1
|
Rozema D, Maître JL. Forces Shaping the Blastocyst. Cold Spring Harb Perspect Biol 2025; 17:a041519. [PMID: 38951024 PMCID: PMC12047664 DOI: 10.1101/cshperspect.a041519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The blastocyst forms during the first days of mammalian development. The structure of the blastocyst is conserved among placental mammals and is paramount to the establishment of the first mammalian lineages. The blastocyst is composed of an extraembryonic epithelium, the trophectoderm (TE), that envelopes a fluid-filled lumen and the inner cell mass (ICM). To shape the blastocyst, embryos transit through three stages driven by forces that have been characterized in the mouse embryo over the past decade. The morphogenetically quiescent cleavage stages mask dynamic cytoskeletal remodeling. Then, during the formation of the morula, cells pull themselves together and the strongest ones internalize. Finally, the blastocyst forms after the pressurized lumen breaks the radial symmetry of the embryo before expanding in cycles of collapses and regrowth. In this review, we delineate the force patterns sculpting the blastocyst, based on our knowledge on the mouse and, to some extent, human embryos.
Collapse
Affiliation(s)
- David Rozema
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, 75005 Paris, France
| | - Jean-Léon Maître
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, 75005 Paris, France
| |
Collapse
|
2
|
Amel A, Brown R, Rabeling A, Goolam M. Matrigel inhibits elongation and drives endoderm differentiation in aggregates of mouse embryonic stem cells. FEBS Open Bio 2025. [PMID: 40251891 DOI: 10.1002/2211-5463.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/05/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025] Open
Abstract
Modelling peri-implantation mammalian development using the self-organising properties of stem cells is a rapidly growing field that has advanced our understanding of cell fate decisions occurring in the early embryo. Matrigel, a basement membrane matrix, is a critical substrate used in various protocols for its efficacy in promoting stem cell growth and self-organisation. However, its role in driving stem cell lineage commitment, and whether this effect is driven by biochemical or physical cues, is not currently clear. Here, we grow embryoid bodies in suspension, Matrigel and agarose, an inert polysaccharide, to attempt to decouple the physical and biochemical roles of Matrigel and better understand how it drives stem cell differentiation. We use a combination of light microscopy, quantitative PCR and immunostaining to investigate gene and protein changes in our different culture conditions. We show that stem cell aggregates in Matrigel are hindered in their ability to elongate compared with those grown in agarose or in suspension, indicating that prohibitive role in self-organisation. Aggregates in Matrigel are also driven to differentiate into endoderm, with ectoderm differentiation inhibited. Furthermore, these effects are not due to the physical presence of Matrigel, as the same effects are not witnessed in aggregates grown in agarose. Our results thus indicate that Matrigel has a significant and complex effect on the differentiation and morphology of embryoid bodies.
Collapse
Affiliation(s)
- Atoosa Amel
- Department of Human Biology, University of Cape Town, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| | - Rachel Brown
- Department of Human Biology, University of Cape Town, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| | - Alexa Rabeling
- Department of Human Biology, University of Cape Town, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| | - Mubeen Goolam
- Department of Human Biology, University of Cape Town, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| |
Collapse
|
3
|
Li T, Huang L, Guo C, Ren J, Chen X, Ke Y, Xun Z, Hu W, Qi Y, Wang H, Gong Z, Liang XJ, Xue X. Massage-Mimicking Nanosheets Mechanically Reorganize Inter-organelle Contacts to Restore Mitochondrial Functions in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413376. [PMID: 40223359 DOI: 10.1002/advs.202413376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/11/2025] [Indexed: 04/15/2025]
Abstract
Parkinson's disease (PD) is exacerbated by dysfunction of inter-organelle contact, which depends on cellular responses to the mechanical microenvironment and can be regulated by external mechanical forces. Delivering dynamic mechanical forces to neural cells proves challenging due to the skull. Inspired by the effects of massage; here PEGylated black phosphorus nanosheets (PEG-BPNS), known for their excellent biocompatibility, biodegradability, specific surface area, mechanical strength, and flexibility, are introduced, which are capable of adhering to neural cell membrane and generating mechanical stimulation with their lateral size of 200 nm, exhibiting therapeutic potential in a 1-methyl-4-phenyl-1,2,3,6-te-trahydropyridine-induced PD mouse model by regulating inter-organelle contacts. Specifically, it is found that 200 nm PEG-BPNS, acting as "NanoMassage," significantly increase plasma membrane tension, as evidenced by fluorescent lipid tension reporter fluorescence lifetime analysis. This mechanical force modulates actin reorganization, subsequently regulating the contacts between actin, mitochondria, and endoplasmic reticulum, further controlling mitochondrial fission and mitigating mitochondrial dysfunction in PD, exhibiting therapeutic efficacy via intranasal administration. These findings provide a noninvasive strategy for applying mechanical stimulation to deep brain areas and elucidate the mechanism of NanoMassage mediating inter-organelle contacts, suggesting the rational design of "NanoMassage" to remodel inter-organelle communications in neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Tianqi Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Liwen Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Chenxiao Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Jing Ren
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Yachu Ke
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Zengyu Xun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Wenzhuo Hu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Yilin Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Heping Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Zhongying Gong
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, P. R. China
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
4
|
Bubna-Litic M, Mayor R. Beyond mechanosensing: How cells sense and shape their physical environment during development. Curr Opin Cell Biol 2025; 94:102514. [PMID: 40209565 DOI: 10.1016/j.ceb.2025.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/01/2025] [Accepted: 03/18/2025] [Indexed: 04/12/2025]
Abstract
The role of mechanics as a regulator of cell behaviour and embryo development has been widely recognised. However, much of the focus in mechanobiology during embryo development has been on how the mechanical properties of a cell affect its behaviour and fate determination. We discuss the role of mechanosignalling in development and propose that an equally important aspect of embryo mechanobiology is understanding how dynamic changes in tissue mechanics are regulated. Comparably to how chemical signals influence the fate of responding tissues during embryonic induction, we suggest that embryonic cell populations can alter the mechanical properties of adjacent tissues in a process we name 'actuation'. Several examples of embryonic actuation and mechanical feedback are discussed.
Collapse
Affiliation(s)
- Matyas Bubna-Litic
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
5
|
Villeneuve C, McCreery KP, Wickström SA. Measuring and manipulating mechanical forces during development. Nat Cell Biol 2025; 27:575-590. [PMID: 40065147 DOI: 10.1038/s41556-025-01632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/04/2025] [Indexed: 04/13/2025]
Abstract
Tissue deformations are a central feature of development, from early embryogenesis, growth and building the body plan to the establishment of functional organs. These deformations often result from active contractile forces generated by cells and cell collectives, and are mediated by changes in their mechanical properties. Mechanical forces drive the formation of functional organ architectures, but they also coordinate cell behaviour and fate transitions, ensuring robustness of development. Advances in microscopy, genetics and chemistry have enabled increasingly powerful tools for measuring, generating and perturbing mechanical forces. Here we discuss approaches to measure and manipulate mechanical forces with a focus on developmental processes, ranging from quantification of molecular interactions to mapping the mechanical properties of tissues. We focus on contemporary methods, and discuss the biological discoveries that these approaches have enabled. We conclude with an outlook to methodologies at the interface of physics, chemistry and biology to build an integrated understanding of tissue morphodynamics.
Collapse
Affiliation(s)
- Clémentine Villeneuve
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Kaitlin P McCreery
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Phan J, Silva M, Kohlmeyer R, Ruethemann R, Gay L, Jorgensen E, Babst M. Recovery of plasma membrane tension after a hyperosmotic shock. Mol Biol Cell 2025; 36:ar45. [PMID: 39969952 PMCID: PMC12005100 DOI: 10.1091/mbc.e24-10-0436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Maintaining proper tension is critical for the organization and function of the plasma membrane. To study the mechanisms by which yeast restores normal plasma membrane tension, we used a microfluidics device to expose yeast to hyperosmotic conditions, which reduced cell volume and caused a ∼20% drop in cell surface area. The resulting low tension plasma membrane exhibited large clusters of negatively-charged glycerophospholipids together with nutrient transporters, suggesting phase segregation of the membrane. We found that endocytosis was blocked by the phase segregation and thus was not involved in removing excess membrane. In contrast, rapid recovery of plasma membrane tension was dependent on 1) eisosome morphology changes that were able to absorb most of the excess surface area and 2) lipid transport from the plasma membrane to the endoplasmic reticulum (ER), where lipids were shunted into newly formed lipid droplets.
Collapse
Affiliation(s)
- Jasmine Phan
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, 84112 UT
| | - Malan Silva
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, 84112 UT
- School of Biological Sciences, Howard Hughes Medical Institute, University of Utah, Salt Lake City, 84112 UT
| | - Robin Kohlmeyer
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, 84112 UT
- University of Osnabrueck, Osnabrueck 49074, Germany
| | - Romy Ruethemann
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, 84112 UT
| | - Lincoln Gay
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, 84112 UT
| | - Erik Jorgensen
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, 84112 UT
- School of Biological Sciences, Howard Hughes Medical Institute, University of Utah, Salt Lake City, 84112 UT
| | - Markus Babst
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, 84112 UT
| |
Collapse
|
7
|
Liu S, Meng Y, Lan X, Li R, Kanchanawong P. Ground-state pluripotent stem cells are characterized by Rac1-dependent cadherin-enriched F-actin complexes. J Cell Sci 2025; 138:JCS263811. [PMID: 39886806 DOI: 10.1242/jcs.263811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
Pluripotent stem cells (PSCs) exhibit extraordinary differentiation potential and are thus highly valuable cellular model systems. However, although different PSC types corresponding to distinct stages of embryogenesis have been in common use, aspects of their cellular architecture and mechanobiology remain insufficiently understood. Here, we investigated how the actin cytoskeleton is regulated in different pluripotency states. We observed a drastic reorganization during the transition from ground-state naïve mouse embryonic stem cells (mESCs) into converted prime epiblast stem cells (EpiSCs). mESCs are characterized by prominent actin-enriched cortical structures that contain cadherin-based cell-cell junctional components, despite not locating at cell-cell junctions. We term these structures 'non-junctional cadherin complexes' (NJCCs) and show that they are under low mechanical tension, depend on the ectodomain but not the cytoplasmic domain of E-cadherin, and exhibit minimal Ca2+ dependence. Active Rac1 was identified as a negative regulator that promotes β-catenin dissociation and NJCC fragmentation. Our data suggests that NJCCs might arise from the cis-association of E-cadherin ectodomain, with potential roles in ground-state pluripotency, and could serve as structural markers to distinguish heterogeneous population of pluripotent stem cells.
Collapse
Affiliation(s)
- Shiying Liu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Yue Meng
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Xi Lan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
8
|
Martinez-Alarcon O, Colin-Lagos D, Ramirez-Meza X, Castilla A, Hernandez-Montes G, Flores-Garza E, Lopez-Saavedra A, Avila-Gonzalez D, Martinez-Juarez A, Molina-Hernández A, Diaz-Martinez NE, Portillo W, Diaz NF. Prolactin drives cortical neuron maturation and dendritic development during murine embryonic stem cell differentiation. Front Cell Dev Biol 2025; 13:1551090. [PMID: 40078368 PMCID: PMC11897521 DOI: 10.3389/fcell.2025.1551090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Prolactin (PRL) is a pleiotropic hormone implicated in various physiological processes; however, its contribution to neurodevelopment, particularly early corticogenesis, remains insufficiently characterized. In this study, we investigate PRL's regulatory influence on the initial stages of cortical development, with an emphasis on its effects on neuronal and astrocytic differentiation. Methods We employed a standardized in vitro differentiation protocol to generate cortical neurons from mouse embryonic stem cells (mESCs). Prolactin receptor (PRLr) expression was evaluated in pluripotent stem cells, neural stem cells (NSCs), immature neurons, and mature neurons using both PCR and immunofluorescence. These analyses revealed dynamic changes in PRLr expression throughout the differentiation process. Additionally, cells were treated with varying concentrations of PRL during early and late differentiation phases, enabling assessment of its impact on neuronal phenotypic distribution and morphological complexity. Results Early PRL administration significantly enhanced the population of β-tubulin III + immature neurons, promoting neuronal survival without altering NSC proliferation. Furthermore, PRL treatment increased the abundance of Tbr1 + and NeuN + neurons, augmented dendritic complexity, and accelerated neuronal maturation. In contrast, PRL exposure at later stages of neural differentiation did not yield comparable effects. Notably, PRL delayed the maturation of protoplasmic astrocytes, although the total astrocyte population was not affected. Discussion These findings highlight PRL's pivotal role as a regulator of early corticogenesis by modulating neuronal survival, dendritic development, and astrocyte maturation. PRL thus emerges as a potential key factor in neurodevelopment, underscoring its importance in the hormonal regulation of neural differentiation and maturation. These insights may have broader implications for understanding the molecular and cellular mechanisms underlying normal and pathological neurodevelopment.
Collapse
Affiliation(s)
- Omar Martinez-Alarcon
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Daniela Colin-Lagos
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Ximena Ramirez-Meza
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Alejandra Castilla
- Bioterio, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Quéretaro, Mexico
| | - Georgina Hernandez-Montes
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica (Universidad Nacional Autonoma de Mexico), Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | | | - Alejandro Lopez-Saavedra
- Advanced Microscopy Aplications Unit (ADMiRA), Instituto Nacional de Cancerologia, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Daniela Avila-Gonzalez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Alejandro Martinez-Juarez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Nestor Emmanuel Diaz-Martinez
- Laboratorio de Reprogramación Celular y Bioingenería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Wendy Portillo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autonoma de Mexico, Quéretaro, Mexico
| | - Nestor Fabian Diaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| |
Collapse
|
9
|
Cohen BE. The Role of the Swollen State in Cell Proliferation. J Membr Biol 2025; 258:1-13. [PMID: 39482485 DOI: 10.1007/s00232-024-00328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024]
Abstract
Cell swelling is known to be involved in various stages of the growth of plant cells and microorganisms but in mammalian cells how crucial a swollen state is for determining the fate of the cellular proliferation remains unclear. Recent evidence has increased our understanding of how the loss of the cell surface interactions with the extracellular matrix at early mitosis decreases the membrane tension triggering curvature changes in the plasma membrane and the activation of the sodium/hydrogen (Na +/H +) exchanger (NHE1) that drives osmotic swelling. Such a swollen state is temporary, but it is critical to alter essential membrane biophysical parameters that are required to activate Ca2 + channels and modulate the opening of K + channels involved in setting the membrane potential. A decreased membrane potential across the mitotic cell membrane enhances the clustering of Ras proteins involved in the Ca2 + and cytoskeleton-driven events that lead to cell rounding. Changes in the external mechanical and osmotic forces also have an impact on the lipid composition of the plasma membrane during mitosis.
Collapse
|
10
|
Hundsdorfer L, Muenkel M, Aparicio-Yuste R, Sanchez-Rendon JC, Gomez-Benito MJ, Balmes A, Schäffer TE, Velic A, Yeh YT, Constantinou I, Wright K, Özbaykal Güler G, Brokatzky D, Maček B, Mostowy S, Bastounis EE. ERK activation waves coordinate mechanical cell competition leading to collective elimination via extrusion of bacterially infected cells. Cell Rep 2025; 44:115193. [PMID: 39817903 DOI: 10.1016/j.celrep.2024.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
Epithelial cells respond to infection with the intracellular bacterial pathogen Listeria monocytogenes by altering their mechanics to promote collective infected cell extrusion (CICE) and limit infection spread across cell monolayers. However, the underlying biochemical pathways remain elusive. Here, using in vitro (epithelial monolayers) and in vivo (zebrafish larvae) models of infection with L. monocytogenes or Shigella flexneri, we explored the role of extracellular-signal-regulated kinase (ERK) activity waves in coordinating the mechanical battle between infected and surrounder uninfected cells that leads to CICE. We discovered that when ERK waves are suppressed, cells fail to exhibit alterations in cell shape and kinematics associated with CICE and behave more like quiescent uninfected monolayers. In particular, uninfected cells surrounding infection foci are unable to polarize, reinforce their monolayer stresses, and promote CICE. Our findings reveal that crosstalk between ERK waves and cell mechanics is key to collective elimination of large domains of infected cells.
Collapse
Affiliation(s)
- Lara Hundsdorfer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Marie Muenkel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Raul Aparicio-Yuste
- Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Julio Cesar Sanchez-Rendon
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Maria Jose Gomez-Benito
- Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Aylin Balmes
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Ana Velic
- Proteome Center Tübingen, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Yi-Ting Yeh
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Iordania Constantinou
- Institute of Microtechnology, Technische Universität Brauschweig, 38106 Braunschweig, Lower Saxony, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Lower Saxony, Germany
| | - Kathryn Wright
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Gizem Özbaykal Güler
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Dominik Brokatzky
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Boris Maček
- Proteome Center Tübingen, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Effie E Bastounis
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany.
| |
Collapse
|
11
|
Fan JJ, Erickson AW, Carrillo-Garcia J, Wang X, Skowron P, Wang X, Chen X, Shan G, Dou W, Bahrampour S, Xiong Y, Dong W, Abeysundara N, Francisco MA, Pusong RJ, Wang W, Li M, Ying E, Suárez RA, Farooq H, Holgado BL, Wu X, Daniels C, Dupuy AJ, Cadiñanos J, Bradley A, Bagchi A, Moriarity BS, Largaespada DA, Morrissy AS, Ramaswamy V, Mack SC, Garzia L, Dirks PB, Li X, Wanggou S, Egan S, Sun Y, Taylor MD, Huang X. A forward genetic screen identifies potassium channel essentiality in SHH medulloblastoma maintenance. Dev Cell 2025:S1534-5807(25)00001-2. [PMID: 39862856 DOI: 10.1016/j.devcel.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Distinguishing tumor maintenance genes from initiation, progression, and passenger genes is critical for developing effective therapies. We employed a functional genomic approach using the Lazy Piggy transposon to identify tumor maintenance genes in vivo and applied this to sonic hedgehog (SHH) medulloblastoma (MB). Combining Lazy Piggy screening in mice and transcriptomic profiling of human MB, we identified the voltage-gated potassium channel KCNB2 as a candidate maintenance driver. KCNB2 governs cell volume of MB-propagating cells (MPCs), with KCNB2 depletion causing osmotic swelling, decreased plasma membrane tension, and elevated endocytic internalization of epidermal growth factor receptor (EGFR), thereby mitigating proliferation of MPCs to ultimately impair MB growth. KCNB2 is largely dispensable for mouse development and KCNB2 knockout synergizes with anti-SHH therapy in treating MB. These results demonstrate the utility of the Lazy Piggy functional genomic approach in identifying cancer maintenance drivers and elucidate a mechanism by which potassium homeostasis integrates biomechanical and biochemical signaling to promote MB aggression.
Collapse
Affiliation(s)
- Jerry J Fan
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anders W Erickson
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julia Carrillo-Garcia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xin Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Patryk Skowron
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xian Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Xin Chen
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Guanqiao Shan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Shahrzad Bahrampour
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yi Xiong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Weifan Dong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Namal Abeysundara
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michelle A Francisco
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ronwell J Pusong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Wei Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Miranda Li
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Elliot Ying
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Raúl A Suárez
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hamza Farooq
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Borja L Holgado
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaochong Wu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Craig Daniels
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam J Dupuy
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246, USA
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo 33193, Spain
| | - Allan Bradley
- T-Therapeutics Ltd. One Riverside, Granta Park, Cambridge CB21 6AD, UK
| | - Anindya Bagchi
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Branden S Moriarity
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Largaespada
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - A Sorana Morrissy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T8, Canada
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Stephen C Mack
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, Center of Excellence in Neuro-Oncology Sciences, St Jude Children's Hospital, Memphis, TN 38105, USA
| | - Livia Garzia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal, QC H4A 3J1, Canada; Cancer Research Program, RI-MUHC, Montreal, QC H4A 3J1, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Siyi Wanggou
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Sean Egan
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Xi Huang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
12
|
Narain R, Muncie-Vasic JM, Weaver VM. Forcing the code: tension modulates signaling to drive morphogenesis and malignancy. Genes Dev 2025; 39:163-181. [PMID: 39638568 PMCID: PMC11789492 DOI: 10.1101/gad.352110.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Development and disease are regulated by the interplay between genetics and the signaling pathways stimulated by morphogens, growth factors, and cytokines. Experimental data highlight the importance of mechanical force in regulating embryonic development, tissue morphogenesis, and malignancy. Force not only sculpts tissue movements to drive embryogenesis and morphogenesis but also modifies the context of biochemical signaling and gene expression to regulate cell and tissue fate. Not surprisingly, experiments have demonstrated that perturbations in cell tension drive malignancy and metastasis by altering biochemical signaling and gene expression through modifications in cytoskeletal tension, transmembrane receptor structure and function, and organelle phenotype that enhance cell growth and survival, alter metabolism, and foster cell migration and invasion. At the tissue level, tumor-associated forces disrupt cell-cell adhesions to perturb tissue organization, compromise vascular integrity to induce hypoxia, and interfere with antitumor immunity to foster metastasis and treatment resistance. Exciting new approaches now exist with which to clarify the relationship between mechanotransduction, biochemical signaling, and gene expression in development and disease. Indeed, gaining insight into these interactions is essential to unravel molecular mechanisms that regulate development and clarify the molecular basis of cancer.
Collapse
Affiliation(s)
- Radhika Narain
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, Berkeley, California 94720, USA
| | | | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, California 94143
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
13
|
Dharan R, Barnoy A, Tsaturyan AK, Grossman A, Goren S, Yosibash I, Nachmias D, Elia N, Sorkin R, Kozlov MM. Intracellular pressure controls the propagation of tension in crumpled cell membranes. Nat Commun 2025; 16:91. [PMID: 39747015 PMCID: PMC11696741 DOI: 10.1038/s41467-024-55398-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Propagation of membrane tension mediates mechanical signal transduction along surfaces of live cells and sets the time scale of mechanical equilibration of cell membranes. Recent studies in several cell types and under different conditions revealed a strikingly wide variation range of the tension propagation speeds including extremely low ones. The latter suggests a possibility of long-living inhomogeneities of membrane tension crucially affecting mechano-sensitive membrane processes. Here, we propose, analyze theoretically, and support experimentally a mechanism of tension propagation in membranes crumpled by the contractile cortical cytoskeleton. The tension spreading is mediated by the membrane flow between the crumples. We predict the pace of the tension propagation to be controlled by the intra-cellular pressure and the degree of the membrane crumpling. We provide experimental support for the suggested mechanism by monitoring the rate of tension propagation in cells exposed to external media of different osmolarities.
Collapse
Affiliation(s)
- Raviv Dharan
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Avishai Barnoy
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Andrey K Tsaturyan
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Alon Grossman
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Goren
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Yosibash
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Dikla Nachmias
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Natalie Elia
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Raya Sorkin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.
| | - Michael M Kozlov
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Cassani M, Fernandes S, Pagliari S, Cavalieri F, Caruso F, Forte G. Unraveling the Role of the Tumor Extracellular Matrix to Inform Nanoparticle Design for Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409898. [PMID: 39629891 PMCID: PMC11727388 DOI: 10.1002/advs.202409898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/01/2024] [Indexed: 01/14/2025]
Abstract
The extracellular matrix (ECM)-and its mechanobiology-regulates key cellular functions that drive tumor growth and development. Accordingly, mechanotherapy is emerging as an effective approach to treat fibrotic diseases such as cancer. Through restoring the ECM to healthy-like conditions, this treatment aims to improve tissue perfusion, facilitating the delivery of chemotherapies. In particular, the manipulation of ECM is gaining interest as a valuable strategy for developing innovative treatments based on nanoparticles (NPs). However, further progress is required; for instance, it is known that the presence of a dense ECM, which hampers the penetration of NPs, primarily impacts the efficacy of nanomedicines. Furthermore, most 2D in vitro studies fail to recapitulate the physiological deposition of matrix components. To address these issues, a comprehensive understanding of the interactions between the ECM and NPs is needed. This review focuses on the main features of the ECM and its complex interplay with NPs. Recent advances in mechanotherapy are discussed and insights are offered into how its combination with nanomedicine can help improve nanomaterials design and advance their clinical translation.
Collapse
Affiliation(s)
- Marco Cassani
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Soraia Fernandes
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Stefania Pagliari
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonWC2R 2LSUK
| | - Francesca Cavalieri
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
- Dipartimento di Scienze e Tecnologie ChimicheUniversita di Roma “Tor Vergata”Via della Ricerca Scientifica 1Rome00133Italy
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Giancarlo Forte
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonWC2R 2LSUK
| |
Collapse
|
15
|
Raj N, Weiß MS, Vos BE, Weischer S, Brinkmann F, Betz T, Trappmann B, Gerke V. Membrane Tension Regulation is Required for Wound Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402317. [PMID: 39360573 DOI: 10.1002/advs.202402317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Disruptions of the eukaryotic plasma membrane due to chemical and mechanical challenges are frequent and detrimental and thus need to be repaired to maintain proper cell function and avoid cell death. However, the cellular mechanisms involved in wound resealing and restoration of homeostasis are diverse and contended. Here, it is shown that clathrin-mediated endocytosis is induced at later stages of plasma membrane wound repair following the actual resealing of the wound. This compensatory endocytosis occurs near the wound, predominantly at sites of previous early endosome exocytosis which is required in the initial stage of membrane resealing, suggesting a spatio-temporal co-ordination of exo- and endocytosis during wound repair. Using cytoskeletal alterations and modulations of membrane tension and membrane area, membrane tension is identified as a major regulator of the wounding-associated exo- and endocytic events that mediate efficient wound repair. Thus, membrane tension changes are a universal trigger for plasma membrane wound repair modulating the exocytosis of early endosomes required for resealing and subsequent clathrin-mediated endocytosis acting at later stages to restore cell homeostasis and function.
Collapse
Affiliation(s)
- Nikita Raj
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), Multiscale Imaging Centre, Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Martin S Weiß
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
| | - Bart E Vos
- Third Institute of Physics, University of Göttingen, 37077, Göttingen, Germany
| | - Sarah Weischer
- Multiscale Imaging Centre, Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Frauke Brinkmann
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149, Münster, Germany
| | - Timo Betz
- Third Institute of Physics, University of Göttingen, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077, Göttingen, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227, Dortmund, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), Multiscale Imaging Centre, Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| |
Collapse
|
16
|
Chitnis MS, Gao X, Marlena J, Holle AW. The mechanical journey of primordial germ cells. Am J Physiol Cell Physiol 2024; 327:C1532-C1545. [PMID: 39466178 DOI: 10.1152/ajpcell.00404.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Primordial germ cells (PGCs) are the earliest progenitors of germline cells of the gonads in animals. The tissues that arise from primordial germ cells give rise to male and female gametes and are thus responsible for transmitting genetic information to subsequent generations. The development of gonads, from single cells to fully formed organs, is of great interest to the reproductive biology community. In most higher animals, PGCs are initially specified at a site away from the gonads. They then migrate across multiple tissue microenvironments to reach a mesodermal mass of cells called the genital ridge, where they associate with somatic cells to form sex-specific reproductive organs. Their migratory behavior has been studied extensively to identify which tissues they interact with and how this might affect gonad development. A crucial point overlooked by classical studies has been the physical environment experienced by PGCs as they migrate and the mechanical challenges they might encounter along the way. It has long been understood that migrating cells can sense and adapt to physical forces around them via a variety of mechanisms, and studies have shown that these mechanical signals can guide stem cell fate. In this review, we summarize the mechanical microenvironment of migrating PGCs in different organisms. We describe how cells can adapt to this environment and how this adaptation can influence cell fate. Finally, we propose that mechanical signals play a crucial role in the normal development of the germline and shed light on this unexplored area of developmental biology.
Collapse
Affiliation(s)
- Malhar S Chitnis
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xu Gao
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Jennifer Marlena
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Andrew W Holle
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| |
Collapse
|
17
|
Smith A. Propagating pluripotency - The conundrum of self-renewal. Bioessays 2024; 46:e2400108. [PMID: 39180242 PMCID: PMC11589686 DOI: 10.1002/bies.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
The discovery of mouse embryonic stem cells in 1981 transformed research in mammalian developmental biology and functional genomics. The subsequent generation of human pluripotent stem cells (PSCs) and the development of molecular reprogramming have opened unheralded avenues for drug discovery and cell replacement therapy. Here, I review the history of PSCs from the perspective that long-term self-renewal is a product of the in vitro signaling environment, rather than an intrinsic feature of embryos. I discuss the relationship between pluripotent states captured in vitro to stages of epiblast in the embryo and suggest key considerations for evaluation of PSCs. A remaining fundamental challenge is to determine whether naïve pluripotency can be propagated from the broad range of mammals by exploiting common principles in gene regulatory architecture.
Collapse
Affiliation(s)
- Austin Smith
- Living Systems InstituteUniversity of ExeterExeterUK
| |
Collapse
|
18
|
Mollier C, Maître JL. In preprints: early cell differentiation and mechanical environment. Development 2024; 151:dev204417. [PMID: 39431299 DOI: 10.1242/dev.204417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Affiliation(s)
- Corentin Mollier
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, 75005 Paris, France
| | - Jean-Léon Maître
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, 75005 Paris, France
| |
Collapse
|
19
|
Lu M, Xu Z, Xu F, Yin C, Guo H, Cheng B. Mechanical network motifs as targets for mechanomedicine. Drug Discov Today 2024; 29:104145. [PMID: 39182599 DOI: 10.1016/j.drudis.2024.104145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/26/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The identification and analysis of network motifs has been widely used in the functional analysis of signaling components, disease discovery and other fields. The positive feedback loop (PFL) is a simple but important network motif. The formation of a PFL is regulated by mechanical cues such as substrate stiffness, fiber stretching and cell compression in the cell microenvironment. Here, we propose a new term, 'mechanical PFL', and analyze the mechanisms of mechanical PFLs at molecular, subcellular and cellular scales. More and more therapies are being targeted against mechanosignaling pathways at the experimental and preclinical stages, and exploring mechanical PFLs as potential mechanomedicine targets could be a new direction for disease treatment.
Collapse
Affiliation(s)
- Mengnan Lu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710054, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhao Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710054, PR China.
| | - Hui Guo
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710054, PR China.
| | - Bo Cheng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
20
|
Amano R, Nishizawa D, Taketsugu T, Iwasa T. Optical force and torque in near-field excitation of C3H6: A first-principles study using RT-TDDFT. J Chem Phys 2024; 161:124110. [PMID: 39325997 DOI: 10.1063/5.0223371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Optical trapping is an effective tool for manipulating micrometer-sized particles, although its application to nanometer-sized particles remains difficult. The field of optical trapping has advanced significantly, incorporating more advanced techniques such as plasmonic structures. However, single-molecule trapping remains a challenge. To achieve a deeper understanding of optical forces acting on molecular systems, a first-principles approach to analyze the optical force on molecules interacting with a plasmonic field is crucial. In our study, the optical force and torque induced by the near-field excitation of C3H6 were investigated using real-time time-dependent density functional theory calculations on real-space grids. The near field from the scanning tunneling probe was adopted as the excitation source for the molecule. The optical force was calculated using the polarization charges induced in the molecule based on Lorentz force. While the optical force and torque calculated as functions of the light energy were in moderate agreement with the oscillator strengths obtained from the far-field excitation of C3H6, a closer correspondence was achieved with the power spectrum of the induced dipole moment using near-field excitation. Time-domain analysis of the optical force suggests that the simultaneous excitation of multiple excited states generally weakens the force because of mismatches between the directions of the induced polarization and the electric field. This study revealed a subtle damping mechanism for the optical force arising from intrinsic electronic states and the influence of beating.
Collapse
Affiliation(s)
- Risa Amano
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Daisuke Nishizawa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- WPI-ICReDD, Hokkaido University, Sapporo 001-0021, Japan
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- WPI-ICReDD, Hokkaido University, Sapporo 001-0021, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| |
Collapse
|
21
|
Meyer NP, Singh T, Kutys ML, Nystul TG, Barber DL. Arp2/3 complex activity enables nuclear YAP for naïve pluripotency of human embryonic stem cells. eLife 2024; 13:e89725. [PMID: 39319536 PMCID: PMC11509671 DOI: 10.7554/elife.89725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Our understanding of the transitions of human embryonic stem cells (hESCs) between distinct stages of pluripotency relies predominantly on regulation by transcriptional and epigenetic programs with limited insight on the role of established morphological changes. We report remodeling of the actin cytoskeleton of hESCs as they transition from primed to naïve pluripotency which includes assembly of a ring of contractile actin filaments encapsulating colonies of naïve hESCs. Activity of the Arp2/3 complex is required for formation of the actin ring, to establish uniform cell mechanics within naïve colonies, to promote nuclear translocation of the Hippo pathway effectors YAP and TAZ, and for effective transition to naïve pluripotency. RNA-sequencing analysis confirms that Arp2/3 complex activity regulates Hippo signaling in hESCs, and impaired naïve pluripotency with inhibited Arp2/3 complex activity is rescued by expressing a constitutively active, nuclear-localized YAP-S127A. Moreover, expression of YAP-S127A partially restores the actin filament fence with Arp2/3 complex inhibition, suggesting that actin filament remodeling is both upstream and downstream of YAP activity. These new findings on the cell biology of hESCs reveal a mechanism for cytoskeletal dynamics coordinating cell mechanics to regulate gene expression and facilitate transitions between pluripotency states.
Collapse
Affiliation(s)
- Nathaniel Paul Meyer
- Department of Cell & Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| | - Tania Singh
- Department of Cell & Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| | - Matthew L Kutys
- Department of Cell & Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| | - Todd G Nystul
- Departments of Anatomy and OB-GYN/RS, University of California, San FranciscoSan FranciscoUnited States
| | - Diane L Barber
- Department of Cell & Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
22
|
McCreery KP, Stubb A, Stephens R, Fursova NA, Cook A, Kruse K, Michelbach A, Biggs LC, Keikhosravi A, Nykänen S, Hydén-Granskog C, Zou J, Lackmann JW, Niessen CM, Vuoristo S, Miroshnikova YA, Wickström SA. Mechano-osmotic signals control chromatin state and fate transitions in pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611779. [PMID: 39372762 PMCID: PMC11451594 DOI: 10.1101/2024.09.07.611779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Acquisition of specific cell shapes and morphologies is a central component of cell fate transitions. Although signaling circuits and gene regulatory networks that regulate pluripotent stem cell differentiation have been intensely studied, how these networks are integrated in space and time with morphological transitions and mechanical deformations to control state transitions remains a fundamental open question. Here, we focus on two distinct models of pluripotency, primed pluripotent stem cells and pre-implantation inner cell mass cells of human embryos to discover that cell fate transitions associate with rapid changes in nuclear shape and volume which collectively alter the nuclear mechanophenotype. Mechanistic studies in human induced pluripotent stem cells further reveal that these phenotypical changes and the associated active fluctuations of the nuclear envelope arise from growth factor signaling-controlled changes in chromatin mechanics and cytoskeletal confinement. These collective mechano-osmotic changes trigger global transcriptional repression and a condensation-prone environment that primes chromatin for a cell fate transition by attenuating repression of differentiation genes. However, while this mechano-osmotic chromatin priming has the potential to accelerate fate transitions and differentiation, sustained biochemical signals are required for robust induction of specific lineages. Our findings uncover a critical mechanochemical feedback mechanism that integrates nuclear mechanics, shape and volume with biochemical signaling and chromatin state to control cell fate transition dynamics.
Collapse
Affiliation(s)
- Kaitlin P. McCreery
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Aki Stubb
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
| | - Rebecca Stephens
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nadezda A. Fursova
- System Biology of Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, MD 20892
| | - Andrew Cook
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kai Kruse
- Bioinformatics Service Unit, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Anja Michelbach
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Leah C. Biggs
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
| | - Adib Keikhosravi
- High-Throughput Imaging Facility, National Cancer Institute, National Institute of Health, Bethesda, MD 20892
| | - Sonja Nykänen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
- Gynecology and Obstetrics, Clinicum, University of Helsinki, 00290 Helsinki, Finland
| | - Christel Hydén-Granskog
- Helsinki University Hospital, Reproductive Medicine Unit, P.O. Box 150, 00029 HUS, Helsinki, Finland
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jan-Wilm Lackmann
- CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Carien M. Niessen
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Sanna Vuoristo
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
- Gynecology and Obstetrics, Clinicum, University of Helsinki, 00290 Helsinki, Finland
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | - Yekaterina A. Miroshnikova
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara A. Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
23
|
Yang Z, Zhao Y, Zhang X, Huang L, Wang K, Sun J, Chen N, Yin W, Chen S, Zhi H, Xue L, An L, Li R, Dong H, Xu J, Li Y, Li Y. Nano-mechanical Immunoengineering: Nanoparticle Elasticity Reprograms Tumor-Associated Macrophages via Piezo1. ACS NANO 2024; 18:21221-21235. [PMID: 39079080 DOI: 10.1021/acsnano.4c04614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of nanoparticles play a crucial role in regulating nanobiointeractions, influencing processes such as blood circulation, tumor accumulation/penetration, and internalization into cancer cells. Consequently, they have a significant impact on drug delivery and therapeutic efficacy. However, it remains unclear whether and how macrophages alter their biological function in response to nanoparticle elasticity. Here, we report on the nano-mechanical biological effects resulting from the interactions between elastic silica nanoparticles (SNs) and macrophages. The SNs with variational elasticity Young's moduli ranging from 81 to 837 MPa were synthesized, and it was demonstrated that M2 [tumor-associated macrophages (TAMs)] could be repolarized to M1 by the soft SNs. Additionally, our findings revealed that cell endocytosis, membrane tension, the curvature protein Baiap2, and the cytoskeleton were all influenced by the elasticity of SNs. Moreover, the mechanically sensitive protein Piezo1 on the cell membrane was activated, leading to calcium ion influx, activation of the NF-κB pathway, and the initiation of an inflammatory response. In vivo experiments demonstrated that the softest 81 MPa SNs enhanced tumor penetration and accumulation and repolarized TAMs in intratumoral hypoxic regions, ultimately resulting in a significant inhibition of tumor growth. Taken together, this study has established a cellular feedback mechanism in response to nanoparticle elasticity, which induces plasma membrane deformation and subsequent activation of mechanosensitive signals. This provides a distinctive "nano-mechanical immunoengineering" strategy for reprogramming TAMs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Zichen Yang
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiaoyou Zhang
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Li Huang
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kun Wang
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiuyuan Sun
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Nana Chen
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Weimin Yin
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shiyu Chen
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hui Zhi
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Liangyi Xue
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lulu An
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Rongjie Li
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Jinfu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yan Li
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
24
|
Mao Y, Wickström SA. Mechanical state transitions in the regulation of tissue form and function. Nat Rev Mol Cell Biol 2024; 25:654-670. [PMID: 38600372 DOI: 10.1038/s41580-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.
Collapse
Affiliation(s)
- Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
25
|
De Belly H, Weiner OD. Follow the flow: Actin and membrane act as an integrated system to globally coordinate cell shape and movement. Curr Opin Cell Biol 2024; 89:102392. [PMID: 38991476 PMCID: PMC11929537 DOI: 10.1016/j.ceb.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
Migratory cells are polarized with protrusive fronts and contractile rears. This spatial organization necessitates long-range coordination of the signals that organize protrusions and contractions. Cells leverage reciprocal interactions of short-range biochemical signals and long-range mechanical forces for this integration. The interface between the plasma membrane and actin cortex is where this communication occurs. Here, we review how the membrane and cortex form an integrated system for long-range coordination of cell polarity. We highlight the role of membrane-to-cortex-attachment proteins as regulators of tension transmission across the cell and discuss the interplay between actin-membrane and polarity signaling complexes. Rather than presenting an exhaustive list of recent findings, we focus on important gaps in our current understanding.
Collapse
Affiliation(s)
- Henry De Belly
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
Stephens RK, Miroshnikova YA. Nuclear periphery and its mechanical regulation in cell fate transitions. Curr Opin Struct Biol 2024; 87:102867. [PMID: 38889500 DOI: 10.1016/j.sbi.2024.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Cell fate changes require rewiring of transcriptional programs to generate functionally specialized cell states. Reconfiguration of transcriptional networks requires overcoming epigenetic barriers imposed by silenced heterochromatin in order to activate lineage-specific genes. Further, cell fate decisions are made in a tissue-specific context, where cells are physically linked to each other as well as to the connective tissue environment. Here, cells are continuously exposed to a multitude of mechanical forces emanating from cellular dynamics in their local microenvironments, for example through cell movements, cell divisions, tissue contractions, or fluid flow. Through their ability to deform cellular structures and activate receptors, mechanical forces can be sensed at the plasma membrane, but also at the nuclear periphery through direct or cytoskeleton-mediated deformation of the nuclear envelope. This deformation and the associated signaling is capable of triggering changes in the mechanical state of the nuclear membranes, the organization and rigidity of the underlying nuclear lamina, compaction state of chromatin, and ultimately transcription. This review focuses on the role of nuclear architecture, particularly the nuclear lamina-chromatin interface, and its mechanical regulation in cell fate decisions as well as its physiological role in development and cellular reprogramming.
Collapse
Affiliation(s)
- Rebecca K Stephens
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA. https://twitter.com/BecKateStephens
| | - Yekaterina A Miroshnikova
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
27
|
Mulas C, Stammers M, Salomaa SI, Heinzen C, Suter DM, Smith A, Chalut KJ. ERK signalling eliminates Nanog and maintains Oct4 to drive the formative pluripotency transition. Development 2024; 151:dev203106. [PMID: 39069943 DOI: 10.1242/dev.203106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024]
Abstract
Naïve epiblast cells in the embryo and pluripotent stem cells in vitro undergo developmental progression to a formative state competent for lineage specification. During this transition, transcription factors and chromatin are rewired to encode new functional features. Here, we examine the role of mitogen-activated protein kinase (ERK1/2) signalling in pluripotent state transition. We show that a primary consequence of ERK activation in mouse embryonic stem cells is elimination of Nanog, which precipitates breakdown of the naïve state gene regulatory network. Variability in pERK dynamics results in heterogeneous loss of Nanog and metachronous state transition. Knockdown of Nanog allows exit without ERK activation. However, transition to formative pluripotency does not proceed and cells collapse to an indeterminate identity. This outcome is due to failure to maintain expression of the central pluripotency factor Oct4. Thus, during formative transition ERK signalling both dismantles the naïve state and preserves pluripotency. These results illustrate how a single signalling pathway can both initiate and secure transition between cell states.
Collapse
Affiliation(s)
- Carla Mulas
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Randall Centre for Cell and Molecular Biology, King's College London, London SE1 1YR, UK
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge CB21 6GP, UK
| | - Melanie Stammers
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Siiri I Salomaa
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge CB21 6GP, UK
| | - Constanze Heinzen
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt 60439, Germany
| | - David M Suter
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Austin Smith
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Kevin J Chalut
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge CB21 6GP, UK
| |
Collapse
|
28
|
Yan Q, Gomis Perez C, Karatekin E. Cell Membrane Tension Gradients, Membrane Flows, and Cellular Processes. Physiology (Bethesda) 2024; 39:0. [PMID: 38501962 PMCID: PMC11368524 DOI: 10.1152/physiol.00007.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024] Open
Abstract
Cell membrane tension affects and is affected by many fundamental cellular processes, yet it is poorly understood. Recent experiments show that membrane tension can propagate at vastly different speeds in different cell types, reflecting physiological adaptations. Here we briefly review the current knowledge about membrane tension gradients, membrane flows, and their physiological context.
Collapse
Affiliation(s)
- Qi Yan
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States
| | - Carolina Gomis Perez
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States
| | - Erdem Karatekin
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States
- Wu Tsai Institute, Yale University, New Haven, Connecticut, United States
- Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
29
|
Kural MH, Djakbarova U, Cakir B, Tanaka Y, Chan ET, Arteaga Muniz VI, Madraki Y, Qian H, Park J, Sewanan LR, Park IH, Niklason LE, Kural C. Mechano-inhibition of endocytosis sensitizes cancer cells to Fas-induced Apoptosis. Cell Death Dis 2024; 15:440. [PMID: 38909035 PMCID: PMC11193792 DOI: 10.1038/s41419-024-06822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
The transmembrane death receptor Fas transduces apoptotic signals upon binding its ligand, FasL. Although Fas is highly expressed in cancer cells, insufficient cell surface Fas expression desensitizes cancer cells to Fas-induced apoptosis. Here, we show that the increase in Fas microaggregate formation on the plasma membrane in response to the inhibition of endocytosis sensitizes cancer cells to Fas-induced apoptosis. We used a clinically accessible Rho-kinase inhibitor, fasudil, that reduces endocytosis dynamics by increasing plasma membrane tension. In combination with exogenous soluble FasL (sFasL), fasudil promoted cancer cell apoptosis, but this collaborative effect was substantially weaker in nonmalignant cells. The combination of sFasL and fasudil prevented glioblastoma cell growth in embryonic stem cell-derived brain organoids and induced tumor regression in a xenograft mouse model. Our results demonstrate that sFasL has strong potential for apoptosis-directed cancer therapy when Fas microaggregate formation is augmented by mechano-inhibition of endocytosis.
Collapse
Affiliation(s)
- Mehmet H Kural
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA.
- Humacyte Inc., Durham, NC, 27213, USA.
| | | | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, H1T 2M4, Canada
| | - Emily T Chan
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Hong Qian
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA
- Humacyte Inc., Durham, NC, 27213, USA
| | - Jinkyu Park
- Yale Cardiovascular Research Center, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Lorenzo R Sewanan
- Department of Internal Medicine, Columbia University, New York, NY, 10032, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Laura E Niklason
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA.
- Humacyte Inc., Durham, NC, 27213, USA.
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
30
|
Ferrai C, Schulte C. Mechanotransduction in stem cells. Eur J Cell Biol 2024; 103:151417. [PMID: 38729084 DOI: 10.1016/j.ejcb.2024.151417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Nowadays, it is an established concept that the capability to reach a specialised cell identity via differentiation, as in the case of multi- and pluripotent stem cells, is not only determined by biochemical factors, but that also physical aspects of the microenvironment play a key role; interpreted by the cell through a force-based signalling pathway called mechanotransduction. However, the intricate ties between the elements involved in mechanotransduction, such as the extracellular matrix, the glycocalyx, the cell membrane, Integrin adhesion complexes, Cadherin-mediated cell/cell adhesion, the cytoskeleton, and the nucleus, are still far from being understood in detail. Here we report what is currently known about these elements in general and their specific interplay in the context of multi- and pluripotent stem cells. We furthermore merge this overview to a more comprehensive picture, that aims to cover the whole mechanotransductive pathway from the cell/microenvironment interface to the regulation of the chromatin structure in the nucleus. Ultimately, with this review we outline the current picture of the interplay between mechanotransductive cues and epigenetic regulation and how these processes might contribute to stem cell dynamics and fate.
Collapse
Affiliation(s)
- Carmelo Ferrai
- Institute of Pathology, University Medical Centre Göttingen, Germany.
| | - Carsten Schulte
- Department of Biomedical and Clinical Sciences and Department of Physics "Aldo Pontremoli", University of Milan, Italy.
| |
Collapse
|
31
|
Yang S, Golkaram M, Oh S, Oh Y, Cho Y, Yoe J, Ju S, Lalli MA, Park SY, Lee Y, Jang J. ETV4 is a mechanical transducer linking cell crowding dynamics to lineage specification. Nat Cell Biol 2024; 26:903-916. [PMID: 38702503 PMCID: PMC11178500 DOI: 10.1038/s41556-024-01415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/03/2024] [Indexed: 05/06/2024]
Abstract
Dynamic changes in mechanical microenvironments, such as cell crowding, regulate lineage fates as well as cell proliferation. Although regulatory mechanisms for contact inhibition of proliferation have been extensively studied, it remains unclear how cell crowding induces lineage specification. Here we found that a well-known oncogene, ETS variant transcription factor 4 (ETV4), serves as a molecular transducer that links mechanical microenvironments and gene expression. In a growing epithelium of human embryonic stem cells, cell crowding dynamics is translated into ETV4 expression, serving as a pre-pattern for future lineage fates. A switch-like ETV4 inactivation by cell crowding derepresses the potential for neuroectoderm differentiation in human embryonic stem cell epithelia. Mechanistically, cell crowding inactivates the integrin-actomyosin pathway and blocks the endocytosis of fibroblast growth factor receptors (FGFRs). The disrupted FGFR endocytosis induces a marked decrease in ETV4 protein stability through ERK inactivation. Mathematical modelling demonstrates that the dynamics of cell density in a growing human embryonic stem cell epithelium precisely determines the spatiotemporal ETV4 expression pattern and, consequently, the timing and geometry of lineage development. Our findings suggest that cell crowding dynamics in a stem cell epithelium drives spatiotemporal lineage specification using ETV4 as a key mechanical transducer.
Collapse
Affiliation(s)
- Seungbok Yang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Mahdi Golkaram
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Seyoun Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yujeong Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yoonjae Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jeehyun Yoe
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Matthew A Lalli
- Seaver Autism Center for Research and Treatment at Mount Sinai, New York, NY, USA
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
32
|
Li M, Xing X, Yuan J, Zeng Z. Research progress on the regulatory role of cell membrane surface tension in cell behavior. Heliyon 2024; 10:e29923. [PMID: 38720730 PMCID: PMC11076917 DOI: 10.1016/j.heliyon.2024.e29923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Cell membrane surface tension has emerged as a pivotal biophysical factor governing cell behavior and fate. This review systematically delineates recent advances in techniques for cell membrane surface tension quantification, mechanosensing mechanisms, and regulatory roles of cell membrane surface tension in modulating major cellular processes. Micropipette aspiration, tether pulling, and newly developed fluorescent probes enable the measurement of cell membrane surface tension with spatiotemporal precision. Cells perceive cell membrane surface tension via conduits including mechanosensitive ion channels, curvature-sensing proteins (e.g. BAR domain proteins), and cortex-membrane attachment proteins (e.g. ERM proteins). Through membrane receptors like integrins, cells convert mechanical cues into biochemical signals. This conversion triggers cytoskeletal remodeling and extracellular matrix interactions in response to environmental changes. Elevated cell membrane surface tension suppresses cell spreading, migration, and endocytosis while facilitating exocytosis. Moreover, reduced cell membrane surface tension promotes embryonic stem cell differentiation and cancer cell invasion, underscoring cell membrane surface tension as a regulator of cell plasticity. Outstanding questions remain regarding cell membrane surface tension regulatory mechanisms and roles in tissue development/disease in vivo. Emerging tools to manipulate cell membrane surface tension with high spatiotemporal control in combination with omics approaches will facilitate the elucidation of cell membrane surface tension-mediated effects on signaling networks across various cell types/states. This will accelerate the development of cell membrane surface tension-based biomarkers and therapeutics for regenerative medicine and cancer. Overall, this review provides critical insights into cell membrane surface tension as a potent orchestrator of cell function, with broader impacts across mechanobiology.
Collapse
Affiliation(s)
- Manqing Li
- School of Public Health, Sun Yat-sen University, Guangzhou, 5180080, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-sen University, Guangzhou, 5180080, China
| | - Jianhui Yuan
- Nanshan District Center for Disease Control and Prevention, Shenzhen, 518054, China
| | - Zhuoying Zeng
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, 518035, China
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| |
Collapse
|
33
|
Conti S, Venturini V, Cañellas-Socias A, Cortina C, Abenza JF, Stephan-Otto Attolini C, Middendorp Guerra E, Xu CK, Li JH, Rossetti L, Stassi G, Roca-Cusachs P, Diz-Muñoz A, Ruprecht V, Guck J, Batlle E, Labernadie A, Trepat X. Membrane to cortex attachment determines different mechanical phenotypes in LGR5+ and LGR5- colorectal cancer cells. Nat Commun 2024; 15:3363. [PMID: 38637494 PMCID: PMC11026456 DOI: 10.1038/s41467-024-47227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Colorectal cancer (CRC) tumors are composed of heterogeneous and plastic cell populations, including a pool of cancer stem cells that express LGR5. Whether these distinct cell populations display different mechanical properties, and how these properties might contribute to metastasis is poorly understood. Using CRC patient derived organoids (PDOs), we find that compared to LGR5- cells, LGR5+ cancer stem cells are stiffer, adhere better to the extracellular matrix (ECM), move slower both as single cells and clusters, display higher nuclear YAP, show a higher survival rate in response to mechanical confinement, and form larger transendothelial gaps. These differences are largely explained by the downregulation of the membrane to cortex attachment proteins Ezrin/Radixin/Moesin (ERMs) in the LGR5+ cells. By analyzing single cell RNA-sequencing (scRNA-seq) expression patterns from a patient cohort, we show that this downregulation is a robust signature of colorectal tumors. Our results show that LGR5- cells display a mechanically dynamic phenotype suitable for dissemination from the primary tumor whereas LGR5+ cells display a mechanically stable and resilient phenotype suitable for extravasation and metastatic growth.
Collapse
Affiliation(s)
- Sefora Conti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Valeria Venturini
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC), Barcelona, Spain
| | - Carme Cortina
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC), Barcelona, Spain
| | - Juan F Abenza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Emily Middendorp Guerra
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC), Barcelona, Spain
| | - Catherine K Xu
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Jia Hui Li
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Leone Rossetti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Facultat de Medicina, University of Barcelona (UB), Barcelona, Spain
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Verena Ruprecht
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Max-Planck Zentrum für Physik und Medizin, Erlangen, Germany
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Anna Labernadie
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Principe Felipe (CIPF), Valencia, Spain.
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Facultat de Medicina, University of Barcelona (UB), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.
| |
Collapse
|
34
|
Biggs LC, Miroshnikova YA. Nuclear mechanotransduction on skin stem cell fate regulation. Curr Opin Cell Biol 2024; 87:102328. [PMID: 38340567 DOI: 10.1016/j.ceb.2024.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Mammalian skin is a highly dynamic and regenerative organ that has long been recognized as a mechanically active composite of tissues withstanding daily compressive and tensile forces that arise from body movement. Importantly, cell- and tissue-scale mechanical signals are critical regulators of skin morphogenesis and homeostasis. These signals are sensed at the cellular periphery and transduced by mechanosensitive proteins within the plasma membrane to the cytoskeletal networks, and eventually into the nucleus to regulate chromatin organization and gene expression. The role of each of these nodes in producing a coherent mechanoresponse at both cell- and tissue-scales is emerging. Here we focus on the key cytoplasmic and nuclear mechanosensitive structures that are critical for the mammalian skin development and homeostatic maintenance. We propose that the mechanical state of the skin, in particular of its nuclear compartment, is a critical rheostat that fine-tunes developmental and homeostatic processes essential for the proper function of the organ.
Collapse
Affiliation(s)
- Leah C Biggs
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.
| | - Yekaterina A Miroshnikova
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
35
|
Hirashima T, Matsuda M. ERK-mediated curvature feedback regulates branching morphogenesis in lung epithelial tissue. Curr Biol 2024; 34:683-696.e6. [PMID: 38228149 DOI: 10.1016/j.cub.2023.12.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Intricate branching patterns emerge in internal organs due to the recurrent occurrence of simple deformations in epithelial tissues. During murine lung development, epithelial cells in distal tips of the single tube require fibroblast growth factor (FGF) signals emanating from their surrounding mesenchyme to form repetitive tip bifurcations. However, it remains unknown how the cells employ FGF signaling to convert their behaviors to achieve the recursive branching processes. Here, we show a mechano-chemical regulatory system underlying lung branching morphogenesis, orchestrated by extracellular signal-regulated kinase (ERK) as a downstream driver of FGF signaling. We found that tissue-scale curvature regulated ERK activity in the lung epithelium using two-photon live cell imaging and mechanical perturbations. ERK activation occurs specifically in epithelial tissues exhibiting positive curvature, regardless of whether the change in curvature was attributable to morphogenesis or perturbations. Moreover, ERK activation accelerates actin polymerization preferentially at the apical side of cells, mechanically contributing to the extension of the apical membrane, culminating in a reduction of epithelial tissue curvature. These results indicate the existence of a negative feedback loop between tissue curvature and ERK activity that transcends spatial scales. Our mathematical model confirms that this regulatory mechanism is sufficient to generate the recursive branching processes. Taken together, we propose that ERK orchestrates a curvature feedback loop pivotal to the self-organized patterning of tissues.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117593, Singapore; The Hakubi Center, Kyoto University, Yoshida-honmachi, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honchō, Kawaguchi 332-0012, Japan.
| | - Michiyuki Matsuda
- Graduate School of Biostudies, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Graduate School of Medicine, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8317, Japan
| |
Collapse
|
36
|
Ghisleni A, Gauthier NC. Mechanotransduction through membrane tension: It's all about propagation? Curr Opin Cell Biol 2024; 86:102294. [PMID: 38101114 DOI: 10.1016/j.ceb.2023.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Over the past 25 years, membrane tension has emerged as a primary mechanical factor influencing cell behavior. Although supporting evidences are accumulating, the integration of this parameter in the lifecycle of cells, organs, and tissues is complex. The plasma membrane is envisioned as a bilayer continuum acting as a 2D fluid. However, it possesses almost infinite combinations of proteins, lipids, and glycans that establish interactions with the extracellular or intracellular environments. This results in a tridimensional composite material with non-trivial dynamics and physics, and the task of integrating membrane mechanics and cellular outcome is a daunting chore for biologists. In light of the most recent discoveries, we aim in this review to provide non-specialist readers some tips on how to solve this conundrum.
Collapse
Affiliation(s)
- Andrea Ghisleni
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Nils C Gauthier
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
37
|
Lenne PF, Tlili S. Learning the mechanobiology of development from gastruloids. Emerg Top Life Sci 2023; 7:417-422. [PMID: 38054574 DOI: 10.1042/etls20230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Gastruloids acquire their organization and shape through cell biochemical and mechanical activities. Such activities determine the physical forces and changes in material properties that transform simple spherical aggregates into organized tissues. In this Perspective, we discuss why the concepts and approaches of mechanobiology, a discipline that focuses on cell and tissue mechanics and its contribution to the organization and functions of living systems, are essential to the gastruloid field and, in turn, what gastruloids may teach us about mechanobiology.
Collapse
Affiliation(s)
- Pierre-François Lenne
- Aix Marseille University, CNRS, IBDM (UMR 7288), Turing Centre for Living Systems, Marseille, France
| | - Sham Tlili
- Aix Marseille University, CNRS, IBDM (UMR 7288), Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
38
|
Abstract
Understanding complex living systems, which are fundamentally constrained by physical phenomena, requires combining experimental data with theoretical physical and mathematical models. To develop such models, collaborations between experimental cell biologists and theoreticians are increasingly important but these two groups often face challenges achieving mutual understanding. To help navigate these challenges, this Perspective discusses different modelling approaches, including bottom-up hypothesis-driven and top-down data-driven models, and highlights their strengths and applications. Using cell mechanics as an example, we explore the integration of specific physical models with experimental data from the molecular, cellular and tissue level up to multiscale input. We also emphasize the importance of constraining model complexity and outline strategies for crosstalk between experimental design and model development. Furthermore, we highlight how physical models can provide conceptual insights and produce unifying and generalizable frameworks for biological phenomena. Overall, this Perspective aims to promote fruitful collaborations that advance our understanding of complex biological systems.
Collapse
Affiliation(s)
- Cornelia Schwayer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - David B Brückner
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
39
|
Crozet F, Levayer R. Emerging roles and mechanisms of ERK pathway mechanosensing. Cell Mol Life Sci 2023; 80:355. [PMID: 37947896 PMCID: PMC10638131 DOI: 10.1007/s00018-023-05007-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
The coupling between mechanical forces and modulation of cell signalling pathways is essential for tissue plasticity and their adaptation to changing environments. Whilst the number of physiological and pathological relevant roles of mechanotransduction has been rapidly expanding over the last decade, studies have been mostly focussing on a limited number of mechanosensitive pathways, which include for instance Hippo/YAP/TAZ pathway, Wnt/β-catenin or the stretch-activated channel Piezo. However, the recent development and spreading of new live sensors has provided new insights into the contribution of ERK pathway in mechanosensing in various systems, which emerges now as a fast and modular mechanosensitive pathway. In this review, we will document key in vivo and in vitro examples that have established a clear link between cell deformation, mechanical stress and modulation of ERK signalling, comparing the relevant timescale and mechanical stress. We will then discuss different molecular mechanisms that have been proposed so far, focussing on the epistatic link between mechanics and ERK and discussing the relevant cellular parameters affecting ERK signalling. We will finish by discussing the physiological and the pathological consequences of the link between ERK and mechanics, outlining how this interplay is instrumental for self-organisation and long-range cell-cell coordination.
Collapse
Affiliation(s)
- Flora Crozet
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 Rue du Dr. Roux, 75015, Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 Rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
40
|
Wang J, Yang Q, Saiding Q, Chen L, Liu M, Wang Z, Xiang L, Deng L, Chen Y, Cui W. Geometric Angles and Gene Expression in Cells for Structural Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304111. [PMID: 37775309 PMCID: PMC10646237 DOI: 10.1002/advs.202304111] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/18/2023] [Indexed: 10/01/2023]
Abstract
Geometry and angles play crucial roles in cellular processes; however, its mechanisms of regulation remain unclear. In this study, a series of three dimensional (3D)-printed microfibers with different geometries is constructed using a near-field electrostatic printing technique to investigate the regulatory mechanisms of geometry on stem cell function and bone regeneration. The scaffolds precisely mimicked cell dimensions with high porosity and interoperability. Compared with other spatial topography angles, microfibers with a 90° topology can significantly promote the expression of osteogenic gene proteins in bone marrow-derived mesenchymal stem cells (BMSCs). The effects of different spatial structures on the expression profiles of BMSCs differentiation genes are correlated and validated using microRNA sequencing. Enrichment analysis shows that the 90° microfibers promoted osteogenesis in BMSCs by significantly upregulating miR-222-5p/cbfb/Runx2 expression. The ability of the geometric architecture to promote bone regeneration, as assessed using the cranial defect model, demonstrates that the 90° fiber scaffolds significantly promote new bone regeneration and neovascular neural network formation. This study is the first to elucidate the relationship between angular geometry and cellular gene expression, contributing significantly to the understanding of how geometric architecture can promote stem cell differentiation, proliferation, and function for structural bone regeneration.
Collapse
Affiliation(s)
- Juan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Qianhao Yang
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233P. R. China
| | - Qimanguli Saiding
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Liang Chen
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Mingyue Liu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhen Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lei Xiang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lianfu Deng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Yixuan Chen
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
41
|
Hirashima T, Hino N, Aoki K, Matsuda M. Stretching the limits of extracellular signal-related kinase (ERK) signaling - Cell mechanosensing to ERK activation. Curr Opin Cell Biol 2023; 84:102217. [PMID: 37574635 DOI: 10.1016/j.ceb.2023.102217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Extracellular signal-regulated kinase (ERK) has been recognized as a critical regulator in various physiological and pathological processes. Extensive research has elucidated the signaling mechanisms governing ERK activation via biochemical regulations with upstream molecules, particularly receptor tyrosine kinases (RTKs). However, recent advances have highlighted the role of mechanical forces in activating the RTK-ERK signaling pathways, thereby opening new avenues of research into mechanochemical interplay in multicellular tissues. Here, we review the force-induced ERK activation in cells and propose possible mechanosensing mechanisms underlying the mechanoresponsive ERK activation. We conclude that mechanical forces are not merely passive factors shaping cells and tissues but also active regulators of cellular signaling pathways controlling collective cell behaviors.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Naoya Hino
- Institute of Science and Technology Austria, Klosterneuburg, Austria. https://twitter.com/NaoyaHino
| | - Kazuhiro Aoki
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan; National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.
| | - Michiyuki Matsuda
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Japan; Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Japan. https://twitter.com/Phogemon
| |
Collapse
|
42
|
Canat A, Atilla D, Torres‐Padilla M. Hyperosmotic stress induces 2-cell-like cells through ROS and ATR signaling. EMBO Rep 2023; 24:e56194. [PMID: 37432066 PMCID: PMC10481651 DOI: 10.15252/embr.202256194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
Mouse embryonic stem cells (ESCs) display pluripotency features characteristic of the inner cell mass of the blastocyst. Mouse embryonic stem cell cultures are highly heterogeneous and include a rare population of cells, which recapitulate characteristics of the 2-cell embryo, referred to as 2-cell-like cells (2CLCs). Whether and how ESC and 2CLC respond to environmental cues has not been fully elucidated. Here, we investigate the impact of mechanical stress on the reprogramming of ESC to 2CLC. We show that hyperosmotic stress induces 2CLC and that this induction can occur even after a recovery time from hyperosmotic stress, suggesting a memory response. Hyperosmotic stress in ESCs leads to accumulation of reactive-oxygen species (ROS) and ATR checkpoint activation. Importantly, preventing either elevated ROS levels or ATR activation impairs hyperosmotic-mediated 2CLC induction. We further show that ROS generation and the ATR checkpoint act within the same molecular pathway in response to hyperosmotic stress to induce 2CLCs. Altogether, these results shed light on the response of ESC to mechanical stress and on our understanding of 2CLC reprogramming.
Collapse
Affiliation(s)
- Antoine Canat
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
| | - Derya Atilla
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
| | - Maria‐Elena Torres‐Padilla
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
- Faculty of BiologyLudwig‐Maximilians UniversitätMünchenGermany
| |
Collapse
|
43
|
Angelini A, Trial J, Saltzman AB, Malovannaya A, Cieslik KA. A defective mechanosensing pathway affects fibroblast-to-myofibroblast transition in the old male mouse heart. iScience 2023; 26:107283. [PMID: 37520701 PMCID: PMC10372839 DOI: 10.1016/j.isci.2023.107283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
The cardiac fibroblast interacts with an extracellular matrix (ECM), enabling myofibroblast maturation via a process called mechanosensing. Although in the aging male heart, ECM is stiffer than in the young mouse, myofibroblast development is impaired, as demonstrated in 2-D and 3-D experiments. In old male cardiac fibroblasts, we found a decrease in actin polymerization, α-smooth muscle actin (α-SMA), and Kindlin-2 expressions, the latter an effector of the mechanosensing. When Kindlin-2 levels were manipulated via siRNA interference, young fibroblasts developed an old-like fibroblast phenotype, whereas Kindlin-2 overexpression in old fibroblasts reversed the defective phenotype. Finally, inhibition of overactivated extracellular regulated kinases 1 and 2 (ERK1/2) in the old male fibroblasts rescued actin polymerization and α-SMA expression. Pathological ERK1/2 overactivation was also attenuated by Kindlin-2 overexpression. In contrast, old female cardiac fibroblasts retained an operant mechanosensing pathway. In conclusion, we identified defective components of the Kindlin/ERK/actin/α-SMA mechanosensing axis in aged male fibroblasts.
Collapse
Affiliation(s)
- Aude Angelini
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - JoAnn Trial
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alexander B. Saltzman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Katarzyna A. Cieslik
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
44
|
Zhu Y, Zhang M, Sun Q, Wang X, Li X, Li Q. Advanced Mechanical Testing Technologies at the Cellular Level: The Mechanisms and Application in Tissue Engineering. Polymers (Basel) 2023; 15:3255. [PMID: 37571149 PMCID: PMC10422338 DOI: 10.3390/polym15153255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Mechanics, as a key physical factor which affects cell function and tissue regeneration, is attracting the attention of researchers in the fields of biomaterials, biomechanics, and tissue engineering. The macroscopic mechanical properties of tissue engineering scaffolds have been studied and optimized based on different applications. However, the mechanical properties of the overall scaffold materials are not enough to reveal the mechanical mechanism of the cell-matrix interaction. Hence, the mechanical detection of cell mechanics and cellular-scale microenvironments has become crucial for unraveling the mechanisms which underly cell activities and which are affected by physical factors. This review mainly focuses on the advanced technologies and applications of cell-scale mechanical detection. It summarizes the techniques used in micromechanical performance analysis, including atomic force microscope (AFM), optical tweezer (OT), magnetic tweezer (MT), and traction force microscope (TFM), and analyzes their testing mechanisms. In addition, the application of mechanical testing techniques to cell mechanics and tissue engineering scaffolds, such as hydrogels and porous scaffolds, is summarized and discussed. Finally, it highlights the challenges and prospects of this field. This review is believed to provide valuable insights into micromechanics in tissue engineering.
Collapse
Affiliation(s)
- Yingxuan Zhu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Mengqi Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
45
|
Bao M, Xie J. Geometric Confinement-Mediated Mechanical Tension Directs Patterned Differentiation of Mouse ESCs into Organized Germ Layers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34397-34406. [PMID: 37458389 DOI: 10.1021/acsami.3c03798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The self-organization of embryonic stem cells (ESCs) into organized tissues with three distinct germ layers is critical to morphogenesis and early development. While the regulation of this self-organization by soluble signals is well established, the involvement of mechanical force gradients in this process remains unclear due to the lack of a suitable platform to study this process. In this study, we developed a 3D microenvironment to examine the influence of mechanical tension gradients on ESC-patterned differentiation during morphogenesis by controlling the geometrical signals (shape and size) of ESC colonies. We found that changes in colony geometry impacted the germ layer pattern, with Cdx2-positive cells being more abundant at edges and in areas with high curvatures. The differentiation patterns were determined by geometry-mediated cell tension gradients, with an extraembryonic mesoderm-like layer forming in high-tension regions and ectodermal-like lineages at low-tension regions in the center. Suppression of cytoskeletal tension hindered ESC self-organization. These results indicate that geometric confinement-mediated mechanical tension plays a crucial role in linking multicellular organization to cell differentiation and impacting tissue patterning.
Collapse
Affiliation(s)
- Min Bao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325001, Zhejiang, China
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
46
|
Kohler TN, De Jonghe J, Ellermann AL, Yanagida A, Herger M, Slatery EM, Weberling A, Munger C, Fischer K, Mulas C, Winkel A, Ross C, Bergmann S, Franze K, Chalut K, Nichols J, Boroviak TE, Hollfelder F. Plakoglobin is a mechanoresponsive regulator of naive pluripotency. Nat Commun 2023; 14:4022. [PMID: 37419903 PMCID: PMC10329048 DOI: 10.1038/s41467-023-39515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2023] [Indexed: 07/09/2023] Open
Abstract
Biomechanical cues are instrumental in guiding embryonic development and cell differentiation. Understanding how these physical stimuli translate into transcriptional programs will provide insight into mechanisms underlying mammalian pre-implantation development. Here, we explore this type of regulation by exerting microenvironmental control over mouse embryonic stem cells. Microfluidic encapsulation of mouse embryonic stem cells in agarose microgels stabilizes the naive pluripotency network and specifically induces expression of Plakoglobin (Jup), a vertebrate homolog of β-catenin. Overexpression of Plakoglobin is sufficient to fully re-establish the naive pluripotency gene regulatory network under metastable pluripotency conditions, as confirmed by single-cell transcriptome profiling. Finally, we find that, in the epiblast, Plakoglobin was exclusively expressed at the blastocyst stage in human and mouse embryos - further strengthening the link between Plakoglobin and naive pluripotency in vivo. Our work reveals Plakoglobin as a mechanosensitive regulator of naive pluripotency and provides a paradigm to interrogate the effects of volumetric confinement on cell-fate transitions.
Collapse
Affiliation(s)
- Timo N Kohler
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Joachim De Jonghe
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Anna L Ellermann
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Ayaka Yanagida
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Veterinary Anatomy, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Michael Herger
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Erin M Slatery
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Antonia Weberling
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Clara Munger
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Katrin Fischer
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Carla Mulas
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Alex Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Connor Ross
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 91, 91052, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany
| | - Kevin Chalut
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Thorsten E Boroviak
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
47
|
De Belly H, Yan S, Borja da Rocha H, Ichbiah S, Town JP, Zager PJ, Estrada DC, Meyer K, Turlier H, Bustamante C, Weiner OD. Cell protrusions and contractions generate long-range membrane tension propagation. Cell 2023; 186:3049-3061.e15. [PMID: 37311454 PMCID: PMC10330871 DOI: 10.1016/j.cell.2023.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 06/15/2023]
Abstract
Membrane tension is thought to be a long-range integrator of cell physiology. Membrane tension has been proposed to enable cell polarity during migration through front-back coordination and long-range protrusion competition. These roles necessitate effective tension transmission across the cell. However, conflicting observations have left the field divided as to whether cell membranes support or resist tension propagation. This discrepancy likely originates from the use of exogenous forces that may not accurately mimic endogenous forces. We overcome this complication by leveraging optogenetics to directly control localized actin-based protrusions or actomyosin contractions while simultaneously monitoring the propagation of membrane tension using dual-trap optical tweezers. Surprisingly, actin-driven protrusions and actomyosin contractions both elicit rapid global membrane tension propagation, whereas forces applied to cell membranes alone do not. We present a simple unifying mechanical model in which mechanical forces that engage the actin cortex drive rapid, robust membrane tension propagation through long-range membrane flows.
Collapse
Affiliation(s)
- Henry De Belly
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Shannon Yan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hudson Borja da Rocha
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, Inserm, Université PSL, Paris, France
| | - Sacha Ichbiah
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, Inserm, Université PSL, Paris, France
| | - Jason P Town
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Patrick J Zager
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Dorothy C Estrada
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Kirstin Meyer
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Hervé Turlier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, Inserm, Université PSL, Paris, France.
| | - Carlos Bustamante
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA, USA; Department of Physics, University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA; Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
48
|
Shellard A, Mayor R. Sculpting with stiffness: rigidity as a regulator of morphogenesis. Biochem Soc Trans 2023; 51:1009-1021. [PMID: 37114613 PMCID: PMC10317161 DOI: 10.1042/bst20220826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
From a physical perspective, morphogenesis of tissues results from interplay between their material properties and the mechanical forces exerted on them. The importance of mechanical forces in influencing cell behaviour is widely recognised, whereas the importance of tissue material properties in vivo, like stiffness, has only begun to receive attention in recent years. In this mini-review, we highlight key themes and concepts that have emerged related to how tissue stiffness, a fundamental material property, guides various morphogenetic processes in living organisms.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
49
|
Höglsperger F, Vos BE, Hofemeier AD, Seyfried MD, Stövesand B, Alavizargar A, Topp L, Heuer A, Betz T, Ravoo BJ. Rapid and reversible optical switching of cell membrane area by an amphiphilic azobenzene. Nat Commun 2023; 14:3760. [PMID: 37353493 PMCID: PMC10290115 DOI: 10.1038/s41467-023-39032-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/25/2023] [Indexed: 06/25/2023] Open
Abstract
Cellular membrane area is a key parameter for any living cell that is tightly regulated to avoid membrane damage. Changes in area-to-volume ratio are known to be critical for cell shape, but are mostly investigated by changing the cell volume via osmotic shocks. In turn, many important questions relating to cellular shape, membrane tension homeostasis and local membrane area cannot be easily addressed because experimental tools for controlled modulation of cell membrane area are lacking. Here we show that photoswitching an amphiphilic azobenzene can trigger its intercalation into the plasma membrane of various mammalian cells ranging from erythrocytes to myoblasts and cancer cells. The photoisomerization leads to a rapid (250-500 ms) and highly reversible membrane area change (ca 2 % for erythrocytes) that triggers a dramatic shape modulation of living cells.
Collapse
Affiliation(s)
- Fabian Höglsperger
- Organic Chemistry Institute, University of Münster, Münster, Germany
- Center for Soft Nanoscience, University of Münster, Münster, Germany
| | - Bart E Vos
- Third Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany
| | - Arne D Hofemeier
- Third Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany
| | - Maximilian D Seyfried
- Organic Chemistry Institute, University of Münster, Münster, Germany
- Center for Soft Nanoscience, University of Münster, Münster, Germany
| | - Bastian Stövesand
- Organic Chemistry Institute, University of Münster, Münster, Germany
- Center for Soft Nanoscience, University of Münster, Münster, Germany
| | - Azadeh Alavizargar
- Institute of Physical Chemistry, University of Münster, Münster, Germany
| | - Leon Topp
- Institute of Physical Chemistry, University of Münster, Münster, Germany
| | - Andreas Heuer
- Center for Soft Nanoscience, University of Münster, Münster, Germany
- Institute of Physical Chemistry, University of Münster, Münster, Germany
| | - Timo Betz
- Third Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany.
| | - Bart Jan Ravoo
- Organic Chemistry Institute, University of Münster, Münster, Germany.
- Center for Soft Nanoscience, University of Münster, Münster, Germany.
| |
Collapse
|
50
|
Itoh T, Tsujita K. Exploring membrane mechanics: The role of membrane-cortex attachment in cell dynamics. Curr Opin Cell Biol 2023; 81:102173. [PMID: 37224683 DOI: 10.1016/j.ceb.2023.102173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
The role of plasma membrane (PM) tension in cell dynamics has gained increasing interest in recent years to understand the mechanism by which individual cells regulate their dynamic behavior. Membrane-to-cortex attachment (MCA) is a component of apparent PM tension, and its assembly and disassembly determine the direction of cell motility, controlling the driving forces of migration. There is also evidence that membrane tension plays a role in malignant cancer cell metastasis and stem cell differentiation. Here, we review recent important discoveries that explore the role of membrane tension in the regulation of diverse cellular processes, and discuss the mechanisms of cell dynamics regulated by this physical parameter.
Collapse
Affiliation(s)
- Toshiki Itoh
- Biosignal Research Center, Kobe University, Kobe, Hyogo, 657-8501, Japan; Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
| | - Kazuya Tsujita
- Biosignal Research Center, Kobe University, Kobe, Hyogo, 657-8501, Japan; Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
| |
Collapse
|