1
|
Ferme LC, Ryan AQ, Haase R, Modes CD, Norden C. Timely neurogenesis drives the transition from nematic to crystalline nuclear packing during retinal morphogenesis. SCIENCE ADVANCES 2025; 11:eadu6843. [PMID: 40344072 PMCID: PMC12063663 DOI: 10.1126/sciadv.adu6843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/03/2025] [Indexed: 05/11/2025]
Abstract
Correct organogenesis depends on the timely coordination of developmental processes, such as cell proliferation, differentiation, and migration. This coordination is particularly critical in crowded tissues, such as pseudostratified epithelia (PSE) that are often found as organ precursors. They are composed of elongated epithelial cells with densely packed nuclei aligned along the apicobasal axis. While cell cycle-dependent nuclear movements in PSE are well studied, less is known about how nuclear packing influences tissue morphogenesis. To investigate this, we analyzed nuclear shapes, sizes, and neighborhood statistics in zebrafish neuroepithelia, focusing on the retinal PSE. We found that nuclei exhibit elongated shapes and biaxial nematic-like orientational order but remain positionally disordered. During retinal development, nuclear packing density increases, approaching theoretical limits. This occurs when the tissue transitions to a laminated structure and nuclear shapes are remodeled. Timely neurogenesis is critical as failure to initiate neurogenesis leads to tissue deformations. These findings highlight the influence of nuclear shape and positioning for organ morphogenesis.
Collapse
Affiliation(s)
- Lucrezia C. Ferme
- Gulbenkian Institute for Molecular Medicine, rua da Quinta Grande 6, 2780-156 Oeiras, Portugal (formerly Instituto Gulbenkian de Ciência, IGC)
| | - Allyson Q. Ryan
- Max-Planck Institute for Molecular Cell Biology and Genetics, MPI-CBG, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Excellence Cluster, Physics of Life, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
- Center for Systems Biology, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Robert Haase
- Excellence Cluster, Physics of Life, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
- Data Science Center, Leipzig University, Humboldtstraße 25, 04105 Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Germany
| | - Carl D. Modes
- Max-Planck Institute for Molecular Cell Biology and Genetics, MPI-CBG, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Excellence Cluster, Physics of Life, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
- Center for Systems Biology, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Caren Norden
- Gulbenkian Institute for Molecular Medicine, rua da Quinta Grande 6, 2780-156 Oeiras, Portugal (formerly Instituto Gulbenkian de Ciência, IGC)
| |
Collapse
|
2
|
Tzekaki E, Bekiari C, Pantazaki A, Tsantarliotou M, Tsolaki M, Lavrentiadou SN. A new protocol for the development of organoids based on molecular mechanisms in the developing newborn rat brain: Prospective applications in the study of Alzheimer's disease. J Neurosci Methods 2025; 417:110404. [PMID: 39978482 DOI: 10.1016/j.jneumeth.2025.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Brain organoids have emerged as powerful models for studying brain development and neurological disorders COMPARISON WITH EXISTING METHODS: Current models rely on stem cell isolation and differentiation using different growth factors. Thus, their composition varies according to the protocol followed. NEW METHOD We developed a simple protocol to generate organoids from newborn rat whole brain. It is a one-step procedure that yields organoids of consistent composition. The whole brains from 3-day old pups were digested enzymatically. All isolated cells were seeded in culture plates using a basement membrane extract (BME) matrix as a scaffold and cultured in the presence of the appropriate medium. RESULTS Hematoxylin-eosin staining of 28-day-old cultured domes revealed their structural integrity, while immunohistochemistry confirmed the presence of neurons, astrocytes, microglia, and progenitor stem cells in the structures. To assess whether these organoids can serve as a model to study brain physiopathology, and in particular neurodegenerative diseases such as Alzheimer's disease (AD), we determined how these organoids respond upon their exposure to lipopolysaccharides (LPS), a potent neuroinflammatory factor. LPS-induced amyloid precursor protein (APP), tau protein and glial fibrillary acidic protein (GFAP) expression. Moreover, the intracellular levels of IL-1β and the extracellular levels of amyloid-beta (Aβ) were also elevated. CONCLUSIONS Therefore, this simple protocol results in the generation of functional brain organoids with a consistent structure, that requires no use of varying factors that may affect the structure and function of the produced organoids, thus providing a valuable tool for the study of the physiopathology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Eleni Tzekaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001, Thermi, Thessaloniki, Greece.
| | - Chryssa Bekiari
- Laboratory of Anatomy and Histology School of Veterinary Medicine, Aristotle University of Thessaloniki, Greece.
| | - Anastasia Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001, Thermi, Thessaloniki, Greece.
| | - Maria Tsantarliotou
- Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Greece.
| | - Magda Tsolaki
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001, Thermi, Thessaloniki, Greece.
| | - Sophia N Lavrentiadou
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001, Thermi, Thessaloniki, Greece; Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
3
|
Birtele M, Lancaster M, Quadrato G. Modelling human brain development and disease with organoids. Nat Rev Mol Cell Biol 2025; 26:389-412. [PMID: 39668188 DOI: 10.1038/s41580-024-00804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Organoids are systems derived from pluripotent stem cells at the interface between traditional monolayer cultures and in vivo animal models. The structural and functional characteristics of organoids enable the modelling of early stages of brain development in a physiologically relevant 3D environment. Moreover, organoids constitute a tool with which to analyse how individual genetic variation contributes to the susceptibility and progression of neurodevelopmental disorders. This Roadmap article describes the features of brain organoids, focusing on the neocortex, and their advantages and limitations - in comparison with other model systems - for the study of brain development, evolution and disease. We highlight avenues for enhancing the physiological relevance of brain organoids by integrating bioengineering techniques and unbiased high-throughput analyses, and discuss future applications. As organoids advance in mimicking human brain functions, we address the ethical and societal implications of this technology.
Collapse
Affiliation(s)
- Marcella Birtele
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madeline Lancaster
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Lyu X, Wang J, Su J. Intelligent Manufacturing for Osteoarthritis Organoids. Cell Prolif 2025:e70043. [PMID: 40285592 DOI: 10.1111/cpr.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease worldwide, imposing a substantial global disease burden. However, its pathogenesis remains incompletely understood, and effective treatment strategies are still lacking. Organoid technology, in which stem cells or progenitor cells self-organise into miniature tissue structures under three-dimensional (3D) culture conditions, provides a promising in vitro platform for simulating the pathological microenvironment of OA. This approach can be employed to investigate disease mechanisms, carry out high-throughput drug screening and facilitate personalised therapies. This review summarises joint structure, OA pathogenesis and pathological manifestations, thereby establishing the disease context for the application of organoid technology. It then examines the components of the arthrosis organoid system, specifically addressing cartilage, subchondral bone, synovium, skeletal muscle and ligament organoids. Furthermore, it details various strategies for constructing OA organoids, including considerations of cell selection, pathological classification and fabrication techniques. Notably, this review introduces the concept of intelligent manufacturing of OA organoids by incorporating emerging engineering technologies such as artificial intelligence (AI) into the organoid fabrication process, thereby forming an innovative software and hardware cluster. Lastly, this review discusses the challenges currently facing intelligent OA organoid manufacturing and highlights future directions for this rapidly evolving field. By offering a comprehensive overview of state-of-the-art methodologies and challenges, this review anticipates that intelligent, automated fabrication of OA organoids will expedite fundamental research, drug discovery and personalised translational applications in the orthopaedic field.
Collapse
Affiliation(s)
- Xukun Lyu
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, China
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
Khan I, Ramzan F, Tayyab H, Damji KF. Rekindling Vision: Innovative Strategies for Treating Retinal Degeneration. Int J Mol Sci 2025; 26:4078. [PMID: 40362317 PMCID: PMC12072091 DOI: 10.3390/ijms26094078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Retinal degeneration, characterized by the progressive loss of photoreceptors, retinal pigment epithelium cells, and/or ganglion cells, is a leading cause of vision impairment. These diseases are generally classified as inherited (e.g., retinitis pigmentosa, Stargardt disease) or acquired (e.g., age-related macular degeneration, diabetic retinopathy, glaucoma) ocular disorders that can lead to blindness. Available treatment options focus on managing symptoms or slowing disease progression and do not address the underlying causes of these diseases. However, recent advancements in regenerative medicine offer alternative solutions for repairing or protecting degenerated retinal tissue. Stem and progenitor cell therapies have shown great potential to differentiate into various retinal cell types and can be combined with gene editing, extracellular vesicles and exosomes, and bioactive molecules to modulate degenerative cellular pathways. Additionally, gene therapy and neuroprotective molecules play a crucial role in enhancing the efficacy of regenerative approaches. These innovative strategies hold the potential to halt the progression of retinal degenerative disorders, repair or replace damaged cells, and improve visual function, ultimately leading to a better quality of life for those affected.
Collapse
Affiliation(s)
- Irfan Khan
- Department of Ophthalmology and Visual Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Sindh, Pakistan;
- Centre for Regenerative Medicine and Stem Cells Research, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Sindh, Pakistan
- Department of Biological and Biomedical Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Sindh, Pakistan
| | - Faiza Ramzan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan;
| | - Haroon Tayyab
- Department of Ophthalmology and Visual Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Sindh, Pakistan;
| | - Karim F. Damji
- Department of Ophthalmology and Visual Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Sindh, Pakistan;
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
6
|
Abukunna FE, Aladdad AM, McLoughlin KJ, Thallapureddy K, Vierra M, Siddiqui Z, Kador KE. Three-Dimensional Bioprinting of Astrocytes and Endothelial Cells to Direct Retinal Axon Growth and Vascularization. Tissue Eng Part A 2025. [PMID: 40260520 DOI: 10.1089/ten.tea.2024.0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Abstract
Retinal organoids (ROs) are currently used to study retinal development and diseases but cannot model glaucoma because they fail to form a nerve fiber layer (NFL) and optic nerve (ON). Utilizing three-dimensional bioprinting, ON head astrocytes (ONHAs) and vascular endothelial cells, both of which contribute to NFL development in vivo but are absent in ROs, were positioned at the center of scaffolds seeded with retinal ganglion cells (RGCs). In experiments using ONHAs isolated from developing retinas, polarization of RGC neurite growth increased by 43% while ONHA from adult retinas or astrocytes from the developing peripheral retina or developing cortex did not increase polarization above controls. Furthermore, RGC-seeded scaffolds increased both the number and rate of ONHAs migrating out from the printed center compared to scaffolds lacking RGCs, mimicking the migration pattern observed during retinal development. Finally, in scaffolds containing both ONHAs and endothelial cells, the endothelial cells preferentially migrate on and only form vascular tube structures on scaffolds also containing RGCs. These results suggest that recreating the developmental organization of the retina can recapitulate the mechanism of NFL development and retinal vascularization in vitro. This step is not only necessary for the development of retinal models of glaucoma but has the potential for translation to other parts of the central nervous system.
Collapse
Affiliation(s)
- Fatima E Abukunna
- Department of Ophthalmology and Department of Biomedical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Afnan M Aladdad
- Department of Ophthalmology and Department of Biomedical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Kiran J McLoughlin
- Department of Ophthalmology and Department of Biomedical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Khyathi Thallapureddy
- Department of Ophthalmology and Department of Biomedical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Michael Vierra
- Department of Ophthalmology and Department of Biomedical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Zoya Siddiqui
- Department of Ophthalmology and Department of Biomedical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Karl E Kador
- Department of Ophthalmology and Department of Biomedical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
7
|
Guo X, Wang X, Wang J, Ma M, Ren Q. Current Development of iPSC-Based Modeling in Neurodegenerative Diseases. Int J Mol Sci 2025; 26:3774. [PMID: 40332425 PMCID: PMC12027653 DOI: 10.3390/ijms26083774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Over the past two decades, significant advancements have been made in the induced pluripotent stem cell (iPSC) technology. These developments have enabled the broader application of iPSCs in neuroscience, improved our understanding of disease pathogenesis, and advanced the investigation of therapeutic targets and methods. Specifically, optimizations in reprogramming protocols, coupled with improved neuronal differentiation and maturation techniques, have greatly facilitated the generation of iPSC-derived neural cells. The integration of the cerebral organoid technology and CRISPR/Cas9 genome editing has further propelled the application of iPSCs in neurodegenerative diseases to a new stage. Patient-derived or CRISPR-edited cerebral neurons and organoids now serve as ideal disease models, contributing to our understanding of disease pathophysiology and identifying novel therapeutic targets and candidates. In this review, we examine the development of iPSC-based models in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease.
Collapse
Affiliation(s)
- Xiangge Guo
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Xumeng Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Jiaxuan Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Min Ma
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
- Human Brain Bank, Hebei Medical University, Shijiazhuang 050017, China
| | - Qian Ren
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
8
|
Galindo-Cabello N, Caballano-Infantes E, Benites G, Pastor-Idoate S, Diaz-Corrales FJ, Usategui-Martín R. Retinal Organoids: Innovative Tools for Understanding Retinal Degeneration. Int J Mol Sci 2025; 26:3263. [PMID: 40244125 PMCID: PMC11990004 DOI: 10.3390/ijms26073263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Retinal degenerative diseases (RDDs) comprise diverse genetic and phenotypic conditions that cause progressive retinal dysfunction and cell loss, leading to vision impairment or blindness. Most RDDs lack appropriate animal models for their study, which affects understanding their disease mechanisms and delays the progress of new treatment development. Recent advances in stem cell engineering, omics, and organoid technology are facilitating research into diseases for which there are no previously existing models. The development of retinal organoids produced from human stem cells has impacted the study of retinal development as well as the development of in vitro models of diseases, opening possibilities for applications in regenerative medicine, drug discovery, and precision medicine. In this review, we recapitulate research in the retinal organoid models for RDD, mentioning some of the main pathways underlying retinal neurodegeneration that can be studied in these new models, as well as their limitations and future challenges in this rapidly advancing field.
Collapse
Affiliation(s)
- Nadia Galindo-Cabello
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
| | - Estefanía Caballano-Infantes
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain;
| | - Gregorio Benites
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
| | - Salvador Pastor-Idoate
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
- Department of Ophthalmology, University Clinical Hospital of Valladolid, 47003 Valladolid, Spain
| | - Francisco J. Diaz-Corrales
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain;
| | - Ricardo Usategui-Martín
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
| |
Collapse
|
9
|
Xiu J, Xue R, Duan X, Yao F, Liu X, Meng F, Xiong C, Huang J. Mechanical characterization of nonlinear elasticity of growing intestinal organoids with a microinjection method. Acta Biomater 2025; 196:271-280. [PMID: 40032216 DOI: 10.1016/j.actbio.2025.02.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/05/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
Mechanical properties of intestinal organoids are crucial for intestinal development, homeostatic renewal, and pathogenesis. However, characterizing these properties remains challenging. Here, we developed a microinjection-based method to quantify the growth time-dependent nonlinear elasticity of intestinal organoids. With aid of the neo-Hookean hyperelastic constitutive model, we discovered that the global elastic modulus of intestinal organoids increased linearly during the early stages of culture, followed by a sharp rise, indicating a time-dependent nonlinear hardening behaviour during growth. The global modulus of intestinal organoids was found to correlate with the cell phenotype ratio, revealing a significant relationship between mechanical properties and biological phenotypes. Furthermore, we developed a biomechanical model on the basis of the unsteady Bernoulli equation to quantitatively explore the global mechanical responses of intestinal organoids, which showed good agreement with the experimental data. The work not only elucidated the mechanical response and modulus characteristics of small intestinal organoids from a biomechanical perspective, but also presented a new microinjection-based methodology for quantifying the mechanical properties of organoids, offering significant potential for various organoid-related applications. STATEMENT OF SIGNIFICANCE: Mechanical properties of intestinal organoids are essential for intestinal development, homeostatic renewal, and pathogenesis. However, how to quantitatively characterize their global mechanical properties remains challenging. Here, we developed a new microinjection-based experimental platform to quantify spatiotemporal dynamics of mechanical responses and global elasticity of intestinal organoids. Unlike traditional nanoindentation methods, the proposed characterization technique can quantitatively measure the global mechanical properties of organoids, which is crucial for detecting the inherent relationship between the global mechanical properties and the biological phenotypes of organoids. Likewise, it established a methodological foundation for revealing the mechanobiological characteristics associated with the growth and development of various organoids. This can enhance our understanding of mechanobiological mechanisms of organoids and is beneficial for various organoid-related applications.
Collapse
Affiliation(s)
- Jidong Xiu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Rui Xue
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Fangyun Yao
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Fanlu Meng
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China.
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
10
|
Saade M, Martí E. Early spinal cord development: from neural tube formation to neurogenesis. Nat Rev Neurosci 2025; 26:195-213. [PMID: 39915695 DOI: 10.1038/s41583-025-00906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 03/26/2025]
Abstract
As one of the simplest and most evolutionarily conserved parts of the vertebrate nervous system, the spinal cord serves as a key model for understanding the principles of nervous system construction. During embryonic development, the spinal cord originates from a population of bipotent stem cells termed neuromesodermal progenitors, which are organized within a transient embryonic structure known as the neural tube. Neural tube morphogenesis differs along its anterior-to-posterior axis: most of the neural tube (including the regions that will develop into the brain and the anterior spinal cord) forms via the bending and dorsal fusion of the neural groove, but the establishment of the posterior region of the neural tube involves de novo formation of a lumen within a solid medullary cord. The early spinal cord primordium consists of highly polarized neural progenitor cells organized into a pseudostratified epithelium. Tight regulation of the cell division modes of these progenitors drives the embryonic growth of the neural tube and initiates primary neurogenesis. A rich history of observational and functional studies across various vertebrate models has advanced our understanding of the cellular events underlying spinal cord development, and these foundational studies are beginning to inform our knowledge of human spinal cord development.
Collapse
Affiliation(s)
- Murielle Saade
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona CSIC, Barcelona, Spain.
| | - Elisa Martí
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona CSIC, Barcelona, Spain.
| |
Collapse
|
11
|
Liu H, Ma Y, Gao N, Zhou Y, Li G, Zhu Q, Liu X, Li S, Deng C, Chen C, Yang Y, Ren Q, Hu H, Cai Y, Chen M, Xue Y, Zhang K, Qu J, Su J. Identification and characterization of human retinal stem cells capable of retinal regeneration. Sci Transl Med 2025; 17:eadp6864. [PMID: 40138453 DOI: 10.1126/scitranslmed.adp6864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/12/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Human retinal stem cells hold great promise in regenerative medicine, yet their existence and characteristics remain elusive. Here, we performed single-cell multiomics and spatial transcriptomics of human fetal retinas and uncovered a cell subpopulation, human neural retinal stem-like cells (hNRSCs), distinct from retinal pigment epithelium stem-like cells and traditional retinal progenitor cells. We found that these hNRSCs reside in the peripheral retina in the ciliary marginal zone, exhibiting substantial self-renewal and differentiation potential. We conducted single-cell and spatial transcriptomic analyses of human retinal organoids (hROs) and revealed that hROs contain a population of hNRSCs with similar transcriptional profiles and developmental trajectories to hNRSCs in the fetal retina potentially capable of regenerating all retinal cells. Furthermore, we identified crucial transcription factors, such as MECOM, governing hNRSC commitment to neural retinogenesis and regulating repair processes in hROs. hRO-derived hNRSCs transplanted into the rd10 mouse model of retinitis pigmentosa differentiated and were integrated into the retina, alleviated retinal degeneration, and improved visual function. Overall, our work identifies and characterizes a distinct category of retinal stem cells from human retinas, underscoring their regenerative potential and promise for transplantation therapy.
Collapse
Affiliation(s)
- Hui Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yunlong Ma
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| | - Na Gao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yijun Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Gen Li
- Guangzhou National Laboratory, Guangzhou 510005, China
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Qunyan Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| | - Xiaoyu Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shasha Li
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| | - Chunyu Deng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| | - Cheng Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| | - Yuhe Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Ren
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Huijuan Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yaoyao Cai
- Department of Obstetrics, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ming Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yuanchao Xue
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kang Zhang
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Jia Qu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| | - Jianzhong Su
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| |
Collapse
|
12
|
Ashander LM, Lidgerwood GE, Lumsden AL, Furtado JM, Pébay A, Smith JR. Human Retinal Organoid Model of Ocular Toxoplasmosis. Pathogens 2025; 14:286. [PMID: 40137771 PMCID: PMC11945118 DOI: 10.3390/pathogens14030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
The health burden of ocular toxoplasmosis is substantial, and there is an unmet need for safe and curative anti-microbial drugs. One major barrier to research on new therapeutics is the lack of in vitro human-based models beyond two-dimensional cultured cells and tissue explants. We aimed to address this research gap by establishing a human retinal organoid model of ocular toxoplasmosis. Retinal organoids, generated from human induced pluripotent stem cells and grown to two stages of organization, were incubated with a suspension of live or heat-killed GT-1 strain T. gondii tachyzoites, or medium without tachyzoites. Both developing (1 month post-isolation) and matured (6 months post-isolation) organoids were susceptible to infection. Spread of live parasites from the margin to the entire organoid over 1 week was indicated by immunolabelling for T. gondii surface antigen 1. This progression was accompanied by changes in the levels of selected tachyzoite transcripts-SAG1, GRA6, and ROP16-and human cytokine transcripts-CCL2, CXCL8, CXCL10, and IL6-in infected versus control conditions. Our human retinal organoid model of ocular toxoplasmosis offers the opportunity for many future lines of study, including tachyzoite interactions with retinal cell populations and leukocyte subsets, parasite stage progression, and disease processes of different T. gondii strains, as well as drug testing.
Collapse
Affiliation(s)
- Liam M. Ashander
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.M.A.); (A.L.L.)
| | - Grace E. Lidgerwood
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; (G.E.L.); (A.P.)
| | - Amanda L. Lumsden
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.M.A.); (A.L.L.)
| | - João M. Furtado
- Division of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil;
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; (G.E.L.); (A.P.)
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Justine R. Smith
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.M.A.); (A.L.L.)
| |
Collapse
|
13
|
Gardner JC, Jovanovic K, Ottaviani D, Melo US, Jackson J, Guarascio R, Ziaka K, Hau KL, Lane A, Taylor RL, Chai N, Gkertsou C, Fernando O, Piwecka M, Georgiou M, Mundlos S, Black GC, Moore AT, Michaelides M, Cheetham ME, Hardcastle AJ. Inter-chromosomal insertions at Xq27.1 associated with retinal dystrophy induce dysregulation of LINC00632 and CDR1as/ciRS-7. Am J Hum Genet 2025; 112:523-536. [PMID: 39892393 PMCID: PMC11947168 DOI: 10.1016/j.ajhg.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 02/03/2025] Open
Abstract
In two unrelated families with X-linked inherited retinal dystrophy, identification of the causative variants was elusive. Interrogation of the next-generation sequencing (NGS) data revealed a "dark" intergenic region on Xq27.1 with poor coverage. Long-range PCR and DNA walking across this region revealed different inter-chromosomal insertions into the human-specific palindrome on Xq27.1: a 58 kb insertion of 9p24.3 [der(X)dir ins(X;9)(q27.1;p24.3)] in family 1 and a 169 kb insertion of 3p14.2 [der(X)inv ins(X;3)(q27.1;p14.2)] in family 2. To explore the functional consequence of these structural variants in genomic and cellular contexts, induced pluripotent stem cells were derived from affected and control fibroblasts and differentiated to retinal organoids (ROs) and retinal pigment epithelium. Transcriptional dysregulation was evaluated using RNA sequencing (RNA-seq) and RT-qPCR. A downstream long non-coding RNA, LINC00632 (Xq27.1), was upregulated in ROs from both families compared to control samples. In contrast, the circular RNA CDR1as/ciRS-7 (circular RNA sponge for miR-7), spliced from linear LINC00632, was downregulated. To investigate this tissue-specific dysregulation, we interrogated the landscape of the locus using Hi-C and cleavage under targets and tagmentation sequencing (CUT&Tag). This revealed active retinal enhancers within the insertions within a topologically associated domain that also contained the upstream promoter of LINC00632, permitting ectopic contact. Furthermore, CDR1as/ciRS-7 acts as a "sponge" for miR-7, and target genes of miR-7 were also dysregulated in ROs derived from both families. We describe a new genomic mechanism for retinal dystrophy, and our data support a convergent tissue-specific mechanism of altered regulation of LINC00632 and CDR1as/ciRS-7 as a consequence of the insertions within the palindrome on Xq27.1.
Collapse
Affiliation(s)
- Jessica C Gardner
- UCL Institute of Ophthalmology, University College London, London, UK.
| | | | - Daniele Ottaviani
- UCL Institute of Ophthalmology, University College London, London, UK; Department of Biology, University of Padua, Padua, Italy
| | - Uirá Souto Melo
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany
| | - Joshua Jackson
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Kalliopi Ziaka
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Kwan-Leong Hau
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Amelia Lane
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Rachel L Taylor
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Niuzheng Chai
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Owen Fernando
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin, Berlin, Germany
| | - Graeme C Black
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | | | | |
Collapse
|
14
|
Xu X, Su J, Zhu R, Li K, Zhao X, Fan J, Mao F. From morphology to single-cell molecules: high-resolution 3D histology in biomedicine. Mol Cancer 2025; 24:63. [PMID: 40033282 PMCID: PMC11874780 DOI: 10.1186/s12943-025-02240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
High-resolution three-dimensional (3D) tissue analysis has emerged as a transformative innovation in the life sciences, providing detailed insights into the spatial organization and molecular composition of biological tissues. This review begins by tracing the historical milestones that have shaped the development of high-resolution 3D histology, highlighting key breakthroughs that have facilitated the advancement of current technologies. We then systematically categorize the various families of high-resolution 3D histology techniques, discussing their core principles, capabilities, and inherent limitations. These 3D histology techniques include microscopy imaging, tomographic approaches, single-cell and spatial omics, computational methods and 3D tissue reconstruction (e.g. 3D cultures and spheroids). Additionally, we explore a wide range of applications for single-cell 3D histology, demonstrating how single-cell and spatial technologies are being utilized in the fields such as oncology, cardiology, neuroscience, immunology, developmental biology and regenerative medicine. Despite the remarkable progress made in recent years, the field still faces significant challenges, including high barriers to entry, issues with data robustness, ambiguous best practices for experimental design, and a lack of standardization across methodologies. This review offers a thorough analysis of these challenges and presents recommendations to surmount them, with the overarching goal of nurturing ongoing innovation and broader integration of cellular 3D tissue analysis in both biology research and clinical practice.
Collapse
Affiliation(s)
- Xintian Xu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongyi Zhu
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kailong Li
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital)Key Laboratory of Assisted Reproduction (Peking University), Ministry of EducationBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory for Interdisciplinary Research in Gastrointestinal Oncology (BLGO), Beijing, China.
| |
Collapse
|
15
|
Tan WS, Lai Y, Chung Y, Adusumalli S, Lee XY, Tryggvason K, Tay HG. Retina-specific laminin-based generation of photoreceptor progenitors from human pluripotent stem cells under xeno-free and chemically defined conditions. Nat Protoc 2025:10.1038/s41596-025-01142-y. [PMID: 40000780 DOI: 10.1038/s41596-025-01142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025]
Abstract
Photoreceptor cell replacement therapy for retinal degenerative diseases is a promising approach. Presently, most protocols aimed at generating clinically safe and functional cells for retinal diseases face challenges such as low efficiency, poor reproducibility, and time-consuming and complex procedures. These could be due to the dependency on animal-derived components in cell culture media and substrates that support the cell differentiation process. Such conditions are poorly defined chemically, which could affect the robustness of the method and hinder clinical translation of cell therapy in retinal diseases. Here, we describe a simple protocol that is xenogen free and chemically defined to differentiate human embryonic stem cells to photoreceptor progenitors. Human recombinant extracellular matrix laminin 523 and 521 isoforms were used to mimic the inter-photoreceptor matrix niche environment to promote the retinal cell differentiation process. This was also accomplished by the unique combination of two cell differentiation media that recapitulates the retinal development signaling processes. In comparison to other protocols, our protocol does not require any mechanical dissection, which can be technically subjective and tedious. Our directed differentiation method generates photoreceptor progenitors that express ~17% cone-rod homeobox (CRX) transcript based on single-cell transcriptomic analyses by day 32. These day 32 photoreceptor progenitors can be cryopreserved and still maintain high cell viability after thawing for cell transplantation. This protocol can be easily reproduced and performed by researchers with basic cell culture experience, which is particularly important for retinal research progress and clinical cell manufacturing in a Good Manufacturing Practice facility.
Collapse
Affiliation(s)
- Wei Sheng Tan
- Centre for Vision Research, Duke-NUS Medical School, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yixin Lai
- Centre for Vision Research, Duke-NUS Medical School, Singapore, Singapore
| | - Yingying Chung
- Centre for Vision Research, Duke-NUS Medical School, Singapore, Singapore
| | | | - Xin Yi Lee
- Centre for Vision Research, Duke-NUS Medical School, Singapore, Singapore
| | - Karl Tryggvason
- Centre for Vision Research, Duke-NUS Medical School, Singapore, Singapore
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
- Division of Nephrology, Department of Medicine, Duke University, Durham, NC, USA
| | - Hwee Goon Tay
- Centre for Vision Research, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
16
|
Artegiani B, Hendriks D. Organoids from pluripotent stem cells and human tissues: When two cultures meet each other. Dev Cell 2025; 60:493-511. [PMID: 39999776 DOI: 10.1016/j.devcel.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/13/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Human organoids are a widely used tool in cell biology to study homeostatic processes, disease, and development. The term organoids covers a plethora of model systems from different cellular origins that each have unique features and applications but bring their own challenges. This review discusses the basic principles underlying organoids generated from pluripotent stem cells (PSCs) as well as those derived from tissue stem cells (TSCs). We consider how well PSC- and TSC-organoids mimic the different intended organs in terms of cellular complexity, maturity, functionality, and the ongoing efforts to constitute predictive complex models of in vivo situations. We discuss the advantages and limitations associated with each system to answer different biological questions including in the field of cancer and developmental biology, and with respect to implementing emerging advanced technologies, such as (spatial) -omics analyses, CRISPR screens, and high-content imaging screens. We postulate how the two fields may move forward together, integrating advantages of one to the other.
Collapse
Affiliation(s)
| | - Delilah Hendriks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
17
|
Watson A, Queen R, Ferrández-Peral L, Dorgau B, Collin J, Nelson A, Hussain R, Coxhead J, McCorkindale M, Atkinson R, Zerti D, Chichagova V, Conesa A, Armstrong L, Cremers FPM, Lako M. Unravelling genotype-phenotype correlations in Stargardt disease using patient-derived retinal organoids. Cell Death Dis 2025; 16:108. [PMID: 39971915 PMCID: PMC11840025 DOI: 10.1038/s41419-025-07420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/18/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Stargardt disease is an inherited retinopathy affecting approximately 1:8000 individuals. It is characterised by biallelic variants in ABCA4 which encodes a vital protein for the recycling of retinaldehydes in the retina. Despite its prevalence and impact, there are currently no treatments available for this condition. Furthermore, 35% of STGD1 cases remain genetically unsolved. To investigate the cellular and molecular characteristics associated with STGD1, we generated iPSCs from two monoallelic unresolved (PT1 & PT2), late-onset STGD1 cases with the heterozygous complex allele - c.[5461-10 T > C;5603 A > T]. Both patient iPSCs and those from a biallelic affected control (AC) carrying -c.4892 T > C and c.4539+2001G > A, were differentiated to retinal organoids, which developed all key retinal neurons and photoreceptors with outer segments positive for ABCA4 expression. We observed patient-specific disruption to lamination with OPN1MW/LW+ cone photoreceptor retention in the retinal organoid centre during differentiation. Photoreceptor retention was more severe in the AC case affecting both cones and rods, suggesting a genotype/phenotype correlation. scRNA-Seq suggests retention may be due to the induction of stress-related pathways in photoreceptors. Whole genome sequencing successfully identified the missing alleles in both cases; PT1 reported c.-5603A > T in homozygous state and PT2 uncovered a rare hypomorph - c.-4685T > C. Furthermore, retinal organoids were able to recapitulate the retina-specific splicing defect in PT1 as shown by long-read RNA-seq data. Collectively, these results highlight the suitability of retinal organoids in STGD1 modelling. Their ability to display genotype-phenotype correlations enhances their utility as a platform for therapeutic development.
Collapse
Affiliation(s)
- Avril Watson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcells Biotech Ltd., Newcastle upon Tyne, UK
| | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Luis Ferrández-Peral
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
| | - Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Nelson
- NU-OMICs, Northumbria University, Newcastle Upon Tyne, UK
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Robert Atkinson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Darin Zerti
- Department of Biotechnological and Applied Clinical Sciences, Università degli Studi dell'Aquila, L'Aquila, Italy
| | | | - Ana Conesa
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcells Biotech Ltd., Newcastle upon Tyne, UK
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
18
|
Knutson OS, Choi S, Williams S, Calder VL. Comparative models of uveitis. Eye (Lond) 2025:10.1038/s41433-025-03693-6. [PMID: 39966598 DOI: 10.1038/s41433-025-03693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Several clinical subtypes of uveitis exist yet specific immunopathogenic mechanisms involved remain unclear. Ex vivo studies are limited by lack of fresh retinal biopsies and studies have relied on aqueous humour or peripheral blood, which may not directly reflect disease. The aim of this review is to compare the various in vivo models and review their contributions to our understanding of disease processes. These models, although unable to reflect all clinical signs, have provided insight into the contribution of genes and molecules, characterisation of effector T-cells, cell trafficking into retinal tissues, the contribution of tissue-resident myeloid cells and the mechanism(s) of action of several anti-inflammatory compounds. In vivo uveitis models have provided an excellent resource with which to study the molecular and cellular processes involved. Recent refinements in models, improved imaging, and the application of omics have greatly increased the number of readouts and translational opportunities. Future approaches with in vitro models will also be discussed.
Collapse
Affiliation(s)
- Olivia S Knutson
- Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | | | | | | |
Collapse
|
19
|
Zabiegalov O, Berger A, Kamdar D, Adamou K, Tian C, Mbefo M, Quinodoz M, Udry F, Rivolta C, Kostic C, Arsenijevic Y. Generation of a Double Reporter mES Cell Line to Simultaneously Trace the Generation of Retinal Progenitors and Photoreceptors. Cells 2025; 14:252. [PMID: 39996725 PMCID: PMC11854395 DOI: 10.3390/cells14040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Three-dimensional retinal culture systems help to understand eye development and the pathology of disorders. There is a need for reporter stem cell lines to allow in vitro studies on retinal progenitors and photoreceptors and their developmental dynamics or properties and to test therapeutic approaches. The isolation of pure progenitor populations or photoreceptor precursors may serve for drug, gene, and cell therapy development. Here, we generated a dual-reporter mouse embryonic stem cell line Crx-GFP;Rax-mCherry enabling the visualization or isolation of photoreceptors and retinal progenitors from retinal organoid settings. From day 4 organoids, we isolated mCherry-positive cells to assess their early retinal progenitor identity with proliferation tests as well as transcriptomic and proteomic profiling. The timing of eye field transcription factor expression at the transcriptomic and protein levels is in accordance with mouse retinogenesis. This new line will be helpful for rapidly investigating biological questions or testing therapeutics before using human induced pluripotent stem cells (iPSCs), which require a much longer time for retinal organoid formation.
Collapse
Affiliation(s)
- Oleksandr Zabiegalov
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (C.T.); (M.M.); (F.U.)
| | - Adeline Berger
- Unit of Epigenetics of Ocular Diseases, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland;
| | - Dhryata Kamdar
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology, 4031 Basel, Switzerland; (D.K.); (M.Q.); (C.R.)
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Kabirou Adamou
- Group for Retinal Disorders Research, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (K.A.); (C.K.)
| | - Chuanxi Tian
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (C.T.); (M.M.); (F.U.)
| | - Martial Mbefo
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (C.T.); (M.M.); (F.U.)
| | - Mathieu Quinodoz
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology, 4031 Basel, Switzerland; (D.K.); (M.Q.); (C.R.)
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Florian Udry
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (C.T.); (M.M.); (F.U.)
| | - Carlo Rivolta
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology, 4031 Basel, Switzerland; (D.K.); (M.Q.); (C.R.)
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Corinne Kostic
- Group for Retinal Disorders Research, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (K.A.); (C.K.)
| | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (C.T.); (M.M.); (F.U.)
| |
Collapse
|
20
|
Chien Y, Yang YP, Lin TC, Chiou GY, Yarmishyn AA, Wang CH, Ching LJ, Lin YY, Chen SJ, Hwang DK, Hsu CC. Reprogramming patient-induced pluripotent stem cell-specific retinal organoids for deciphering epigenetic modifications of RNA methylation. J Chin Med Assoc 2025; 88:116-125. [PMID: 39710870 DOI: 10.1097/jcma.0000000000001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Induced pluripotent stem cell (iPSC) technology has emerged as a powerful tool for disease modeling, providing an innovative platform for investigating disease mechanisms. iPSC-derived organoids, including retinal organoids, offer patient-specific models that closely replicate in vivo cellular environments, making them ideal for studying retinal neurodegenerative diseases where retinal ganglion cells (RGCs) are impacted. N6-methyladenosine (m6A), a prevalent internal modification in eukaryotic mRNAs, plays a critical role in RNA metabolic processes such as splicing, stability, translation, and transport. Given the high energy demands of RGCs, mitochondrial dysfunction, which leads to impaired adenosine triphosphate (ATP) production and increased reactive oxygen species (ROS) levels, is often central to the progression of retinal neurodegenerative disorders. However, the epigenetic mechanisms underlying m6A modification and their contributions to these conditions remain unclear. METHODS Patient-specific iPSCs were generated from individuals with Leber hereditary optic neuropathy (LHON) and differentiated into RGCs within retinal organoids. To analyze m6A methylation, we used quantitative polymerase chain reaction (PCR) and focused on differential expression of key m6A-modifying enzymes. RESULTS iPSC-derived retinal organoids are adaptable for studying and investigating the epigenetic mechanisms of retinal neurodegenerative diseases. Our data demonstrated the profiling of global m6A-related gene expression levels in LHON patient-derived iPSC-RGCs compared with controls, highlighting specific disruptions in m6A modification pathways. CONCLUSION These findings suggest that differential m6A modifications may play pivotal roles in the pathogenesis of retinal neurodegenerative diseases and affect the progression of the disease in affected individuals.
Collapse
Affiliation(s)
- Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tai-Chi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Guang-Yuh Chiou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
| | | | - Chia-Hao Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Lo-Jei Ching
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - De-Kuang Hwang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chih-Chien Hsu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
21
|
Shao Y, Wang J, Jin A, Jiang S, Lei L, Liu L. Biomaterial-assisted organoid technology for disease modeling and drug screening. Mater Today Bio 2025; 30:101438. [PMID: 39866785 PMCID: PMC11757232 DOI: 10.1016/j.mtbio.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Developing disease models and screening for effective drugs are key areas of modern medical research. Traditional methodologies frequently fall short in precisely replicating the intricate architecture of bodily tissues and organs. Nevertheless, recent advancements in biomaterial-assisted organoid technology have ushered in a paradigm shift in biomedical research. This innovative approach enables the cultivation of three-dimensional cellular structures in vitro that closely emulate the structural and functional attributes of organs, offering physiologically superior models compared to conventional techniques. The evolution of biomaterials plays a pivotal role in supporting the culture and development of organ tissues, thereby facilitating more accurate disease state modeling and the rigorous evaluation of drug efficacy and safety profiles. In this review, we will explore the roles that various biomaterials play in organoid development, examine the fundamental principles and advantages of utilizing these technologies in constructing disease models, and highlight recent advances and practical applications in drug screening using disease-specific organoid models. Additionally, the challenges and future directions of organoid technology are discussed. Through continued research and innovation, we aim to make remarkable strides in disease treatment and drug development, ultimately enhancing patient quality of life.
Collapse
Affiliation(s)
- Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Juncheng Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shicui Jiang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
22
|
Du Y, Shen Y. Progress in photoreceptor replacement therapy for retinal degenerative diseases. CELL INSIGHT 2025; 4:100223. [PMID: 39877255 PMCID: PMC11773227 DOI: 10.1016/j.cellin.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/03/2024] [Accepted: 11/12/2024] [Indexed: 01/31/2025]
Abstract
Retinal degenerative diseases encompass a diverse range of eye conditions that result in blindness, many due to photoreceptor dysfunction and loss. Regrettably, current clinical treatments are frequently not overly effective. However, photoreceptor transplantation shows promise as a potential therapy for late-stage retinal degenerative diseases. This article will review the various donor cell sources for this transplantation, as well as the mechanisms and factors that impact donor cell integration and material transfer, donor cell maturation, and other auxiliary methods that can be combined with photoreceptor transplantation to treat these degenerative retinal diseases.
Collapse
Affiliation(s)
- Yuxin Du
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
23
|
Abdal Dayem A, Bin Jang S, Lim N, Yeo HC, Kwak Y, Lee SH, Shin HJ, Cho SG. Advances in lacrimal gland organoid development: Techniques and therapeutic applications. Biomed Pharmacother 2025; 183:117870. [PMID: 39870025 DOI: 10.1016/j.biopha.2025.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
The human lacrimal gland (LG), located above the outer orbital region within the frontal bone socket, is essential in maintaining eye surface health and lubrication. It is firmly anchored to the orbital periosteum by the connective tissue, and it is vital for protecting and lubricating the eye by secreting lacrimal fluid. Disruption in the production, composition, or secretion of lacrimal fluid can lead to dry eye syndrome, a condition characterized by ocular discomfort and potential eye surface damage. This review explores the recent advancements in LG organoid generation using tissues and stem cells, highlighting cutting-edge techniques in biomaterial-based and scaffold-free technologies. Additionally, we shed light on the complex pathophysiology of LG dysfunction, providing insights into the LG physiological roles while identifying strategies for generating LG organoids and exploring their potential clinical applications. Alterations in LG morphology or secretory function can affect the tear film stability and quality, leading to various ocular pathological conditions. This comprehensive review underlines the critical crosslink of LG organoid development with disease modeling and drug screening, underscoring their potential for advancing therapeutic applications.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soo Bin Jang
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nahee Lim
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Cheol Yeo
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeonjoo Kwak
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Shin-Hyo Lee
- Department of Anatomy, Wonkwang University School of Medicine, Iksan, Republic of Korea; Jesaeng-Euise Clinical Anatomy Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Hyun Jin Shin
- Konkuk University School of Medicine, Chungju city, Republic of Korea; Department of Ophthalmology, Konkuk University Medical Center, Seoul, Republic of Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea; Institute of Biomedical Science & Technology, Konkuk University, Seoul, Republic of Korea.
| | - Sang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., Seoul, Republic of Korea.
| |
Collapse
|
24
|
Lee YJ, Jo DH. Retinal Organoids from Induced Pluripotent Stem Cells of Patients with Inherited Retinal Diseases: A Systematic Review. Stem Cell Rev Rep 2025; 21:167-197. [PMID: 39422807 PMCID: PMC11762450 DOI: 10.1007/s12015-024-10802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Currently, most inherited retinal diseases lack curative interventions, and available treatment modalities are constrained to symptomatic approaches. Retinal organoid technology has emerged as a method for treating inherited retinal diseases, with growing academic interest in recent years. The purpose of this review was to systematically organize the current protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal disease and to investigate the application of retinal organoids in inherited retinal disease research. METHODS Data were collected from the PubMed, Scopus, and Web of Science databases using a keyword search. The main search term used was "retinal organoid," accompanied by secondary keywords such as "optic cup," "three-dimensional," and "self-organizing." The final search was conducted on October 2, 2024. RESULTS Of the 2,129 studies retrieved, 130 were included in the qualitative synthesis. The protocols for the generation of retinal organoids in inherited retinal disease research use five major approaches, categorized into 3D and a combination of 2D/3D approaches, implemented with modifications. Disease phenotypes have been successfully reproduced via the generation of retinal organoids from the induced pluripotent stem cells of individuals with inherited retinal diseases, facilitating the progression of research into novel therapeutic developments. Cells have been obtained from retinal organoids for cell therapy, and progress toward their potential integration into clinical practice is underway. Considering their potential applications, retinal organoid technology has shown promise across various domains. CONCLUSION In this systematic review, we organized protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal diseases. Retinal organoid technology has various applications including disease modeling, screening for novel therapies, and cell replacement therapy. Further advancements would make this technology a clinically significant tool for patients with inherited retinal diseases.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
25
|
Flores-Bellver M, Canto-Soler MV. Generation of Induced-Primary Retinal Pigment Epithelium from Human Retinal Organoids. Methods Mol Biol 2025; 2848:197-214. [PMID: 39240525 DOI: 10.1007/978-1-0716-4087-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Retinal pigment epithelium (RPE) cells derived from induced pluripotent stem cells (iPSCs) serve multiple roles, including among others, modeling RPE development in normal and pathological conditions, investigating mechanisms of RPE physiology, modeling retinal diseases involving the RPE, and developing strategies for regenerative therapies. We have developed a simple and efficient protocol to generate RPE tissue from human iPSCs-derived retinal organoids. The RPE tissue present in the retinal organoids is analogous to the native human RPE in differentiation timeline, histological organization, and key features of functional maturation. Building upon this system, we established a method to generate functionally mature, polarized RPE monolayers comparable to human primary RPE. This comprehensive protocol outlines the steps for isolating and culturing RPE tissue using retinal organoids. The outcome is a pure population of cells expressing mature RPE signatures and organized in a characteristic cobblestone monolayer featuring robust ultrastructural polarization. These RPE monolayers also exhibit the functional hallmarks of bona fide mature RPE cells, providing a suitable system to mimic the biology and function of the native human RPE.
Collapse
Affiliation(s)
- Miguel Flores-Bellver
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
26
|
Boutom SM, Silva TP, Palecek SP, Shusta EV, Fernandes TG, Ashton RS. Central nervous system vascularization in human embryos and neural organoids. Cell Rep 2024; 43:115068. [PMID: 39693224 PMCID: PMC11975460 DOI: 10.1016/j.celrep.2024.115068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
In recent years, neural organoids derived from human pluripotent stem cells (hPSCs) have offered a transformative pre-clinical platform for understanding central nervous system (CNS) development, disease, drug effects, and toxicology. CNS vasculature plays an important role in all these scenarios; however, most published studies describe CNS organoids that lack a functional vasculature or demonstrate rudimentary incorporation of endothelial cells or blood vessel networks. Here, we review the existing knowledge of vascularization during the development of different CNS regions, including the brain, spinal cord, and retina, and compare it to vascularized CNS organoid models. We highlight several areas of contrast where further bioengineering innovation is needed and discuss potential applications of vascularized neural organoids in modeling human CNS development, physiology, and disease.
Collapse
Affiliation(s)
- Sarah M Boutom
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Teresa P Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tiago G Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Randolph S Ashton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
27
|
Liu H, Xu H, Zhu Y, Wang Z, Hu D, Yang L, Zhu Y, Galan EA, Huang R, Peng H, Ma S. A Large Model-Derived Algorithm for Complex Organoids with Internal Morphogenesis and Digital Marker Derivation. Anal Chem 2024; 96:19258-19266. [PMID: 39445667 DOI: 10.1021/acs.analchem.4c02212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Automated segmentation and evaluation algorithms have been demonstrated to enhance the simplicity and translational utility of organoid technology. However, there is a pressing need for the development of complex organoids that possess epithelium environmental elements, dense regional cell aggregation, and intraorganoid morphologies. Nevertheless, there has been limited progress, including both the construction of data sets and the development of algorithms, in the use of user-friendly microscopy to address such complex organoids. In this study, a data set of bright-field and living cell fluorescence images in paired forms and with temporal variance was constructed using droplet-engineered lung organoids. Additionally, a large model-based algorithm was developed. Both the organoid contours and intraorganoid morphologies were included in the data set, and their physical parameters were included and screened to form multiplex digital markers for organoid evaluation. The algorithm has been demonstrated to outperform existing methods and is therefore suitable for the evaluation of complex organoids. It is expected that the algorithm will facilitate the successful demonstration of AI in organoid evaluation and decision-making regarding their status.
Collapse
Affiliation(s)
- Hanghang Liu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Haohan Xu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Yu Zhu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Zitian Wang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Danni Hu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Lingxiao Yang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Yinheng Zhu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Edgar A Galan
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Ruqi Huang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Haiying Peng
- General Hospital of the Southern Theater Command of the Chinese People's Liberation Army, Guangzhou 510280, China
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Asano T, Suga H, Niioka H, Yukawa H, Sakakibara M, Taga S, Soen M, Miwata T, Sasaki H, Seki T, Hasegawa S, Murakami S, Abe M, Yasuda Y, Miyata T, Kobayashi T, Sugiyama M, Onoue T, Hagiwara D, Iwama S, Baba Y, Arima H. A deep learning approach to predict differentiation outcomes in hypothalamic-pituitary organoids. Commun Biol 2024; 7:1468. [PMID: 39643622 PMCID: PMC11624204 DOI: 10.1038/s42003-024-07109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 10/21/2024] [Indexed: 12/09/2024] Open
Abstract
We use three-dimensional culture systems of human pluripotent stem cells for differentiation into pituitary organoids. Three-dimensional culture is inherently characterized by its ability to induce heterogeneous cell populations, making it difficult to maintain constant differentiation efficiency. That is why the culture process involves empirical aspects. In this study, we use deep-learning technology to create a model that can predict from images of organoids whether differentiation is progressing appropriately. Our models using EfficientNetV2-S or Vision Transformer, employing VENUS-coupled RAX expression, predictively class bright-field images of organoids into three categories with 70% accuracy, superior to expert-observer predictions. Furthermore, the model obtained by ensemble learning with the two algorithms can predict RAX expression in cells without RAX::VENUS, suggesting that our model can be deployed in clinical applications such as transplantation.
Collapse
Affiliation(s)
- Tomoyoshi Asano
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
- Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8601, Japan.
| | - Hirohiko Niioka
- Data-Driven Innovation Initiative, Kyushu University, Fukuoka, 812-8582, Japan.
- Graduate School of Information Science and Technology, Osaka University, Suita, 565-0871, Japan.
| | - Hiroshi Yukawa
- Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8601, Japan
- Institute of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan
| | - Mayu Sakakibara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shiori Taga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe, 650-0047, Japan
| | - Mika Soen
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tsutomu Miwata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hiroo Sasaki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Department of Veterinary Anatomy, Tokyo University, Tokyo, 113-8654, Japan
| | - Tomomi Seki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Saki Hasegawa
- Department of Animal Sciences, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya, 464-8601, Japan
| | - Sou Murakami
- Department of Science, Osaka University, Osaka, 560-0043, Japan
| | - Masatoshi Abe
- Faculty of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoshinobu Baba
- Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8601, Japan
- Institute of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
29
|
Lei Q, Zhang R, Yuan F, Xiang M. Integration and Differentiation of Transplanted Human iPSC-Derived Retinal Ganglion Cell Precursors in Murine Retinas. Int J Mol Sci 2024; 25:12947. [PMID: 39684658 DOI: 10.3390/ijms252312947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Optic neuropathy such as glaucoma, stemming from retinal ganglion cell (RGC) degeneration, is a leading cause of visual impairment. Given the substantial loss of RGCs preceding clinical detection of visual impairment, cell replacement therapy emerges as a compelling treatment strategy. Human-induced pluripotent stem cells (hiPSCs) serve as invaluable tools for exploring the developmental processes and pathological mechanisms associated with human RGCs. Utilizing a 3D stepwise differentiation protocol for retinal organoids, we successfully differentiated RGC precursors from hiPSCs harboring a BRN3B-GFP RGC reporter, verified by GFP expression. Intravitreal transplantation of enriched RGC precursors into healthy or N-methyl-D-aspartate (NMDA)-injured mice demonstrated their survival, migration, and integration into the proper retinal layer, the ganglion cell layer, after 3 weeks. Notably, these transplanted cells differentiated into marker-positive RGCs and extended neurites. Moreover, enhanced cell survival was observed with immunosuppressive and anti-inflammatory treatments of the host prior to transplantation. These data underscore the potential of transplanted RGC precursors as a promising therapeutic avenue for treating degenerative retinal diseases resulting from RGC dysfunction.
Collapse
Affiliation(s)
- Qiannan Lei
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Rong Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Fa Yuan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
30
|
Xiao D, Liu S, Xiang M. Unveiling the potential: implications of successful somatic cell-to-ganglion organoid reprogramming. Curr Opin Genet Dev 2024; 89:102227. [PMID: 39586653 DOI: 10.1016/j.gde.2024.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 11/27/2024]
Abstract
Organoids have a wide range of potential applications in areas such as organ development, precision medicine, regenerative medicine, drug screening, disease modeling, and gene editing. Currently, most organoids are generated through three-dimensional (3D) in vitro culture of adult stem cells or pluripotent stem cells. However, this method of generating organoids still has several limitations and challenges, including complex manipulations, costly culturing materials, extended time requirements, and certain heterogeneity. Recently, we have found that fibroblasts, when overexpressing several key regulatory transcription factors, are able to directly and rapidly generate two types of ganglion organoids: sensory ganglion (SG) and autonomic ganglion (AG) organoids. They have structures and electrophysiological properties similar to those of endogenous organs in the body. Here, we provide a brief overview of organoid development, focusing on direct reprogramming of SG and AG organoids and their transplantation and regeneration. Finally, the advantages and prospects of direct reprogramming of organoids are discussed.
Collapse
Affiliation(s)
- Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Shuting Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sxen University, Guangzhou 510080, China.
| |
Collapse
|
31
|
Afting C, Walther T, Drozdowski OM, Schlagheck C, Schwarz US, Wittbrodt J, Göpfrich K. DNA microbeads for spatio-temporally controlled morphogen release within organoids. NATURE NANOTECHNOLOGY 2024; 19:1849-1857. [PMID: 39251862 PMCID: PMC11638066 DOI: 10.1038/s41565-024-01779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Organoids are transformative in vitro model systems that mimic features of the corresponding tissue in vivo. However, across tissue types and species, organoids still often fail to reach full maturity and function because biochemical cues cannot be provided from within the organoid to guide their development. Here we introduce nanoengineered DNA microbeads with tissue mimetic tunable stiffness for implementing spatio-temporally controlled morphogen gradients inside of organoids at any point in their development. Using medaka retinal organoids and early embryos, we show that DNA microbeads can be integrated into embryos and organoids by microinjection and erased in a non-invasive manner with light. Coupling a recombinant surrogate Wnt to the DNA microbeads, we demonstrate the spatio-temporally controlled morphogen release from the microinjection site, which leads to morphogen gradients resulting in the formation of retinal pigmented epithelium while maintaining neuroretinal cell types. Thus, we bioengineered retinal organoids to more closely mirror the cell type diversity of in vivo retinae. Owing to the facile, one-pot fabrication process, the DNA microbead technology can be adapted to other organoid systems for improved tissue mimicry.
Collapse
Affiliation(s)
- Cassian Afting
- Centre for Organismal Studies Heidelberg (COS), Heidelberg University, Heidelberg, Germany
- Heidelberg International Biosciences Graduate School HBIGS, Heidelberg, Germany
- HeiKa Graduate School on "Functional Materials", Heidelberg, Germany
| | - Tobias Walther
- HeiKa Graduate School on "Functional Materials", Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Oliver M Drozdowski
- BioQuant Center, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
- Max Planck School Matter to Life, Heidelberg, Germany
| | - Christina Schlagheck
- Centre for Organismal Studies Heidelberg (COS), Heidelberg University, Heidelberg, Germany
- Heidelberg International Biosciences Graduate School HBIGS, Heidelberg, Germany
- HeiKa Graduate School on "Functional Materials", Heidelberg, Germany
| | - Ulrich S Schwarz
- BioQuant Center, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies Heidelberg (COS), Heidelberg University, Heidelberg, Germany.
| | - Kerstin Göpfrich
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany.
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
32
|
Lancaster MA. Pluripotent stem cell-derived organoids: A brief history of curiosity-led discoveries. Bioessays 2024; 46:e2400105. [PMID: 39101295 PMCID: PMC11589667 DOI: 10.1002/bies.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024]
Abstract
Organoids are quickly becoming an accepted model for understanding human biology and disease. Pluripotent stem cells (PSC) provide a starting point for many organs and enable modeling of the embryonic development and maturation of such organs. The foundation of PSC-derived organoids can be found in elegant developmental studies demonstrating the remarkable ability of immature cells to undergo histogenesis even when taken out of the embryo context. PSC-organoids are an evolution of earlier methods such as embryoid bodies, taken to a new level with finer control and in some cases going beyond tissue histogenesis to organ-like morphogenesis. But many of the discoveries that led to organoids were not necessarily planned, but rather the result of inquisitive minds with freedom to explore. Protecting such curiosity-led research through flexible funding will be important going forward if we are to see further ground-breaking discoveries.
Collapse
|
33
|
Nnoromele PO, Adams M, Pan A, Liu YV, Wang J, Singh MS. Cell-cell interactions between transplanted retinal organoid cells and recipient tissues. Curr Opin Genet Dev 2024; 89:102277. [PMID: 39549608 DOI: 10.1016/j.gde.2024.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
The transplantation of human organoid-derived retinal cells is being studied as a potentially viable strategy to treat vision loss due to retinal degeneration. Experiments in animal models have demonstrated the feasibility of organoid-derived photoreceptor transplantation in various recipient contexts. In some cases, vision repair has been shown. However, recipient-donor cell-cell interactions are incompletely understood. This review briefly summarizes these interactions, categorizing them as synaptic structure formation, cellular component transfer, glial activation, immune cell infiltration, and cellular migration. Each of these interactions may affect the survival and functionality of the donor cells and, ultimately, their efficacy as a treatment substrate. Additionally, recipient characteristics, such as the cytoarchitecture of the retina and immune status, may also impact the type and frequency of cell-cell interactions. Despite the procedural challenges associated with culturing human retinal organoids and the technical difficulties in transplanting donor cells into the delicate recipient retina, transplantation of retinal organoid-derived cells is a promising tool for degenerative retinal disease treatment.
Collapse
Affiliation(s)
- Patrick O Nnoromele
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - McKaily Adams
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Annabelle Pan
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ying V Liu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joyce Wang
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
34
|
Rumbo M, Alsina B. Cellular diversity of human inner ear organoids revealed by single-cell transcriptomics. Development 2024; 151:dev202524. [PMID: 39612289 DOI: 10.1242/dev.202524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Human inner ear organoids are three-dimensional tissular structures grown in vitro that recapitulate some aspects of the fetal inner ear and allow the differentiation of inner ear cell types. These organoids offer a system in which to study human inner ear development, mutations causing hearing loss and vertigo, and new therapeutic drugs. However, the extent to which such organoids mimic in vivo human inner ear development and cellular composition remains unclear. Several recent studies have performed single-cell transcriptomics on human inner ear organoids to interrogate cellular heterogeneity, reveal the developmental trajectories of sensory lineages and compare organoid-derived vesicles to the developing human inner ear. Here, we discuss the new insights provided by these analyses that help to define new paths of investigation to understand inner ear development.
Collapse
Affiliation(s)
- Mireia Rumbo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra - Parc de Recerca Biomèdica de Barcelona, Carrer del Doctor Aiguader 8808003 Barcelona, Spain
| | - Berta Alsina
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra - Parc de Recerca Biomèdica de Barcelona, Carrer del Doctor Aiguader 8808003 Barcelona, Spain
| |
Collapse
|
35
|
Barabino A, Mellal K, Hamam R, Polosa A, Griffith M, Bouchard JF, Kalevar A, Hanna R, Bernier G. Molecular characterization and sub-retinal transplantation of hypoimmunogenic human retinal sheets in a minipig model of severe photoreceptor degeneration. Development 2024; 151:dev203071. [PMID: 39633598 DOI: 10.1242/dev.203071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
Retinal degenerative diseases affect millions of people worldwide, and legal blindness is generally associated with the loss of cone photoreceptors located in the central region of the retina called the macula. Currently, there is no treatment to replace the macula. Addressing this unmet need, we employed control isogenic and hypoimmunogenic induced pluripotent stem cell lines to generate spontaneously polarized retinal sheets (RSs). RSs were enriched in retinal progenitor and cone precursor cells, which could differentiate into mature S- and M/L-cones in long-term cultures. Single-cell RNA-seq analysis showed that RSs recapitulate the ontogeny of the developing human retina. Isolation of neural rosettes for sub-retinal transplantation effectively eliminated unwanted cells such as RPE cells. In a porcine model of chemically induced retinal degeneration, grafts integrated the host retina and formed a new, yet immature, photoreceptor layer. In one transplanted animal, functional and immunohistochemical assays suggest that grafts exhibited responsiveness to light stimuli and established putative synaptic connections with host bipolar neurons. This study underscores the potential and challenges of RSs for clinical applications.
Collapse
Affiliation(s)
- Andrea Barabino
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Katia Mellal
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Rimi Hamam
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Anna Polosa
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - May Griffith
- Department of Ophthalmology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | | | - Ananda Kalevar
- Department of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Roy Hanna
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
36
|
Rajendran Nair DS, Gupta A, Iseri E, Wei T, Phuong Quach LT, Seiler MJ, Lazzi G, Thomas BB. Extrinsic electric field modulates neuronal development and increases photoreceptor population in retinal organoids. Front Neurosci 2024; 18:1438903. [PMID: 39678532 PMCID: PMC11639233 DOI: 10.3389/fnins.2024.1438903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction Considering the significant role played by both intrinsic and extrinsic electric fields in the growth and maturation of the central nervous system, the impact of short exposure to external electric fields on the development and differentiation of retinal organoids was investigated. Methods Retinal organoids derived from human embryonic stem cells were used at day 80, a key stage in their differentiation. A single 60-minute exposure to a biphasic electrical field was administered to assess its influence on retinal cell populations and maturation markers. Immunohistochemistry, qPCR, and RNA sequencing were employed to evaluate cell type development and gene expression changes. Results Electrical stimulation significantly enhanced neuronal development and increased the population of photoreceptors within the organoids. RNA sequencing data showed upregulated expression of genes related to rod photoreceptors, Müller cells, horizontal cells, and amacrine cells, while genes associated with retinal pigment epithelium and retinal ganglion cells were downregulated. Variations in development and maturation were observed depending on the specific parameters of the applied electric field. Discussion These findings highlight the significant impact of extrinsic electrical fields on early retinal development and suggest that optimizing electrical field parameters could effectively address certain limitations in retinal organoid technology, potentially reducing the reliance on chemicals and small molecules.
Collapse
Affiliation(s)
- Deepthi S. Rajendran Nair
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Anika Gupta
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Ege Iseri
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Tianyuan Wei
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Le Tam Phuong Quach
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Magdalene J. Seiler
- Departments of Physical Medicine and Rehabilitation; Ophthalmology; Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | - Gianluca Lazzi
- Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| | - Biju B. Thomas
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
37
|
Ge JY, Wang Y, Li QL, Liu FK, Lei QK, Zheng YW. Trends and challenges in organoid modeling and expansion with pluripotent stem cells and somatic tissue. PeerJ 2024; 12:e18422. [PMID: 39619184 PMCID: PMC11608026 DOI: 10.7717/peerj.18422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/08/2024] [Indexed: 03/10/2025] Open
Abstract
The increasing demand for disease modeling, preclinical drug testing, and long waiting lists for alternative organ substitutes has posed significant challenges to current limitations in organoid technology. Consequently, organoid technology has emerged as a cutting-edge tool capable of accurately recapitulating the complexity of actual organs in physiology and functionality. To bridge the gaps between basic research and pharmaceutical as well as clinical applications, efforts have been made to develop organoids from tissue-derived stem cells or pluripotent stem cells. These developments include optimizing starting cells, refining culture systems, and introducing genetic modifications. With the rapid development of organoid technology, organoid composition has evolved from single-cell to multi-cell types, enhancing their level of biomimicry. Tissue structure has become more refined, and core challenges like vascularization are being addressed actively. These improvements are expected to pave the way for the construction of organoid atlases, automated large-scale cultivation, and universally compatible organoid biobanks. However, major obstacles remain to be overcome before urgently proof-of-concept organoids can be readily converted to practical applications. These obstacles include achieving structural and functional summarily to native tissue, remodeling the microenvironment, and scaling up production. This review aims to summarize the status of organoid development and applications, highlight recent progress, acknowledge existing limitations and challenges, and provide insights into future advancements. It is expected that this will contribute to the establishment of a reliable, scalable, and practical platform for organoid production and translation, further promoting their use in the pharmaceutical industry and regenerative medicine.
Collapse
Affiliation(s)
- Jian-Yun Ge
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
- Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Chinese Academy of Medical Sciences, Tianjin, China
- Innovation and Transformation Center, University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yun Wang
- Institute of Regenerative Medicine, and Department of Dermatology, Affilated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Dermatology, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Qi-Lin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fan-Kai Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Quan-Kai Lei
- Institute of Regenerative Medicine, and Department of Dermatology, Affilated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun-Wen Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
- Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Chinese Academy of Medical Sciences, Tianjin, China
- Institute of Regenerative Medicine, and Department of Dermatology, Affilated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Bai L, Zhou D, Li G, Liu J, Chen X, Su J. Engineering bone/cartilage organoids: strategy, progress, and application. Bone Res 2024; 12:66. [PMID: 39567500 PMCID: PMC11579019 DOI: 10.1038/s41413-024-00376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
The concept and development of bone/cartilage organoids are rapidly gaining momentum, providing opportunities for both fundamental and translational research in bone biology. Bone/cartilage organoids, essentially miniature bone/cartilage tissues grown in vitro, enable the study of complex cellular interactions, biological processes, and disease pathology in a representative and controlled environment. This review provides a comprehensive and up-to-date overview of the field, focusing on the strategies for bone/cartilage organoid construction strategies, progresses in the research, and potential applications. We delve into the significance of selecting appropriate cells, matrix gels, cytokines/inducers, and construction techniques. Moreover, we explore the role of bone/cartilage organoids in advancing our understanding of bone/cartilage reconstruction, disease modeling, drug screening, disease prevention, and treatment strategies. While acknowledging the potential of these organoids, we discuss the inherent challenges and limitations in the field and propose potential solutions, including the use of bioprinting for organoid induction, AI for improved screening processes, and the exploration of assembloids for more complex, multicellular bone/cartilage organoids models. We believe that with continuous refinement and standardization, bone/cartilage organoids can profoundly impact patient-specific therapeutic interventions and lead the way in regenerative medicine.
Collapse
Affiliation(s)
- Long Bai
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, China
| | - Dongyang Zhou
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Guangfeng Li
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Jinlong Liu
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| |
Collapse
|
39
|
Al Monla R, Daien V, Michon F. Advanced bioengineering strategies broaden the therapeutic landscape for corneal failure. Front Bioeng Biotechnol 2024; 12:1480772. [PMID: 39605752 PMCID: PMC11598527 DOI: 10.3389/fbioe.2024.1480772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
The cornea acts as the eye foremost protective layer and is essential for its focusing power. Corneal blindness may arise from physical trauma or conditions like dystrophies, keratitis, keratoconus, or ulceration. While conventional treatments involve medical therapies and donor allografts-sometimes supplemented with keratoprostheses-these options are not suitable for all corneal defects. Consequently, the development of bioartificial corneal tissue has emerged as a critical research area, aiming to address the global shortage of human cornea donors. Bioengineered corneas hold considerable promise as substitutes, with the potential to replace either specific layers or the entire thickness of damaged corneas. This review first delves into the structural anatomy of the human cornea, identifying key attributes necessary for successful corneal tissue bioengineering. It then examines various corneal pathologies, current treatments, and their limitations. Finally, the review outlines the primary approaches in corneal tissue engineering, exploring cell-free, cell-based, and scaffold-based options as three emerging strategies to address corneal failure.
Collapse
Affiliation(s)
- Reem Al Monla
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Vincent Daien
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
- Sydney Medical School, The Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Frederic Michon
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
| |
Collapse
|
40
|
Cui X, Li X, Zheng H, Su Y, Zhang S, Li M, Hao X, Zhang S, Hu Z, Xia Z, Shi C, Xu Y, Mao C. Human midbrain organoids: a powerful tool for advanced Parkinson's disease modeling and therapy exploration. NPJ Parkinsons Dis 2024; 10:189. [PMID: 39428415 PMCID: PMC11491477 DOI: 10.1038/s41531-024-00799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by the loss of dopaminergic neurons in the substantia nigra. Despite progress, the pathogenesis remains unclear. Human midbrain organoids (hMLOs) have emerged as a promising model for studying PD, drug screening, and potential treatments. This review discusses the development of hMLOs, their application in PD research, and current challenges in organoid construction, highlighting possible optimization strategies.
Collapse
Affiliation(s)
- Xin Cui
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xinwei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuyu Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Clinical Systems Biology Laboratories, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
41
|
Alsalloum A, Gornostal E, Mingaleva N, Pavlov R, Kuznetsova E, Antonova E, Nadzhafova A, Kolotova D, Kadyshev V, Mityaeva O, Volchkov P. A Comparative Analysis of Models for AAV-Mediated Gene Therapy for Inherited Retinal Diseases. Cells 2024; 13:1706. [PMID: 39451224 PMCID: PMC11506034 DOI: 10.3390/cells13201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent a diverse group of genetic disorders leading to progressive degeneration of the retina due to mutations in over 280 genes. This review focuses on the various methodologies for the preclinical characterization and evaluation of adeno-associated virus (AAV)-mediated gene therapy as a potential treatment option for IRDs, particularly focusing on gene therapies targeting mutations, such as those in the RPE65 and FAM161A genes. AAV vectors, such as AAV2 and AAV5, have been utilized to deliver therapeutic genes, showing promise in preserving vision and enhancing photoreceptor function in animal models. Despite their advantages-including high production efficiency, low pathogenicity, and minimal immunogenicity-AAV-mediated therapies face limitations such as immune responses beyond the retina, vector size constraints, and challenges in large-scale manufacturing. This review systematically compares different experimental models used to investigate AAV-mediated therapies, such as mouse models, human retinal explants (HREs), and induced pluripotent stem cell (iPSC)-derived retinal organoids. Mouse models are advantageous for genetic manipulation and detailed investigations of disease mechanisms; however, anatomical differences between mice and humans may limit the translational applicability of results. HREs offer valuable insights into human retinal pathophysiology but face challenges such as tissue degradation and lack of systemic physiological effects. Retinal organoids, on the other hand, provide a robust platform that closely mimics human retinal development, thereby enabling more comprehensive studies on disease mechanisms and therapeutic strategies, including AAV-based interventions. Specific outcomes targeted in these studies include vision preservation and functional improvements of retinas damaged by genetic mutations. This review highlights the strengths and weaknesses of each experimental model and advocates for their combined use in developing targeted gene therapies for IRDs. As research advances, optimizing AAV vector design and delivery methods will be critical for enhancing therapeutic efficacy and improving clinical outcomes for patients with IRDs.
Collapse
Affiliation(s)
- Almaqdad Alsalloum
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | | | - Natalia Mingaleva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Roman Pavlov
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | | | - Ekaterina Antonova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Aygun Nadzhafova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Daria Kolotova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
42
|
Brown R, Rabeling A, Goolam M. Progress and potential of brain organoids in epilepsy research. Stem Cell Res Ther 2024; 15:361. [PMID: 39396038 PMCID: PMC11470583 DOI: 10.1186/s13287-024-03944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024] Open
Abstract
Epilepsies are disorders of the brain characterised by an imbalance in electrical activity, linked to a disruption in the excitation and inhibition of neurons. Progress in the epilepsy research field has been hindered by the lack of an appropriate model, with traditionally used 2D primary cell culture assays and animal models having a number of limitations which inhibit their ability to recapitulate the developing brain and the mechanisms behind epileptogenesis. As a result, the mechanisms behind the pathogenesis of epilepsy are largely unknown. Brain organoids are 3D aggregates of neural tissue formed in vitro and have been shown to recapitulate the gene expression patterns of the brain during development, and can successfully model a range of epilepsies and drug responses. They thus present themselves as a novel tool to advance studies into epileptogenesis. In this review, we discuss the formation of brain organoids, their recent application in studying genetic epilepsies, hyperexcitability dynamics and oxygen glucose deprivation as a hyperexcitability agent, their use as an epilepsy drug testing and development platform, as well as the limitations of their use in epilepsy research and how these can be mitigated.
Collapse
Affiliation(s)
- Rachel Brown
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| | - Alexa Rabeling
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| | - Mubeen Goolam
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.
- UCT Neuroscience Institute, Cape Town, South Africa.
| |
Collapse
|
43
|
Heinzelmann E, Piraino F, Costa M, Roch A, Norkin M, Garnier V, Homicsko K, Brandenberg N. iPSC-derived and Patient-Derived Organoids: Applications and challenges in scalability and reproducibility as pre-clinical models. Curr Res Toxicol 2024; 7:100197. [PMID: 40276485 PMCID: PMC12020925 DOI: 10.1016/j.crtox.2024.100197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 04/26/2025] Open
Abstract
Recent advancements in stem cell technology have led to the development of organoids - three-dimensional (3D) cell cultures that closely mimic the structural and functional characteristics of human organs. These organoids represent a significant improvement over traditional two-dimensional (2D) cell cultures by preserving native tissue architecture and cellular interactions critical for physiological relevance. This review provides a comprehensive comparison between two main types of organoids: induced Pluripotent Stem Cell (iPSC)-derived and Adult Stem Cell (ASC)-derived (also known as Patient-Derived Organoids, PDOs). iPSC-derived organoids, derived from reprogrammed cells, exhibit remarkable plasticity, and can model a wide range of tissues and developmental stages. They are particularly valuable for studying early human development, genetic disorders, and complex diseases. However, challenges such as prolonged differentiation protocols and variability in maturation levels remain significant hurdles. In contrast, ASC-derived organoids, generated directly from patient tissues, faithfully recapitulate tissue-specific characteristics and disease phenotypes. This fidelity makes them indispensable for personalized medicine applications, including drug screening, disease modeling, and understanding individualized treatment responses. The review highlights the unique advantages and limitations of each organoid type, emphasizing their roles in advancing biomedical research and drug discovery. It addresses key challenges in organoid technology, such as scalability, reproducibility, and the need for standardized culture protocols. Furthermore, it explores recent innovations in scaffold-guided organoid engineering and the integration of organoids with advanced technologies like artificial intelligence and high-throughput screening. The integration of organoids with cutting-edge technologies holds promise for enhancing their utility in modeling complex human diseases and accelerating drug discovery and development. By providing more physiologically relevant models of human organs, organoid technology is poised to revolutionize biomedical research, offering new insights into disease mechanisms and personalized therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Maxim Norkin
- Department of Oncology, CHUV, Lausanne, Switzerland
| | | | | | | |
Collapse
|
44
|
Yao Q, Cheng S, Pan Q, Yu J, Cao G, Li L, Cao H. Organoids: development and applications in disease models, drug discovery, precision medicine, and regenerative medicine. MedComm (Beijing) 2024; 5:e735. [PMID: 39309690 PMCID: PMC11416091 DOI: 10.1002/mco2.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Organoids are miniature, highly accurate representations of organs that capture the structure and unique functions of specific organs. Although the field of organoids has experienced exponential growth, driven by advances in artificial intelligence, gene editing, and bioinstrumentation, a comprehensive and accurate overview of organoid applications remains necessary. This review offers a detailed exploration of the historical origins and characteristics of various organoid types, their applications-including disease modeling, drug toxicity and efficacy assessments, precision medicine, and regenerative medicine-as well as the current challenges and future directions of organoid research. Organoids have proven instrumental in elucidating genetic cell fate in hereditary diseases, infectious diseases, metabolic disorders, and malignancies, as well as in the study of processes such as embryonic development, molecular mechanisms, and host-microbe interactions. Furthermore, the integration of organoid technology with artificial intelligence and microfluidics has significantly advanced large-scale, rapid, and cost-effective drug toxicity and efficacy assessments, thereby propelling progress in precision medicine. Finally, with the advent of high-performance materials, three-dimensional printing technology, and gene editing, organoids are also gaining prominence in the field of regenerative medicine. Our insights and predictions aim to provide valuable guidance to current researchers and to support the continued advancement of this rapidly developing field.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sheng Cheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoqiang Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic‐Chemical and Aging‐Related InjuriesHangzhouChina
| |
Collapse
|
45
|
Akiba R, Tu HY, Hashiguchi T, Takahashi Y, Toyooka K, Tsukamoto Y, Baba T, Takahashi M, Mandai M. Host-Graft Synapses Form Functional Microstructures and Shape the Host Light Responses After Stem Cell-Derived Retinal Sheet Transplantation. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 39374009 PMCID: PMC11463710 DOI: 10.1167/iovs.65.12.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Retinitis pigmentosa represents a leading cause of blindness in developed countries, yet effective treatments for the disease remain unestablished. Previous studies have demonstrated the potential of stem cell-derived retinal organoid (SC-RO) sheet transplantation to form host-graft synapses and to improve light responsiveness in animal models of retinal degeneration. However, the detailed microstructures of these de novo synapses and their functional contribution have not been well elucidated. This study aims to (1) elucidate the microstructures of the host-graft synapse, and (2) investigate the overall distribution and contribution of these synapses to host retinal light responses. Methods We identified host-graft synapses using a reporter system in mouse SC-RO and rd1 mice, a well-established model of end-stage retinal degeneration. Correlative array tomography was used to reveal the microstructure of host-graft synapses. Furthermore, we developed a semi-automated algorithm that robustly detects the host-graft photoreceptor synapses in the overall grafted area using the same reporter system in flat-mount retinas. We then integrated the spatial distribution of the host-graft synapses with light responses detected by multi-electrode array recording. Results Correlative array tomography revealed that host-graft synapses recapitulate the developmental process of photoreceptor synapse formation involving horizontal cells first and then rod bipolar cells. By integrating the spatial distribution of host-graft synapse and multi-electrode array recording, we showed that the number of light-responsive host retinal ganglion cells is positively correlated with the local density of host-graft synapses. Conclusions De novo host-graft synapses recapitulate the developmental microstructure of the photoreceptor synapse, and their formation contributes to the light responsiveness after SC-RO transplantation.
Collapse
Affiliation(s)
- Ryutaro Akiba
- Chiba University Graduate School of Medicine, Department of Ophthalmology, Chuo-ku, Chiba, Japan
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
| | - Hung-Ya Tu
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
- Institute for Protein Research, Osaka University, Suita-shi, Osaka, Japan
| | - Tomoyo Hashiguchi
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
| | - Yoshiko Takahashi
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | | - Takayuki Baba
- Chiba University Graduate School of Medicine, Department of Ophthalmology, Chuo-ku, Chiba, Japan
| | - Masayo Takahashi
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
- Kobe City Eye Hospital Research Center, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
| | - Michiko Mandai
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
- Kobe City Eye Hospital Research Center, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
| |
Collapse
|
46
|
Akiba R, Lind Boniec S, Knecht S, Uyama H, Tu HY, Baba T, Takahashi M, Mandai M, Wong RO. Cellular and circuit remodeling of the primate foveal midget pathway after acute photoreceptor loss. Proc Natl Acad Sci U S A 2024; 121:e2413104121. [PMID: 39231211 PMCID: PMC11406236 DOI: 10.1073/pnas.2413104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024] Open
Abstract
The retinal fovea in human and nonhuman primates is essential for high acuity and color vision. Within the fovea lies specialized circuitry in which signals from a single cone photoreceptor are largely conveyed to one ON and one OFF type midget bipolar cell (MBC), which in turn connect to a single ON or OFF midget ganglion cell (MGC), respectively. Restoring foveal vision requires not only photoreceptor replacement but also appropriate reconnection with surviving ON and OFF MBCs and MGCs. However, our current understanding of the effects of cone loss on the remaining foveal midget pathway is limited. We thus used serial block-face electron microscopy to determine the degree of plasticity and potential remodeling of this pathway in adult Macaca fascicularis several months after acute photoreceptor loss upon photocoagulation. We reconstructed MBC structure and connectivity within and adjacent to the region of cone loss. We found that MBC dendrites within the scotoma retracted and failed to reach surviving cones to form new connections. However, both surviving cones and ON and OFF MBC dendrites at the scotoma border exhibited remodeling, suggesting that these neurons can demonstrate plasticity and rewiring at maturity. At six months postlesion, disconnected OFF MBCs clearly lost output ribbon synapses with their postsynaptic partners, whereas the majority of ON MBCs maintained their axonal ribbon numbers, suggesting differential timing or extent in ON and OFF midget circuit remodeling after cone loss. Our findings raise rewiring considerations for cell replacement approaches in the restoration of foveal vision.
Collapse
Affiliation(s)
- Ryutaro Akiba
- Department of Biological Structure, University of Washington, Seattle, WA 98195
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Department of Ophthalmology and Visual Sciences, Chiba University Graduate School of Medicine, Chiba 260-8677, Japan
| | - Shane Lind Boniec
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - Sharm Knecht
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - Hirofumi Uyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hung-Ya Tu
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Takayuki Baba
- Department of Ophthalmology and Visual Sciences, Chiba University Graduate School of Medicine, Chiba 260-8677, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Research Center, Kobe City Eye Hospital Research Center, Kobe, Hyogo 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Research Center, Kobe City Eye Hospital Research Center, Kobe, Hyogo 650-0047, Japan
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| |
Collapse
|
47
|
Aili Y, Maimaitiming N, Wang Z, Wang Y. Brain organoids: A new tool for modelling of neurodevelopmental disorders. J Cell Mol Med 2024; 28:e18560. [PMID: 39258535 PMCID: PMC11388061 DOI: 10.1111/jcmm.18560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 09/12/2024] Open
Abstract
Neurodevelopmental disorders are mostly studied using mice as models. However, the mouse brain lacks similar cell types and structures as those of the human brain. In recent years, emergence of three-dimensional brain organoids derived from human embryonic stem cells or induced pluripotent stem cells allows for controlled monitoring and evaluation of early neurodevelopmental processes and has opened a window for studying various aspects of human brain development. However, such organoids lack original anatomical structure of the brain during maturation, and neurodevelopmental maturation processes that rely on unique cellular interactions and neural network connections are limited. Consequently, organoids are difficult to be used extensively and effectively while modelling later stages of human brain development and disease progression. To address this problem, several methods and technologies have emerged that aim to enhance the sophisticated regulation of brain organoids developmental processes through bioengineering approaches, which may alleviate some of the current limitations. This review discusses recent advances and application areas of human brain organoid culture methods, aiming to generalize optimization strategies for organoid systems, improve the ability to mimic human brain development, and enhance the application value of organoids.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| | | | - Zengliang Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| | - Yongxin Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| |
Collapse
|
48
|
Matsushita T, Onishi A, Matsuyama T, Masuda T, Ogino Y, Kageyama M, Takahashi M, Uchiumi F. Rapid and efficient generation of mature retinal organoids derived from human pluripotent stem cells via optimized pharmacological modulation of Sonic hedgehog, activin A, and retinoic acid signal transduction. PLoS One 2024; 19:e0308743. [PMID: 39121095 PMCID: PMC11315325 DOI: 10.1371/journal.pone.0308743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024] Open
Abstract
Human retinal organoids have become indispensable tools for retinal disease modeling and drug screening. Despite its versatile applications, the long timeframe for their differentiation and maturation limits the throughput of such research. Here, we successfully shortened this timeframe by accelerating human retinal organoid development using unique pharmacological approaches. Our method comprised three key steps: 1) a modified self-formed ectodermal autonomous multizone (SEAM) method, including dual SMAD inhibition and bone morphogenetic protein 4 treatment, for initial neural retinal induction; 2) the concurrent use of a Sonic hedgehog agonist SAG, activin A, and all-trans retinoic acid for rapid retinal cell specification; and 3) switching to SAG treatment alone for robust retinal maturation and lamination. The generated retinal organoids preserved typical morphological features of mature retinal organoids, including hair-like surface structures and well-organized outer layers. These features were substantiated by the spatial immunostaining patterns of several retinal cell markers, including rhodopsin and L/M opsin expression in the outermost layer, which was accompanied by reduced ectopic cone photoreceptor generation. Importantly, our method required only 90 days for retinal organoid maturation, which is approximately two-thirds the time necessary for other conventional methods. These results indicate that thoroughly optimized pharmacological interventions play a pivotal role in rapid and precise photoreceptor development during human retinal organoid differentiation and maturation. Thus, our present method may expedite human retinal organoid research, eventually contributing to the development of better treatment options for various degenerative retinal diseases.
Collapse
Affiliation(s)
- Tokiyoshi Matsushita
- Faculty of Pharmaceutical Sciences, Department of Gene Regulation, Tokyo University of Science, Noda, Chiba, Japan
- Product Discovery, Ophthalmology Innovation Center, Santen Pharmaceutical Co., Ltd., Ikoma, Nara, Japan
| | - Akishi Onishi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Cell and Gene Therapy in Ophthalmology Laboratory, Baton Zone Program, RIKEN, Wako, Saitama, Japan
| | - Takahiro Matsuyama
- Product Discovery, Ophthalmology Innovation Center, Santen Pharmaceutical Co., Ltd., Ikoma, Nara, Japan
| | - Tomohiro Masuda
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Cell and Gene Therapy in Ophthalmology Laboratory, Baton Zone Program, RIKEN, Wako, Saitama, Japan
| | - Yoko Ogino
- Faculty of Pharmaceutical Sciences, Department of Gene Regulation, Tokyo University of Science, Noda, Chiba, Japan
| | - Masaaki Kageyama
- Product Discovery, Ophthalmology Innovation Center, Santen Pharmaceutical Co., Ltd., Ikoma, Nara, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Cell and Gene Therapy in Ophthalmology Laboratory, Baton Zone Program, RIKEN, Wako, Saitama, Japan
| | - Fumiaki Uchiumi
- Faculty of Pharmaceutical Sciences, Department of Gene Regulation, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
49
|
Liu S, Cheng C, Zhu L, Zhao T, Wang Z, Yi X, Yan F, Wang X, Li C, Cui T, Yang B. Liver organoids: updates on generation strategies and biomedical applications. Stem Cell Res Ther 2024; 15:244. [PMID: 39113154 PMCID: PMC11304926 DOI: 10.1186/s13287-024-03865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
The liver is the most important metabolic organ in the body. While mouse models and cell lines have further deepened our understanding of liver biology and related diseases, they are flawed in replicating key aspects of human liver tissue, particularly its complex structure and metabolic functions. The organoid model represents a major breakthrough in cell biology that revolutionized biomedical research. Organoids are in vitro three-dimensional (3D) physiological structures that recapitulate the morphological and functional characteristics of tissues in vivo, and have significant advantages over traditional cell culture methods. In this review, we discuss the generation strategies and current advances in the field focusing on their application in regenerative medicine, drug discovery and modeling diseases.
Collapse
Affiliation(s)
- Sen Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
| | | | - Liuyang Zhu
- First Central Clinical College of Tianjin Medical University, Tianjin, 300192, China
| | - Tianyu Zhao
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
| | - Ze Wang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiulin Yi
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fengying Yan
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoliang Wang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
| | - Chunli Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Tao Cui
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China.
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Baofeng Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- School of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
50
|
Su Y, Liu A, Chen H, Chen Q, Zhao B, Gao R, Zhang K, Peng T, Zhang Z, Ouyang C, Zhu D. Research progress of brain organoids in the field of diabetes. Mol Brain 2024; 17:53. [PMID: 39107846 PMCID: PMC11304585 DOI: 10.1186/s13041-024-01123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Human embryonic stem cells and human induced pluripotent stem cells may be used to create 3D tissues called brain organoids. They duplicate the physiological and pathological characteristics of human brain tissue more faithfully in terms of both structure and function, and they more precisely resemble the morphology and cellular structure of the human embryonic brain. This makes them valuable models for both drug screening and in vitro studies on the development of the human brain and associated disorders. The technical breakthroughs enabled by brain organoids have a significant impact on the research of different brain regions, brain development and sickness, the connections between the brain and other tissues and organs, and brain evolution. This article discusses the development of brain organoids, their use in diabetes research, and their progress.
Collapse
Affiliation(s)
- Ying Su
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Aimei Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Hongguang Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Bo Zhao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Runze Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Kangwei Zhang
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Tie Peng
- Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
| | - Changhan Ouyang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China.
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
| |
Collapse
|