1
|
Spazzapan M, Pegoraro S, Vuerich R, Zito G, Balduit A, Longo E, Pascolo L, Toffoli M, Meshini G, Mangogna A, Ros G, Buonomo F, Romano F, Lombardelli L, Papa G, Piccinni MP, Zacchigna S, Agostinis C, Bulla R, Ricci G. Endothelial cell supplementation promotes xenograft revascularization during short-term ovarian tissue transplantation. Bioact Mater 2025; 50:305-321. [PMID: 40276538 PMCID: PMC12020896 DOI: 10.1016/j.bioactmat.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
The ischemic/hypoxic window after Ovarian Tissue Transplantation (OTT) can be responsible for the loss of more than 60 % of follicles. The implantation of the tissue supplemented with endothelial cells (ECs) inside dermal substitutes represents a promising strategy for improving graft revascularization. Ovarian biopsies were partly cryopreserved and partly digested to isolate ovarian ECs (OVECs). Four dermal substitutes (Integra®, made of bovine collagen enriched with chondroitin 6-sulfate; PELNAC®, composed of porcine collagen; Myriad Matrix®, derived from decellularized ovine forestomach; and NovoSorb® BMT, a foam of polyurethane) were compared for their angiogenic bioactive properties. OVECs cultured onto the scaffolds upregulated the expression of angiogenic factors, supporting their use in boosting revascularization. Adhesion and proliferation assays suggested that the most suitable scaffold was the bovine collagen one, which was chosen for further in vivo experiments. Cryopreserved tissue was transplanted onto the 3D scaffold in immunodeficient mice with or without cell supplementation, and after 14 days, it was analyzed by immunofluorescence (IF) and X-ray phase contrast microtomography. The revascularization area of OVECs-supplemented tissue was doubled (7.14 %) compared to the scaffold transplanted alone (3.67 %). Furthermore, tissue viability, evaluated by nuclear counting, was significantly higher (mean of 169.6 nuclei/field) in the tissue grafted with OVECs than in the tissue grafted alone (mean of 87.2 nuclei/field). Overall, our findings suggest that the OVECs-supplementation shortens the ischemic interval and may significantly improve fertility preservation procedures.
Collapse
Affiliation(s)
| | - Silvia Pegoraro
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Roman Vuerich
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Gabriella Zito
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Andrea Balduit
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Elena Longo
- Elettra-Sincrotrone Trieste SCpA, Basovizza, Trieste, 34149, Italy
| | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Miriam Toffoli
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Giorgia Meshini
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Gloria Ros
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Francesca Buonomo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Federico Romano
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Letizia Lombardelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giovanni Papa
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Marie-Pierre Piccinni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| |
Collapse
|
2
|
Grego A, Fernandes C, Fonseca I, Dias-Neto M, Costa R, Leite-Moreira A, Oliveira SM, Trindade F, Nogueira-Ferreira R. Endothelial dysfunction in cardiovascular diseases: mechanisms and in vitro models. Mol Cell Biochem 2025:10.1007/s11010-025-05289-w. [PMID: 40259179 DOI: 10.1007/s11010-025-05289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
Endothelial cells (ECs) are arranged side-by-side to create a semi-permeable monolayer, forming the inner lining of every blood vessel (micro and macrocirculation). Serving as the first barrier for circulating molecules and cells, ECs represent the main regulators of vascular homeostasis being able to respond to environmental changes, either physical or chemical signals, by producing several factors that regulate vascular tone and cellular adhesion. Healthy endothelium has anticoagulant properties that prevent the adhesion of leukocytes and platelets to the vessel walls, contributing to resistance to thrombus formation, and regulating inflammation, and vascular smooth muscle cell proliferation. Many risk factors of cardiovascular diseases (CVDs) promote the endothelial expression of chemokines, cytokines, and adhesion molecules. The resultant endothelial activation can lead to endothelial cell dysfunction (ECD). In vitro models of ECD allow the study of cellular and molecular mechanisms of disease and provide a research platform for screening potential therapeutic agents. Even though alternative models are available, such as animal models or ex vivo models, in vitro models offer higher experimental flexibility and reproducibility, making them a valuable tool for the understanding of pathophysiological mechanisms of several diseases, such as CVDs. Therefore, this review aims to synthesize the currently available in vitro models regarding ECD, emphasizing CVDs. This work will focus on 2D cell culture models (endothelial cell lines and primary ECs), 3D cell culture systems (scaffold-free and scaffold-based), and 3D cell culture models (such as organ-on-a-chip). We will dissect the role of external stimuli-chemical and mechanical-in triggering ECD.
Collapse
Affiliation(s)
- Ana Grego
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Cristiana Fernandes
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ivo Fonseca
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Marina Dias-Neto
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Angiology and Vascular Surgery, Unidade Local de Saúde de São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Raquel Costa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Adelino Leite-Moreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Cardiothoracic Surgery, Unidade Local de Saúde de São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sandra Marisa Oliveira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Fábio Trindade
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Rita Nogueira-Ferreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
3
|
Kala S, Strutz AG, Katt ME. The Rise of Pluripotent Stem Cell-Derived Glia Models of Neuroinflammation. Neurol Int 2025; 17:6. [PMID: 39852770 PMCID: PMC11767680 DOI: 10.3390/neurolint17010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
Neuroinflammation is a blanket term that describes the body's complex inflammatory response in the central nervous system (CNS). It encompasses a phenotype shift to a proinflammatory state, the release of cytokines, the recruitment of peripheral immune cells, and a wide variety of other processes. Neuroinflammation has been implicated in nearly every major CNS disease ranging from Alzheimer's disease to brain cancer. Understanding and modeling neuroinflammation is critical for the identification of novel therapeutic targets in the treatment of CNS diseases. Unfortunately, the translation of findings from non-human models has left much to be desired. This review systematically discusses the role of human pluripotent stem cell (hPSC)-derived glia and supporting cells within the CNS, including astrocytes, microglia, oligodendrocyte precursor cells, pericytes, and endothelial cells, to describe the state of the field and hope for future discoveries. hPSC-derived cells offer an expanded potential to study the pathobiology of neuroinflammation and immunomodulatory cascades that impact disease progression. While much progress has been made in the development of models, there is much left to explore in the application of these models to understand the complex inflammatory response in the CNS.
Collapse
Affiliation(s)
- Srishti Kala
- Cancer Cell Biology Graduate Education Program, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA;
| | - Andrew G. Strutz
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA;
| | - Moriah E. Katt
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| |
Collapse
|
4
|
Kang S, Chen EC, Cifuentes H, Co JY, Cole G, Graham J, Hsia R, Kiyota T, Klein JA, Kroll KT, Nieves Lopez LM, Norona LM, Peiris H, Potla R, Romero-Lopez M, Roth JG, Tseng M, Fullerton AM, Homan KA. Complex in vitromodels positioned for impact to drug testing in pharma: a review. Biofabrication 2024; 16:042006. [PMID: 39189069 DOI: 10.1088/1758-5090/ad6933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Recent years have seen the creation and popularization of various complexin vitromodels (CIVMs), such as organoids and organs-on-chip, as a technology with the potential to reduce animal usage in pharma while also enhancing our ability to create safe and efficacious drugs for patients. Public awareness of CIVMs has increased, in part, due to the recent passage of the FDA Modernization Act 2.0. This visibility is expected to spur deeper investment in and adoption of such models. Thus, end-users and model developers alike require a framework to both understand the readiness of current models to enter the drug development process, and to assess upcoming models for the same. This review presents such a framework for model selection based on comparative -omics data (which we term model-omics), and metrics for qualification of specific test assays that a model may support that we term context-of-use (COU) assays. We surveyed existing healthy tissue models and assays for ten drug development-critical organs of the body, and provide evaluations of readiness and suggestions for improving model-omics and COU assays for each. In whole, this review comes from a pharma perspective, and seeks to provide an evaluation of where CIVMs are poised for maximum impact in the drug development process, and a roadmap for realizing that potential.
Collapse
Affiliation(s)
- Serah Kang
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Eugene C Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Helen Cifuentes
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julia Y Co
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Gabrielle Cole
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica Graham
- Product Quality & Occupational Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of Americaica
| | - Rebecca Hsia
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Tomomi Kiyota
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica A Klein
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Katharina T Kroll
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Lenitza M Nieves Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Leah M Norona
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Heshan Peiris
- Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Ratnakar Potla
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Monica Romero-Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julien G Roth
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Min Tseng
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Aaron M Fullerton
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Kimberly A Homan
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| |
Collapse
|
5
|
Bertucci T, Kakarla S, Winkelman MA, Lane K, Stevens K, Lotz S, Grath A, James D, Temple S, Dai G. Direct differentiation of human pluripotent stem cells into vascular network along with supporting mural cells. APL Bioeng 2023; 7:036107. [PMID: 37564277 PMCID: PMC10411996 DOI: 10.1063/5.0155207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
During embryonic development, endothelial cells (ECs) undergo vasculogenesis to form a primitive plexus and assemble into networks comprised of mural cell-stabilized vessels with molecularly distinct artery and vein signatures. This organized vasculature is established prior to the initiation of blood flow and depends on a sequence of complex signaling events elucidated primarily in animal models, but less studied and understood in humans. Here, we have developed a simple vascular differentiation protocol for human pluripotent stem cells that generates ECs, pericytes, and smooth muscle cells simultaneously. When this protocol is applied in a 3D hydrogel, we demonstrate that it recapitulates the dynamic processes of early human vessel formation, including acquisition of distinct arterial and venous fates, resulting in a vasculogenesis angiogenesis model plexus (VAMP). The VAMP captures the major stages of vasculogenesis, angiogenesis, and vascular network formation and is a simple, rapid, scalable model system for studying early human vascular development in vitro.
Collapse
Affiliation(s)
| | - Shravani Kakarla
- Northeastern University, Department of Bioengineering, Boston, Massachusetts 02115, USA
| | - Max A. Winkelman
- Northeastern University, Department of Bioengineering, Boston, Massachusetts 02115, USA
| | - Keith Lane
- Neural Stem Cell Institute, Rensselaer, New York 12144, USA
| | | | - Steven Lotz
- Neural Stem Cell Institute, Rensselaer, New York 12144, USA
| | - Alexander Grath
- Northeastern University, Department of Bioengineering, Boston, Massachusetts 02115, USA
| | - Daylon James
- Weill Cornell Medicine, New York, New York 10065, USA
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, New York 12144, USA
| | - Guohao Dai
- Northeastern University, Department of Bioengineering, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Girard SD, Julien-Gau I, Molino Y, Combes BF, Greetham L, Khrestchatisky M, Nivet E. High and low permeability of human pluripotent stem cell-derived blood-brain barrier models depend on epithelial or endothelial features. FASEB J 2023; 37:e22770. [PMID: 36688807 DOI: 10.1096/fj.202201422r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023]
Abstract
The search for reliable human blood-brain barrier (BBB) models represents a challenge for the development/testing of strategies aiming to enhance brain delivery of drugs. Human-induced pluripotent stem cells (hiPSCs) have raised hopes in the development of predictive BBB models. Differentiating strategies are thus required to generate endothelial cells (ECs), a major component of the BBB. Several hiPSC-based protocols have reported the generation of in vitro models with significant differences in barrier properties. We studied in depth the properties of iPSCs byproducts from two protocols that have been established to yield these in vitro barrier models. Our analysis/study reveals that iPSCs derivatives endowed with EC features yield high permeability models while the cells that exhibit outstanding barrier properties show principally epithelial cell-like (EpC) features. We found that models containing EpC-like cells express tight junction proteins, transporters/efflux pumps and display a high functional tightness with very low permeability, which are features commonly shared between BBB and epithelial barriers. Our study demonstrates that hiPSC-based BBB models need extensive characterization beforehand and that a reliable human BBB model containing EC-like cells and displaying low permeability is still needed.
Collapse
Affiliation(s)
- Stéphane D Girard
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
- Faculty of Medicine, VECT-HORUS SAS, Marseille, France
| | | | - Yves Molino
- Faculty of Medicine, VECT-HORUS SAS, Marseille, France
| | | | - Louise Greetham
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
| | - Michel Khrestchatisky
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
| | - Emmanuel Nivet
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
| |
Collapse
|
7
|
Abstract
The brain is arguably the most fascinating and complex organ in the human body. Recreating the brain in vitro is an ambition restricted by our limited understanding of its structure and interacting elements. One of these interacting parts, the brain microvasculature, is distinguished by a highly selective barrier known as the blood-brain barrier (BBB), limiting the transport of substances between the blood and the nervous system. Numerous in vitro models have been used to mimic the BBB and constructed by implementing a variety of microfabrication and microfluidic techniques. However, currently available models still cannot accurately imitate the in vivo characteristics of BBB. In this article, we review recent BBB models by analyzing each parameter affecting the accuracy of these models. Furthermore, we propose an investigation of the synergy between BBB models and neuronal tissue biofabrication, which results in more advanced models, including neurovascular unit microfluidic models and vascularized brain organoid-based models.
Collapse
Affiliation(s)
- Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China.,School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongzhao Zhou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China.,School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Weikang Lv
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China.,School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaobin Xu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China.,School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China.,School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Shafiee S, Shariatzadeh S, Zafari A, Majd A, Niknejad H. Recent Advances on Cell-Based Co-Culture Strategies for Prevascularization in Tissue Engineering. Front Bioeng Biotechnol 2021; 9:745314. [PMID: 34900955 PMCID: PMC8655789 DOI: 10.3389/fbioe.2021.745314] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, the fabrication of a functional vascular network to maintain the viability of engineered tissues is a major bottleneck in the way of developing a more advanced engineered construct. Inspired by vasculogenesis during the embryonic period, the in vitro prevascularization strategies have focused on optimizing communications and interactions of cells, biomaterial and culture conditions to develop a capillary-like network to tackle the aforementioned issue. Many of these studies employ a combination of endothelial lineage cells and supporting cells such as mesenchymal stem cells, fibroblasts, and perivascular cells to create a lumenized endothelial network. These supporting cells are necessary for the stabilization of the newly developed endothelial network. Moreover, to optimize endothelial network development without impairing biomechanical properties of scaffolds or differentiation of target tissue cells, several other factors, including target tissue, endothelial cell origins, the choice of supporting cell, culture condition, incorporated pro-angiogenic factors, and choice of biomaterial must be taken into account. The prevascularization method can also influence the endothelial lineage cell/supporting cell co-culture system to vascularize the bioengineered constructs. This review aims to investigate the recent advances on standard cells used in in vitro prevascularization methods, their co-culture systems, and conditions in which they form an organized and functional vascular network.
Collapse
Affiliation(s)
- Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Zafari
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Majd
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Yan L, Moriarty RA, Stroka KM. Recent progress and new challenges in modeling of human pluripotent stem cell-derived blood-brain barrier. Theranostics 2021; 11:10148-10170. [PMID: 34815809 PMCID: PMC8581424 DOI: 10.7150/thno.63195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) is a semipermeable unit that serves to vascularize the central nervous system (CNS) while tightly regulating the movement of molecules, ions, and cells between the blood and the brain. The BBB precisely controls brain homeostasis and protects the neural tissue from toxins and pathogens. The BBB is coordinated by a tight monolayer of brain microvascular endothelial cells, which is subsequently supported by mural cells, astrocytes, and surrounding neuronal cells that regulate the barrier function with a series of specialized properties. Dysfunction of barrier properties is an important pathological feature in the progression of various neurological diseases. In vitro BBB models recapitulating the physiological and diseased states are important tools to understand the pathological mechanism and to serve as a platform to screen potential drugs. Recent advances in this field have stemmed from the use of pluripotent stem cells (PSCs). Various cell types of the BBB such as brain microvascular endothelial cells (BMECs), pericytes, and astrocytes have been derived from PSCs and synergistically incorporated to model the complex BBB structure in vitro. In this review, we summarize the most recent protocols and techniques for the differentiation of major cell types of the BBB. We also discuss the progress of BBB modeling by using PSC-derived cells and perspectives on how to reproduce more natural BBBs in vitro.
Collapse
Affiliation(s)
- Li Yan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Rebecca A. Moriarty
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Criss ZK, Bhasin N, Di Rienzi SC, Rajan A, Deans-Fielder K, Swaminathan G, Kamyabi N, Zeng XL, Doddapaneni H, Menon VK, Chakravarti D, Estrella C, Yu X, Patil K, Petrosino JF, Fleet JC, Verzi MP, Christakos S, Helmrath MA, Arimura S, DePinho RA, Britton RA, Maresso AW, Grande-Allen KJ, Blutt SE, Crawford SE, Estes MK, Ramani S, Shroyer NF. Drivers of transcriptional variance in human intestinal epithelial organoids. Physiol Genomics 2021; 53:486-508. [PMID: 34612061 DOI: 10.1152/physiolgenomics.00061.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human intestinal epithelial organoids (enteroids and colonoids) are tissue cultures used for understanding the physiology of the human intestinal epithelium. Here, we explored the effect on the transcriptome of common variations in culture methods, including extracellular matrix substrate, format, tissue segment, differentiation status, and patient heterogeneity. RNA-sequencing datasets from 276 experiments performed on 37 human enteroid and colonoid lines from 29 patients were aggregated from several groups in the Texas Medical Center. DESeq2 and gene set enrichment analysis (GSEA) were used to identify differentially expressed genes and enriched pathways. PERMANOVA, Pearson's correlation, and dendrogram analysis of the data originally indicated three tiers of influence of culture methods on transcriptomic variation: substrate (collagen vs. Matrigel) and format (3-D, transwell, and monolayer) had the largest effect; segment of origin (duodenum, jejunum, ileum, colon) and differentiation status had a moderate effect; and patient heterogeneity and specific experimental manipulations (e.g., pathogen infection) had the smallest effect. GSEA identified hundreds of pathways that varied between culture methods, such as IL1 cytokine signaling enriched in transwell versus monolayer cultures and E2F target genes enriched in collagen versus Matrigel cultures. The transcriptional influence of the format was furthermore validated in a synchronized experiment performed with various format-substrate combinations. Surprisingly, large differences in organoid transcriptome were driven by variations in culture methods such as format, whereas experimental manipulations such as infection had modest effects. These results show that common variations in culture conditions can have large effects on intestinal organoids and should be accounted for when designing experiments and comparing results between laboratories. Our data constitute the largest RNA-seq dataset interrogating human intestinal epithelial organoids.
Collapse
Affiliation(s)
- Zachary K Criss
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Nobel Bhasin
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sara C Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Kali Deans-Fielder
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | | | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Vipin K Menon
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Clarissa Estrella
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xiaomin Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - James C Fleet
- Department of Nutrition Sciences, The University of Texas, Austin, Texas
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - Michael A Helmrath
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sumimasa Arimura
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | | | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Noah F Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
11
|
Qin K, Lei J, Yang J. The Differentiation of Pluripotent Stem Cells towards Endothelial Progenitor Cells - Potential Application in Pulmonary Arterial Hypertension. Int J Stem Cells 2021; 15:122-135. [PMID: 34711697 PMCID: PMC9148829 DOI: 10.15283/ijsc21044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022] Open
Abstract
Background and Objectives Endothelial progenitor cells (EPCs) and endothelial cells (ECs) have been applied in the clinic to treat pulmonary arterial hypertension (PAH), a disease characterized by disordered pulmonary vasculature. However, the lack of sufficient transplantable cells before the deterioration of disease condition is a current limitation to apply cell therapy in patients. It is necessary to differentiate pluripotent stem cells (PSCs) into EPCs and identify their characteristics. Methods and Results Comparing previously reported methods of human PSCs-derived ECs, we optimized a highly efficient differentiation protocol to obtain cells that match the phenotype of isolated EPCs from healthy donors. The protocol is compatible with chemically defined medium (CDM), it could produce a large number of clinically applicable cells with low cost. Moreover, we also found PSCs-derived EPCs express CD133, have some characteristics of mesenchymal stem cells and are capable of homing to repair blood vessels in zebrafish xenograft assays. In addition, we further revealed that IPAH PSCs-derived EPCs have higher expression of proliferation-related genes and lower expression of immune-related genes than normal EPCs and PSCs-derived EPCs through microarray analysis. Conclusions In conclusion, we optimized a highly efficient differentiation protocol to obtain PSCs-derived EPCs with the phenotypic and molecular characteristics of EPCs from healthy donors which distinguished them from EPCs from PAH.
Collapse
Affiliation(s)
- Kezhou Qin
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jia Lei
- Department of Physiology, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Yang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Physiology, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Zhang Z, Gong L, Li M, Wei G, Liu Y. The osteogenic differentiation of human bone marrow stromal cells induced by nanofiber scaffolds using bioinformatics. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166245. [PMID: 34391896 DOI: 10.1016/j.bbadis.2021.166245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
This article aims to investigate the mechanism of behaviors of human bone marrow stromal cells (hBMSCs) affected by scaffold structure combining Monte Carlo feature selection (MFCS), incremental feature selection (IFS) and support vector machine (SVM). The specific differentially expressed genes (DEGs) of hBMSCs cultured on nanofiber (NF) scaffolds and freeform fabrication (FFF) scaffolds were obtained. Key genes were screened from common genes between osteogenic DEGs and NF specific DEGs with MFCS, IFS and SVM. The results demonstrated that NF scaffolds induced hBMSCs to express more genes related to osteogenic differentiation. Finally, 16 key genes were identified among the common genes. The common genes were significantly enriched in Rap1 signaling pathway, extracellular matrix and ossification. The results in this study suggested that the gene expression of hBMSCs was sensitive to NF scaffolds and FFF scaffolds, and the osteogenic differentiation of hBMSCs could be enhanced by NF scaffolds.
Collapse
Affiliation(s)
- Zhenghai Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lulu Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Min Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guoshuai Wei
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yan Liu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
13
|
Yin S, Cao Y. Hydrogels for Large-Scale Expansion of Stem Cells. Acta Biomater 2021; 128:1-20. [PMID: 33746032 DOI: 10.1016/j.actbio.2021.03.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Stem cells demonstrate considerable promise for various preclinical and clinical applications, including drug screening, disease treatments, and regenerative medicine. Producing high-quality and large amounts of stem cells is in demand for these applications. Despite challenges, as hydrogel-based cell culture technology has developed, tremendous progress has been made in stem cell expansion and directed differentiation. Hydrogels are soft materials with abundant water. Many hydrogel properties, including biodegradability, mechanical strength, and porosity, have been shown to play essential roles in regulating stem cell proliferation and differentiation. The biochemical and physical properties of hydrogels can be specifically tailored to mimic the native microenvironment that various stem cells reside in vivo. A few hydrogel-based systems have been developed for successful stem cell cultures and expansion in vitro. In this review, we summarize various types of hydrogels that have been designed to effectively enhance the proliferation of hematopoietic stem cells (HSCs), mesenchymal stem/stromal cells (MSCs), and pluripotent stem cells (PSCs), respectively. According to each stem cell type's preference, we also discuss strategies for fabricating hydrogels with biochemical and mechanical cues and other characteristics representing microenvironments of stem cells in vivo. STATEMENT OF SIGNIFICANCE: In this review article we summarize current progress on the construction of hydrogel systems for the culture and expansion of various stem cells, including hematopoietic stem cells (HSCs), mesenchymal stem/stromal cells (MSCs), and pluripotent stem cells (PSCs). The Significance includes: (1) Provide detailed discussion on the stem cell niches that should be considered for stem cell in vitro expansion. (2) Summarize various strategies to construct hydrogels that can largely recapture the microenvironment of native stem cells. (3) Suggest a few future directions that can be implemented to improve current in vitro stem cell expansion systems.
Collapse
Affiliation(s)
- Sheng Yin
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China; Chemistry and Biomedicine innovation center, Nanjing University, Nanjing, 210093, China; Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen, China, 518057
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China; Chemistry and Biomedicine innovation center, Nanjing University, Nanjing, 210093, China; Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen, China, 518057.
| |
Collapse
|
14
|
Li X, Yu Y, Wei R, Li Y, Lv J, Liu Z, Zhang Y. In vitro and in vivo study on angiogenesis of porcine induced pluripotent stem cell-derived endothelial cells. Differentiation 2021; 120:10-18. [PMID: 34116291 DOI: 10.1016/j.diff.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/16/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
Pluripotent stem cells (PSCs) are a promising source of endothelial cells (ECs) for the treatment of cardiovascular diseases. Since clinical application of embryo stem cells (ESCs) involves issues of medical ethics and risk of immune rejection, induced pluripotent stem cells (iPSCs) will facilitate cell transplantation therapy for the cardiovascular diseases. Swine is identified as an ideal large-animal model for human, because of its similar organ size and physiological characteristics. However, there are very few studies on EC differentiation of porcine iPSCs (piPSCs). In recent study, we provided an efficient protocol to differentiate piPSCs into ECs with the purity of 19.76% CD31 positive cells within 16 days. Passaging of these cells yielded a nearly pure population, which also expressed other endothelial markers such as CD144, eNOS and vWF. Besides, these cells exhibited functions of ECs such as uptake of low-density lipoprotein and formation of tubes in vitro or blood vessels in vivo. Our study successfully obtained ECs from piPSCs via a feeder- and serum-free monolayer system and demonstrated their angiogenic function in vivo and in vitro. piPSC-ECs derivation is not only potential for the autologous cell transplantation and cardiovascular drug screening, but also for the mechanistic studies on EC differentiation and endothelial dysfunction.
Collapse
Affiliation(s)
- Xuechun Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yang Yu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Renyue Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yimei Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiawei Lv
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yu Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
15
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|
16
|
Ng AHM, Khoshakhlagh P, Rojo Arias JE, Pasquini G, Wang K, Swiersy A, Shipman SL, Appleton E, Kiaee K, Kohman RE, Vernet A, Dysart M, Leeper K, Saylor W, Huang JY, Graveline A, Taipale J, Hill DE, Vidal M, Melero-Martin JM, Busskamp V, Church GM. A comprehensive library of human transcription factors for cell fate engineering. Nat Biotechnol 2021; 39:510-519. [PMID: 33257861 PMCID: PMC7610615 DOI: 10.1038/s41587-020-0742-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Human pluripotent stem cells (hPSCs) offer an unprecedented opportunity to model diverse cell types and tissues. To enable systematic exploration of the programming landscape mediated by transcription factors (TFs), we present the Human TFome, a comprehensive library containing 1,564 TF genes and 1,732 TF splice isoforms. By screening the library in three hPSC lines, we discovered 290 TFs, including 241 that were previously unreported, that induce differentiation in 4 days without alteration of external soluble or biomechanical cues. We used four of the hits to program hPSCs into neurons, fibroblasts, oligodendrocytes and vascular endothelial-like cells that have molecular and functional similarity to primary cells. Our cell-autonomous approach enabled parallel programming of hPSCs into multiple cell types simultaneously. We also demonstrated orthogonal programming by including oligodendrocyte-inducible hPSCs with unmodified hPSCs to generate cerebral organoids, which expedited in situ myelination. Large-scale combinatorial screening of the Human TFome will complement other strategies for cell engineering based on developmental biology and computational systems biology.
Collapse
Affiliation(s)
- Alex H M Ng
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Parastoo Khoshakhlagh
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Jesus Eduardo Rojo Arias
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Giovanni Pasquini
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Kai Wang
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Anka Swiersy
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Seth L Shipman
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA, USA
| | - Evan Appleton
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Kiavash Kiaee
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Richie E Kohman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Andyna Vernet
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Matthew Dysart
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Kathleen Leeper
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Wren Saylor
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Jeremy Y Huang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Amanda Graveline
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Jussi Taipale
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Applied Tumor Genomics Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - David E Hill
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marc Vidal
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Volker Busskamp
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany.
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany.
| | - George M Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
- GC Therapeutics, Inc, Cambridge, MA, USA.
| |
Collapse
|
17
|
Manian KV, Galloway CA, Dalvi S, Emanuel AA, Mereness JA, Black W, Winschel L, Soto C, Li Y, Song Y, DeMaria W, Kumar A, Slukvin I, Schwartz MP, Murphy WL, Anand-Apte B, Chung M, Benoit DSW, Singh R. 3D iPSC modeling of the retinal pigment epithelium-choriocapillaris complex identifies factors involved in the pathology of macular degeneration. Cell Stem Cell 2021; 28:846-862.e8. [PMID: 33784497 DOI: 10.1016/j.stem.2021.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/09/2020] [Accepted: 02/02/2021] [Indexed: 11/15/2022]
Abstract
The retinal pigment epithelium (RPE)-choriocapillaris (CC) complex in the eye is compromised in age-related macular degeneration (AMD) and related macular dystrophies (MDs), yet in vitro models of RPE-CC complex that enable investigation of AMD/MD pathophysiology are lacking. By incorporating iPSC-derived cells into a hydrogel-based extracellular matrix, we developed a 3D RPE-CC model that recapitulates key features of both healthy and AMD/MD eyes and provides modular control over RPE and CC layers. Using this 3D RPE-CC model, we demonstrated that both RPE- and mesenchyme-secreted factors are necessary for the formation of fenestrated CC-like vasculature. Our data show that choroidal neovascularization (CNV) and CC atrophy occur in the absence of endothelial cell dysfunction and are not necessarily secondary to drusen deposits underneath RPE cells, and CC atrophy and/or CNV can be initiated systemically by patient serum or locally by mutant RPE-secreted factors. Finally, we identify FGF2 and matrix metalloproteinases as potential therapeutic targets for AMD/MDs.
Collapse
Affiliation(s)
- Kannan V Manian
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Chad A Galloway
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14620, USA
| | - Sonal Dalvi
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Anthony A Emanuel
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Jared A Mereness
- Department of Biomedical Engineering, Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA; Department of Orthopedics and Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA; Center for Oral Biology, University of Rochester, Rochester, NY 14642, USA; Department of Environmental Medicine, University of Rochester, Rochester, NY 14642 USA
| | - Whitney Black
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Lauren Winschel
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Celia Soto
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Yiming Li
- Department of Biomedical Engineering, Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA
| | - Yuanhui Song
- Department of Biomedical Engineering, Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA
| | - William DeMaria
- Department of Biomedical Engineering, Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA
| | - Akhilesh Kumar
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Igor Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53715, USA
| | - Michael P Schwartz
- NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA; Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53715, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53715, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI 53715, USA
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mina Chung
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA
| | - Danielle S W Benoit
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Engineering, Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA; Department of Orthopedics and Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA; Center for Oral Biology, University of Rochester, Rochester, NY 14642, USA; Department of Environmental Medicine, University of Rochester, Rochester, NY 14642 USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA; Materials Science Program, University of Rochester, Rochester, NY 14620, USA; Department of Chemical Engineering, University of Rochester, NY 14620, USA
| | - Ruchira Singh
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Department of Orthopedics and Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA.
| |
Collapse
|
18
|
Wang Z, Zuo F, Liu Q, Wu X, Du Q, Lei Y, Wu Z, Lin H. Comparative Study of Human Pluripotent Stem Cell-Derived Endothelial Cells in Hydrogel-Based Culture Systems. ACS OMEGA 2021; 6:6942-6952. [PMID: 33748608 PMCID: PMC7970572 DOI: 10.1021/acsomega.0c06187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Human pluripotent stem cell (hPSC)-derived endothelial cells (ECs) are promising cell sources for drug discovery, tissue engineering, and studying or treating vascular diseases. However, hPSC-ECs derived from different culture methods display different phenotypes. Herein, we made a detailed comparative study of hPSC-ECs from three different culture systems (e.g., 2D, 3D PNIPAAm-PEG hydrogel, and 3D alginate hydrogel cultures) based on our previous reports. We expanded hPSCs and differentiated them into ECs in three culture systems. Both 3D hydrogel systems could mimic an in vivo physiologically relevant microenvironment to protect cells from shear force and prevent cell agglomeration, leading to a high culture efficiency and a high volumetric yield. We demonstrated that hPSC-ECs produced from both hydrogel systems had similar results as 2D-ECs. The transcriptome analysis showed that PEG-ECs and alginate-ECs displayed a functional phenotype due to their higher gene expressions in vasculature development, extracellular matrix, angiogenesis, and glycolysis, while 2D-ECs showed a proliferative phenotype due to their higher gene expressions in cell proliferation. Taken together, both PEG- and alginate-hydrogel systems will significantly advance the applications of hPSC-ECs in various biomedical fields.
Collapse
Affiliation(s)
- Zhanqi Wang
- Department
of Vascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Fuxing Zuo
- Department
of Neurosurgery, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qing Liu
- Department
of Obstetrics, Beijing Obstetrics and Gynecology
Hospital Capital Medical University, Beijing 100006, China
| | - Xuesheng Wu
- Department
of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qian Du
- Department
of Biological Systems Engineering, University
of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Yuguo Lei
- Department
of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Zhangmin Wu
- Department
of Vascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Haishuang Lin
- Department
of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
19
|
Aisenbrey EA, Torr E, Johnson H, Soref C, Daly W, Murphy WL. A protocol for rapid pericyte differentiation of human induced pluripotent stem cells. STAR Protoc 2021; 2:100261. [PMID: 33490977 PMCID: PMC7811164 DOI: 10.1016/j.xpro.2020.100261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pericytes play a critical role in promoting, regulating, and maintaining numerous vascular functions. Their dysfunction is a major contributor to the progression of vascular and neurodegenerative diseases, making them an ideal candidate for large-scale production for disease modeling and regenerative cell therapy. This protocol describes the rapid and robust differentiation of pericytes from human induced pluripotent stem cells (hiPSCs) while simultaneously generating a population of hiPSC-derived endothelial progenitor cells. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2017).
Collapse
Affiliation(s)
| | - Elizabeth Torr
- Department of Orthopedics, University of Wisconsin, Madison, WI 53705, USA
| | - Hunter Johnson
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53705, USA
| | - Cheryl Soref
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - William Daly
- Department of Orthopedics, University of Wisconsin, Madison, WI 53705, USA
| | - William L Murphy
- Department of Orthopedics, University of Wisconsin, Madison, WI 53705, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
20
|
Quan Y, Sun M, Tan Z, Eijkel JCT, van den Berg A, van der Meer A, Xie Y. Organ-on-a-chip: the next generation platform for risk assessment of radiobiology. RSC Adv 2020; 10:39521-39530. [PMID: 35515392 PMCID: PMC9057494 DOI: 10.1039/d0ra05173j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/16/2020] [Indexed: 01/04/2023] Open
Abstract
Organ-on-a-chip devices have been widely used in biomedical science and technology, for example for experimental regenerative medicine and precision healthcare. The main advantage of organ-on-a-chip technology is the facility to build a specific human model that has functional responses on the level of organs or tissues, thereby avoiding the use of animal models, as well as greatly improving new drug discovery processes for personal healthcare. An emerging application domain for organs-on-chips is the study of internal irradiation for humans, which faces the challenges of the lack of a clear model for risk estimation of internal irradiation. We believe that radiobiology studies will benefit from organ-on-a-chip technology by building specific human organ/tissues in vitro. In this paper, we briefly reviewed the state-of-the-art in organ-on-a-chip research in different domains, and conclude with the challenges of radiobiology studies at internal low-dose irradiation. Organ-on-a-chip technology has the potential to significantly improve the radiobiology study as it can mimic the function of human organs or tissues, and here we summarize its potential benefits and possible breakthrough areas, as well as its limitations in internal low-dose radiation studies. Organ-on-a-chip technology has great potential for the next generation risk estimation of low dose internal irradiation, due to its success in mimicking human organs/tissues, which possibly can significantly improve on current animal models.![]()
Collapse
Affiliation(s)
- Yi Quan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP) Mianyang Sichuan 621000 China
| | - Miao Sun
- Joint Laboratory of Nanofluidics and Interfaces, School of Physical and Technology, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Zhaoyi Tan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP) Mianyang Sichuan 621000 China
| | - Jan C T Eijkel
- BIOS, Lab on a Chip Group, MESA+ Institution for Nanotechnology, University of Twente 7522 NB Enschede The Netherlands
| | - Albert van den Berg
- BIOS, Lab on a Chip Group, MESA+ Institution for Nanotechnology, University of Twente 7522 NB Enschede The Netherlands
| | - Andries van der Meer
- Department of Applied Stem Cell Technologies, University of Twente 7522 NB Enschede The Netherlands
| | - Yanbo Xie
- Joint Laboratory of Nanofluidics and Interfaces, School of Physical and Technology, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| |
Collapse
|
21
|
Wang B, Chen R, Gao H, Lv X, Chen L, Wang W, Liu Y, Zheng N, Lin R. A comparative study unraveling the effects of TNF-α stimulation on endothelial cells between 2D and 3D culture. ACTA ACUST UNITED AC 2020; 15:065018. [PMID: 32442992 DOI: 10.1088/1748-605x/ab95e3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelial cell (EC) dysfunction is an important predictor of and contributor to the pathobiology of cardiovascular diseases. However, most in vitro studies are performed using monolayer cultures of ECs on 2D tissue polystyrene plates (TCPs), which cannot reflect the physiological characteristics of cells in vivo. Here, we used 2D TCPs and a 3D culture model to investigate the effects of dimensionality and cardiovascular risk factors in regulating endothelial dysfunction. Cell morphology, oxidative stress, inflammatory cytokines and endothelial function were investigated in human umbilical vein endothelial cells (HUVECs) cultured in 2D/3D. The differentially expressed genes in 2D/3D-cultured HUVECs were analysed using Enrichr, Cytoscape and STRING services. Finally, we validated the proteins of interest and confirmed their relevance to TNF-α and the culture microenvironment. Compared with 2D TCPs, 3D culture increased TNF-α-stimulated oxidative stress and the inflammatory response and changed the mediators secreted by ECs. In addition, the functional characteristics, important pathways and key proteins were determined by bioinformatics analysis. Furthermore, we found that some key proteins, notably ACE, CD40, Sirt1 and Sirt6, represent a critical link between endothelial dysfunction and dimensionality, and these proteins were screened by bioinformatics analysis and verified by western blotting. Our observations provide insight into the interdependence between endothelial dysfunction and the complex microenvironment, which enhances our understanding of endothelial biology or provides a therapeutic strategy for cardiovascular-related diseases.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Down syndrome iPSC model: endothelial perspective on tumor development. Oncotarget 2020; 11:3387-3404. [PMID: 32934781 PMCID: PMC7486695 DOI: 10.18632/oncotarget.27712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/01/2020] [Indexed: 12/12/2022] Open
Abstract
Trisomy 21 (T21), known as Down syndrome (DS), is a widely studied chromosomal abnormality. Previous studies have shown that DS individuals have a unique cancer profile. While exhibiting low solid tumor prevalence, DS patients are at risk for hematologic cancers, such as acute megakaryocytic leukemia and acute lymphoblastic leukemia. We speculated that endothelial cells are active players in this clinical background. To this end, we hypothesized that impaired DS endothelial development and functionality, impacted by genome-wide T21 alterations, potentially results in a suboptimal endothelial microenvironment with the capability to prevent solid tumor growth. To test this hypothesis, we assessed molecular and phenotypic differences of endothelial cells differentiated from Down syndrome and euploid iPS cells. Microarray, RNA-Seq, and bioinformatic analyses revealed that most significantly expressed genes belong to angiogenic, cytoskeletal rearrangement, extracellular matrix remodeling, and inflammatory pathways. Interestingly, the majority of these genes are not located on Chromosome 21. To substantiate these findings, we carried out functional assays. The obtained phenotypic results correlated with the molecular data and showed that Down syndrome endothelial cells exhibit decreased proliferation, reduced migration, and a weak TNF-α inflammatory response. Based on this data, we provide a set of genes potentially associated with Down syndrome’s elevated leukemic incidence and its unfavorable solid tumor microenvironment—highlighting the potential use of these genes as therapeutic targets in translational cancer research.
Collapse
|
23
|
Branco MA, Cabral JM, Diogo MM. From Human Pluripotent Stem Cells to 3D Cardiac Microtissues: Progress, Applications and Challenges. Bioengineering (Basel) 2020; 7:E92. [PMID: 32785039 PMCID: PMC7552661 DOI: 10.3390/bioengineering7030092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
The knowledge acquired throughout the years concerning the in vivo regulation of cardiac development has promoted the establishment of directed differentiation protocols to obtain cardiomyocytes (CMs) and other cardiac cells from human pluripotent stem cells (hPSCs), which play a crucial role in the function and homeostasis of the heart. Among other developments in the field, the transition from homogeneous cultures of CMs to more complex multicellular cardiac microtissues (MTs) has increased the potential of these models for studying cardiac disorders in vitro and for clinically relevant applications such as drug screening and cardiotoxicity tests. This review addresses the state of the art of the generation of different cardiac cells from hPSCs and the impact of transitioning CM differentiation from 2D culture to a 3D environment. Additionally, current methods that may be employed to generate 3D cardiac MTs are reviewed and, finally, the adoption of these models for in vitro applications and their adaptation to medium- to high-throughput screening settings are also highlighted.
Collapse
Affiliation(s)
| | | | - Maria Margarida Diogo
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.A.B.); (J.M.S.C.)
| |
Collapse
|
24
|
Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. NATURE REVIEWS. MATERIALS 2020; 5:539-551. [PMID: 32953138 PMCID: PMC7500703 DOI: 10.1038/s41578-020-0199-8] [Citation(s) in RCA: 542] [Impact Index Per Article: 108.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 05/19/2023]
Abstract
Matrigel, a basement-membrane matrix extracted from Engelbreth-Holm-Swarm mouse sarcomas, has been used for more than four decades for a myriad of cell culture applications. However, Matrigel is limited in its applicability to cellular biology, therapeutic cell manufacturing and drug discovery owing to its complex, ill-defined and variable composition. Variations in the mechanical and biochemical properties within a single batch of Matrigel - and between batches - have led to uncertainty in cell culture experiments and a lack of reproducibility. Moreover, Matrigel is not conducive to physical or biochemical manipulation, making it difficult to fine-tune the matrix to promote intended cell behaviours and achieve specific biological outcomes. Recent advances in synthetic scaffolds have led to the development of xenogenic-free, chemically defined, highly tunable and reproducible alternatives. In this Review, we assess the applications of Matrigel in cell culture, regenerative medicine and organoid assembly, detailing the limitations of Matrigel and highlighting synthetic scaffold alternatives that have shown equivalent or superior results. Additionally, we discuss the hurdles that are limiting a full transition from Matrigel to synthetic scaffolds and provide a brief perspective on the future directions of synthetic scaffolds for cell culture applications.
Collapse
Affiliation(s)
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin–Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
25
|
Jia J, Jeon EJ, Li M, Richards DJ, Lee S, Jung Y, Barrs RW, Coyle R, Li X, Chou JC, Yost MJ, Gerecht S, Cho SW, Mei Y. Evolutionarily conserved sequence motif analysis guides development of chemically defined hydrogels for therapeutic vascularization. SCIENCE ADVANCES 2020; 6:eaaz5894. [PMID: 32923589 PMCID: PMC7455498 DOI: 10.1126/sciadv.aaz5894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/10/2020] [Indexed: 05/04/2023]
Abstract
Biologically active ligands (e.g., RGDS from fibronectin) play critical roles in the development of chemically defined biomaterials. However, recent decades have shown only limited progress in discovering novel extracellular matrix-protein-derived ligands for translational applications. Through motif analysis of evolutionarily conserved RGD-containing regions in laminin (LM) and peptide-functionalized hydrogel microarray screening, we identified a peptide (a1) that showed superior supports for endothelial cell (EC) functions. Mechanistic studies attributed the results to the capacity of a1 engaging both LM- and Fn-binding integrins. RNA sequencing of ECs in a1-functionalized hydrogels showed ~60% similarities with Matrigel in "vasculature development" gene ontology terms. Vasculogenesis assays revealed the capacity of a1-formulated hydrogels to improve EC network formation. Injectable alginates functionalized with a1 and MMPQK (a vascular endothelial growth factor-mimetic peptide with a matrix metalloproteinase-degradable linker) increased blood perfusion and functional recovery over decellularized extracellular matrix and (RGDS + MMPQK)-functionalized hydrogels in an ischemic hindlimb model, illustrating the power of this approach.
Collapse
Affiliation(s)
- Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Eun Je Jeon
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Biomaterials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Mei Li
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | - Dylan J. Richards
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Soojin Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Robert Coyle
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaoyang Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, USA
- Ocean University of China, School of Medicine and Pharmacy, Qingdao, Shandong, China
| | - James C. Chou
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, USA
| | - Michael J. Yost
- Department of Surgery, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, and Johns Hopkins Physical Sciences–Oncology Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
26
|
Khalil AS, Xie AW, Johnson HJ, Murphy WL. Sustained release and protein stabilization reduce the growth factor dosage required for human pluripotent stem cell expansion. Biomaterials 2020; 248:120007. [PMID: 32302801 PMCID: PMC8445021 DOI: 10.1016/j.biomaterials.2020.120007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/24/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
Translation of human pluripotent stem cell (hPSC)-derived therapies to the clinic demands scalable, cost-effective methods for cell expansion. Culture media currently used for hPSC expansion rely on high concentrations and frequent supplementation of recombinant growth factors due to their short half-life at physiological temperatures. Here, we developed a biomaterial strategy using mineral-coated microparticles (MCMs) to sustain delivery of basic fibroblast growth factor (bFGF), a thermolabile protein critical for hPSC pluripotency and proliferation. We show that the MCMs stabilize bFGF against thermally induced activity loss and provide more efficient sustained release of active growth factor compared to polymeric carriers commonly used for growth factor delivery. Using a statistically driven optimization approach called Design of Experiments, we generated a bFGF-loaded MCM formulation that supported hPSC expansion over 25 passages without the need for additional bFGF supplementation to the media, resulting in greater than 80% reduction in bFGF usage compared to standard approaches. This materials-based strategy to stabilize and sustain delivery of a thermolabile growth factor has broad potential to reduce costs associated with recombinant protein supplements in scalable biomanufacturing of emerging cell therapies.
Collapse
Affiliation(s)
- Andrew S Khalil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Angela W Xie
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hunter J Johnson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
27
|
Brown A, He H, Trumper E, Valdez J, Hammond P, Griffith LG. Engineering PEG-based hydrogels to foster efficient endothelial network formation in free-swelling and confined microenvironments. Biomaterials 2020; 243:119921. [PMID: 32172030 PMCID: PMC7203641 DOI: 10.1016/j.biomaterials.2020.119921] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
In vitro tissue engineered models are poised to have significant impact on disease modeling and preclinical drug development. Reliable methods to induce microvascular networks in such microphysiological systems are needed to improve the size and physiological function of these models. By systematically engineering several physical and biomolecular properties of the cellular microenvironment (including crosslinking density, polymer density, adhesion ligand concentration, and degradability), we establish design principles that describe how synthetic matrix properties influence vascular morphogenesis in modular and tunable hydrogels based on commercial 8-arm poly (ethylene glycol) (PEG8a) macromers. We apply these design principles to generate endothelial networks that exhibit consistent morphology throughout depths of hydrogel greater than 1 mm. These PEG8a-based hydrogels have relatively high volumetric swelling ratios (>1.5), which limits their utility in confined environments such as microfluidic devices. To overcome this limitation, we mitigate swelling by incorporating a highly functional PEG-grafted alpha-helical poly (propargyl-l-glutamate) (PPLGgPEG) macromer along with the canonical 8-arm PEG8a macromer in gel formation. This hydrogel platform supports enhanced endothelial morphogenesis in neutral-swelling environments. Finally, we incorporate PEG8a-PPLGgPEG gels into microfluidic devices and demonstrate improved diffusion kinetics and microvascular network formation in situ compared to PEG8a-based gels.
Collapse
Affiliation(s)
- Alexander Brown
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hongkun He
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ella Trumper
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jorge Valdez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Paula Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
28
|
Aoki H, Yamashita M, Hashita T, Ogami K, Hoshino S, Iwao T, Matsunaga T. Efficient differentiation and purification of human induced pluripotent stem cell-derived endothelial progenitor cells and expansion with the use of inhibitors of ROCK, TGF-β, and GSK3β. Heliyon 2020; 6:e03493. [PMID: 32154424 PMCID: PMC7056658 DOI: 10.1016/j.heliyon.2020.e03493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 01/29/2023] Open
Abstract
Endothelial cells (ECs) and endothelial progenitor cells (EPCs) play crucial roles in maintaining vascular health and homeostasis. Both cell types have been used in regenerative therapy as well as in various in vitro models; however, the properties of primary human ECs and EPCs are dissimilar owing to differences in genetic backgrounds and sampling techniques. Human induced pluripotent stem cells (hiPSCs) are an alternative cell source of ECs and EPCs. However, owing to the low purity of differentiated cells from hiPSCs, purification via an antigen–antibody reaction, which damages the cells, is indispensable. Besides, owing to limited expandability, it is difficult to produce these cells in large numbers. Here we report the development of relatively simple differentiation and purification methods for hiPSC-derived EPCs (iEPCs). Furthermore, we discovered that a combination of three small molecules, that is, Y-27632 (a selective inhibitor of Rho-associated, coiled-coil containing protein kinase [ROCK]), A 83–01 (a receptor-like kinase inhibitor of transforming growth factor beta [TGF-β]), and CHIR-99021 (a selective inhibitor of glycogen synthase kinase-3β [GSK3β] that also activates Wnt), dramatically stimulated protein synthesis-related pathways and enhanced the proliferative capacity of iEPCs. These findings will help to establish a supply system of EPCs at an industrial scale.
Collapse
Affiliation(s)
- Hiromasa Aoki
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Misaki Yamashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Koichi Ogami
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Shinichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
- Corresponding author.
| |
Collapse
|
29
|
Gualtero DF, Lafaurie GI, Fontanilla MR. Differential responses of endothelial cells on three‐dimensional scaffolds to lipopolysaccharides from periodontopathogens. Mol Oral Microbiol 2019; 34:183-193. [DOI: 10.1111/omi.12263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Diego F. Gualtero
- Biotechnology Laboratory, Basic Oral Research Unit (UIBO), School of Odontology Universidad El Bosque Bogotá D.C. Colombia
- Tissue Engineering Group, Department of Pharmacy Universidad Nacional de Colombia Bogotá D.C. Colombia
| | - Gloria I. Lafaurie
- Biotechnology Laboratory, Basic Oral Research Unit (UIBO), School of Odontology Universidad El Bosque Bogotá D.C. Colombia
| | - Marta R. Fontanilla
- Tissue Engineering Group, Department of Pharmacy Universidad Nacional de Colombia Bogotá D.C. Colombia
| |
Collapse
|
30
|
Constructing an Isogenic 3D Human Nephrogenic Progenitor Cell Model Composed of Endothelial, Mesenchymal, and SIX2-Positive Renal Progenitor Cells. Stem Cells Int 2019; 2019:3298432. [PMID: 31191670 PMCID: PMC6525793 DOI: 10.1155/2019/3298432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Urine has become the source of choice for noninvasive renal epithelial cells and renal stem cells which can be used for generating induced pluripotent stem cells. The aim of this study was to generate a 3D nephrogenic progenitor cell model composed of three distinct cell types—urine-derived SIX2-positive renal progenitor cells, iPSC-derived mesenchymal stem cells, and iPSC-derived endothelial cells originating from the same individual. Characterization of the generated mesenchymal stem cells revealed plastic adherent growth and a trilineage differentiation potential to adipocytes, chondrocytes, and osteoblasts. Furthermore, these cells express the typical MSC markers CD73, CD90, and CD105. The induced endothelial cells express the endothelial cell surface marker CD31. Upon combination of urine-derived renal progenitor cells, induced mesenchymal stem cells, and induced endothelial cells at a set ratio, the cells self-condensed into three-dimensional nephrogenic progenitor cells which we refer to as 3D-NPCs. Immunofluorescence-based stainings of sectioned 3D-NPCs revealed cells expressing the renal progenitor cell markers (SIX2 and PAX8), podocyte markers (Nephrin and Podocin), the endothelial marker (CD31), and mesenchymal markers (Vimentin and PDGFR-β). These 3D-NPCs share kidney progenitor characteristics and thus the potential to differentiate into podocytes and proximal and distal tubules. As urine-derived renal progenitor cells can be easily obtained from cells shed into urine, the generation of 3D-NPCs directly from renal progenitor cells instead of pluripotent stem cells or kidney biopsies holds a great potential for the use in nephrotoxicity tests, drug screening, modelling nephrogenesis and diseases.
Collapse
|
31
|
Faley SL, Neal EH, Wang JX, Bosworth AM, Weber CM, Balotin KM, Lippmann ES, Bellan LM. iPSC-Derived Brain Endothelium Exhibits Stable, Long-Term Barrier Function in Perfused Hydrogel Scaffolds. Stem Cell Reports 2019; 12:474-487. [PMID: 30773484 PMCID: PMC6409430 DOI: 10.1016/j.stemcr.2019.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Abstract
There is a profound need for functional, biomimetic in vitro tissue constructs of the human blood-brain barrier and neurovascular unit (NVU) to model diseases and identify therapeutic interventions. Here, we show that induced pluripotent stem cell (iPSC)-derived human brain microvascular endothelial cells (BMECs) exhibit robust barrier functionality when cultured in 3D channels within gelatin hydrogels. We determined that BMECs cultured in 3D under perfusion conditions were 10-100 times less permeable to sodium fluorescein, 3 kDa dextran, and albumin relative to human umbilical vein endothelial cell and human dermal microvascular endothelial cell controls, and the BMECs maintained barrier function for up to 21 days. Analysis of cell-cell junctions revealed expression patterns supporting barrier formation. Finally, efflux transporter activity was maintained over 3 weeks of perfused culture. Taken together, this work lays the foundation for development of a representative 3D in vitro model of the human NVU constructed from iPSCs.
Collapse
Affiliation(s)
- Shannon L Faley
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Emma H Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Jason X Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Allison M Bosworth
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Callie M Weber
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Kylie M Balotin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University Medical School, Nashville, TN 37232, USA; Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37232, USA.
| | - Leon M Bellan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
32
|
Duran D, Zeng X, Jin SC, Choi J, Nelson-Williams C, Yatsula B, Gaillard J, Furey CG, Lu Q, Timberlake AT, Dong W, Sorscher MA, Loring E, Klein J, Allocco A, Hunt A, Conine S, Karimy JK, Youngblood MW, Zhang J, DiLuna ML, Matouk CC, Mane S, Tikhonova IR, Castaldi C, López-Giráldez F, Knight J, Haider S, Soban M, Alper SL, Komiyama M, Ducruet AF, Zabramski JM, Dardik A, Walcott BP, Stapleton CJ, Aagaard-Kienitz B, Rodesch G, Jackson E, Smith ER, Orbach DB, Berenstein A, Bilguvar K, Vikkula M, Gunel M, Lifton RP, Kahle KT. Mutations in Chromatin Modifier and Ephrin Signaling Genes in Vein of Galen Malformation. Neuron 2019; 101:429-443.e4. [PMID: 30578106 PMCID: PMC10292091 DOI: 10.1016/j.neuron.2018.11.041] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/12/2018] [Accepted: 11/20/2018] [Indexed: 02/05/2023]
Abstract
Normal vascular development includes the formation and specification of arteries, veins, and intervening capillaries. Vein of Galen malformations (VOGMs) are among the most common and severe neonatal brain arterio-venous malformations, shunting arterial blood into the brain's deep venous system through aberrant direct connections. Exome sequencing of 55 VOGM probands, including 52 parent-offspring trios, revealed enrichment of rare damaging de novo mutations in chromatin modifier genes that play essential roles in brain and vascular development. Other VOGM probands harbored rare inherited damaging mutations in Ephrin signaling genes, including a genome-wide significant mutation burden in EPHB4. Inherited mutations showed incomplete penetrance and variable expressivity, with mutation carriers often exhibiting cutaneous vascular abnormalities, suggesting a two-hit mechanism. The identified mutations collectively account for ∼30% of studied VOGM cases. These findings provide insight into disease biology and may have clinical implications for risk assessment.
Collapse
Affiliation(s)
- Daniel Duran
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
- These authors contributed equally
| | - Xue Zeng
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
- These authors contributed equally
| | - Sheng Chih Jin
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- These authors contributed equally
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- These authors contributed equally
| | | | - Bogdan Yatsula
- Department of Surgery, Yale School of Medicine, New Haven CT, USA
| | - Jonathan Gaillard
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | | | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison WI, USA
| | | | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
| | - Michelle A. Sorscher
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Erin Loring
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
| | - Jennifer Klein
- Department of Neurosurgery, Boston Children’s Hospital, Boston MA, USA
| | - August Allocco
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | - Ava Hunt
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | - Sierra Conine
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | - Jason K. Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | - Mark W. Youngblood
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, UK
| | - Michael L. DiLuna
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | - Charles C. Matouk
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | | | | | | | | | - James Knight
- Yale Center for Genome Analysis, West Haven CT, USA
| | - Shozeb Haider
- University College London, School of Pharmacy, London, England
| | - Mariya Soban
- University College London, School of Pharmacy, London, England
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Seth L. Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center; and Department of Medicine, Harvard Medical School, Boston, MA USA
| | - Masaki Komiyama
- Department of Neurointervention, Osaka City General Hospital, Osaka, Japan
| | - Andrew F. Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix AZ, USA
| | | | - Alan Dardik
- Department of Surgery, Yale School of Medicine, New Haven CT, USA
| | - Brian P. Walcott
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA
| | - Christopher J. Stapleton
- Department of Neurological Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | | | - Georges Rodesch
- Service de Neuroradiologie Diagnostique et Thérapeutique, Hôpital Foch, Suresnes, France
| | - Eric Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Edward R. Smith
- Department of Neurointerventional Radiology, Boston Children’s Hospital, Boston MA, USA
| | - Darren B. Orbach
- Department of Neurosurgery, Boston Children’s Hospital, Boston MA, USA
- Department of Neurointerventional Radiology, Boston Children’s Hospital, Boston MA, USA
| | - Alejandro Berenstein
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
- Yale Center for Genome Analysis, West Haven CT, USA
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
| | - Richard P. Lifton
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Senior author
| | - Kristopher T. Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
- Department of Pediatrics, Yale School of Medicine, New Haven CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven CT, USA
- Senior author
- Lead contact
| |
Collapse
|
33
|
Kaushik G, Gil DA, Torr E, Berge ES, Soref C, Uhl P, Fontana G, Antosiewicz-Bourget J, Edington C, Schwartz MP, Griffith LG, Thomson JA, Skala MC, Daly WT, Murphy WL. Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels. Adv Healthc Mater 2019; 8:e1801186. [PMID: 30565891 PMCID: PMC6601624 DOI: 10.1002/adhm.201801186] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/22/2018] [Indexed: 12/17/2022]
Abstract
Vascularization is an important strategy to overcome diffusion limits and enable the formation of complex, physiologically relevant engineered tissues and organoids. Self-assembly is a technique to generate in vitro vascular networks, but engineering the necessary network morphology and function remains challenging. Here, autofluorescence multiphoton microscopy (aMPM), a label-free imaging technique, is used to quantitatively evaluate in vitro vascular network morphology. Vascular networks are generated using human embryonic stem cell-derived endothelial cells and primary human pericytes encapsulated in synthetic poly(ethylene glycol)-based hydrogels. Two custom-built bioreactors are used to generate distinct fluid flow patterns during vascular network formation: recirculating flow or continuous flow. aMPM is used to image these 3D vascular networks without the need for fixation, labels, or dyes. Image processing and analysis algorithms are developed to extract quantitative morphological parameters from these label-free images. It is observed with aMPM that both bioreactors promote formation of vascular networks with lower network anisotropy compared to static conditions, and the continuous flow bioreactor induces more branch points compared to static conditions. Importantly, these results agree with trends observed with immunocytochemistry. These studies demonstrate that aMPM allows label-free monitoring of vascular network morphology to streamline optimization of growth conditions and provide quality control of engineered tissues.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Daniel A Gil
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Elizabeth Torr
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Elizabeth S Berge
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Cheryl Soref
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Peyton Uhl
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Gianluca Fontana
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Jessica Antosiewicz-Bourget
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
| | - Collin Edington
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Michael P Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - James A Thomson
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
| | - Melissa C Skala
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - William T Daly
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - William L Murphy
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| |
Collapse
|
34
|
Lin H, Du Q, Li Q, Wang O, Wang Z, Elowsky C, Liu K, Zhang C, Chung S, Duan B, Lei Y. Manufacturing human pluripotent stem cell derived endothelial cells in scalable and cell-friendly microenvironments. Biomater Sci 2019; 7:373-388. [DOI: 10.1039/c8bm01095a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alginate hydrogel tubes are designed for the scalable expansion of human pluripotent stem cells and efficient differentiation into endothelial cells.
Collapse
Affiliation(s)
- Haishuang Lin
- Department of Chemical and Biomolecular Engineering
- University of Nebraska-Lincoln
- USA
| | - Qian Du
- Department of Biological Systems Engineering
- University of Nebraska-Lincoln
- USA
| | - Qiang Li
- Department of Chemical and Biomolecular Engineering
- University of Nebraska-Lincoln
- USA
- Biomedical Engineering Program
- University of Nebraska-Lincoln
| | - Ou Wang
- Department of Chemical and Biomolecular Engineering
- University of Nebraska-Lincoln
- USA
- Biomedical Engineering Program
- University of Nebraska-Lincoln
| | - Zhanqi Wang
- Department of Vascular Surgery
- Beijing Anzhen Hospital of Capital Medical University
- Beijing Institute of Heart Lung and Blood Vessel Diseases
- Beijing
- China
| | - Christian Elowsky
- Department of Agronomy and Horticulture
- University of Nebraska-Lincoln
- USA
| | - Kan Liu
- Department of Biological Systems Engineering
- University of Nebraska-Lincoln
- USA
| | - Chi Zhang
- Department of Biological Systems Engineering
- University of Nebraska-Lincoln
- USA
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences
- University of Nebraska-Lincoln
- Lincoln
- USA
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program
- University of Nebraska Medical Center
- Omaha
- USA
| | - Yuguo Lei
- Department of Chemical and Biomolecular Engineering
- University of Nebraska-Lincoln
- USA
- Biomedical Engineering Program
- University of Nebraska-Lincoln
| |
Collapse
|
35
|
Bertucci TB, Dai G. Biomaterial Engineering for Controlling Pluripotent Stem Cell Fate. Stem Cells Int 2018; 2018:9068203. [PMID: 30627175 PMCID: PMC6304878 DOI: 10.1155/2018/9068203] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/11/2018] [Indexed: 01/02/2023] Open
Abstract
Pluripotent stem cells (PSCs) represent an exciting cell source for tissue engineering and regenerative medicine due to their self-renewal and differentiation capacities. The majority of current PSC protocols rely on 2D cultures and soluble factors to guide differentiation; however, many other environmental signals are beginning to be explored using biomaterial platforms. Biomaterials offer new opportunities to engineer the stem cell niches and 3D environments for exploring biophysical and immobilized signaling cues to further our control over stem cell fate. Here, we review the biomaterial platforms that have been engineered to control PSC fate. We explore how altering immobilized biochemical cues and biophysical cues such as dimensionality, stiffness, and topography can enhance our control over stem cell fates. Finally, we highlight biomaterial culture systems that assist in the translation of PSC technologies for clinical applications.
Collapse
Affiliation(s)
- Taylor B Bertucci
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
36
|
A Scalable and Efficient Bioprocess for Manufacturing Human Pluripotent Stem Cell-Derived Endothelial Cells. Stem Cell Reports 2018; 11:454-469. [PMID: 30078557 PMCID: PMC6092882 DOI: 10.1016/j.stemcr.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 02/08/2023] Open
Abstract
Endothelial cells (ECs) are of great value for cell therapy, tissue engineering, and drug discovery. Obtaining high-quantity and -quality ECs remains very challenging. Here, we report a method for the scalable manufacturing of ECs from human pluripotent stem cells (hPSCs). hPSCs are expanded and differentiated into ECs in a 3D thermoreversible PNIPAAm-PEG hydrogel. The hydrogel protects cells from hydrodynamic stresses in the culture vessel and prevents cells from excessive agglomeration, leading to high-culture efficiency including high-viability (>90%), high-purity (>80%), and high-volumetric yield (2.0 × 107 cells/mL). These ECs (i.e., 3D-ECs) had similar properties as ECs made using 2D culture systems (i.e., 2D-ECs). Genome-wide gene expression analysis showed that 3D-ECs had higher expression of genes related to vasculature development, extracellular matrix, and glycolysis, while 2D-ECs had higher expression of genes related to cell proliferation. hPSCs can be differentiated into endothelial cells in 3D thermoreversible hydrogels The differentiation efficiency is similar to this in 2D cultures The global gene expression and phenotypes are similar to ECs made in 2D cultures
Collapse
|
37
|
Blache U, Ehrbar M. Inspired by Nature: Hydrogels as Versatile Tools for Vascular Engineering. Adv Wound Care (New Rochelle) 2018; 7:232-246. [PMID: 29984113 PMCID: PMC6032659 DOI: 10.1089/wound.2017.0760] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/21/2022] Open
Abstract
Significance: Diseases related to vascular malfunction, hyper-vascularization, or lack of vascularization are among the leading causes of morbidity and mortality. Engineered, vascularized tissues as well as angiogenic growth factor-releasing hydrogels could replace defective tissues. Further, treatments and testing of novel vascular therapeutics will benefit significantly from models that allow for the study of vascularized tissues under physiological relevant in vitro conditions. Recent Advances: Inspired by fibrin, the provisional matrix during wound healing, naturally derived and synthetic hydrogel scaffolds have been developed for vascular engineering. Today, engineers and biologists use commercially available hydrogels to pre-vascularize tissues, to control the delivery of angiogenic growth factors, and to establish vascular diseases models. Critical Issue: For clinical translation, pre-vascularized tissue constructs must be sufficiently large and stable to substitute function-relevant tissue defects and integrate with host vascular perfusion. Moreover, the continuous integration of knowhow from basic vascular biology with innovative, tailorable materials and advanced manufacturing technologies is key to achieving near-physiological tissue models and new treatments to control vascularization. Future Directions: For transplantation, engineered tissues must comprise hierarchically organized vascular trees of different caliber and function. The development of novel vascularization-promoting or -inhibiting therapeutics will benefit from physiologically relevant vessel models. In addition, tissue models representing treatment-relevant vascular tissue functions will increase the capacity to screen for therapeutic compounds and will significantly reduce the need for animals for their validation.
Collapse
Affiliation(s)
- Ulrich Blache
- Department of Obstetrics, University and University Hospital Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University and University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Bezenah JR, Kong YP, Putnam AJ. Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures. Sci Rep 2018; 8:2671. [PMID: 29422650 PMCID: PMC5805762 DOI: 10.1038/s41598-018-20966-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/29/2018] [Indexed: 01/11/2023] Open
Abstract
A major translational challenge in the fields of therapeutic angiogenesis and regenerative medicine is the need to create functional microvasculature. The purpose of this study was to assess whether a potentially autologous endothelial cell (EC) source derived from human induced pluripotent stem cells (iPSC-ECs) can form the same robust, stable microvasculature as previously documented for other sources of ECs. We utilized a well-established in vitro assay, in which endothelial cell-coated (iPSC-EC or HUVEC) beads were co-embedded with fibroblasts in a 3D fibrin matrix to assess their ability to form stable microvessels. iPSC-ECs exhibited a five-fold reduction in capillary network formation compared to HUVECs. Increasing matrix density reduced sprouting, although this effect was attenuated by distributing the NHLFs throughout the matrix. Inhibition of both MMP- and plasmin-mediated fibrinolysis was required to completely block sprouting of both HUVECs and iPSC-ECs. Further analysis revealed MMP-9 expression and activity were significantly lower in iPSC-EC/NHLF co-cultures than in HUVEC/NHLF co-cultures at later time points, which may account for the observed deficiencies in angiogenic sprouting of the iPSC-ECs. Collectively, these findings suggest fundamental differences in EC phenotypes must be better understood to enable the promise and potential of iPSC-ECs for clinical translation to be realized.
Collapse
Affiliation(s)
- Jonathan R Bezenah
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Yen P Kong
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Andrew J Putnam
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
39
|
Lin Y, Gil CH, Yoder MC. Differentiation, Evaluation, and Application of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Arterioscler Thromb Vasc Biol 2017; 37:2014-2025. [PMID: 29025705 DOI: 10.1161/atvbaha.117.309962] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
The emergence of induced pluripotent stem cell (iPSC) technology paves the way to generate large numbers of patient-specific endothelial cells (ECs) that can be potentially delivered for regenerative medicine in patients with cardiovascular disease. In the last decade, numerous protocols that differentiate EC from iPSC have been developed by many groups. In this review, we will discuss several common strategies that have been optimized for human iPSC-EC differentiation and subsequent studies that have evaluated the potential of human iPSC-EC as a cell therapy or as a tool in disease modeling. In addition, we will emphasize the importance of using in vivo vessel-forming ability and in vitro clonogenic colony-forming potential as a gold standard with which to evaluate the quality of human iPSC-EC derived from various protocols.
Collapse
Affiliation(s)
- Yang Lin
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis
| | - Chang-Hyun Gil
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis
| | - Mervin C Yoder
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis.
| |
Collapse
|
40
|
Kim JJ, Hou L, Yang G, Mezak NP, Wanjare M, Joubert LM, Huang NF. Microfibrous Scaffolds Enhance Endothelial Differentiation and Organization of Induced Pluripotent Stem Cells. Cell Mol Bioeng 2017; 10:417-432. [PMID: 28936269 DOI: 10.1007/s12195-017-0502-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Human induced pluripotent stem cells (iPSCs) are a promising source of endothelial cells (iPSC-ECs) for engineering three-dimensional (3D) vascularized cardiac tissues. To mimic cardiac microvasculature, in which capillaries are oriented in parallel, we hypothesized that endothelial differentiation of iPSCs within topographically aligned 3D scaffolds would be a facile one-step approach to generate iPSC-ECs as well as induce aligned vascular organization. METHODS Human iPSCs underwent endothelial differentiation within electrospun 3D polycaprolactone (PCL) scaffolds having either randomly oriented or parallel-aligned microfibers. Using transcriptional, protein, and endothelial functional assays, endothelial differentiation was compared between conventional two-dimensional (2D) films and 3D scaffolds having either randomly oriented or aligned microfibers. Furthermore, the role of parallel-aligned microfiber patterning on the organization of vessel-like networks was assessed. RESULTS The cells in both the randomly oriented and aligned 3D scaffolds demonstrated an 11-fold upregulation in gene expression of the endothelial phenotypic marker, CD31, compared to cells on 2D films. This upregulation corresponded to >3-fold increase in CD31 protein expression in 3D scaffolds, compared to 2D films. Concomitantly, other endothelial phenotypic markers including CD144 and endothelial nitric oxide synthase also showed significant transcriptional upregulation in 3D scaffolds by >7-fold, compared to 2D films. Nitric oxide production, which is characteristic of endothelial function, was produced 4-fold more abundantly in 3D scaffolds, compared to on 2D PCL films. Within aligned scaffolds, the iPSC-ECs displayed parallel-aligned vascular-like networks with 70% longer branch length, compared to cells in randomly oriented scaffolds, suggesting that fiber topography modulates vascular network-like formation and patterning. CONCLUSION Together, these results demonstrate that 3D scaffold structure promotes endothelial differentiation, compared to 2D substrates, and that aligned topographical patterning induces anisotropic vascular network organization.
Collapse
Affiliation(s)
- Joseph J Kim
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Luqia Hou
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Guang Yang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Nicholas P Mezak
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Maureen Wanjare
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lydia M Joubert
- Cell Sciences Imaging Facility, Stanford University Medical School, Stanford, CA, USA
| | - Ngan F Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|