antioxidant treatment strategies include poor bioavailability, poor stability, and poor retention in the joint. For example, oral intake of exogenous antioxidants has limited access to the joint space, and intra-articular injections require frequent dosing to provide therapeutic effects. Advancements in ROS-scavenging nanomaterials, also known as nanozymes, leverage bioactive material properties to improve delivery and retention. Material properties of nanozymes can be tuned to overcome physiological barriers in the knee. However, the clinical application of these nanozymes is still limited, and studies to understand their utility in treating OA are still in their infancy. The objective of this review is to evaluate current antioxidant treatment strategies and the development of nanozymes as a potential alternative to conventional small molecules and enzymes.
Collapse
Affiliation(s)
| | | | | | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.L.A.)
| |
Collapse
|
47
|
Li S, Keoingthong P, Xu J, Yang Y, Shen J, Xu Y, Zhang L, Xia X, Cao X, Wang S, Chen Z. Highly efficient carbon supported Co-Ir nanozyme for the determination of total antioxidant capacity in foods. Biosens Bioelectron 2023; 236:115416. [PMID: 37245461 DOI: 10.1016/j.bios.2023.115416] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
Nanozyme-based colorimetric assays have aroused extensive attention in biosensing due to quick response, low cost and simplicity. However, their practical applications are limited by the unsatisfactory stability and catalytic activity of nanozymes in complex detection environments. Herein, using the one-pot chemical vapor deposition method, we successfully prepare a highly efficient and stable carbon supported Co-Ir nanozyme (termed as Co-Ir/C nanozyme) for the determination of total antioxidant capacity (TAC) in food samples. The Co-Ir/C nanozyme shows excellent durability under extensive pH ranges, high temperature and high salt concentration due to the protection of carbon supporter. It can be recycled by simple magnetic separation, and its catalytic activity remains stable after long-term operation and storage. Taking full advantage of the superior peroxidase-like activity of Co-Ir/C nanozyme, it is used for colorimetric detection of ascorbic acid (or known as vitamin C), an important vitamin to adjust body's normal physiological function, with results showing higher sensitivity (detection limit of 0.27 μM) than most of the recently published works. Moreover, the determination of TAC in vitamin C tablets and fruits are further achieved, which are in good agreement with those of commercial colorimetric test kits. This study helps guide the rational preparation of versatile and highly stable nanozymes, and develops a robust TAC determination platform for future food quality monitoring.
Collapse
Affiliation(s)
- Shengkai Li
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong, 510006, People's Republic of China; Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China.
| | - Phouphien Keoingthong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China
| | - Jieqiong Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China
| | - Yanxia Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China
| | - Jiachao Shen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China
| | - Yiting Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China; Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, People's Republic of China.
| | - Liang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China
| | - Xin Xia
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China
| | - Xiaoxu Cao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China
| | - Shen Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
48
|
Liu B, Zhu H, Liu J, Wang M, Pan J, Feng R, Hu P, Niu X. Alkali-Etched Imprinted Mn-Based Prussian Blue Analogues with Superior Oxidase-Mimetic Activity and Precise Recognition for Tetracycline Colorimetric Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24736-24746. [PMID: 37163688 DOI: 10.1021/acsami.3c02207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As a typical antibiotic pollutant, tetracycline (TC) is producing increasing threats to the ecosystem and human health, and exploring convenient means for monitoring of TC is needed. Here, we proposed alkali-etched imprinted Mn-based Prussian blue analogues featuring superior oxidase-mimetic activity and precise recognition for the colorimetric sensing of TC. Simply etching Mn-based Prussian blue analogues (Mn-PBAs) with NaOH could expose the sites and surfaces to significantly improve their catalytic activity. Density functional theory calculations were employed to screen the molecularly imprinted polymer (MIP) layer for target identification. Consequently, the designed Mn-PBANaOH@MIP possessed the rich channels for substrates to get in touch with the active Mn-PBANaOH core, showing an excellent catalytic capacity to trigger the chromogenic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) without the use of H2O2. If TC was introduced, it would be recognized selectively by the MIP shell and masked the channels for TMB access, resulting in the obstruction of the chromogenic reaction. According to this mechanism, selective optical detection of TC was achieved, and performance stability, reusability, and reliability as well as practicability were also verified, promising potential for TC monitoring in complex matrices. Our work not only presents an effective way to enhance the enzyme-like activity of Prussian blue analogues but also provides a facile approach for TC sensing. Additionally, the work will inspire the exploration of molecularly imprinted nanozymes for various applications.
Collapse
Affiliation(s)
- Bangxiang Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hengjia Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinjin Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mengzhu Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rulin Feng
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Panwang Hu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|