1
|
Qin S, Bo X, Liu H, Zhang Z, Zhao Z, Xia Q. Cell therapies and liver organogenesis technologies: Promising strategies for end-stage liver disease. Hepatology 2025:01515467-990000000-01231. [PMID: 40178487 DOI: 10.1097/hep.0000000000001321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025]
Abstract
End-stage liver disease represents a critical hepatic condition with high mortality, for which liver transplantation remains the only effective treatment. However, the scarcity of suitable donors results in numerous patients dying while awaiting transplantation. Novel strategies, including cell therapies and technologies mimicking liver organogenesis, offer promising alternatives for treating end-stage liver disease by potentially providing new sources of liver grafts. Recently, significant progress has been made in this field, including stem cell transplantation, hepatocyte transplantation, in vitro liver tissue generation, and liver replacement technologies. Several clinical studies have demonstrated that stem cell transplantation and hepatocyte transplantation can prolong patient survival and serve as a bridge to liver transplantation. Furthermore, in vitro liver tissue generation technologies, such as liver organoids and three-dimensional bioprinting, can generate hepatic tissues with sophisticated structures and functions, making them promising transplantation materials. Notably, liver replacement technologies hold considerable potential for producing biologically functional and transplantable liver grafts. In this review, we discuss the fundamental principles and recent advancements in cell therapies and liver organogenesis technologies while also addressing the challenges and future prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Shaoyang Qin
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaochen Bo
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyuan Liu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhishuo Zhang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicong Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-German Gene and Cell Therapy Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-German Gene and Cell Therapy Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
2
|
Zhu F, Nie G. Cell reprogramming: methods, mechanisms and applications. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:12. [PMID: 40140235 PMCID: PMC11947411 DOI: 10.1186/s13619-025-00229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Cell reprogramming represents a powerful approach to achieve the conversion cells of one type into cells of another type of interest, which has substantially changed the landscape in the field of developmental biology, regenerative medicine, disease modeling, drug discovery and cancer immunotherapy. Cell reprogramming is a complex and ordered process that involves the coordination of transcriptional, epigenetic, translational and metabolic changes. Over the past two decades, a range of questions regarding the facilitators/barriers, the trajectories, and the mechanisms of cell reprogramming have been extensively investigated. This review summarizes the recent advances in cell reprogramming mediated by transcription factors or chemical molecules, followed by elaborating on the important roles of biophysical cues in cell reprogramming. Additionally, this review will detail our current understanding of the mechanisms that govern cell reprogramming, including the involvement of the recently discovered biomolecular condensates. Finally, the review discusses the broad applications and future directions of cell reprogramming in developmental biology, disease modeling, drug development, regenerative/rejuvenation therapy, and cancer immunotherapy.
Collapse
Affiliation(s)
- Fei Zhu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Liu K, Li L, He Y, Zhang S, You H, Wang P. Hepatic progenitor cells reprogrammed from mouse fibroblasts repopulate hepatocytes in Wilson's disease mice. Stem Cell Res Ther 2025; 16:131. [PMID: 40069754 PMCID: PMC11899129 DOI: 10.1186/s13287-025-04253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Wilson's disease (WD) is a genetic disorder that impairs the excretion of copper in hepatocytes and results in excessive copper deposition in multiple organs. The replacement of disordered hepatocytes with functional hepatocytes can serve as a lifelong therapeutic strategy for the treatment of WD. The aim of this study was to determine the hepatocyte repopulation effects of fibroblast-derived hepatic progenitor cells in the treatment of WD. METHODS Induced hepatic progenitor cells (iHPCs) were generated through direct reprogramming of adult mouse fibroblasts infected with lentivirus carrying both the Foxa3 and Hnf4α genes. These iHPCs were subsequently identified and transplanted into copper-overload WD mice with the Atp7b (H1071Q) mutation via caudal vein injection. RESULTS After lentivirus infection, the fibroblasts transformed into Foxa3- and Hnf4α-overexpressing cobblestone-like cells with reduced expression of fibroblast markers and increased expression of epithelial cell and hepatic progenitor cell markers, i.e., iHPCs. Sixteen weeks after transplantation into WD mice, approximately 2% of hepatocytes were derived from iHPCs, and these iHPC-derived hepatocytes expressed a tight junction-associated protein of the bile canal, tight junction protein 1 (Zo1). There was a decrease in the serum copper concentration and relative activity of serum ceruloplasmin at weeks 4 and 8 after iHPCs transplantation compared with those of WD fed mice administered saline or fibroblasts. Furthermore, iHPC transplantation markedly reduced the proportion of CD8+ T lymphocytes and natural killer cells compared with those in fibroblast-transplanted WD mice and downregulated the transcription of the inflammatory cytokines, including tumor necrosis factor α (Tnfα), interleukin 1β (IL-1β), and IL-6, compared with those in WD mice and in fibroblast-transplanted WD mice. CONCLUSION iHPCs reprogrammed from adult fibroblasts can repopulate hepatocytes and exert therapeutic effects in WD mice, representing a potential replacement therapy for clinical application.
Collapse
Affiliation(s)
- Kai Liu
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Beijing, 100050, China.
- Beijing Clinical Research Institute, Beijing, 100050, China.
| | - Li Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
| | - Yu He
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
| | - Song Zhang
- Beijing Clinical Research Institute, Beijing, 100050, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China.
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China.
| |
Collapse
|
4
|
Mirizio G, Sampson S, Iwafuchi M. Interplay between pioneer transcription factors and epigenetic modifiers in cell reprogramming. Regen Ther 2025; 28:246-252. [PMID: 39834592 PMCID: PMC11745816 DOI: 10.1016/j.reth.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells by Yamanaka factors, including pioneer transcription factors (TFs), has greatly reshaped our traditional understanding of cell plasticity and demonstrated the remarkable potential of pioneer TFs. In addition to iPSC reprogramming, pioneer TFs are pivotal in direct reprogramming or transdifferentiation where somatic cells are converted into different cell types without passing through a pluripotent state. Pioneer TFs initiate a reprogramming process through chromatin opening, thereby establishing competence for new gene regulatory programs. The action of pioneer TFs is both influenced by and exerts influence on epigenetic regulation. Despite significant advances, many direct reprogramming processes remain inefficient, which limits their reliability for clinical applications. In this review, we discuss the molecular mechanisms underlying pioneer TF-driven reprogramming, with a focus on their interactions with epigenetic modifiers, including Polycomb repressive complexes (PRCs), nucleosome remodeling and deacetylase (NuRD) complexes, and the DNA methylation machinery. A deeper understanding of the dynamic interplay between pioneer TFs and epigenetic modifiers will be essential for advancing reprogramming technologies and unlocking their full clinical potential.
Collapse
Affiliation(s)
- Gerardo Mirizio
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| | - Samuel Sampson
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| | - Makiko Iwafuchi
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| |
Collapse
|
5
|
Lim B, Kamal A, Gomez Ramos B, Adrian Segarra JM, Ibarra IL, Dignas L, Kindinger T, Volz K, Rahbari M, Rahbari N, Poisel E, Kafetzopoulou K, Böse L, Breinig M, Heide D, Gallage S, Barragan Avila JE, Wiethoff H, Berest I, Schnabellehner S, Schneider M, Becker J, Helm D, Grimm D, Mäkinen T, Tschaharganeh DF, Heikenwalder M, Zaugg JB, Mall M. Active repression of cell fate plasticity by PROX1 safeguards hepatocyte identity and prevents liver tumorigenesis. Nat Genet 2025; 57:668-679. [PMID: 39948437 PMCID: PMC11906372 DOI: 10.1038/s41588-025-02081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/08/2025] [Indexed: 02/20/2025]
Abstract
Cell fate plasticity enables development, yet unlocked plasticity is a cancer hallmark. While transcription master regulators induce lineage-specific genes to restrict plasticity, it remains unclear whether plasticity is actively suppressed by lineage-specific repressors. Here we computationally predict so-called safeguard repressors for 18 cell types that block phenotypic plasticity lifelong. We validated hepatocyte-specific candidates using reprogramming, revealing that prospero homeobox protein 1 (PROX1) enhanced hepatocyte identity by direct repression of alternative fate master regulators. In mice, Prox1 was required for efficient hepatocyte regeneration after injury and was sufficient to prevent liver tumorigenesis. In line with patient data, Prox1 depletion caused hepatocyte fate loss in vivo and enabled the transition of hepatocellular carcinoma to cholangiocarcinoma. Conversely, overexpression promoted cholangiocarcinoma to hepatocellular carcinoma transdifferentiation. Our findings provide evidence for PROX1 as a hepatocyte-specific safeguard and support a model where cell-type-specific repressors actively suppress plasticity throughout life to safeguard lineage identity and thus prevent disease.
Collapse
Affiliation(s)
- Bryce Lim
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Aryan Kamal
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Borja Gomez Ramos
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juan M Adrian Segarra
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ignacio L Ibarra
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
| | - Lennart Dignas
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tim Kindinger
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kai Volz
- Cell Plasticity and Epigenetic Remodeling Helmholtz Group, DKFZ, Heidelberg, Germany
- Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Mohammad Rahbari
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany
- Department of Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nuh Rahbari
- Department of Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of General and Visceral Surgery, University of Ulm, Ulm, Germany
| | - Eric Poisel
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kanela Kafetzopoulou
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lio Böse
- Cell Plasticity and Epigenetic Remodeling Helmholtz Group, DKFZ, Heidelberg, Germany
- Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Marco Breinig
- Cell Plasticity and Epigenetic Remodeling Helmholtz Group, DKFZ, Heidelberg, Germany
- Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany
| | - Suchira Gallage
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany
- Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine, University Tuebingen, Tübingen, Germany
| | | | - Hendrik Wiethoff
- Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Ivan Berest
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
| | - Sarah Schnabellehner
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Jonas Becker
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty and Faculty of Engineering Sciences, Heidelberg University, Center for Integrative Infectious Diseases Research (CIID), BioQuant, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, DKFZ, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty and Faculty of Engineering Sciences, Heidelberg University, Center for Integrative Infectious Diseases Research (CIID), BioQuant, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Translational Cancer Medicine Program and Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
| | - Darjus F Tschaharganeh
- Cell Plasticity and Epigenetic Remodeling Helmholtz Group, DKFZ, Heidelberg, Germany
- Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany
- Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine, University Tuebingen, Tübingen, Germany
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany.
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Moritz Mall
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
- HITBR Hector Institute for Translational Brain Research gGmbH, Heidelberg, Germany.
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
6
|
Lin H, Wang X, Chung M, Cai S, Pan Y. Direct fibroblast reprogramming: an emerging strategy for treating organic fibrosis. J Transl Med 2025; 23:240. [PMID: 40016790 PMCID: PMC11869441 DOI: 10.1186/s12967-024-06060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/26/2024] [Indexed: 03/01/2025] Open
Abstract
Direct reprogramming has garnered considerable attention due to its capacity to directly convert differentiated cells into desired cells. Fibroblasts are frequently employed in reprogramming studies due to their abundance and accessibility. However, they are also the key drivers in the progression of fibrosis, a pathological condition characterized by excessive extracellular matrix deposition and tissue scarring. Furthermore, the initial stage of reprogramming typically involves deactivating fibrotic pathways. Hence, direct reprogramming offers a valuable method to regenerate target cells for tissue repair while simultaneously reducing fibrotic tendencies. Understanding the link between reprogramming and fibrosis could help develop effective strategies to treat damaged tissue with a potential risk of fibrosis. This review summarizes the advances in direct reprogramming and reveals their anti-fibrosis effects in various organs such as the heart, liver, and skin. Furthermore, we dissect the mechanisms of reprogramming influenced by fibrotic molecules including TGF-β signaling, mechanical signaling, inflammation signaling, epigenetic modifiers, and metabolic regulators. Innovative methods for fibroblast reprogramming like small molecules, CRISPRa, modified mRNA, and the challenges of cellular heterogeneity and senescence faced by in vivo direct reprogramming, are also discussed.
Collapse
Affiliation(s)
- Haohui Lin
- Laboratory of Regenerative Medicine, The 2nd Affiliated Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Xia Wang
- School of Medicine, The Chinese University of Hong Kong Shenzhen, Shenzhen, China
| | - Manhon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sa Cai
- Laboratory of Regenerative Medicine, The 2nd Affiliated Hospital, Medical School, Shenzhen University, Shenzhen, China.
| | - Yu Pan
- Laboratory of Regenerative Medicine, The 2nd Affiliated Hospital, Medical School, Shenzhen University, Shenzhen, China.
| |
Collapse
|
7
|
Sun Y, Yuan X, Hu Z, Li Y. Harnessing nuclear receptors to modulate hepatic stellate cell activation for liver fibrosis resolution. Biochem Pharmacol 2025; 232:116730. [PMID: 39710274 DOI: 10.1016/j.bcp.2024.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
With the recent approval of Resmetirom as the first drug targeting nuclear receptors for metabolic dysfunction-associated steatohepatitis (MASH), there is promising way to treat MASH-associated liver fibrosis. However, liver fibrosis can arise from various pathogenic factors, and effective treatments for fibrosis due to other causes remain elusive. The activation of hepatic stellate cells (HSCs) represents a central link in the pathogenesis of hepatic fibrosis. Therefore, harnessing nuclear receptors to modulate HSC activation may be an effective approach to resolving the complex liver fibrosis caused by various factors. In this comprehensive review, we systematically explore the structure and physiological functions of nuclear receptors, shedding light on their multifaceted roles in HSC activation. Recent advancements in drug development targeting nuclear receptors are discussed, providing insights into their potential as rational and effective therapeutic targets for modulating HSC activation in the context of liver fibrosis. By elucidating the intricate interplay between nuclear receptors and HSC activation, this review contributes to the discovery of new nuclear receptor targets in HSCs for resolving hepatic fibrosis.
Collapse
Affiliation(s)
- Yaxin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Yuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; Department of Health and Nursing, Nanfang College of Sun Yat-sen University, Guangzhou, China.
| | - Yuanyuan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Tehrani HA, Zangi M, Fathi M, Vakili K, Hassan M, Rismani E, Hossein-Khannazer N, Vosough M. GPC-3 in hepatocellular carcinoma; A novel biomarker and molecular target. Exp Cell Res 2025; 444:114391. [PMID: 39725192 DOI: 10.1016/j.yexcr.2024.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is a global health issue due to its late diagnosis and high recurrence rate. The early detection and diagnosis of HCC with specific and sensitive biomarkers and using novel treatment approaches to improve patient outcomes are essential. Glypican-3 (GPC-3) is a cell surface proteoglycan that is overexpressed in many tumors, including HCC. GPC-3 could be used as a specific biomarker for HCC early detection and could be a potential target for precise therapeutic strategies. Effective identification of GPC-3 could improve both diagnosis and targeted therapy of HCC. Moreover, targeted therapy using GPC-3 could result in a better treatment outcome. Recently, GPC3-targeted therapies have been used in different investigational therapeutic approaches like bi-specific/monoclonal antibodies, peptide vaccines, and CAR T cell therapies. This study aims to highlight the theranostic potential of GPC-3 as a novel biomarker for early detection and as a potential molecular target for HCC treatment as well.
Collapse
Affiliation(s)
- Hamed Azhdari Tehrani
- Department of Hematology-Medical Oncology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masood Zangi
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Massoud Vosough
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
9
|
Li S, Ou C, Zhang J, Zeng M, Liang K, Peng Q, Gao Y. The Effect of FOXA3 Overexpression on Hepatocyte Differentiation and Liver Regeneration in a Fah cKO Mouse Model. Cell Mol Gastroenterol Hepatol 2024; 19:101438. [PMID: 39662671 PMCID: PMC11786892 DOI: 10.1016/j.jcmgh.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND & AIMS Stimulated by injury or disease, hepatocytes can regenerate and repair liver tissues through proliferation and differentiation. Partial hepatectomy and liver transplantation are effective treatments for liver diseases. This study investigated the effect of FOXA3 on cell differentiation in HepaRG cell lines under 2- and 3-dimensional culture conditions. METHODS Experiments were performed using a HepaRG cell line that stably overexpressed FOXA3 (RF3) and hepatocyte-specific functions. Moreover, a Fah conditional knockout mouse model (Fah cKO mice) was constructed using the CRISPR-Cas9 method and treated with RF3 spheroids for transplantation. Various molecular biology and immunostaining experiments were performed to assess liver function, hepatocyte structure, and expression levels of cell cycle-related proteins. RESULTS HepaRG cells that overexpressed FOXA3 had hepatocyte-specific functions. RF3 spheroids expressed liver markers following gene and protein expression analysis. After RF3 spheroid transplantation, Fah cKO mice exhibited increased survival, reduced weight loss, normalization of liver function and hepatocyte structure, and enhanced expression of hepatocyte differentiation factors. However, the expression of cell cycle-related proteins, including p53 and p21, was decreased in vivo. Injection of an HNF4α antagonist revealed that inhibition of HNF4α effectively suppressed the regenerative capacity of the liver after RF3 spheroid transplantation, resulting in an increase in the number of p53- and p21-positive cells and a decrease in the expression levels of liver function-related genes. CONCLUSIONS FOXA3 plays an important role in hepatocyte function. RF3 spheroid transplantation had a therapeutic effect in the Fah cKO mouse model, improving liver function and promoting liver regeneration.
Collapse
Affiliation(s)
- Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chupeng Ou
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiajun Zhang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Min Zeng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kangyan Liang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Peng
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, China.
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Guo JY, Xu JY, Gong SS, Wang GP. Roles of supporting cells in the maintenance and regeneration of the damaged inner ear: A literature review. J Otol 2024; 19:234-240. [PMID: 39776546 PMCID: PMC11701326 DOI: 10.1016/j.joto.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 01/11/2025] Open
Abstract
The inner ear sensory epithelium consists of two major types of cells: hair cells (HCs) and supporting cells (SCs). Critical functions of HCs in the perception of mechanical stimulation and mechanosensory transduction have long been elucidated. SCs are indispensable components of the sensory epithelia, and they maintain the structural integrity and ionic environment of the inner ear. Once delicate inner ear epithelia sustain injuries (for example, due to ototoxic drugs or noise exposure), SCs respond immediately to serve as repairers of the epithelium and as adapters to become HC progenitors, aiming at morphological and functional recovery of the inner ear. This regenerative process is extensive in non-mammals, but is limited in the mammalian inner ear, especially in the mature cochlea. This review aimed to discuss the important roles of SCs in the repair of the mammalian inner ear.
Collapse
Affiliation(s)
- Jing-Ying Guo
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Jun-Yi Xu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Shu-Sheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Guo-Peng Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Hu X, Sun J, Wan M, Zhang B, Wang L, Zhong TP. Expression levels and stoichiometry of Hnf1β, Emx2, Pax8 and Hnf4 influence direct reprogramming of induced renal tubular epithelial cells. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:19. [PMID: 39347883 PMCID: PMC11442758 DOI: 10.1186/s13619-024-00202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Generation of induced renal epithelial cells (iRECs) from fibroblasts offers great opportunities for renal disease modeling and kidney regeneration. However, the low reprogramming efficiency of the current approach to generate iRECs has hindered potential therapeutic application and regenerative approach. This could be in part attributed to heterogeneous and unbalanced expression of reprogramming factors (RFs) Hnf1β (H1), Emx2 (E), Pax8 (P), and Hnf4α (H4) in transduced fibroblasts. Here, we establish an advanced retroviral vector system that expresses H1, E, P, and H4 in high levels and distinct ratios from bicistronic transcripts separated by P2A. Mouse embryonic fibroblasts (MEFs) harboring Cdh16-Cre; mT/mG allele are utilized to conduct iREC reprogramming via directly monitoring single cell fate conversion. Three sets of bicistronic RF combinations including H1E/H4P, H1H4/EP, and H1P/H4E have been generated to induce iREC reprogramming. Each of the RF combinations gives rise to distinct H1, E, P, and H4 expression levels and different reprogramming efficiencies. The desired H1E/H4P combination that results in high expression levels of RFs with balanced stoichiometry. substantially enhances the efficiency and quality of iRECs compared with transduction of separate H1, E, P, and H4 lentiviruses. We find that H1E/H4P-induced iRECs exhibit the superior features of renal tubular epithelial cells, as evidenced by expressing renal tubular-specific genes, possessing endocytotic arrogation activity and assembling into tubules along decellularized kidney scaffolds. This study establishes H1E/H4P cassette as a valuable platform for future iREC studies and regenerative medicine.
Collapse
Affiliation(s)
- Xueli Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jianjian Sun
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Meng Wan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Shanghai, 200433, China.
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
12
|
Wang S, Wang X, Wang Y. The Progress and Promise of Lineage Reprogramming Strategies for Liver Regeneration. Cell Mol Gastroenterol Hepatol 2024; 18:101395. [PMID: 39218152 PMCID: PMC11530608 DOI: 10.1016/j.jcmgh.2024.101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The liver exhibits remarkable regenerative capacity. However, the limited ability of primary human hepatocytes to proliferate in vitro, combined with a compromised regenerative capacity induced by pathological conditions in vivo, presents significant obstacles to effective liver regeneration following liver injuries and diseases. Developing strategies to compensate for the loss of endogenous hepatocytes is crucial for overcoming these challenges, and this remains an active area of investigation. Lineage reprogramming, the process of directly converting one cell type into another bypassing the intermediate pluripotent state, has emerged as a promising method for generating specific cell types for therapeutic purposes in regenerative medicine. Here, we discuss the recent progress and emergent technologies in lineage reprogramming into hepatic cells, and their potential applications in enhancing liver regeneration or treating liver disease models. We also address controversies and challenges that confront this field.
Collapse
Affiliation(s)
- Shuyong Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China.
| | - Xuan Wang
- Hepatopancreatobiliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yunfang Wang
- Hepatopancreatobiliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Beijing, China.
| |
Collapse
|
13
|
Kuhn NF, Zaleta-Linares I, Nyberg WA, Eyquem J, Krummel MF. Localized in vivo gene editing of murine cancer-associated fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603114. [PMID: 39071432 PMCID: PMC11275728 DOI: 10.1101/2024.07.11.603114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Discovering the role of fibroblasts residing in the tumor microenvironment (TME) requires controlled, localized perturbations because fibroblasts play critical roles in regulating immunity and tumor biology at multiple sites. Systemic perturbations can lead to unintended, confounding secondary effects, and methods to locally genetically engineer fibroblasts are lacking. To specifically investigate murine stromal cell perturbations restricted to the TME, we developed an adeno-associated virus (AAV)-based method to target any gene-of-interest in fibroblasts at high efficiency (>80%). As proof of concept, we generated single (sKO) and double gene KOs (dKO) of Osmr, Tgfbr2, and Il1r1 in cancer-associated fibroblasts (CAFs) and investigated how their cell states and those of other cells of the TME subsequently change in mouse models of melanoma and pancreatic ductal adenocarcinoma (PDAC). Furthermore, we developed an in vivo knockin-knockout (KIKO) strategy to achieve long-term tracking of CAFs with target gene KO via knocked-in reporter gene expression. This validated in vivo gene editing toolbox is fast, affordable, and modular, and thus holds great potential for further exploration of gene function in stromal cells residing in tumors and beyond.
Collapse
Affiliation(s)
- Nicholas F. Kuhn
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Itzia Zaleta-Linares
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - William A. Nyberg
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Justin Eyquem
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
14
|
Roodnat AW, Callaghan B, Doyle C, Vallabh NA, Atkinson SD, Willoughby CE. Genome-wide RNA sequencing of ocular fibroblasts from glaucomatous and normal eyes: Implications for glaucoma management. PLoS One 2024; 19:e0307227. [PMID: 38990974 PMCID: PMC11239048 DOI: 10.1371/journal.pone.0307227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Primary open angle glaucoma is a leading cause of visual impairment and blindness which is commonly treated with drugs or laser but may require surgery. Tenon's ocular fibroblasts are involved in wound-healing after glaucoma filtration surgery and may compromise a favourable outcome of glaucoma surgery by contributing to fibrosis. To investigate changes in gene expression and key pathways contributing to the glaucomatous state we performed genome-wide RNA sequencing. Human Tenon's ocular fibroblasts were cultured from normal and glaucomatous human donors undergoing eye surgery (n = 12). mRNA was extracted and RNA-Seq performed on the Illumina platform. Differentially expressed genes were identified using a bioinformatics pipeline consisting of FastQC, STAR, FeatureCounts and edgeR. Changes in biological functions and pathways were determined using Enrichr and clustered using Cytoscape. A total of 5817 genes were differentially expressed between Tenon's ocular fibroblasts from normal versus glaucomatous eyes. Enrichment analysis showed 787 significantly different biological functions and pathways which were clustered into 176 clusters. Tenon's ocular fibroblasts from glaucomatous eyes showed signs of fibrosis with fibroblast to myofibroblast transdifferentiation and associated changes in mitochondrial fission, remodeling of the extracellular matrix, proliferation, unfolded protein response, inflammation and apoptosis which may relate to the pathogenesis of glaucoma or the detrimental effects of topical glaucoma therapies. Altered gene expression in glaucomatous Tenon's ocular fibroblasts may contribute to an unfavourable outcome of glaucoma filtration surgery. This work presents a genome-wide transcriptome of glaucomatous versus normal Tenon's ocular fibroblasts which may identify genes or pathways of therapeutic value to improve surgical outcomes.
Collapse
Affiliation(s)
- Anton W. Roodnat
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Breedge Callaghan
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Chelsey Doyle
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Neeru A. Vallabh
- Department of Eye and Vision Science, Insitute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- St. Paul’s Eye Unit, Liverpool University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Sarah D. Atkinson
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Colin E. Willoughby
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| |
Collapse
|
15
|
Ariyachet C, Nokkeaw A, Boonkaew B, Tangkijvanich P. ZNF469 is a profibrotic regulator of extracellular matrix in hepatic stellate cells. J Cell Biochem 2024; 125:e30578. [PMID: 38704698 DOI: 10.1002/jcb.30578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Activation of quiescent hepatic stellate cells (HSCs) into proliferative myofibroblasts drives extracellular cellular matrix (ECM) accumulation and liver fibrosis; nevertheless, the transcriptional network that promotes such a process is not completely understood. ZNF469 is a putative C2H2 zinc finger protein that may bind to specific genome sequences. It is found to be upregulated upon HSC activation; however, the molecular function of ZNF469 is completely unknown. Here, we show that knockdown of ZNF469 in primary human HSCs impaired proliferation, migration, and collagen production. Conversely, overexpression of ZNF469 in HSCs yielded the opposite results. Transforming growth factor-β 1 promoted expression of ZNF469 in a Smad3-dependent manner, where the binding of Smad3 was confirmed at the ZNF469 promoter. RNA sequencing data of ZNF469-knockdown HSCs revealed the ECM-receptor interaction, which provides structural and signaling support to cells, was the most affected pathway, and significant downregulation of various collagen and proteoglycan genes was observed. To investigate the function of ZNF469, we cloned a full-length open reading frame of ZNF469 with an epitope tag and identified a nuclear localization of the protein. Luciferase reporter and chromatin immunoprecipitation assays revealed the presence of ZNF469 at the promoter of ECM genes, supporting its function as a transcription factor. Analysis of human fibrotic and cirrhotic tissues showed increased expression of ZNF469 and a positive correlation between expression levels of ZNF469 and ECM genes. Moreover, this observation was similar in other fibrotic organs, including the heart, lung, and skin, suggesting that myofibroblasts from various origins generally require ZNF469 to promote ECM production. Together, this study is the first to reveal the role of ZNF469 as a profibrotic factor in HSCs and suggests ZNF469 as a novel target for antifibrotic therapy.
Collapse
Affiliation(s)
- Chaiyaboot Ariyachet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Archittapon Nokkeaw
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Medical Biochemistry Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Bootsakorn Boonkaew
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Medical Biochemistry Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Sokal-Dembowska A, Jarmakiewicz-Czaja S, Ferenc K, Filip R. Can Nutraceuticals Support the Treatment of MASLD/MASH, and thus Affect the Process of Liver Fibrosis? Int J Mol Sci 2024; 25:5238. [PMID: 38791276 PMCID: PMC11120776 DOI: 10.3390/ijms25105238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Currently, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) are considered to be the main causes of fibrosis. In turn, fibrosis may lead to the development of hepatocellular carcinoma or advanced cirrhosis, i.e., potentially life-threatening conditions. It is likely that therapy aimed at reducing the risk of developing hepatic steatosis and inflammation could be helpful in minimizing the threat/probability of organ fibrosis. In recent years, increasing attention has been paid to the influence of nutraceuticals in the prevention and treatment of liver diseases. Therefore, the aim of this review was to describe the precise role of selected ingredients such as vitamin C, beta-carotene, omega-3 fatty acids, and curcumin. It is likely that the use of these ingredients in the treatment of patients with MASLD/MASH, along with behavioral and pharmacological therapy, may have a beneficial effect on combating inflammation, reducing oxidative stress, and thereby preventing liver damage.
Collapse
Affiliation(s)
- Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College, Rzeszow University, 35-959 Rzeszow, Poland
| | | | - Katarzyna Ferenc
- Institute of Medicine, Medical College, Rzeszow University, 35-959 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College, Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
17
|
Fijardo M, Kwan JYY, Bissey PA, Citrin DE, Yip KW, Liu FF. The clinical manifestations and molecular pathogenesis of radiation fibrosis. EBioMedicine 2024; 103:105089. [PMID: 38579363 PMCID: PMC11002813 DOI: 10.1016/j.ebiom.2024.105089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024] Open
Abstract
Advances in radiation techniques have enabled the precise delivery of higher doses of radiotherapy to tumours, while sparing surrounding healthy tissues. Consequently, the incidence of radiation toxicities has declined, and will likely continue to improve as radiotherapy further evolves. Nonetheless, ionizing radiation elicits tissue-specific toxicities that gradually develop into radiation-induced fibrosis, a common long-term side-effect of radiotherapy. Radiation fibrosis is characterized by an aberrant wound repair process, which promotes the deposition of extensive scar tissue, clinically manifesting as a loss of elasticity, tissue thickening, and organ-specific functional consequences. In addition to improving the existing technologies and guidelines directing the administration of radiotherapy, understanding the pathogenesis underlying radiation fibrosis is essential for the success of cancer treatments. This review integrates the principles for radiotherapy dosimetry to minimize off-target effects, the tissue-specific clinical manifestations, the key cellular and molecular drivers of radiation fibrosis, and emerging therapeutic opportunities for both prevention and treatment.
Collapse
Affiliation(s)
- Mackenzie Fijardo
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Yin Yee Kwan
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | - Deborah E Citrin
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, United States of America
| | - Kenneth W Yip
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Fei-Fei Liu
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Kang X, Chen H, Zhou Z, Tu S, Cui B, Li Y, Dong S, Zhang Q, Xu Y. Targeting Cyclin-Dependent Kinase 1 Induces Apoptosis and Cell Cycle Arrest of Activated Hepatic Stellate Cells. Adv Biol (Weinh) 2024; 8:e2300403. [PMID: 38103005 DOI: 10.1002/adbi.202300403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Liver fibrosis is the integral process of chronic liver diseases caused by multiple etiologies and characterized by excessive deposition of extracellular matrix (ECM). During liver fibrosis, hepatic stellate cells (HSCs) transform into a highly proliferative, activated state, producing various cytokines, chemokines, and ECM. However, the precise mechanisms that license HSCs into the highly proliferative state remain unclear. Cyclin-dependent kinase 1 (CDK1) is a requisite event for the transition of the G1/S and G2/M phases in eukaryotic cells. In this study, it is demonstrated that CDK1 and its activating partners, Cyclin A2 and Cyclin B1, are upregulated in both liver fibrosis/cirrhosis patient specimens and the murine hepatic fibrosis models, especially in activated HSCs. In vitro, CDK1 is upregulated in spontaneously activated HSCs, and inhibiting CDK1 with specific small-molecule inhibitors (CGP74514A, RO-3306, or Purvalanol A) orshort hairpin RNAs (shRNAs) resulted in HSC apoptosis and cell cycle arrest by regulating Survivin expression. Above all, it is illustrated that increased CDK1 expression licenses the HSCs into a highly proliferative state and can serve as a potential therapeutic target in liver fibrosis.
Collapse
Affiliation(s)
- Xinmei Kang
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Huaxin Chen
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Zhuowei Zhou
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Silin Tu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Bo Cui
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Yanli Li
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Shuai Dong
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Qi Zhang
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Yan Xu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510630, China
| |
Collapse
|
19
|
Duan L, Yu X. Fibroblasts: New players in the central nervous system? FUNDAMENTAL RESEARCH 2024; 4:262-266. [PMID: 38933505 PMCID: PMC11197739 DOI: 10.1016/j.fmre.2023.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 03/11/2023] Open
Abstract
Fibroblasts are typically described as cells that produce extracellular matrix, contribute to the formation of connective tissue, and maintain the structural framework of tissues. Fibroblasts are the first cell type to be transdifferentiated into inducible pluripotent stem cells (iPSCs), demonstrating their versatility and reprogrammability. Currently, there is relatively extensive characterization of the anatomical, molecular, and functional diversity of fibroblasts in different peripheral organs and tissues. With recent advances in single cell RNA sequencing, heterogeneity and diversity of fibroblasts in the central nervous system (CNS) have also begun to emerge. Based on their distinct anatomical locations in the meninges, perivascular space, and choroid plexus, as well as their molecular diversity, important roles for fibroblasts in the CNS have been proposed. Here, we draw inspirations from what is known about fibroblasts in peripheral tissues, in combination with their currently identified CNS locations and molecular characterizations, to propose potential functions of CNS fibroblasts in health and disease. Future studies, using a combination of technologies, will be needed to determine the bona fide in vivo functions of fibroblasts in the CNS.
Collapse
Affiliation(s)
- Lihui Duan
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences and Peking University McGovern Institute, Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
20
|
Jain N, Goyal Y, Dunagin MC, Cote CJ, Mellis IA, Emert B, Jiang CL, Dardani IP, Reffsin S, Arnett M, Yang W, Raj A. Retrospective identification of cell-intrinsic factors that mark pluripotency potential in rare somatic cells. Cell Syst 2024; 15:109-133.e10. [PMID: 38335955 PMCID: PMC10940218 DOI: 10.1016/j.cels.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/31/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Pluripotency can be induced in somatic cells by the expression of OCT4, KLF4, SOX2, and MYC. Usually only a rare subset of cells reprogram, and the molecular characteristics of this subset remain unknown. We apply retrospective clone tracing to identify and characterize the rare human fibroblasts primed for reprogramming. These fibroblasts showed markers of increased cell cycle speed and decreased fibroblast activation. Knockdown of a fibroblast activation factor identified by our analysis increased the reprogramming efficiency. We provide evidence for a unified model in which cells can move into and out of the primed state over time, explaining how reprogramming appears deterministic at short timescales and stochastic at long timescales. Furthermore, inhibiting the activity of LSD1 enlarged the pool of cells that were primed for reprogramming. Thus, even homogeneous cell populations can exhibit heritable molecular variability that can dictate whether individual rare cells will reprogram or not.
Collapse
Affiliation(s)
- Naveen Jain
- Genetics and Epigenetics Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margaret C Dunagin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher J Cote
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian A Mellis
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin Emert
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connie L Jiang
- Genetics and Epigenetics Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian P Dardani
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sam Reffsin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Miles Arnett
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenli Yang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Sichani AS, Khoddam S, Shakeri S, Tavakkoli Z, Jafroodi AR, Dabbaghipour R, Sisakht M, Fallahi J. Partial Reprogramming as a Method for Regenerating Neural Tissues in Aged Organisms. Cell Reprogram 2024; 26:10-23. [PMID: 38381402 DOI: 10.1089/cell.2023.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Aging causes numerous age-related diseases, leading the human species to death. Nevertheless, rejuvenating strategies based on cell epigenetic modifications are a possible approach to counteract disease progression while getting old. Cell reprogramming of adult somatic cells toward pluripotency ought to be a promising tool for age-related diseases. However, researchers do not have control over this process as cells lose their fate, and cause potential cancerous cells or unexpected cell phenotypes. Direct and partial reprogramming were introduced in recent years with distinctive applications. Although direct reprogramming makes cells lose their identity, it has various applications in regeneration medicine. Temporary and regulated in vivo overexpression of Yamanaka factors has been shown in several experimental contexts to be achievable and is used to rejuvenate mice models. This regeneration can be accomplished by altering the epigenetic adult cell signature to the signature of a younger cell. The greatest advantage of partial reprogramming is that this method does not allow cells to lose their identity when they are resetting their epigenetic clock. It is a regimen of short-term Oct3/4, Sox2, Klf4, and c-Myc expression in vivo that prevents full reprogramming to the pluripotent state and avoids both tumorigenesis and the presence of unwanted undifferentiated cells. We know that many neurological age-related diseases, such as Alzheimer's disease, stroke, dementia, and Parkinson's disease, are the main cause of death in the last decades of life. Therefore, scientists have a special tendency regarding neuroregeneration methods to increase human life expectancy.
Collapse
Affiliation(s)
- Ali Saber Sichani
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Somayeh Khoddam
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Shakeri
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Tavakkoli
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arad Ranji Jafroodi
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Sisakht
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Bogomolova A, Balakrishnan A, Ott M, Sharma AD. "The Good, the Bad, and the Ugly" - About Diverse Phenotypes of Hepatic Stellate Cells in the Liver. Cell Mol Gastroenterol Hepatol 2024; 17:607-622. [PMID: 38216053 PMCID: PMC10900761 DOI: 10.1016/j.jcmgh.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Hepatic stellate cells (HSCs) and their activated derivatives, often referred to as myofibroblasts (MFs), play a key role in progression of chronic liver injuries leading to fibrosis, cirrhosis, and hepatocellular carcinoma. Until recently, MFs were considered a homogenous cell type majorly due to lack of techniques that allow complex molecular studies at a single-cell resolution. Recent technical advancements in genetic lineage-tracing models as well as the exponential growth of studies with single-cell transcriptome and proteome analyses have uncovered hidden heterogeneities among the HSC and MF populations in healthy states as well as chronic liver injuries at the various stages of tissue deformation. The identification of different phenotypes along the HSC/MF axis, which either maintain essential liver functions ("good" HSCs), emerge during fibrosis ("bad" HSCs), or even promote hepatocellular carcinoma ("ugly" HSCs), may lay the foundation for targeting a particular MF phenotype as potential treatment for chronic liver injuries.
Collapse
Affiliation(s)
- Alexandra Bogomolova
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
23
|
Li G, Zhu L, Guo M, Wang D, Meng M, Zhong Y, Zhang Z, Lin Y, Liu C, Wang J, Zhang Y, Gao Y, Cao Y, Xia Z, Qiu J, Li Y, Liu S, Chen H, Liu W, Han Y, Zheng M, Ma X, Xu L. Characterisation of forkhead box protein A3 as a key transcription factor for hepatocyte regeneration. JHEP Rep 2023; 5:100906. [PMID: 38023606 PMCID: PMC10679869 DOI: 10.1016/j.jhepr.2023.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND & AIMS Liver regeneration is vital for the recovery of liver function after injury, yet the underlying mechanism remains to be elucidated. Forkhead box protein A3 (FOXA3), a member of the forkhead box family, plays important roles in endoplasmic reticulum stress sensing, and lipid and glucose homoeostasis, yet its functions in liver regeneration are unknown. METHODS Here, we explored whether Foxa3 regulates liver regeneration via acute and chronic liver injury mice models. We further characterised the molecular mechanism by chromatin immunoprecipitation sequencing and rescue experiments in vivo and in vitro. Then, we assessed the impact of Foxa3 pharmacological activation on progression and termination of liver regeneration. Finally, we confirmed the Foxa3-Cebpb axis in human liver samples. RESULTS Foxa3 is dominantly expressed in hepatocytes and cholangiocytes and is induced upon partial hepatectomy (PH) or carbon tetrachloride (CCl4) administration. Foxa3 deficiency in mice decreased cyclin gene levels and delayed liver regeneration after PH, or acute or chronic i.p. CCl4 injection. Conversely, hepatocyte-specific Foxa3 overexpression accelerated hepatocytes proliferation and attenuated liver damage in an CCl4-induced acute model. Mechanistically, Foxa3 directly regulates Cebpb transcription, which is involved in hepatocyte division and apoptosis both in vivo and in vitro. Of note, Cebpb overexpression in livers of Foxa3-deficient mice rescued their defects in cell proliferation and regeneration upon CCl4 treatment. In addition, pharmacological induction of Foxa3 via cardamonin speeded up hepatocyte proliferation after PH, without interfering with liver regeneration termination. Finally, Cebpb and Ki67 levels had a positive correlation with Foxa3 expression in human chronic disease livers. CONCLUSIONS These data characterise Foxa3 as a vital regulator of liver regeneration, which may represent an essential factor to maintain liver mass after liver injury by governing Cebpb transcription. IMPACT AND IMPLICATIONS Liver regeneration is vital for the recovery of liver function after chemical insults or hepatectomy, yet the underlying mechanism remains to be elucidated. Herein, via in vitro and in vivo models and analysis, we demonstrated that Forkhead box protein A3 (FOXA3), a Forkhead box family member, maintained normal liver regeneration progression by governing Cebpb transcription and proposed cardamonin as a lead compound to induce Foxa3 and accelerate liver repair, which signified that FOXA3 may be a potential therapeutic target for further preclinical study on treating liver injury.
Collapse
Affiliation(s)
- Guoqiang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lijun Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yinzhao Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhijian Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Yi Lin
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Caizhi Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yahui Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Yining Gao
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiang Cao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhirui Xia
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenyue Liu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Han
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minghua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
24
|
Shu G, Lei X, Li G, Zhang T, Wang C, Song A, Yu H, Wang X, Deng X. Ergothioneine suppresses hepatic stellate cell activation via promoting Foxa3-dependent potentiation of the Hint1/Smad7 cascade and improves CCl 4-induced liver fibrosis in mice. Food Funct 2023; 14:10591-10604. [PMID: 37955610 DOI: 10.1039/d3fo03643j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Ergothioneine (EGT) is a bioactive compound derived from certain edible mushrooms. The activation of hepatic stellate cells (HSCs) is critically involved in the etiology of liver fibrosis (LF). Here, we report that in LX-2 HSCs, EGT upregulates the expression of Hint1 and Smad7 and suppresses their activation provoked by TGFβ1. The EGT-triggered inhibition of HSC activation is abolished by knocking down the expression of Hint1. Overexpression of Hint1 increases Smad7 and represses TGFβ1-provoked activation of LX-2 HSCs. In silico predictions unveiled that in the promoter region of the human Hint1 gene, there are two conserved cis-acting elements that have the potential to interact with the transcription factor Foxa3 termed hFBS1 and hFBS2, respectively. The knockdown of Foxa3 obviously declined Hint1 expression at both mRNA and protein levels. Transfection of Foxa3 or EGT treatment increased the activity of the luciferase reporter driven by the Hint1 promoter in an hFBS2-dependent manner. The knockdown of Foxa3 eliminated EGT-mediated upregulation of Hint1 promoter activity. Additionally, EGT triggered the nuclear translocation of Foxa3 without obviously affecting its expression level. Molecular docking analysis showed that EGT has the potential to directly interact with the Foxa3 protein. Moreover, Foxa3 played a critical role in EGT-mediated hepatoprotection. EGT modulated the Foxa3/Hint1/Smad7 signaling in mouse primary HSCs and inhibited their activation. The gavage of EGT considerably relieved CCl4-induced LF in mice. Our data provide new insights into the anti-LF activity of EGT. Mechanistically, EGT triggers the nuclear translocation of Foxa3 in HSCs, which promotes Hint1 transcription and subsequently elevates Smad7.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Xiao Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Guangqiong Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Tiantian Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Chuo Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Anning Song
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Huifan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaoming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| |
Collapse
|
25
|
Chin AF, Han J, Clement CC, Choi Y, Zhang H, Browne M, Jeon OH, Elisseeff JH. Senolytic treatment reduces oxidative protein stress in an aging male murine model of post-traumatic osteoarthritis. Aging Cell 2023; 22:e13979. [PMID: 37749958 PMCID: PMC10652304 DOI: 10.1111/acel.13979] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/27/2023] Open
Abstract
Senolytic drugs are designed to selectively clear senescent cells (SnCs) that accumulate with injury or aging. In a mouse model of osteoarthritis (OA), senolysis yields a pro-regenerative response, but the therapeutic benefit is reduced in aged mice. Increased oxidative stress is a hallmark of advanced age. Therefore, here we investigate whether senolytic treatment differentially affects joint oxidative load in young and aged animals. We find that senolysis by a p53/MDM2 interaction inhibitor, UBX0101, reduces protein oxidative modification in the aged arthritic knee joint. Mass spectrometry coupled with protein interaction network analysis and biophysical stability prediction of extracted joint proteins revealed divergent responses to senolysis between young and aged animals, broadly suggesting that knee regeneration and cellular stress programs are contrarily poised to respond as a function of age. These opposing responses include differing signatures of protein-by-protein oxidative modification and abundance change, disparate quantitative trends in modified protein network centrality, and contrasting patterns of oxidation-induced folding free energy perturbation between young and old. We develop a composite sensitivity score to identify specific key proteins in the proteomes of aged osteoarthritic joints, thereby nominating prospective therapeutic targets to complement senolytics.
Collapse
Affiliation(s)
- Alexander F. Chin
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Cristina C. Clement
- Department of Radiation OncologyEnglander Institute for Precision Medicine, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Younghwan Choi
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hong Zhang
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Maria Browne
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ok Hee Jeon
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical SciencesKorea University College of MedicineSeoulRepublic of Korea
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Bloomberg‐Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
26
|
Zheng Y, Lai Z, Wang B, Wei Z, Zeng Y, Zhuang Q, Liu X, Lin K. Natural killer cells modified with a Gpc3 aptamer enhance adoptive immunotherapy for hepatocellular carcinoma. Discov Oncol 2023; 14:164. [PMID: 37665421 PMCID: PMC10477160 DOI: 10.1007/s12672-023-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
INTRODUCTION Natural killer cells can attack cancer cells without prior sensitization, but their clinical benefit is limited owing to their poor selectivity that is caused by the lack of specific receptors to target tumor cells. In this study, we aimed to endow NK cells with the ability to specifically target glypican-3+ tumor cells without producing cell damage or genetic alterations, and further evaluated their therapeutic efficiency. METHODS NK cells were modified with a Gpc3 DNA aptamer on the cell surface via metabolic glycoengineering to endow NK cells with specific targeting ability. Then, the G-NK cells were evaluated for their specific targeting properties, cytotoxicity and secretion of cytokines in vitro. Finally, we investigated the therapeutic efficiency of G-NK cells against glypican-3+ tumor cells in vivo. RESULTS Compared with NK cells modified with a random aptamer mutation and unmodified NK cells, G-NK cells induced significant apoptosis/necrosis of GPC3+ tumor cells and secreted cytokines to preserve the intense cytotoxic activities. Moreover, G-NK cells significantly suppressed tumor growth in HepG2 tumor-bearing mice due to the enhanced enrichment of G-NK cells at the tumor site. CONCLUSIONS The proposed strategy endows NK cells with a tumor-specific targeting ability to enhance adoptive therapeutic efficiency in GPC3+ hepatocellular carcinoma.
Collapse
Affiliation(s)
- Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Zisen Lai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Bing Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Yongyi Zeng
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China.
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou, People's Republic of China.
| | - Kecan Lin
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou, People's Republic of China.
| |
Collapse
|
27
|
Lee H, Yang SW, Kim Y, Shin H, Seo YS, Oh MJ, Choi S, Cho GJ, Hwang HS. Risk of retinopathy in women with pregnancy-induced hypertension: a nationwide population-based cohort study of 9-year follow-up after delivery. Am J Obstet Gynecol MFM 2023; 5:100985. [PMID: 37119970 DOI: 10.1016/j.ajogmf.2023.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND The retina is potentially associated with several physiological, hormonal, and metabolic changes during pregnancy. The few available epidemiologic studies of ocular changes in pregnancy have mainly concerned retinopathies. Pregnancy-induced hypertension, which leads to ocular manifestations including blurred vision, photopsia, scotoma, and diplopia, might induce reactive changes in the retinal vessels. Although several studies have suggested the existence of pregnancy-induced hypertension-related retinal ocular disease, there are few large cohort studies on this topic. OBJECTIVE This study aimed to investigate the risk of major retinal diseases including central serous chorioretinopathy, diabetic retinopathy, retinal vein occlusion, retinal artery occlusion, and hypertensive retinopathy in the long-term postpartum stage according to the presence of previous pregnancy-induced hypertension in a large cohort based on the Korean National Health Insurance Database. STUDY DESIGN On the basis of Korean health data, 909,520 patients who delivered from 2012 to 2013 were analyzed. Among them, patients who had previous ocular diseases or hypertension and multiple births were excluded. Finally, 858,057 mothers were assessed for central serous chorioretinopathy (ICD-10: H35.70), diabetic retinopathy (ICD-10: H36.0, E10.31, E10.32, E11.31, E11.32, E12.31, E13.31, E13.32, E14.31, E14.32), retinal vein occlusion (ICD-10: H34.8), retinal artery occlusion (ICD-10: H34.2), and hypertensive retinopathy (ICD-10: H35.02) for 9 years after delivery. Enrolled patients were divided into 2 groups: 10,808 patients with and 847,249 without pregnancy-induced hypertension. The primary outcomes were the incidence of central serous chorioretinopathy, diabetic retinopathy, retinal vein occlusion, retinal artery occlusion, and hypertensive retinopathy 9 years after delivery. Clinical variables were age, parity, cesarean delivery, gestational diabetes mellitus, and postpartum hemorrhage. In addition, pregestational diabetes mellitus, kidney diseases, cerebrovascular diseases, and cardiovascular diseases were adjusted. RESULTS Postpartum retinal disease during the 9 years after delivery and total retinal diseases showed higher rates in patients with pregnancy-induced hypertension. In detail, the rates of central serous chorioretinopathy (0.3% vs 0.1%), diabetic retinopathy (1.79% vs 0.5%), retinal vein occlusion (0.19% vs 0.1%), and hypertensive retinopathy (0.62% vs 0.05%) were higher than those found in patients without pregnancy-induced hypertension. After adjusting for confounding factors, pregnancy-induced hypertension was associated with development of postpartum retinopathy, with a >2-fold increase (hazard ratio, 2.845; 95% confidence interval, 2.54-3.188). Furthermore, pregnancy-induced hypertension affected the development of central serous chorioretinopathy (hazard ratio, 3.681; 95% confidence interval, 2.667-5.082), diabetic retinopathy (hazard ratio, 2.326; 95% confidence interval, 2.013-2.688), retinal vein occlusion (hazard ratio, 2.241; 95% confidence interval, 1.491-3.368), and hypertensive retinopathy (hazard ratio, 11.392; 95% confidence interval, 8.771-14.796) after delivery. CONCLUSION A history of pregnancy-induced hypertension increases the risk of central serous chorioretinopathy, diabetic retinopathy, retinal vein occlusion, and hypertensive retinopathy according to 9-year long-term ophthalmologic follow-up.
Collapse
Affiliation(s)
- Hyungwoo Lee
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul, Republic of Korea (Dr Lee)
| | - Seung-Woo Yang
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Republic of Korea (Drs Yang and Seo)
| | - Yeji Kim
- Department of Statistics, Korea University, Seoul, Republic of Korea (Ms Kim and Dr Choi)
| | - Hyunju Shin
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (Drs Shin, Oh, and Cho)
| | - Yong-Soo Seo
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Republic of Korea (Drs Yang and Seo)
| | - Min Jeong Oh
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (Drs Shin, Oh, and Cho)
| | - Sangbum Choi
- Department of Statistics, Korea University, Seoul, Republic of Korea (Ms Kim and Dr Choi)
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (Drs Shin, Oh, and Cho).
| | - Han-Sung Hwang
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea (Dr Hwang).
| |
Collapse
|
28
|
Shapanis A, Jones MG, Schofield J, Skipp P. Topological data analysis identifies molecular phenotypes of idiopathic pulmonary fibrosis. Thorax 2023; 78:682-689. [PMID: 36808085 PMCID: PMC10314053 DOI: 10.1136/thorax-2022-219731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/19/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a debilitating, progressive disease with a median survival time of 3-5 years. Diagnosis remains challenging and disease progression varies greatly, suggesting the possibility of distinct subphenotypes. METHODS AND RESULTS We analysed publicly available peripheral blood mononuclear cell expression datasets for 219 IPF, 411 asthma, 362 tuberculosis, 151 healthy, 92 HIV and 83 other disease samples, totalling 1318 patients. We integrated the datasets and split them into train (n=871) and test (n=477) cohorts to investigate the utility of a machine learning model (support vector machine) for predicting IPF. A panel of 44 genes predicted IPF in a background of healthy, tuberculosis, HIV and asthma with an area under the curve of 0.9464, corresponding to a sensitivity of 0.865 and a specificity of 0.89. We then applied topological data analysis to investigate the possibility of subphenotypes within IPF. We identified five molecular subphenotypes of IPF, one of which corresponded to a phenotype enriched for death/transplant. The subphenotypes were molecularly characterised using bioinformatic and pathway analysis tools identifying distinct subphenotype features including one which suggests an extrapulmonary or systemic fibrotic disease. CONCLUSIONS Integration of multiple datasets, from the same tissue, enabled the development of a model to accurately predict IPF using a panel of 44 genes. Furthermore, topological data analysis identified distinct subphenotypes of patients with IPF which were defined by differences in molecular pathobiology and clinical characteristics.
Collapse
Affiliation(s)
- Andrew Shapanis
- Biological Sciences, University of Southampton, Southampton, Hampshire, UK
| | - Mark G Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Paul Skipp
- Biological Sciences, University of Southampton, Southampton, Hampshire, UK
| |
Collapse
|
29
|
Li R, Balakrishnan A, Ott M, Sharma AD. Bioartificial liver with reprogrammed hepatocytes ready for prime time. Cell Stem Cell 2023; 30:504-506. [PMID: 37146576 DOI: 10.1016/j.stem.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
In this issue, Wang et al.1 provide evidence of the pre-clinical as well as the clinical utility of in vitro-generated directly reprogrammed human hepatocytes in bioartificial liver. This approach will help offer patients a more curative surgical therapy for liver cancer and improve survival rates.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
30
|
Jain N, Goyal Y, Dunagin MC, Cote CJ, Mellis IA, Emert B, Jiang CL, Dardani IP, Reffsin S, Raj A. Retrospective identification of intrinsic factors that mark pluripotency potential in rare somatic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527870. [PMID: 36798299 PMCID: PMC9934612 DOI: 10.1101/2023.02.10.527870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Pluripotency can be induced in somatic cells by the expression of the four "Yamanaka" factors OCT4, KLF4, SOX2, and MYC. However, even in homogeneous conditions, usually only a rare subset of cells admit reprogramming, and the molecular characteristics of this subset remain unknown. Here, we apply retrospective clone tracing to identify and characterize the individual human fibroblast cells that are primed for reprogramming. These fibroblasts showed markers of increased cell cycle speed and decreased fibroblast activation. Knockdown of a fibroblast activation factor identified by our analysis led to increased reprogramming efficiency, identifying it as a barrier to reprogramming. Changing the frequency of reprogramming by inhibiting the activity of LSD1 led to an enlarging of the pool of cells that were primed for reprogramming. Our results show that even homogeneous cell populations can exhibit heritable molecular variability that can dictate whether individual rare cells will reprogram or not.
Collapse
Affiliation(s)
- Naveen Jain
- Genetics and Epigenetics Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Margaret C Dunagin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher J Cote
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Mellis
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Emert
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Connie L Jiang
- Genetics and Epigenetics Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian P Dardani
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Sam Reffsin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Yang AT, Kim YO, Yan XZ, Abe H, Aslam M, Park KS, Zhao XY, Jia JD, Klein T, You H, Schuppan D. Fibroblast Activation Protein Activates Macrophages and Promotes Parenchymal Liver Inflammation and Fibrosis. Cell Mol Gastroenterol Hepatol 2023; 15:841-867. [PMID: 36521660 PMCID: PMC9972574 DOI: 10.1016/j.jcmgh.2022.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS Fibroblast activation protein (FAP) is expressed on activated fibroblast. Its role in fibrosis and desmoplasia is controversial, and data on pharmacological FAP inhibition are lacking. We aimed to better define the role of FAP in liver fibrosis in vivo and in vitro. METHODS FAP expression was analyzed in mice and patients with fibrotic liver diseases of various etiologies. Fibrotic mice received a specific FAP inhibitor (FAPi) at 2 doses orally for 2 weeks during parenchymal fibrosis progression (6 weeks of carbon tetrachloride) and regression (2 weeks off carbon tetrachloride), and with biliary fibrosis (Mdr2-/-). Recombinant FAP was added to (co-)cultures of hepatic stellate cells (HSC), fibroblasts, and macrophages. Fibrosis- and inflammation-related parameters were determined biochemically, by quantitative immunohistochemistry, polymerase chain reaction, and transcriptomics. RESULTS FAP+ fibroblasts/HSCs were α-smooth muscle actin (α-SMA)-negative and located at interfaces of fibrotic septa next to macrophages in murine and human livers. In parenchymal fibrosis, FAPi reduced collagen area, liver collagen content, α-SMA+ myofibroblasts, M2-type macrophages, serum alanine transaminase and aspartate aminotransferase, key fibrogenesis-related transcripts, and increased hepatocyte proliferation 10-fold. During regression, FAP was suppressed, and FAPi was ineffective. FAPi less potently inhibited biliary fibrosis. In vitro, FAP small interfering RNA reduced HSC α-SMA expression and collagen production, and FAPi suppressed their activation and proliferation. Compared with untreated macrophages, FAPi regulated macrophage profibrogenic activation and transcriptome, and their conditioned medium attenuated HSC activation, which was increased with addition of recombinant FAP. CONCLUSIONS Pharmacological FAP inhibition attenuates inflammation-predominant liver fibrosis. FAP is expressed on subsets of activated fibroblasts/HSC and promotes both macrophage and HSC profibrogenic activity in liver fibrosis.
Collapse
Affiliation(s)
- Ai-Ting Yang
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Experimental and Translational Research Center, Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China; Beijing Clinical Medicine Institute, Beijing, P.R. China; National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Yong-Ook Kim
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Xu-Zhen Yan
- Experimental and Translational Research Center, Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China; Beijing Clinical Medicine Institute, Beijing, P.R. China; National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Hiroyuki Abe
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Misbah Aslam
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kyoung-Sook Park
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Xin-Yan Zhao
- Liver Research Center, Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China; Beijing Clinical Medicine Institute, Beijing, P.R. China; National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Ji-Dong Jia
- Liver Research Center, Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China; Beijing Clinical Medicine Institute, Beijing, P.R. China; National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Thomas Klein
- Boehringer-Ingelheim, Cardiometabolic Research, Biberach, Germany
| | - Hong You
- Liver Research Center, Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China; National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Division of Gastroenterology Beth Israel Deaconess Medical Center, Harvard Medical School Boston, Boston, Massachusetts.
| |
Collapse
|
32
|
Liu SQ, Deng X, Zhu CP, Cui YL, Xie WF, Zhang X. Depletion of Tgfbr2 in hepatocytes alleviates liver fibrosis and restores hepatic function in fibrotic mice. J Dig Dis 2023; 24:39-50. [PMID: 36967587 DOI: 10.1111/1751-2980.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVES Previous studies have demonstrated the pivotal role of transforming growth factor (TGF)-β signaling in activating hepatic stellate cells during liver fibrosis. In this study we aimed to demonstrate the effects and underlying mechanism of TGF-β signaling in hepatocytes on hepatic fibrogenesis. METHODS Hepatocyte-specific Tgfbr2-knockout (Tgfbr2HKO ) mice were generated by AAV8-TBG-Cre injection via the tail vein of Tgfbr2f/f mice. CCl4 was injected intraperitoneally twice a week for 4 weeks to establish the fibrotic mouse model. The expression of the fibrogenesis markers was evaluated by immunohistochemistry, western blot, and real-time polymerase chain reaction (PCR). RNA-seq analysis was used to detect the transcriptional profiles of primary hepatocytes isolated from Tgfbr2HKO mice and control mice. RESULTS The expression of TβR2 (Tgfbr2) was markedly upregulated in hepatocytes of the fibrotic liver. Tgfbr2 depletion in hepatocytes decreased the expressions of profibrogenic markers (Col1a1 and Acta2) in the CCl4 -treated fibrotic liver. RNA-seq analysis revealed that Tgfbr2 deletion in hepatocytes significantly reduced the inflammatory response and suppressed epithelial-mesenchymal transition of hepatocytes accompanied by upregulation of the metabolic pathways during liver fibrosis. Moreover, the expressions of hepatocyte nuclear factors (HNFs), including Hnf4α, Foxa1, Foxa2, and Foxa3, which are important for maintaining liver metabolism and homeostasis, were decreased in fibrotic livers and significantly increased after Tgfbr2 blockade. CONCLUSION Blocking the TGF-β signaling pathway in hepatocytes reduces hepatic fibrosis and improves hepatic function in fibrotic livers.
Collapse
Affiliation(s)
- Shu Qing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xing Deng
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chang Peng Zhu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ya Lu Cui
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wei Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
33
|
Wu X, Liu XQ, Liu ZN, Xia GQ, Zhu H, Zhang MD, Wu BM, Lv XW. CD73 aggravates alcohol-related liver fibrosis by promoting autophagy mediated activation of hepatic stellate cells through AMPK/AKT/mTOR signaling pathway. Int Immunopharmacol 2022; 113:109229. [DOI: 10.1016/j.intimp.2022.109229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
|
34
|
Abd El-Fattah EE, Zakaria AY. Targeting HSP47 and HSP70: promising therapeutic approaches in liver fibrosis management. J Transl Med 2022; 20:544. [DOI: 10.1186/s12967-022-03759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/06/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractLiver fibrosis is a liver disease in which there is an excessive buildup of extracellular matrix proteins, including collagen. By regulating cytokine production and the inflammatory response, heat shock proteins (HSPs) contribute significantly to a wider spectrum of fibrotic illnesses, such as lung, liver, and idiopathic pulmonary fibrosis by aiding in the folding and assembly of freshly synthesized proteins, HSPs serve as chaperones. HSP70 is one of the key HSPs in avoiding protein aggregation which induces its action by sending unfolded and/or misfolded proteins to the ubiquitin–proteasome degradation pathway and antagonizing influence on epithelial-mesenchymal transition. HSP47, on the other hand, is crucial for boosting collagen synthesis, and deposition, and fostering the emergence of fibrotic disorders. The current review aims to provide light on how HSP70 and HSP47 affect hepatic fibrogenesis. Additionally, our review looks into new therapeutic approaches that target HSP70 and HSP47 and could potentially be used as drug candidates to treat liver fibrosis, especially in cases of comorbidities.
Collapse
|
35
|
Liu C, Wang L, Xu M, Sun Y, Xing Z, Zhang J, Wang C, Dong L. Reprogramming the spleen into a functioning 'liver' in vivo. Gut 2022; 71:2325-2336. [PMID: 34996824 DOI: 10.1136/gutjnl-2021-325018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Liver regeneration remains one of the biggest clinical challenges. Here, we aim to transform the spleen into a liver-like organ via directly reprogramming the splenic fibroblasts into hepatocytes in vivo. DESIGN In the mouse spleen, the number of fibroblasts was through silica particles (SiO2) stimulation, the expanded fibroblasts were converted to hepatocytes (iHeps) by lentiviral transfection of three key transcriptional factors (Foxa3, Gata4 and Hnf1a), and the iHeps were further expanded with tumour necrosis factor-α (TNF-α) and lentivirus-mediated expression of epidermal growth factor (EGF) and hepatocyte growth factor (HGF). RESULTS SiO2 stimulation tripled the number of activated fibroblasts. Foxa3, Gata4 and Hnf1a converted SiO2-remodelled spleen fibroblasts into 2×106 functional iHeps in one spleen. TNF-α protein and lentivirus-mediated expression of EGF and HGF further enabled the total hepatocytes to expand to 8×106 per spleen. iHeps possessed hepatic functions-such as glycogen storage, lipid accumulation and drug metabolism-and performed fundamental liver functions to improve the survival rate of mice with 90% hepatectomy. CONCLUSION Direct conversion of the spleen into a liver-like organ, without cell or tissue transplantation, establishes fundamental hepatic functions in mice, suggesting its potential value for the treatment of end-stage liver diseases.
Collapse
Affiliation(s)
- Chunyan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Lintao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.,Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Mengzhen Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yajie Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zhen Xing
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Chunming Wang
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China .,Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
Talbott HE, Mascharak S, Griffin M, Wan DC, Longaker MT. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 2022; 29:1161-1180. [PMID: 35931028 PMCID: PMC9357250 DOI: 10.1016/j.stem.2022.07.006] [Citation(s) in RCA: 311] [Impact Index Per Article: 103.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibroblasts are highly dynamic cells that play a central role in tissue repair and fibrosis. However, the mechanisms by which they contribute to both physiologic and pathologic states of extracellular matrix deposition and remodeling are just starting to be understood. In this review article, we discuss the current state of knowledge in fibroblast biology and heterogeneity, with a primary focus on the role of fibroblasts in skin wound repair. We also consider emerging techniques in the field, which enable an increasingly nuanced and contextualized understanding of these complex systems, and evaluate limitations of existing methodologies and knowledge. Collectively, this review spotlights a diverse body of research examining an often-overlooked cell type-the fibroblast-and its critical functions in wound repair and beyond.
Collapse
Affiliation(s)
- Heather E Talbott
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shamik Mascharak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Derrick C Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
37
|
Faustino D, Brinkmeier H, Logotheti S, Jonitz-Heincke A, Yilmaz H, Takan I, Peters K, Bader R, Lang H, Pavlopoulou A, Pützer BM, Spitschak A. Novel integrated workflow allows production and in-depth quality assessment of multifactorial reprogrammed skeletal muscle cells from human stem cells. Cell Mol Life Sci 2022; 79:229. [PMID: 35396689 PMCID: PMC8993739 DOI: 10.1007/s00018-022-04264-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 03/20/2022] [Indexed: 11/03/2022]
Abstract
Skeletal muscle tissue engineering aims at generating biological substitutes that restore, maintain or improve normal muscle function; however, the quality of cells produced by current protocols remains insufficient. Here, we developed a multifactor-based protocol that combines adenovector (AdV)-mediated MYOD expression, small molecule inhibitor and growth factor treatment, and electrical pulse stimulation (EPS) to efficiently reprogram different types of human-derived multipotent stem cells into physiologically functional skeletal muscle cells (SMCs). The protocol was complemented through a novel in silico workflow that allows for in-depth estimation and potentially optimization of the quality of generated muscle tissue, based on the transcriptomes of transdifferentiated cells. We additionally patch-clamped phenotypic SMCs to associate their bioelectrical characteristics with their transcriptome reprogramming. Overall, we set up a comprehensive and dynamic approach at the nexus of viral vector-based technology, bioinformatics, and electrophysiology that facilitates production of high-quality skeletal muscle cells and can guide iterative cycles to improve myo-differentiation protocols.
Collapse
Affiliation(s)
- Dinis Faustino
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Heinrich Brinkmeier
- Institute of Pathophysiology, University Medicine Greifswald, 17489, Greifswald, Germany
| | - Stella Logotheti
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Hande Yilmaz
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Isil Takan
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, 35340, Izmir, Turkey
| | - Kirsten Peters
- Department of Cell Biology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, 35340, Izmir, Turkey
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany. .,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany.
| | - Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| |
Collapse
|
38
|
Su Y, Lu S, Hou C, Ren K, Wang M, Liu X, Zhao S, Liu X. Mitigation of liver fibrosis via hepatic stellate cells mitochondrial apoptosis induced by metformin. Int Immunopharmacol 2022; 108:108683. [PMID: 35344814 DOI: 10.1016/j.intimp.2022.108683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/05/2022]
Abstract
Liver fibrosis, a disease characterized by the excessive accumulation of extracellular matrix originating from activated hepatic stellate cells (HSCs), is a common pathological response to chronic liver injury resulting from a variety of insults. However, drugs that effectively block the activation of HSCs have still not been adequately investigated. This study demonstrates that metformin decreased the number of activated-HSCs through induction of apoptosis, but did not impact numbers of hepatocytes. Metformin upregulated BAX activation with facilitation of BIM, BAD and PUMA; downregulated Bcl-2 and Bcl-xl, but did not affect Mcl-1. Additionally, metformin induced cytochrome c release from mitochondria into the cytoplasm, directly triggering caspase-9-mediated mitochondrial apoptosis. The decline in mitochondrial membrane potential (ΔΨm) and deposition of superoxide in mitochondria accelerated the destruction of the integrity of mitochondrial membrane. Moreover, we verified the therapeutic effect of metformin in our mouse model of liver fibrosis associated with nonalcoholic steatohepatitis (NASH) in which hepatic function, NASH lesions and fibrosis were improved by metformin. In conclusion, this study indicated that metformin has significant therapeutic value in NASH-derived liver fibrosis by inducing apoptosis in HSCs, but does not affect the proliferation of hepatocytes.
Collapse
Affiliation(s)
- Ying Su
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shan Lu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chenjian Hou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Kehan Ren
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Meili Wang
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Xiaoli Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shanyu Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China.
| |
Collapse
|
39
|
Abstract
Cellular identity is established through complex layers of genetic regulation, forged over a developmental lifetime. An expanding molecular toolbox is allowing us to manipulate these gene regulatory networks in specific cell types in vivo. In principle, if we found the right molecular tricks, we could rewrite cell identity and harness the rich repertoire of possible cellular functions and attributes. Recent work suggests that this rewriting of cell identity is not only possible, but that newly induced cells can mitigate disease phenotypes in animal models of major human diseases. So, is the sky the limit, or do we need to keep our feet on the ground? This Spotlight synthesises key concepts emerging from recent efforts to reprogramme cellular identity in vivo. We provide our perspectives on recent controversies in the field of glia-to-neuron reprogramming and identify important gaps in our understanding that present barriers to progress.
Collapse
Affiliation(s)
- Sydney Leaman
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Nicolás Marichal
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK
| | - Benedikt Berninger
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK.,Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany.,The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
40
|
Wang FD, Zhou J, Chen EQ. Molecular Mechanisms and Potential New Therapeutic Drugs for Liver Fibrosis. Front Pharmacol 2022; 13:787748. [PMID: 35222022 PMCID: PMC8874120 DOI: 10.3389/fphar.2022.787748] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is the pathological process of excessive extracellular matrix deposition after liver injury and is a precursor to cirrhosis, hepatocellular carcinoma (HCC). It is essentially a wound healing response to liver tissue damage. Numerous studies have shown that hepatic stellate cells play a critical role in this process, with various cells, cytokines, and signaling pathways engaged. Currently, the treatment targeting etiology is considered the most effective measure to prevent and treat liver fibrosis, but reversal fibrosis by elimination of the causative agent often occurs too slowly or too rarely to avoid life-threatening complications, especially in advanced fibrosis. Liver transplantation is the only treatment option in the end-stage, leaving us with an urgent need for new therapies. An in-depth understanding of the mechanisms of liver fibrosis could identify new targets for the treatment. Most of the drugs targeting critical cells and cytokines in the pathogenesis of liver fibrosis are still in pre-clinical trials and there are hardly any definitive anti-fibrotic chemical or biological drugs available for clinical use. In this review, we will summarize the pathogenesis of liver fibrosis, focusing on the role of key cells, associated mechanisms, and signaling pathways, and summarize various therapeutic measures or drugs that have been trialed in clinical practice or are in the research stage.
Collapse
Affiliation(s)
| | | | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
HNF4A Regulates the Proliferation and Tumor Formation of Cervical Cancer Cells through the Wnt/β-Catenin Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8168988. [PMID: 35132353 PMCID: PMC8817108 DOI: 10.1155/2022/8168988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022]
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4A) is a transcriptional factor which plays an important role in the development of the liver, kidney, and intestines. Nevertheless, its role in cervical cancer and the underlying mechanism remain unknown. In this study, both immunohistochemistry and western blotting revealed that the expression of HNF4A was downregulated in cervical cancer. Xenograft assays suggested that HN4A could inhibit tumorigenic potential of cervical cancer in vivo. Functional studies illustrated that HNF4A also inhibited the proliferation and viability of cervical cancer cells in vitro. In addition, FACS analysis implied that HNF4A could induce cell cycle arrest from the G0/G1 phase to S phase. Further studies suggested that HNF4A downregulated the activity of the Wnt/β-catenin pathway. Altogether, our data demonstrated that HNF4A inhibited tumor formation and proliferation of cervical cancer cells through suppressing the activity of the Wnt/β-catenin pathway.
Collapse
|
42
|
Sepporta MV, Praz V, Balmas Bourloud K, Joseph JM, Jauquier N, Riggi N, Nardou-Auderset K, Petit A, Scoazec JY, Sartelet H, Renella R, Mühlethaler-Mottet A. TWIST1 expression is associated with high-risk neuroblastoma and promotes primary and metastatic tumor growth. Commun Biol 2022; 5:42. [PMID: 35022561 PMCID: PMC8755726 DOI: 10.1038/s42003-021-02958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/09/2021] [Indexed: 11/09/2022] Open
Abstract
The embryonic transcription factors TWIST1/2 are frequently overexpressed in cancer, acting as multifunctional oncogenes. Here we investigate their role in neuroblastoma (NB), a heterogeneous childhood malignancy ranging from spontaneous regression to dismal outcomes despite multimodal therapy. We first reveal the association of TWIST1 expression with poor survival and metastasis in primary NB, while TWIST2 correlates with good prognosis. Secondly, suppression of TWIST1 by CRISPR/Cas9 results in a reduction of tumor growth and metastasis colonization in immunocompromised mice. Moreover, TWIST1 knockout tumors display a less aggressive cellular morphology and a reduced disruption of the extracellular matrix (ECM) reticulin network. Additionally, we identify a TWIST1-mediated transcriptional program associated with dismal outcome in NB and involved in the control of pathways mainly linked to the signaling, migration, adhesion, the organization of the ECM, and the tumor cells versus tumor stroma crosstalk. Taken together, our findings confirm TWIST1 as promising therapeutic target in NB.
Collapse
Affiliation(s)
- Maria-Vittoria Sepporta
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Viviane Praz
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Experimental Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Katia Balmas Bourloud
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Marc Joseph
- Pediatric Surgery, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Jauquier
- Pediatric Surgery, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolò Riggi
- Experimental Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Katya Nardou-Auderset
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Ophthalmic Hospital Jules-Gonin - Fondation Asile Des Aveugles, Lausanne, Switzerland
| | - Audrey Petit
- Department of Pathology, Medical University of Grenoble, Grenoble, France
- Pediatric Hematology Oncology Department, CHU de la Timone, Marseille, France
| | - Jean-Yves Scoazec
- Department of Biology and Medical Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Hervé Sartelet
- Department of Pathology, Medical University of Grenoble, Grenoble, France
- Department of Biopathology, CHRU de Nancy, University of Lorraine, Nancy, France
| | - Raffaele Renella
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Annick Mühlethaler-Mottet
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
43
|
Abstract
Hepatocytes are liver parenchymal cells involved in performing various metabolic reactions. During the development of therapeutic drugs, toxicological assays are conducted using hepatocyte cultures before clinical trials. However, since primary hepatocytes cannot proliferate and rapidly lose their functions in vitro, many efforts have been put into modifying culture conditions to expand primary hepatocytes and induce hepatocyte functions in intrinsic and extrinsic stem/progenitor cells. In this chapter, we summarize recent advances in preparing hepatocyte cultures and induction of hepatocytes from various cellular sources.
Collapse
Affiliation(s)
- Ayumu Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
44
|
Wang YC, Wang ZJ, Zhang C, Ning BF. Cell reprogramming in liver with potential clinical correlations. J Dig Dis 2022; 23:13-21. [PMID: 34921720 DOI: 10.1111/1751-2980.13072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
The theory of cell reprogramming has developed rapidly during the past decades. Cell reprogramming has been widely used in the construction of experimental models and cytotherapy for certain diseases. Hepatocyte-like cells that are important for the treatment of end-stage liver disease can now be obtained with a variety of reprogramming techniques. However, improving the differentiation status and physiological function of these cells remains challenging. Hepatocytes can transdifferentiate into other types of cells directly, whereas other types of cells can also transdifferentiate into hepatocyte-like cells both in vitro and in vivo. Moreover, cell reprogramming is to some extent similar to malignant cell transformation. During the initiation and progression of liver cancer, cell reprogramming is always associated with cancer metastasis and chemoresistance. In this review, we summarized the research related to cell reprogramming in liver and highlighted the potential effects of cell reprogramming in the pathogenesis and treatment of liver diseases.
Collapse
Affiliation(s)
- Yi Chuan Wang
- Clinical Cancer Institute, Center for Translational Medicine, Second Military Medical University, Shanghai, China
| | - Zhi Jie Wang
- Clinical Cancer Institute, Center for Translational Medicine, Second Military Medical University, Shanghai, China
| | - Cheng Zhang
- Department of Gastroenterology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Bei Fang Ning
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
45
|
Stepanov YV, Golovynska I, Dziubenko NV, Kuznietsova HM, Petriv N, Skrypkina I, Golovynskyi S, Stepanova LI, Stohnii Y, Garmanchuk LV, Ostapchenko LI, Yevsa T, Qu J, Ohulchanskyy TY. NMDA receptor expression during cell transformation process at early stages of liver cancer in rodent models. Am J Physiol Gastrointest Liver Physiol 2022; 322:G142-G153. [PMID: 34851733 DOI: 10.1152/ajpgi.00060.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, which is not sensitive to radiotherapy and chemotherapy and very often experiences postoperative relapse. In this regard, effective screening of liver cancer is considered as the most important and urgent task. The aim of our study was to determine whether N-methyl-D-aspartate receptor (NMDAR) and, in particular, its subunits, can serve as biomarkers to distinguish the precancerous liver at early stages of liver fibrosis. We assessed the development of HCC after 10, 15, and 22 wk using a HCC rat model. The expression of NMDAR subunits was monitored at different stages of HCC by means of immunohistochemistry combined with epifluorescence microscopy imaging, Western blotting, and direct bisulfite sequencing. NMDAR subunits were not found in healthy liver tissues. In contrast, NMDAR subunits, in particular NR1 and NR2B, appeared at the stage of severe liver fibrosis (precancerous liver disease) in rats and were expressed during the development of HCC in rats and mice. Using the direct bisulfite sequencing, we detected that increased expression of NMDAR directly correlated with the demethylation of CpG islands in the promoter region of genes encoding receptor subunits. The obtained results confirmed that NMDAR subunits can serve as new biomarkers of precancerous liver disease, severe fibrosis, and its progression towards HCC.NEW & NOTEWORTHY We have shown NMDAR expression in cell transformation process at early stages of cancer, specifically HCC. The aim of our study was to define the disease stages from precancerous liver disease towards liver cancer progression when NMDAR subunits were expressed/detected. A fibrosis/HCC rat model, immunohistochemistry combined with epifluorescence microscopy imaging, Western blotting was used. The dynamics of appearance of NMDAR subunits, their expression and methylation status during the development of HCC were shown and discussed.
Collapse
Affiliation(s)
- Yurii V Stepanov
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Iuliia Golovynska
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Nataliia V Dziubenko
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Halyna M Kuznietsova
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Nataliia Petriv
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Inessa Skrypkina
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Sergii Golovynskyi
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Liudmyla I Stepanova
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Yevhenii Stohnii
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Liudmyla V Garmanchuk
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Liudmyla I Ostapchenko
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Junle Qu
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Tymish Y Ohulchanskyy
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| |
Collapse
|
46
|
Han JK, Shin Y, Kim HS. Direct Conversion of Cell Fate and Induced Endothelial Cells. Circ J 2021; 86:1925-1933. [PMID: 34732599 DOI: 10.1253/circj.cj-21-0703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Advances in nuclear reprogramming technology have enabled the dedifferentiation and transdifferentiation of mammalian cells. Forced induction of the key transcription factors constituting a transcriptional network can convert cells back to their pluripotent status or directly to another cell fate without inducing pluripotency. To date, direct conversion to several cell types, including cardiomyocytes, various types of neurons, and pancreatic β-cells, has been reported. We previously demonstrated direct lineage reprogramming of adult fibroblasts into induced endothelial cells (iECs) in mice and humans. In contrast to induced pluripotent stem cells, for which there is consensus on the criteria defining pluripotency, such criteria have not yet been established in the field of direct conversion. We thus suggest that careful assessment of the status of converted cells using genetic and epigenetic profiling, various functional assays, and the use of multiple readouts is essential to determine successful conversion. As direct conversion does not go through pluripotent status, this technique can be utilized for therapeutic purposes without the risk of tumorigenesis. Further, direct conversion can be induced in vivo by gene delivery to the target tissue or organ in situ. Thus, direct conversion technology can be developed into cell therapy or gene therapy for regenerative purposes. Here, we review the potential and future directions of direct cell fate conversion and iECs.
Collapse
Affiliation(s)
- Jung-Kyu Han
- Department of Internal Medicine, and Strategic Center of Cell and Bio Therapy for Heart, Diabetes and Cancer, Seoul National University Hospital
| | - Youngchul Shin
- Department of Internal Medicine, and Strategic Center of Cell and Bio Therapy for Heart, Diabetes and Cancer, Seoul National University Hospital
| | - Hyo-Soo Kim
- Department of Internal Medicine, and Strategic Center of Cell and Bio Therapy for Heart, Diabetes and Cancer, Seoul National University Hospital
| |
Collapse
|
47
|
Caligiuri A, Gentilini A, Pastore M, Gitto S, Marra F. Cellular and Molecular Mechanisms Underlying Liver Fibrosis Regression. Cells 2021; 10:cells10102759. [PMID: 34685739 PMCID: PMC8534788 DOI: 10.3390/cells10102759] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver injury of different etiologies may result in hepatic fibrosis, a scar formation process consisting in altered deposition of extracellular matrix. Progression of fibrosis can lead to impaired liver architecture and function, resulting in cirrhosis and organ failure. Although fibrosis was previous thought to be an irreversible process, recent evidence convincingly demonstrated resolution of fibrosis in different organs when the cause of injury is removed. In the liver, due to its high regenerative ability, the extent of fibrosis regression and reversion to normal architecture is higher than in other tissues, even in advanced disease. The mechanisms of liver fibrosis resolution can be recapitulated in the following main points: removal of injurious factors causing chronic hepatic damage, elimination, or inactivation of myofibroblasts (through various cell fates, including apoptosis, senescence, and reprogramming), inactivation of inflammatory response and induction of anti-inflammatory/restorative pathways, and degradation of extracellular matrix. In this review, we will discuss the major cellular and molecular mechanisms underlying the regression of fibrosis/cirrhosis and the potential therapeutic approaches aimed at reversing the fibrogenic process.
Collapse
|
48
|
Li CH, Hsu TI, Chang YC, Chan MH, Lu PJ, Hsiao M. Stationed or Relocating: The Seesawing EMT/MET Determinants from Embryonic Development to Cancer Metastasis. Biomedicines 2021; 9:1265. [PMID: 34572451 PMCID: PMC8472300 DOI: 10.3390/biomedicines9091265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial and mesenchymal transition mechanisms continue to occur during the cell cycle and throughout human development from the embryo stage to death. In embryo development, epithelial-mesenchymal transition (EMT) can be divided into three essential steps. First, endoderm, mesoderm, and neural crest cells form, then the cells are subdivided, and finally, cardiac valve formation occurs. After the embryonic period, the human body will be subjected to ongoing mechanical stress or injury. The formation of a wound requires EMT to recruit fibroblasts to generate granulation tissues, repair the wound and re-create an intact skin barrier. However, once cells transform into a malignant tumor, the tumor cells acquire the characteristic of immortality. Local cell growth with no growth inhibition creates a solid tumor. If the tumor cannot obtain enough nutrition in situ, the tumor cells will undergo EMT and invade the basal membrane of nearby blood vessels. The tumor cells are transported through the bloodstream to secondary sites and then begin to form colonies and undergo reverse EMT, the so-called "mesenchymal-epithelial transition (MET)." This dynamic change involves cell morphology, environmental conditions, and external stimuli. Therefore, in this manuscript, the similarities and differences between EMT and MET will be dissected from embryonic development to the stage of cancer metastasis.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Tai-I Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
49
|
Rombaut M, Boeckmans J, Rodrigues RM, van Grunsven LA, Vanhaecke T, De Kock J. Direct reprogramming of somatic cells into induced hepatocytes: Cracking the Enigma code. J Hepatol 2021; 75:690-705. [PMID: 33989701 DOI: 10.1016/j.jhep.2021.04.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/10/2023]
Abstract
There is an unmet need for functional primary human hepatocytes to support the pharmaceutical and (bio)medical demand. The unique discovery, a decade ago, that somatic cells can be drawn out of their apparent biological lockdown to reacquire a pluripotent state has revealed a completely new avenue of possibilities for generating surrogate human hepatocytes. Since then, the number of papers reporting the direct conversion of somatic cells into induced hepatocytes (iHeps) has burgeoned. A hepatic cell fate can be established via the ectopic expression of native liver-enriched transcription factors in somatic cells, thereby bypassing the need for an intermediate (pluripotent) stem cell state. That said, understanding and eventually controlling the processes that give rise to functional iHeps remains challenging. In this review, we provide an overview of the state-of-the-art reprogramming cocktails and techniques, as well as their corresponding conversion efficiencies. Special attention is paid to the role of liver-enriched transcription factors as hepatogenic reprogramming tools and small molecules as facilitators of hepatic transdifferentiation. To conclude, we formulate recommendations to optimise, standardise and enrich the in vitro production of iHeps to reach clinical standards, and propose minimal criteria for their characterisation.
Collapse
Affiliation(s)
- Matthias Rombaut
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| |
Collapse
|
50
|
Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021; 175:113831. [PMID: 34139255 PMCID: PMC7611899 DOI: 10.1016/j.addr.2021.113831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO(ABCD)), University Hospital Aachen, Aachen, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lorena Consolino
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|