1
|
Baez-Navarro X, Groenendijk FH, Oudijk L, von der Thüsen J, Fusco N, Curigliano G, van Deurzen CHM. HER2-low across solid tumours: different incidences and definitions. Pathology 2025; 57:403-414. [PMID: 40221332 DOI: 10.1016/j.pathol.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 04/14/2025]
Abstract
Antibody-drug conjugates, particularly trastuzumab deruxtecan (T-DXd), have emerged as effective therapies for various solid tumours. Clinical trials show that T-DXd improves survival in both HER2-positive and HER2-low breast cancer patients. Additionally, it improves survival in HER2-positive gastro-oesophageal cancer and elicits objective responses in HER2-low tumours. Responses have also been noted in lung and gynaecological cancers with HER2 expression, although subgroup analyses for HER2-low cases are lacking. This review assesses HER2 protein expression levels and gene amplification across solid tumours where T-DXd shows potential benefits. We focus on the accuracy and limitations of HER2 testing methods, particularly for identifying HER2-low cancer. A semi-systematic approach was employed, searching EMBASE, Medline, Cochrane, and PubMed databases. We calculated median incidences of HER2-positive, HER2-low, and HER2-0 by immunohistochemistry (IHC), and HER2 amplification by in situ hybridisation (ISH). A total of 144 studies were included, covering breast (n=57), gastro-oesophageal (n=33), lung (n=17), gynaecological (n=24), and various other carcinomas (n=13). The median incidences of HER2-low were 52%, 16%, 58%, and 17% in breast, gastro-oesophageal, endometrial, and ovarian cancers, respectively, with unknown incidences in lung and cervical cancers. Factors influencing HER2-low detection include tumour heterogeneity, antibody clones, observer variability, and lack of validated scoring criteria. Given the significant proportion of HER2-low cases, many patients could benefit from T-DXd, but limitations in detection accuracy necessitate further research and standardisation in diagnostic methods and criteria to advance the clinical utility of T-DXd for HER2-low tumours.
Collapse
Affiliation(s)
- Ximena Baez-Navarro
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | - Lindsey Oudijk
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jan von der Thüsen
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | | |
Collapse
|
2
|
Patel N, Agrawal N, Mishra R, Rekha MM, Nayak PP, Kaur M, Khachi A, Goyal K, Rekha A, Rana M, Alnuaimi G, Kulshrestha R. Emerging blood biomarkers in Alzheimer's disease: a proteomic perspective. Clin Chim Acta 2025; 576:120397. [PMID: 40441344 DOI: 10.1016/j.cca.2025.120397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Revised: 05/26/2025] [Accepted: 05/26/2025] [Indexed: 06/02/2025]
Abstract
Early detection of Alzheimer's disease (AD) remains a formidable clinical challenge, but emerging blood-based assays show promise for identifying at-risk individuals long before cognitive symptoms arise. This is the first comprehensive synthesis comparing mass-spectrometry and immunoassay platforms across multiple blood-based AD biomarkers and the first to integrate these findings into a unified roadmap for clinical implementation. In this review, we compare high-throughput mass spectrometry and ultrasensitive immunoassays for quantifying circulating amyloid-β isoforms, phosphorylated tau species (p-tau181, p-tau217), neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), YKL-40 and selected inflammatory markers. Individual biomarkers demonstrate diagnostic accuracies (AUC) up to 0.90, and integrating these protein signatures with APOE ε4 genotype, brief cognitive assessments and neuroimaging via machine-learning models boosts discrimination of preclinical AD from normal aging to over 80% accuracy. We trace the path from initial discovery through analytical validation to clinical implementation, emphasizing critical hurdles such as variability in sample collection, limited cohort diversity and regulatory requirements. Future work must standardize preanalytical protocols, extend validation across populations, refine ultrasensitive detection techniques, and combine proteomic data with genomics and other "omics" layers to move toward routine blood-based screening. These coordinated efforts provide a clear roadmap for transforming early AD diagnosis and enabling timely, personalized interventions.
Collapse
Affiliation(s)
- Neeraj Patel
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Rakhi Mishra
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park 2, Greater Noida, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Priya Priyadarshini Nayak
- Department of Medical Oncology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar Odisha 751003, India
| | - Mandeep Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Anil Khachi
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - A Rekha
- Dr.D.Y.Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ghala Alnuaimi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Rashi Kulshrestha
- Institute of Pharmacy and Paramedical Sciences, Dr Bhim Rao Ambedkar University, Agra, India.
| |
Collapse
|
3
|
Hatcher H, Stankeviciute S, Learn C, Qu AX. Regulatory, Translational, and Operational Considerations for the Incorporation of Biomarkers in Drug Development. Ther Innov Regul Sci 2025; 59:519-526. [PMID: 40057669 DOI: 10.1007/s43441-025-00763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/19/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Biomarkers are an integral component in the drug development paradigm. According to the US Food and Drug Administration (FDA), a biomarker is "a defined characteristic that is measured as an indicator of normal biological processes, pathogenic processes, or biological responses to an exposure or intervention, including therapeutic intervention" (FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource [Internet]. Silver Spring (MD): Food and Drug Administration (US); 2016-. Glossary. 2016 [Updated 2021 Nov 29, cited 2024 Apr 14]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK338448/ Co-published by National Institutes of Health (US), Bethesda (MD)). The European Medicines Agency (EMA) defines a biomarker as "an objective and quantifiable measure of a physiological process, pathological process or response to a treatment (excluding measurements of how an individual feels or functions" European Medicines Agency (EMA). Biomaker. 2020a. Available from: https://www.ema.europa.eu/en/glossary-terms/biomarker#:~:text=Biomarker-,Biomarker,an%20individual%20feels%20or%20functions . Several clinical biomarkers are well-documented and have been used routinely for decades in health care settings and have long been accepted as valid endpoints for drug approval (for example, blood pressure measurement as a biomarker for cardiovascular health) (European Medicines Agency (EMA). Assessment report, TAGRISSO. 2016. Available from: https://www.ema.europa.eu/en/documents/assessment-report/tagrisso-epar-public-assessment-report_en.pdf . Accessed 15 Apr 2024). Recently, novel biomarkers have been identified and validated to accelerate developing innovative therapies indicated for serious human diseases, for example targeted/immune therapies of cancer (Chen in Med Drug Discov 21:100174, 2024). As indicators of the efficacy of new pharmacological treatments or therapeutic interventions, biomarkers can improve clinical trial efficacy and reduce uncertainty in regulatory decision making (Bakker et al. in Clin Pharmacol Ther 112:69-80, 2022; Califf in Exp Biol Med 243:213-221, 2018; Parker et al. in Cancer Med 10:1955-1963, 2021). METHODOLOGY This article describes case studies of recent drug approvals that successfully leveraged validated and non-validated biomarkers (i.e., tofersen for the neurodegenerative disease amyotrophic lateral sclerosis (ALS) in adults; and osimertinib for treatment of patients with metastatic epidermal growth factor receptor (EGFR) T790M mutation-positive non-small cell lung cancer (NSCLC)). CONCLUSIONS Best practices for biomarker selection and strategies for health authority biomarker qualification programs are presented along with an overview of current limitations and challenges to optimizing biomarker applications along the drug development continuum from regulatory, translational, and operational perspectives.
Collapse
Affiliation(s)
- Heather Hatcher
- Regulatory Consulting, Parexel International, 2520 Meridian Parkway, Durham, NC, 27713, USA
| | - Simona Stankeviciute
- Regulatory Consulting, Parexel International, 2520 Meridian Parkway, Durham, NC, 27713, USA
| | - Chris Learn
- Cell and Gene Therapy Center of Excellence, Parexel International, 2520 Meridian Parkway, Durham, NC, 27713, USA.
| | - Angela X Qu
- Biomarkers and Genomic Medicine, Parexel International, 2520 Meridian Parkway, Durham, NC, 27713, USA
| |
Collapse
|
4
|
Cruz-Ramos M, García-Ortega DY, Becerra-Herrera R, Cabello-Díaz DC, Cabrera-Nieto SA, Martínez-Nava GA, Caro-Sanchéz CHS. Systematic Review of Soft Tissue Sarcomas in Latin America. JCO Glob Oncol 2025; 11:e2400508. [PMID: 40294361 DOI: 10.1200/go-24-00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/18/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
PURPOSE Soft tissue sarcomas (STSs) are rare malignant neoplasms posing significant public health challenges globally, especially in Latin America with limited research resources. This systematic review provides an overview of the epidemiology, clinical characteristics, treatment, and outcomes of STSs in Latin America, emphasizing the impact of insufficient investment in research and health care infrastructure. MATERIALS AND METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we conducted a systematic literature review of clinicopathologic characteristics of STSs in Latin American patients. Studies published between January 1986 and August 2024 were included. A comprehensive search across multiple databases yielded 502 papers, refined to 18 publications and three national records included in the study. A meta-analysis was done for survival evaluation. RESULTS Data from 2,931 patients with mean age 47 years were analyzed, and 340 patients had pretreatment biopsy. The most common sarcoma types were liposarcoma (23.2%) and synovial sarcoma (21.2%), with high-grade tumors (52%) predominating. Treatment primarily involved surgery (863 patients), often combined with radiotherapy (559 patients) and chemotherapy (307 patients). Five-year overall survival was 61%. DISCUSSION The findings highlight challenges in managing STSs in Latin America, including advanced disease at diagnosis and high-grade tumors. Survival rates correlate with local advanced disease reported by other countries. Barriers include limited access to specialized centers and inadequate use of preoperative biopsies. Improved diagnostic and treatment strategies and collaborations to enhance research and clinical practices are needed. CONCLUSION This review underscores critical gaps in STS management in Latin America. Increased investment in research, a cohesive network of specialized care centers, and a multidisciplinary approach are essential to improve outcomes and quality of life for patients in the region.
Collapse
Affiliation(s)
- Marlid Cruz-Ramos
- Departamento de Tumores Oseos, Investigadora por México de la Secretaría de Ciencia, Humanidades, Tecnología e Innovación (Secihti), Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Mexico
| | | | | | | | | | - Gabriela A Martínez-Nava
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | | |
Collapse
|
5
|
Monette A, Aguilar-Mahecha A, Altinmakas E, Angelos MG, Assad N, Batist G, Bommareddy PK, Bonilla DL, Borchers CH, Church SE, Ciliberto G, Cogdill AP, Fattore L, Hacohen N, Haris M, Lacasse V, Lie WR, Mehta A, Ruella M, Sater HA, Spatz A, Taouli B, Tarhoni I, Gonzalez-Kozlova E, Tirosh I, Wang X, Gnjatic S. The Society for Immunotherapy of Cancer Perspective on Tissue-Based Technologies for Immuno-Oncology Biomarker Discovery and Application. Clin Cancer Res 2025; 31:439-456. [PMID: 39625818 DOI: 10.1158/1078-0432.ccr-24-2469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025]
Abstract
With immuno-oncology becoming the standard of care for a variety of cancers, identifying biomarkers that reliably classify patient response, resistance, or toxicity becomes the next critical barrier toward improving care. Multiparametric, multi-omics, and computational platforms generating an unprecedented depth of data are poised to usher in the discovery of increasingly robust biomarkers for enhanced patient selection and personalized treatment approaches. Deciding which developing technologies to implement in clinical settings ultimately, applied either alone or in combination, relies on weighing pros and cons, from minimizing patient sampling to maximizing data outputs, and assessing the reproducibility and representativeness of findings, while lessening data fragmentation toward harmonization. These factors are all assessed while taking into consideration the shortest turnaround time. The Society for Immunotherapy of Cancer Biomarkers Committee convened to identify important advances in biomarker technologies and to address advances in biomarker discovery using multiplexed IHC and immunofluorescence, their coupling to single-cell transcriptomics, along with mass spectrometry-based quantitative and spatially resolved proteomics imaging technologies. We summarize key metrics obtained, ease of interpretation, limitations and dependencies, technical improvements, and outward comparisons of these technologies. By highlighting the most interesting recent data contributed by these technologies and by providing ways to improve their outputs, we hope to guide correlative research directions and assist in their evolution toward becoming clinically useful in immuno-oncology.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Adriana Aguilar-Mahecha
- Lady Davis Institute for Medical Research, The Segal Cancer Center, Jewish General Hospital, Montreal, Quebec, Canada
| | - Emre Altinmakas
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Radiology, Koç University School of Medicine, Istanbul, Turkey
| | - Mathew G Angelos
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nima Assad
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gerald Batist
- McGill Centre for Translational Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | - Christoph H Borchers
- Gerald Bronfman Department of Oncology, Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Pathology, McGill University, Montreal, Quebec, Canada
| | | | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Luigi Fattore
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Mohammad Haris
- Department of Radiology, Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Vincent Lacasse
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Arnav Mehta
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Marco Ruella
- Division of Hematology-Oncology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Alan Spatz
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, McGill University Health Center, Montreal, Quebec, Canada
| | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Imad Tarhoni
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | | | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
6
|
Yousef Almulhim M. The efficacy of novel biomarkers for the early detection and management of acute kidney injury: A systematic review. PLoS One 2025; 20:e0311755. [PMID: 39879206 DOI: 10.1371/journal.pone.0311755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/24/2024] [Indexed: 01/31/2025] Open
Abstract
Acute kidney injury (AKI) is a frequent clinical complication lacking early diagnostic tests and effective treatments. Novel biomarkers have shown promise for enabling earlier detection, risk stratification, and guiding management of AKI. We conducted a systematic review to synthesize evidence on the efficacy of novel biomarkers for AKI detection and management. Database searches yielded 17 relevant studies which were critically appraised. Key themes were biomarker efficacy in predicting AKI risk and severity before functional changes; potential to improve clinical management through earlier diagnosis, prognostic enrichment, and guiding interventions; emerging roles as therapeutic targets and prognostic tools; and ongoing challenges requiring further validation. Overall, novel biomarkers like neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), and cell cycle arrest markers ([TIMP-2] •[IGFBP7]) demonstrate capability for very early AKI prediction and accurate risk stratification. Their incorporation has potential to facilitate timely targeted interventions and personalized management. However, factors influencing biomarker performance, optimal cutoffs, cost-effectiveness, and impact on patient outcomes require robust validation across diverse settings before widespread implementation. Addressing these limitations through ongoing research can help translate novel biomarkers into improved detection, prognosis, and management of AKI in clinical practice.
Collapse
|
7
|
Brezden-Masley C, Fiset PO, Cheung CC, Arnason T, Bateman J, Borduas M, Evaristo G, Ionescu DN, Lim HJ, Sheffield BS, Soldera SV, Streutker CJ. Canadian Consensus Recommendations for Predictive Biomarker Testing in Gastric and Gastroesophageal Junction Adenocarcinoma. Curr Oncol 2024; 31:7770-7786. [PMID: 39727695 DOI: 10.3390/curroncol31120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Gastric cancer is common globally and has a generally poor prognosis with a low 5-year survival rate. Targeted therapies and immunotherapies have improved the treatment landscape, providing more options for efficacious treatment. The use of these therapies requires predictive biomarker testing to identify patients who can benefit from their use. New therapies on the horizon, such as CLDN18.2 monoclonal antibody therapy, require laboratories to implement new biomarker tests. A multidisciplinary pan-Canadian expert working group was convened to develop guidance for pathologists and oncologists on the implementation of CLDN18.2 IHC testing for gastric and gastroesophageal junction (G/GEJ) adenocarcinoma in Canada, as well as general recommendations to optimize predictive biomarker testing in G/GEJ adenocarcinoma. The expert working group recommendations highlight the importance of reflex testing for HER2, MMR and/or MSI, CLDN18, and PD-L1 in all patients at first diagnosis of G/GEJ adenocarcinoma. Testing for NTRK fusions may also be included in reflex testing or requested by the treating clinician when third-line therapy is being considered. The expert working group also made recommendations for pre-analytic, analytic, and post-analytic considerations for predictive biomarker testing in G/GEJ adenocarcinoma. Implementation of these recommendations will provide medical oncologists with accurate, timely biomarker results to use for treatment decision-making.
Collapse
Affiliation(s)
- Christine Brezden-Masley
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Medical Oncology, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Pierre O Fiset
- Department of Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Carol C Cheung
- Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thomas Arnason
- Queen Elizabeth II Health Sciences Centre, Halifax, NS B3H 3A7, Canada
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Justin Bateman
- Alberta Precision Laboratories, Edmonton, AB T5H 3V9, Canada
| | - Martin Borduas
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke (CHUS), University of Sherbrooke, Sherbrooke, QC J1H 5H3, Canada
| | - Gertruda Evaristo
- Department of Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Diana N Ionescu
- BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | | | - Brandon S Sheffield
- Division of Advanced Diagnostics, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Sara V Soldera
- Division of Medical Oncology, Royal Victoria Hospital, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | | |
Collapse
|
8
|
Bomsztyk K, Mar D, Denisenko O, Powell S, Vishnoi M, Yin Z, Delegard J, Hadley C, Tandon N, Patel AJ, Patel AP, Ellenbogen RG, Ramakrishna R, Rostomily RC. Analysis of DNA Methylation in Gliomas: Assessment of Preanalytical Variables. J Transl Med 2024; 104:102160. [PMID: 39426568 PMCID: PMC11709230 DOI: 10.1016/j.labinv.2024.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Precision oncology is driven by biomarkers. For glioblastoma multiforme (GBM), the most common malignant adult primary brain tumor, O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation is an important prognostic and treatment clinical biomarker. Time-consuming preanalytical steps such as biospecimen storage, fixation, sampling, and processing are sources of data irreproducibility, and all these preanalytical variables are confounded by intratumor heterogeneity of MGMT promoter methylation. To assess the effect of preanalytical variables on GBM DNA methylation, tissue storage/sampling (CryoGrid), sample preparation multisonicator (PIXUL), and 5-methylcytosine DNA immunoprecipitation (Matrix-MeDIP-qPCR/seq) platforms were used. MGMT promoter methylation status assayed by MeDIP-qPCR was validated with methylation-specific polymerase chain reaction. MGMT promoter methylation levels in frozen and formalin-fixed paraffin-embedded sample pairs were not statistically different, confirming the reliability of formalin-fixed paraffin-embedded for MGMT promoter methylation analysis. Warm ex vivo ischemia (up to 4 hours at 37 °C) and 3 cycles of repeated sample thawing and freezing did not statistically impact 5-methylcytosine at MGMT promoter, exon, and enhancer regions, indicating the resistance of DNA methylation to common variations in sample processing conditions that might be encountered in research and clinical settings. Twenty-six percent to 34% of specimens exhibited intratumor heterogeneity in the MGMT DNA promoter methylation. These data demonstrate that variations in sample fixation, ischemia duration and temperature, and DNA methylation assay technique do not have a statistically significant impact on MGMT promoter methylation assessment. However, intratumor methylation heterogeneity underscores the value of multiple biopsies at different GBM geographic tumor sites in the evaluation of MGMT promoter methylation status. Matrix-MeDIP-seq analysis revealed that MGMT promoter methylation status clustered with other differentially methylated genomic loci (eg, HOXA and lncRNAs) that are resilient to variation in the above preanalytical conditions. These observations offer new opportunities to develop more granular data-based epigenetic GBM biomarkers. In this regard, the high-throughput CryoGrid-PIXUL-Matrix toolbox could be useful.
Collapse
Affiliation(s)
- Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington; Matchstick Technologies, Inc, Kirkland, Washington.
| | - Daniel Mar
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Oleg Denisenko
- UW Medicine South Lake Union, University of Washington, Seattle, Washington
| | - Suzanne Powell
- Department of Neuropathology, Houston Methodist Hospital, Houston, Texas
| | - Monika Vishnoi
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, Texas
| | - Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Neil Cancer Center, Houston, Texas
| | - Jennifer Delegard
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Caroline Hadley
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico
| | - Nitin Tandon
- Department of Neurosurgery, McGovern Medical School at UT Health, Houston, Texas
| | - Akash J Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Anoop P Patel
- Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Rohan Ramakrishna
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York
| | - Robert C Rostomily
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, Texas; Department of Neurological Surgery, University of Washington, Seattle, Washington; Department of Neurological Surgery, Weill Cornell Medicine, New York, New York
| |
Collapse
|
9
|
Laokulrath N, Gudi M, Salahuddin SA, Chong APY, Ding C, Iqbal J, Leow WQ, Tan BY, Tse G, Rakha E, Tan PH. Human epidermal growth factor receptor 2 (HER2) status in breast cancer: practice points and challenges. Histopathology 2024; 85:371-382. [PMID: 38845396 DOI: 10.1111/his.15213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 08/09/2024]
Abstract
Human epidermal growth factor receptor 2 (HER2)-enriched breast cancer benefits significantly from anti-HER2 targeted therapies. This highlights the critical need for precise HER2 immunohistochemistry (IHC) interpretation serving as a triage tool for selecting patients for anti-HER2 regimens. Recently, the emerging eligibility of patients with HER2-low breast cancers for a novel HER2-targeted antibody-drug conjugate (T-DXd) adds challenges to HER2 IHC scoring interpretation, notably in the 0-1+ range, which shows high interobserver and interlaboratory staining platform variability. In this review, we navigate evolving challenges and suggest practical recommendations for HER2 IHC interpretation.
Collapse
Affiliation(s)
- Natthawadee Laokulrath
- Department of Pathology, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore
| | - Mihir Gudi
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore
| | | | | | - Cristine Ding
- Division of Anatomical Pathology, Changi General Hospital, Singapore
| | - Jabed Iqbal
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Wei Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
- Duke-NUS Medical School, Singapore
| | | | - Gary Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Emad Rakha
- Cellular Pathology Department, School of Medicine, University of Nottingham, Nottingham, UK
| | - Puay Hoon Tan
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore
- Luma Medical Centre, Singapore
| |
Collapse
|
10
|
Lam WKJ, Bai J, Ma MJL, Cheung YTT, Jiang P. Circulating tumour DNA analysis for early detection of lung cancer: a systematic review. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:64. [PMID: 39118954 PMCID: PMC11304429 DOI: 10.21037/atm-23-1572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 01/11/2024] [Indexed: 08/10/2024]
Abstract
Background Circulating tumor DNA (ctDNA) analysis has been applied in cancer diagnostics including lung cancer. Specifically for the early detection purpose, various modalities of ctDNA analysis have demonstrated their potentials. Such analyses have showed diverse performance across different studies. Methods We performed a systematic review of original studies published before 1 January 2023. Studies that evaluated ctDNA alone and in combination with other biomarkers for early detection of lung cancer were included. Results The systematic review analysis included 56 original studies that were aimed for early detection of lung cancer. There were 39 studies for lung cancer only and 17 for pan-cancer early detection. Cancer and control cases included were heterogenous across studies. Different molecular features of ctDNA have been evaluated, including 7 studies on cell-free DNA concentration, 17 on mutation, 29 on methylation, 5 on hydroxymethylation and 8 on fragmentation patterns. Among these 56 studies, 17 have utilised different combinations of the above-mentioned ctDNA features and/or circulation protein markers. For all the modalities, lower sensitivities were reported for the detection of early-stage cancer. Conclusions The systematic review suggested the clinical utility of ctDNA analysis for early detection of lung cancer, alone or in combination with other biomarkers. Future validation with standardised testing protocols would help integration into clinical care.
Collapse
Affiliation(s)
- W. K. Jacky Lam
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Jinyue Bai
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Mary-Jane L. Ma
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Y. T. Tommy Cheung
- Department of Pathology, Princess Margaret Hospital, Kwai Chung, Hong Kong, China
| | - Peiyong Jiang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| |
Collapse
|
11
|
Shahin M, Patra S, Purkait S, Kar M, Das Majumdar SK, Mishra TS, Samal SC, Nayak HK. PD-L1 Expression in Colorectal Carcinoma Correlates with the Immune Microenvironment. J Gastrointest Cancer 2024; 55:940-949. [PMID: 38530597 DOI: 10.1007/s12029-024-01049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
INTRODUCTION/BACKGROUND Colorectal carcinoma (CRC) is a common malignancy, with its diverse clinical, pathological, and molecular features. The immune microenvironment of a tumor comprises of interplay between various cells and molecules, and has a significant role in deciding the tumor behavior and overall prognosis. PD-L1 (programmed cell death ligand-1) has been implicated in the regulation of the tumor immune microenvironment (TIME). There is limited data regarding the correlation of PD-L1 expression with immune cell profile in CRCs, especially in the Indian setting. The study aimed to assess the PD-L1 expression in CRC tumor cells and its association with TIME, mismatch repair (MMR), and various other clinicopathological parameters. METHODS This is a hospital-based, cross-sectional observational study. PD-L1 expression was assessed at the protein level by immunohistochemistry and mRNA level by qRT-PCR. Immune cell markers (CD4, CD8, CD20, FOXP3, and CD163) were interpreted using the ImageJ Fiji platform. RESULTS Of the 104 cases, 21% were PD-L1 positive and were more common in right-sided CRCs. PD-L1 positive cases showed significantly higher concentrations of all T-cell subsets (CD4+ , CD8+ , and FOXP3+), CD20+ B-cells, and CD163+ macrophages were noted. No statistical significance was seen between PD-L1 expression with clinical profile, pathological subtype, grade or stage, mismatch repair status (proficient vs deficient), and survival. CONCLUSIONS The present study showed a relatively lower frequency of PD-L1 in CRC from the Eastern Indian cohort. The immune cell concentration in the present study was calculated using image analysis-based objectivised methods. Significant correlation of PD-L1 expression in tumor cells with the tumor-infiltrating immune cells indicated its crucial role in the pathobiology of CRC especially by regulating the TIME. Considering the therapeutic implication of PD-L1 in various malignancies, it may be one of the crucial therapeutic targets in a proportion of cases.
Collapse
Affiliation(s)
- Mohammed Shahin
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Susama Patra
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India.
| | - Suvendu Purkait
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Madhabananda Kar
- Department of Surgical Oncology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Saroj Kumar Das Majumdar
- Department of Radiation Oncology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | | | - Subash Chandra Samal
- Department of Medical Gastroenterology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Hemanta Kumar Nayak
- Department of Medical Gastroenterology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Sharma A, Yadav A, Nandy A, Ghatak S. Insight into the Functional Dynamics and Challenges of Exosomes in Pharmaceutical Innovation and Precision Medicine. Pharmaceutics 2024; 16:709. [PMID: 38931833 PMCID: PMC11206934 DOI: 10.3390/pharmaceutics16060709] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Of all the numerous nanosized extracellular vesicles released by a cell, the endosomal-originated exosomes are increasingly recognized as potential therapeutics, owing to their inherent stability, low immunogenicity, and targeted delivery capabilities. This review critically evaluates the transformative potential of exosome-based modalities across pharmaceutical and precision medicine landscapes. Because of their precise targeted biomolecular cargo delivery, exosomes are posited as ideal candidates in drug delivery, enhancing regenerative medicine strategies, and advancing diagnostic technologies. Despite the significant market growth projections of exosome therapy, its utilization is encumbered by substantial scientific and regulatory challenges. These include the lack of universally accepted protocols for exosome isolation and the complexities associated with navigating the regulatory environment, particularly the guidelines set forth by the U.S. Food and Drug Administration (FDA). This review presents a comprehensive overview of current research trajectories aimed at addressing these impediments and discusses prospective advancements that could substantiate the clinical translation of exosomal therapies. By providing a comprehensive analysis of both the capabilities and hurdles inherent to exosome therapeutic applications, this article aims to inform and direct future research paradigms, thereby fostering the integration of exosomal systems into mainstream clinical practice.
Collapse
Affiliation(s)
| | | | | | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; (A.S.); (A.Y.); (A.N.)
| |
Collapse
|
13
|
Dreikhausen L, Klupsch A, Wiest I, Xiao Q, Schulte N, Betge J, Boch T, Brochhausen C, Gaiser T, Hofheinz RD, Ebert M, Zhan T. Clinical impact of panel gene sequencing on therapy of advanced cancers of the digestive system: a retrospective, single center study. BMC Cancer 2024; 24:526. [PMID: 38664720 PMCID: PMC11046933 DOI: 10.1186/s12885-024-12261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Panel gene sequencing is an established diagnostic tool for precision oncology of solid tumors, but its utility for the treatment of cancers of the digestive system in clinical routine is less well documented. METHODS We retrospectively identified patients with advanced or metastatic gastrointestinal, pancreaticobiliary or hepatic cancers who received panel gene sequencing at a tertiary university hospital from 2015 to 2022. For these cases, we determined the spectrum of genetic alterations, clinicopathological parameters and treatment courses. Assessment of actionability of genetic alterations was based on the OncoKB database, cancer-specific ESMO treatment guidelines, and recommendations of the local molecular tumor board. RESULTS In total, 155 patients received panel gene sequencing using either the Oncomine Focus (62 cases), Comprehensive (91 cases) or Childhood Cancer Research Assay (2 cases). The mean age of patients was 61 years (range 24-90) and 37% were female. Most patients suffered from either colorectal cancer (53%) or cholangiocellular carcinoma (19%). 327 genetic alterations were discovered in 123 tumor samples, with an average number of 2.1 alterations per tumor. The most frequently altered genes were TP53, KRAS and PIK3CA. Actionable gene alterations were detected in 13.5-56.8% of tumors, according to ESMO guidelines or the OncoKB database, respectively. Thirteen patients were treated with targeted therapies based on identified molecular alterations, with a median progression-free survival of 8.8 months. CONCLUSIONS Actionable genetic alterations are frequently detected by panel gene sequencing in patients with advanced cancers of the digestive tract, providing clinical benefit in selected cases. However, for the majority of identified actionable alterations, sufficient clinical evidence for targeted treatments is still lacking.
Collapse
Affiliation(s)
- Lena Dreikhausen
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anna Klupsch
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isabella Wiest
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Qiyun Xiao
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadine Schulte
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Betge
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center, Heidelberg, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Medical Faculty Mannheim, DKFZ-Hector Cancer Institute, Heidelberg University, Mannheim, Germany
| | - Tobias Boch
- Department of Medicine III, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Medical Faculty Mannheim, DKFZ-Hector Cancer Institute, Heidelberg University, Mannheim, Germany
| | - Christoph Brochhausen
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Timo Gaiser
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ralf-Dieter Hofheinz
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Medicine III, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Medical Faculty Mannheim, DKFZ-Hector Cancer Institute, Heidelberg University, Mannheim, Germany
| | - Tianzuo Zhan
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Medical Faculty Mannheim, DKFZ-Hector Cancer Institute, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
14
|
Quiros-Roldan E, Sottini A, Natali PG, Imberti L. The Impact of Immune System Aging on Infectious Diseases. Microorganisms 2024; 12:775. [PMID: 38674719 PMCID: PMC11051847 DOI: 10.3390/microorganisms12040775] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Immune system aging is becoming a field of increasing public health interest because of prolonged life expectancy, which is not paralleled by an increase in health expectancy. As age progresses, innate and adaptive immune systems undergo changes, which are defined, respectively, as inflammaging and immune senescence. A wealth of available data demonstrates that these two conditions are closely linked, leading to a greater vulnerability of elderly subjects to viral, bacterial, and opportunistic infections as well as lower post-vaccination protection. To face this novel scenario, an in-depth assessment of the immune players involved in this changing epidemiology is demanded regarding the individual and concerted involvement of immune cells and mediators within endogenous and exogenous factors and co-morbidities. This review provides an overall updated description of the changes affecting the aging immune system, which may be of help in understanding the underlying mechanisms associated with the main age-associated infectious diseases.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST- Spedali Civili and DSCS- University of Brescia, 25123 Brescia, Italy;
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, Services Department, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Pier Giorgio Natali
- Mediterranean Task Force for Cancer Control (MTCC), Via Pizzo Bernina, 14, 00141 Rome, Italy;
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
15
|
Bomsztyk K, Mar D, Denisenko O, Powell S, Vishnoi M, Delegard J, Patel A, Ellenbogen RG, Ramakrishna R, Rostomily R. Analysis of gliomas DNA methylation: Assessment of pre-analytical variables. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586350. [PMID: 38586048 PMCID: PMC10996653 DOI: 10.1101/2024.03.26.586350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Precision oncology is driven by molecular biomarkers. For glioblastoma multiforme (GBM), the most common malignant adult primary brain tumor, O6-methylguanine-DNA methyltransferase ( MGMT ) gene DNA promoter methylation is an important prognostic and treatment clinical biomarker. Time consuming pre-analytical steps such as biospecimen storage before fixing, sampling, and processing are major sources of errors and batch effects, that are further confounded by intra-tumor heterogeneity of MGMT promoter methylation. To assess the effect of pre-analytical variables on GBM DNA methylation, tissue storage/sampling (CryoGrid), sample preparation multi-sonicator (PIXUL) and 5-methylcytosine (5mC) DNA immunoprecipitation (Matrix MeDIP-qPCR/seq) platforms were used. MGMT promoter CpG methylation was examined in 173 surgical samples from 90 individuals, 50 of these were used for intra-tumor heterogeneity studies. MGMT promoter methylation levels in paired frozen and formalin fixed paraffin embedded (FFPE) samples were very close, confirming suitability of FFPE for MGMT promoter methylation analysis in clinical settings. Matrix MeDIP-qPCR yielded similar results to methylation specific PCR (MS-PCR). Warm ex-vivo ischemia (37°C up to 4hrs) and 3 cycles of repeated sample thawing and freezing did not alter 5mC levels at MGMT promoter, exon and upstream enhancer regions, demonstrating the resistance of DNA methylation to the most common variations in sample processing conditions that might be encountered in research and clinical settings. 20-30% of specimens exhibited intratumor heterogeneity in the MGMT DNA promoter methylation. Collectively these data demonstrate that variations in sample fixation, ischemia duration and temperature, and DNA methylation assay technique do not have significant impact on assessment of MGMT promoter methylation status. However, intratumor methylation heterogeneity underscores the need for histologic verification and value of multiple biopsies at different GBM geographic tumor sites in assessment of MGMT promoter methylation. Matrix-MeDIP-seq analysis revealed that MGMT promoter methylation status clustered with other differentially methylated genomic loci (e.g. HOXA and lncRNAs), that are likewise resilient to variation in above post-resection pre-analytical conditions. These MGMT -associated global DNA methylation patterns offer new opportunities to validate more granular data-based epigenetic GBM clinical biomarkers where the CryoGrid-PIXUL-Matrix toolbox could prove to be useful.
Collapse
|
16
|
Jahangir CA, Page DB, Broeckx G, Gonzalez CA, Burke C, Murphy C, Reis-Filho JS, Ly A, Harms PW, Gupta RR, Vieth M, Hida AI, Kahila M, Kos Z, van Diest PJ, Verbandt S, Thagaard J, Khiroya R, Abduljabbar K, Haab GA, Acs B, Adams S, Almeida JS, Alvarado-Cabrero I, Azmoudeh-Ardalan F, Badve S, Baharun NB, Bellolio ER, Bheemaraju V, Blenman KRM, Fujimoto LBM, Burgues O, Chardas A, Cheang MCU, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Portela FLD, Deman F, Demaria S, Dudgeon SN, Elghazawy M, Fernandez-Martín C, Fineberg S, Fox SB, Giltnane JM, Gnjatic S, Gonzalez-Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hart SN, Hartman J, Hewitt S, Horlings HM, Husain Z, Irshad S, Janssen EAM, Kataoka TR, Kawaguchi K, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Akturk G, Scott E, Kovács A, Lænkholm AV, Lang-Schwarz C, Larsimont D, Lennerz JK, Lerousseau M, Li X, Madabhushi A, Maley SK, Narasimhamurthy VM, Marks DK, McDonald ES, Mehrotra R, Michiels S, Kharidehal D, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault-Llorca F, Perera RD, Pinard CJ, Pinto-Cardenas JC, Pruneri G, Pusztai L, Rajpoot NM, Rapoport BL, Rau TT, Ribeiro JM, et alJahangir CA, Page DB, Broeckx G, Gonzalez CA, Burke C, Murphy C, Reis-Filho JS, Ly A, Harms PW, Gupta RR, Vieth M, Hida AI, Kahila M, Kos Z, van Diest PJ, Verbandt S, Thagaard J, Khiroya R, Abduljabbar K, Haab GA, Acs B, Adams S, Almeida JS, Alvarado-Cabrero I, Azmoudeh-Ardalan F, Badve S, Baharun NB, Bellolio ER, Bheemaraju V, Blenman KRM, Fujimoto LBM, Burgues O, Chardas A, Cheang MCU, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Portela FLD, Deman F, Demaria S, Dudgeon SN, Elghazawy M, Fernandez-Martín C, Fineberg S, Fox SB, Giltnane JM, Gnjatic S, Gonzalez-Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hart SN, Hartman J, Hewitt S, Horlings HM, Husain Z, Irshad S, Janssen EAM, Kataoka TR, Kawaguchi K, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Akturk G, Scott E, Kovács A, Lænkholm AV, Lang-Schwarz C, Larsimont D, Lennerz JK, Lerousseau M, Li X, Madabhushi A, Maley SK, Narasimhamurthy VM, Marks DK, McDonald ES, Mehrotra R, Michiels S, Kharidehal D, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault-Llorca F, Perera RD, Pinard CJ, Pinto-Cardenas JC, Pruneri G, Pusztai L, Rajpoot NM, Rapoport BL, Rau TT, Ribeiro JM, Rimm D, Vincent-Salomon A, Saltz J, Sayed S, Hytopoulos E, Mahon S, Siziopikou KP, Sotiriou C, Stenzinger A, Sughayer MA, Sur D, Symmans F, Tanaka S, Taxter T, Tejpar S, Teuwen J, Thompson EA, Tramm T, Tran WT, van der Laak J, Verghese GE, Viale G, Wahab N, Walter T, Waumans Y, Wen HY, Yang W, Yuan Y, Bartlett J, Loibl S, Denkert C, Savas P, Loi S, Stovgaard ES, Salgado R, Gallagher WM, Rahman A. Image-based multiplex immune profiling of cancer tissues: translational implications. A report of the International Immuno-oncology Biomarker Working Group on Breast Cancer. J Pathol 2024; 262:271-288. [PMID: 38230434 PMCID: PMC11288342 DOI: 10.1002/path.6238] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/17/2023] [Indexed: 01/18/2024]
Abstract
Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Chowdhury Arif Jahangir
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - David B Page
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Glenn Broeckx
- Department of Pathology PA, GZA-ZNA Hospitals, Antwerp, Belgium
- Centre for Oncological Research (CORE), MIPPRO, Faculty of Medicine, Antwerp University, Antwerp, Belgium
| | - Claudia A Gonzalez
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Caoimbhe Burke
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Clodagh Murphy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Paul W Harms
- Departments of Pathology and Dermatology, University of Michigan, Ann Arbor, Ml, USA
| | - Rajarsi R Gupta
- Department of Biomedical informatics, Stony Brook University, Stony Brook, NY, USA
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth GmbH, Friedrich-Alexander-University Erlangen-Nuremberg, Bayreuth, Germany
| | - Akira I Hida
- Department of Pathology, Matsuyama Shimin Hospital, Matsuyama, Japan
| | - Mohamed Kahila
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Zuzana Kos
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC Cancer, Vancouver, British Columbia, Canada
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
- Johns Hopkins Oncology Center, Baltimore, MD, USA
| | - Sara Verbandt
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jeppe Thagaard
- Technical University of Denmark, Kgs. Lyngby, Denmark
- Visiopharm A/S, Hørsholm, Denmark
| | - Reena Khiroya
- Department of Cellular Pathology, University College Hospital, London, UK
| | - Khalid Abduljabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | | | - Balazs Acs
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Sylvia Adams
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, Manhattan, NY, USA
| | - Jonas S Almeida
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA
| | | | | | - Sunil Badve
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory University Winship Cancer Institute, Atlanta, GA, USA
| | | | - Enrique R Bellolio
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | | | - Kim RM Blenman
- Department of internal Medicine Section of Medical Oncology and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Department of Computer Science, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | | | - Octavio Burgues
- Pathology Department, Hospital Cliníco Universitario de Valencia/lncliva, Valencia, Spain
| | - Alexandros Chardas
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, London, UK
| | - Maggie Chon U Cheang
- Head of Integrative Genomics Analysis in Clinical Trials, ICR-CTSU, Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Francesco Ciompi
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lee AD Cooper
- Department of Pathology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium
| | - Germán Corredor
- Biomedical Engineering Department, Emory University, Atlanta, GA, USA
| | | | - Frederik Deman
- Department of Pathology PA, GZA-ZNA Hospitals, Antwerp, Belgium
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Pathology, Weill Cornell Medicine, New York NY, USA
| | - Sarah N Dudgeon
- Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Mahmoud Elghazawy
- University of Surrey, Guildford, UK
- Ain Shams University, Cairo, Egypt
| | - Claudio Fernandez-Martín
- Institute Universitario de Investigatión en Tecnología Centrada en el Ser Humano, HUMAN-tech, Universitat Politècnica de València, Valencia, Spain
| | - Susan Fineberg
- Montefiore Medical Center and the Albert Einstein College of Medicine, New York, NY, USA
| | - Stephen B Fox
- Pathology, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Sacha Gnjatic
- Department of Oncological Sciences, Medicine Hem/One, and Pathology, Tisch Cancer Institute – Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | | | - Anita Grigoriadis
- Cancer Bioinformatics, Faculty of Life Sciences and Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London, UK
- The Breast Cancer Now Research Unit Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Niels Halama
- Department of Translational Immunotherapy, German Cancer Research Center, Heidelberg, Germany
| | | | | | - Steven N Hart
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Johan Hartman
- Tehran University of Medical Sciences, Tehran, Iran
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stephen Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hugo M Horlings
- Division of Pathology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | - Sheeba Irshad
- King's College London & Guys & St Thomas NHS Trust London, UK
| | - Emiel AM Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
| | | | - Kosuke Kawaguchi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Andrey I Khramtsov
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Umay Kiraz
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
| | - Pawan Kirtani
- Histopathology, Aakash Healthcare Super Speciality Hospital, New Delhi, India
| | - Liudmila L Kodach
- Department of Pathology, Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Konstanty Korski
- Data, Analytics and Imaging, Product Development, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Guray Akturk
- Translational Molecular Biomarkers, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Ely Scott
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, USA
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne-Vibeke Lænkholm
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
- Department of Surgical Pathology, University of Copenhagen, Copenhagen, Denmark
| | - Corinna Lang-Schwarz
- Institute of Pathology, Klinikum Bayreuth GmbH, Friedrich-Alexander-University Erlangen-Nuremberg, Bayreuth, Germany
| | - Denis Larsimont
- Institut Jules Bordet Université Libre de Bruxelles, Brussels, Belgium
| | - Jochen K Lennerz
- Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Marvin Lerousseau
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, Paris, France
- Institut Curie, PSL University, Paris, France
- INSERM U900, Paris, France
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Radiology and Imaging Sciences, Biomedical Informatics, Pathology, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sai K Maley
- NRG Oncology/NSABP Foundation, Pittsburgh, PA, USA
| | | | - Douglas K Marks
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Elizabeth S McDonald
- Breast Cancer Translational Research Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Mehrotra
- Indian Cancer Genomic Atlas, Pune, India
- Centre for Health, Innovation and Policy Foundation, Noida, India
| | - Stefan Michiels
- Office of Biostatistics and Epidemiology, Gustave Roussy, Oncostat U1018, Inserm, University Paris-Saclay, Ligue Contre le Cancer labeled Team, Villejuif France
| | - Durga Kharidehal
- Department of Pathology, Narayana Medical College and Hospital, Nellore, India
| | - Fayyaz ul Amir Afsar Minhas
- Tissue Image Analytics Centre, Warwick Cancer Research Centre, PathLAKE Consortium, Department of Computer Science, University of Warwick, Coventry, UK
| | - Shachi Mittal
- Department of Chemical Engineering, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - David A Moore
- CRUK Lung Cancer Centre of Excellence, UCL and Cellular Pathology Department UCLH, London, UK
| | - Shamim Mushtaq
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Hussain Nighat
- Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Raipur, India
| | - Thomas Papathomas
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Clinical Pathology, Drammen Sykehus, Vestre Viken HF, Drammen, Norway
| | - Frederique Penault-Llorca
- Service de Pathologie et Biopathologie, Centre Jean PERRIN, INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Rashindrie D Perera
- School of Electrical, Mechanical and Infrastructure Engineering, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Christopher J Pinard
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Department of Oncology, Lakeshore Animal Health Partners, Mississauga, Ontario, Canada
- Centre for Advancing Responsible and Ethical Artificial Intelligence (CARE-AI), University of Guelph, Guelph, Ontario, Canada
| | | | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Lajos Pusztai
- Yale Cancer Center, Yale University, New Haven, CT, USA
- Department of Medical Oncology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | | | - Bernardo Leon Rapoport
- The Medical Oncology Centre of Rosebank Johannesburg South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Tilman T Rau
- Institute of Pathology, University Hospital Düsseldorf and Heinrich-Heine-University, Düsseldorf Germany
| | | | - David Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anne Vincent-Salomon
- Department of Diagnostic and Theranostic Medicine, Institut Curie, University Paris-Sciences et Lettres, Paris, France
| | - Joel Saltz
- Department of Biomedical Informatics, Stony Brook Medicine, New York NY, USA
| | - Shahin Sayed
- Department of Pathology, Aga Khan University, Nairobi, Kenya
| | - Evangelos Hytopoulos
- Department of Pathology, Aga Khan University, Nairobi, Kenya
- iRhythm Technologies Inc., San Francisco, CA, USA
| | - Sarah Mahon
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Kalliopi P Siziopikou
- Department of Pathology, Section of Breast Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Medical Oncology Department Institut Jules Bordet Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Centers for Personalized Medicine (ZPM), Heidelberg, Germany
| | | | - Daniel Sur
- Department of Medical Oncology, University of Medicine and Pharmacy “luliu Hatieganu ”, Cluj-Napoca, Romania
| | - Fraser Symmans
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jonas Teuwen
- Al for Oncology Lab, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Trine Tramm
- Department of Pathology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - William T Tran
- Department of Radiation Oncology, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Jeroen van der Laak
- Head of Integrative Genomics Analysis in Clinical Trials, ICR-CTSU, Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Gregory E Verghese
- Cancer Bioinformatics, Faculty of Life Sciences and Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London, UK
- The Breast Cancer Now Research Unit Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Giuseppe Viale
- Department of Pathology, European Institute of Oncology & University of Milan, Milan, Italy
| | - Noorul Wahab
- Tissue Image Analytics Centre, Department of Computer Science, University of Wanwick Coventry, UK
| | - Thomas Walter
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, Paris, France
- Institut Curie, PSL University, Paris, France
- INSERM U900, Paris, France
| | | | - Hannah Y Wen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wentao Yang
- Fudan Medical University Shanghai Cancer Center, Shanghai, PR China
| | - Yinyin Yuan
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Sibylle Loibl
- Department of Medicine and Research, German Breast Group, Neu-lsenburg Germany
| | - Carsten Denkert
- Institut für Pathologie, Philipps-Universität Marburg und Universitätsklinikum Marburg, Marburg, Germany
| | - Peter Savas
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Roberto Salgado
- Department of Pathology PA, GZA-ZNA Hospitals, Antwerp, Belgium
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Arman Rahman
- UCD School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Pavlov KA, Chekhonin VP. Systemic and local immunosuppression in glioblastoma and its prognostic significance. Front Immunol 2024; 15:1326753. [PMID: 38481999 PMCID: PMC10932993 DOI: 10.3389/fimmu.2024.1326753] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/06/2024] [Indexed: 04/07/2024] Open
Abstract
The effectiveness of tumor therapy, especially immunotherapy and oncolytic virotherapy, critically depends on the activity of the host immune cells. However, various local and systemic mechanisms of immunosuppression operate in cancer patients. Tumor-associated immunosuppression involves deregulation of many components of immunity, including a decrease in the number of T lymphocytes (lymphopenia), an increase in the levels or ratios of circulating and tumor-infiltrating immunosuppressive subsets [e.g., macrophages, microglia, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs)], as well as defective functions of subsets of antigen-presenting, helper and effector immune cell due to altered expression of various soluble and membrane proteins (receptors, costimulatory molecules, and cytokines). In this review, we specifically focus on data from patients with glioblastoma/glioma before standard chemoradiotherapy. We discuss glioblastoma-related immunosuppression at baseline and the prognostic significance of different subsets of circulating and tumor-infiltrating immune cells (lymphocytes, CD4+ and CD8+ T cells, Tregs, natural killer (NK) cells, neutrophils, macrophages, MDSCs, and dendritic cells), including neutrophil-to-lymphocyte ratio (NLR), focus on the immune landscape and prognostic significance of isocitrate dehydrogenase (IDH)-mutant gliomas, proneural, classical and mesenchymal molecular subtypes, and highlight the features of immune surveillance in the brain. All attempts to identify a reliable prognostic immune marker in glioblastoma tissue have led to contradictory results, which can be explained, among other things, by the unprecedented level of spatial heterogeneity of the immune infiltrate and the significant phenotypic diversity and (dys)functional states of immune subpopulations. High NLR is one of the most repeatedly confirmed independent prognostic factors for shorter overall survival in patients with glioblastoma and carcinoma, and its combination with other markers of the immune response or systemic inflammation significantly improves the accuracy of prediction; however, more prospective studies are needed to confirm the prognostic/predictive power of NLR. We call for the inclusion of dynamic assessment of NLR and other blood inflammatory markers (e.g., absolute/total lymphocyte count, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, systemic immune-inflammation index, and systemic immune response index) in all neuro-oncology studies for rigorous evaluation and comparison of their individual and combinatorial prognostic/predictive significance and relative superiority.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Konstantin A. Pavlov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
18
|
Mar D, Babenko IM, Zhang R, Noble WS, Denisenko O, Vaisar T, Bomsztyk K. A High-Throughput PIXUL-Matrix-Based Toolbox to Profile Frozen and Formalin-Fixed Paraffin-Embedded Tissues Multiomes. J Transl Med 2024; 104:100282. [PMID: 37924947 PMCID: PMC10872585 DOI: 10.1016/j.labinv.2023.100282] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Large-scale high-dimensional multiomics studies are essential to unravel molecular complexity in health and disease. We developed an integrated system for tissue sampling (CryoGrid), analytes preparation (PIXUL), and downstream multiomic analysis in a 96-well plate format (Matrix), MultiomicsTracks96, which we used to interrogate matched frozen and formalin-fixed paraffin-embedded (FFPE) mouse organs. Using this system, we generated 8-dimensional omics data sets encompassing 4 molecular layers of intracellular organization: epigenome (H3K27Ac, H3K4m3, RNA polymerase II, and 5mC levels), transcriptome (messenger RNA levels), epitranscriptome (m6A levels), and proteome (protein levels) in brain, heart, kidney, and liver. There was a high correlation between data from matched frozen and FFPE organs. The Segway genome segmentation algorithm applied to epigenomic profiles confirmed known organ-specific superenhancers in both FFPE and frozen samples. Linear regression analysis showed that proteomic profiles, known to be poorly correlated with transcriptomic data, can be more accurately predicted by the full suite of multiomics data, compared with using epigenomic, transcriptomic, or epitranscriptomic measurements individually.
Collapse
Affiliation(s)
- Daniel Mar
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Ilona M Babenko
- Diabetes Institute, University of Washington, Seattle, Washington
| | - Ran Zhang
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington; Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington
| | - Oleg Denisenko
- UW Medicine South Lake Union, University of Washington, Seattle, Washington
| | - Tomas Vaisar
- Diabetes Institute, University of Washington, Seattle, Washington
| | - Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington; Matchstick Technologies, Inc, Kirkland, Washington.
| |
Collapse
|
19
|
Batool SM, Hsia T, Beecroft A, Lewis B, Ekanayake E, Rosenfeld Y, Escobedo AK, Gamblin AS, Rawal S, Cote RJ, Watson M, Wong DTW, Patel AA, Skog J, Papadopoulos N, Bettegowda C, Castro CM, Lee H, Srivastava S, Carter BS, Balaj L. Extrinsic and intrinsic preanalytical variables affecting liquid biopsy in cancer. Cell Rep Med 2023; 4:101196. [PMID: 37725979 PMCID: PMC10591035 DOI: 10.1016/j.xcrm.2023.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/01/2022] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
Liquid biopsy, through isolation and analysis of disease-specific analytes, has evolved as a promising tool for safe and minimally invasive diagnosis and monitoring of tumors. It also has tremendous utility as a companion diagnostic allowing detection of biomarkers in a range of cancers (lung, breast, colon, ovarian, brain). However, clinical implementation and validation remains a challenge. Among other stages of development, preanalytical variables are critical in influencing the downstream cellular and molecular analysis of different analytes. Although considerable progress has been made to address these challenges, a comprehensive assessment of the impact on diagnostic parameters and consensus on standardized and optimized protocols is still lacking. Here, we summarize and critically evaluate key variables in the preanalytical stage, including study population selection, choice of biofluid, sample handling and collection, processing, and storage. There is an unmet need to develop and implement comprehensive preanalytical guidelines on the optimal practices and methodologies.
Collapse
Affiliation(s)
| | - Tiffaney Hsia
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Beecroft
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian Lewis
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emil Ekanayake
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yulia Rosenfeld
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ana K Escobedo
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Austin S Gamblin
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Siddarth Rawal
- Washington University School of Medicine, St. Louis, MO, USA; Circulogix Inc., St. Louis, MO, USA
| | - Richard J Cote
- Washington University School of Medicine, St. Louis, MO, USA; Circulogix Inc., St. Louis, MO, USA
| | - Mark Watson
- Washington University School of Medicine, St. Louis, MO, USA
| | - David T W Wong
- University of California Los Angeles, Los Angeles, CA, USA
| | | | - Johan Skog
- Exosome Diagnostics, Waltham, MA 02451, USA
| | | | | | - Cesar M Castro
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hakho Lee
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Bob S Carter
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Leonora Balaj
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Schactler SA, Scheuerman SJ, Lius A, Altemeier WA, An D, Matula TJ, Mikula M, Kulecka M, Denisenko O, Mar D, Bomsztyk K. CryoGrid-PIXUL-RNA: high throughput RNA isolation platform for tissue transcript analysis. BMC Genomics 2023; 24:446. [PMID: 37553584 PMCID: PMC10408117 DOI: 10.1186/s12864-023-09527-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Disease molecular complexity requires high throughput workflows to map disease pathways through analysis of vast tissue repositories. Great progress has been made in tissue multiomics analytical technologies. To match the high throughput of these advanced analytical platforms, we have previously developed a multipurpose 96-well microplate sonicator, PIXUL, that can be used in multiple workflows to extract analytes from cultured cells and tissue fragments for various downstream molecular assays. And yet, the sample preparation devices, such as PIXUL, along with the downstream multiomics analytical capabilities have not been fully exploited to interrogate tissues because storing and sampling of such biospecimens remain, in comparison, inefficient. RESULTS To mitigate this tissue interrogation bottleneck, we have developed a low-cost user-friendly system, CryoGrid, to catalog, cryostore and sample tissue fragments. TRIzol is widely used to isolate RNA but it is labor-intensive, hazardous, requires fume-hoods, and is an expensive reagent. Columns are also commonly used to extract RNA but they involve many steps, are prone to human errors, and are also expensive. Both TRIzol and column protocols use test tubes. We developed a microplate PIXUL-based TRIzol-free and column-free RNA isolation protocol that uses a buffer containing proteinase K (PK buffer). We have integrated the CryoGrid system with PIXUL-based PK buffer, TRIzol, and PureLink column methods to isolate RNA for gene-specific qPCR and genome-wide transcript analyses. CryoGrid-PIXUL, when integrated with either PK buffer, TRIzol or PureLink column RNA isolation protocols, yielded similar transcript profiles in frozen organs (brain, heart, kidney and liver) from a mouse model of sepsis. CONCLUSIONS RNA isolation using the CryoGrid-PIXUL system combined with the 96-well microplate PK buffer method offers an inexpensive user-friendly high throughput workflow to study transcriptional responses in tissues in health and disease as well as in therapeutic interventions.
Collapse
Affiliation(s)
- Scott A Schactler
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Stephen J Scheuerman
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Andrea Lius
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - William A Altemeier
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Center for Lung Biology, University of Washington, Seattle, WA, 98109, USA
| | - Dowon An
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Center for Lung Biology, University of Washington, Seattle, WA, 98109, USA
| | - Thomas J Matula
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, 98195, USA
- Matchstick Technologies, Inc, Kirkland, WA, 98033, USA
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781, Warsaw, Poland
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 01-813, Warsaw, Poland
| | - Oleg Denisenko
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
| | - Daniel Mar
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
- Matchstick Technologies, Inc, Kirkland, WA, 98033, USA.
| |
Collapse
|
21
|
Wiseman EJ, Moss JI, Atkinson J, Baakza H, Hayes E, Willis SE, Waring PM, Rodriguez Canales J, Jones GN. Epitope Lability of Phosphorylated Biomarkers of the DNA Damage Response Pathway Results in Increased Vulnerability to Effects of Delayed or Incomplete Formalin Fixation. J Histochem Cytochem 2023; 71:237-257. [PMID: 37119278 PMCID: PMC10227880 DOI: 10.1369/00221554231174069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/09/2023] [Indexed: 05/01/2023] Open
Abstract
Phosphorylated biomarkers are crucial for our understanding of drug mechanism of action and dose selection during clinical trials, particularly for drugs that target protein kinases, such as DNA-damage-response (DDR) inhibitors. However, tissue fixation conditions needed to preserve DDR-specific phospho-biomarkers have not been previously investigated. Using xenograft tissues and tightly controlled formalin fixation conditions, we assessed how preanalytical factors affect phosphorylated DDR biomarkers pRAD50(Ser635), ɣH2AX(Ser139), pKAP1(Ser824), and non-phosphorylated biomarkers cMYC and ATM. Cold ischemia times ranged from 15 min to 6 hr, and the fixation duration ranged from 24 hr to 4 weeks. Epitopes pRAD50 and pKAP1 appeared the most labile assessed with staining loss after just 15 min of cold ischemia time, while ATM was more robust showing consistent expression up to 1 hr of cold ischemia. Notably, ɣH2AX expression was lost with formalin fixation over 48 hr. The use of core needle biopsies where possible and novel fixation methods such as the 2-step temperature-controlled formalin approach may improve phosphorylated biomarker preservation; however, practical challenges may affect wider clinical application. The most essential tissue-processing step when downstream analysis includes DDR phosphorylated biomarkers is immediate tissue submersion in formalin, without delay, upon excision from the patient, followed by room temperature fixation for 24 hr.
Collapse
Affiliation(s)
| | - Jennifer I. Moss
- Bioscience, Oncology R&D, AstraZeneca,
Cambridge, United Kingdom
| | - James Atkinson
- CPSS, Oncology R&D, AstraZeneca, Cambridge,
United Kingdom
| | - Hana Baakza
- Translational Medicine, Oncology R&D,
AstraZeneca, Cambridge, United Kingdom
| | - Emily Hayes
- Translational Medicine, Oncology R&D,
AstraZeneca, Cambridge, United Kingdom
| | - Sophie E. Willis
- Translational Medicine, Oncology R&D,
AstraZeneca, Cambridge, United Kingdom
| | - Paul M. Waring
- Translational Medicine, Oncology R&D,
AstraZeneca, Cambridge, United Kingdom
| | | | - Gemma N. Jones
- Translational Medicine, Oncology R&D,
AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
22
|
Xing F, Zheng R, Liu B, Huang K, Wang D, Su R, Feng S. A new strategy for searching determinants in colorectal cancer progression through whole-part relationship combined with multi-omics. Talanta 2023; 259:124543. [PMID: 37058941 DOI: 10.1016/j.talanta.2023.124543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/16/2023]
Abstract
The high incidence and mortality of colorectal cancer (CRC) and the lack of adequate diagnostic molecules have led to poor treatment outcomes for colorectal cancer, making it particularly important to develop methods to obtain molecular with significant diagnostic effects. Here, we proposed a whole and part study strategy (early-stage colorectal cancer as "part" and colorectal cancer as "whole") to identify specific and co-pathways of change in early-stage and colorectal cancers and to discover the determinants of colorectal cancer development. Metabolite biomarkers discovered in plasma may not necessarily reflect the pathological status of tumor tissue. To explore the determinant biomarkers associated with plasma and tumor tissue in the CRC progression, multi-omics were performed on three phases of biomarker discovery studies (discovery, identification and validation) including 128 plasma metabolomes and 84 tissue transcriptomes. Importantly, we observe that the metabolic levels of oleic acid and FA (18:2) in patients with colorectal cancer were much higher than in healthy people. Finally, biofunctional verification confirmed that oleic acid and FA (18:2) can promote the growth of colorectal cancer tumor cells and be used as plasma biomarkers for early-stage colorectal cancer. We propose a novel research strategy to discover co-pathways and important biomarkers that may be targeted for a potential role in early colorectal cancer, and our work provides a promising tool for the clinical diagnosis of colorectal cancer.
Collapse
Affiliation(s)
- Fan Xing
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ran Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Botong Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Daguang Wang
- Department of Gastric Colorectal and Anal Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Rui Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
23
|
Mar D, Babenko IM, Zhang R, Noble WS, Denisenko O, Vaisar T, Bomsztyk K. MultiomicsTracks96: A high throughput PIXUL-Matrix-based toolbox to profile frozen and FFPE tissues multiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533031. [PMID: 36993219 PMCID: PMC10055122 DOI: 10.1101/2023.03.16.533031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background The multiome is an integrated assembly of distinct classes of molecules and molecular properties, or "omes," measured in the same biospecimen. Freezing and formalin-fixed paraffin-embedding (FFPE) are two common ways to store tissues, and these practices have generated vast biospecimen repositories. However, these biospecimens have been underutilized for multi-omic analysis due to the low throughput of current analytical technologies that impede large-scale studies. Methods Tissue sampling, preparation, and downstream analysis were integrated into a 96-well format multi-omics workflow, MultiomicsTracks96. Frozen mouse organs were sampled using the CryoGrid system, and matched FFPE samples were processed using a microtome. The 96-well format sonicator, PIXUL, was adapted to extract DNA, RNA, chromatin, and protein from tissues. The 96-well format analytical platform, Matrix, was used for chromatin immunoprecipitation (ChIP), methylated DNA immunoprecipitation (MeDIP), methylated RNA immunoprecipitation (MeRIP), and RNA reverse transcription (RT) assays followed by qPCR and sequencing. LC-MS/MS was used for protein analysis. The Segway genome segmentation algorithm was used to identify functional genomic regions, and linear regressors based on the multi-omics data were trained to predict protein expression. Results MultiomicsTracks96 was used to generate 8-dimensional datasets including RNA-seq measurements of mRNA expression; MeRIP-seq measurements of m6A and m5C; ChIP-seq measurements of H3K27Ac, H3K4m3, and Pol II; MeDIP-seq measurements of 5mC; and LC-MS/MS measurements of proteins. We observed high correlation between data from matched frozen and FFPE organs. The Segway genome segmentation algorithm applied to epigenomic profiles (ChIP-seq: H3K27Ac, H3K4m3, Pol II; MeDIP-seq: 5mC) was able to recapitulate and predict organ-specific super-enhancers in both FFPE and frozen samples. Linear regression analysis showed that proteomic expression profiles can be more accurately predicted by the full suite of multi-omics data, compared to using epigenomic, transcriptomic, or epitranscriptomic measurements individually. Conclusions The MultiomicsTracks96 workflow is well suited for high dimensional multi-omics studies - for instance, multiorgan animal models of disease, drug toxicities, environmental exposure, and aging as well as large-scale clinical investigations involving the use of biospecimens from existing tissue repositories.
Collapse
|
24
|
van der Wijngaart H, Jagga S, Dekker H, de Goeij R, Piersma SR, Pham TV, Knol JC, Zonderhuis BM, Holland HJ, Jiménez CR, Verheul HMW, Vanapalli S, Labots M. Advancing wide implementation of precision oncology: A liquid nitrogen-free snap freezer preserves molecular profiles of biological samples. Cancer Med 2023; 12:10979-10989. [PMID: 36916528 DOI: 10.1002/cam4.5781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
PURPOSE In precision oncology, tumor molecular profiles guide selection of therapy. Standardized snap freezing of tissue biospecimens is necessary to ensure reproducible, high-quality samples that preserve tumor biology for adequate molecular profiling. Quenching in liquid nitrogen (LN2 ) is the golden standard method, but LN2 has several limitations. We developed a LN2 -independent snap freezer with adjustable cold sink temperature. To benchmark this device against the golden standard, we compared molecular profiles of biospecimens. METHODS Cancer cell lines and core needle normal tissue biopsies from five patients' liver resection specimens were used to compare mass spectrometry (MS)-based global phosphoproteomic and RNA sequencing profiles and RNA integrity obtained by both freezing methods. RESULTS Unsupervised cluster analysis of phosphoproteomic and transcriptomic profiles of snap freezer versus LN2 -frozen K562 samples and liver biopsies showed no separation based on freezing method (with Pearson's r 0.96 (range 0.92-0.98) and >0.99 for K562 profiles, respectively), while samples with +2 h bench-time formed a separate cluster. RNA integrity was also similar for both snap freezing methods. Molecular profiles of liver biopsies were clearly identified per individual patient regardless of the applied freezing method. Two to 25 s freezing time variations did not induce profiling differences in HCT116 samples. CONCLUSION The novel snap freezer preserves high-quality biospecimen and allows identification of individual patients' molecular profiles, while overcoming important limitations of the use of LN2 . This snap freezer may provide a useful tool in clinical cancer research and practice, enabling a wider implementation of (multi-)omics analyses for precision oncology.
Collapse
Affiliation(s)
- Hanneke van der Wijngaart
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sahil Jagga
- Applied Thermal Sciences, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Henk Dekker
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Richard de Goeij
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jaco C Knol
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Babs M Zonderhuis
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harry J Holland
- Applied Thermal Sciences, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Connie R Jiménez
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Srinivas Vanapalli
- Applied Thermal Sciences, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Low TY, Chen YJ, Ishihama Y, Chung MCM, Cordwell S, Poon TCW, Kwon HJ. The Second Asia-Oceania Human Proteome Organization (AOHUPO) Online Education Series on the Renaissance of Clinical Proteomics: Biomarkers, Imaging and Therapeutics. Mol Cell Proteomics 2022; 21:100436. [PMID: 36309314 PMCID: PMC9700300 DOI: 10.1016/j.mcpro.2022.100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
In 2021, the Asia-Oceania Human Proteome Organization (AOHUPO) initiated a new endeavor named the AOHUPO Online Education Series with the aim to promote scientific education and collaboration, exchange of ideas and culture among the young scientists in the AO region. Following the warm participation, the AOHUPO organized the second series in 2022, with the theme "The Renaissance of Clinical Proteomics: Biomarkers, Imaging and Therapeutics". This time, the second AOHUPO Online Education Series was hosted by the UKM Medical Molecular Biology Institute (UMBI) affiliated to the National University of Malaysia (UKM) in Kuala Lumpur, Malaysia on three consecutive Fridays (11th, 18th and 25th of March). More than 300 participants coming from 29 countries/regions registered for this 3-days event. This event provided an amalgamation of six prominent speakers and all participants whose interests lay mainly in applying MS-based and non-MS-based proteomics for clinical investigation.
Collapse
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Max Ching Ming Chung
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stuart Cordwell
- School of Life and Environmental Sciences and Sydney Mass Spectrometry, The University of Sydney, Sydney, Australia
| | - Terence Chuen Wai Poon
- Pilot Laboratory, Proteomics Core, Institute of Translational Medicine, Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ho Jeong Kwon
- Chemical Genomics Leader Research Initiative, Department of Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
26
|
Kapuruge EP, Jehanathan N, Rogers SP, Williams S, Chung Y, Borges CR. Tracking the Stability of Clinically Relevant Blood Plasma Proteins with Delta-S-Cys-Albumin-A Dilute-and-Shoot LC/MS-Based Marker of Specimen Exposure to Thawed Conditions. Mol Cell Proteomics 2022; 21:100420. [PMID: 36182099 PMCID: PMC9637815 DOI: 10.1016/j.mcpro.2022.100420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
Biomolecular integrity can be compromised when blood plasma/serum (P/S) specimens are improperly handled. Compromised analytes can subsequently produce erroneous results-without any indication of having done so. We recently introduced an LC/MS-based marker of P/S exposure to thawed conditions called ΔS-Cys-Albumin which, aided by an established rate law, quantitatively tracks exposure of P/S to temperatures greater than their freezing point of -30 °C. The purposes of this study were to (1) evaluate ΔS-Cys-Albumin baseline values in gastrointestinal cancer patients and cancer-free control donors, (2) empirically assess the kinetic profiles of ΔS-Cys-Albumin at 23 °C, 4 °C, and -20 °C, and (3) empirically link ΔS-Cys-Albumin to the stability of clinically relevant proteins. ΔS-Cys-Albumin was measured at ≥ 9 different time points per exposure temperature in serum and K2EDTA plasma samples from 24 separate donors in aliquots kept separately at 23 °C, 4 °C, and -20 °C. Twenty-one clinically relevant plasma proteins were measured at four time points per temperature via a multiplexed immunoassay on the Luminex platform. Protein stability was assessed by mixed effects models. Coordinated shifts in stability between ΔS-Cys-Albumin and the unstable proteins were documented by repeated measures and Pearson correlations. Plasma ΔS-Cys-Albumin dropped from approximately 20% to under 5% within 96 h at 23 °C, 28 days at 4 °C, and 65 days at -20 °C. On average, 22% of the 21 proteins significantly changed in apparent concentration at each exposure temperature (p < 0.0008 with >10% shift). A linear inverse relationship was found between the percentage of proteins destabilized and ΔS-Cys-Albumin (r = -0.61; p < 0.0001)-regardless of the specific time/temperature of exposure. ΔS-Cys-Albumin tracks cumulative thawed-state exposure. These results now enable ΔS-Cys-Albumin to approximate the percentage of clinically relevant proteins that have been compromised by incidental plasma exposure to thawed-state conditions.
Collapse
Affiliation(s)
- Erandi P. Kapuruge
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA,The Biodesign Institute at Arizona State University, Tempe, Arizona, USA
| | - Nilojan Jehanathan
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA,The Biodesign Institute at Arizona State University, Tempe, Arizona, USA
| | - Stephen P. Rogers
- The Biodesign Institute at Arizona State University, Tempe, Arizona, USA
| | - Stacy Williams
- The Biodesign Institute at Arizona State University, Tempe, Arizona, USA
| | - Yunro Chung
- The Biodesign Institute at Arizona State University, Tempe, Arizona, USA,College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Chad R. Borges
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA,The Biodesign Institute at Arizona State University, Tempe, Arizona, USA,For correspondence: Chad R. Borges
| |
Collapse
|
27
|
Dobritoiu F, Baltan A, Chefani A, Billingham K, Chenard MP, Vaziri R, Lacroix-Triki M, Waydelich A, Erb G, Andersson E, Cañamero M, Toro P, Wedden S, D’Arrigo C. Tissue Selection for PD-L1 Testing in Triple Negative Breast Cancer (TNBC). Appl Immunohistochem Mol Morphol 2022; 30:549-556. [PMID: 36036647 PMCID: PMC9444286 DOI: 10.1097/pai.0000000000001053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Atezolizumab in combination with nab-paclitaxel has been introduced for the treatment of locally advanced or recurrent triple negative breast cancer (TNBC). Patient selection relies on the use of immunohistochemistry using a specific monoclonal PD-L1 antibody (clone SP142) in a tightly controlled companion diagnostic test (CDx) with a defined interpretative algorithm. Currently there are no standardized recommendations for selecting the optimal tissue to be tested and there is limited data to support decision making, raising the possibility that tissue selection may bias test results. We compared PD-L1 SP142 assessment in a collection of 73 TNBC cases with matched core biopsies and excision samples. There was good correlation between PD-L1-positive core biopsy and subsequent excision, but we found considerable discrepancy between PD-L1 negative core biopsy and matched excision, with a third of cases found negative on core biopsies converting to positive upon examination of the excision tissue. In view of these findings, we developed a workflow for the clinical testing of TNBC for PD-L1 and implemented it in a central referral laboratory. We present audit data from the clinical PD-L1 testing relating to 2 years of activities, indicating that implementation of this workflow results in positivity rates in our population of TNBC similar to those of IMpassion130 clinical trial. We also developed an online atlas with a precise numerical annotation to aid pathologists in the interpretation of PD-L1 scoring in TNBC.
Collapse
Affiliation(s)
- Florin Dobritoiu
- Poundbury Cancer Institute
- Department of Pathology, University Emergency Hospital, Bucharest, Romania
| | | | | | - Kim Billingham
- Department of Pathology, Great Western Hospital, Swindon, UK
| | | | - Reza Vaziri
- Department of Pathology, Worcestershire Acute Hospitals, Worcester, UK
| | | | - Anne Waydelich
- Oncology Medical and Government Affairs Roche Diagnostics EMEA-LATAM Region, Rotkreuz, Switzerland
| | - Gilles Erb
- Global Medical Affairs/PDMA, Roche Basel, Switzerland
| | - Emilia Andersson
- Oncology Medical and Government Affairs Roche Diagnostics EMEA-LATAM Region, Rotkreuz, Switzerland
| | - Marta Cañamero
- Oncology Medical and Government Affairs Roche Diagnostics EMEA-LATAM Region, Rotkreuz, Switzerland
| | - Paula Toro
- Clinical Development & Medical Affairs, Roche Diagnostics Solutions, Tucson
| | | | | |
Collapse
|
28
|
Principles of reproducible metabolite profiling of enriched lymphocytes in tumors and ascites from human ovarian cancer. Nat Protoc 2022; 17:2668-2698. [DOI: 10.1038/s41596-022-00729-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/25/2022] [Indexed: 11/08/2022]
|
29
|
Zhang Y, Blomquist TM, Kusko R, Stetson D, Zhang Z, Yin L, Sebra R, Gong B, Lococo JS, Mittal VK, Novoradovskaya N, Yeo JY, Dominiak N, Hipp J, Raymond A, Qiu F, Arib H, Smith ML, Brock JE, Farkas DH, Craig DJ, Crawford EL, Li D, Morrison T, Tom N, Xiao W, Yang M, Mason CE, Richmond TA, Jones W, Johann DJ, Shi L, Tong W, Willey JC, Xu J. Deep oncopanel sequencing reveals within block position-dependent quality degradation in FFPE processed samples. Genome Biol 2022; 23:141. [PMID: 35768876 PMCID: PMC9241261 DOI: 10.1186/s13059-022-02709-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Clinical laboratories routinely use formalin-fixed paraffin-embedded (FFPE) tissue or cell block cytology samples in oncology panel sequencing to identify mutations that can predict patient response to targeted therapy. To understand the technical error due to FFPE processing, a robustly characterized diploid cell line was used to create FFPE samples with four different pre-tissue processing formalin fixation times. A total of 96 FFPE sections were then distributed to different laboratories for targeted sequencing analysis by four oncopanels, and variants resulting from technical error were identified. RESULTS Tissue sections that fail more frequently show low cellularity, lower than recommended library preparation DNA input, or target sequencing depth. Importantly, sections from block surfaces are more likely to show FFPE-specific errors, akin to "edge effects" seen in histology, while the inner samples display no quality degradation related to fixation time. CONCLUSIONS To assure reliable results, we recommend avoiding the block surface portion and restricting mutation detection to genomic regions of high confidence.
Collapse
Affiliation(s)
- Yifan Zhang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Thomas M Blomquist
- (Formerly) Department of Pathology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
- Lucas County Coroner's Office, 2595 Arlington Ave, Toledo, OH, 43614, USA
| | - Rebecca Kusko
- Immuneering Corporation, 245 Main St, Cambridge, MA, 02142, USA
| | - Daniel Stetson
- Astrazeneca Pharmaceuticals, 35 Gatehouse Dr, Waltham, MA, 02451, USA
| | - Zhihong Zhang
- Research and Development, Burning Rock Biotech, Shanghai, 201114, China
| | - Lihui Yin
- (Formerly) Pathology and Laboratory Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Robert Sebra
- Icahn Institute and Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Binsheng Gong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | | | - Vinay K Mittal
- Thermo Fisher Scientific, 110 Miller Ave, Ann Arbor, MI, 48104, USA
| | | | - Ji-Youn Yeo
- Department of Pathology, University of Toledo, 3000 Arlington Ave, Toledo, OH, 43614, USA
| | - Nicole Dominiak
- Department of Pathology, University of Toledo, 3000 Arlington Ave, Toledo, OH, 43614, USA
| | - Jennifer Hipp
- Department of Pathology, Strata Oncology, Inc., Ann Arbor, MI, 48103, USA
| | - Amelia Raymond
- Astrazeneca Pharmaceuticals, 35 Gatehouse Dr, Waltham, MA, 02451, USA
| | - Fujun Qiu
- Research and Development, Burning Rock Biotech, Shanghai, 201114, China
| | - Hanane Arib
- Icahn Institute and Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Melissa L Smith
- Icahn Institute and Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Jay E Brock
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Daniel H Farkas
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Daniel J Craig
- Department of Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Erin L Crawford
- Department of Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Dan Li
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tom Morrison
- Accugenomics, Inc., 1410 Commonwealth Drive, Suite 105, Wilmington, NC, 20403, USA
| | - Nikola Tom
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- EATRIS ERIC- European Infrastructure for Translational Medicine, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Wenzhong Xiao
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA
| | - Mary Yang
- Department of Information Science, University of Arkansas at Little Rock, 2801 S. Univ. Ave, Little Rock, AR, 72204, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | - Todd A Richmond
- Market & Application Development Bioinformatics, Roche Sequencing Solutions Inc., 4300 Hacienda Dr, Pleasanton, CA, 94588, USA
| | - Wendell Jones
- Q2 Solutions - EA Genomics, 5927 S Miami Blvd, Morrisville, NC, 27560, USA
| | - Donald J Johann
- Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Hospital/Cancer Institute, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
- Fudan-Gospel Joint Research Center for Precision Medicine, Fudan University, Shanghai, 200438, China
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - James C Willey
- Departments of Medicine, Pathology, and Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Sciences Campus, 3000 Arlington Ave, Toledo, OH, 43614, USA.
| | - Joshua Xu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
30
|
Samir S, Ahmed HO, Diab TM, Mostafa A, Elmeligy HA, Kamel A, Khalil H. Rate of Epstein-Barr Virus in Gastric Adenocarcinoma in Egyptian Patients in View of the WHO Classification and Correlation with p16 Immunoreactivity. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND AND AIM: Gastric cancer (GC) is one of the top causes of cancer-related deaths worldwide. According to the Cancer Genome Atlas, there are four subtypes of GC, with the Epstein-Barr virus (EBV) subtype accounting for about 10% of cases. EBV infection causes EBV-associated GC (EBVaGC). The previous research suggested that the presence of the EBV viral genome in gastric carcinomas could be used as a surrogate marker for targeted therapy and optimal GC treatment.
AIM: We aimed to explore the rate of EBV involvement in gastric carcinogenesis from molecular perspective view and to evaluate the role of the tumor-suppressor protein p16 as a marker for diagnosis in GC Egyptian patients in relation to EBV infection.
METHODS: One hundred-four surgically resected GC cases were analyzed. Two methods including quantitative real-time polymerase chain reaction (qPCR) for detecting EBV-derived latent membrane protein-1 (LMP-1) and Epstein-Barr nuclear antigen-1 (EBNA-1) genes as well as immunohistochemistry (IHC) detection of LMP-1 protein and p16 protein on paraffinized tissue blocks were applied.
RESULTS: Using IHC, p16 protein was presented in 90/104 (86.5%) of the GC cases, and EBV LMP-1 was detected in 4 cases (3.84%). qPCR detected 14 cases positive for EBV (13.46%). In EBV positive cases detected using qPCR, no expression of p16 was detected.
CONCLUSION: EBVaGC has a low incidence in Egypt; loss of p16 expression was recognized in EBVaGC and could be considered as a promising biomarker of EBVaGC. The combination of the two methods IHC and qPCR in addition to p16 is recommended for improving the accuracy of identification of infected cancer.
Collapse
|
31
|
Li JJX, Ip PPC. Endometrial Cancer: An Update on Prognostic Pathologic Features and Clinically Relevant Biomarkers. Surg Pathol Clin 2022; 15:277-299. [PMID: 35715162 DOI: 10.1016/j.path.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The prognosis of endometrial cancers has historically been determined by the evaluation of histologic typing, grading, and staging. Recently, molecular classification, pioneered by the 4 prognostic categories from The Cancer Genome Atlas Research Network, has been shown to independently predict the outcome, correlate with biomarker expression, and predict response to adjuvant chemotherapy. In modern-day pathology practice, it has become necessary to integrate the time-honored prognostic pathologic features with molecular classification to optimize patient management. In this review, the significance of the molecular classification of endometrioid carcinomas, the application of practical diagnostic surrogate algorithms, and interpretation of test results will be addressed. Histologic features and theragnostic biomarkers will also be discussed in relation to the molecular subtypes of endometrial cancers.
Collapse
Affiliation(s)
- Joshua J X Li
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR
| | - Philip P C Ip
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pok Fu Lam Road, Hong Kong SAR.
| |
Collapse
|
32
|
Hercules SM, Alnajar M, Chen C, Mladjenovic SM, Shipeolu BA, Perkovic O, Pond GR, Mbuagbaw L, Blenman KR, Daniel JM. Triple-negative breast cancer prevalence in Africa: a systematic review and meta-analysis. BMJ Open 2022; 12:e055735. [PMID: 35623750 PMCID: PMC9150263 DOI: 10.1136/bmjopen-2021-055735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The aggressive triple-negative breast cancer (TNBC) subtype disproportionately affects women of African ancestry across the diaspora, but its frequency across Africa has not been widely studied. This study seeks to estimate the frequency of TNBC among African populations. DESIGN Systematic review and meta-analysis using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework. DATA SOURCES PubMed, EMBASE, African Journals Online and Web of Science were searched on 25 April 2021. ELIGIBILITY CRITERIA FOR SELECTING STUDIES We included studies that use breast cancer tissue samples from indigenous African women with sample size of eligible participants ≥40 and full receptor status for all three receptors (oestrogen receptor (ER)/progesterone receptor (PR)/human epidermal growth factor receptor 2 (HER2)) reported. DATA EXTRACTION AND SYNTHESIS Two independent reviewers extracted data and assessed risk of bias using the modified assessment tool by Hoy et al. (2012) for prevalence studies. A random-effects meta-analysis was performed, and data were pooled using the inverse-variance method and logit transformation. Pooled frequencies were reported with 95% CIs calculated with the Clopper-Pearson method and heterogeneity quantified with I2 statistic. GRADE assessed the certainty of the evidence. RESULTS 1808 potentially eligible studies were identified of which 67 were included in the systematic review and 60 were included in the meta- analysis. Pooled TNBC frequency across African countries represented was estimated to be 27.0%; 95% CI: 24.0% to 30.2%, I2=94%. Pooled TNBC frequency was highest across West Africa, 45.7% (n=15, 95% CI: 38.8% to 52.8%, I2=91%) and lowest in Central Africa, 14.9% (n=1, 95% CI: 8.9 % to 24.1%). Estimates for TNBC were higher for studies that used Allred guidelines for ER/PR status compared with American Society of Clinical Oncology(ASCO)/College of American Pathologists(CAP) guidelines, and for studies that used older versions of ASCO/CAP guidelines for assessing HER2 status. Certainty of evidence was assessed to be very low using GRADE approach. CONCLUSION TNBC frequency was variable with the highest frequency reported in West Africa. Greater emphasis should be placed on establishing protocols for assessing receptor status due to the variability among studies.
Collapse
Affiliation(s)
- Shawn M Hercules
- Biology, McMaster University, Hamilton, Ontario, Canada
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania, USA
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Meena Alnajar
- Biology, McMaster University, Hamilton, Ontario, Canada
- Osgoode Hall Law School, York University, Toronto, Ontario, Canada
| | - Chen Chen
- Biology, McMaster University, Hamilton, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Stefan M Mladjenovic
- Biology, McMaster University, Hamilton, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Bolade Ajarat Shipeolu
- Biology, McMaster University, Hamilton, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Olga Perkovic
- McMaster University Library, McMaster University, Hamilton, Ontario, Canada
| | - Greg R Pond
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Lawrence Mbuagbaw
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Biostatistics Unit, Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, Ontario, Canada
- Centre for Development of Best Practices in Health (CDBPH), Yaoundé Central Hospital, Yaoundé, Cameroon
- Division of Epidemiology and Biostatistics, Department of Global Health, Stellenbosch University, Cape Town, South Africa
| | - Kim Rm Blenman
- Department of Internal Medicine, Section of Medical Oncology, Yale University Yale Cancer Center, New Haven, Connecticut, USA
- Department of Computer Science, Yale School of Engineering and Applied Science, Yale University, New Haven, Connecticut, USA
| | - Juliet M Daniel
- Biology, McMaster University, Hamilton, Ontario, Canada
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Fernández-Metzler C, Ackermann B, Garofolo F, Arnold ME, DeSilva B, Gu H, Laterza O, Mao Y, Rose M, Vazvaei-Smith F, Steenwyk R. Biomarker Assay Validation by Mass Spectrometry. AAPS J 2022; 24:66. [PMID: 35534647 DOI: 10.1208/s12248-022-00707-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Decades of discussion and publication have gone into the guidance from the scientific community and the regulatory agencies on the use and validation of pharmacokinetic and toxicokinetic assays by chromatographic and ligand binding assays for the measurement of drugs and metabolites. These assay validations are well described in the FDA Guidance on Bioanalytical Methods Validation (BMV, 2018). While the BMV included biomarker assay validation, the focus was on understanding the challenges posed in validating biomarker assays and the importance of having reliable biomarker assays when used for regulatory submissions, rather than definition of the appropriate experiments to be performed. Different from PK bioanalysis, analysis of biomarkers can be challenging due to the presence of target analyte(s) in the control matrices used for calibrator and quality control sample preparation, and greater difficulty in procuring appropriate reference standards representative of the endogenous molecule. Several papers have been published offering recommendations for biomarker assay validation. The situational nature of biomarker applications necessitates fit-for-purpose (FFP) assay validation. A unifying theme for FFP analysis is that method validation requirements be consistent with the proposed context of use (COU) for any given biomarker. This communication provides specific recommendations for biomarker assay validation (BAV) by LC-MS, for both small and large molecule biomarkers. The consensus recommendations include creation of a validation plan that contains definition of the COU of the assay, use of the PK assay validation elements that support the COU, and definition of assay validation elements adapted to fit biomarker assays and the acceptance criteria for both.
Collapse
Affiliation(s)
| | - Brad Ackermann
- Eli Lilly & Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Fabio Garofolo
- BRI - a Frontage Company, 8898 Heather St, Vancouver, British Columbia, V6P 3S8, Canada
| | - Mark E Arnold
- Labcorp Drug Development, 221 Tulip Tree Drive, Westampton, NJ, 08060-5511, USA
| | - Binodh DeSilva
- Bristol-Myers Squibb Co., Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Huidong Gu
- Bristol-Myers Squibb Co., Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Omar Laterza
- Merck and Co Inc., 90 E Scott Ave, Rahway, NJ, 07065, USA
| | - Yan Mao
- Boehringer-Ingelheim Pharmaceuticals, 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Mark Rose
- Gossamer Bio Inc., 3013 Science Park Road, Suite 200, San Diego, CA, 92121, USA
| | | | - Rick Steenwyk
- Pfizer-Retired, 8739 N Homestead Circle, Irons, MI, 49644, USA
| |
Collapse
|
34
|
Pathak K, Pathak MP, Saikia R, Gogoi U, Sahariah JJ, Zothantluanga JH, Samanta A, Das A. Cancer Chemotherapy via Natural Bioactive Compounds. Curr Drug Discov Technol 2022; 19:e310322202888. [PMID: 35362385 DOI: 10.2174/1570163819666220331095744] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Cancer-induced mortality is increasingly prevalent globally which skyrocketed the necessity to discover new/novel safe and effective anticancer drugs. Cancer is characterized by the continuous multiplication of cells in the human which is unable to control. Scientific research is drawing its attention towards naturally-derived bioactive compounds as they have fewer side effects compared to the current synthetic drugs used for chemotherapy. OBJECTIVE Drugs isolated from natural sources and their role in the manipulation of epigenetic markers in cancer are discussed briefly in this review article. METHODS With advancing medicinal plant biotechnology and microbiology in the past century, several anticancer phytomedicines were developed. Modern pharmacopeia contains at least 25% herbal-based remedy including clinically used anticancer drugs. These drugs mainly include the podophyllotoxin derivatives vinca alkaloids, curcumin, mistletoe plant extracts, taxanes, camptothecin, combretastatin, and others including colchicine, artesunate, homoharringtonine, ellipticine, roscovitine, maytanasin, tapsigargin,andbruceantin. RESULTS Compounds (psammaplin, didemnin, dolastin, ecteinascidin,and halichondrin) isolated from marine sources and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates. They have been evaluated for their anticancer activity on cells and experimental animal models and used chemotherapy.Drug induced manipulation of epigenetic markers plays an important role in the treatment of cancer. CONCLUSION The development of a new drug from isolated bioactive compounds of plant sources has been a feasible way to lower the toxicity and increase their effectiveness against cancer. Potential anticancer therapeutic leads obtained from various ethnomedicinal plants, foods, marine, and microorganisms are showing effective yet realistically safe pharmacological activity. This review will highlight important plant-based bioactive compounds like curcumin, stilbenes, terpenes, other polyphenolic phyto-compounds, and structurally related families that are used to prevent/ ameliorate cancer. However, a contribution from all possible fields of science is still a prerequisite for discovering safe and effective anticancer drugs.
Collapse
Affiliation(s)
- Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Sciences, Assam down town University, Panikhaiti, Guwahati-781026, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Jon Jyoti Sahariah
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Abhishek Samanta
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| |
Collapse
|
35
|
Wharton KA, Wood D, Manesse M, Maclean KH, Leiss F, Zuraw A. Tissue Multiplex Analyte Detection in Anatomic Pathology - Pathways to Clinical Implementation. Front Mol Biosci 2021; 8:672531. [PMID: 34386519 PMCID: PMC8353449 DOI: 10.3389/fmolb.2021.672531] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Multiplex tissue analysis has revolutionized our understanding of the tumor microenvironment (TME) with implications for biomarker development and diagnostic testing. Multiplex labeling is used for specific clinical situations, but there remain barriers to expanded use in anatomic pathology practice. Methods: We review immunohistochemistry (IHC) and related assays used to localize molecules in tissues, with reference to United States regulatory and practice landscapes. We review multiplex methods and strategies used in clinical diagnosis and in research, particularly in immuno-oncology. Within the framework of assay design and testing phases, we examine the suitability of multiplex immunofluorescence (mIF) for clinical diagnostic workflows, considering its advantages and challenges to implementation. Results: Multiplex labeling is poised to radically transform pathologic diagnosis because it can answer questions about tissue-level biology and single-cell phenotypes that cannot be addressed with traditional IHC biomarker panels. Widespread implementation will require improved detection chemistry, illustrated by InSituPlex technology (Ultivue, Inc., Cambridge, MA) that allows coregistration of hematoxylin and eosin (H&E) and mIF images, greater standardization and interoperability of workflow and data pipelines to facilitate consistent interpretation by pathologists, and integration of multichannel images into digital pathology whole slide imaging (WSI) systems, including interpretation aided by artificial intelligence (AI). Adoption will also be facilitated by evidence that justifies incorporation into clinical practice, an ability to navigate regulatory pathways, and adequate health care budgets and reimbursement. We expand the brightfield WSI system “pixel pathway” concept to multiplex workflows, suggesting that adoption might be accelerated by data standardization centered on cell phenotypes defined by coexpression of multiple molecules. Conclusion: Multiplex labeling has the potential to complement next generation sequencing in cancer diagnosis by allowing pathologists to visualize and understand every cell in a tissue biopsy slide. Until mIF reagents, digital pathology systems including fluorescence scanners, and data pipelines are standardized, we propose that diagnostic labs will play a crucial role in driving adoption of multiplex tissue diagnostics by using retrospective data from tissue collections as a foundation for laboratory-developed test (LDT) implementation and use in prospective trials as companion diagnostics (CDx).
Collapse
|
36
|
Criscitiello C, Guerini-Rocco E, Viale G, Fumagalli C, Sajjadi E, Venetis K, Piciotti R, Invernizzi M, Malapelle U, Fusco N. Immunotherapy in Breast Cancer Patients: A Focus on the Use of the Currently Available Biomarkers in Oncology. Anticancer Agents Med Chem 2021; 22:787-800. [PMID: 34229592 DOI: 10.2174/1871520621666210706144112] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have remarkably modified the way solid tumors are managed, including breast cancer. Unfortunately, only a relatively small number of breast cancer patients significantly respond to these treatments. To maximize the immunotherapy benefit in breast cancer, several efforts are currently being put forward for the identification of i) the best therapeutic strategy (i.e. ICI monotherapy or in association with chemotherapy, radiotherapy, or other drugs); ii) the optimal timing for administration (e.g. early/advanced stage of disease; adjuvant/neoadjuvant setting); iii) the most effective and reliable predictive biomarkers of response (e.g. tumor-infiltrating lymphocytes, programmed death-ligand 1, microsatellite instability associated with mismatch repair deficiency, and tumor mutational burden). This article reviews the impacts and gaps in the characterization of immune-related biomarkers raised by clinical and translational research studies with immunotherapy treatments. Particular emphasis has been put on the documented evidence of significant clinical benefits of ICI in different randomized clinical trials, along with preanalytical and analytical issues in predictive biomarkers pathological assessment.
Collapse
Affiliation(s)
| | | | - Giulia Viale
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Caterina Fumagalli
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Elham Sajjadi
- Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | | | - Roberto Piciotti
- Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Viale Piazza D'Armi 1, Novara, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| |
Collapse
|
37
|
McKean WB, Moser JC, Rimm D, Hu-Lieskovan S. Biomarkers in Precision Cancer Immunotherapy: Promise and Challenges. Am Soc Clin Oncol Educ Book 2021; 40:e275-e291. [PMID: 32453632 DOI: 10.1200/edbk_280571] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rapid expansion of modern cancer immunotherapeutics has led to a dramatic improvement in patient survival and sustained remission for otherwise refractory malignancies. However, a significant limitation behind these current treatment modalities is an irregularity in clinical response, which is especially pronounced among checkpoint inhibition. This unpredictability leads to significant side effects, financial costs, and health care burden, with unsatisfactory clinical benefit in the majority of treated patients. Additionally, although ongoing studies and trials investigate the use of multiple biomarkers predictive of patient response or harm, none of these are comprehensive in predicting potential benefit. This unmet need for validated biomarkers is largely secondary to a prohibitive complexity within tumor parenchyma and microenvironment, dynamic clonal and proteomic changes to therapy, heterogenous host immune defects, and varied standardization among sample preparation and reporting. Herein, we discuss current advantages of predictive biomarkers, as well as limitations in their clinical use and application. We also review future directions, ideal characteristics, and trial design needed for proper precision immuno-oncology and biomarker development.
Collapse
Affiliation(s)
- William B McKean
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | | - David Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | | |
Collapse
|
38
|
Cree IA, Indave Ruiz BI, Zavadil J, McKay J, Olivier M, Kozlakidis Z, Lazar AJ, Hyde C, Holdenrieder S, Hastings R, Rajpoot N, de la Fouchardiere A, Rous B, Zenklusen JC, Normanno N, Schilsky RL, for the IC 3R participants. The International Collaboration for Cancer Classification and Research. Int J Cancer 2021; 148:560-571. [PMID: 32818326 PMCID: PMC7756795 DOI: 10.1002/ijc.33260] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
Gaps in the translation of research findings to clinical management have been recognized for decades. They exist for the diagnosis as well as the management of cancer. The international standards for cancer diagnosis are contained within the World Health Organization (WHO) Classification of Tumours, published by the International Agency for Research on Cancer (IARC) and known worldwide as the WHO Blue Books. In addition to their relevance to individual patients, these volumes provide a valuable contribution to cancer research and surveillance, fulfilling an important role in scientific evidence synthesis and international standard setting. However, the multidimensional nature of cancer classification, the way in which the WHO Classification of Tumours is constructed, and the scientific information overload in the field pose important challenges for the translation of research findings to tumour classification and hence cancer diagnosis. To help address these challenges, we have established the International Collaboration for Cancer Classification and Research (IC3 R) to provide a forum for the coordination of efforts in evidence generation, standard setting and best practice recommendations in the field of tumour classification. The first IC3 R meeting, held in Lyon, France, in February 2019, gathered representatives of major institutions involved in tumour classification and related fields to identify and discuss translational challenges in data comparability, standard setting, quality management, evidence evaluation and copyright, as well as to develop a collaborative plan for addressing these challenges.
Collapse
Affiliation(s)
- Ian A. Cree
- International Agency for Research on Cancer (IARC), World Health Organization (WHO)LyonFrance
| | | | - Jiri Zavadil
- International Agency for Research on Cancer (IARC), World Health Organization (WHO)LyonFrance
| | - James McKay
- International Agency for Research on Cancer (IARC), World Health Organization (WHO)LyonFrance
| | - Magali Olivier
- International Agency for Research on Cancer (IARC), World Health Organization (WHO)LyonFrance
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), World Health Organization (WHO)LyonFrance
| | - Alexander J. Lazar
- Departments of Pathology, Genomic Medicine, and Translational Molecular PathologyThe University of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Chris Hyde
- Exeter Test GroupCollege of Medicine and Health, University of ExeterExeterUK
| | | | - Ros Hastings
- GenQA (Genomics External Quality Assessment)Women's Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation TrustOxfordUK
| | - Nasir Rajpoot
- Department of Computer ScienceUniversity of WarwickCoventryUK
- Alan Turing InstituteLondonUK
- Department of PathologyUniversity Hospitals Coventry & Warwickshire NHS TrustCoventryUK
| | | | - Brian Rous
- National Cancer Registration Service (Eastern Office), Public Health England, Victoria HouseCambridgeUK
| | - Jean Claude Zenklusen
- Center for Cancer GenomicsNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Nicola Normanno
- Cell Biology and Biotherapy UnitIstituto Nazionale Tumori—IRCCS—“Fondazione G. Pascale,” Via M. SemmolaNaplesItaly
| | | | | |
Collapse
|
39
|
Hu-Lieskovan S, Bhaumik S, Dhodapkar K, Grivel JCJB, Gupta S, Hanks BA, Janetzki S, Kleen TO, Koguchi Y, Lund AW, Maccalli C, Mahnke YD, Novosiadly RD, Selvan SR, Sims T, Zhao Y, Maecker HT. SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery. J Immunother Cancer 2020; 8:e000705. [PMID: 33268350 PMCID: PMC7713206 DOI: 10.1136/jitc-2020-000705] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Since the publication of the Society for Immunotherapy of Cancer's (SITC) original cancer immunotherapy biomarkers resource document, there have been remarkable breakthroughs in cancer immunotherapy, in particular the development and approval of immune checkpoint inhibitors, engineered cellular therapies, and tumor vaccines to unleash antitumor immune activity. The most notable feature of these breakthroughs is the achievement of durable clinical responses in some patients, enabling long-term survival. These durable responses have been noted in tumor types that were not previously considered immunotherapy-sensitive, suggesting that all patients with cancer may have the potential to benefit from immunotherapy. However, a persistent challenge in the field is the fact that only a minority of patients respond to immunotherapy, especially those therapies that rely on endogenous immune activation such as checkpoint inhibitors and vaccination due to the complex and heterogeneous immune escape mechanisms which can develop in each patient. Therefore, the development of robust biomarkers for each immunotherapy strategy, enabling rational patient selection and the design of precise combination therapies, is key for the continued success and improvement of immunotherapy. In this document, we summarize and update established biomarkers, guidelines, and regulatory considerations for clinical immune biomarker development, discuss well-known and novel technologies for biomarker discovery and validation, and provide tools and resources that can be used by the biomarker research community to facilitate the continued development of immuno-oncology and aid in the goal of durable responses in all patients.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Kavita Dhodapkar
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | - Sumati Gupta
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Brent A Hanks
- Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Yoshinobu Koguchi
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Amanda W Lund
- Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | - Tasha Sims
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | | |
Collapse
|
40
|
Şahin S, Caglayan MO, Üstündağ Z. Recent advances in aptamer-based sensors for breast cancer diagnosis: special cases for nanomaterial-based VEGF, HER2, and MUC1 aptasensors. Mikrochim Acta 2020; 187:549. [PMID: 32888061 DOI: 10.1007/s00604-020-04526-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the most common and important diseases with a high mortality rate. Breast cancer is among the three most common types of cancer in women, and the mortality rate has reached 0.024% in some countries. For early-stage preclinical diagnosis of breast cancer, sensitive and reliable tools are needed. Today, there are many types of biomarkers that have been identified for cancer diagnosis. A wide variety of detection strategies have also been developed for the detection of these biomarkers from serum or other body fluids at physiological concentrations. Aptamers are single-stranded DNA or RNA oligonucleotides and promising in the production of more sensitive and reliable biosensor platforms in combination with a wide range of nanomaterials. Conformational changes triggered by the target analyte have been successfully applied in fluorometric, colorimetric, plasmonic, and electrochemical-based detection strategies. This review article presents aptasensor approaches used in the detection of vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2), and mucin-1 glycoprotein (MUC1) biomarkers, which are frequently studied in the diagnosis of breast cancer. The focus of this review article is on developments of the last decade for detecting these biomarkers using various sensitivity enhancement techniques and nanomaterials.
Collapse
Affiliation(s)
- Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| | | | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, 43100, Kütahya, Turkey
| |
Collapse
|
41
|
Mandrell BN, Withycombe JS. Symptom Biomarkers for Children Receiving Treatment for Cancer: State of the Science. J Pediatr Oncol Nurs 2020; 36:280-286. [PMID: 31307320 PMCID: PMC7197220 DOI: 10.1177/1043454219859233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Children's Oncology Group Nursing Discipline has identified the most concerning symptoms during childhood cancer treatment and the need for continued symptom assessment and intervention during treatment trajectory. To develop appropriate interventions, symptom science strategies must explore the biological mechanisms associated with symptoms of cancer and cancer treatment. To explore the associated biological mechanisms, biomarkers have been recommended for inclusion in symptom science studies, when applicable. The biomarker assessed, as well as the method of collection and storage, can affect the reliability and validity of the study results and clinical implication. This review will describe biomarkers that have been described in pediatric oncology symptom science research and provides special considerations for specimen collection and processing.
Collapse
Affiliation(s)
| | - Janice S Withycombe
- 2 Emory University, Atlanta, GA, USA
- 3 Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
42
|
Effect of immediate cold formalin fixation on phosphoprotein IHC tumor biomarker signal in liver tumors using a cold transport device. Sci Rep 2020; 10:2147. [PMID: 32034185 PMCID: PMC7005752 DOI: 10.1038/s41598-020-58257-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/13/2020] [Indexed: 11/08/2022] Open
Abstract
Phosphoproteins are the key indicators of signaling network pathway activation. Many disease treatment therapies are designed to inhibit these pathways and effective diagnostics are required to evaluate the efficacy of these treatments. Phosphoprotein IHC have been impractical for diagnostics due to inconsistent results occurring from technical limitations. We have designed and tested a novel cold transport device and rapid cold plus warm formalin fixation protocol using phosphoproteins IHC. We collected 50 liver tumors that were split into two experimental conditions: 2 + 2 rapid fixation (2 hours cold then 2 hour warm formalin) or 4 hour room-temperature formalin. We analyzed primary hepatocellular carcinoma (n = 10) and metastatic gastrointestinal tumors (n = 28) for phosphoprotein IHC markers pAKT, pERK, pSRC, pSTAT3, and pSMAD2 and compared them to slides obtained from the clinical blocks. Expression of pERK and pSRC, present in the metastatic colorectal carcinoma, were better preserved with the rapid processing protocol while pSTAT3 expression was detected in hepatocellular carcinoma. Differences in pSMAD2 expression were difficult to detect due to the ubiquitous nature of protein expression. There were only 3 cases expressing pAKT and all exhibited a dramatic loss of signal for the standard clinical workflow. The rapid cold preservation shows improvement in phosphoprotein preservation.
Collapse
|
43
|
Febbo PG, Martin AM, Scher HI, Barrett JC, Beaver JA, Beresford PJ, Blumenthal GM, Bramlett K, Compton C, Dittamore R, Eberhard DA, Edelstein D, Godsey J, Gruen A, Hanlon SE, Hicks J, Hovelson D, Hullings M, Johann D, Johnson J, Kolatkar A, Kuhn P, Levine R, Martini JF, Miller DP, Moore C, Moy B, Pathak A, Philip R, Reese D, Royalty W, Ryder M, Sakul H, Salvatore LM, Schade A, Silvestro A, Simmons JK, Simons J, Singh Bhan S, Smalley MD, Somiari SB, Talasaz A, Tewari M, Tseng HR, Vinson J, Wells W, Welsh A, Grossman RL, Lee JSH, Leiman LC. Minimum Technical Data Elements for Liquid Biopsy Data Submitted to Public Databases. Clin Pharmacol Ther 2020; 107:730-734. [PMID: 32017048 PMCID: PMC7158216 DOI: 10.1002/cpt.1747] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Howard I Scher
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Julia A Beaver
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Springs, Maryland, USA
| | | | | | | | | | | | | | | | | | - Andrew Gruen
- Seven Bridges Genomics, Boston, Massachusetts, USA
| | - Sean E Hanlon
- Office of the Director, National Cancer Institute, Bethesda, Maryland, USA
| | - James Hicks
- University of Southern California, Los Angeles, California, USA
| | | | | | | | | | - Anand Kolatkar
- University of Southern California, Los Angeles, California, USA
| | - Peter Kuhn
- University of Southern California, Los Angeles, California, USA
| | - Rebecca Levine
- Prostate Cancer Foundation, Los Angeles, California, USA
| | | | - Daniel P Miller
- Center for Translational Data Science, University of Chicago, Chicago, Illinois, USA
| | | | - Bryan Moy
- Seven Bridges Genomics, Boston, Massachusetts, USA
| | - Anand Pathak
- Center for Device and Radiological Health, US Food and Drug Administration, Silver Springs, Maryland, USA
| | - Reena Philip
- Center for Device and Radiological Health, US Food and Drug Administration, Silver Springs, Maryland, USA
| | - David Reese
- Provista Diagnostics Inc, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | - Stella B Somiari
- CSSIMMW (Windber Research Institute), Windber, Pennsylvania, USA
| | | | | | | | - Jake Vinson
- Prostate Cancer Clinical Trials Consortium, New York, New York, USA
| | - Walt Wells
- Open Commons Consortium, Chicago, Illinois, USA
| | | | - Robert L Grossman
- Center for Translational Data Science, University of Chicago, Chicago, Illinois, USA
| | - Jerry S H Lee
- University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
44
|
Lerch M, Kenerson H, Theiss A, Chafin D, Westerhoff M, Otter M, Yeung R, Baird G. Rapid tissue processing using a temperature-controlled collection device to preserve tumor biomarkers. Cell Tissue Bank 2019; 21:89-97. [PMID: 31838727 PMCID: PMC7058599 DOI: 10.1007/s10561-019-09800-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Precision tissue diagnostics rely on high quality input specimens so that assay results are not affected by artifact, but advances in collection and processing of tissue specimens have lagged behind innovations in diagnostic assay development. Therefore, we have designed and evaluated a novel surgical tissue collection device that maintains and monitors sample temperature and motion throughout transport so that the major preanalytical variable of tissue temperature can be controlled and measured. This device, in combination with an improved cold–hot tissue fixation protocol affords optimal biomarker preservation in less overall time, thereby simultaneously improving diagnostic quality and turnaround time. We collected 50 primary and metastatic liver tumors using a novel transport device. Tissue was fixed using a rapid cold–hot fixation protocol and immunohistochemical assays were used to assess the performance of the device, in comparison to control tissue preserved using standard clinical fixation protocol. Two pathologists evaluated the IHC studies in a blinded fashion to determine the immunophenotype of each tumor. The observed IHC staining intensities and the clinical impressions of the immunophenotypes did not differ between tissue collected with the novel device and control tissue, while improvements in processing time were achieved. The novel cold transport device and rapid fixation protocol can be successfully and safely combined and used to monitor specimen conditions, thus preserving the diagnostic utility of specimens and improving the overall turn-around time of the diagnostic process.
Collapse
Affiliation(s)
- Melissa Lerch
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Heidi Kenerson
- Department of Surgery, University of Washington Medical Center, Seattle, WA, USA
| | - Abbey Theiss
- Ventana Medical Systems, Inc., 1910 Innovation Parkway, Tucson, AZ, USA
| | - David Chafin
- Ventana Medical Systems, Inc., 1910 Innovation Parkway, Tucson, AZ, USA
| | - Maria Westerhoff
- Department of Pathology, University of Washington Medical Center, 1959 NE Pacific St., Seattle, WA, USA
| | - Michael Otter
- Ventana Medical Systems, Inc., 1910 Innovation Parkway, Tucson, AZ, USA
| | - Raymond Yeung
- Department of Surgery, University of Washington Medical Center, Seattle, WA, USA
| | - Geoffrey Baird
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, WA, USA.
| |
Collapse
|
45
|
Geeurickx E, Hendrix A. Targets, pitfalls and reference materials for liquid biopsy tests in cancer diagnostics. Mol Aspects Med 2019; 72:100828. [PMID: 31711714 DOI: 10.1016/j.mam.2019.10.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
Assessment of cell free DNA (cfDNA) and RNA (cfRNA), circulating tumor cells (CTC) and extracellular vesicles (EV) in blood or other bodily fluids can enable early cancer detection, tumor dynamics assessment, minimal residual disease detection and therapy monitoring. However, few liquid biopsy tests progress towards clinical application because results are often discordant and challenging to reproduce. Reproducibility can be enhanced by the development and implementation of standard operating procedures and reference materials to identify and correct for pre-analytical variables. In this review we elaborate on the technological considerations, pre-analytical variables and the use and availability of reference materials for the assessment of liquid biopsy targets in blood and highlight initiatives towards the standardization of liquid biopsy testing.
Collapse
Affiliation(s)
- Edward Geeurickx
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000, Ghent, Belgium; Cancer Research Institute Ghent, 9000, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000, Ghent, Belgium; Cancer Research Institute Ghent, 9000, Ghent, Belgium.
| |
Collapse
|
46
|
Dollé L, Bekaert S. High-Quality Biobanks: Pivotal Assets for Reproducibility of OMICS-Data in Biomedical Translational Research. Proteomics 2019; 19:e1800485. [PMID: 31321888 DOI: 10.1002/pmic.201800485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/12/2019] [Indexed: 01/16/2023]
Abstract
Human biospecimen samples (HBS) and associated data stored in biobanks (also called "biotrusts," "biorepositories," or "biodistributors") are very critical resources for translational research. As HBS quality is decisive to the reproducibility of research results, biobanks are also key assets for new developments in precision medicine. Biobanks are more than infrastructures providing HBS and associated data. Biobanks have pioneered in identifying and standardizing sources of preanalytical variations in HBS, thus paving the way for the current biospecimen science. To achieve this milestone, biobankers have successively assumed the role of "detective," and then "architect," to identify new detrimental impact of preanalytical variables on the tissue integrity. While standardized methods in omics are required to be practiced throughout research communities, the accepted best practices and standards on biospecimen handling are generally not known nor applied by researchers. Therefore, it is mandatory to raise the awareness within omics communities regarding not only the basic concepts of collecting, storing, and utilizing HBS today, but also to suggest insights on biobanking in the cancer omics context.
Collapse
Affiliation(s)
- Laurent Dollé
- Biothèque Wallonie Bruxelles (BWB), BBMRI.be, Brussels, 1070, Belgium
| | - Sofie Bekaert
- Department of Public Health and Primary Care, Faculty of Medicines and Health Sciences, BBMRI.be, Ghent University, Ghent, 9052, Belgium
| |
Collapse
|
47
|
Compton CC, Robb JA, Anderson MW, Berry AB, Birdsong GG, Bloom KJ, Branton PA, Crothers JW, Cushman-Vokoun AM, Hicks DG, Khoury JD, Laser J, Marshall CB, Misialek MJ, Natale KE, Nowak JA, Olson D, Pfeifer JD, Schade A, Vance GH, Walk EE, Yohe SL. Preanalytics and Precision Pathology: Pathology Practices to Ensure Molecular Integrity of Cancer Patient Biospecimens for Precision Medicine. Arch Pathol Lab Med 2019; 143:1346-1363. [PMID: 31329478 DOI: 10.5858/arpa.2019-0009-sa] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biospecimens acquired during routine medical practice are the primary sources of molecular information about patients and their diseases that underlies precision medicine and translational research. In cancer care, molecular analysis of biospecimens is especially common because it often determines treatment choices and may be used to monitor therapy in real time. However, patient specimens are collected, handled, and processed according to routine clinical procedures during which they are subjected to factors that may alter their molecular quality and composition. Such artefactual alteration may skew data from molecular analyses, render analysis data uninterpretable, or even preclude analysis altogether if the integrity of a specimen is severely compromised. As a result, patient care and safety may be affected, and medical research dependent on patient samples may be compromised. Despite these issues, there is currently no requirement to control or record preanalytical variables in clinical practice with the single exception of breast cancer tissue handled according to the guideline jointly developed by the American Society of Clinical Oncology and College of American Pathologists (CAP) and enforced through the CAP Laboratory Accreditation Program. Recognizing the importance of molecular data derived from patient specimens, the CAP Personalized Healthcare Committee established the Preanalytics for Precision Medicine Project Team to develop a basic set of evidence-based recommendations for key preanalytics for tissue and blood specimens. If used for biospecimens from patients, these preanalytical recommendations would ensure the fitness of those specimens for molecular analysis and help to assure the quality and reliability of the analysis data.
Collapse
Affiliation(s)
- Carolyn C Compton
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - James A Robb
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Matthew W Anderson
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Anna B Berry
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - George G Birdsong
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Kenneth J Bloom
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Philip A Branton
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Jessica W Crothers
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Allison M Cushman-Vokoun
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - David G Hicks
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Joseph D Khoury
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Jordan Laser
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Carrie B Marshall
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Michael J Misialek
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Kristen E Natale
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Jan Anthony Nowak
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Damon Olson
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - John D Pfeifer
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Andrew Schade
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Gail H Vance
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Eric E Walk
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Sophia Louise Yohe
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| |
Collapse
|
48
|
Mombaerts I, Ramberg I, Coupland SE, Heegaard S. Diagnosis of orbital mass lesions: clinical, radiological, and pathological recommendations. Surv Ophthalmol 2019; 64:741-756. [PMID: 31276737 DOI: 10.1016/j.survophthal.2019.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
Abstract
The orbit can harbor mass lesions of various cellular origins. The symptoms vary considerably according to the nature, location, and extent of the disease and include common signs of proptosis, globe displacement, eyelid swelling, and restricted eye motility. Although radiological imaging tools are improving, with each imaging pattern having its own differential diagnosis, orbital mass lesions often pose a diagnostic challenge. To provide an accurate, specific, and sufficiently comprehensive diagnosis, to optimize clinical management and estimate prognosis, pathological examination of a tissue biopsy is essential. Diagnostic orbital tissue biopsy is obtained through a minimally invasive orbitotomy procedure or, in selected cases, fine needle aspiration. The outcome of successful biopsy, however, is centered on its representativeness, processing, and interpretation. Owing to the often small volume of the orbital biopsies, artifacts in the specimens should be limited by careful peroperative tissue handling, fixation, processing, and storage. Some orbital lesions can be characterized on the basis of cytomorphology alone, whereas others need ancillary molecular testing to render the most reliable diagnosis of therapeutic, prognostic, and predictive value. Herein, we review the diagnostic algorithm for orbital mass lesions, using clinical, radiological, and pathological recommendations, and discuss the methods and potential pitfalls in orbital tissue biopsy acquisition and analysis.
Collapse
Affiliation(s)
- Ilse Mombaerts
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium.
| | - Ingvild Ramberg
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Section of Eye Pathology, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sarah E Coupland
- Department of Cellular and Molecular Pathology, University of Liverpool, Liverpool, UK; Liverpool Clinical Laboratories, Royal Liverpool University Hospital, Liverpool, UK
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Section of Eye Pathology, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
49
|
Lerch ML, Bauer DR, Theiss A, Chafin D, Otter M, Baird GS. Monitoring Dehydration and Clearing in Tissue Processing for High-Quality Clinical Pathology. Biopreserv Biobank 2019; 17:303-311. [PMID: 31107113 PMCID: PMC6703239 DOI: 10.1089/bio.2018.0122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The development of precision testing for disease diagnosis has advanced medicine by specifically matching patients with drugs to treat specific diseases. High-quality diagnostics start with high-quality tissue specimens. The development and optimization of tissue handling and processing have lagged behind bioassay development. Ultrasound time-of-flight (TOF) technology has been successfully used to monitor the critical processing step of tissue fixation with formalin. In this study, we expand the use of this technology to monitor tissue dehydration and clearing by analyzing TOF signals from 270 different specimens, representing 13 different tissue types obtained through surgical resections. We determined the time constant τ90 for each tissue type for the following tissue processing solvents: 70% ethanol, 90% ethanol, 100% ethanol, and xylene. The TOF signals were correlated with tissue morphology to ensure that high-quality tissue was produced. Tissues can be grouped into those exhibiting fast and slow reagent diffusion. We monitored incomplete dehydration of tissue by skipping a key processing step, dehydration in absolute ethanol, and then correlated the τ90 with poor histomorphology, demonstrating that the technique can detect significant processing errors. Ultrasound TOF technology can therefore be used to monitor all phases of tissue processing cycle and yields an important preanalytical quality metric.
Collapse
Affiliation(s)
- Melissa L Lerch
- 1Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington
| | | | | | | | | | - Geoffrey S Baird
- 1Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington
| |
Collapse
|
50
|
Lim SD, Huang Q, Seibel EJ. Evaluation of Formalin Fixation for Tissue Biopsies Using Shear Wave Laser Speckle Imaging System. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2019; 7:1500110. [PMID: 31065465 PMCID: PMC6500782 DOI: 10.1109/jtehm.2019.2909914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/03/2019] [Accepted: 04/02/2019] [Indexed: 11/10/2022]
Abstract
Chemical fixation is the slowest and often the most uncontrolled step in the multi-step process of preparing tissue for histopathology. In order to reduce the time from taking a core needle biopsy to making a diagnosis, a new approach is proposed that optically monitors the common formalin fixation process. A low-cost and highly-sensitive laser speckle imaging technique is developed to measure shear wave velocity in a biospecimen as small as 0.5 mm in thickness submerged in millifluidic channels. Shear wave velocity, which is the indicator of tissue mechanical property and induced by piezoelectric-actuation, was monitored using gelatin phantom and chicken breast during fixation, as well as post-fixed liver and colon tissues from human. Fixation levels in terms of shear wave velocity increased by approximately 271.0% and 130.8% in gelatin phantom and chicken breast, respectively, before reaching the plateaus at 10.91 m/s and 7.88 m/s. Within these small specimens, the plateaus levels and times varied with location of measurement, and between gelatin and chicken breast. This optical-based approach demonstrates the feasibility of fine-tuning preanalytical variables, such as fixation time, for a rapid and accurate histopathological evaluation; provides a quality metric during the tissue preparation protocol performed in most pathology labs; and introduces the millifluidic chamber that can be engineered to be a future disposable device that automates biopsy processing and imaging.
Collapse
Affiliation(s)
- Saniel D Lim
- Mechanical Engineering DepartmentUniversity of WashingtonSeattleWA98195USA.,Human Photonics LabUniversity of WashingtonSeattleWA98195USA.,University of WashingtonSeattleWA98195USA
| | - Qixuan Huang
- Human Photonics LabUniversity of WashingtonSeattleWA98195USA.,Computer Science DepartmentGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Eric J Seibel
- Mechanical Engineering DepartmentUniversity of WashingtonSeattleWA98195USA.,Human Photonics LabUniversity of WashingtonSeattleWA98195USA.,University of WashingtonSeattleWA98195USA
| |
Collapse
|