1
|
Li H, Zhang Y, Du S, Shen J, Liu X, Jing J. "Remodeling the intestinal immune microenvironment": immune regulation and tissue regeneration by mesenchymal stem/stromal cells in the repair microenvironment of inflammatory bowel disease. Front Immunol 2025; 16:1543702. [PMID: 40433382 PMCID: PMC12106535 DOI: 10.3389/fimmu.2025.1543702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
The global prevalence of inflammatory bowel disease (IBD) has significantly increased in recent decades. IBD is a long-term, recurring, gastrointestinal inflammatory condition that mainly comprises two primary clinical types: ulcerative colitis and Crohn's disease. The current treatment paradigm for IBD primarily focuses on symptom management. However, this approach does not support mucosal epithelial repair, maintenance of barrier homeostasis, or regulation of biological functions in the gut. Conventional therapies rely on the frequent use of high-dose medications, including antibiotics, nonsteroidal anti-inflammatory drugs, biological agents, and immunomodulators. Recently, mesenchymal stem/stromal cells (MSCs) have gained interest in tissue regeneration owing to their unique ability to differentiate and secrete regulatory factors, including extracellular vesicles (EVs), which play crucial roles in abnormal organization. Various routes of administration have been explored in preclinical and clinical studies to deliver MSCs from diverse tissue sources. The routes include intraperitoneal, intravenous, and local (intracolonic or rectal) delivery. The MSCs employed were obtained from various tissues, including bone marrow, umbilical cord, and adipose tissue. This article reviews the research framework for the application of MSCs and EVs secretion in the treatment of IBD, emphasizing key immunological effects, such as immune microenvironment regulation, intestinal barrier stabilization, and therapeutic approaches targeting intestinal barrier disorders. The discussion primarily focuses on the advantages of MSCs over other biologics, impairment of gut mucosal tissue-resident mesenchymal stem cells in IBD development, immune targets (at the cellular and molecular levels) within the framework of IBD, and the reparative effects of MSCs in the microenvironment of IBD. We aimed to present an overview of the current trends in MSC research and therapy, as well as to identify the challenges and future directions that must be addressed to advance research on MSC-mediated therapeutic strategies for IBD.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Jing
- School and Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
2
|
Phan N, Li Y, Yang M, Liu F. Tear fluid derived extracellular vesicles for new biomarker discovery. Ocul Surf 2025; 37:314-322. [PMID: 40368029 DOI: 10.1016/j.jtos.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/23/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
Various cell types release extracellular vesicles (EVs) containing proteins, DNA, and RNA essential for intercellular communication. The bioactive molecules from EVs can reflect disease status and monitor progression, while their communication abilities suggest therapeutic potential. We will review various EV isolation methods, EV-enriched fluids, and studies analyzing differential mi-RNA and protein levels extracted from EVs. Specifically, tear-derived EVs, which protect their molecular content and allow for real-time monitoring of ocular conditions such as Dry Eye Disease (DED), Sjögren's disease (SJD), Ocular graft-versus-host disease (oGVHD), and Diabetic Retinopathy (DR), which all currently remain undiagnosed in patients. EVs also provide potential as carriers for gene transfer, and mesenchymal stem cell (MSCs)-derived EVs are shown to be immunomodulatory, demonstrating promise for autoimmune ocular diseases. Through the multi-omic analysis of tear-fluid content, EVs are promising biomarkers and therapeutic agents in ocular diseases.
Collapse
Affiliation(s)
- Natalie Phan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Yi Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| | - Fei Liu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Wang C, Hu X, Liu Y, Xiao Y, Jiang P, Lin Y, Liu X, Zhang Z, Li LC, Qi Z. Immunological Safety Evaluation of Exosomes Derived From Human Umbilical Cord Mesenchymal Stem Cells in Mice. Stem Cells Int 2025; 2025:9986368. [PMID: 40321170 PMCID: PMC12049250 DOI: 10.1155/sci/9986368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/16/2025] [Accepted: 03/26/2025] [Indexed: 05/08/2025] Open
Abstract
Mounting evidence indicates that exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-exosomes) combine the advantages of hucMSC pluripotency with their nanoscale dimensions, enhancing their clinical potential through prolonged circulation half-life. Despite these promising characteristics, research on their immunological toxicity remains insufficient. This study focuses on the impact of hucMSC-exosomes on the general toxicity and immunopathological indicators. When mice received tail vein injections of 6 × 1010 hucMSC-exosomes particles, we observed no significant changes in body weight, feed intake, blood composition, organ indices, or histopathological findings throughout the 14 days observation period. Similarly, blood levels of immunoglobulins, cytokines, and lymphocyte subpopulations remained stable. The hucMSC-exosomes produced no detectable negative effects on immune organs including the thymus, spleen, and bone marrow. These findings indicate that intravenous administration of 6 × 1010 particles of hucMSC-exosomes appears relatively safe at the murine level. This assessment of safety and immunological impact following intravenous hucMSC-exosomes infusion offers experimental support for potential clinical applications and future analyses in this field.
Collapse
Affiliation(s)
- Cancan Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Xinmei Hu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Yu Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Yu Xiao
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Peng Jiang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Yunjing Lin
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Xiaomin Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Zhengmian Zhang
- Fujian Provincial Sperm Bank, Fujian Maternity and Child Health Hospital, Fuzhou 350001, China
| | - Liang-cheng Li
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zhongquan Qi
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
- Fujian Provincial Sperm Bank, Fujian Maternity and Child Health Hospital, Fuzhou 350001, China
| |
Collapse
|
4
|
Ulpiano C, Salvador W, Franchi-Mendes T, Huang MC, Lin YH, Lin HT, Rodrigues CAV, Fernandes-Platzgummer A, Cabral JMS, Monteiro GA, da Silva CL. Continuous collection of human mesenchymal-stromal-cell-derived extracellular vesicles from a stirred tank reactor operated under xenogeneic-free conditions for therapeutic applications. Stem Cell Res Ther 2025; 16:210. [PMID: 40275409 PMCID: PMC12023423 DOI: 10.1186/s13287-025-04341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Mesenchymal-stromal-cell-derived extracellular vesicles (MSC-EVs) play a key role in the paracrine effects of MSC and have demonstrated therapeutic potential in various preclinical models. However, clinical translation is hindered by manufacturing practices relying on planar culture systems, fetal bovine serum (FBS)-supplemented media, and non-scalable, low-purity EV isolation methods that fail to meet dose and safety requirements, underscoring the need for innovative approaches. In this study, we developed a scalable platform to manufacture human MSC-EVs at clinically relevant numbers, integrating continuous collection of EV-enriched conditioned media (CM) using a stirred-tank reactor (STR) under xenogeneic-free conditions and a scalable downstream process. METHODS Wharton's jelly-derived MSC (MSC(WJ)) were expanded using microcarriers in a controlled STR using human platelet lysate (hPL)-supplemented medium. Then, a 3-day EV production stage, featuring continuous harvesting of the CM, was established using a novel serum-/xeno(geneic)-free exosome depleted-hPL supplement. For the isolation of MSC-EVs, a scalable process was implemented by pairing tangential flow filtration and anion exchange chromatography. Isolated MSC-EVs were characterised using nanoparticle tracking analysis, protein and zeta potential quantification, western blot analysis of EV protein markers, transmission electron microscopy and uptake studies of fluorescently labelled-EVs. RESULTS The system sustained the efficient expansion of MSC(WJ), reaching a total of (6.03 ± 0.181) x 107 cells after 7 days, which corresponds to a 30.1 ± 0.740-fold expansion. Upon a 3-day continuous CM harvesting, a total of (2.13 ± 0.301) x 1012 EVs were isolated corresponding to a particle yield factor of (1.26 ± 0.186) x 104 EVs/cell/day. MSC-EVs presented high purity levels ((5.53 ± 1.55) x 109 particles/µg), a homogeneous small size distribution (mean diameter of 115 ± 4.88 nm), a surface charge of -23.4 ± 6.23 mV, positive detection of tetraspanins CD9 and CD63 and syntenin-1 and displayed a typical cup-shaped morphology. MSC-EVs were readily incorporated by endothelial cells and two human breast cancer cell lines. CONCLUSIONS Overall, the scalable and Good Manufacturing Practices (GMP)-compliant platform established herein enabled the reproducible manufacturing of MSC-EVs with high purity and generally accepted characteristics concerning size, protein markers, surface charge, morphology, and cellular internalization, validating its potential for future clinical applications.
Collapse
Affiliation(s)
- Cristiana Ulpiano
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - William Salvador
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Teresa Franchi-Mendes
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | | | | | | | - Carlos A V Rodrigues
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Gabriel A Monteiro
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
5
|
Khorrami-Nejad M, Hashemian H, Majdi A, Jadidi K, Aghamollaei H, Hadi A. Application of stem cell-derived exosomes in anterior segment eye diseases: A comprehensive update review. Ocul Surf 2025; 36:209-219. [PMID: 39884389 DOI: 10.1016/j.jtos.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Mesenchymal stem cell (MSC) therapy has emerged as a promising approach for addressing various eye-related conditions. Yet, its clinical application faces challenges due to issues such as limited biocompatibility and difficulties in effectively delivering treatment to specific ocular tissues. Recent studies have shifted attention towards MSC-derived exosomes, which share similar regenerative, reparative, and immunomodulatory capabilities with their origin cells. This review delves into the latest research on the use of MSC-derived exosomes for treating anterior segment diseases of the eye. It explores the exosomes' composition, biological functions, and the methods used for their isolation, as well as their roles in disease progression, diagnosis, and therapy. The review critically assesses the therapeutic advantages and mechanisms of action of MSC-derived exosomes in treating conditions like dry eye disease, Sjogren's syndrome, keratoconus, corneal lesions, and corneal allograft rejection. Additionally, it discusses the obstacles and future prospects of employing MSC-derived exosomes as innovative therapies for anterior segment eye diseases. This comprehensive overview underscores the significant potential of MSC-derived exosomes in transforming the treatment paradigm for anterior segment eye disorders, while also highlighting the necessity for further research to enhance their clinical application.
Collapse
Affiliation(s)
- Masoud Khorrami-Nejad
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran; Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hesam Hashemian
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Majdi
- Optical Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Aghamollaei
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Hadi
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Yi YF, Fan ZQ, Liu C, Ding YT, Chen Y, Wen J, Jian XH, Li YF. Immunomodulatory effects and clinical application of exosomes derived from mesenchymal stem cells. World J Stem Cells 2025; 17:103560. [PMID: 40160689 PMCID: PMC11947897 DOI: 10.4252/wjsc.v17.i3.103560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/16/2025] [Accepted: 02/17/2025] [Indexed: 03/21/2025] Open
Abstract
Exosomes (Exos) are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication. They play a pivotal role in the pathogenesis and progression of various diseases and offer promising avenues for therapeutic interventions. Exos derived from mesenchymal stem cells (MSCs) have significant immunomodulatory properties. They effectively regulate immune responses by modulating both innate and adaptive immunity. These Exos can inhibit excessive inflammatory responses and promote tissue repair. Moreover, they participate in antigen presentation, which is essential for activating immune responses. The cargo of these Exos, including ligands, proteins, and microRNAs, can suppress T cell activity or enhance the population of immunosuppressive cells to dampen the immune response. By inhibiting lymphocyte proliferation, acting on macrophages, and increasing the population of regulatory T cells, these Exos contribute to maintaining immune and metabolic homeostasis. Furthermore, they can activate immune-related signaling pathways or serve as vehicles to deliver microRNAs and other bioactive substances to target tumor cells, which holds potential for immunotherapy applications. Given the immense therapeutic potential of MSC-derived Exos, this review comprehensively explores their mechanisms of immune regulation and therapeutic applications in areas such as infection control, tumor suppression, and autoimmune disease management. This article aims to provide valuable insights into the mechanisms behind the actions of MSC-derived Exos, offering theoretical references for their future clinical utilization as cell-free drug preparations.
Collapse
Affiliation(s)
- Yang-Fei Yi
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410005, Hunan Province, China
| | - Zi-Qi Fan
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410005, Hunan Province, China
| | - Can Liu
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410005, Hunan Province, China
| | - Yi-Tong Ding
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410005, Hunan Province, China
| | - Yao Chen
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410005, Hunan Province, China
| | - Jie Wen
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410005, Hunan Province, China
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, Changsha 410013, Hunan Province, China.
| | - Xiao-Hong Jian
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410005, Hunan Province, China
| | - Yu-Fei Li
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410005, Hunan Province, China
| |
Collapse
|
7
|
Ten A, Yudintceva N, Samochernykh K, Combs SE, Jha HC, Gao H, Shevtsov M. Post-Secretion Processes and Modification of Extracellular Vesicles. Cells 2025; 14:408. [PMID: 40136657 PMCID: PMC11940929 DOI: 10.3390/cells14060408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Extracellular vesicles (EVs) are an important mediator of intercellular communication and the regulation of processes occurring in cells and tissues. The processes of EVs secretion by cells into the extracellular space (ECS) leads to their interaction with its participants. The ECS is a dynamic structure that also takes direct part in many processes of intercellular communication and regulation. Changes in the ECS can also be associated with pathological processes, such as increased acidity during the development of solid tumors, changes in the composition and nature of the organization of the extracellular matrix (ECM) during fibroblast activation, an increase in the content of soluble molecules during necrosis, and other processes. The interaction of these two systems, the EVs and the ESC, leads to structural and functional alteration in both participants. In the current review, we will focus on these alterations in the EVs which we termed post-secretory modification and processes (PSMPs) of EVs. PSPMs can have a significant effect on the immediate cellular environment and on the spread of the pathological process in the body as a whole. Thus, it can be assumed that PSPMs are one of the important stages in the regulation of intercellular communication, which has significant differences in the norm and in pathology.
Collapse
Affiliation(s)
- Artem Ten
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (A.T.); (N.Y.)
| | - Natalia Yudintceva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (A.T.); (N.Y.)
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia;
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia;
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India;
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China;
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (A.T.); (N.Y.)
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia;
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
| |
Collapse
|
8
|
Meligy FY, Mohammed HSED, Abou Elghait AT, Mohamed HK, Ashry IESM, Abdel-Rahman Sayed A, Hussein OA, Salman A, Atia T, Mohamed AS, Behnsawy NH, Gaber SS, Sakr HI, Ahmed SF. Mesenchymal stem cells versus mesenchymal stem cells-derived exosomes as potential autophagy pathway modulators in a diabetic model. Adv Med Sci 2025; 70:152-165. [PMID: 39956208 DOI: 10.1016/j.advms.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/06/2024] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
PURPOSE This work compared the potential effects of bone marrow mesenchymal stem cells (BM-MSCs) with BM-MSCs-derived exosomes against impaired autophagy in streptozotocin (STZ)-induced diabetic rats. MATERIALS AND METHODS Three days after STZ injection, a single dose of (3 × 10^6) BM- MSCs or BM-MSCs-derived exosomes (80 μg/rat) was administered to evaluate their effects against nondiabetic and diabetic control rats. We assessed pancreatic structure via light and electron microscopy and evaluated its staining for insulin and the autophagy marker P62 immunohistochemically. Moreover, autophagy marker LC3 gene expression was examined by PCR. RESULTS Both BM-MSCs and BM-MSCs derived exosomes showed histological restoration of pancreatic tissues. Both treatments markedly increased the amount of insulin and significantly decreased the autophagy markers P62 and LC3. CONCLUSION Our findings suggest that both BM-MSCs and BM-MSCs-derived exosomes provides a potential alternative to modulate diabetes mellitus.
Collapse
Affiliation(s)
- Fatma Y Meligy
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman, Jordan; Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Amal T Abou Elghait
- Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Histology and Cell Biology Department, Sphinx University, New Assiut city, Assiut, Egypt
| | - Heba K Mohamed
- Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Anatomy and Embryology Department, Sphinx University, New Assiut city, Assiut, Egypt
| | | | - Ayat Abdel-Rahman Sayed
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Biochemistry, Sphinx University, New Assiut city, Assiut, Egypt
| | - Ola A Hussein
- Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Salman
- Department of Anatomy and Histology, Faculty of Medicine, The University of Jordan, Amman, Jordan; Department of Anatomy, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Tarek Atia
- Department of Medical Laboratories, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abir S Mohamed
- Department of Public Health, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nour H Behnsawy
- Faculty of Medicine, Assiut University, Assiut, Egypt; Skilled Medical Practitioners Focus Area Coordinator 24/25, International Federation of Medical Students Association, Egypt
| | - Safy Salah Gaber
- Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hader I Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah, 21442, Saudi Arabia.
| | - Salwa Fares Ahmed
- Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Anatomy Department, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
9
|
Miao X, Ghafourian A, Karimi Khaneghah M, Ayyoubzadeh SM, Afrisham R, Ahmadi M. Extracellular vesicles as therapeutic agents in rheumatoid arthritis: a systematic review of current evidence. Inflammopharmacology 2025; 33:889-915. [PMID: 40024954 DOI: 10.1007/s10787-025-01670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/21/2025] [Indexed: 03/04/2025]
Abstract
Rheumatoid arthritis (RA) is defined as a chronic autoimmune disease that severely influences a patient's quality of life. Extracellular vesicles (EVs) have gained much attention in recent years as one of the most potent therapeutic agents for the treatment of RA. A systematic review was performed with the purpose of assessing the current evidence relating to the therapeutic applications of EVs in RA. The systematic search was performed in the databases of PubMed, Scopus, and Web of Science, from inception times to September 2024. All studies investigating the use of EVs for the treatment of RA were included. The quality appraisal of selected articles and data extraction regarding EV characteristics, therapeutic applications, and associated outcomes were performed. Of the 1418 initially identified articles, 59 studies met inclusion criteria. Regarding their cellular origins, most EVs were derived from mesenchymal stem cells, followed by immune cells. The main therapeutic mechanisms included modulation of the immune response, reduction of inflammation, and repair of tissues. Recent trends are toward increasing interest in engineered EVs and combination therapies. Indeed, most studies reported positive outcomes with regard to lowered inflammation and improved joint function. On the other hand, standardization of the metrics of evaluation considerably varied between different studies. EVs are promising therapeutic agents in the treatment of RA by modulating immune responses. Standardization, delivery systems, and clinical translation are challenges yet to be overcome. Future studies will be directed to optimize EV engineering, targeted delivery systems, and large-scale clinical trials.
Collapse
Affiliation(s)
- Xiaolei Miao
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, 437100, P. R. China
| | - Amirreza Ghafourian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Karimi Khaneghah
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Health Information Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahnaz Ahmadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Liu Y, Li P, Yang Y. Advancements in utilizing CD34 + stem cells for repairing diabetic vascular damage. Biochem Biophys Res Commun 2025; 750:151411. [PMID: 39889623 DOI: 10.1016/j.bbrc.2025.151411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Diabetes-related vascular damage is a frequent complication of diabetes that results in structural and functional impairment of blood vessels. This damage significantly heightens the risk of cardiovascular events. CD34+ stem cells have shown great potential in the treatment of diabetes-related vascular damage due to their differentiation and vascular repair capabilities. This article provides a review of the research hotspots on the role and mechanisms of CD34+ stem cells in the repair of diabetes-related vascular damage, including changes in cell quantity and function during diabetes, as well as the latest research on activating, protecting, or repairing these cells to prevent or treat vascular damage. The article also summarizes the impact of diabetes on the mobilization and function of CD34+ stem cells, emphasizing how diabetes negatively affects their ability to promote angiogenesis. These deficits can result in various complications, including issues with small blood vessels, coronary heart disease, foot problems, and retinal complications. On the clinical side, the article highlights the positive effects of CD34+ stem cell therapy in improving vascular function and tissue repair in diabetic patients, while also mentioning the inconsistencies in results between diabetes models and clinical studies, which necessitate further research to optimize treatment strategies. It emphasizes the importance of enhancing the mobilization, homing, and repair capabilities of CD34+ stem cells, as well as combining them with other treatment methods, to develop more effective strategies for treating diabetes-related vascular damage.
Collapse
Affiliation(s)
- Yiting Liu
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Pengyun Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
11
|
Chen W, Kongsomros S, Thorman A, Esfandiari L, Morrow AL, Chutipongtanate S, Newburg DS. Extracellular vesicles and preterm infant diseases. Front Pediatr 2025; 13:1550115. [PMID: 40034714 PMCID: PMC11873092 DOI: 10.3389/fped.2025.1550115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
With the continuous improvement in perinatal care, the number of viable preterm infants is gradually increasing, along with the rise in preterm-related diseases such as necrotizing enterocolitis, bronchopulmonary dysplasia, perinatal brain injury, retinopathy of prematurity, and sepsis. Due to the unique pathophysiology of preterm infants, diagnosing and treating these diseases has become particularly challenging, significantly affecting their survival rate and long-term quality of life. Extracellular vesicles (EVs), as key mediators of intercellular communication, play an important regulatory role in the pathophysiology of these diseases. Because of their biological characteristics, EVs could serve as biomarkers and potential therapeutic agents for preterm-related diseases. This review summarizes the biological properties of EVs, their relationship with preterm-related diseases, and their prospects for diagnosis and treatment. EVs face unique challenges and opportunities for clinical applications.
Collapse
Affiliation(s)
- Wenqain Chen
- Department of Neonatology, Fujian Maternity and Child Health Hospital; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Supasek Kongsomros
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Alexander Thorman
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Department of Biomedical Engineering, University of Cincinnati College of Engineering, Cincinnati, OH, United States
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ardythe L. Morrow
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Somchai Chutipongtanate
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David S. Newburg
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
12
|
Kim JE, Lee JW, Cha GD, Yoon JK. The Potential of Mesenchymal Stem Cell-Derived Exosomes to Treat Diabetes Mellitus. Biomimetics (Basel) 2025; 10:49. [PMID: 39851765 PMCID: PMC11760843 DOI: 10.3390/biomimetics10010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Diabetes mellitus (DM) is a fatal metabolic disease characterized by persistent hyperglycemia. In recent studies, mesenchymal stem cell (MSC)-derived exosomes, which are being investigated clinically as a cell-free therapy for various diseases, have gained attention due to their biomimetic properties that closely resemble natural cellular communication systems. These MSC-derived exosomes inherit the regenerative and protective effects from MSCs, inducing pancreatic β-cell proliferation and inhibiting apoptosis, as well as ameliorating insulin resistance by suppressing the release of various inflammatory cytokines. Consequently, MSC-derived exosomes have attracted attention as a novel treatment for DM as an alternative to stem cell therapy. In this review, we will introduce the potential of MSC-derived exosomes for the treatment of DM by discussing the studies that have used MSC-derived exosomes to treat DM, which have shown therapeutic effects in both type 1 and type 2 DM.
Collapse
Affiliation(s)
| | | | | | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea (G.D.C.)
| |
Collapse
|
13
|
A L, Qu L, He J, Ge L, Gao H, Huang X, You T, Gong H, Liang Q, Chen S, Xie J, Xu H. Exosomes derived from IFNγ-stimulated mesenchymal stem cells protect photoreceptors in RCS rats by restoring immune homeostasis through tsRNAs. Cell Commun Signal 2024; 22:543. [PMID: 39538308 PMCID: PMC11562488 DOI: 10.1186/s12964-024-01920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Retinitis pigmentosa is a neurodegenerative disease with major pathologies of photoreceptor apoptosis and immune imbalance. Mesenchymal stem cells (MSCs) have been approved for clinical application for treating various immune-related or neurodegenerative diseases. The objective of this research was to investigate the mechanisms underlying the safeguarding effects of MSC-derived exosomes in a retinal degenerative disease model. METHODS Interferon gamma-stimulated exosomes (IFNγ-Exos) secreted from MSCs were isolated, purified, and injected into the vitreous body of RCS rats on postnatal day (P) 21. Morphological and functional changes in the retina were examined at P28, P35, P42, and P49 in Royal College of Surgeons (RCS) rats. The mechanism was explored using high-throughput sequencing technology and confirmed in vitro. RESULTS Treatment with IFNγ-Exo produced better protective effects on photoreceptors and improved visual function in RCS rats. IFNγ-Exo significantly suppressed the activated microglia and inhibited the inflammatory responses in the retina of RCS rats, which was also confirmed in the lipopolysaccharide-activated microglia cell line BV2. Furthermore, through tRNA-derived small RNA (tsRNA) sequencing, we found that IFNγ-Exos from MSCs contained higher levels of Other-1_17-tRNA-Phe-GAA-1-M3, Other-6_23-tRNA-Lys-TTT-3, and TRF-57:75-GLN-CGG-2-m2 than native exosomes, which mainly regulated inflammatory and immune-related pathways, including the mTOR signaling pathway and EGFR tyrosine kinase inhibitor resistance. CONCLUSIONS IFNγ stimulation enhanced the neuroprotective effects of MSC-derived exosomes on photoreceptors of the degenerative retina, which may be mediated by immune regulatory tsRNAs acting on microglia. In conclusion, IFNγ-Exo is a promising nanotherapeutic agent for the treatment of retinitis pigmentosa.
Collapse
Affiliation(s)
- Luodan A
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Linghui Qu
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
- Department of Ophthalmology, The 74th Army Group Hospital, Guangzhou, 510318, China
| | - Juncai He
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
- Shigatse Branch of Xinqiao Hospital, 953th Hospital, Army Medical University (Third Military Medical University), Shigatse, 857000, China
| | - Xiaona Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Tianjing You
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Hong Gong
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China
| | - Qingle Liang
- Department of Clinical Laboratory Medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Siyu Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Jing Xie
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
14
|
Abbas A, Almaghrbi H, Giordo R, Zayed H, Pintus G. Pathogenic mechanisms, diagnostic, and therapeutic potential of microvesicles in diabetes and its complications. Arch Biochem Biophys 2024; 761:110168. [PMID: 39349130 DOI: 10.1016/j.abb.2024.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Extracellular vesicles (EVs), particularly microvesicles (MVs), have gained significant attention for their role as mediators of intercellular communication in both physiological and pathological contexts, including diabetes mellitus (DM) and its complications. This review provides a comprehensive analysis of the emerging roles of MVs in the pathogenesis of diabetes and associated complications such as nephropathy, retinopathy, cardiomyopathy, and neuropathy. MVs, through their cargo of proteins, lipids, mRNAs, and miRNAs, regulate critical processes like inflammation, oxidative stress, immune responses, and tissue remodeling, all of which contribute to the progression of diabetes and its complications. We examine the molecular mechanisms underlying MVs' involvement in these pathological processes and discuss their potential as biomarkers and therapeutic tools, particularly for drug delivery. Despite promising evidence, challenges remain in isolating and characterizing MVs, understanding their molecular mechanisms, and validating them for clinical use. Advanced techniques such as single-cell RNA sequencing and proteomics are required to gain deeper insights. Improved isolation and purification methods are essential for translating MVs into clinical applications, with potential to develop novel diagnostic and therapeutic strategies to improve patient outcomes in diabetes.
Collapse
Affiliation(s)
- Alaa Abbas
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Heba Almaghrbi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055, Dubai, United Arab Emirates; Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
15
|
Zeinhom A, Fadallah SA, Mahmoud M. Human mesenchymal stem/stromal cell based-therapy in diabetes mellitus: experimental and clinical perspectives. Stem Cell Res Ther 2024; 15:384. [PMID: 39468609 PMCID: PMC11520428 DOI: 10.1186/s13287-024-03974-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetes mellitus (DM), a chronic metabolic disease, poses a significant global health challenge, with current treatments often fail to prevent the long-term disease complications. Mesenchymal stem/stromal cells (MSCs) are, adult progenitors, able to repair injured tissues, exhibiting regenerative effects and immunoregulatory and anti-inflammatory responses, so they have been emerged as a promising therapeutic approach in many immune-related and inflammatory diseases. This review summarizes the therapeutic mechanisms and outcomes of MSCs, derived from different human tissue sources (hMSCs), in the context of DM type 1 and type 2. Animal model studies and clinical trials indicate that hMSCs can facilitate pleiotropic actions in the diabetic milieu for improved metabolic indices. In addition to modulating abnormally active immune system, hMSCs can ameliorate peripheral insulin resistance, halt beta-cell destruction, preserve residual beta-cell mass, promote beta-cell regeneration and insulin production, support islet grafts, and correct lipid metabolism. Moreover, hMSC-free derivatives, importantly extracellular vesicles, have shown potent experimental anti-diabetic efficacy. Moreover, the review discusses the diverse priming strategies that are introduced to enhance the preclinical anti-diabetic actions of hMSCs. Such strategies are recommended to restore the characteristics and functions of MSCs isolated from patients with DM for autologous implications. Finally, limitations and merits for the wide spread clinical applications of MSCs in DM such as the challenge of autologous versus allogeneic MSCs, the optimal MSC tissue source and administration route, the necessity of larger clinical trials for longer evaluation duration to assess safety concerns, are briefly presented.
Collapse
Affiliation(s)
- Alaa Zeinhom
- Biotechnology Department, Faculty of Science, Cairo University, Cairo Governorate, 12316, Egypt
| | - Sahar A Fadallah
- Biotechnology Department, Faculty of Science, Cairo University, Cairo Governorate, 12316, Egypt
| | - Marwa Mahmoud
- Human Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre (NRC), Cairo, 12622, Egypt.
- Stem Cell Research Unit, Medical Research Centre of Excellence, NRC, Cairo, Egypt.
| |
Collapse
|
16
|
Song Y, Yin C, Kong N. Stem Cell-Derived Exosomes: Natural Intercellular Messengers with Versatile Mechanisms for the Treatment of Diabetic Retinopathy. Int J Nanomedicine 2024; 19:10767-10784. [PMID: 39469447 PMCID: PMC11514697 DOI: 10.2147/ijn.s475234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/05/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetic retinopathy is one of the complications of diabetes mellitus that occurs in the early stages. It is a disease that has a serious impact, and may lead to blindness when the disease progresses to advanced stages. Currently, treatments for diabetic retinopathy are mainly limited to its advanced stages of the disease, being restricted to a single therapeutic mechanism. Stem cells hold the promise of regenerative therapy and have the potential to comprehensively improve diabetic retinopathy. However, direct stem cell therapy carries some risk of carcinogenesis. Exosomes secreted by stem cells have shown a similar overall improvement in disease as stem cells. Exosomes can carry a number of biologically active materials from donor cells to recipient cells or distant organs, regulating intercellular signaling. Exosomes have shown remarkable efficacy in alleviating oxidative stress, inhibiting inflammatory responses, suppressing angiogenesis, reducing apoptosis and protecting neural tissues. Currently, the experimental literature using stem cell exosomes in the treatment of diabetic retinopathy tends to converge on the above experimental results. With this in mind, we have chosen to explore exosomes in depth from a subtle molecular perspective. We will elaborate on this perspective in this paper and propose to advocate exosome therapy as one promising approach for the treatment of diabetic retinopathy to ameliorate the lesions through multiple mechanisms.
Collapse
Affiliation(s)
- Yameng Song
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, People’s Republic of China
| | - Caiyun Yin
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, People’s Republic of China
| | - Ning Kong
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
17
|
Huang P, Zhu Y, Qin J. Research advances in understanding crosstalk between organs and pancreatic β-cell dysfunction. Diabetes Obes Metab 2024; 26:4147-4164. [PMID: 39044309 DOI: 10.1111/dom.15787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Obesity has increased dramatically worldwide. Being overweight or obese can lead to various conditions, including dyslipidaemia, hypertension, glucose intolerance and metabolic syndrome (MetS), which may further lead to type 2 diabetes mellitus (T2DM). Previous studies have identified a link between β-cell dysfunction and the severity of MetS, with multiple organs and tissues affected. Identifying the associations between pancreatic β-cell dysfunction and organs is critical. Research has focused on the interaction between the liver, gut and pancreatic β-cells. However, the mechanisms and related core targets are still not perfectly elucidated. The aims of this review were to summarize the mechanisms of β-cell dysfunction and to explore the potential pathogenic pathways and targets that connect the liver, gut, adipose tissue, muscle, and brain to pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yunling Zhu
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian Qin
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
18
|
Yang H, Wu P, Wang T, Yu Y, Li J, Liu R, Ruan Q. Topical ophthalmic instillation of engineered hMSCs-derived exosomes: A novel non-invasive therapeutic strategy for ocular posterior-segment disorder. Biochem Biophys Res Commun 2024; 723:150212. [PMID: 38850812 DOI: 10.1016/j.bbrc.2024.150212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Due to the presence of protective mechanisms and blood-ocular barriers in the eye, drugs aimed at treating posterior segment ophthalmic disorder have to be administrated mostly through periocular or intravitreal injection. In the current study, we sought to investigate whether topical ophthalmic instillation of human mesenchymal stem cells (hMSCs)-derived exosomes can prevent and treat experimental autoimmune uveitis (EAU), a posterior segment ophthalmic disease induced in animals and considered a model of human autoimmune diseases of the eye. Our studies reveal that topical ophthalmic instillation of hMSCs-derived exosomes can effectively ameliorate EAU. More importantly, we demonstrate that exosomes modified by trans-activator of transcription peptide (TAT) were more effective than naive exosomes in penetrating ocular barrier and preventing/treating EAU. Taken together, these results indicate that topical ophthalmic instillation of TAT-peptide modified exosomes represents a novel non-invasive therapeutic strategy for posterior-segment ophthalmic disorders.
Collapse
Affiliation(s)
- Huiying Yang
- Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China; Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Peipei Wu
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China
| | - Ting Wang
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021, China
| | - Yang Yu
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Jun Li
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China
| | - Ruiling Liu
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, 475004, China.
| | - Qingguo Ruan
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, 475004, China.
| |
Collapse
|
19
|
Barekzai J, Refflinghaus L, Okpara M, Tasto L, Tertel T, Giebel B, Czermak P, Salzig D. Process development for the production of mesenchymal stromal cell-derived extracellular vesicles in conventional 2D systems. Cytotherapy 2024; 26:999-1012. [PMID: 38819363 DOI: 10.1016/j.jcyt.2024.04.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND In recent years, the importance of extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) has increased significantly. For their widespread use, a standardized EV manufacturing is needed which often includes conventional, static 2D systems. For these system critical process parameters need to be determined. METHODS We studied the impact of process parameters on MSC proliferation, MSC-derived particle production including EVs, EV- and MSC-specific marker expression, and particle functionality in a HaCaT cell migration assay. RESULTS We found that cell culture growth surface and media affected MSCs and their secretory behavior. Interestingly, the materials that promoted MSC proliferation did not necessarily result in the most functional MSC-derived particles. In addition, we found that MSCs seeded at 4 × 103 cells cm-2 produced particles with improved functional properties compared to higher seeding densities. MSCs in a highly proliferative state did not produce the most particles, although these particles were significantly more effective in promoting HaCaT cell migration. The same correlation was found when investigating the cultivation temperature. A physiological temperature of 37°C was not optimal for particle yield, although it resulted in the most functional particles. We observed a proliferation-associated particle production and found potential correlations between particle production and glucose consumption, enabling the estimation of final particle yields. CONCLUSIONS Our findings suggest that parameters, which must be defined prior to each individual cultivation and do not require complex and expensive equipment, can significantly increase MSC-derived particle production including EVs. Integrating these parameters into a standardized EV process development paves the way for robust and efficient EV manufacturing for early clinical phases.
Collapse
Affiliation(s)
- Jan Barekzai
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Laura Refflinghaus
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Maduwuike Okpara
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Lars Tasto
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany; Faculty of Biology and Chemistry, Justus-Liebig-University of Giessen, Giessen Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany; Faculty of Biology and Chemistry, Justus-Liebig-University of Giessen, Giessen Germany.
| |
Collapse
|
20
|
Su Y, Chen M, Xu W, Gu P, Fan X. Advances in Extracellular-Vesicles-Based Diagnostic and Therapeutic Approaches for Ocular Diseases. ACS NANO 2024; 18:22793-22828. [PMID: 39141830 PMCID: PMC11363148 DOI: 10.1021/acsnano.4c08486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles of various sizes that can be secreted by most cells. EVs contain a diverse array of cargo, including RNAs, lipids, proteins, and other molecules with functions of intercellular communication, immune modulation, and regulation of physiological and pathological processes. The biofluids in the eye, including tears, aqueous humor, and vitreous humor, are important sources for EV-based diagnosis of ocular disease. Because the molecular cargos may reflect the biology of their parental cells, EVs in these biofluids, as well as in the blood, have been recognized as promising candidates as biomarkers for early diagnosis of ocular disease. Moreover, EVs have also been used as therapeutics and targeted drug delivery nanocarriers in many ocular disorders because of their low immunogenicity and superior biocompatibility in nature. In this review, we provide an overview of the recent advances in the field of EV-based studies on the diagnosis and therapeutics of ocular disease. We summarized the origins of EVs applied in ocular disease, assessed different methods for EV isolation from ocular biofluid samples, highlighted bioengineering strategies of EVs as drug delivery systems, introduced the latest applications in the diagnosis and treatment of ocular disease, and presented their potential in the current clinical trials. Finally, we briefly discussed the challenges of EV-based studies in ocular disease and some issues of concern for better focusing on clinical translational studies of EVs in the future.
Collapse
Affiliation(s)
- Yun Su
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Moxin Chen
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Wei Xu
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
21
|
Gabr MM, El-Halawani SM, Refaie AF, Khater SM, Ismail AM, Karras MS, Magar RW, Sayed SE, Kloc M, Uosef A, Sabek OM, Ghoneim MA. Modulation of naïve mesenchymal stromal cells by extracellular vesicles derived from insulin-producing cells: an in vitro study. Sci Rep 2024; 14:17844. [PMID: 39090166 PMCID: PMC11294623 DOI: 10.1038/s41598-024-68104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
This study was to determine whether extracellular vesicles (EVs) derived from insulin-producing cells (IPCs) can modulate naïve mesenchymal stromal cells (MSCs) to become insulin-secreting. MSCs were isolated from human adipose tissue. The cells were then differentiated to generate IPCs by achemical-based induction protocol. EVs were retrieved from the conditioned media of undifferentiated (naïve) MSCs (uneducated EVs) and from that of MSC-derived IPCs (educated EVs) by sequential ultracentrifugation. The obtained EVs were co-cultured with naïve MSCs.The cocultured cells were evaluated by immunofluorescence, flow cytometry, C-peptide nanogold silver-enhanced immunostaining, relative gene expression and their response to a glucose challenge.Immunostaining for naïve MSCs cocultured with educated EVs was positive for insulin, C-peptide, and GAD65. By flow cytometry, the median percentages of insulin-andC-peptide-positive cells were 16.1% and 14.2% respectively. C-peptide nanogoldimmunostaining providedevidence for the intrinsic synthesis of C-peptide. These cells released increasing amounts of insulin and C-peptide in response to increasing glucose concentrations. Gene expression of relevant pancreatic endocrine genes, except for insulin, was modest. In contrast, the results of naïve MSCs co-cultured with uneducated exosomes were negative for insulin, C-peptide, and GAD65. These findings suggest that this approach may overcome the limitations of cell therapy.
Collapse
Affiliation(s)
- Mahmoud M Gabr
- Biotechnology Department, Urology and Nephrology Center, Mansoura, Egypt
| | | | - Ayman F Refaie
- Nephrology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Sherry M Khater
- Pathology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Amani M Ismail
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Mary S Karras
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Raghda W Magar
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Shorouk El Sayed
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Omaima M Sabek
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | | |
Collapse
|
22
|
Kaur G, Bae E, Zhang Y, Ciacciofera N, Jung KM, Barreda H, Paleti C, Oh JY, Lee RH. Biopotency and surrogate assays to validate the immunomodulatory potency of extracellular vesicles derived from mesenchymal stem/stromal cells for the treatment of experimental autoimmune uveitis. J Extracell Vesicles 2024; 13:e12497. [PMID: 39140452 PMCID: PMC11322862 DOI: 10.1002/jev2.12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have been recognized as promising cytotherapeutics due to their demonstrated immunomodulatory effects in various preclinical models. The immunomodulatory capabilities of EVs stem from the proteins and genetic materials they carry from parent cells, but the cargo contents of EVs are significantly influenced by MSC tissues and donors, cellular age and culture conditions, resulting in functional variations. However, there are no surrogate assays available to validate the immunomodulatory potency of MSC-EVs before in vivo administration. In previous work, we discovered that microcarrier culture conditions enhance the immunomodulatory function of MSC-EVs, as well as the levels of immunosuppressive molecules such as TGF-β1 and let-7b in MSC-EVs. Building on these findings, we investigated whether TGF-β1 levels in MSC-EVs could serve as a surrogate biomarker for predicting their potency in vivo. Our studies revealed a strong correlation between TGF-β1 and let-7b levels in MSC-EVs, as well as their capacity to suppress IFN-γ secretion in stimulated splenocytes, establishing biopotency and surrogate assays for MSC-EVs. Subsequently, we validated MSC-EVs generated from monolayer cultures (ML-EVs) or microcarrier cultures (MC-EVs) using murine models of experimental autoimmune uveoretinitis (EAU) and additional in vitro assays reflecting the Mode of Action of MSC-EVs in vivo. Our findings demonstrated that MC-EVs carrying high levels of TGF-β1 exhibited greater efficacy than ML-EVs in halting disease progression in mice with EAU as well as inducing apoptosis and inhibiting the chemotaxis of retina-reactive T cells. Additionally, MSC-EVs suppressed the MAPK/ERK pathway in activated T cells, with treatment using TGF-β1 or let-7b showing similar effects on the MAPK/ERK pathway. Collectively, our data suggest that MSC-EVs directly inhibit the infiltration of retina-reactive T cells toward the eyes, thereby halting the disease progression in EAU mice, and their immunomodulatory potency in vivo can be predicted by their TGF-β1 levels.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Eun‐Hye Bae
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Yu Zhang
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Nicole Ciacciofera
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Kyung Min Jung
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Heather Barreda
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Carol Paleti
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Joo Youn Oh
- Department of OphthalmologySeoul National University College of MedicineSeoulSouth Korea
| | - Ryang Hwa Lee
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| |
Collapse
|
23
|
Zhang Z, Wu W, Li M, Du L, Li J, Yin X, Zhang W. Mesenchymal stem cell–derived extracellular vesicles: A novel nanoimmunoregulatory tool in musculoskeletal diseases. NANO TODAY 2024; 57:102343. [DOI: 10.1016/j.nantod.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Zheng J, Zhang W, Xu R, Liu L. The role of adiponectin and its receptor signaling in ocular inflammation-associated diseases. Biochem Biophys Res Commun 2024; 717:150041. [PMID: 38710142 DOI: 10.1016/j.bbrc.2024.150041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Ocular inflammation-associated diseases are leading causes of global visual impairment, with limited treatment options. Adiponectin, a hormone primarily secreted by adipose tissue, binds to its receptors, which are widely distributed throughout the body, exerting powerful physiological regulatory effects. The protective role of adiponectin in various inflammatory diseases has gained increasing attention in recent years. Previous studies have confirmed the presence of adiponectin and its receptors in the eyes. Furthermore, adiponectin and its analogs have shown potential as novel drugs for the treatment of inflammatory eye diseases. This article summarizes the evidence for the interplay between adiponectin and inflammatory eye diseases and provides new perspectives on the diagnostic and therapeutic possibilities of adiponectin.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Liu Q, Wu J, Wang H, Jia Z, Li G. Human Infrapatellar Fat Pad Mesenchymal Stem Cell-derived Extracellular Vesicles Purified by Anion Exchange Chromatography Suppress Osteoarthritis Progression in a Mouse Model. Clin Orthop Relat Res 2024; 482:1246-1262. [PMID: 38662932 PMCID: PMC11219153 DOI: 10.1097/corr.0000000000003067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/07/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Extracellular vesicles derived from mesenchymal stem cells (MSCs) show great promise in treating osteoarthritis (OA). However, studies from the perspective of clinical feasibility that consider an accessible cell source and a scalable preparation method for MSC-extracellular vesicles are lacking. QUESTIONS/PURPOSES (1) Does an infrapatellar fat pad obtained from patients undergoing TKA provide a suitable source to provide MSC-extracellular vesicles purified by anion exchange chromatography? Using an in vivo mouse model for OA in the knee, (2) how does injection of the infrapatellar fat pad-derived MSC-extracellular vesicles alter gait, cartilage structure and composition, protein expression (Type II collagen, MMP13, and ADAMTS5), subchondral bone remodeling and osteophytes, and synovial inflammation? METHODS The infrapatellar fat pad was collected from three patients (all female; 62, 74, 77 years) during TKA for infrapatellar fat pad-derived MSC culturing. Patients with infection, rheumatic arthritis, and age > 80 years were excluded. MSC-extracellular vesicles were purified by anion exchange chromatography. For the animal study, we used 30 male C57BL/6 mice aged 10 weeks, divided into six groups. MSC-extracellular vesicles were injected weekly into the joint of an OA mouse model during ACL transection (ACLT). To answer our first research question, we characterized MSCs based on their proliferative potential, differentiation capacity, and surface antigen expression, and we characterized MSC-extracellular vesicles by size, morphology, protein marker expression, and miRNA profile. To answer our second research question, we evaluated the effects of MSC-extracellular vesicles in the OA mouse model with quantitative gait analysis (mean pressure, footprint area, stride length, and propulsion time), histology (Osteoarthritis Research Society International Score based on histologic analysis [0 = normal to 24 = very severe degeneration]), immunohistochemistry staining of joint sections (protein expression of Type II collagen, MMP13, and ADAMTS5), and micro-CT of subchondral bone (BV/TV and Tb.Pf) and osteophyte formation. We also examined the mechanism of action of MSC-extracellular vesicles by immunofluorescent staining of the synovium membrane (number of M1 and M2 macrophage cells) and by analyzing their influence on the expression of inflammatory factors (relative mRNA level and protein expression of IL-1β, IL-6, and TNF-α) in lipopolysaccharide-induced macrophages. RESULTS Infrapatellar fat pads obtained from patients undergoing TKA provide a suitable cell source for producing MSC-extracellular vesicles, and anion exchange chromatography is applicable for isolating MSC-extracellular vesicles. Cultured MSCs were spindle-shaped, proliferative at Passage 4 (doubling time of 42.75 ± 1.35 hours), had trilineage differentiation capacity, positively expressed stem cell surface markers (CD44, CD73, CD90, and CD105), and negatively expressed hematopoietic markers (CD34 and CD45). MSC-extracellular vesicles purified by anion exchange chromatography had diameters between 30 and 200 nm and a typical cup shape, positively expressed exosomal marker proteins (CD63, CD81, CD9, Alix, and TSG101), and carried plentiful miRNA. Compared with the ACLT group, the ACLT + extracellular vesicle group showed alleviation of pain 8 weeks after the injection, indicated by increased area (0.67 ± 0.15 cm 2 versus 0.20 ± 0.03 cm 2 , -0.05 [95% confidence interval -0.09 to -0.01]; p = 0.01) and stride length (5.08 ± 0.53 cm versus 6.20 ± 0.33 cm, -1.12 [95% CI -1.86 to -0.37]; p = 0.005) and decreased propulsion time (0.22 ± 0.06 s versus 0.11 ± 0.04 s, 0.11 [95% CI 0.03 to 0.19]; p = 0.007) in the affected hindlimb. Compared with the ACLT group, the ACLT + extracellular vesicles group had lower Osteoarthritis Research Society International scores after 4 weeks (8.80 ± 2.28 versus 4.80 ± 2.28, 4.00 [95% CI 0.68 to 7.32]; p = 0.02) and 8 weeks (16.00 ± 3.16 versus 9.60 ± 2.51, 6.40 [95% CI 2.14 to 10.66]; p = 0.005). In the ACLT + extracellular vesicles group, there was more-severe OA at 8 weeks than at 4 weeks (9.60 ± 2.51 versus 4.80 ± 2.28, 4.80 [95% CI 0.82 to 8.78]; p = 0.02), indicating MSC-extracellular vesicles could only delay but not fully suppress OA progression. Compared with the ACLT group, the injection of MSC-extracellular vesicles increased Type II collagen expression, decreased MMP13 expression, and decreased ADAMTS5 expression at 4 and 8 weeks. Compared with the ACLT group, MSC-extracellular vesicle injection alleviated osteophyte formation at 8 weeks and inhibited bone loss at 4 weeks. MSC-extracellular vesicle injection suppressed inflammation; the ACLT + extracellular vesicles group had fewer M1 type macrophages than the ACLT group. Compared with lipopolysaccharide-treated cells, MSC-extracellular vesicles reduced mRNA expression and inhibited IL-1β, IL-6, and TNF-α in cells. CONCLUSION Using an OA mouse model, we found that infrapatellar fat pad-derived MSC-extracellular vesicles could delay OA progression via alleviating pain and suppressing cartilage degeneration, osteophyte formation, and synovial inflammation. The autologous origin of extracellular vesicles and scalable purification method make our strategy potentially viable for clinical translation. CLINICAL RELEVANCE Infrapatellar fat pad-derived MSC-extracellular vesicles isolated by anion exchange chromatography can suppress OA progression in a mouse model. Further studies with large-animal models, larger animal groups, and subsequent clinical trials are necessary to confirm the feasibility of this technique for clinical OA treatment.
Collapse
MESH Headings
- Animals
- Extracellular Vesicles/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Mesenchymal Stem Cells/metabolism
- Adipose Tissue/metabolism
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/surgery
- Osteoarthritis, Knee/pathology
- Aged
- Female
- Middle Aged
- Disease Models, Animal
- Chromatography, Ion Exchange
- Disease Progression
- Mice
- Mesenchymal Stem Cell Transplantation
- Knee Joint/surgery
- Knee Joint/metabolism
- Knee Joint/pathology
- Cartilage, Articular/metabolism
- Cartilage, Articular/surgery
- Cartilage, Articular/pathology
- Cells, Cultured
Collapse
Affiliation(s)
- Qisong Liu
- Department of Orthopaedic Surgery, Shenzhen People’s Hospital, (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, PR China
| | - Jianqun Wu
- Division of Adult Joint Reconstruction and Sports Medicine, Department of Orthopedic, the First Affiliated Hospital (Shenzhen People’s Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, PR China
| | - Hua Wang
- Department of Orthopaedic Surgery, Shenzhen People’s Hospital, (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, PR China
| | - Zhaofeng Jia
- Department of Orthopaedic Surgery, Shenzhen People’s Hospital, (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, PR China
| | - Guangheng Li
- Department of Orthopaedic Surgery, Shenzhen People’s Hospital, (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, PR China
- Division of Adult Joint Reconstruction and Sports Medicine, Department of Orthopedic, the First Affiliated Hospital (Shenzhen People’s Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, PR China
| |
Collapse
|
26
|
Kanda P, Gupta A, Dhillon J, Kundapur D, Gottlieb CC. Mesenchymal stem cell based therapies for uveitis: a systematic review of preclinical studies. Eye (Lond) 2024; 38:1845-1854. [PMID: 38600361 PMCID: PMC11226430 DOI: 10.1038/s41433-024-03057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 02/03/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Cell therapy has shown promising results for treating uveitis in preclinical studies. As the field continues to grow towards clinical translation, it is important to review and critically appraise existing studies. Herein, we analysed and critically appraised all preclinical studies using cell therapy or cell derived extracellular vesicles (EVs) for uveitis, and provided insight into mechanisms regulating ocular inflammation. We used PubMed, Medline, and Embase to search for preclinical studies examining stem cell therapy (e.g., mesenchymal stem cells [MSC]) and secreted EVs. All included studies were assessed for quality using the SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) checklist. Sixteen preclinical studies from 2011 to 2022 were analysed and included in this review of which 75% (n = 12) focused only on cell therapy, 18.7% (n = 3) studies focused on EVs, and 6.3% (n = 1) study focused on both cells and EVs. MSCs were the most common type of cells used in preclinical studies (n = 15) and EVs were commonly isolated from MSCs (n = 3). Overall, both MSCs and EVs showed improvements in ocular inflammation (seen on fundoscopy/slit lamp and histology) and electroretinogram outcomes. Overall, MSC and MSC-derived EVs shown great potential as therapeutic agents for treating uveitis. Unfortunately, small sample size, risk of selection/performance bias, and lack of standardized cell harvesting or delivery protocols are some factors which limits clinical translation. Large scaled, randomized preclinical studies are required to understand the full potential of MSCs for treating uveitis.
Collapse
Affiliation(s)
| | - Arnav Gupta
- Department of Medicine, University of Calgary, Calgary, AB, Canada
- College of Public Health, Kent State University, Kent, OH, USA
| | | | | | - Chloe C Gottlieb
- Eye Institute, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| |
Collapse
|
27
|
Las Heras K, Garcia-Orue I, Rancan F, Igartua M, Santos-Vizcaino E, Hernandez RM. Modulating the immune system towards a functional chronic wound healing: A biomaterials and Nanomedicine perspective. Adv Drug Deliv Rev 2024; 210:115342. [PMID: 38797316 DOI: 10.1016/j.addr.2024.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Chronic non-healing wounds persist as a substantial burden for healthcare systems, influenced by factors such as aging, diabetes, and obesity. In contrast to the traditionally pro-regenerative emphasis of therapies, the recognition of the immune system integral role in wound healing has significantly grown, instigating an approach shift towards immunological processes. Thus, this review explores the wound healing process, highlighting the engagement of the immune system, and delving into the behaviors of innate and adaptive immune cells in chronic wound scenarios. Moreover, the article investigates biomaterial-based strategies for the modulation of the immune system, elucidating how the adjustment of their physicochemical properties or their synergistic combination with other agents such as drugs, proteins or mesenchymal stromal cells can effectively modulate the behaviors of different immune cells. Finally this review explores various strategies based on synthetic and biological nanostructures, including extracellular vesicles, to finely tune the immune system as natural immunomodulators or therapeutic nanocarriers with promising biophysical properties.
Collapse
Affiliation(s)
- Kevin Las Heras
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Fiorenza Rancan
- Department of Dermatology, Venereology und Allergology,Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
28
|
Annicchiarico A, Barile B, Buccoliero C, Nicchia GP, Brunetti G. Alternative therapeutic strategies in diabetes management. World J Diabetes 2024; 15:1142-1161. [PMID: 38983831 PMCID: PMC11229975 DOI: 10.4239/wjd.v15.i6.1142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/17/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetes is a heterogeneous metabolic disease characterized by elevated blood glucose levels resulting from the destruction or malfunction of pancreatic β cells, insulin resistance in peripheral tissues, or both, and results in a non-sufficient production of insulin. To adjust blood glucose levels, diabetic patients need exogenous insulin administration together with medical nutrition therapy and physical activity. With the aim of improving insulin availability in diabetic patients as well as ameliorating diabetes comorbidities, different strategies have been investigated. The first approaches included enhancing endogenous β cell activity or transplanting new islets. The protocol for this kind of intervention has recently been optimized, leading to standardized procedures. It is indicated for diabetic patients with severe hypoglycemia, complicated by impaired hypoglycemia awareness or exacerbated glycemic lability. Transplantation has been associated with improvement in all comorbidities associated with diabetes, quality of life, and survival. However, different trials are ongoing to further improve the beneficial effects of transplantation. Furthermore, to overcome some limitations associated with the availability of islets/pancreas, alternative therapeutic strategies are under evaluation, such as the use of mesenchymal stem cells (MSCs) or induced pluripotent stem cells for transplantation. The cotransplantation of MSCs with islets has been successful, thus providing protection against proinflammatory cytokines and hypoxia through different mechanisms, including exosome release. The use of induced pluripotent stem cells is recent and requires further investigation. The advantages of MSC implantation have also included the improvement of diabetes-related comorbidities, such as wound healing. Despite the number of advantages of the direct injection of MSCs, new strategies involving biomaterials and scaffolds have been developed to improve the efficacy of mesenchymal cell delivery with promising results. In conclusion, this paper offered an overview of new alternative strategies for diabetes management while highlighting some limitations that will need to be overcome by future approaches.
Collapse
Affiliation(s)
- Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| |
Collapse
|
29
|
Mićanović D, Stanisavljević S, Li H, Koprivica I, Jonić N, Stojanović I, Savković V, Saksida T. Mesenchymal Stem Cells from Mouse Hair Follicles Inhibit the Development of Type 1 Diabetes. Int J Mol Sci 2024; 25:5974. [PMID: 38892159 PMCID: PMC11172537 DOI: 10.3390/ijms25115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are known for their immunosuppressive properties. Based on the demonstrated anti-inflammatory effect of mouse MSCs from hair follicles (moMSCORS) in a murine wound closure model, this study evaluates their potential for preventing type 1 diabetes (T1D) in C57BL/6 mice. T1D was induced in C57BL/6 mice by repeated low doses of streptozotocin. moMSCORS were injected intravenously on weekly basis. moMSCORS reduced T1D incidence, the insulitis stage, and preserved insulin production in treated animals. moMSCORS primarily exerted immunomodulatory effects by inhibiting CD4+ T cell proliferation and activation. Ex vivo analysis indicated that moMSCORS modified the cellular immune profile within pancreatic lymph nodes and pancreatic infiltrates by reducing the numbers of M1 pro-inflammatory macrophages and T helper 17 cells and upscaling the immunosuppressive T regulatory cells. The proportion of pathogenic insulin-specific CD4+ T cells was down-scaled in the lymph nodes, likely via soluble factors. The moMSCORS detected in the pancreatic infiltrates of treated mice presumably exerted the observed suppressive effect on CD4+ through direct contact. moMSCORS alleviated T1D symptoms in the mouse, qualifying as a candidate for therapeutic products by multiple advantages: non-invasive sampling by epilation, easy access, permanent availability, scalability, and benefits of auto-transplantation.
Collapse
Affiliation(s)
- Dragica Mićanović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| | - Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| | - Hanluo Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China;
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany
| | - Ivan Koprivica
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| | - Natalija Jonić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| | - Vuk Savković
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| |
Collapse
|
30
|
Ji Y, Mi L, Zhao M, He X, Hu Y, Gao Y, Yin C, Xu K. Innovative Diagnosis and Therapeutic Modalities: Engineered Exosomes in Autoimmune Disease. Int J Nanomedicine 2024; 19:3943-3956. [PMID: 38708179 PMCID: PMC11070165 DOI: 10.2147/ijn.s452184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Autoimmune diseases refer to a group of conditions where the immune system produces an immune response against self-antigens, resulting in tissue damage. These diseases have profound impacts on the health of patients. In recent years, with the rapid development in the field of biomedicine, engineered exosomes have emerged as a noteworthy class of biogenic nanoparticles. By precisely manipulating the cargo and surface markers of exosomes, engineered exosomes have gained enhanced anti-inflammatory, immunomodulatory, and tissue reparative abilities, providing new prospects for the treatment of autoimmune diseases. Engineered exosomes not only facilitate the efficient delivery of bioactive molecules including nucleic acids, proteins, and cytokines, but also possess the capability to modulate immune cell functions, suppress inflammation, and restore immune homeostasis. This review mainly focuses on the applications of engineered exosomes in several typical autoimmune diseases. Additionally, this article comprehensively summarizes the current approaches for modification and engineering of exosomes and outlines their prospects in clinical applications. In conclusion, engineered exosomes, as an innovative therapeutic approach, hold promise for the management of autoimmune diseases. However, while significant progress has been made, further rigorous research is still needed to address the challenges that engineered exosomes may encounter in the therapeutic intervention process, in order to facilitate their successful translation into clinical practice and ultimately benefit a broader population of patients.
Collapse
Affiliation(s)
- Yuli Ji
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Liangyu Mi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Miaomiao Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaoyao He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yuting Hu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yanan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Ke Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
31
|
Jiao YR, Chen KX, Tang X, Tang YL, Yang HL, Yin YL, Li CJ. Exosomes derived from mesenchymal stem cells in diabetes and diabetic complications. Cell Death Dis 2024; 15:271. [PMID: 38632264 PMCID: PMC11024187 DOI: 10.1038/s41419-024-06659-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Diabetes, a group of metabolic disorders, constitutes an important global health problem. Diabetes and its complications place a heavy financial strain on both patients and the global healthcare establishment. The lack of effective treatments contributes to this pessimistic situation and negative outlook. Exosomes released from mesenchymal stromal cells (MSCs) have emerged as the most likely new breakthrough and advancement in treating of diabetes and diabetes-associated complication due to its capacity of intercellular communication, modulating the local microenvironment, and regulating cellular processes. In the present review, we briefly outlined the properties of MSCs-derived exosomes, provided a thorough summary of their biological functions and potential uses in diabetes and its related complications.
Collapse
Affiliation(s)
- Yu-Rui Jiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Kai-Xuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiang Tang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yu-Long Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Hai-Lin Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Fuyang Normal University, Fuyang, Anhui, 236000, China
| | - Yu-Long Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Laboratory Animal Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
32
|
Pollalis D, Georgescu C, Wren JD, Tombulyan G, Leung JM, Lo PA, Bloemhof CM, Lee RH, Bae E, Bailey JK, Pennington BO, Khan AI, Kelly KR, Yeh AK, Sundaram KS, Humayun M, Louie S, Clegg DO, Lee SY. Rescuing Photoreceptors in RPE Dysfunction-Driven Retinal Degeneration: The Role of Small Extracellular Vesicles Secreted from Retinal Pigment Epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588773. [PMID: 38645051 PMCID: PMC11030310 DOI: 10.1101/2024.04.09.588773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Dysfunction of the retinal pigment epithelium (RPE) is a common shared pathology in major degenerative retinal diseases despite variations in the primary etiologies of each disease. Due to their demanding and indispensable functional roles throughout the lifetime, RPE cells are vulnerable to genetic predisposition, external stress, and aging processes. Building upon recent advancements in stem cell technology for differentiating healthy RPE cells and recognizing the significant roles of small extracellular vesicles (sEV) in cellular paracrine and autocrine actions, we investigated the hypothesis that the RPE-secreted sEV alone can restore essential RPE functions and rescue photoreceptors in RPE dysfunction-driven retinal degeneration. Our findings support the rationale for developing intravitreal treatment of sEV. We demonstrate that intravitreally delivered sEV effectively penetrate the full thickness of the retina. Xenogenic intraocular administration of human-derived EVs did not induce acute immune reactions in rodents. sEV derived from human embryonic stem cell (hESC)-derived fully differentiated RPE cells, but not sEV-depleted conditioned cell culture media (CCM minus sEV), rescued photoreceptors and their function in a Royal College of Surgeons (RCS) rat model. This model is characterized by photoreceptor death and retinal degeneration resulting from a mutation in the MerTK gene in RPE cells. From the bulk RNA sequencing study, we identified 447 differently expressed genes in the retina after hESC-RPE-sEV treatment compared with the untreated control. Furthermore, 394 out of 447 genes (88%) showed a reversal in expression toward the healthy state in Long-Evans (LE) rats after treatment compared to the diseased state. Particularly, detrimental alterations in gene expression in RCS rats, including essential RPE functions such as phototransduction, vitamin A metabolism, and lipid metabolism were partially reversed. Defective photoreceptor outer segment engulfment due to intrinsic MerTK mutation was partially ameliorated. These findings suggest that RPE-secreted sEV may play a functional role similar to that of RPE cells. Our study justifies further exploration to fully unlock future therapeutic interventions with sEV in a broad array of degenerative retinal diseases.
Collapse
|
33
|
Di Florio DN, Beetler DJ, McCabe EJ, Sin J, Ikezu T, Fairweather D. Mitochondrial extracellular vesicles, autoimmunity and myocarditis. Front Immunol 2024; 15:1374796. [PMID: 38550582 PMCID: PMC10972887 DOI: 10.3389/fimmu.2024.1374796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
For many decades viral infections have been suspected as 'triggers' of autoimmune disease, but mechanisms for how this could occur have been difficult to establish. Recent studies have shown that viral infections that are commonly associated with viral myocarditis and other autoimmune diseases such as coxsackievirus B3 (CVB3) and SARS-CoV-2 target mitochondria and are released from cells in mitochondrial vesicles that are able to activate the innate immune response. Studies have shown that Toll-like receptor (TLR)4 and the inflammasome pathway are activated by mitochondrial components. Autoreactivity against cardiac myosin and heart-specific immune responses that occur after infection with viruses where the heart is not the primary site of infection (e.g., CVB3, SARS-CoV-2) may occur because the heart has the highest density of mitochondria in the body. Evidence exists for autoantibodies against mitochondrial antigens in patients with myocarditis and dilated cardiomyopathy. Defects in tolerance mechanisms like autoimmune regulator gene (AIRE) may further increase the likelihood of autoreactivity against mitochondrial antigens leading to autoimmune disease. The focus of this review is to summarize current literature regarding the role of viral infection in the production of extracellular vesicles containing mitochondria and virus and the development of myocarditis.
Collapse
Affiliation(s)
- Damian N. Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth J. McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
- Department of Medicine, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
34
|
Leung J, Pollalis D, Nair GKG, Bailey JK, Pennington BO, Khan AI, Kelly KR, Yeh AK, Sundaram KS, Clegg DO, Peng CC, Xu L, Lee SY. Isolation and Characterization of Extracellular Vesicles Through Orthogonal Approaches for the Development of Intraocular EV Therapy. Invest Ophthalmol Vis Sci 2024; 65:6. [PMID: 38466285 PMCID: PMC10929743 DOI: 10.1167/iovs.65.3.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
Purpose Isolating extracellular vesicles (EVs) with high yield, replicable purity, and characterization remains a bottleneck in the development of EV therapeutics. To address these challenges, the current study aims to establish the necessary framework for preclinical and clinical studies in the development of stem cell-derived intraocular EV therapeutics. Methods Small EVs (sEVs) were separated from the conditioned cell culture medium (CCM) of the human embryogenic stem cell-derived fully polarized retinal pigment epithelium (hESC-RPE-sEV) by a commercially available microfluidic tangential flow filtration (TFF) device ExoDisc (ED) or differential ultracentrifugation (dUC). The scaling and concentration capabilities and purity of recovered sEVs were assessed. Size, number, and surface markers of sEVs were determined by orthogonal approaches using multiple devices. Results ED yielded higher numbers of sEVs, ranging from three to eight times higher depending on the measurement device, compared to dUC using the same 5 mL of CCM input. Within the same setting, the purity of ED-recovered hESC-RPE-sEVs was higher than that for dUC-recovered sEVs. ED yielded a higher concentration of particles, which is strongly correlated with the input volume, up to 10 mL (r = 0.98, P = 0.016). Meanwhile, comprehensive characterization profiles of EV surface markers between ED- and dUC-recovered hESC-RPE-sEVs were compatible. Conclusions Our study supports TFF as a valuable strategy for separating sEVs for the development of intraocular EV therapeutics. However, there is a growing need for diverse devices to optimize TFF for use in EV preparation. Using orthogonal approaches in EV characterization remains ideal for reliably characterizing heterogeneous EV.
Collapse
Affiliation(s)
- Justin Leung
- USC Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, United States
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California, United States
| | - Dimitrios Pollalis
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California, United States
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Gopa K. G. Nair
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California, United States
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Jeffrey K. Bailey
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Britney O. Pennington
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Amir I. Khan
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Kaitlin R. Kelly
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Ashley K. Yeh
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States
- College of Creative Studies, Biology, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Kartik S. Sundaram
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Dennis O. Clegg
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Chen-Ching Peng
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
- Children's Hospital Los Angeles Vision Center, Los Angeles, California, United States
| | - Liya Xu
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
- Children's Hospital Los Angeles Vision Center, Los Angeles, California, United States
| | - Sun Young Lee
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California, United States
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
35
|
Onkar A, Khan F, Goenka A, Rajendran RL, Dmello C, Hong CM, Mubin N, Gangadaran P, Ahn BC. Smart Nanoscale Extracellular Vesicles in the Brain: Unveiling their Biology, Diagnostic Potential, and Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6709-6742. [PMID: 38315446 DOI: 10.1021/acsami.3c16839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Information exchange is essential for the brain, where it communicates the physiological and pathological signals to the periphery and vice versa. Extracellular vesicles (EVs) are a heterogeneous group of membrane-bound cellular informants actively transferring informative calls to and from the brain via lipids, proteins, and nucleic acid cargos. In recent years, EVs have also been widely used to understand brain function, given their "cell-like" properties. On the one hand, the presence of neuron and astrocyte-derived EVs in biological fluids have been exploited as biomarkers to understand the mechanisms and progression of multiple neurological disorders; on the other, EVs have been used in designing targeted therapies due to their potential to cross the blood-brain-barrier (BBB). Despite the expanding literature on EVs in the context of central nervous system (CNS) physiology and related disorders, a comprehensive compilation of the existing knowledge still needs to be made available. In the current review, we provide a detailed insight into the multifaceted role of brain-derived extracellular vesicles (BDEVs) in the intricate regulation of brain physiology. Our focus extends to the significance of these EVs in a spectrum of disorders, including brain tumors, neurodegenerative conditions, neuropsychiatric diseases, autoimmune disorders, and others. Throughout the review, parallels are drawn for using EVs as biomarkers for various disorders, evaluating their utility in early detection and monitoring. Additionally, we discuss the promising prospects of utilizing EVs in targeted therapy while acknowledging the existing limitations and challenges associated with their applications in clinical scenarios. A foundational comprehension of the current state-of-the-art in EV research is essential for informing the design of future studies.
Collapse
Affiliation(s)
- Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Crismita Dmello
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Nida Mubin
- Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
36
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 276] [Impact Index Per Article: 276.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
37
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
38
|
Browne S, Petit N, Quondamatteo F. Functionalised biomaterials as synthetic extracellular matrices to promote vascularisation and healing of diabetic wounds. Cell Tissue Res 2024; 395:133-145. [PMID: 38051351 DOI: 10.1007/s00441-023-03849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Diabetic foot ulcers (DFU) are a type of chronic wound that constitute one of the most serious and debilitating complications associated with diabetes. The lack of clinically efficacious treatments to treat these recalcitrant wounds can lead to amputations for those worst affected. Biomaterial-based approaches offer great hope in this regard, as they provide a template for cell infiltration and tissue repair. However, there is an additional need to treat the underlying pathophysiology of DFUs, in particular insufficient vascularization of the wound which significantly hampers healing. Thus, the addition of pro-angiogenic moieties to biomaterials is a promising strategy to promote the healing of DFUs and other chronic wounds. In this review, we discuss the potential of biomaterials as treatments for DFU and the approaches that can be taken to functionalise these biomaterials such that they promote vascularisation and wound healing in pre-clinical models.
Collapse
Affiliation(s)
- Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland.
- CÚRAM, Centre for Research in Medical Devices, University of Galway, H91 W2TY, Galway, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland.
| | - Noémie Petit
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland
| | - Fabio Quondamatteo
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland.
| |
Collapse
|
39
|
Ghoneim MA, Gabr MM, El-Halawani SM, Refaie AF. Current status of stem cell therapy for type 1 diabetes: a critique and a prospective consideration. Stem Cell Res Ther 2024; 15:23. [PMID: 38281991 PMCID: PMC10823744 DOI: 10.1186/s13287-024-03636-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Over the past decade, there had been progress in the development of cell therapy for insulin-dependent diabetes. Nevertheless, important hurdles that need to be overcome still remain. Protocols for the differentiation of pluripotent stem cells into pancreatic progenitors or fully differentiated β-cells have been developed. The resulting insulin-producing cells can control chemically induced diabetes in rodents and were the subject of several clinical trials. However, these cells are immunogenic and possibly teratogenic for their transplantation, and an immunoisolation device and/or immunosuppression is needed. A growing number of studies have utilized genetic manipulations to produce immune evasive cells. Evidence must be provided that in addition to the expected benefit, gene manipulations should not lead to any unforeseen complications. Mesenchymal stem/stromal cells (MSCs) can provide a viable alternative. MSCs are widely available from many tissues. They can form insulin-producing cells by directed differentiation. Experimentally, evidence has shown that the transplantation of allogenic insulin-producing cells derived from MSCs is associated with a muted allogeneic response that does not interfere with their functionality. This can be explained by the immunomodulatory functions of the MSC subpopulation that did not differentiate into insulin-producing cells. Recently, exosomes derived from naive MSCs have been used in the experimental domain to treat diabetes in rodents with varying degrees of success. Several mechanisms for their beneficial functions were proposed including a reduction in insulin resistance, the promotion of autophagy, and an increase in the T regulatory population. However, euglycemia was not achieved in any of these experiments. We suggest that exosomes derived from β-cells or insulin-producing cells (educated) can provide a better therapeutic effect than those derived from undifferentiated cells.
Collapse
|
40
|
Saad-Naguib MH, Kenfack Y, Sherman LS, Chafitz OB, Morelli SS. Impaired receptivity of thin endometrium: therapeutic potential of mesenchymal stem cells. Front Endocrinol (Lausanne) 2024; 14:1268990. [PMID: 38344687 PMCID: PMC10854221 DOI: 10.3389/fendo.2023.1268990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
The endometrium is a resilient and highly dynamic tissue, undergoing cyclic renewal in preparation for embryo implantation. Cyclic endometrial regeneration depends on the intact function of several cell types, including parenchymal, endothelial, and immune cells, as well as adult stem cells that can arise from endometrial or extrauterine sources. The ability of the endometrium to undergo rapid, repeated regeneration without scarring is unique to this tissue. However, if this tissue renewal process is disrupted or dysfunctional, women may present clinically with infertility due to endometrial scarring or persistent atrophic/thin endometrium. Such disorders are rate-limiting in the treatment of female infertility and in the success of in vitro fertilization because of a dearth of treatment options specifically targeting the endometrium. A growing number of studies have explored the potential of adult stem cells, including mesenchymal stem cells (MSCs), to treat women with disorders of endometrial regeneration. MSCs are multipotent adult stem cells with capacity to differentiate into cells such as adipocytes, chondrocytes, and osteoblasts. In addition to their differentiation capacity, MSCs migrate toward injured sites where they secrete bioactive factors (e.g. cytokines, chemokines, growth factors, proteins and extracellular vesicles) to aid in tissue repair. These factors modulate biological processes critical for tissue regeneration, such as angiogenesis, cell migration and immunomodulation. The MSC secretome has therefore attracted significant attention for its therapeutic potential. In the uterus, studies utilizing rodent models and limited human trials have shown a potential benefit of MSCs and the MSC secretome in treatment of endometrial infertility. This review will explore the potential of MSCs to treat women with impaired endometrial receptivity due to a thin endometrium or endometrial scarring. We will provide context supporting leveraging MSCs for this purpose by including a review of mechanisms by which the MSC secretome promotes regeneration and repair of nonreproductive tissues.
Collapse
Affiliation(s)
- Michael H. Saad-Naguib
- Department of Obstetrics, Gynecology & Reproductive Health, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Yannick Kenfack
- Department of Medicine, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Lauren S. Sherman
- Department of Medicine, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Olivia B. Chafitz
- Department of Obstetrics & Gynecology, Hackensack University Medical Center, Hackensack, NJ, United States
| | - Sara S. Morelli
- Department of Obstetrics, Gynecology & Reproductive Health, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
41
|
Margiana R. Mesenchymal stem cell-derived exosomes in preeclampsia: A next-generation therapeutic tool. Cell Biochem Funct 2024; 42:e3908. [PMID: 38269498 DOI: 10.1002/cbf.3908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
Preeclampsia (PE) is a major gestational disorder that causes both long- and short-term damage to both the mother and the fetus. Endometrium decidualization and the formation of the placenta are orchestrated by mesenchymal stem cells (MSCs). MSCs obtained from patients with PE exhibit an elevated rate of aging and apoptosis, which impairs the interplay between MSCs and endothelium, trophoblast, and immune cells in the placenta, accelerating the onset of PE. Preclinical and clinical evidence imply that the MSC-based therapy approach for PE is prospective. Importantly, as a novel cell-free approach, MSC-derived exosomes can improve symptoms and maternal-fetal survival in PE models by raising cell metabolism, encouraging angiogenesis balance, and regulating immune responses. Even following allogeneic administration, the likelihood of immune rejection is very limited as a result of the small quantity of exosome membrane-bound proteins. Furthermore, because exosomes do not expand, developing tumors is not probable. As a result, MSC-derived exosomes show superiority over MSCs in terms of safety. For the first time, we outline the properties of MSC-exosomes and highlight their functions and potential as a new paradigm for PE therapy in this review.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
42
|
Ling MTM, Govindaraju K, Lokanathan Y, Abidin AZ, Ibrahim B. Mesenchymal stem cell-derived extracellular vesicles for metabolic syndrome therapy: Assessing efficacy with nuclear magnetic resonance spectroscopy. Cell Biochem Funct 2023; 41:1044-1059. [PMID: 37933415 DOI: 10.1002/cbf.3881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/27/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
Metabolic syndrome (MetS) represents a cluster of metabolic abnormalities. The prevalence of MetS has surged, transforming it into a pressing public health concern that could potentially affect around 20%-25% of the global population. As MetS continues its ascent, diverse interventions, pharmacological, nonpharmacological and combined have been deployed. Yet, a comprehensive remedy that fully eradicates MetS symptoms remains elusive, compounded by the risks of polypharmacy's emergence. Acknowledging the imperative to grasp MetS's intricate pathologies, deeper insights for future research and therapy optimisation become paramount. Conventional treatments often target specific syndrome elements. However, a novel approach emerges in mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) therapy, promising a holistic shift. MSC-EVs, tiny membranous vesicles secreted by mesenchymal stem cells, have garnered immense attention for their multifaceted bioactivity and regenerative potential. Their ability to modulate inflammation, enhance tissue repair and regulate metabolic pathways has prompted researchers to explore their therapeutic application in MetS. This review primarily aims to provide an overview of how MSC-EVs therapy can improve metabolic parameters in subjects with MetS disease and also introduce the usefulness of NMR spectroscopy in assessing the efficacy of MSC-EVs therapy for treating MetS.
Collapse
Affiliation(s)
- Magdalene Tan Mei Ling
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kayatri Govindaraju
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Asmaa' Zainal Abidin
- Department of Chemistry and Biology, Centre for Defense Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia
| | - Baharudin Ibrahim
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Yang J, Zhang X, Wang G, Ma S, Yu Y, Liao C, Wang Z, Liang C, Li M, Tian W, Liao L. ApoSEVs-Mediated Modulation of Versatile Target Cells Promotes Diabetic Wound Healing: Unveiling a Promising Strategy. Int J Nanomedicine 2023; 18:6955-6977. [PMID: 38026535 PMCID: PMC10676647 DOI: 10.2147/ijn.s436350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background Diabetic chronic wounds present a formidable challenge in clinical management, lacking effective treatment options. Mesenchymal stem cell (MSC) transplantation has emerged as a promising therapy for tissue repair and regeneration. However, transplanted MSCs often undergo rapid apoptosis, giving rise to heterogeneous extracellular vesicles (EVs), including apoptotic bodies (apoBDs) and apoptotic small extracellular vesicles (apoSEVs). The potential stimulatory role of these EVs in diabetic wound healing remains unknown. Methods In this study, we investigated the effects of apoSEVs derived from adipose-derived mesenchymal/stromal cells (ADSCs) on the recovery of diabetic wounds by modulating the function of versatile target cells. First, we characterized the apoSEVs and apoBDs derived from apoptotic ADSCs. Subsequently, we evaluated the effects of apoSEVs and apoBDs on macrophages, endothelial cells, and fibroblasts, three essential cell types in wound healing, under high-glucose conditions. Furthermore, we developed a gelatin methacryloyl (GelMA) hydrogel for the sustained release of apoSEVs and investigated its therapeutic effects on wound healing in type 2 diabetic mice in vivo. Results apoSEVs facilitated the polarization of M1 phenotype macrophages to M2 phenotype, promoted proliferation, migration, and tube formation of endothelial cells, and enhanced fibroblast proliferation and migration. However, apoBDs failed to improve the function of endothelial cells and fibroblasts. In vivo, the apoSEVs-loaded GelMA effectively promoted wound healing by facilitating collagen fiber deposition, angiogenesis, and immune regulation. Conclusion Our study elucidates the beneficial effects of apoSEVs on wound recovery in diabetes and introduces a novel strategy for diabetic wound treatment based on apoSEVs.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xuanhao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Guanyu Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Shixing Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yejia Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Chengcheng Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Zhuo Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Cheng Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
44
|
Huang X, Liu Y, Li Z, Lerman LO. Mesenchymal Stem/Stromal Cells Therapy for Metabolic Syndrome: Potential Clinical Application? Stem Cells 2023; 41:893-906. [PMID: 37407022 PMCID: PMC10560401 DOI: 10.1093/stmcls/sxad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs), a class of cells with proliferative, immunomodulatory, and reparative functions, have shown therapeutic potential in a variety of systemic diseases, including metabolic syndrome (MetS). The cluster of morbidities that constitute MetS might be particularly amenable for the application of MSCs, which employ an arsenal of reparative actions to target multiple pathogenic pathways simultaneously. Preclinical studies have shown that MSCs can reverse pathological changes in MetS mainly by inhibiting inflammation, improving insulin resistance, regulating glycolipid metabolism, and protecting organ function. However, several challenges remain to overcome before MSCs can be applied for treating MetS. For example, the merits of autologous versus allogeneic MSCs sources remain unclear, particularly with autologous MSCs obtained from the noxious MetS milieu. The distinct characteristics and relative efficacy of MSCs harvested from different tissue sources also require clarification. Moreover, to improve the therapeutic efficacy of MSCs, investigators have explored several approaches that improved therapeutic efficacy but may involve potential safety concerns. This review summarized the potentially useful MSCs strategy for treating MetS, as well as some hurdles that remain to be overcome. In particular, larger-scale studies are needed to determine the therapeutic efficacy and safety of MSCs for clinical application.
Collapse
Affiliation(s)
- Xiuyi Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yunchong Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
45
|
Mehryab F, Taghizadeh F, Goshtasbi N, Merati F, Rabbani S, Haeri A. Exosomes as cutting-edge therapeutics in various biomedical applications: An update on engineering, delivery, and preclinical studies. Biochimie 2023; 213:139-167. [PMID: 37207937 DOI: 10.1016/j.biochi.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Exosomes are cell-derived nanovesicles, circulating in different body fluids, and acting as an intercellular mechanism. They can be purified from culture media of different cell types and carry an enriched content of various protein and nucleic acid molecules originating from their parental cells. It was indicated that the exosomal cargo can mediate immune responses via many signaling pathways. Over recent years, the therapeutic effects of various exosome types were broadly investigated in many preclinical studies. Herein, we present an update on recent preclinical studies on exosomes as therapeutic and/or delivery agents for various applications. The exosome origin, structural modifications, natural or loaded active ingredients, size, and research outcomes were summarized for various diseases. Overall, the present article provides an overview of the latest exosome research interests and developments to clear the way for the clinical study design and application.
Collapse
Affiliation(s)
- Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Merati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Bouche Djatche WH, Zhu H, Ma W, Li Y, Li Z, Zhao H, Liu Z, Qiao H. Potential of mesenchymal stem cell-derived conditioned medium/secretome as a therapeutic option for ocular diseases. Regen Med 2023; 18:795-807. [PMID: 37702008 DOI: 10.2217/rme-2023-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Research has shown that the therapeutic effect of mesenchymal stem cells (MSCs) is partially due to its secreted factors as opposed to the implantation of the cells into the treated tissue or tissue replacement. MSC secretome, especially in the form of conditioned medium (MSC-CM) is now being explored as an alternative to MSCs transplantation. Despite the observed benefits of MSC-CM, only a few clinical trials have evaluated it and other secretome components in the treatment of eye diseases. This review provides insight into the potential therapeutic use of MSC-CM in eye conditions, such as corneal diseases, dry eye, glaucoma, retinal diseases and uveitis. We discuss the current evidence, some limitations, and the progress that remains to be achieved before clinical translation becomes possible.
Collapse
Affiliation(s)
| | - Huimin Zhu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Wenlei Ma
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Yue Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Ziang Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Zhao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhizhen Liu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hua Qiao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
47
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
48
|
Kashani SA, Navabi R, Amini A, Hajinasrollah M, Jenab Y, Rabbani S, Nazari A, Pakzad M, Moazenchi M, Atrabi MJ, Samsonchi Z, Hezavehei M, Hosseini-Beheshti E, Shekari F, Hajizadeh-Saffar E, Baharvand H. Immunomodulatory potential of human clonal mesenchymal stem cells and their extracellular vesicle subpopulations in an inflammatory-mediated diabetic Rhesus monkey model. Life Sci 2023; 329:121950. [PMID: 37473804 DOI: 10.1016/j.lfs.2023.121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
AIMS This study aimed to investigate the therapeutic potential of a homogenous clonal population of mesenchymal stem cells (cMSC) and their extracellular vesicles (cMSC-EV) subpopulations on isolated rat islets in vitro and in inflammatory-mediated type 1 diabetes (T1D) non-human primate models. MAIN METHODS EV subpopulations were isolated from human bone marrow-derived cMSC supernatant by low- and high-speed ultracentrifuge (EV-20K and EV-U110K) and sucrose density gradient (EV-S110K). The EVs were characterized generally and for the level of albumin, acetylcholinesterase (AChE) activity, co-isolate apoptotic markers, and expression of CD63+/annexin V+. Rat islet-derived single cells (iSCs) proliferation was measured using a Ki-67 proliferation assay. Diabetes was induced by multiple low-dose administrations of streptozotocin in rhesus monkeys. The diabetic monkeys were divided into three groups: the cMSC group, received two injections of 1.5 × 106 cMSC/kg body weight; the EV group received two injections of EVs isolated from 1.5 × 106 cMSC/kg, and the vehicle group received phosphate-buffered saline. KEY FINDINGS EV-S110K showed higher AChE activity, lower expression of CD63+/annexin V+, and lower apoptotic co-isolates. EV-S110K induced β-cell proliferation in vitro in a dose-dependent manner. The administration of EV-S110K and/or cMSC in diabetic monkeys demonstrated no significant changes in general diabetic indices and β-cell mass in the pancreas of the monkeys. Both treatments demonstrated a lowering trend in blood glucose levels and reduced pro-inflammatory cytokines. In contrast, regulatory T cells and anti-inflammatory cytokines were increased. SIGNIFICANCE cMSC and cMSC-EV provided initial evidence to attenuate clinical symptoms in inflammatory-mediated T1D non-human primates through immunomodulation.
Collapse
Affiliation(s)
- Sara Assar Kashani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Roghayeh Navabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azadeh Amini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mostafa Hajinasrollah
- Animal Core Facility, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Yaser Jenab
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdoreza Nazari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Pakzad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maedeh Moazenchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Jafari Atrabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zakieh Samsonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Elham Hosseini-Beheshti
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
49
|
Malvicini R, Santa-Cruz D, Tolomeo AM, Muraca M, Yannarelli G, Pacienza N. Ion exchange chromatography as a simple and scalable method to isolate biologically active small extracellular vesicles from conditioned media. PLoS One 2023; 18:e0291589. [PMID: 37713424 PMCID: PMC10503763 DOI: 10.1371/journal.pone.0291589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
In the last few years, extracellular vesicles (EVs) have become of great interest due to their potential as biomarkers, drug delivery systems, and, in particular, therapeutic agents. However, there is no consensus on which is the best way to isolate these EVs. The choice of the isolation method depends on the starting material (i.e., conditioned culture media, urine, serum, etc.) and their downstream applications. Even though there are numerous methods to isolate EVs, few are compatible with clinical applications as they are not scalable. In the present work, we set up a protocol to isolate EVs from conditioned media by ion exchange chromatography, a simple, fast, and scalable method, suitable for clinical production. We performed the isolation using an anion exchange resin (Q sepharose) and eluted the EVs using 500 mM NaCl. We characterized the elution profile by measuring protein and lipid concentration, and CD63 by ELISA. Moreover, we immunophenotyped all the eluted fractions, assessed the presence of TSG101, calnexin, and cytochrome C by western blot, analyzed nanoparticle size and distribution by tRPS, and morphology by TEM. Finally, we evaluated the immunomodulatory activity in vitro. We found that most EVs are eluted and concentrated in a single peak fraction, with a mean particle size of <150nm and expression of CD9, CD63, CD81, and TSG101 markers. Moreover, sEVs in fraction 4 exerted an anti-inflammatory activity on LPS-stimulated macrophages. In summary, we set up a chromatographic, scalable, and clinically compatible method to isolate and concentrate small EVs from conditioned media, which preserves the EVs biological activity.
Collapse
Affiliation(s)
- Ricardo Malvicini
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
- Department of Women’s and Children’s Health, University of Padova, Padua, Italy
- Laboratory of Extracellular Vesicles as Therapeutic Tools, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
| | - Diego Santa-Cruz
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Anna Maria Tolomeo
- Laboratory of Extracellular Vesicles as Therapeutic Tools, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, Padua, Italy
| | - Maurizio Muraca
- Department of Women’s and Children’s Health, University of Padova, Padua, Italy
- Laboratory of Extracellular Vesicles as Therapeutic Tools, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Natalia Pacienza
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| |
Collapse
|
50
|
Hwang JS, Kim J, You GE, Hong IH, Cho IH, Song HB, Shin YJ, Ma DJ. In Vivo Electroporation Improves Retinal Delivery of Intravitreally Injected Exosomes. J Ocul Pharmacol Ther 2023; 39:463-471. [PMID: 37486724 DOI: 10.1089/jop.2023.0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Purpose: Mesenchymal stem cell (MSC)-derived exosomes are promising therapeutic agents and natural nanoscale delivery platforms for treating degenerative retinal diseases. This study investigated the effect of electroporation on the retinal delivery of intravitreally administered MSC-derived exosomes in a murine model. Methods: Exosomes isolated from adipose tissue-derived MSCs were stained with ExoGlow exosome-specific dye and administered to the right eyes of 40 Sprague-Dawley rats. Electroporation was performed in 20 rats immediately after intravitreal injection (electroporation group); 5 square pulses of 40 V/cm for 50 ms each with 950-ms intervals were administered. The remaining 20 rats were assigned to the no-electroporation group. The eyeballs were harvested 24 h later for evaluation. The total number of fluorescent particles per hyperfield was counted from the retinal flat mounts to quantify the retinal delivery of exosomes. Tissue damage after electroporation was evaluated using retinal histological sections and a terminal deoxynucleotidyl transferase-mediated deoxyuridine nick end labeling (TUNEL) assay. Results: A significantly higher number of fluorescent particles per hyperfield were observed in the retinal flat mounts of the electroporation group compared with that in the no-electroporation group (599.0 ± 307.5 vs. 376.9 ± 175.4; P = 0.013). Retinal histological sections and TUNEL assays showed no signs of tissue damage after electroporation. Conclusions: In vivo electroporation can improve the retinal delivery of intravitreally injected exosomes.
Collapse
Affiliation(s)
- Jin Sun Hwang
- Department of Ophthalmology, Hallym University Kangnam Sacred Heart Hospital; Seoul, Republic of Korea
- Hallym BioEyeTech Research Center; Hallym University College of Medicine, Seoul, Republic of Korea
| | - Junho Kim
- Research and Development Institute, Biosolution, Seoul, Republic of Korea
| | - Ga Eun You
- Research and Development Institute, Biosolution, Seoul, Republic of Korea
| | - In Hwan Hong
- Department of Ophthalmology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si, Republic of Korea
| | - In Hwan Cho
- Department of Ophthalmology, Soon Chun Hyang University Hospital Cheonan, Cheonan-si, Republic of Korea
| | - Hyun Beom Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Kangnam Sacred Heart Hospital; Seoul, Republic of Korea
- Hallym BioEyeTech Research Center; Hallym University College of Medicine, Seoul, Republic of Korea
| | - Dae Joong Ma
- Department of Ophthalmology, Hallym University Kangnam Sacred Heart Hospital; Seoul, Republic of Korea
- Hallym BioEyeTech Research Center; Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|