1
|
Festa LK, Jordan-Sciutto KL, Grinspan JB. Neuroinflammation: An Oligodendrocentric View. Glia 2025; 73:1113-1129. [PMID: 40059542 PMCID: PMC12014387 DOI: 10.1002/glia.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/16/2025]
Abstract
Chronic neuroinflammation, driven by central nervous system (CNS)-resident astrocytes and microglia, as well as infiltration of the peripheral immune system, is an important pathologic mechanism across a range of neurologic diseases. For decades, research focused almost exclusively on how neuroinflammation impacted neuronal function; however, there is accumulating evidence that injury to the oligodendrocyte lineage is an important component for both pathologic and clinical outcomes. While oligodendrocytes are able to undergo an endogenous repair process known as remyelination, this process becomes inefficient and usually fails in the presence of sustained inflammation. The present review focuses on our current knowledge regarding activation of the innate and adaptive immune systems in the chronic demyelinating disease, multiple sclerosis, and provides evidence that sustained neuroinflammation in other neurologic conditions, such as perinatal white matter injury, traumatic brain injury, and viral infections, converges on oligodendrocyte injury. Lastly, the therapeutic potential of targeting the impact of inflammation on the oligodendrocyte lineage in these diseases is discussed.
Collapse
Affiliation(s)
- Lindsay K Festa
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kelly L Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Judith B Grinspan
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Serafini RA, Frere JJ, Giosan IM, Nwaneshiudu CA. SARS-CoV-2-induced sensory perturbations: A narrative review of clinical phenotypes, molecular pathologies, and possible interventions. Brain Behav Immun Health 2025; 45:100983. [PMID: 40231214 PMCID: PMC11995741 DOI: 10.1016/j.bbih.2025.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/19/2025] [Accepted: 03/23/2025] [Indexed: 04/16/2025] Open
Abstract
Background The acute and post-acute sequelae of SARS-CoV-2 infection have been of great clinical interest since the inception of the COVID-19 pandemic. Despite a high prevalence of individuals with persistent symptoms, a wholistic view of the effects of SARS-CoV-2 on special sensory systems is lacking. Considering the significant impact of normal sensory function on quality of life, the goal of this review is to highlight unresolved issues related to SARS-CoV-2-associated insults to the sensory nervous system. Major findings In this narrative review, we discuss the epidemiology of SARS-CoV-2-induced sensory perturbations, underlying pathological mechanisms, and possible therapeutic strategies across the olfactory, gustatory, somatosensory, visual, and auditory systems. Examined literature included studies with human biospecimens, human-derived cell lines, and naturally susceptible animal models, which highlighted evidence of persistent functional disruption in all sensory systems. SARS-CoV-2 infection was associated with persistent inflammation in the olfactory epithelium/bulb, somatosensory ganglia, and gustatory systems, long-term transcriptional perturbations in the sensory central nervous system and peripheral nervous system, and detectable degeneration/apoptosis in the gustatory and visual systems. Few studies have proposed evidence-based therapeutic strategies for attenuating specific sensory abnormalities after SARS-CoV-2 infection. Conclusion While the olfactory system, and to some extent the visual and somatosensory systems, have been more thoroughly investigated from symptomatology, behavioral and molecular perspectives, there is still an unmet need for the development of therapeutics to treat COVID-induced impairment of these systems. Further, additional attention must be placed on COVID-associated impairment of the gustatory, visual, and auditory systems, which lack detailed mechanistic investigations into their pathogenesis.
Collapse
Affiliation(s)
- Randal A. Serafini
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Justin J. Frere
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Chinwe A. Nwaneshiudu
- Department of Anesthesia, Perioperative and Pain Medicine, Center for Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
3
|
Birtele M, Lancaster M, Quadrato G. Modelling human brain development and disease with organoids. Nat Rev Mol Cell Biol 2025; 26:389-412. [PMID: 39668188 DOI: 10.1038/s41580-024-00804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Organoids are systems derived from pluripotent stem cells at the interface between traditional monolayer cultures and in vivo animal models. The structural and functional characteristics of organoids enable the modelling of early stages of brain development in a physiologically relevant 3D environment. Moreover, organoids constitute a tool with which to analyse how individual genetic variation contributes to the susceptibility and progression of neurodevelopmental disorders. This Roadmap article describes the features of brain organoids, focusing on the neocortex, and their advantages and limitations - in comparison with other model systems - for the study of brain development, evolution and disease. We highlight avenues for enhancing the physiological relevance of brain organoids by integrating bioengineering techniques and unbiased high-throughput analyses, and discuss future applications. As organoids advance in mimicking human brain functions, we address the ethical and societal implications of this technology.
Collapse
Affiliation(s)
- Marcella Birtele
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madeline Lancaster
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Gong J, Ge L, Zeng Y, Yang C, Luo Y, Kang J, Zou T, Xu H. The influence of SARS-CoV-2 spike protein exposure on retinal development in the human retinal organoids. Cell Biosci 2025; 15:43. [PMID: 40217547 PMCID: PMC11987193 DOI: 10.1186/s13578-025-01383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Pregnant women are considered a high-risk population for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as the virus can infect the placenta and embryos. Recently, SARS-CoV-2 has been widely reported to cause retinal pathological changes and to infect the embryonic retina. The infection of host cells by SARS-CoV-2 is primarily mediated through spike (S) protein, which also plays a crucial role in the pathogenesis of SARS-CoV-2. However, it remains poorly understood how the S protein of SARS-CoV-2 affects retinal development, and the underlying mechanism has not yet been clarified. METHODS We used human embryonic stem cell-derived retinal organoids (hEROs) as a model to study the effect of S protein exposure at different stages of retinal development. hEROs were treated with 2 μg/mL of S protein on days 90 and 280. Immunofluorescence staining, RNA sequencing, and RT-PCR were performed to assess the influence of S protein exposure on retinal development at both early and late stages. RESULTS The results showed that ACE2 and TMPRSS2, the receptors facilitating SARS-CoV-2 entry into host cells, were expressed in hEROs. Exposure to the S protein induced an inflammatory response in both the early and late stages of retinal development in the hEROs. Additionally, RNA sequencing indicated that early exposure of the S protein to hEROs affected nuclear components and lipid metabolism, while late-stages exposure resulted in changes to cell membrane components and the extracellular matrix. CONCLUSION This work highlights the differential effects of SARS-CoV-2 S protein exposure on retinal development at both early and late stages, providing insights into the cellular and molecular mechanisms underlying SARS-CoV-2-induced developmental impairments in the human retina.
Collapse
Affiliation(s)
- Jing Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yushan Luo
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
5
|
Maisumu G, Willerth S, Nestor M, Waldau B, Schülke S, Nardi FV, Ahmed O, Zhou Y, Durens M, Liang B, Yakoub AM. Brain organoids: building higher-order complexity and neural circuitry models. Trends Biotechnol 2025:S0167-7799(25)00046-0. [PMID: 40221251 DOI: 10.1016/j.tibtech.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/09/2024] [Accepted: 02/07/2025] [Indexed: 04/14/2025]
Abstract
Brain organoids are 3D tissue models of the human brain that are derived from pluripotent stem cells (PSCs). They have enabled studies that were previously stymied by the inaccessibility of human brain tissue or the limitations of mouse models of some brain diseases. Despite their enormous potential, brain organoids have had significant limitations that prevented them from recapitulating the full complexity of the human brain and reduced their utility in disease studies. We describe recent progress in addressing these limitations, especially building complex organoids that recapitulate the interactions between multiple brain regions, and reconstructing in vitro the neural circuitry present in in vivo. These major advances in the human brain organoid technology will remarkably facilitate brain disease modeling and neuroscience research.
Collapse
Affiliation(s)
- Gulimiheranmu Maisumu
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA; Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, USA
| | - Stephanie Willerth
- Department of Biomedical Engineering, University of Victoria, Victoria, BC, Canada
| | - Michael Nestor
- National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Ben Waldau
- Department of Neurological Surgery, University of California Davis, Sacramento, CA, USA
| | - Stefan Schülke
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany; Research Allergology (ALG 5), Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Francesco V Nardi
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA; Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, USA
| | - Osama Ahmed
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA; Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, USA
| | - You Zhou
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA
| | - Madel Durens
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bo Liang
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, USA
| | - Abraam M Yakoub
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Eun J, Lee JE, Yang SH. Cerebral organoid research for pediatric patients with neurological disorders. Clin Exp Pediatr 2025; 68:269-277. [PMID: 39608368 PMCID: PMC11969208 DOI: 10.3345/cep.2024.01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/30/2024] Open
Abstract
Cerebral organoids derived from human induced pluripotent stem cells offer a groundbreaking foundation for the analysis of pediatric neurological diseases. Unlike organoids from other somatic systems, cerebral organoids present unique challenges, such as the high sensitivity of neuronal cells to environmental conditions and the complexity of replicating brain-specific architectures. Cerebral organoids replicate the human brain development and pathology, enabling research on conditions such as microcephaly, Rett syndrome, autism spectrum disorders, and brain tumors. This review explores the utility of cerebral organoids for modeling diseases and testing therapeutic interventions. Despite current limitations such as variability and lack of vascularization, recent technological advancements have improved the reliability and application of such interventions. Cerebral organoids provide valuable insight into the mechanisms underlying complex neural disorders and hold promise as novel treatment strategies for pediatric neurological diseases.
Collapse
Affiliation(s)
- Jin Eun
- Department of Neurosurgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Eun Lee
- Department of Neurosurgery, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
7
|
O'Laughlin R, Cheng F, Song H, Ming GL. Bioengineering tools for next-generation neural organoids. Curr Opin Neurobiol 2025; 92:103011. [PMID: 40132519 DOI: 10.1016/j.conb.2025.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Human stem cell-derived neural organoids were recently introduced as powerful in vitro 3D experimental model systems that innately undergo critical steps of organogenesis in culture and exhibit molecular, cellular, and structural features similar to the fetal human nervous system. These organoids have yielded new insights into human neurodevelopment and associated disorders. However, neural organoids have some crucial limitations that arise from the loosely controlled conditions for their development, an inability to maintain their spatial orientation in culture and a lack of technologies for taking long-term measurements on their morphology and electrical activity. Here, we review recent progress in using bioengineering methods to improve neural organoid formation and analysis by leveraging microfabrication, biomaterials, 3D printing, and flexible electrodes. We discuss how the applications of each technique can help to address critical limitations with standard neural organoid models. We conclude with a perspective on future applications of bioengineered next-generation neural organoids.
Collapse
Affiliation(s)
- Richard O'Laughlin
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fangyi Cheng
- Graduate Program in Bioengineering, School of Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Bioengineering, School of Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Bioengineering, School of Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Chen Y, Jan J, Yang C, Yen T, Linh TTD, Annavajjula S, Satapathy MK, Tsao S, Hsieh C. Cognitive Sequelae of COVID-19: Mechanistic Insights and Therapeutic Approaches. CNS Neurosci Ther 2025; 31:e70348. [PMID: 40152069 PMCID: PMC11950837 DOI: 10.1111/cns.70348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic has left an indelible mark on the world, with mounting evidence suggesting that it not only posed acute challenges to global healthcare systems but has also unveiled a complex array of long-term consequences, particularly cognitive impairment (CI). As the persistence of post-COVID-19 neurological syndrome could evolve into the next public health crisis, it is imperative to gain a better understanding of the intricate pathophysiology of CI in COVID-19 patients and viable treatment strategies. METHODS This comprehensive review explores the pathophysiology and management of cognitive impairment across the phases of COVID-19, from acute infection to Long-COVID, by synthesizing findings from clinical, preclinical, and mechanistic studies to identify key contributors to CI, as well as current therapeutic approaches. RESULTS Key mechanisms contributing to CI include persistent neuroinflammation, cerebrovascular complications, direct neuronal injury, activation of the kynurenine pathway, and psychological distress. Both pharmacological interventions, such as anti-inflammatory therapies and agents targeting neuroinflammatory pathways, and non-pharmacological strategies, including cognitive rehabilitation, show promise in addressing these challenges. Although much of the current evidence is derived from preclinical and animal studies, these findings provide foundational insights into potential treatment approaches. CONCLUSION By synthesizing current knowledge, this review highlights the importance of addressing COVID-19-related cognitive impairment and offers actionable insights for mitigation and recovery as the global community continues to grapple with the pandemic's long-term impact.
Collapse
Affiliation(s)
- Yu‐Hao Chen
- Section of Neurosurgery, Department of SurgeryDitmanson Medical Foundation, Chia‐Yi Christian HospitalChia‐Yi CityTaiwan
- Chung‐Jen Junior College of Nursing, Health Sciences and ManagementChia‐Yi CountryTaiwan
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Jing‐Shiun Jan
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Chih‐Hao Yang
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Ting‐Lin Yen
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
- Department of Medical ResearchCathay General HospitalTaipeiTaiwan
| | - Tran Thanh Duy Linh
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
- Family Medicine Training Center, University of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Saileela Annavajjula
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Mantosh Kumar Satapathy
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Shin‐Yi Tsao
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
- Division of Endocrinology and Metabolism, Department of Internal MedicineTaipeiTaiwan
| | - Cheng‐Ying Hsieh
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
9
|
Cappelletti G, Brambilla L, Strizzi S, Limanaqi F, Melzi V, Rizzuti M, Nizzardo M, Saulle I, Trabattoni D, Corti S, Clerici M, Biasin M. iPSC-derived human cortical organoids display profound alterations of cellular homeostasis following SARS-CoV-2 infection and Spike protein exposure. FASEB J 2025; 39:e70396. [PMID: 39950320 PMCID: PMC11826378 DOI: 10.1096/fj.202401604rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/16/2025]
Abstract
COVID-19 commonly leads to respiratory issues, yet numerous patients also exhibit a diverse range of neurological conditions, suggesting a detrimental impact of SARS-CoV-2 or the viral Spike protein on the central nervous system. Nonetheless, the molecular pathway behind neurological pathology and the presumed neurotropism of SARS-CoV-2 remains largely unexplored. We generated human cortical organoids (HCOs) derived from human induced pluripotent stem cells (hiPSC) to assess: (1) the expression of SARS-CoV-2 main entry factors; (2) their vulnerability to SARS-CoV-2 infection; and (3) the impact of SARS-CoV-2 infection and exposure to the Spike protein on their transcriptome. Results proved that (1) HCOs express the main SARS-CoV-2 receptors and co-receptors; (2) HCOs may be productively infected by SARS-CoV-2; (3) the viral particles released by SARS-CoV-2-infected HCOs are able to re-infect another cellular line; and (4) the infection resulted in the activation of apoptotic and stress pathways, along with inflammatory processes. Notably, these effects were recapitulated when HCOs were exposed to the Spike protein alone. The data obtained demonstrate that SARS-CoV-2 likely infects HCOs probably through the binding of ACE2, CD147, and NRP1 entry factors. Furthermore, exposure to the Spike protein alone proved sufficient to disrupt their homeostasis and induce neurotoxic effects, potentially contributing to the onset of long-COVID symptoms.
Collapse
Affiliation(s)
- Gioia Cappelletti
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Lorenzo Brambilla
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Sergio Strizzi
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Fiona Limanaqi
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Valentina Melzi
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Mafalda Rizzuti
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Monica Nizzardo
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Irma Saulle
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Daria Trabattoni
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Stefania Corti
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience SectionUniversity of MilanMilanItaly
- Neuromuscular and Rare Diseases Unit, Department of NeuroscienceFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Mario Clerici
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- Don C. Gnocchi FoundationIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) FoundationMilanItaly
| | - Mara Biasin
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| |
Collapse
|
10
|
Zhao T, Pellegrini L, van der Hee B, Boekhorst J, Fernandes A, Brugman S, van Baarlen P, Wells JM. Choroid plexus organoids reveal mechanisms of Streptococcus suis translocation at the blood-cerebrospinal fluid barrier. Fluids Barriers CNS 2025; 22:14. [PMID: 39930492 PMCID: PMC11812244 DOI: 10.1186/s12987-025-00627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Streptococcus suis is a globally emerging zoonotic pathogen that can cause invasive disease commonly associated with meningitis in pigs and humans. To cause meningitis, S. suis must invade the central nervous system (CNS) by crossing the neurovascular unit, also known as the blood-brain barrier (BBB), or vascularized choroid plexus (ChP) epithelium known as the blood-cerebrospinal fluid barrier (BCSFB). Recently developed ChP organoids have been shown to accurately replicate the cytoarchitecture and physiological functions of the ChP epithelium in vivo. Here, we used human induced pluripotent stem cells (iPSC)-derived ChP organoids as an in vitro model to investigate S. suis interaction and infection at the BCSFB. Our study revealed that S. suis is capable of translocating across the epithelium of ChP organoids without causing significant cell death or compromising the barrier integrity. Plasminogen (Plg) binding to S. suis in the presence of tissue plasminogen activator (tPA), which converts immobilized Plg to plasmin (Pln), significantly increased the basolateral to apical translocation across ChP organoids into the CSF-like fluid in the lumen. S. suis was able to replicate at the same rate in CSF and laboratory S. suis culture medium but reached a lower final density. The analysis of transcriptomes in ChP organoids after S. suis infection indicated inflammatory responses, while the addition of Plg further suggested extracellular matrix (ECM) remodeling. To our knowledge, this is the first study using ChP organoids to investigate bacterial infection of the BCSFB. Our findings highlight the potential of ChP organoids as a valuable tool for studying the mechanisms of bacterial interaction and infection of the human ChP in vitro.
Collapse
Affiliation(s)
- Tiantong Zhao
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Laura Pellegrini
- Centre for Developmental Neurobiology, King's College London, Guys Campus, New Hunt's House, London, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Bart van der Hee
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Jos Boekhorst
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Aline Fernandes
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Sylvia Brugman
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics, Department Animal Science, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands.
| |
Collapse
|
11
|
Zhao Y, Tang Y, Wang QY, Li J. Ocular neuroinflammatory response secondary to SARS-CoV-2 infection-a review. Front Immunol 2025; 16:1515768. [PMID: 39967658 PMCID: PMC11832381 DOI: 10.3389/fimmu.2025.1515768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
With the consistent occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the prevalence of various ocular complications has increased over time. SARS-CoV-2 infection has been shown to have neurotropism and therefore to lead to not only peripheral inflammatory responses but also neuroinflammation. Because the receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), can be found in many intraocular tissues, coronavirus disease 2019 (COVID-19) may also contribute to persistent intraocular neuroinflammation, microcirculation dysfunction and ocular symptoms. Increased awareness of neuroinflammation and future research on interventional strategies for SARS-CoV-2 infection are important for improving long-term outcomes, reducing disease burden, and improving quality of life. Therefore, the aim of this review is to focus on SARS-CoV-2 infection and intraocular neuroinflammation and to discuss current evidence and future perspectives, especially possible connections between conditions and potential treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Jia Li
- Department of Glaucoma, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Saxena A, Mautner J. A Disease Hidden in Plain Sight: Pathways and Mechanisms of Neurological Complications of Post-acute Sequelae of COVID-19 (NC-PASC). Mol Neurobiol 2025; 62:2530-2547. [PMID: 39133434 DOI: 10.1007/s12035-024-04421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
The global impact of coronavirus disease 2019 (COVID-19) marked by numerous pandemic peaks is attributed to its high variability and infectious nature, transforming it into a persistent global public health concern. With hundreds of millions of cases reported globally, the illness is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite its initial classification as an acute respiratory illness, recent evidence indicates that lingering effects on various bodily systems, such as cardiovascular, pulmonary, nervous, gastrointestinal (GI), and musculoskeletal, may endure well beyond the acute phase. These persistent manifestations following COVID-19, commonly known as long COVID, have the potential to affect individuals across the entire range of illness severity, with a tendency to be more prevalent in mild to moderate cases. At present, there are no established criteria for diagnosing long COVID. Nonetheless, it is conceptualized as a multi-organ disorder encompassing a diverse array of clinical manifestations. The most common, persistent, and debilitating symptoms of long COVID may be neurological, known as neurological complications of post-acute sequelae of COVID-19 (NC-PASC). More than one-third of individuals with a prior SARS-CoV-2 infection show involvement of both the central nervous system (CNS) and peripheral nervous system (PNS), as evidenced by an approximately threefold higher incidence of neurological symptoms in observational studies. The persistent neurological symptoms of long COVID encompass fatigue, headache, cognitive decline, "brain fog", dysautonomia, neuropsychiatric issues, loss of smell (anosmia), loss of taste (ageusia), and peripheral nerve problems (peripheral neuropathy). Reported pathogenic mechanisms encompass viral persistence and neuro-invasion by SARS-CoV-2, neuroinflammation, autoimmunity, coagulopathy, and endotheliopathy. Raising awareness of potential complications is crucial for preventing and alleviating the long-term effects of long COVID and enhancing the prognosis for affected patients. This review explores the hypothetical pathophysiological mechanisms and pathways of NC-PASC with a sole aim to increase awareness about this crippling disease.
Collapse
Affiliation(s)
- Apoorva Saxena
- Department of Biology, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Josef Mautner
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
13
|
Xu L, Zhang Y, Chen X, Hong Y, Zhang X, Hu H, Han X, Zou X, Xu M, Zhu W, Liu Y. Human Brain Organoids Model Abnormal Prenatal Neural Development Induced by Thermal Stimulation. Cell Prolif 2025; 58:e13777. [PMID: 39668124 PMCID: PMC11839188 DOI: 10.1111/cpr.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024] Open
Abstract
The developing human foetal brain is sensitive to thermal stimulation during pregnancy. However, the mechanisms by which heat exposure affects human foetal brain development remain unclear, largely due to the lack of appropriate research models for studying thermal stimulation. To address this, we have developed a periodic heating model based on brain organoids derived from human pluripotent stem cells. The model recapitulated neurodevelopmental disruptions under prenatal heat exposure at the early stages, providing a paradigm for studying the altered neurodevelopment under environmental stimulation. Our study found that periodic heat exposure led to decreased size and impaired neural tube development in the brain organoids. Bulk RNA-seq analysis revealed that the abnormal WNT signalling pathway and the reduction of G2/M progenitor cells might be involved in heat stimulation. Further investigation revealed increased neural differentiation and decreased proliferation under heat stimulation, indicating that periodic heat exposure might lead to abnormal brain development by altering key developmental processes. Hence, our model of periodically heating brain organoids provides a platform for modelling the effects of maternal fever on foetal brain development and could be extended to applications in neurodevelopmental disorders intervention.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Department of Neurology, Affiliated Zhongda HospitalSoutheast UniversityNanjingChina
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Yufan Zhang
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Xingyi Chen
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Yuan Hong
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Xu Zhang
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Hao Hu
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Xiao Han
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Xiao Zou
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Min Xu
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Wanying Zhu
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Yan Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Department of Neurology, Affiliated Zhongda HospitalSoutheast UniversityNanjingChina
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| |
Collapse
|
14
|
Tang SS, Apsley EJ, Pellegrini L. Functional Imaging Methods for Investigating 3D Choroid Plexus Organoids. Methods Mol Biol 2025. [PMID: 39821809 DOI: 10.1007/7651_2024_601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The choroid plexus (ChP) is a vital brain structure that produces cerebrospinal fluid (CSF) and forms a selective barrier between the blood and CSF, essential for brain homeostasis. Composed of secretory epithelial cells, connective stroma, and a fenestrated vascular network, the ChP supports nutrient transport, immune surveillance, and the clearance of toxic by-products. Despite its significance in maintaining cerebral function, the mechanisms underlying its development and maturation remain poorly understood. Recent advancements, such as the creation of stem cell-derived three-dimensional (3D) ChP organoid model, provide a promising platform for studying these processes. The ChP organoid model replicates key developmental stages and functions of the ChP, including CSF secretion and barrier formation. Additionally, they offer unique opportunities to investigate the impacts of drugs, pathogens, and toxins on the blood-CSF barrier. This study highlights imaging techniques critical for the characterization and utilization of ChP organoids, illustrating their value in advancing our understanding of ChP biology and its role in health and disease.
Collapse
Affiliation(s)
- See Swee Tang
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Elizabeth J Apsley
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Laura Pellegrini
- Centre for Developmental Neurobiology, King's College London, London, UK.
| |
Collapse
|
15
|
Rizatdinova SN, Ershova AE, Astrakhantseva IV. Pseudotyped Viruses: A Useful Platform for Pre-Clinical Studies Conducted in a BSL-2 Laboratory Setting. Biomolecules 2025; 15:135. [PMID: 39858529 PMCID: PMC11763035 DOI: 10.3390/biom15010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The study of pathogenic viruses has always posed significant biosafety challenges. In particular, the study of highly pathogenic viruses requires methods with low biological risk but relatively high sensitivity and convenience in detection. In recent years, pseudoviruses, which consist of a backbone of one virus and envelope proteins of another virus, have become one of the most widely used tools for exploring the mechanisms of viruses binding to cells, membrane fusion and viral entry, as well as for screening the libraries of antiviral substances, evaluating the potential of neutralizing monoclonal antibodies, developing neutralization tests, and therapeutic platforms. During the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pseudotyped virus-based assays played a pivotal role in advancing our understanding of virus-cell interactions and the role of its proteins in disease pathogenesis. Such tools facilitated the search for potential therapeutic agents and accelerated epidemiological studies on post-infection and post-vaccination humoral immunity. This review focuses on the use of pseudoviruses as a model for large-scale applications to study enveloped viruses.
Collapse
Affiliation(s)
| | | | - Irina V. Astrakhantseva
- Department of Immunobiology and Biomedicine, Sirius University of Science and Technology, 354349 Sirius, Krasnodarsky Krai, Russia; (S.N.R.); (A.E.E.)
| |
Collapse
|
16
|
Diez-Cirarda M, Yus-Fuertes M, Delgado-Alonso C, Gil-Martínez L, Jiménez-García C, Gil-Moreno MJ, Gómez-Ruiz N, Oliver-Mas S, Polidura C, Jorquera M, Gómez-Pinedo U, Arrazola J, Sánchez-Ramón S, Matias-Guiu J, Gonzalez-Escamilla G, Matias-Guiu JA. Choroid plexus volume is enlarged in long COVID and associated with cognitive and brain changes. Mol Psychiatry 2025:10.1038/s41380-024-02886-x. [PMID: 39815057 DOI: 10.1038/s41380-024-02886-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 12/09/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025]
Abstract
Patients with post-COVID condition (PCC) present with diverse symptoms which persist at long-term after SARS-CoV-2 infection. Among these symptoms, cognitive impairment is one of the most prevalent and has been related to brain structural and functional changes. The underlying mechanisms of these cognitive and brain alterations remain elusive but neuroinflammation and immune mechanisms have been majorly considered. In this sense, the choroid plexus (ChP) volume has been proposed as a marker of neuroinflammation in immune-mediated conditions and the ChP epithelium has been found particularly susceptible to the effects of SARS-CoV-2. The objective was to investigate the ChP in PCC and evaluate its relationships with cognition, brain, and immunological alterations. One-hundred and twenty-nine patients with PCC after a mean of 14.79 ± 7.17 months of evolution since the infection and 36 healthy controls were recruited. Participants underwent a neuropsychological, and neuroimaging assessment and immunological markers evaluation. Results revealed ChP volume enlargement in PCC compared to healthy controls. The ChP enlargement was associated with cognitive dysfunction, grey matter volume reduction in frontal and subcortical areas, white matter integrity and diffusivity changes and functional connectivity changes. These ChP changes were also related to intermediate monocytes levels. Findings suggest that the ChP integrity may play a relevant role in the pathophysiology of cognitive deficits and the observed brain changes in PCC. The previously documented function of the ChP in maintaining brain homeostasis and regulating the entry of immune cells into the brain supports the presence of neuroinflammatory mechanisms in this disorder.
Collapse
Affiliation(s)
- Maria Diez-Cirarda
- Department of Neurology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain.
| | - Miguel Yus-Fuertes
- Department of Radiology, Hospital Universitario Clinico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Delgado-Alonso
- Department of Neurology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Lidia Gil-Martínez
- Department of Radiology, Hospital Universitario Clinico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Carlos Jiménez-García
- Department of Immunology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Maria José Gil-Moreno
- Department of Neurology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Natividad Gómez-Ruiz
- Department of Radiology, Hospital Universitario Clinico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Silvia Oliver-Mas
- Department of Neurology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Polidura
- Department of Radiology, Hospital Universitario Clinico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Manuela Jorquera
- Department of Radiology, Hospital Universitario Clinico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Ulises Gómez-Pinedo
- Department of Neurology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Arrazola
- Department of Radiology, Hospital Universitario Clinico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Department of Immunology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Matias-Guiu
- Department of Neurology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Jordi A Matias-Guiu
- Department of Neurology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
17
|
Solár P, Šerý O, Vojtíšek T, Krajsa J, Srník M, Dziedzinská R, Králík P, Kessler M, Dubový P, Joukal A, Balcar VJ, Joukal M. The Blood-Cerebrospinal Fluid Barrier as a Potential Entry Site for the SARS-CoV-2 Virus. J Med Virol 2025; 97:e70184. [PMID: 39835622 DOI: 10.1002/jmv.70184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA virus responsible for coronavirus disease 2019 (COVID-19). While SARS-CoV-2 primarily targets the lungs and airways, it can also infect other organs, including the central nervous system (CNS). The aim of this study was to investigate whether the choroid plexus could serve as a potential entry site for SARS-CoV-2 into the brain. Tissue samples from 24 deceased COVID-19-positive individuals were analyzed. Reverse transcription real-time PCR (RT-qPCR) was performed on selected brain regions, including the choroid plexus, to detect SARS-CoV-2 viral RNA. Additionally, immunofluorescence staining and confocal microscopy were used to detect and localize two characteristic proteins of SARS-CoV-2: the spike protein S1 and the nucleocapsid protein. RT-qPCR analysis confirmed the presence of SARS-CoV-2 viral RNA in the choroid plexus. Immunohistochemical staining revealed viral particles localized in the epithelial cells of the choroid plexus, with the spike protein S1 detected in the late endosomes. Our findings suggest that the blood-cerebrospinal fluid (B-CSF) barrier in the choroid plexus serves as a route of entry for SARS-CoV-2 into the CNS. This study contributes to the understanding of the mechanisms underlying CNS involvement in COVID-19 and highlights the importance of further research to explore potential therapeutic strategies targeting this entry pathway.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Omar Šerý
- Department of Forensic Medicine, St. Anne's Faculty Hospital, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomáš Vojtíšek
- Department of Forensic Medicine, St. Anne's Faculty Hospital, Brno, Czech Republic
- Department of Forensic Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Krajsa
- Department of Forensic Medicine, St. Anne's Faculty Hospital, Brno, Czech Republic
- Department of Forensic Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Srník
- Department of Forensic Medicine, St. Anne's Faculty Hospital, Brno, Czech Republic
- Department of Forensic Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radka Dziedzinská
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Králík
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Markéta Kessler
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Dubový
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Andrea Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vladimir J Balcar
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Neuroscience Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney NSW, Sydney, New South Wales, Australia
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
18
|
Hu D, Cao Y, Cai C, Wang G, Zhou M, Peng L, Fan Y, Lai Q, Gao Z. Establishment of human cerebral organoid systems to model early neural development and assess the central neurotoxicity of environmental toxins. Neural Regen Res 2025; 20:242-252. [PMID: 38767489 PMCID: PMC11246146 DOI: 10.4103/nrr.nrr-d-23-00928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/14/2023] [Accepted: 12/08/2023] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00032/figure1/v/2024-05-14T021156Z/r/image-tiff Human brain development is a complex process, and animal models often have significant limitations. To address this, researchers have developed pluripotent stem cell-derived three-dimensional structures, known as brain-like organoids, to more accurately model early human brain development and disease. To enable more consistent and intuitive reproduction of early brain development, in this study, we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture. This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation, resulting in a new type of human brain organoid system. This cerebral organoid system replicated the temporospatial characteristics of early human brain development, including neuroepithelium derivation, neural progenitor cell production and maintenance, neuron differentiation and migration, and cortical layer patterning and formation, providing more consistent and reproducible organoids for developmental modeling and toxicology testing. As a proof of concept, we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins. Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns, including bursts of cortical cell death and premature differentiation. Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity, accompanied by compensatory cell proliferation at ectopic locations. The convenience, flexibility, and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental, neurological, and neurotoxicological studies.
Collapse
Affiliation(s)
- Daiyu Hu
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu Province, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanqing Cao
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu Province, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chenglin Cai
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangming Wang
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu Province, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai, China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yantao Fan
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu Province, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai, China
| | - Qiong Lai
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu Province, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai, China
| | - Zhengliang Gao
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu Province, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Guma E, Chakravarty MM. Immune Alterations in the Intrauterine Environment Shape Offspring Brain Development in a Sex-Specific Manner. Biol Psychiatry 2025; 97:12-27. [PMID: 38679357 PMCID: PMC11511788 DOI: 10.1016/j.biopsych.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Exposure to immune dysregulation in utero or in early life has been shown to increase risk for neuropsychiatric illness. The sources of inflammation can be varied, including acute exposures due to maternal infection or acute stress, or persistent exposures due to chronic stress, obesity, malnutrition, or autoimmune diseases. These exposures may cause subtle alteration in brain development, structure, and function that can become progressively magnified across the lifespan, potentially increasing the likelihood of developing a neuropsychiatric conditions. There is some evidence that males are more susceptible to early-life inflammatory challenges than females. In this review, we discuss the various sources of in utero or early-life immune alteration and the known effects on fetal development with a sex-specific lens. To do so, we leveraged neuroimaging, behavioral, cellular, and neurochemical findings. Gaining clarity about how the intrauterine environment affects offspring development is critically important for informing preventive and early intervention measures that may buffer against the effects of these early-life risk factors.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Courtney Y, Hochstetler A, Lehtinen MK. Choroid Plexus Pathophysiology. ANNUAL REVIEW OF PATHOLOGY 2025; 20:193-220. [PMID: 39383438 PMCID: PMC11884907 DOI: 10.1146/annurev-pathmechdis-051222-114051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
This review examines the roles of the choroid plexus (ChP) in central nervous system (CNS) pathology, emphasizing its involvement in disease mechanisms and therapeutic potential. Structural changes in the human ChP have been reported across various diseases in case reports and descriptive work, but studies have yet to pin down the physiological relevance of these changes. We highlight primary pathologies of the ChP, as well as their significance in neurologic disorders, including stroke, hydrocephalus, infectious diseases, and neurodegeneration. Synthesizing recent research, this review positions the ChP as a critical player in CNS homeostasis and pathology, advocating for enhanced focus on its mechanisms to unlock new diagnostic and treatment strategies and ultimately improve patient outcomes in CNS diseases. Whether acting as a principal driver of disease, a gateway for pathogens into the CNS, or an orchestrator of neuroimmune processes, the ChP holds tremendous promise as a therapeutic target to attenuate a multitude of CNS conditions.
Collapse
Affiliation(s)
- Ya'el Courtney
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
- Graduate Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandra Hochstetler
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
- Graduate Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Martikainen M, Lugano R, Pietilä I, Brosch S, Cabrolier C, Sivaramakrishnan A, Ramachandran M, Yu D, Dimberg A, Essand M. VLDLR mediates Semliki Forest virus neuroinvasion through the blood-cerebrospinal fluid barrier. Nat Commun 2024; 15:10718. [PMID: 39715740 DOI: 10.1038/s41467-024-55493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
Semliki Forest virus (SFV) is a neuropathogenic alphavirus which is of interest both as a model neurotropic alphavirus and as an oncolytic virus with proven potency in preclinical cancer models. In laboratory mice, peripherally administered SFV infiltrates the central nervous system (CNS) and causes encephalitis of varying severity. The route of SFV CNS entrance is poorly understood but has been considered to occur through the blood-brain barrier. Here we show that neuroinvasion of intravenously administered SFV is strictly dependent on very-low-density-lipoprotein receptor (VLDLR) which acts as an entry receptor for SFV. Moreover, SFV primarily enters the CNS through the blood-cerebrospinal fluid (B-CSF) barrier via infecting choroid plexus epithelial cells which show distinctly high expression of VLDLR. This is the first indication of neurotropic alphavirus utilizing choroid plexus for CNS entry, and VLDLR playing a specific and crucial role for mediating SFV entry through this pathway.
Collapse
Affiliation(s)
- Miika Martikainen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ilkka Pietilä
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sofie Brosch
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Camille Cabrolier
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aishwarya Sivaramakrishnan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Kembou-Ringert JE, Hotio FN, Steinhagen D, Thompson KD, Surachetpong W, Rakus K, Daly JM, Goonawardane N, Adamek M. Knowns and unknowns of TiLV-associated neuronal disease. Virulence 2024; 15:2329568. [PMID: 38555518 PMCID: PMC10984141 DOI: 10.1080/21505594.2024.2329568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Tilapia Lake Virus (TiLV) is associated with pathological changes in the brain of infected fish, but the mechanisms driving the virus's neuropathogenesis remain poorly characterized. TiLV establishes a persistent infection in the brain of infected fish even when the virus is no longer detectable in the peripheral organs, rendering therapeutic interventions and disease management challenging. Moreover, the persistence of the virus in the brain may pose a risk for viral reinfection and spread and contribute to ongoing tissue damage and neuroinflammatory processes. In this review, we explore TiLV-associated neurological disease. We discuss the possible mechanism(s) used by TiLV to enter the central nervous system (CNS) and examine TiLV-induced neuroinflammation and brain immune responses. Lastly, we discuss future research questions and knowledge gaps to be addressed to significantly advance this field.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of infection, immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Fortune N. Hotio
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Niluka Goonawardane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
23
|
Werner JM, Gillis J. Meta-analysis of single-cell RNA sequencing co-expression in human neural organoids reveals their high variability in recapitulating primary tissue. PLoS Biol 2024; 22:e3002912. [PMID: 39621752 PMCID: PMC11637388 DOI: 10.1371/journal.pbio.3002912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2024] [Accepted: 10/24/2024] [Indexed: 12/14/2024] Open
Abstract
Human neural organoids offer an exciting opportunity for studying inaccessible human-specific brain development; however, it remains unclear how precisely organoids recapitulate fetal/primary tissue biology. We characterize field-wide replicability and biological fidelity through a meta-analysis of single-cell RNA-sequencing data for first and second trimester human primary brain (2.95 million cells, 51 data sets) and neural organoids (1.59 million cells, 173 data sets). We quantify the degree primary tissue cell type marker expression and co-expression are recapitulated in organoids across 10 different protocol types. By quantifying gene-level preservation of primary tissue co-expression, we show neural organoids lie on a spectrum ranging from virtually no signal to co-expression indistinguishable from primary tissue, demonstrating a high degree of variability in biological fidelity among organoid systems. Our preserved co-expression framework provides cell type-specific measures of fidelity applicable to diverse neural organoids, offering a powerful tool for uncovering unifying axes of variation across heterogeneous neural organoid experiments.
Collapse
Affiliation(s)
- Jonathan M. Werner
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jesse Gillis
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
24
|
Aghajani Mir M. Brain Fog: a Narrative Review of the Most Common Mysterious Cognitive Disorder in COVID-19. Mol Neurobiol 2024; 61:9915-9926. [PMID: 37874482 DOI: 10.1007/s12035-023-03715-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
It has been more than three years since COVID-19 impacted the lives of millions of people, many of whom suffer from long-term effects known as long-haulers. Notwithstanding multiorgan complaints in long-haulers, signs and symptoms associated with cognitive characteristics commonly known as "brain fog" occur in COVID patients over 50, women, obesity, and asthma at excessive. Brain fog is a set of symptoms that include cognitive impairment, inability to concentrate and multitask, and short-term and long-term memory loss. Of course, brain fog contributes to high levels of anxiety and stress, necessitating an empathetic response to this group of COVID patients. Although the etiology of brain fog in COVID-19 is currently unknown, regarding the mechanisms of pathogenesis, the following hypotheses exist: activation of astrocytes and microglia to release pro-inflammatory cytokines, aggregation of tau protein, and COVID-19 entry in the brain can trigger an autoimmune reaction. There are currently no specific tests to detect brain fog or any specific cognitive rehabilitation methods. However, a healthy lifestyle can help reduce symptoms to some extent, and symptom-based clinical management is also well suited to minimize brain fog side effects in COVID-19 patients. Therefore, this review discusses mechanisms of SARS-CoV-2 pathogenesis that may contribute to brain fog, as well as some approaches to providing therapies that may help COVID-19 patients avoid annoying brain fog symptoms.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
25
|
Crawford G, Soper O, Kang E, Berg DA. Advancing insights into virus-induced neurodevelopmental disorders through human brain organoid modelling. Expert Rev Mol Med 2024; 27:e1. [PMID: 39587735 PMCID: PMC11707831 DOI: 10.1017/erm.2024.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 10/19/2024] [Indexed: 11/27/2024]
Abstract
Human neurodevelopment is a complex process vulnerable to disruptions, particularly during the prenatal period. Maternal viral infections represent a significant environmental factor contributing to a spectrum of congenital defects with profound and enduring impacts on affected offspring. The advent of induced pluripotent stem cell (iPSC)-derived three-dimensional (3D) human brain organoids has revolutionised our ability to model prenatal viral infections and associated neurodevelopmental disorders. Notably, human brain organoids provide a distinct advantage over traditional animal models, whose brain structures and developmental processes differ markedly from those of humans. These organoids offer a sophisticated platform for investigating viral pathogenesis, infection mechanisms and potential therapeutic interventions, as demonstrated by their pivotal role during the 2016 Zika virus outbreak. This review critically examines the utilisation of brain organoids in elucidating the mechanisms of TORCH viral infections, their impact on human brain development and contribution to associated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Gabriella Crawford
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Olivia Soper
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Eunchai Kang
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Daniel A. Berg
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
26
|
Deguchi S, Yokoi F, Takayama K. Organoids and microphysiological systems for pharmaceutical research of viral respiratory infections. Drug Metab Pharmacokinet 2024; 60:101041. [PMID: 39847975 DOI: 10.1016/j.dmpk.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/25/2025]
Abstract
In the pharmaceutical research of viral respiratory infections, cell culture models have traditionally been used to evaluate the therapeutic effects of candidate compounds. Although cell lines are easy to handle and cost-effective, they do not fully replicate the characteristics of human respiratory organs. Recently, organoids and microphysiological systems (MPS) have been employed to overcome this limitation for in vitro testing of drugs against viral respiratory infections. Advanced disease modeling using organoids, self-organized three-dimensional (3D) cell culture models derived from stem cells, or MPS, models for culturing multiple cell types in a microfluidic device and capable of recapitulating a physiological 3D dynamic environment, can accurately replicate the complex functions of respiratory organs, thus making them valuable tools for elucidating the organ damages caused by viral respiratory infections and evaluating the efficacy of candidate drugs against them. Recently, a wide range of organoids and MPS have been developed to model the complex pathophysiology caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and assess therapeutic drugs. In this review, we evaluate the latest pharmaceutical research on coronavirus disease 2019 (COVID-19) that utilizes organoids and MPS and discuss future perspectives of their applications.
Collapse
Affiliation(s)
- Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Fuki Yokoi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
27
|
Adhikari A, Maddumage J, Eriksson EM, Annesley SJ, Lawson VA, Bryant VL, Gras S. Beyond acute infection: mechanisms underlying post-acute sequelae of COVID-19 (PASC). Med J Aust 2024; 221 Suppl 9:S40-S48. [PMID: 39489518 DOI: 10.5694/mja2.52456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/10/2024] [Indexed: 11/05/2024]
Abstract
Immune dysregulation is a key aspect of post-acute sequelae of coronavirus disease 2019 (PASC), also known as long COVID, with sustained activation of immune cells, T cell exhaustion, skewed B cell profiles, and disrupted immune communication thereby resulting in autoimmune-related complications. The gut is emerging as a critical link between microbiota, metabolism and overall dysfunction, potentially sharing similarities with other chronic fatigue conditions and PASC. Immunothrombosis and neurological signalling dysfunction emphasise the complex interplay between the immune system, blood clotting, and the central nervous system in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Clear research gaps in the design of PASC studies, especially in the context of longitudinal research, stand out as significant areas of concern.
Collapse
Affiliation(s)
- Anurag Adhikari
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC
- Kathmandu Research Institute for Biological Sciences, Lalitpur, Nepal
| | - Janesha Maddumage
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC
| | - Emily M Eriksson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC
| | | | - Victoria A Lawson
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC
| | - Vanessa L Bryant
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC
- Royal Melbourne Hospital, Melbourne, VIC
- University of Melbourne, Melbourne, VIC
| | - Stephanie Gras
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC
- Monash University, Melbourne, VIC
| |
Collapse
|
28
|
Li M, Yuan Y, Hou Z, Hao S, Jin L, Wang B. Human brain organoid: trends, evolution, and remaining challenges. Neural Regen Res 2024; 19:2387-2399. [PMID: 38526275 PMCID: PMC11090441 DOI: 10.4103/1673-5374.390972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/26/2023] [Accepted: 10/28/2023] [Indexed: 03/26/2024] Open
Abstract
Advanced brain organoids provide promising platforms for deciphering the cellular and molecular processes of human neural development and diseases. Although various studies and reviews have described developments and advancements in brain organoids, few studies have comprehensively summarized and analyzed the global trends in this area of neuroscience. To identify and further facilitate the development of cerebral organoids, we utilized bibliometrics and visualization methods to analyze the global trends and evolution of brain organoids in the last 10 years. First, annual publications, countries/regions, organizations, journals, authors, co-citations, and keywords relating to brain organoids were identified. The hotspots in this field were also systematically identified. Subsequently, current applications for brain organoids in neuroscience, including human neural development, neural disorders, infectious diseases, regenerative medicine, drug discovery, and toxicity assessment studies, are comprehensively discussed. Towards that end, several considerations regarding the current challenges in brain organoid research and future strategies to advance neuroscience will be presented to further promote their application in neurological research.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zongkun Hou
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
29
|
Dos Reis RS, Selvam S, Ayyavoo V. Neuroinflammation in Post COVID-19 Sequelae: Neuroinvasion and Neuroimmune Crosstalk. Rev Med Virol 2024; 34:e70009. [PMID: 39558491 DOI: 10.1002/rmv.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 triggered a swift global spread, leading to a devastating pandemic. Alarmingly, approximately one in four individuals diagnosed with coronavirus disease 2019 (COVID-19) experience varying degrees of cognitive impairment, raising concerns about a potential increase in neurological sequelae cases. Neuroinflammation seems to be the key pathophysiological hallmark linking mild respiratory COVID-19 to cognitive impairment, fatigue, and neurological sequelae in COVID-19 patients, highlighting the interaction between the nervous and immune systems following SARS-CoV-2 infection. Several hypotheses have been proposed to explain how the virus disrupts physiological pathways to trigger inflammation within the CNS, potentially leading to neuronal damage. These include neuroinvasion, systemic inflammation, disruption of the lung and gut-brain axes, and reactivation of latent viruses. This review explores the potential origins of neuroinflammation and the underlying neuroimmune cross-talk, highlighting important unanswered questions in the field. Addressing these fundamental issues could enhance our understanding of the virus's impact on the CNS and inform strategies to mitigate its detrimental effects.
Collapse
Affiliation(s)
- Roberta S Dos Reis
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sathish Selvam
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Sasikumar S, Unniappan S. SARS-CoV-2 Infection and the Neuroendocrine System. Neuroendocrinology 2024; 114:1158-1175. [PMID: 39433026 DOI: 10.1159/000542164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND The novel coronavirus strain SARS-CoV-2 triggered the COVID-19 pandemic with severe economic and social ramifications. As the pathophysiology of SARS-CoV-2 infection in the respiratory system becomes more understood, growing evidence suggests that the virus also impacts the homeostasis-regulating neuroendocrine system, potentially affecting other organ systems. SUMMARY This review explores the interactions between SARS-CoV-2 and the neuroendocrine system, highlighting the effect of this virus on various endocrine glands, including the brain, hypothalamus, pituitary, pineal, thyroid, parathyroid, adrenal glands, pancreatic islets, gonads, and adipose tissue. The viral invasion disrupts normal hormonal pathways, leading to a range of endocrine disorders, immune dysregulation, and metabolic disturbances. KEY MESSAGES There is potential for SARS-CoV-2 to induce autoimmune responses, exacerbate existing endocrine conditions, and trigger new-onset disorders. Understanding these interactions is crucial for developing treatment strategies that address not only the respiratory symptoms of COVID-19 but also its endocrine complications. The review emphasizes the need for further research to elucidate the long-term effects of SARS-CoV-2 on endocrine health.
Collapse
Affiliation(s)
- Shruti Sasikumar
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
31
|
Kimura M, Fujiwara S, Kuroda H, Kanamori M, Kawamoto M. Choroid plexitis caused by Burkholderia cepacia complex after COVID-19. Int J Infect Dis 2024; 147:107201. [PMID: 39103011 DOI: 10.1016/j.ijid.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
Burkholderia cepacia complex (BCC) encompasses opportunistic pathogen with various clinical manifestations ranging from no symptoms to severe respiratory infections and septicemia. Central nervous system infections caused by BCC are rare. To the best of our knowledge, we present the first reported case of choroid plexitis caused by BCC after severe COVID-19. A 67-year-old woman who had been previously diagnosed with COVID-19 presented with a mild fever and headache. Gadolinium-enhanced T1-weighted brain magnetic resonance imaging showed contrast effects in the right choroid plexus and encapsulated abscess. Gram staining of cerebrospinal fluid revealed the presence of gram-negative rods. Broad-range polymerase chain reaction amplification of 16S ribosomal RNA from the cerebrospinal fluid, followed by sequence analysis, identified BCC; thus, choroid plexitis caused by BCC was diagnosed. After prolonged antimicrobial treatment with a multiantibiotic regimen, the patient recovered completely. This case highlights the importance of long-term therapy with a carefully selected multiantibiotic regimen to achieve complete recovery after BCC infection.
Collapse
Affiliation(s)
- Masamune Kimura
- Kobe City Medical Center General Hospital, Department of Neurology, Kobe, Japan; Kobe University Graduate School of Medicine, Division of Neurology, Kobe, Japan.
| | - Satoru Fujiwara
- Kobe City Medical Center General Hospital, Department of Neurology, Kobe, Japan
| | - Hirokazu Kuroda
- Kobe City Medical Center General Hospital, Department of Infectious Diseases, Kobe, Japan
| | - Maki Kanamori
- Kobe City Medical Center General Hospital, Department of General Internal Medicine, Kobe, Japan
| | - Michi Kawamoto
- Kobe City Medical Center General Hospital, Department of Neurology, Kobe, Japan
| |
Collapse
|
32
|
Rau A, Gonzalez-Escamilla G, Schroeter N, Othman A, Dressing A, Weiller C, Urbach H, Reisert M, Groppa S, Hosp JA. Inflammation-Triggered Enlargement of Choroid Plexus in Subacute COVID-19 Patients with Neurological Symptoms. Ann Neurol 2024; 96:715-725. [PMID: 38934493 DOI: 10.1002/ana.27016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE To investigate whether choroid plexus volumes in subacute coronavirus disease 2019 (COVID-19) patients with neurological symptoms could indicate inflammatory activation or barrier dysfunction and assess their association with clinical data. METHODS Choroid plexus volumes were measured in 28 subacute COVID-19 patients via cerebral magnetic resonance imaging (MRI), compared with those in infection-triggered non-COVID-19 encephalopathy patients (n = 25), asymptomatic individuals after COVID-19 (n = 21), and healthy controls (n = 21). Associations with inflammatory serum markers (peak counts of leukocytes, C-reactive protein [CRP], interleukin 6), an MRI-based marker of barrier dysfunction (CSF volume fraction [V-CSF]), and clinical parameters like olfactory performance and cognitive scores (Montreal Cognitive Assessment) were investigated. RESULTS COVID-19 patients showed significantly larger choroid plexus volumes than control groups (p < 0.001, η2 = 0.172). These volumes correlated significantly with peak leukocyte levels (p = 0.001, Pearson's r = 0.621) and V-CSF (p = 0.009, Spearman's rho = 0.534), but neither with CRP nor interleukin 6. No significant correlations were found with clinical parameters. INTERPRETATION In patients with subacute COVID-19, choroid plexus volume is a marker of central nervous system inflammation and barrier dysfunction in the presence of neurologic symptoms. The absence of plexus enlargement in infection-triggered non-COVID-19 encephalopathy suggests a specific severe acute respiratory syndrome coronavirus 2 effect. This study also documents an increase in choroid plexus volume for the first time as a parainfectious event. ANN NEUROL 2024;96:715-725.
Collapse
Affiliation(s)
- Alexander Rau
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nils Schroeter
- Department of Neurology and Clinical Neuroscience, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ahmed Othman
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andrea Dressing
- Department of Neurology and Clinical Neuroscience, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jonas A Hosp
- Department of Neurology and Clinical Neuroscience, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Cao C, Fu G, Xu R, Li N. Coupling of Alzheimer's Disease Genetic Risk Factors with Viral Susceptibility and Inflammation. Aging Dis 2024; 15:2028-2050. [PMID: 37962454 PMCID: PMC11346407 DOI: 10.14336/ad.2023.1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by persistent cognitive decline. Amyloid plaque deposition and neurofibrillary tangles are the main pathological features of AD brain, though mechanisms leading to the formation of lesions remain to be understood. Genetic efforts through genome-wide association studies (GWAS) have identified dozens of risk genes influencing the pathogenesis and progression of AD, some of which have been revealed in close association with increased viral susceptibilities and abnormal inflammatory responses in AD patients. In the present study, we try to present a list of AD candidate genes that have been shown to affect viral infection and inflammatory responses. Understanding of how AD susceptibility genes interact with the viral life cycle and potential inflammatory pathways would provide possible therapeutic targets for both AD and infectious diseases.
Collapse
Affiliation(s)
| | | | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
34
|
Hsu JC, Saenkham-Huntsinger P, Huang P, Octaviani CP, Drelich AK, Peng BH, Tseng CTK. Characterizing neuroinvasion and neuropathology of SARS-CoV-2 by using AC70 human ACE2 transgenic mice. Front Microbiol 2024; 15:1455462. [PMID: 39380676 PMCID: PMC11458418 DOI: 10.3389/fmicb.2024.1455462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
COVID-19 presents with a plethora of neurological signs and symptoms despite being characterized as a respiratory disease, including seizures, anxiety, depression, amnesia, attention deficits, and alterations in consciousness. The olfactory nerve is widely accepted as the neuroinvasive route by which the etiological agent SARS-CoV-2 enters the brain, but the trigeminal nerve is an often-overlooked additional route. Based on this consensus, we initially conducted a pilot experiment investigating the olfactory nerve route of SARS-CoV-2 neuroinvasion via intranasal inoculation in AC70 human ACE2 transgenic mice. Notably, we found that the trigeminal ganglion is an early and highly efficient site of viral replication, which then rapidly spread widely throughout the brain where neurons were primarily targeted. Despite the extensive viral infection across the brain, obvious evidence of tissue pathology including inflammatory infiltration, glial activation, and apoptotic cell deaths were not consistently observed, albeit inflammatory cytokines were significantly induced. However, the expression levels of different genes related to neuronal function, including the neurotransmitter dopamine pathway as well as synaptic function, and markers of neuronal damage were altered as compared to mock-infected mice. Our findings suggest that the trigeminal nerve may serve as a neuroinvasive route complementary to the olfactory nerve and that the ensuing neuroinvasion presented a unique neuropathological profile. This study provides insights into potential neuropathogenic mechanisms utilized by coronaviruses.
Collapse
Affiliation(s)
- Jason C. Hsu
- Department of Biochemistry, Cell & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Panatda Saenkham-Huntsinger
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Pinghan Huang
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Cassio Pontes Octaviani
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Aleksandra K. Drelich
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology, & Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Chien-Te K. Tseng
- Department of Biochemistry, Cell & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
35
|
Govaerts J, Van Breedam E, De Beuckeleer S, Goethals C, D'Incal CP, Di Stefano J, Van Calster S, Buyle-Huybrecht T, Boeren M, De Reu H, Paludan SR, Thiry M, Lebrun M, Sadzot-Delvaux C, Motaln H, Rogelj B, Van Weyenbergh J, De Vos WH, Vanden Berghe W, Ogunjimi B, Delputte P, Ponsaerts P. Varicella-zoster virus recapitulates its immune evasive behaviour in matured hiPSC-derived neurospheroids. Front Immunol 2024; 15:1458967. [PMID: 39351233 PMCID: PMC11439716 DOI: 10.3389/fimmu.2024.1458967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Varicella-zoster virus (VZV) encephalitis and meningitis are potential central nervous system (CNS) complications following primary VZV infection or reactivation. With Type-I interferon (IFN) signalling being an important first line cellular defence mechanism against VZV infection by the peripheral tissues, we here investigated the triggering of innate immune responses in a human neural-like environment. For this, we established and characterised 5-month matured hiPSC-derived neurospheroids (NSPHs) containing neurons and astrocytes. Subsequently, NSPHs were infected with reporter strains of VZV (VZVeGFP-ORF23) or Sendai virus (SeVeGFP), with the latter serving as an immune-activating positive control. Live cell and immunocytochemical analyses demonstrated VZVeGFP-ORF23 infection throughout the NSPHs, while SeVeGFP infection was limited to the outer NSPH border. Next, NanoString digital transcriptomics revealed that SeVeGFP-infected NSPHs activated a clear Type-I IFN response, while this was not the case in VZVeGFP-ORF23-infected NSPHs. Moreover, the latter displayed a strong suppression of genes related to IFN signalling and antigen presentation, as further demonstrated by suppression of IL-6 and CXCL10 production, failure to upregulate Type-I IFN activated anti-viral proteins (Mx1, IFIT2 and ISG15), as well as reduced expression of CD74, a key-protein in the MHC class II antigen presentation pathway. Finally, even though VZVeGFP-ORF23-infection seems to be immunologically ignored in NSPHs, its presence does result in the formation of stress granules upon long-term infection, as well as disruption of cellular integrity within the infected NSPHs. Concluding, in this study we demonstrate that 5-month matured hiPSC-derived NSPHs display functional innate immune reactivity towards SeV infection, and have the capacity to recapitulate the strong immune evasive behaviour towards VZV.
Collapse
Affiliation(s)
- Jonas Govaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Elise Van Breedam
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Sarah De Beuckeleer
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Laboratory of Cell Biology and Histology, Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Charlotte Goethals
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Claudio Peter D'Incal
- Cell Death Signaling - Epigenetics Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Julia Di Stefano
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Siebe Van Calster
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Tamariche Buyle-Huybrecht
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Marlies Boeren
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Flow Cytometry and Cell Sorting Core Facility (FACSUA), University of Antwerp, Antwerp, Belgium
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marc Thiry
- Laboratory of Cell and Tissue Biology, GIGA-Neurosciences, Cell Biology L3, University of Liège, Liege, Belgium
| | - Marielle Lebrun
- Laboratory of Virology and Immunology, GIGA-Infection, Inflammation and Immunity, University of Liège, Liège, Belgium
| | - Catherine Sadzot-Delvaux
- Laboratory of Virology and Immunology, GIGA-Infection, Inflammation and Immunity, University of Liège, Liège, Belgium
| | - Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Wim Vanden Berghe
- Cell Death Signaling - Epigenetics Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- Infla-Med, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Flow Cytometry and Cell Sorting Core Facility (FACSUA), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
36
|
Mathias K, Machado RS, Cardoso T, Tiscoski ADB, Piacentini N, Prophiro JS, Generoso JS, Barichello T, Petronilho F. The Blood-Cerebrospinal Fluid Barrier Dysfunction in Brain Disorders and Stroke: Why, How, What For? Neuromolecular Med 2024; 26:38. [PMID: 39278883 DOI: 10.1007/s12017-024-08806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Ischemic stroke (IS) results in the interruption of blood flow to the brain, which can cause significant damage. The pathophysiological mechanisms of IS include ionic imbalances, oxidative stress, neuroinflammation, and impairment of brain barriers. Brain barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (B-CSF), protect the brain from harmful substances by regulating the neurochemical environment. Although the BBB is widely recognized for its crucial role in protecting the brain and its involvement in conditions such as stroke, the B-CSF requires further study. The B-CSF plays a fundamental role in regulating the CSF environment and maintaining the homeostasis of the central nervous system (CNS). However, the impact of B-CSF impairment during pathological events such as IS is not yet fully understood. In conditions like IS and other neurological disorders, the B-CSF can become compromised, allowing the entry of inflammatory substances and increasing neuronal damage. Understanding and preserving the integrity of the B-CSF are crucial for mitigating damage and facilitating recovery after ischemic stroke, highlighting its fundamental role in regulating the CNS during adverse neurological conditions.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Taise Cardoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Natália Piacentini
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Josiane Somariva Prophiro
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Jaqueline Silva Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
- Laboratory of Experimental Neurology, University of Extremo Sul Catarinense, Criciuma, SC, Brazil.
| |
Collapse
|
37
|
Li J, Kong X, Liu T, Xian M, Wei J. The Role of ACE2 in Neurological Disorders: From Underlying Mechanisms to the Neurological Impact of COVID-19. Int J Mol Sci 2024; 25:9960. [PMID: 39337446 PMCID: PMC11431863 DOI: 10.3390/ijms25189960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) has become a hot topic in neuroscience research in recent years, especially in the context of the global COVID-19 pandemic, where its role in neurological diseases has received widespread attention. ACE2, as a multifunctional metalloprotease, not only plays a critical role in the cardiovascular system but also plays an important role in the protection, development, and inflammation regulation of the nervous system. The COVID-19 pandemic further highlights the importance of ACE2 in the nervous system. SARS-CoV-2 enters host cells by binding to ACE2, which may directly or indirectly affect the nervous system, leading to a range of neurological symptoms. This review aims to explore the function of ACE2 in the nervous system as well as its potential impact and therapeutic potential in various neurological diseases, providing a new perspective for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Jingwen Li
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| | - Xiangrui Kong
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| |
Collapse
|
38
|
Xu H, Lotfy P, Gelb S, Pragana A, Hehnly C, Byer LIJ, Shipley FB, Zawadzki ME, Cui J, Deng L, Taylor M, Webb M, Lidov HGW, Andermann ML, Chiu IM, Ordovas-Montanes J, Lehtinen MK. The choroid plexus synergizes with immune cells during neuroinflammation. Cell 2024; 187:4946-4963.e17. [PMID: 39089253 PMCID: PMC11458255 DOI: 10.1016/j.cell.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024]
Abstract
The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use longitudinal two-photon imaging in awake mice and single-cell transcriptomics to elucidate the mechanisms of ChP regulation of brain inflammation. We used intracerebroventricular injections of lipopolysaccharides (LPS) to model meningitis in mice and observed that neutrophils and monocytes accumulated in the ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process and revealed that ChP epithelial cells transiently specialize to nurture immune cells, coordinating their recruitment, survival, and differentiation as well as regulation of the tight junctions that control the permeability of the ChP brain barrier. Collectively, we provide a mechanistic understanding and a comprehensive roadmap of neuroinflammation at the ChP brain barrier.
Collapse
Affiliation(s)
- Huixin Xu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Peter Lotfy
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sivan Gelb
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Aja Pragana
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christine Hehnly
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lillian I J Byer
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Frederick B Shipley
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Miriam E Zawadzki
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Harvard MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Cui
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Liwen Deng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Milo Taylor
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard College, Harvard University, Cambridge, MA 02138, USA
| | - Mya Webb
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hart G W Lidov
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mark L Andermann
- Harvard MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA; Harvard MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
39
|
Walocha R, Kim M, Wong-Ng J, Gobaa S, Sauvonnet N. Organoids and organ-on-chip technology for investigating host-microorganism interactions. Microbes Infect 2024; 26:105319. [PMID: 38447861 DOI: 10.1016/j.micinf.2024.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Recent advances in organoid and organ-on-chip (OoC) technologies offer an unprecedented level of tissue mimicry. These models can recapitulate the diversity of cellular composition, 3D organization, and mechanical stimulation. These approaches are intensively used to understand complex diseases. This review focuses on the latest advances in this field to study host-microorganism interactions.
Collapse
Affiliation(s)
- Remigiusz Walocha
- Tissue Homeostasis Group, Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France; Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - MinHee Kim
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jérôme Wong-Ng
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nathalie Sauvonnet
- Tissue Homeostasis Group, Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France; Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France.
| |
Collapse
|
40
|
Schwerk C, Schroten H. In vitro models of the choroid plexus and the blood-cerebrospinal fluid barrier: advances, applications, and perspectives. Hum Cell 2024; 37:1235-1242. [PMID: 39103559 PMCID: PMC11341628 DOI: 10.1007/s13577-024-01115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The choroid plexus (CP), a highly vascularized endothelial-epithelial convolute, is placed in the ventricular system of the brain and produces a large part of the cerebrospinal fluid (CSF). Additionally, the CP is the location of a blood-CSF barrier (BCSFB) that separates the CSF from the blood stream in the CP endothelium. In vitro models of the CP and the BCSFB are of high importance to investigate the biological functions of the CP and the BCSFB. Since the CP is involved in several serious diseases, these in vitro models promise help in researching the processes contributing to the diseases and during the development of treatment options. In this review, we provide an overview on the available models and the advances that have been made toward more sophisticated and "in vivo near" systems as organoids and microfluidic lab-on-a-chip approaches. We go into the applications and research objectives for which the various modeling systems can be used and discuss the possible future prospects and perspectives.
Collapse
Affiliation(s)
- Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| |
Collapse
|
41
|
Bellotti C, Samudyata S, Thams S, Sellgren CM, Rostami E. Organoids and chimeras: the hopeful fusion transforming traumatic brain injury research. Acta Neuropathol Commun 2024; 12:141. [PMID: 39215375 PMCID: PMC11363608 DOI: 10.1186/s40478-024-01845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Research in the field of traumatic brain injury has until now heavily relied on the use of animal models to identify potential therapeutic approaches. However, a long series of failed clinical trials has brought many scientists to question the translational reliability of pre-clinical results obtained in animals. The search for an alternative to conventional models that better replicate human pathology in traumatic brain injury is thus of the utmost importance for the field. Recently, orthotopic xenotransplantation of human brain organoids into living animal models has been achieved. This review summarizes the existing literature on this new method, focusing on its potential applications in preclinical research, both in the context of cell replacement therapy and disease modelling. Given the obvious advantages of this approach to study human pathologies in an in vivo context, we here critically review its current limitations while considering its possible applications in traumatic brain injury research.
Collapse
Affiliation(s)
- Cristina Bellotti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Samudyata Samudyata
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Thams
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm Health Care Services, Karolinska Institutet, and Stockholm Health Care Services, Stockholm, Sweden
| | - Elham Rostami
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
42
|
Villareal JAB, Bathe T, Hery GP, Phillips JL, Tsering W, Prokop S. Deterioration of neuroimmune homeostasis in Alzheimer's Disease patients who survive a COVID-19 infection. J Neuroinflammation 2024; 21:202. [PMID: 39154174 PMCID: PMC11330027 DOI: 10.1186/s12974-024-03196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Growing evidence has implicated systemic infection as a significant risk factor for the development and advancement of Alzheimer's disease (AD). With the emergence of SARS-CoV-2 (COVID-19) and the resultant pandemic, many individuals from the same aging population vulnerable to AD suffered a severe systemic infection with potentially unidentified long-term consequences for survivors. To study the impact of COVID-19 survival on the brain's intrinsic immune system in a population also suffering from AD, we profiled post-mortem brain tissue from patients in the UF Neuromedicine Human Brain and Tissue Bank with a diagnosis of AD who survived a COVID-19 infection (COVID-AD) and contrasted our findings with AD patients who did not experience a COVID-19 infection, including a group of brain donors who passed away before arrival of SARS-CoV-2 in the United States. We assessed disease-relevant protein pathology and microglial and astrocytic markers by quantitative immunohistochemistry and supplemented these data with whole tissue gene expression analysis performed on the NanoString nCounter® platform. COVID-AD patients showed slightly elevated Aβ burden in the entorhinal, fusiform, and inferior temporal cortices compared to non-COVID-AD patients, while tau pathology burden did not differ between groups. Analysis of microglia revealed a significant loss of microglial homeostasis as well as exacerbated microgliosis in COVID-AD patients compared to non-COVID-AD patients in a brain region-dependent manner. Furthermore, COVID-AD patients showed reduced cortical astrocyte numbers, independent of functional subtype. Transcriptomic analysis supported these histological findings and, in addition, identified a dysregulation of oligodendrocyte and myelination pathways in the hippocampus of COVID-AD patients. In summary, our data demonstrate a profound impact of COVID-19 infection on neuroimmune and glial pathways in AD patients persisting for months post-infection, highlighting the importance of peripheral to central neuroimmune crosstalk in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan A B Villareal
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Tim Bathe
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Gabriela P Hery
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Jennifer L Phillips
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Wangchen Tsering
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32608, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
43
|
Wang P, Jin L, Zhang M, Wu Y, Duan Z, Guo Y, Wang C, Guo Y, Chen W, Liao Z, Wang Y, Lai R, Lee LP, Qin J. Blood-brain barrier injury and neuroinflammation induced by SARS-CoV-2 in a lung-brain microphysiological system. Nat Biomed Eng 2024; 8:1053-1068. [PMID: 37349391 DOI: 10.1038/s41551-023-01054-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/11/2023] [Indexed: 06/24/2023]
Abstract
In some patients, COVID-19 can trigger neurological symptoms with unclear pathogenesis. Here we describe a microphysiological system integrating alveolus and blood-brain barrier (BBB) tissue chips that recapitulates neuropathogenesis associated with infection by SARS-CoV-2. Direct exposure of the BBB chip to SARS-CoV-2 caused mild changes to the BBB, and infusion of medium from the infected alveolus chip led to more severe injuries on the BBB chip, including endothelial dysfunction, pericyte detachment and neuroinflammation. Transcriptomic analyses indicated downregulated expression of the actin cytoskeleton in brain endothelium and upregulated expression of inflammatory genes in glial cells. We also observed early cerebral microvascular damage following lung infection with a low viral load in the brains of transgenic mice expressing human angiotensin-converting enzyme 2. Our findings suggest that systemic inflammation is probably contributing to neuropathogenesis following SARS-CoV-2 infection, and that direct viral neural invasion might not be a prerequisite for this neuropathogenesis. Lung-brain microphysiological systems should aid the further understanding of the systemic effects and neurological complications of viral infection.
Collapse
Affiliation(s)
- Peng Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Min Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunsong Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zilei Duan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yaqiong Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Chaoming Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yingqi Guo
- Core Technology Facility of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenwen Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhiyi Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yaqing Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Luke P Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Korea.
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Science and Technology of China, Hefei, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
44
|
Joyce JD, Moore GA, Goswami P, Harrell TL, Taylor TM, Hawks SA, Green JC, Jia M, Irwin MD, Leslie E, Duggal NK, Thompson CK, Bertke AS. SARS-CoV-2 Rapidly Infects Peripheral Sensory and Autonomic Neurons, Contributing to Central Nervous System Neuroinvasion before Viremia. Int J Mol Sci 2024; 25:8245. [PMID: 39125815 PMCID: PMC11311394 DOI: 10.3390/ijms25158245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Neurological symptoms associated with COVID-19, acute and long term, suggest SARS-CoV-2 affects both the peripheral and central nervous systems (PNS/CNS). Although studies have shown olfactory and hematogenous invasion into the CNS, coinciding with neuroinflammation, little attention has been paid to susceptibility of the PNS to infection or to its contribution to CNS invasion. Here we show that sensory and autonomic neurons in the PNS are susceptible to productive infection with SARS-CoV-2 and outline physiological and molecular mechanisms mediating neuroinvasion. Our infection of K18-hACE2 mice, wild-type mice, and golden Syrian hamsters, as well as primary peripheral sensory and autonomic neuronal cultures, show viral RNA, proteins, and infectious virus in PNS neurons, satellite glial cells, and functionally connected CNS tissues. Additionally, we demonstrate, in vitro, that neuropilin-1 facilitates SARS-CoV-2 neuronal entry. SARS-CoV-2 rapidly invades the PNS prior to viremia, establishes a productive infection in peripheral neurons, and results in sensory symptoms often reported by COVID-19 patients.
Collapse
Affiliation(s)
- Jonathan D. Joyce
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA; (J.D.J.)
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Greyson A. Moore
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Poorna Goswami
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA; (J.D.J.)
| | - Telvin L. Harrell
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Tina M. Taylor
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Seth A. Hawks
- Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Jillian C. Green
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Mo Jia
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Matthew D. Irwin
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Emma Leslie
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA; (J.D.J.)
| | - Nisha K. Duggal
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
- Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Christopher K. Thompson
- School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Andrea S. Bertke
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| |
Collapse
|
45
|
O’Hara BA, Lukacher AS, Garabian K, Kaiserman J, MacLure E, Ishikawa H, Schroten H, Haley SA, Atwood WJ. Highly restrictive and directional penetration of the blood cerebral spinal fluid barrier by JCPyV. PLoS Pathog 2024; 20:e1012335. [PMID: 39038049 PMCID: PMC11293668 DOI: 10.1371/journal.ppat.1012335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/01/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
The human polyomavirus JCPyV is an opportunistic pathogen that infects greater than 60% of the world's population. The virus establishes a persistent and asymptomatic infection in the urogenital system but can cause a fatal demyelinating disease in immunosuppressed or immunomodulated patients following invasion of the CNS. The mechanisms responsible for JCPyV invasion into CNS tissues are not known but direct invasion from the blood to the cerebral spinal fluid via the choroid plexus has been hypothesized. To study the potential of the choroid plexus as a site of neuroinvasion, we used an adult human choroid plexus epithelial cell line to model the blood-cerebrospinal fluid (B-CSF) barrier in a transwell system. We found that these cells formed a highly restrictive barrier to virus penetration either as free virus or as virus associated with extracellular vesicles (EVJC+). The restriction was not absolute and small amounts of virus or EVJC+ penetrated and were able to establish foci of infection in primary astrocytes. Disruption of the barrier with capsaicin did not increase virus or EVJC+ penetration leading us to hypothesize that virus and EVJC+ were highly cell-associated and crossed the barrier by an active process. An inhibitor of macropinocytosis increased virus penetration from the basolateral (blood side) to the apical side (CSF side). In contrast, inhibitors of clathrin and raft dependent transcytosis reduced virus transport from the basolateral to the apical side of the barrier. None of the drugs inhibited apical to basolateral transport suggesting directionality. Pretreatment with cyclosporin A, an inhibitor of P-gp, MRP2 and BCRP multidrug resistance transporters, restored viral penetration in cells treated with raft and clathrin dependent transcytosis inhibitors. Because choroid plexus epithelial cells are known to be susceptible to JCPyV infection both in vitro and in vivo we also examined the release of infectious virus from the barrier. We found that virus was preferentially released from the cells into the apical (CSF) chamber. These data show clearly that there are two mechanisms of penetration, direct transcytosis which is capable of seeding the CSF with small amounts of virus, and infection followed by directional release of infectious virions into the CSF compartment.
Collapse
Affiliation(s)
- Bethany A. O’Hara
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Avraham S. Lukacher
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Kaitlin Garabian
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Jacob Kaiserman
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Evan MacLure
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | | | - Horst Schroten
- Department of Pediatrics, Medical Faculty Mannheim, Mannheim, Germany
| | - Sheila A. Haley
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Walter J. Atwood
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
46
|
Haverty R, McCormack J, Evans C, Purves K, O'Reilly S, Gautier V, Rochfort K, Fabre A, Fletcher NF. SARS-CoV-2 infects neurons, astrocytes, choroid plexus epithelial cells and pericytes of the human central nervous system in vitro. J Gen Virol 2024; 105:002009. [PMID: 38995681 PMCID: PMC11317966 DOI: 10.1099/jgv.0.002009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is associated with neurological sequelae including haemorrhage, thrombosis and ischaemic necrosis and encephalitis. However, the mechanism by which this occurs is unclear. Neurological disease associated with COVID-19 has been proposed to occur following direct infection of the central nervous system and/or indirectly by local or systemic immune activation. We evaluated the expression of angiotensin-converting enzyme-2 and transmembrane protease, serine 2 (TMPRSS2) in brain tissue from five healthy human donors and observed low-level expression of these proteins in cells morphologically consistent with astrocytes, neurons and choroidal ependymal cells within the frontal cortex and medulla oblongata. Primary human astrocytes, neurons, choroid plexus epithelial cells and pericytes supported productive SARS-CoV-2 infection with ancestral, Alpha, Delta and Omicron variants. Infected cells supported the full viral life cycle, releasing infectious virus particles. In contrast, primary brain microvascular endothelial cells and microglia were refractory to SARS-CoV-2 infection. These data support a model whereby SARS-CoV-2 can infect human brain cells, and the mechanism of viral entry warrants further investigation.
Collapse
Affiliation(s)
- Ruth Haverty
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Janet McCormack
- Research Pathology Core Facility, Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christopher Evans
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevin Purves
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sophie O'Reilly
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Keith Rochfort
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Aurelie Fabre
- Research Pathology Core Facility, Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Histopathology, St. Vincent’s University Hospital, Dublin 4, Ireland
| | - Nicola F. Fletcher
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
47
|
Haley SA, O'Hara BA, Schorl C, Atwood WJ. JCPyV infection of primary choroid plexus epithelial cells reduces expression of critical junctional proteins and increases expression of barrier disrupting inflammatory cytokines. Microbiol Spectr 2024; 12:e0062824. [PMID: 38874395 PMCID: PMC11302677 DOI: 10.1128/spectrum.00628-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024] Open
Abstract
The human polyomavirus, JCPyV, establishes a lifelong persistent infection in the peripheral organs of a majority of the human population worldwide. Patients who are immunocompromised due to underlying infections, cancer, or to immunomodulatory treatments for autoimmune disease are at risk for developing progressive multifocal leukoencephalopathy (PML) when the virus invades the CNS and infects macroglial cells in the brain parenchyma. It is not yet known how the virus enters the CNS to cause disease. The blood-choroid plexus barrier is a potential site of virus invasion as the cells that make up this barrier are known to be infected with virus both in vivo and in vitro. To understand the effects of virus infection on these cells we challenged primary human choroid plexus epithelial cells with JCPyV and profiled changes in host gene expression. We found that viral infection induced the expression of proinflammatory chemokines and downregulated junctional proteins essential for maintaining blood-CSF and blood-brain barrier function. These data contribute to our understanding of how JCPyV infection of the choroid plexus can modulate the host cell response to neuroinvasive pathogens. IMPORTANCE The human polyomavirus, JCPyV, causes a rapidly progressing demyelinating disease in the CNS of patients whose immune systems are compromised. JCPyV infection has been demonstrated in the choroid plexus both in vivo and in vitro and this highly vascularized organ may be important in viral invasion of brain parenchyma. Our data show that infection of primary choroid plexus epithelial cells results in increased expression of pro-inflammatory chemokines and downregulation of critical junctional proteins that maintain the blood-CSF barrier. These data have direct implications for mechanisms used by JCPyV to invade the CNS and cause neurological disease.
Collapse
Affiliation(s)
- Sheila A. Haley
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Bethany A. O'Hara
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Christoph Schorl
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Walter J. Atwood
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
48
|
Shaker MR, Slonchak A, Al-Mhanawi B, Morrison SD, Sng JDJ, Cooper-White J, Khromykh AA, Wolvetang EJ. Choroid plexus defects in Down syndrome brain organoids enhance neurotropism of SARS-CoV-2. SCIENCE ADVANCES 2024; 10:eadj4735. [PMID: 38838150 DOI: 10.1126/sciadv.adj4735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Why individuals with Down syndrome (DS) are more susceptible to SARS-CoV-2-induced neuropathology remains elusive. Choroid plexus (ChP) plays critical roles in barrier function and immune response modulation and expresses the ACE2 receptor and the chromosome 21-encoded TMPRSS2 protease, suggesting its substantial role in establishing SARS-CoV-2 infection in the brain. To explore this, we established brain organoids from DS and isogenic euploid iPSC that consist of a core of functional cortical neurons surrounded by a functional ChP-like epithelium (ChPCOs). DS-ChPCOs recapitulated abnormal DS cortical development and revealed defects in ciliogenesis and epithelial cell polarity in ChP-like epithelium. We then demonstrated that the ChP-like epithelium facilitates infection and replication of SARS-CoV-2 in cortical neurons and that this is increased in DS. Inhibiting TMPRSS2 and furin activity reduced viral replication in DS-ChPCOs to euploid levels. This model enables dissection of the role of ChP in neurotropic virus infection and euploid forebrain development and permits screening of therapeutics for SARS-CoV-2-induced neuropathogenesis.
Collapse
Affiliation(s)
- Mohammed R Shaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- UQ Centre in Stem Cell Engineering and Regenerative Engineering (UQ StemCARE), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Bahaa Al-Mhanawi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sean D Morrison
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Justin Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- UQ Centre in Stem Cell Engineering and Regenerative Engineering (UQ StemCARE), The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
- GVN Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- UQ Centre in Stem Cell Engineering and Regenerative Engineering (UQ StemCARE), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
49
|
Kettunen P, Koistinaho J, Rolova T. Contribution of CNS and extra-CNS infections to neurodegeneration: a narrative review. J Neuroinflammation 2024; 21:152. [PMID: 38845026 PMCID: PMC11157808 DOI: 10.1186/s12974-024-03139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Central nervous system infections have been suggested as a possible cause for neurodegenerative diseases, particularly sporadic cases. They trigger neuroinflammation which is considered integrally involved in neurodegenerative processes. In this review, we will look at data linking a variety of viral, bacterial, fungal, and protozoan infections to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis and unspecified dementia. This narrative review aims to bring together a broad range of data currently supporting the involvement of central nervous system infections in the development of neurodegenerative diseases. The idea that no single pathogen or pathogen group is responsible for neurodegenerative diseases will be discussed. Instead, we suggest that a wide range of susceptibility factors may make individuals differentially vulnerable to different infectious pathogens and subsequent pathologies.
Collapse
Affiliation(s)
- Pinja Kettunen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Taisia Rolova
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
50
|
Pszczołowska M, Walczak K, Misków W, Antosz K, Batko J, Karska J, Leszek J. Molecular cross-talk between long COVID-19 and Alzheimer's disease. GeroScience 2024; 46:2885-2899. [PMID: 38393535 PMCID: PMC11009207 DOI: 10.1007/s11357-024-01096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The long COVID (coronavirus disease), a multisystemic condition following severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, is one of the widespread problems. Some of its symptoms affect the nervous system and resemble symptoms of Alzheimer's disease (AD)-a neurodegenerative condition caused by the accumulation of amyloid beta and hyperphosphorylation of tau proteins. Multiple studies have found dependence between these two conditions. Patients with Alzheimer's disease have a greater risk of SARS-CoV-2 infection due to increased levels of angiotensin-converting enzyme 2 (ACE2), and the infection itself promotes amyloid beta generation which enhances the risk of AD. Also, the molecular pathways are alike-misregulations in folate-mediated one-carbon metabolism, a deficit of Cq10, and disease-associated microglia. Medical imaging in both of these diseases shows a decrease in the volume of gray matter, global brain size reduction, and hypometabolism in the parahippocampal gyrus, thalamus, and cingulate cortex. In some studies, a similar approach to applied medication can be seen, including the use of amino adamantanes and phenolic compounds of rosemary. The significance of these connections and their possible application in medical practice still needs further study but there is a possibility that they will help to better understand long COVID.
Collapse
Affiliation(s)
| | - Kamil Walczak
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Weronika Misków
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Katarzyna Antosz
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Joanna Batko
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Julia Karska
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, Wrocław, Poland
| | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|