1
|
Alewel DI, Gavett SH, Rentschler KM, Schladweiler MC, Miller CN, Evansky PA, Jackson TW, Williams WC, Kodavanti UP. Adrenergic receptor subtypes differentially influence acrolein-induced ventilatory, vascular leakage, and inflammatory responses. Toxicol Appl Pharmacol 2025; 498:117303. [PMID: 40101861 PMCID: PMC12011196 DOI: 10.1016/j.taap.2025.117303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/20/2025]
Abstract
Adrenergic receptors (AR) are manipulated therapeutically for the treatment of pulmonary and cardiovascular diseases; however, their role in air pollutant-induced respiratory effects is poorly understood. We examined the contribution of AR-subtypes in acrolein-induced respiratory effects through selective receptor inhibition. We pre-treated 12-week-old male Wistar-Kyoto rats intraperitoneally daily for 9-days with subtype-specific AR antagonists prazosin (PRZ, α1-AR antagonist; 2-mg/kg-day), yohimbine (YOH, α2-AR antagonist; 5-mg/kg-day), or propranolol (PROP, β-AR antagonist; 10-mg/kg-day). On day-8 and day-9 of treatment, rats were exposed nose-only to air or acrolein (1.6 or 3.2 ppm), ∼4 h/day. Head-out plethysmography during exposure on Day-9 revealed overall concentration-dependent acrolein-related reduced ventilatory capacity, which was exacerbated in PRZ- and YOH-treated animals. Nasal (NALF) and bronchoalveolar lavage fluid (BALF), and blood samples were collected on day-9. Plasma epinephrine levels did not change; however, corticosterone decreased in YOH- and PROP-treated air-exposed animals. Adrenal and spleen weights were higher in PRZ-treated animals. Acrolein, 3.2-ppm depleted circulating lymphocytes in saline-treated and increased neutrophils in PRZ- and YOH-treated animals. NALF and BALF analysis indicated 3.2-ppm acrolein-induced neutrophilic and lymphocytic inflammation (NALF>BALF), which was exacerbated in lung of PRZ- and YOH-treated rats and slightly dampened in PROP-treated rats. However, acrolein-induced vascular protein leakage and increases in inflammatory cytokines in NALF were reduced by PROP-treatment. In conclusion, this study highlights sympathetically-mediated adrenoreceptor influence on acrolein-indued respiratory health effects, and AR subtype-specific modulation of breathing, hemodynamic, and inflammatory responses. These results have broader translational implications, as those receiving adrenergic agonistic/antagonistic therapies might experience variable air pollution-related respiratory health effects.
Collapse
Affiliation(s)
- Devin I Alewel
- Existing Chemicals Risk Assessment Division, Office of Chemical Safety and Pollution Prevention, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Stephen H Gavett
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Katherine M Rentschler
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Colette N Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Paul A Evansky
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Thomas W Jackson
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Wanda C Williams
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America.
| |
Collapse
|
2
|
Zhan Q, Meng X, Wang H, Yu Y, Su X, Huang Y, Yu L, Du Y, Zhang F, An Q, Liu T, Kan H. Long-term low-level ozone exposure and the incidence of type 2 diabetes mellitus and glycemic levels: A prospective cohort study from Southwest China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118028. [PMID: 40086034 DOI: 10.1016/j.ecoenv.2025.118028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND This study investigated the relationship between long-term low-level ozone (O3) exposure, type 2 diabetes mellitus (T2DM) incidence, and glycemic levels within a prospective cohort in Southwest China, especially in regions with relatively low air pollution levels. METHOD Between 2010 and 2020, the Guizhou Population Health Cohort Study (GPHCS) enrolled 9280 participants, who were followed up from 2016 to 2020. A total of 7317 participants (aged 18-95 years, mean 43.70 ± 14.89 years) were included in the final analysis. Time-dependent Cox regression models were used to evaluate the hazard ratios (HRs) between O3 exposure and T2DM incidence and its 95 % confidence intervals (CIs). Generalized linear model (GLM) assessed the association between O3 exposure and fasting blood glucose (FBG) levels. RESULTS During a median follow-up period of 6.58 (6.25, 8.42) years, 763 participants were diagnosed with T2DM. For every 1 standard deviation (SD) increase in O3 exposure (Mean ± SD: 67.23 ± 2.16 μg/m³) during the 6 years before baseline, the incidence of T2DM increased by 32.4 % (HR = 1.324, 95 % CI: 1.216, 1.442), while FBG levels rose by 0.081 mmol/L (β = 0.081, 95 % CI: 0.035,0.126). These associations persisted after adjusting for potential confounders, including PM2.5 and temperature. Stratified analyses revealed stronger associations in Han Chinese and urban populations. CONCLUSION This study provides robust evidence that even long-term exposure to low-level O3, below the World Health Organization (WHO) guideline value, is significantly associated with increased T2DM incidence and elevated FBG levels. These findings stress the need for stricter air pollution control measures to reduce the incident T2DM caused by long-term low-level O3 exposure and enhance public health protections.
Collapse
Affiliation(s)
- Qingqing Zhan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Huiqun Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Yangwen Yu
- Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Xu Su
- Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Yuqing Huang
- Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Lisha Yu
- Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Yu Du
- Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Fuyan Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Qinyu An
- GuiZhou University Medical College, Guiyang, Guizhou Province 550025, China
| | - Tao Liu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China; Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Andreone L. Neuroimmune axis: Linking environmental factors to pancreatic β-cell dysfunction in Diabetes. Brain Behav Immun Health 2025; 43:100926. [PMID: 39810797 PMCID: PMC11732196 DOI: 10.1016/j.bbih.2024.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 11/15/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
Pancreatic β-cells are specialized in secreting insulin in response to circulating nutrients, mainly glucose. Diabetes is one of the most prevalent endocrine-metabolic diseases characterized by an imbalance in glucose homeostasis, which result mainly from lack of insulin production (type 1 diabetes) or insufficient insulin and peripheral insulin resistance (type 2 diabetes), both influenced by genetic and environmental components. Pancreatic β-cell dysfunction and islet inflammation are common characteristics of both types of the disease. Pancreatic islets are a highly innervated tissue whose function can be influenced by the brain, either directly through the autonomic nervous system or indirectly via neuroendocrine mechanisms. In addition, it is well-established that there is a fine-tuned communication between the immune and neuroendocrine tissues in maintaining endocrine pancreas homeostasis. Various psycho-social, physico-chemical and lifestyle environmental factors have been associated with diabetes risk. In this review, I briefly comment on certain aspects of the psycho-neuro-immune interactions that link environmental factors and the endocrine pancreas, leading to metabolic health or diabetes. Interdisciplinary research, embracing new and broader perspectives, should be conducted to explore strategies for preventing or slowing down the constant increase in diabetes worldwide.
Collapse
Affiliation(s)
- Luz Andreone
- Laboratory of Immuno-Endocrinology, Diabetes and Metabolism, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Pilar, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Argentina
| |
Collapse
|
4
|
Hua Q, Meng X, Gong J, Qiu X, Shang J, Xue T, Zhu T. Ozone exposure and cardiovascular disease: A narrative review of epidemiology evidence and underlying mechanisms. FUNDAMENTAL RESEARCH 2025; 5:249-263. [PMID: 40166088 PMCID: PMC11955045 DOI: 10.1016/j.fmre.2024.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2025] Open
Abstract
Ozone (O3) poses a significant global public health concern as it exerts adverse effects on human cardiovascular health. Nevertheless, there remains a lack of comprehensive understanding regarding the relationships between O3 exposure and the risk of cardiovascular diseases (CVD), as well as the underlying biological mechanisms. To address this knowledge gap, this narrative review meticulously summarizes the existing epidemiological evidence, susceptibility, and potential underlying biological mechanisms linking O3 exposure with CVD. An increasing body of epidemiological studies has demonstrated that O3 exposure heightens the incidence and mortality of CVD, including specific subtypes such as ischemic heart disease, hypertension, and heart failure. Certain populations display heightened vulnerability to these effects, particularly children, the elderly, obese individuals, and those with pre-existing conditions. Proposed biological mechanisms suggest that O3 exposure engenders respiratory and systemic inflammation, oxidative stress, disruption of autonomic nervous and neuroendocrine systems, as well as impairment of coagulation function, glucose, and lipid metabolism. Ultimately, these processes contribute to vascular dysfunction and the development of CVD. However, some studies have reported the absence of associations between O3 and CVD, or even potentially protective effects of O3. Inconsistencies among the literature may be attributed to inaccurate assessment of personal O3 exposure levels in epidemiologic studies, as well as confounding effects stemming from co-pollutants and temperature. Consequently, our findings underscore the imperative for further research, including the development of reliable methodologies for assessing personal O3 exposure, exploration of O3 exposure's impact on cardiovascular health, and elucidation of its biological mechanisms. These endeavors will consolidate the causal relationship between O3 and cardiovascular diseases, subsequently aiding efforts to mitigate the risks associated with O3 exposure.
Collapse
Affiliation(s)
- Qiaoyi Hua
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xin Meng
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jing Shang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tao Xue
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Wang X, Karvonen-Gutierrez CA, Mancuso P, Gold EB, Derby CA, Kravitz HM, Greendale G, Wu X, Ebisu K, Schwartz J, Park SK. Exposure to air pollution is associated with adipokines in midlife women: The Study of Women's Health Across the Nation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177334. [PMID: 39488293 PMCID: PMC11632973 DOI: 10.1016/j.scitotenv.2024.177334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
This study examined the associations between ambient air pollution exposure, including fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3), with serum levels of high molecular weight (HMW) adiponectin, leptin, and soluble leptin receptors (sOB-R) in midlife women. The analysis included 1551 participants from the Study of Women's Health Across the Nation (median age = 52.3 years) with adipokine data from 2002 to 2003. Annual air pollution exposures were assigned by linking residential addresses with high-resolution machine learning models at a 1-km2 resolution. Multivariable linear regression and Bayesian kernel machine regression (BKMR) were used to evaluate the associations for individual pollutants and pollutant mixtures. After adjusting for confounders in linear regression models, an interquartile range increase in PM2.5 (2.5 μg/m3) was associated with a 4.6 % lower HMW adiponectin level (95 % CI: -8.8 %, -0.3 %). Exposure to air pollutant mixtures showed negative associations with HMW adiponectin and positive associations with leptin levels in BKMR models. These findings suggest that exposures to PM2.5, NO2, and O3 are associated with adverse levels of adipokines, which may contribute to obesity-related outcomes. Further research is needed to confirm these findings and explore the underlying biological mechanisms.
Collapse
Affiliation(s)
- Xin Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | | | - Peter Mancuso
- Department of Nutritional Sciences, Graduate Program in Immunology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ellen B Gold
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Carol A Derby
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Howard M Kravitz
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Family and Preventive Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Gail Greendale
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Xiangmei Wu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Keita Ebisu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Rentschler KM, Kodavanti UP. Mechanistic insights regarding neuropsychiatric and neuropathologic impacts of air pollution. Crit Rev Toxicol 2024; 54:953-980. [PMID: 39655487 DOI: 10.1080/10408444.2024.2420972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 12/24/2024]
Abstract
Air pollution is a significant environmental health risk for urban areas and developing countries. Air pollution may contribute to the incidence of cardiopulmonary and metabolic diseases. Evidence also points to the role of air pollution in worsening or developing neurological and neuropsychiatric conditions. Inhaled pollutants include compositionally differing mixtures of respirable gaseous and particulate components of varied sizes, solubilities, and chemistry. Inhalation of combustibles and volatile organic compounds (VOCs) or other irritant particulate matter (PM) may trigger lung sensory afferents which initiate a sympathetic stress response via activation of the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes. Activation of SAM and HPA axes are associated with selective inhibition of hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) axes following exposure. Regarding chronic exposure in susceptible hosts, these changes may become pathological by causing neuroinflammation, neurotransmitter, and neuroendocrine imbalances. Soluble PM, such as metals and nano-size particles may translocate across the olfactory, trigeminal, or vagal nerves through retrograde axonal transport, or through systemic circulation which may disrupt the blood-brain barrier (BBB) and deposit in neural tissue. Neuronal deposition of metallic components can have a negative impact through multiple molecular mechanisms. In addition to systemic translocation, the release of pituitary and stress hormones, altered metabolic hormonal status and resultant circulating metabolic milieu, and sympathetically and HPA-mediated changes in immune markers, may secondarily impact the brain through a variety of regulatory adrenal hormone-dependent mechanisms. Several reviews covering air pollution as a risk factor for neuropsychiatric disorders have been published, but no reviews discuss the in-depth intersection between molecular and stress-related neuroendocrine mechanisms, thereby addressing adaptation and susceptibility variations and link to peripheral tissue effects. The purpose of this review is to discuss evidence regarding neurochemical, neuroendocrine, and molecular mechanisms which may contribute to neuropathology from air pollution exposure. This review also covers bi-directional neural and systemic interactions which may raise the risk for air pollution-related systemic illness.
Collapse
Affiliation(s)
- Katherine M Rentschler
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
7
|
Revand R, Dontham A, Sarkar S, Patil A. Subacute Exposure to Gaseous Pollutants from Diesel Engine Exhaust Attenuates Capsaicin-Induced Cardio-Pulmonary Reflex Responses Involving Oxidant Stress Mechanisms in Adult Wistar Rats. Cardiovasc Toxicol 2024; 24:396-407. [PMID: 38451349 DOI: 10.1007/s12012-024-09842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
Intravenous injection of capsaicin produces vagal-mediated protective cardio-pulmonary (CP) reflexes manifesting as tachypnea, bradycardia, and triphasic blood pressure (BP) response in anesthetized rats. Particulate matter from diesel engine exhaust has been reported to attenuate these reflexes. However, the effects of gaseous constituents of diesel exhaust are not known. Therefore, the present study was designed to investigate the effects of gaseous pollutants in diesel exhaust, on capsaicin-induced CP reflexes in rat model. Adult male rats were randomly assigned to three groups: Non-exposed (NE) group, filtered diesel exhaust-exposed (FDE) group and N-acetyl cysteine (NAC)-treated FDE group. FDE group of rats (n = 6) were exposed to filtered diesel exhaust for 5 h a day for 5 days (D1-D5), and were taken for dissection on day 6 (D6), while NE group of rats (n = 6) remained unexposed. On D6, rats were anesthetized, following which jugular vein was cannulated for injection of chemicals, and femoral artery was cannulated to record the BP. Lead II electrocardiogram and respiratory movements were also recorded. Results show that intravenous injection of capsaicin (0.1 ml; 10 µg/kg) produced immediate tachypneic, hyperventilatory, hypotensive, and bradycardiac responses in both NE and FDE groups of rats. However, these capsaicin-induced CP responses were significantly attenuated in FDE group as compared to the NE group of rats. Further, FDE-induced attenuation of capsaicin-evoked CP responses were diminished in the N-acetyl cysteine-treated FDE rats. These findings demonstrate that oxidant stress mechanisms could possibly be involved in inhibition of CP reflexes by gaseous pollutants in diesel engine exhaust.
Collapse
Affiliation(s)
- Ravindran Revand
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aditya Dontham
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Swarnabha Sarkar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Asmita Patil
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
8
|
McAlexander TP, Ryan V, Uddin J, Kanchi R, Thorpe L, Schwartz BS, Carson A, Rolka DB, Adhikari S, Pollak J, Lopez P, Smith M, Meeker M, McClure LA. Associations between PM 2.5 and O 3 exposures and new onset type 2 diabetes in regional and national samples in the United States. ENVIRONMENTAL RESEARCH 2023; 239:117248. [PMID: 37827369 DOI: 10.1016/j.envres.2023.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Exposure to particulate matter ≤2.5 μm in diameter (PM2.5) and ozone (O3) has been linked to numerous harmful health outcomes. While epidemiologic evidence has suggested a positive association with type 2 diabetes (T2D), there is heterogeneity in findings. We evaluated exposures to PM2.5 and O3 across three large samples in the US using a harmonized approach for exposure assignment and covariate adjustment. METHODS Data were obtained from the Veterans Administration Diabetes Risk (VADR) cohort (electronic health records [EHRs]), the Reasons for Geographic and Racial Disparities in Stroke (REGARDS) cohort (primary data collection), and the Geisinger health system (EHRs), and reflect the years 2003-2016 (REGARDS) and 2008-2016 (VADR and Geisinger). New onset T2D was ascertained using EHR information on medication orders, laboratory results, and T2D diagnoses (VADR and Geisinger) or report of T2D medication or diagnosis and/or elevated blood glucose levels (REGARDS). Exposure was assigned using pollutant annual averages from the Downscaler model. Models stratified by community type (higher density urban, lower density urban, suburban/small town, or rural census tracts) evaluated likelihood of new onset T2D in each study sample in single- and two-pollutant models of PM2.5 and O3. RESULTS In two pollutant models, associations of PM2.5, and new onset T2D were null in the REGARDS cohort except for in suburban/small town community types in models that also adjusted for NSEE, with an odds ratio (95% CI) of 1.51 (1.01, 2.25) per 5 μg/m3 of PM2.5. Results in the Geisinger sample were null. VADR sample results evidenced nonlinear associations for both pollutants; the shape of the association was dependent on community type. CONCLUSIONS Associations between PM2.5, O3 and new onset T2D differed across three large study samples in the US. None of the results from any of the three study populations found strong and clear positive associations.
Collapse
Affiliation(s)
- Tara P McAlexander
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA.
| | - Victoria Ryan
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA
| | - Jalal Uddin
- Department of Epidemiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rania Kanchi
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Lorna Thorpe
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Brian S Schwartz
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - April Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39213, USA
| | - Deborah B Rolka
- Division of Diabetes Translation, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Samrachana Adhikari
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Jonathan Pollak
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Priscilla Lopez
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Megan Smith
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA
| | - Melissa Meeker
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA
| | - Leslie A McClure
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA
| |
Collapse
|
9
|
Tan Q, Wang B, Ye Z, Mu G, Liu W, Nie X, Yu L, Zhou M, Chen W. Cross-sectional and longitudinal relationships between ozone exposure and glucose homeostasis: Exploring the role of systemic inflammation and oxidative stress in a general Chinese urban population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121711. [PMID: 37100372 DOI: 10.1016/j.envpol.2023.121711] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/05/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023]
Abstract
The adverse health effects of ozone pollution have been a globally concerned public health issue. Herein we aim to investigate the association between ozone exposure and glucose homeostasis, and to explore the potential role of systemic inflammation and oxidative stress in this association. A total of 6578 observations from the Wuhan-Zhuhai cohort (baseline and two follow-ups) were included in this study. Fasting plasma glucose (FPG) and insulin (FPI), plasma C-reactive protein (CRP, biomarker for systemic inflammation), urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG, biomarker for oxidative DNA damage), and urinary 8-isoprostane (biomarker for lipid peroxidation) were repeatedly measured. After adjusting for potential confounders, ozone exposure was positively associated with FPG, FPI, and homeostasis model assessment of insulin resistance (HOMA-IR), and negatively associated with HOMA of beta cell function (HOMA-β) in cross-sectional analyses. Each 10 ppb increase in cumulative 7-days moving average ozone was associated with a 13.19%, 8.31%, and 12.77% increase in FPG, FPI, and HOMA-IR, respectively, whereas a 6.63% decrease in HOMA-β (all P < 0.05). BMI modified the associations of 7-days ozone exposure with FPI and HOMA-IR, and the effects were stronger in subgroup whose BMI ≥24 kg/m2. Consistently high exposure to annual average ozone was associated with increased FPG and FPI in longitudinal analyses. Furthermore, ozone exposure was positively related to CRP, 8-OHdG, and 8-isoprostane in dose-response manner. Increased CRP, 8-OHdG, and 8-isoprostane could dose-dependently aggravate glucose homeostasis indices elevations related to ozone exposure. Increased CRP and 8-isoprostane mediated 2.11-14.96% of ozone-associated glucose homeostasis indices increment. Our findings suggested that ozone exposure could cause glucose homeostasis damage and obese people were more susceptible. Systemic inflammation and oxidative stress might be potential pathways in glucose homeostasis damage induced by ozone exposure.
Collapse
Affiliation(s)
- Qiyou Tan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
10
|
Gong Z, Yue H, Li Z, Bai S, Cheng Z, He J, Wang H, Li G, Sang N. Association between maternal exposure to air pollution and gestational diabetes mellitus in Taiyuan, North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162515. [PMID: 36868286 DOI: 10.1016/j.scitotenv.2023.162515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The effect of air pollution on human health has been a major concern, especially the association between air pollution and gestational diabetes mellitus (GDM). METHODS In this study, we conducted a retrospective cohort study in Taiyuan, a typical energy production base in China. This study included 28,977 pairs of mothers and infants between January 2018 and December 2020. To screen for GDM, oral glucose tolerance test (OGTT) was performed in pregnant women at 24-28 weeks of gestation. Logistic regression was used to assess the trimester-specific association between 5 common air pollutants (PM10, PM2.5, NO2, SO2, and O3) and GDM, and the weekly-based association was also assessed using distributed lag non-linear models (DLNMs). Odds ratios (ORs) with 95 % confidence intervals (CIs) were calculated for the association between GDM and each air pollutant. RESULTS The overall incidence of GDM was 3.29 %. PM2.5 was positively associated with GDM over the second trimester (OR [95 % CI], 1.105 [1.021, 1.196]). O3 was positively associated with GDM in the preconception period (OR [95 % CI], 1.125 [1.024, 1.236]), the first trimester (OR [95 % CI], 1.088 [1.019, 1.161]) and the 1st + 2nd trimester (OR [95 % CI], 1.643 [1.387, 1.945]). For the weekly-based association, PM2.5 was positively associated with GDM at 19-24 weeks of gestation, with the strongest association at week 24 (OR [95 % CI], 1.044 [1.021, 1.067]). PM10 was positively associated with GDM at 18-24 weeks of gestation, with the strongest association at week 24 (OR [95 % CI], 1.016 [1.003, 1.030]). O3 was positively associated with GDM during the 3rd week before conception to the 8th gestational week, with the strongest association at week 3 of gestation (OR [95 % CI], 1.054 [1.032, 1.077]). CONCLUSION The findings are important for the development of effective air quality policies and the optimization of preventive strategies for preconception and prenatal care.
Collapse
Affiliation(s)
- Zhihua Gong
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, PR China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zhihong Li
- Taiyuan Taihang Hospital, Taiyuan, Shanxi 030006, PR China
| | - Shuqing Bai
- Taiyuan Taihang Hospital, Taiyuan, Shanxi 030006, PR China
| | - Zhonghui Cheng
- Xiaodian District Maternal and Child Health Care Hospital, Taiyuan 030032, PR China
| | - Jing He
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, PR China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Huimin Wang
- Fengtai Mental Health Center, Beijing 100071, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
11
|
Rose M, Filiatreault A, Williams A, Guénette J, Thomson EM. Modulation of insulin signaling pathway genes by ozone inhalation and the role of glucocorticoids: A multi-tissue analysis. Toxicol Appl Pharmacol 2023; 469:116526. [PMID: 37088303 DOI: 10.1016/j.taap.2023.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Air pollution is associated with increased risk of metabolic diseases including type 2 diabetes, of which dysregulation of the insulin-signaling pathway is a feature. While studies suggest pollutant exposure alters insulin signaling in certain tissues, there is a lack of comparison across multiple tissues needed for a holistic assessment of metabolic effects, and underlying mechanisms remain unclear. Air pollution increases plasma levels of glucocorticoids, systemic regulators of metabolic function. The objectives of this study were to 1) determine effects of ozone on insulin-signaling genes in major metabolic tissues, and 2) elucidate the role of glucocorticoids. Male Fischer-344 rats were treated with metyrapone, a glucocorticoid synthesis inhibitor, and exposed to 0.8 ppm ozone or clean air for 4 h, with tissue collected immediately or 24 h post exposure. Ozone inhalation resulted in distinct mRNA profiles in the liver, brown adipose, white adipose and skeletal muscle tissues, including effects on insulin-signaling cascade genes (Pik3r1, Irs1, Irs2) and targets involved in glucose metabolism (Hk2, Pgk1, Slc2a1), cell survival (Bcl2l1), and genes associated with diabetes and obesity (Serpine1, Retn, Lep). lucocorticoid-dependent regulation was observed in the liver and brown and white adipose tissues, while effects in skeletal muscle were largely unaffected by metyrapone treatment. Gene expression changes were accompanied by altered phosphorylation states of insulin-signaling proteins (BAD, GSK, IR-β, IRS-1) in the liver. The results show that systemic effects of ozone inhalation include tissue-specific regulation of insulin-signaling pathway genes via both glucocorticoid-dependent and independent mechanisms, providing insight into mechanisms underlying adverse effects of pollutants.
Collapse
Affiliation(s)
- Mercedes Rose
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Alain Filiatreault
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Josée Guénette
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada.
| |
Collapse
|
12
|
Yang H, Xiao X, Chen G, Chen X, Gao T, Xu L. Preliminary study on the effect of ozone exposure on blood glucose level in rats. Technol Health Care 2023; 31:303-311. [PMID: 37066931 DOI: 10.3233/thc-236026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND In recent years, people have paid more and more attention to the health hazards caused by O3 exposure, which will become a major problem after fine particulate matter (PM). OBJECTIVE To investigate the effects of ozone (O3) exposure on blood glucose levels in rats under different concentrations and times. METHODS Eighty rats were divided into control group and three ozone concentration groups. Each group was continuously exposed for 1d, 3d and, 6d, and exposed for 6 hours daily. After exposure, GTT, FBG, and random blood glucose were measured. RESULTS The FBG value increased significantly on the 6th day of 0.5 ppm and the 3rd and 6th days of 1.0 ppm exposure compared with the control group (P< 0.05). The random blood glucose value was significantly increased on the 3rd and 6th days of each exposure concentration (P< 0.05). When exposed to 1 ppm concentration, the 120 min GTT value of 1 d, 3 d and, 6 d was significantly higher than that of the control group (P< 0.05). CONCLUSION After acute O3 exposure, the blood glucose level of rats was affected by the exposure concentration and time. The concentration of 0.1 ppm had no significant impact on FBG and random blood glucose, and O3 with a concentration of 0.1 ppm and 0.5 ppm had no significant impact on values of GTT at 90 min, and 120 min.
Collapse
Affiliation(s)
- Hui Yang
- The Central Theater General Hospital of PLA, Wuhan, Hubei, China
| | - Xue Xiao
- Wuhan Qingchuan University, Wuhan, Hubei, China
| | - Gaoyun Chen
- The Institute of NBC Defense, Beijing, China
| | - Xiangfei Chen
- The Central Theater General Hospital of PLA, Wuhan, Hubei, China
| | - Tingting Gao
- The Central Theater General Hospital of PLA, Wuhan, Hubei, China
| | - Li Xu
- The Institute of NBC Defense, Beijing, China
| |
Collapse
|
13
|
Al-Shihabi F, Moore A, Chowdhury TA. Diabetes and climate change. Diabet Med 2023; 40:e14971. [PMID: 36209378 DOI: 10.1111/dme.14971] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022]
Abstract
It is widely accepted that climate change is the biggest threat to human health. The pandemic of diabetes is also a major threat to human health, especially in rapidly developing nations. Climate change and diabetes appear to have common global vectors, including increased urbanisation, increased use of transportation, and production and ingestion of ultra-processed foods. People with diabetes appear to be at higher risk of threats to health from climate change, including effects from extreme heat or extreme cold, and natural disasters. Solutions to climate change offer some benefits for the prevention of diabetes and diabetes-related complications. Moving towards lower carbon economies is likely to help reduce reliance on intensive agriculture, reduce physical inactivity, reduce air pollution and enhance quality of life. It may enable a reduction in the prevalence of diabetes and reduced morbidity from the condition.
Collapse
Affiliation(s)
- Fatima Al-Shihabi
- Department of Diabetes and Metabolism, Royal London Hospital, London, UK
| | - Anna Moore
- Department of Diabetes and Metabolism, Royal London Hospital, London, UK
| | | |
Collapse
|
14
|
Kodavanti UP, Jackson TW, Henriquez AR, Snow SJ, Alewel DI, Costa DL. Air Pollutant impacts on the brain and neuroendocrine system with implications for peripheral organs: a perspective. Inhal Toxicol 2023; 35:109-126. [PMID: 36749208 PMCID: PMC11792093 DOI: 10.1080/08958378.2023.2172486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023]
Abstract
Air pollutants are being increasingly linked to extrapulmonary multi-organ effects. Specifically, recent studies associate air pollutants with brain disorders including psychiatric conditions, neuroinflammation and chronic diseases. Current evidence of the linkages between neuropsychiatric conditions and chronic peripheral immune and metabolic diseases provides insights on the potential role of the neuroendocrine system in mediating neural and systemic effects of inhaled pollutants (reactive particulates and gases). Autonomically-driven stress responses, involving sympathetic-adrenal-medullary and hypothalamus-pituitary-adrenal axes regulate cellular physiological processes through adrenal-derived hormones and diverse receptor systems. Recent experimental evidence demonstrates the contribution of the very stress system responding to non-chemical stressors, in mediating systemic and neural effects of reactive air pollutants. The assessment of how respiratory encounter of air pollutants induce lung and peripheral responses through brain and neuroendocrine system, and how the impairment of these stress pathways could be linked to chronic diseases will improve understanding of the causes of individual variations in susceptibility and the contribution of habituation/learning and resiliency. This review highlights effects of air pollution in the respiratory tract that impact the brain and neuroendocrine system, including the role of autonomic sensory nervous system in triggering neural stress response, the likely contribution of translocated nano particles or metal components, and biological mediators released systemically in causing effects remote to the respiratory tract. The perspective on the use of systems approaches that incorporate multiple chemical and non-chemical stressors, including environmental, physiological and psychosocial, with the assessment of interactive neural mechanisms and peripheral networks are emphasized.
Collapse
Affiliation(s)
- Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Thomas W. Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Andres R. Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Daniel L. Costa
- Department of Environmental Sciences and Engineering, Gilling’s School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27713, USA
| |
Collapse
|
15
|
Zhang L, Wang P, Zhou Y, Cheng Y, Li J, Xiao X, Yin C, Li J, Meng X, Zhang Y. Associations of ozone exposure with gestational diabetes mellitus and glucose homeostasis: Evidence from a birth cohort in Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159184. [PMID: 36202368 DOI: 10.1016/j.scitotenv.2022.159184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Associations between individual exposure to ozone (O3) and gestational diabetes mellitus (GDM) have rarely been investigated, and critical windows of O3 exposure for GDM have not been identified. OBJECTIVES We aimed to explore the associations of gestational O3 exposure with GDM and glucose homeostasis as well as to identify the potential critical windows. METHODS A total of 7834 pregnant women were included. Individual O3 exposure concentrations were evaluated using a high temporal-spatial resolution model. Each participant underwent an oral glucose tolerance test (OGTT) to screen for GDM between 24 and 28 gestational weeks. Multiple logistic and multiple linear regression models were used to estimate the associations of O3 with GDM risks and with blood glucose levels of OGTT, respectively. Distributed lag nonlinear models (DLNMs) were used to estimate the critical windows of O3 exposure for GDM. RESULTS Nearly 13.29 % of participants developed GDM. After controlling for covariates, we observed increased GDM risks per IQR increment of O3 exposure in the first trimester (OR = 1.738, 95 % CI: 1.002-3.016) and the first two trimesters (OR = 1.576, 95 % CI: 1.005-2.473). Gestational O3 exposure was positively associated with increased fasting blood glucose (the first trimester: β = 2.964, 95 % CI: 1.529-4.398; the first two trimesters: β = 1.620, 95 % CI: 0.436-2.804) and 2 h blood glucose (the first trimester: β = 6.569, 95 % CI: 1.775-11.363; the first two trimesters: β = 6.839, 95 % CI: 2.896-10.782). We also observed a concentration-response relationship of gestational O3 exposure with GDM risk, as well as fasting and 2 h blood glucose levels. Additionally, 5-10 gestational weeks was identified as a critical window of O3 exposure for GDM development. CONCLUSION In summary, we found that gestational O3 exposure disrupts glucose homeostasis and increases the risk of GDM in pregnant women. Furthermore, 5-10 gestational weeks could be a critical window for the effects of O3 exposure on GDM.
Collapse
Affiliation(s)
- Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yukai Cheng
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jialin Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xirong Xiao
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Chuanmin Yin
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Jiufeng Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xia Meng
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
16
|
Liu X, Dong X, Song X, Li R, He Y, Hou J, Mao Z, Huo W, Guo Y, Li S, Chen G, Wang C. Physical activity attenuated the association of ambient ozone with type 2 diabetes mellitus and fasting blood glucose among rural Chinese population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90290-90300. [PMID: 35867296 DOI: 10.1007/s11356-022-22076-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The association of ozone with type 2 diabetes mellitus (T2DM) is uncertain. Moreover, the moderating effect of physical activity on this association is largely unknown. This study aims to evaluate the independent and combined effects of ozone and physical activity on T2DM and fasting blood glucose (FBG) in a Chinese rural adult population. A total of 39,192 participants were enrolled in the Henan Rural Cohort Study. Individual ozone exposure was assessed by using a satellite-based random forest model. The logistic regression and generalized linear models were used to evaluate the associations of ozone and physical activity with T2DM and FBG, respectively. Interaction plots were used to visualize the interaction effects of ozone and physical activity on T2DM or FBG. An interquartile range (IQR) increase in ozone exposure concentration was related to a 53.3% (odds ratio (OR),1.533; 95% confidence interval (CI), 1.426, 1.648) increase in odds of T2DM and a 0.292 mmol/L (95%CI, 0.263, 0.321) higher FBG level, respectively. The effects of ozone on T2DM and FBG generally decreased as physical activity levels increased. Negative additive interactions between ozone and physical activity on T2DM risk were observed (relative excess risk due to interaction (RERI), -0.261; 95%CI, -0.473, -0.048; attributable proportion due to interaction (AP), -0.203; 95%CI, -0.380, -0.027; synergy index (S), 0.520; 95%CI, 0.299, 0.904). The larger effects of ozone were observed among elderly and men on T2DM and FBG than young and women. Long-term exposure to ozone was associated with higher odds of T2DM and higher FBG levels, and these associations might be attenuated by increasing physical activity levels. In addition, there was a negative additive interaction (antagonistic effect) between ozone exposure and physical activity level on T2DM risk, suggesting that physical activity might be an effective method to reduce the burden of T2DM attributed to ozone exposure. Trail registration: The Henan Rural Cohort Study has been registered at Chinese Clinical Trial Register (registration number: ChiCTR-OOC-15006699). Date of registration: 06 July 2015, http://www.chictr.org.cn/showproj.aspx?proj=11375.
Collapse
Affiliation(s)
- Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xiaokang Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xiaoqin Song
- Physical Examination Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yaling He
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yuming Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
17
|
Henriquez AR, Snow SJ, Jackson TW, House JS, Motsinger-Reif AA, Ward-Caviness CK, Schladweiler MC, Alewel DI, Miller CN, Farraj AK, Hazari MS, Grindstaff R, Diaz-Sanchez D, Ghio AJ, Kodavanti UP. Stress Drivers of Glucose Dynamics during Ozone Exposure Measured Using Radiotelemetry in Rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:127006. [PMID: 36542476 PMCID: PMC9770052 DOI: 10.1289/ehp11088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Inhaled irritant air pollutants may trigger stress-related metabolic dysfunction associated with altered circulating adrenal-derived hormones. OBJECTIVES We used implantable telemetry in rats to assess real-time changes in circulating glucose during and after exposure to ozone and mechanistically linked responses to neuroendocrine stress hormones. METHODS First, using a cross-over design, we monitored glucose during ozone exposures (0.0, 0.2, 0.4, and 0.8 ppm) and nonexposure periods in male Wistar Kyoto rats implanted with glucose telemeters. A second cohort of unimplanted rats was exposed to ozone (0.0, 0.4 or 0.8 ppm) for 30 min, 1 h, 2 h, or 4 h with hormones measured immediately post exposure. We assessed glucose metabolism in sham and adrenalectomized rats, with or without supplementation of adrenergic/glucocorticoid receptor agonists, and in a separate cohort, antagonists. RESULTS Ozone (0.8 ppm) was associated with significantly higher blood glucose and lower core body temperature beginning 90 min into exposure, with reversal of effects 4-6 h post exposure. Glucose monitoring during four daily 4-h ozone exposures revealed duration of glucose increases, adaptation, and diurnal variations. Ozone-induced glucose changes were preceded by higher levels of adrenocorticotropic hormone, corticosterone, and epinephrine but lower levels of thyroid-stimulating hormone, prolactin, and luteinizing hormones. Higher glucose and glucose intolerance were inhibited in rats that were adrenalectomized or treated with adrenergic plus glucocorticoid receptor antagonists but exacerbated by agonists. DISCUSSION We demonstrated the temporality of neuroendocrine-stress-mediated biological sequalae responsible for ozone-induced glucose metabolic dysfunction and mechanism in a rodent model. Stress hormones assessment with real-time glucose monitoring may be useful in identifying interactions among irritant pollutants and stress-related illnesses. https://doi.org/10.1289/EHP11088.
Collapse
Affiliation(s)
- Andres R. Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - Samantha J. Snow
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Thomas W. Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - John S. House
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Alison A. Motsinger-Reif
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Cavin K. Ward-Caviness
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Mette C. Schladweiler
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - Colette N. Miller
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aimen K. Farraj
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Mehdi S. Hazari
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Rachel Grindstaff
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - David Diaz-Sanchez
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Andrew J. Ghio
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Urmila P. Kodavanti
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| |
Collapse
|
18
|
Jackson TW, Henriquez AR, Snow SJ, Schladweiler MC, Fisher AA, Alewel DI, House JS, Kodavanti UP. Adrenal Stress Hormone Regulation of Hepatic Homeostatic Function After an Acute Ozone Exposure in Wistar-Kyoto Male Rats. Toxicol Sci 2022; 189:73-90. [PMID: 35737395 PMCID: PMC9609881 DOI: 10.1093/toxsci/kfac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ozone-induced lung injury, inflammation, and pulmonary/hypothalamus gene expression changes are diminished in adrenalectomized (AD) rats. Acute ozone exposure induces metabolic alterations concomitant with increases in epinephrine and corticosterone. We hypothesized that adrenal hormones are responsible for observed hepatic ozone effects, and in AD rats, these changes would be diminished. In total, 5-7 days after sham (SH) or AD surgeries, male Wistar-Kyoto rats were exposed to air or 0.8-ppm ozone for 4 h. Serum samples were analyzed for metabolites and liver for transcriptional changes immediately post-exposure. Ozone increased circulating triglycerides, cholesterol, free fatty-acids, and leptin in SH but not AD rats. Ozone-induced inhibition of glucose-mediated insulin release was absent in AD rats. Unlike diminution of ozone-induced hypothalamus and lung mRNA expression changes, AD in air-exposed rats (AD-air/SH-air) caused differential hepatic expression of ∼1000 genes. Likewise, ozone in AD rats caused differential expression of ∼1000 genes (AD-ozone/AD-air). Ozone-induced hepatic changes in SH rats reflected enrichment for pathways involving metabolic processes, including acetyl-CoA biosynthesis, TCA cycle, and sirtuins. Upstream predictor analysis identified similarity to responses produced by glucocorticoids and pathways involving forskolin. These changes were absent in AD rats exposed to ozone. However, ozone caused unique changes in AD liver mRNA reflecting activation of synaptogenesis, neurovascular coupling, neuroinflammation, and insulin signaling with inhibition of senescence pathways. In these rats, upstream predictor analysis identified numerous microRNAs likely involved in glucocorticoid insufficiency. These data demonstrate the critical role of adrenal stress hormones in ozone-induced hepatic homeostasis and necessitate further research elucidating their role in propagating environmentally driven diseases.
Collapse
Affiliation(s)
- Thomas W Jackson
- Oak Ridge Institute for Science and Education Research Participation Program
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Anna A Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program
| | - John S House
- Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| |
Collapse
|
19
|
Henriquez AR, Snow SJ, Dye JA, Schladweiler MC, Alewel DI, Miller CN, Kodavanti UP. The contribution of the neuroendocrine system to adaption after repeated daily ozone exposure in rats. Toxicol Appl Pharmacol 2022; 447:116085. [PMID: 35618032 PMCID: PMC9716342 DOI: 10.1016/j.taap.2022.116085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Ozone-induced lung injury/inflammation dissipates despite continued exposure for 3 or more days; however, the mechanisms of adaptation/habituation remain unclear. Since ozone effects are mediated through adrenal-derived stress hormones, which also regulate longevity of centrally-mediated stress response, we hypothesized that ozone-adaptation is linked to diminution of neuroendocrine stress-axes activation and glucocorticoid levels. Male Wistar-Kyoto-rats (12-week-old) were injected with vehicle or a therapeutically-relevant dexamethasone dose (0.01-mg/kg/day; intraperitoneal) for 1-month to determine if suppression of glucocorticoid signaling was linked to adaptation. Vehicle- and dexamethasone-treated rats were exposed to air or 0.8-ppm ozone, 4 h/day × 2 or 4 days to assess the impacts of acute exposure and adaptation, respectively. Dexamethasone reduced thymus and spleen weights, circulating lymphocytes, corticosterone and increased insulin. Ozone increased lavage-fluid protein and neutrophils and decreased circulating lymphocytes at day-2 but not day-4. Ozone-induced hyperglycemia, glucose intolerance and inhibition of beta-cell insulin release occurred at day-1 but not day-3. Ozone depleted circulating prolactin, thyroid-stimulating hormone, and luteinizing-hormone at day-2 but not day-4, suggesting central mediation of adaptation. Adrenal epinephrine biosynthesis gene, Pnmt, was up-regulated after ozone exposure at both timepoints. However, genes involved in glucocorticoid biosynthesis were up-regulated after day-2 but not day-4, suggesting that acute 1- or 2-day ozone-mediated glucocorticoid increase elicits feedback inhibition to dampen hypothalamic stimulation of ACTH release in response to repeated subsequent ozone exposures. Although dexamethasone pretreatment affected circulating insulin, lymphocytes and adrenal genes, it had modest effect on ozone adaptation. In conclusion, ozone adaptation likely involves lack of hypothalamic response due to reduced availability of circulating glucocorticoids.
Collapse
Affiliation(s)
- Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Janice A Dye
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Colette N Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America.
| |
Collapse
|
20
|
Shang L, Yang L, Yang W, Xie G, Wang R, Sun L, Xu M, Zhang B, Li J, Yue J, Chung MC. Prenatal exposure to air pollution and the risk of macrosomia: Identifying windows of susceptibility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151775. [PMID: 34808172 DOI: 10.1016/j.scitotenv.2021.151775] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
This study explores the effects of prenatal exposure to air pollution on the risk of macrosomia and its window of susceptibility. We conducted a retrospective cohort study utilizing records of birth certificates for all full-term live newborns born in Xi'an city, China from January 1, 2015, to December 31, 2018.Weekly- and trimester-specific exposures of PM2.5, PM10, NO2, and O3 during pregnancy were calculated by inverse distance weighting (IDW) based on their residences. Cox proportional hazard model and distributed lag models (DLMs) were performed to estimate the effects of air pollution exposure during pregnancy on macrosomia risk and its window of susceptibility. In total, 318,323 full-term newborns were identified, including 24,996 (7.8%) cases of macrosomia. An IQR increase in PM2.5 exposure (45.46 μg/m3) from the 33rd until the 37th weeks of gestation was positively associated with an elevated risk of macrosomia, with the strongest effect in the 37th weeks (HR = 1.007, 95%CI: 1.002-1.013). The window of susceptibility for NO2 exposure on macrosomia risk was in the 29th-35th gestational weeks, with the strongest effect in the 34th weeks (IQR = 21.96 μg/m3, HR = 1.006, 95%CI:1.000-1.013). For prenatal exposure to O3, 5th-24th weeks of gestation was identified as susceptible windows for elevated risk of macrosomia, with the strongest associations observed in the 15th weeks (IQR = 80.53 μg/m3, HR = 1.022, 95%CI: 1.011-1.033). However, we did not observe any associations between weekly exposure of PM10 and macrosomia. Our findings imply that the windows of susceptibility to PM2.5 and NO2 exposure on macrosomia are mainly in late pregnancy, whereas the windows of susceptibility to O3 exposure are in early and middle pregnancy.
Collapse
Affiliation(s)
- Li Shang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; Shenzhen Health Development Research and Data Management Center, Shenzhen, Guangdong 518028, PR China
| | - Liren Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Wenfang Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China.
| | - Guilan Xie
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Ruiqi Wang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Landi Sun
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Mengmeng Xu
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Boxing Zhang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Jing Li
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Jie Yue
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Mei Chun Chung
- Division of Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, MA, Boston, United States
| |
Collapse
|
21
|
Wang Y, Cao R, Xu Z, Jin J, Wang J, Yang T, Wei J, Huang J, Li G. Long-term exposure to ozone and diabetes incidence: A longitudinal cohort study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151634. [PMID: 34774942 DOI: 10.1016/j.scitotenv.2021.151634] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Ozone (O3) has become a prominent air pollutant problem as other pollutants concentrations have decreased obviously since China published Air Pollution Action Plan Pollution Prevention Action Plan in 2013. Few studies examined the association between O3 and diabetes especially in developing countries. This study was designed to investigate the above topic in China. METHODS We conducted a prospective cohort study based on a nationwide survey of 13,548 adults from China Health and Retirement Longitudinal Study. City-level exposure to ozone for each participant was matched through ChinaHighO3 dataset. Time-varying cox proportional hazard regression model was applied to determine the association. Stratification analyses were conducted to explore potential effect modification. RESULTS The annual mean concentration of O3 was 86.6 μg/m3. A 10 μg/m3 increase in 1-year average O3 concentration was associated with 5.7% (95% CI: 1.004-1.114) relative increment in hazards ratio of diabetes incidence in the fully adjusted model. Results stayed stable when controlling for physical activity, PM2.5 and mean temperature. CONCLUSIONS Our findings provided initial support for a positive and robust association between long-term exposure to O3 and diabetes incidence in a developing country. More scientific and social attention should be attached to the ozone-induced risks of diabetes occurrence.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Ru Cao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Zhihu Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jianbo Jin
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jiawei Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Teng Yang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| |
Collapse
|
22
|
Liu WY, Lu JH, He JR, Zhang LF, Wei DM, Wang CR, Xiao X, Xia HM, Qiu X. Combined effects of air pollutants on gestational diabetes mellitus: A prospective cohort study. ENVIRONMENTAL RESEARCH 2022; 204:112393. [PMID: 34798119 DOI: 10.1016/j.envres.2021.112393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/19/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Exposures to multiple air pollutants during pregnancy have been associated with the risk of gestational diabetes mellitus (GDM). However, their combined effects are unclear. We aimed to evaluate the combined associations of five air pollutants from pre-pregnancy to the 2nd trimester with GDM. This study included 20,113 participants from the Born in Guangzhou Cohort Study (BIGCS). The inverse distance-weighted models were used to estimate individual air pollutant exposure, namely ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), particulate matter less than 10 μm in diameter (PM10), and less than 2.5 μm in diameter (PM2.5). We estimated stage-specific associations of air pollutants with GDM using generalized estimating equation, and departures from additive joint effects were assessed using the relative excess risk (RERI) and the joint relative risk (JRR). Of the 20,113 participants, 3440 women (17.1%) were diagnosed with GDM. In the adjusted model, increased concentrations of O3 and SO2 3-6 months before pregnancy were associated with GDM occurrence, as well as O3 and PM10 in the 1st trimester, the adjusted relative risk (95% confident intervals) [RRs (95%CI)] ranged from 1.05 (1.00, 1.09) to 1.21 (1.04, 1.40). The largest JRR for GDM was the combination of SO2, NO2, and PM10 in the 1st trimester (JRR = 1.32, 95% CI: 1.10, 1.59). The JRR for O3 and SO2 was less than their additive joint effects [RERI = -0.25 (-0.47, -0.04), P for interaction = 0.048]. Associations of air pollutants with GDM differed somewhat by pre-pregnancy BMI and season. This study added new evidence to the current understanding of the combined effects of multiple air pollutants on GDM. Public health strategies were needed to reduce the adverse effects of air pollution exposure on pregnant women.
Collapse
Affiliation(s)
- Wen-Yu Liu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jin-Hua Lu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Women's Health, Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian-Rong He
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Women's Health, Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li-Fang Zhang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Women's Health, Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dong-Mei Wei
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Women's Health, Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cheng-Rui Wang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiong Xiao
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hui-Min Xia
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Provincial Clinical Research Center for Child Health, Guangdong, China
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Women's Health, Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Provincial Clinical Research Center for Child Health, Guangdong, China.
| |
Collapse
|
23
|
Xia Y, Niu Y, Cai J, Liu C, Meng X, Chen R, Kan H. Personal ozone exposure and stress hormones in the hypothalamus-pituitary-adrenal and sympathetic-adrenal-medullary axes. ENVIRONMENT INTERNATIONAL 2022; 159:107050. [PMID: 34923369 DOI: 10.1016/j.envint.2021.107050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The effect of ozone exposure on neuroendocrine responses in humans has not been fully studied. METHODS We conducted a longitudinal panel study with four rounds of visits among 43 college students in Shanghai, China, from May to October 2016. For each visit, we monitored personal real-time ozone exposure for consecutive 3 days (from 8:00 a.m. to 6:00p.m. each day), followed by blood sample collection. We measured serum levels of three hormones in the hypothalamus-pituitaryadrenal (HPA) axis, including corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and cortisol, and three catacholamines indicating sympathetic-adrenal-medullary (SAM) axis activation, including adrenaline, noradrenaline, and dopamine. We applied linear mixed-effect models to evaluate the associations between ozone exposure and these neurohormones and further compared models using personal and fixed-site ozone measurements. MAIN RESULTS At lag 0-8 h, personal ozone exposure ranged from 4.5 ppb to 104.3 ppb with an average of 21.0 ± 14.7 ppb, which was approximately half of the ambient ozone concentration. Per 10-ppb increase in personal ozone exposure (lag 0-8 h) was associated with increases of 5.60% [95% confidence interval (CI): 2.30%, 9.01%] in CRH, 5.91% (95% CI: 0.55%, 11.56%) in cortisol, and 10.13% (95% CI: 2.75%, 18.05%) in noradrenaline, whereas associated with a 12.15% (95% CI: 1.23%, 21.87%) decrease in dopamine. Overall, models using personal ozone measurements yielded larger effect estimates and better model fits than models using fixed-site measurements. CONCLUSIONS Short-term exposure to low levels of ozone may lead to activation of the HPA and SAM axes.
Collapse
Affiliation(s)
- Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China.
| |
Collapse
|
24
|
Wang C, Lin J, Niu Y, Wang W, Wen J, Lv L, Liu C, Du X, Zhang Q, Chen B, Cai J, Zhao Z, Liang D, Ji JS, Chen H, Chen R, Kan H. Impact of ozone exposure on heart rate variability and stress hormones: A randomized-crossover study. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126750. [PMID: 34339988 DOI: 10.1016/j.jhazmat.2021.126750] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
The biological mechanisms underlying the associations between atmospheric ozone exposure and adverse cardiometabolic outcomes are yet to be identified. Imbalanced autonomic nervous system (ANS) as well as activations of the sympatho-adrenomedullary (SAM) and hypothalamic-pituitary-adrenal (HPA) axes are among possible early biological responses triggered by ozone, and may eventually lead to cardiometabolic abnormalities. To determine whether acute ozone exposure causes ANS imbalance and increases the secretion of neuroendocrine stress hormones, we conducted a randomized, double-blind, crossover trial, under controlled 2-hour exposure to either ozone (200 ppb) or clean air with intermittent exercise among 22 healthy young adults. Here we found that, compared to clean air exposure, acute ozone exposure significantly decreased the high-frequency band of heart rate variability, even after adjusting for heart rate and pre-exposure to ambient air pollutants and meteorological factors. Ozone exposure also significantly increased the serum levels of stress hormones, including corticotrophin-releasing factor, adrenocorticotropic hormone, adrenaline, and noradrenaline. Metabolomics analysis showed that acute ozone exposure led to alterations in stress hormones, systemic inflammation, oxidative stress, and energy metabolism. Our results suggest that acute ozone exposure may trigger ANS imbalance and activate the HPA and SAM axes, offering potential biological explanations for the adverse cardiometabolic effects following acute ozone exposure.
Collapse
Affiliation(s)
- Cuiping Wang
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Jingyu Lin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Niu
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Weidong Wang
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Jianfen Wen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lili Lv
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong Liu
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Xihao Du
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Qingli Zhang
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Bo Chen
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Jing Cai
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Donghai Liang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - John S Ji
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China.
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| |
Collapse
|
25
|
Sheppard PAS, Puri TA, Galea LAM. Sex Differences and Estradiol Effects in MAPK and Akt Cell Signaling across Subregions of the Hippocampus. Neuroendocrinology 2022; 112:621-635. [PMID: 34407537 DOI: 10.1159/000519072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Rapid effects of estrogens within the hippocampus of rodents are dependent upon cell-signaling cascades, and activation of these cascades by estrogens varies by sex. Whether these pathways are rapidly activated within the dentate gyrus (DG) and CA1 by estrogens across sex and the anatomical longitudinal axis has been overlooked. METHODS Gonadally intact female and male rats were given either vehicle or physiological systemic low (1.1 µg/kg) or high (37.3 µg/kg) doses of 17β-estradiol 30 min prior to tissue collection. To control for the effects of circulating estrogens, an additional group of female rats was ovariectomized (OVX) and administered 17β-estradiol. Brains were extracted, and tissue punches of the CA1 and DG were taken along the longitudinal hippocampal axis (dorsal and ventral) and analyzed for key mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) cascade phosphoproteins. RESULTS Intact females had higher Akt pathway phosphoproteins (pAkt, pGSK-3β, and pp70S6K) than males in the DG (dorsal and ventral) and lower pERK1/2 in the dorsal DG. Most effects of 17β-estradiol on cell signaling occurred in OVX animals. In OVX animals, 17β-estradiol increased cell signaling of MAPK and Akt phosphoproteins (pERK1/2, pJNK, pAkt, and pGSK-3β) in the CA1 and pERK1/2 and pJNK DG. DISCUSSION/CONCLUSIONS Systemic 17β-estradiol treatment rapidly alters phosphoprotein levels in the hippocampus, dependent on reproductive status, and intact females have greater expression of Akt phosphoproteins than that in intact males in the DG. These findings shed light on underlying mechanisms of sex differences in hippocampal function and response to interventions that affect MAPK or Akt signaling.
Collapse
Affiliation(s)
- Paul A S Sheppard
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tanvi A Puri
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liisa A M Galea
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
LaKind JS, Burns CJ, Pottenger LH, Naiman DQ, Goodman JE, Marchitti SA. Does ozone inhalation cause adverse metabolic effects in humans? A systematic review. Crit Rev Toxicol 2021; 51:467-508. [PMID: 34569909 DOI: 10.1080/10408444.2021.1965086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We utilized a practical, transparent approach for systematically reviewing a chemical-specific evidence base. This approach was used for a case study of ozone inhalation exposure and adverse metabolic effects (overweight/obesity, Type 1 diabetes [T1D], Type 2 diabetes [T2D], and metabolic syndrome). We followed the basic principles of systematic review. Studies were defined as "Suitable" or "Supplemental." The evidence for Suitable studies was characterized as strong or weak. An overall causality judgment for each outcome was then determined as either causal, suggestive, insufficient, or not likely. Fifteen epidemiologic and 33 toxicologic studies were Suitable for evidence synthesis. The strength of the human evidence was weak for all outcomes. The toxicologic evidence was weak for all outcomes except two: body weight, and impaired glucose tolerance/homeostasis and fasting/baseline hyperglycemia. The combined epidemiologic and toxicologic evidence was categorized as weak for overweight/obesity, T1D, and metabolic syndrome,. The association between ozone exposure and T2D was determined to be insufficient or suggestive. The streamlined approach described in this paper is transparent and focuses on key elements. As systematic review guidelines are becoming increasingly complex, it is worth exploring the extent to which related health outcomes should be combined or kept distinct, and the merits of focusing on critical elements to select studies suitable for causal inference. We recommend that systematic review results be used to target discussions around specific research needs for advancing causal determinations.
Collapse
Affiliation(s)
- Judy S LaKind
- LaKind Associates, LLC, Catonsville, MD, USA.,Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carol J Burns
- Burns Epidemiology Consulting, LLC, Sanford, MI, USA
| | | | - Daniel Q Naiman
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
27
|
Yu Y, Jerrett M, Paul KC, Su J, Shih IF, Wu J, Lee E, Inoue K, Haan M, Ritz B. Ozone Exposure, Outdoor Physical Activity, and Incident Type 2 Diabetes in the SALSA Cohort of Older Mexican Americans. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97004. [PMID: 34494856 PMCID: PMC8425281 DOI: 10.1289/ehp8620] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Type 2 diabetes is a leading contributor to the global burden of morbidity and mortality. Ozone (O3) exposure has previously been linked to diabetes. OBJECTIVE We studied the impact of O3 exposure on incident diabetes risk in elderly Mexican Americans and investigated whether outdoor physical activity modifies the association. METHODS We selected 1,090 Mexican American participants from the Sacramento Area Latino Study on Aging conducted from 1998 to 2007. Ambient O3 exposure levels were modeled with a land-use regression built with saturation monitoring data collected at 49 sites across the Sacramento metropolitan area. Using Cox proportional hazard models, we estimated the risk of developing incident diabetes based on average O3 exposure modeled for 5-y prior to incident diabetes diagnosis or last follow-up. Further, we estimated outdoor leisure-time physical activity at baseline and investigated whether higher vs. lower levels modified the association between O3 exposure and diabetes. RESULTS In total, 186 incident diabetes cases were identified during 10-y follow-up. Higher levels of physical activity were negatively associated with incident diabetes [hazard ratio (HR)=0.64 (95% CI: 0.43, 0.95)]. The estimated HRs for incident diabetes was 1.13 (95% CI: 1.00, 1.28) per 10-ppb increment of 5-y average O3 exposure; also, this association was stronger among those physically active outdoors [HR=1.52 (95% CI: 1.21, 1.90)], and close to null for those reporting lower levels of outdoor activity [HR=1.04 (95% CI: 0.90, 1.20), pinteraction=0.01]. CONCLUSIONS Our findings suggest that ambient O3 exposure contributes to the development of type 2 diabetes, particularly among those with higher levels of leisure-time outdoor physical activity. Policies and strategies are needed to reduce O3 exposure to guarantee that the health benefits of physical activity are not diminished by higher levels of O3 pollution in susceptible populations such as older Hispanics. https://doi.org/10.1289/EHP8620.
Collapse
Affiliation(s)
- Yu Yu
- Department of Epidemiology, University of California at Los Angeles (UCLA) Fielding School of Public Health, Los Angeles, California, USA
- Department of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Michael Jerrett
- Department of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Kimberly C. Paul
- Department of Epidemiology, University of California at Los Angeles (UCLA) Fielding School of Public Health, Los Angeles, California, USA
| | - Jason Su
- Division of Environmental Health Sciences, University of California, Berkley School of Public Health, Berkeley, California, USA
| | - I-Fan Shih
- Department of Epidemiology, University of California at Los Angeles (UCLA) Fielding School of Public Health, Los Angeles, California, USA
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, California, USA
| | - Eunice Lee
- Department of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Kosuke Inoue
- Department of Epidemiology, University of California at Los Angeles (UCLA) Fielding School of Public Health, Los Angeles, California, USA
| | - Mary Haan
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Beate Ritz
- Department of Epidemiology, University of California at Los Angeles (UCLA) Fielding School of Public Health, Los Angeles, California, USA
- Department of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, California, USA
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
28
|
Colonna CH, Henriquez AR, House JS, Motsinger-Reif AA, Alewel DI, Fisher A, Ren H, Snow SJ, Schladweiler MC, Miller DB, Miller CN, Kodavanti PRS, Kodavanti UP. The Role of Hepatic Vagal Tone in Ozone-Induced Metabolic Dysfunction in the Liver. Toxicol Sci 2021; 181:229-245. [PMID: 33662111 DOI: 10.1093/toxsci/kfab025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Air pollution has been associated with metabolic diseases and hepatic steatosis-like changes. We have shown that ozone alters liver gene expression for metabolic processes through neuroendocrine activation. This study aimed to further characterize ozone-induced changes and to determine the impact of hepatic vagotomy (HV) which reduces parasympathetic influence. Twelve-week-old male Wistar-Kyoto rats underwent HV or sham surgery 5-6 days before air or ozone exposure (0 or 1 ppm; 4 h/day for 1 or 2 days). Ozone-induced lung injury, hyperglycemia, glucose intolerance, and increases in circulating cholesterol, triglycerides, and leptin were similar in rats with HV and sham surgery. However, decreases in circulating insulin and increased HDL and LDL were observed only in ozone-exposed HV rats. Ozone exposure resulted in changed liver gene expression in both sham and HV rats (sham > HV), however, HV did not change expression in air-exposed rats. Upstream target analysis revealed that ozone-induced transcriptomic changes were similar to responses induced by glucocorticoid-mediated processes in both sham and HV rats. The directionality of ozone-induced changes reflecting cellular response to stress, metabolic pathways, and immune surveillance was similar in sham and HV rats. However, pathways regulating cell-cycle, regeneration, proliferation, cell growth, and survival were enriched by ozone in a directionally opposing manner between sham and HV rats. In conclusion, parasympathetic innervation modulated ozone-induced liver transcriptional responses for cell growth and regeneration without affecting stress-mediated metabolic changes. Thus, impaired neuroendocrine axes and parasympathetic innervation could collectively contribute to adverse effects of air pollutants on the liver.
Collapse
Affiliation(s)
- Catherine H Colonna
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - John S House
- Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Alison A Motsinger-Reif
- Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Anna Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Hongzu Ren
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Desinia B Miller
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Colette N Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Prasada Rao S Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
29
|
Vallianou NG, Geladari EV, Kounatidis D, Geladari CV, Stratigou T, Dourakis SP, Andreadis EA, Dalamaga M. Diabetes mellitus in the era of climate change. DIABETES & METABOLISM 2021; 47:101205. [DOI: 10.1016/j.diabet.2020.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022]
|
30
|
Adrenergic and Glucocorticoid Receptors in the Pulmonary Health Effects of Air Pollution. TOXICS 2021; 9:toxics9060132. [PMID: 34200050 PMCID: PMC8226814 DOI: 10.3390/toxics9060132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023]
Abstract
Adrenergic receptors (ARs) and glucocorticoid receptors (GRs) are activated by circulating catecholamines and glucocorticoids, respectively. These receptors regulate the homeostasis of physiological processes with specificity via multiple receptor subtypes, wide tissue-specific distribution, and interactions with other receptors and signaling processes. Based on their physiological roles, ARs and GRs are widely manipulated therapeutically for chronic diseases. Although these receptors play key roles in inflammatory and cellular homeostatic processes, little research has addressed their involvement in the health effects of air pollution. We have recently demonstrated that ozone, a prototypic air pollutant, mediates pulmonary and systemic effects through the activation of these receptors. A single exposure to ozone induces the sympathetic–adrenal–medullary and hypothalamic–pituitary–adrenal axes, resulting in the release of epinephrine and corticosterone into the circulation. These hormones act as ligands for ARs and GRs. The roles of beta AR (βARs) and GRs in ozone-induced pulmonary injury and inflammation were confirmed in a number of studies using interventional approaches. Accordingly, the activation status of ARs and GRs is critical in mediating the health effects of inhaled irritants. In this paper, we review the cellular distribution and functions of ARs and GRs, their lung-specific localization, and their involvement in ozone-induced health effects, in order to capture attention for future research.
Collapse
|
31
|
Paul KC, Haan M, Yu Y, Inoue K, Mayeda ER, Dang K, Wu J, Jerrett M, Ritz B. Traffic-Related Air Pollution and Incident Dementia: Direct and Indirect Pathways Through Metabolic Dysfunction. J Alzheimers Dis 2021; 76:1477-1491. [PMID: 32651321 DOI: 10.3233/jad-200320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Ambient air pollution exposure has been associated with dementia. Additionally, epidemiologic evidence supports associations between air pollution and diabetes as well as diabetes and dementia. Thus, an indirect pathway between air pollution and dementia may exist through metabolic dysfunction. OBJECTIVE To investigate whether local traffic-related air pollution (TRAP) influences incident dementia and cognitive impairment, non-dementia (CIND) in a cohort of older Mexican Americans. We also assess how much of this estimated effect might be mediated through type 2 diabetes (T2DM). METHODS In a 10-year, prospective study of Latinos (n = 1,564), we generated TRAP-NOx as a surrogate for pollution from local traffic sources at participants' residences during the year prior to enrollment. We used Cox proportional hazards modeling and mediation analysis to estimate the effects of TRAP-NOx on dementia and/or CIND and indirect pathways operating through T2DM. RESULTS Higher TRAP-NOx was associated with incident dementia (HR = 1.55 for the highest versus lower tertiles, 95% CI = 1.04, 2.55). Higher TRAP-NOx was also associated with T2DM (OR = 1.62, 95% CI = 1.27, 2.05); furthermore, T2DM was associated with dementia (HR = 1.94, 95% CI = 1.42, 2.66). Mediation analysis indicated that 20% of the estimated effect of TRAP-NOx on dementia/CIND was mediated through T2DM. CONCLUSION Our results suggest that exposure to local traffic-related air pollution is associated with incident dementia. We also estimated that 20% of this effect is mediated through T2DM. Thus, ambient air pollution might affect brain health via direct damage as well as through indirect pathways related to diabetes and metabolic dysfunction.
Collapse
Affiliation(s)
- Kimberly C Paul
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Mary Haan
- Department of Epidemiology & Biostatistics, UCSF, San Francisco, CA, USA
| | - Yu Yu
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Kosuke Inoue
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Elizabeth Rose Mayeda
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Kristina Dang
- Department of Epidemiology & Biostatistics, UCSF, San Francisco, CA, USA
| | - Jun Wu
- Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA, USA
| | - Michael Jerrett
- Department of Environmental Sciences, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA.,Department of Environmental Sciences, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| |
Collapse
|
32
|
Haghani A, Morgan TE, Forman HJ, Finch CE. Air Pollution Neurotoxicity in the Adult Brain: Emerging Concepts from Experimental Findings. J Alzheimers Dis 2021; 76:773-797. [PMID: 32538853 DOI: 10.3233/jad-200377] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidemiological studies are associating elevated exposure to air pollution with increased risk of Alzheimer's disease and other neurodegenerative disorders. In effect, air pollution accelerates many aging conditions that promote cognitive declines of aging. The underlying mechanisms and scale of effects remain largely unknown due to its chemical and physical complexity. Moreover, individual responses to air pollution are shaped by an intricate interface of pollutant mixture with the biological features of the exposed individual such as age, sex, genetic background, underlying diseases, and nutrition, but also other environmental factors including exposure to cigarette smoke. Resolving this complex manifold requires more detailed environmental and lifestyle data on diverse populations, and a systematic experimental approach. Our review aims to summarize the modest existing literature on experimental studies on air pollution neurotoxicity for adult rodents and identify key gaps and emerging challenges as we go forward. It is timely for experimental biologists to critically understand prior findings and develop innovative approaches to this urgent global problem. We hope to increase recognition of the importance of air pollution on brain aging by our colleagues in the neurosciences and in biomedical gerontology, and to support the immediate translation of the findings into public health guidelines for the regulation of remedial environmental factors that accelerate aging processes.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA
| | | | - Caleb E Finch
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA.,Dornsife College, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
33
|
The dynamicity of acute ozone-induced systemic leukocyte trafficking and adrenal-derived stress hormones. Toxicology 2021; 458:152823. [PMID: 34051339 DOI: 10.1016/j.tox.2021.152823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Ozone exposure induces neuroendocrine stress response, which causes lymphopenia. It was hypothesized that ozone-induced increases in stress hormones will temporally follow changes in circulating granulocytes, monocytes- and lymphocyte subpopulations. The goal of this study was to chronicle the changes in circulating stress hormones, cytokines, and leukocyte trafficking during 4 h exposure to ozone. Male Wistar Kyoto rats were exposed to air or ozone (0.4 or 0.8 ppm) for 0.5, 1, 2, or 4 h. After each time point, circulating stress hormones, cytokines, and lung gene expression were assessed along with live and apoptotic granulocytes, monocytes (classical and non-classical), and lymphocytes (B, Th, and Tc) in blood, thymus, and spleen using flow cytometry. Circulating stress hormones began to increase at 1 h of ozone exposure. Lung expression of inflammatory cytokines (Cxcl2, Il6, and Hmox1) and glucocorticoid-responsive genes (Nr3c1, Fkbp5 and Tsc22d3) increased in both a time- and ozone concentration-dependent manner. Circulating granulocytes increased at 0.5 h of ozone exposure but tended to decrease at 2 and 4 h, suggesting a rapid egress and then margination to the lung. Classical monocytes decreased over 4 h of exposure periods (∼80 % at 0.8 ppm). B and Tc lymphocytes significantly decreased after ozone exposure at 2 and 4 h. Despite dynamic shifts in circulating immune cell populations, few differences were measured in serum cytokines. Ozone neither increased apoptotic cells nor altered thymus and spleen lymphocytes. The data show that ozone-induced increases in adrenal-derived stress hormones precede the dynamic migration of circulating immune cells, likely to the lung to mediate inflammation.
Collapse
|
34
|
Alewel DI, Henriquez AR, Colonna CH, Snow SJ, Schladweiler MC, Miller CN, Kodavanti UP. Ozone-induced acute phase response in lung versus liver: the role of adrenal-derived stress hormones. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:235-248. [PMID: 33317425 PMCID: PMC8082230 DOI: 10.1080/15287394.2020.1858466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acute-phase response (APR) is an innate stress reaction to tissue trauma or injury, infection, and environmental insults like ozone (O3). Regardless of the location of stress, the liver has been considered the primary contributor to circulating acute-phase proteins (APPs); however, the mechanisms underlying APR induction are unknown. Male Wistar-Kyoto rats were exposed to air or O3 (1 ppm, 6-hr/day, 1 or 2 days) and examined immediately after each exposure and after 18-hr recovery for APR proteins and gene expression. To assess the contribution of adrenal-derived stress hormones, lung and liver global gene expression data from sham and adrenalectomized rats exposed to air or O3 were compared for APR transcriptional changes. Data demonstrated serum protein alterations for selected circulating positive and negative APPs following 2 days of O3 exposure and during recovery. At baseline, APP gene expression was several folds higher in the liver relative to the lung. O3-induced increases were significant for lung but not liver for some genes including orosomucoid-1. Further, comparative assessment of mRNA seq data for known APPs in sham rats exhibited marked elevation in the lung but not liver, and a near-complete abolishment of APP mRNA levels in lung tissue of adrenalectomized rats. Thus, the lung appears to play a critical role in O3-induced APP synthesis and requires the presence of circulating adrenal-derived stress hormones. The relative contribution of lung versus liver and the role of neuroendocrine stress hormones need to be considered in future APR studies involving inhaled pollutants.
Collapse
Affiliation(s)
- Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Andres R. Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Catherine H. Colonna
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Samantha J. Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Mette C. Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Colette N. Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
35
|
Snow SJ, Henriquez AR, Fisher A, Vallanat B, House JS, Schladweiler MC, Wood CE, Kodavanti UP. Peripheral metabolic effects of ozone exposure in healthy and diabetic rats on normal or high-cholesterol diet. Toxicol Appl Pharmacol 2021; 415:115427. [PMID: 33524448 PMCID: PMC8086744 DOI: 10.1016/j.taap.2021.115427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022]
Abstract
Epidemiological studies show that individuals with underlying diabetes and diet-associated ailments are more susceptible than healthy individuals to adverse health effects of air pollution. Exposure to air pollutants can induce metabolic stress and increase cardiometabolic disease risk. Using male Wistar and Wistar-derived Goto-Kakizaki (GK) rats, which exhibit a non-obese type-2 diabetes phenotype, we investigated whether two key metabolic stressors, type-2 diabetes and a high-cholesterol atherogenic diet, exacerbate ozone-induced metabolic effects. Rats were fed a normal control diet (ND) or high-cholesterol diet (HCD) for 12 weeks and then exposed to filtered air or 1.0-ppm ozone (6 h/day) for 1 or 2 days. Metabolic responses were analyzed at the end of each day and after an 18-h recovery period following the 2-day exposure. In GK rats, baseline hyperglycemia and glucose intolerance were exacerbated by HCD vs. ND and by ozone vs. air. HCD also resulted in higher insulin in ozone-exposed GK rats and circulating lipase, aspartate transaminase, and alanine transaminase in all groups (Wistar>GK). Histopathological effects induced by HCD in the liver, which included macrovesicular vacuolation and hepatocellular necrosis, were more severe in Wistar vs. GK rats. Liver gene expression in Wistar and GK rats fed ND showed numerous strain differences, including evidence of increased lipid metabolizing activity and ozone-induced alterations in glucose and lipid transporters, specifically in GK rats. Collectively, these findings indicate that peripheral metabolic alterations induced by diabetes and high-cholesterol diet can enhance susceptibility to the metabolic effects of inhaled pollutants.
Collapse
MESH Headings
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Air Pollutants/toxicity
- Animals
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Body Composition/drug effects
- Cholesterol, Dietary/metabolism
- Cholesterol, Dietary/toxicity
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Energy Metabolism/drug effects
- Gene Expression Regulation
- Inhalation Exposure
- Insulin/blood
- Lipids/blood
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Male
- Ozone/toxicity
- Rats, Wistar
- Species Specificity
- Rats
Collapse
Affiliation(s)
- Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Anna Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Beena Vallanat
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - John S House
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Charles E Wood
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States; Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States.
| |
Collapse
|
36
|
Snow SJ, Henriquez AR, Thompson LC, Fisher C, Schladweiler MC, Wood CE, Kodavanti UP. Pulmonary and vascular effects of acute ozone exposure in diabetic rats fed an atherogenic diet. Toxicol Appl Pharmacol 2021; 415:115430. [PMID: 33524446 PMCID: PMC8086743 DOI: 10.1016/j.taap.2021.115430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/06/2023]
Abstract
Air pollutants may increase risk for cardiopulmonary disease, particularly in susceptible populations with metabolic stressors such as diabetes and unhealthy diet. We investigated effects of inhaled ozone exposure and high-cholesterol diet (HCD) in healthy Wistar and Wistar-derived Goto-Kakizaki (GK) rats, a non-obese model of type 2 diabetes. Male rats (4-week old) were fed normal diet (ND) or HCD for 12 weeks and then exposed to filtered air or 1.0 ppm ozone (6 h/day) for 1 or 2 days. We examined pulmonary, vascular, hematology, and inflammatory responses after each exposure plus an 18-h recovery period. In both strains, ozone induced acute bronchiolar epithelial necrosis and inflammation on histopathology and pulmonary protein leakage and neutrophilia; the protein leakage was more rapid and persistent in GK compared to Wistar rats. Ozone also decreased lymphocytes after day 1 in both strains consuming ND (~50%), while HCD increased circulating leukocytes. Ozone increased plasma thrombin/antithrombin complexes and platelet disaggregation in Wistar rats on HCD and exacerbated diet effects on serum IFN-γ, IL-6, KC-GRO, IL-13, and TNF-α, which were higher with HCD (Wistar>GK). Ex vivo aortic contractility to phenylephrine was lower in GK versus Wistar rats at baseline(~30%); ozone enhanced this effect in Wistar rats on ND. GK rats on HCD had higher aortic e-NOS and tPA expression compared to Wistar rats. Ozone increased e-NOS in GK rats on ND (~3-fold) and Wistar rats on HCD (~2-fold). These findings demonstrate ways in which underlying diabetes and HCD may exacerbate pulmonary, systemic, and vascular effects of inhaled pollutants.
Collapse
MESH Headings
- Air Pollutants/toxicity
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Biomarkers/blood
- Blood Platelets/drug effects
- Blood Platelets/metabolism
- Cholesterol, Dietary/metabolism
- Cholesterol, Dietary/toxicity
- Cytokines/blood
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diet, Atherogenic/adverse effects
- Disease Models, Animal
- Inflammation Mediators/blood
- Inhalation Exposure
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Lung Injury/blood
- Lung Injury/chemically induced
- Lung Injury/pathology
- Male
- Necrosis
- Ozone/toxicity
- Pulmonary Edema/blood
- Pulmonary Edema/chemically induced
- Pulmonary Edema/pathology
- Rats, Wistar
- Vascular Diseases/blood
- Vascular Diseases/chemically induced
- Vascular Diseases/physiopathology
- Vasoconstriction/drug effects
- Rats
Collapse
Affiliation(s)
- Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| | - Leslie C Thompson
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| | - Cynthia Fisher
- School of Public Health, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| | - Charles E Wood
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States.
| |
Collapse
|
37
|
Li YL, Chuang TW, Chang PY, Lin LY, Su CT, Chien LN, Chiou HY. Long-term exposure to ozone and sulfur dioxide increases the incidence of type 2 diabetes mellitus among aged 30 to 50 adult population. ENVIRONMENTAL RESEARCH 2021; 194:110624. [PMID: 33412098 DOI: 10.1016/j.envres.2020.110624] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
AIMS/HYPOTHESIS Worldwide, the information regarding the associations between long-term exposure to ozone (O3) and sulfur dioxide (SO2) and the development of type 2 diabetes remains scarce, especially in Asia. This study aimed to investigate the long-term effects of exposure to ambient O3 and SO2 on the incidence of type 2 diabetes with consideration of other air pollutants in Taiwanese adults aged 30 to 50 years. METHODS A total of 6,426,802 non-diabetic participants aged between 30 and 50 years old were obtained from the National Health Insurance Research Database between 2005 and 2016. Incident type 2 diabetes was the main diagnosis at medical visits. Air quality data were provided by the Taiwan Environmental Protection Administration. The air pollutant concentrations for each participant were estimated using the ordinary kriging method to interpolate daily concentrations of O3, SO2, carbon monoxide (CO), nitrogen dioxide (NO2), suspended fine particles (with an aerodynamic diameter less than 2.5 μm; PM2.5), and suspended particles (with an aerodynamic diameter less than 10 μm; PM10) in residential districts across Taiwan. Six-year average concentrations of pollutants were calculated from January 1, 2005 to December 31, 2010, and data were categorized into quartiles. We performed Cox regression models to analyze the long-term effects of exposure to O3 and SO2 on the incidence of type 2 diabetes. RESULTS The hazard ratio (HR) for the incidence of diabetes per each interquartile range (IQR) increase in ozone exposure (3.30 ppb) was 1.058 (95% confidence interval (CI): 1.053, 1.064) and 1.011 (95% CI: 1.007, 1.015) for SO2 exposure (1.77 ppb) after adjusting for age, sex, socioeconomic status, urbanization level, temperature, humidity, and chronic comorbidities (Model 3). Furthermore, for every 3.30 ppb increase of O3, the HR for incident type 2 diabetes was 1.093 (95% CI: 1.087, 1.100) after controlling factors shown in Model 3 plus SO2 and PM2.5. On the other hand, for every 1.77 ppb increase of SO2, the HR for incident type 2 diabetes was 1.073 (95% CI: 1.068, 1.079) after controlling factors shown in Model 3 plus NO2 and PM2.5. CONCLUSIONS Long-term exposure to ambient O3 and SO2 was associated with a higher risk of developing type 2 diabetes for Taiwanese population. Exposure to O3 and SO2 may play a role in the adult early-onset type 2 diabetes.
Collapse
Affiliation(s)
- Yu-Ling Li
- School of Public Health, College of Public Health, Taipei Medical University, No. 250 Wuxing St., Xinyi District, Taipei, 11031, Taiwan
| | - Ting-Wu Chuang
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wuxing St., Xinyi District, Taipei, 11031, Taiwan
| | - Po-Ya Chang
- Department of Leisure Industry and Health Promotion, National Taipei University of Nursing and Health Sciences, No. 365 Ming-te Road, Beitou District, Taipei, 11219, Taiwan
| | - Li-Yin Lin
- Institute of Population Health Sciences, National Health Research Institutes, No.35 Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan; Master Program in Applied Epidemiology, College of Public Health, Taipei Medical University, No. 250 Wuxing St., Xinyi District, Taipei, 11031, Taiwan
| | - Chien-Tien Su
- School of Public Health, College of Public Health, Taipei Medical University, No. 250 Wuxing St., Xinyi District, Taipei, 11031, Taiwan; Department of Family Medicine, Taipei Medical University Hospital, No. 252 Wuxing St., Xinyi District, Taipei, 11031, Taiwan
| | - Li-Nien Chien
- School of Health Care Administration, College of Management, Taipei Medical University, No. 250 Wuxing St., Xinyi District, Taipei, 11031, Taiwan; Health and Clinical Data Research Center, Office of Data Science, Taipei Medical University No. 250 Wuxing St., Xinyi District, Taipei, 11031, Taiwan
| | - Hung-Yi Chiou
- School of Public Health, College of Public Health, Taipei Medical University, No. 250 Wuxing St., Xinyi District, Taipei, 11031, Taiwan; Institute of Population Health Sciences, National Health Research Institutes, No.35 Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan; Master Program in Applied Epidemiology, College of Public Health, Taipei Medical University, No. 250 Wuxing St., Xinyi District, Taipei, 11031, Taiwan.
| |
Collapse
|
38
|
Kodavanti PRS, Valdez M, Richards JE, Agina-Obu DI, Phillips PM, Jarema KA, Kodavanti UP. Ozone-induced changes in oxidative stress parameters in brain regions of adult, middle-age, and senescent Brown Norway rats. Toxicol Appl Pharmacol 2021; 410:115351. [PMID: 33249117 PMCID: PMC7775355 DOI: 10.1016/j.taap.2020.115351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
A critical part of community based human health risk assessment following chemical exposure is identifying sources of susceptibility. Life stage is one such susceptibility. A prototypic air pollutant, ozone (O3) induces dysfunction of the pulmonary, cardiac, and nervous systems. Long-term exposure may cause oxidative stress (OS). The current study explored age-related and subchronic O3-induced changes in OS in brain regions of rats. To build a comprehensive assessment of OS-related effects of O3, a tripartite approach was implemented focusing on 1) the production of reactive oxygen species (ROS) [NADPH Quinone oxidoreductase 1, NADH Ubiquinone reductase] 2) antioxidant homeostasis [total antioxidant substances, superoxide dismutase, γ-glutamylcysteine synthetase] and 3) an assessment of oxidative damage [total aconitase and protein carbonyls]. Additionally, a neurobehavioral evaluation of motor activity was compared to these OS measures. Male Brown Norway rats (4, 12, and 24 months of age) were exposed to air or O3 (0.25 or 1 ppm) via inhalation for 6 h/day, 2 days per week for 13 weeks. A significant decrease in horizontal motor activity was noted only in 4-month old rats. Results on OS measures in frontal cortex (FC), cerebellum (CB), striatum (STR), and hippocampus (HIP) indicated life stage-related increases in ROS production, small decreases in antioxidant homeostatic mechanisms, a decrease in aconitase activity, and an increase in protein carbonyls. The effects of O3 exposure were brain area-specific, with the STR being more sensitive. Regarding life stage, the effects of O3 were greater in 4-month-old rats, which correlated with horizontal motor activity. These results indicate that OS may be increased in specific brain regions after subchronic O3 exposure, but the interactions between age and exposure along with their consequences on the brain require further investigation.
Collapse
Affiliation(s)
- Prasada Rao S Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Matthew Valdez
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Judy E Richards
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, CPHEA, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Datonye I Agina-Obu
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Pamela M Phillips
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Kimberly A Jarema
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Urmila P Kodavanti
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, CPHEA, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
39
|
Shang L, Huang L, Yang L, Leng L, Qi C, Xie G, Wang R, Guo L, Yang W, Chung MC. Impact of air pollution exposure during various periods of pregnancy on term birth weight: a large-sample, retrospective population-based cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3296-3306. [PMID: 32914309 PMCID: PMC7788013 DOI: 10.1007/s11356-020-10705-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/01/2020] [Indexed: 06/02/2023]
Abstract
Previous studies have suggested that maternal exposure to air pollution might affect term birth weight. However, the conclusions are controversial. Birth data of all term newborns born in Xi'an city of Shaanxi, China, from 2015 to 2018 and whose mother lived in Xi'an during pregnancy were selected form the Birth Registry Database. And the daily air quality data of Xi'an city was collected from Chinese Air Quality Online Monitoring and Analysis Platform. Generalized additive models (GAM) and 2-level binary logistic regression models were used to estimate the effects of air pollution exposure on term birth weight, the risk term low birth weight (TLBW), and macrosomia. Finally, 321521 term newborns were selected, including 4369(1.36%) TLBW infants and 24,960 (7.76%) macrosomia. The average pollution levels of PM2.5, PM10, and NO2 in Xi'an city from 2015 to 2018 were higher than national limits. During the whole pregnancy, maternal exposure to PM2.5, PM10, SO2, and CO all significantly reduced the term birth weight and increased the risk of TLBW. However, NO2 and O3 exposure have significantly increased the term birth weight, and O3 even increased the risk of macrosomia significantly. Those effects were also observed in the first and second trimesters of pregnancy. But during the third trimester, high level of air quality index (AQI) and maternal exposure to PM2.5, PM10, SO2, NO2, and CO increased the term birth weight and the risk of macrosomia, while O3 exposure was contrary to this effect. The findings suggested that prenatal exposure to air pollution might cause adverse impacts on term birth weight, and the effects varied with trimesters and pollutants, which provides further pieces of evidence for the adverse effects of air pollution exposure in heavy polluted-area on term birth weight.
Collapse
Affiliation(s)
- Li Shang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi People’s Republic of China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi People’s Republic of China
| | - Liyan Huang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi People’s Republic of China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi People’s Republic of China
| | - Liren Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi People’s Republic of China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi People’s Republic of China
| | - Longtao Leng
- School of Computer Science & Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan People’s Republic of China
| | - Cuifang Qi
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi People’s Republic of China
| | - Guilan Xie
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi People’s Republic of China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi People’s Republic of China
| | - Ruiqi Wang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi People’s Republic of China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi People’s Republic of China
| | - Leqian Guo
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi People’s Republic of China
| | - Wenfang Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi People’s Republic of China
| | - Mei Chun Chung
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts USA
| |
Collapse
|
40
|
Valdez M, Valdez JM, Freeborn D, Johnstone AFM, Kodavanti PRS. The effects of ozone exposure and sedentary lifestyle on neuronal microglia and mitochondrial bioenergetics of female Long-Evans rats. Toxicol Appl Pharmacol 2020; 408:115254. [PMID: 32991914 PMCID: PMC7730534 DOI: 10.1016/j.taap.2020.115254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/07/2020] [Accepted: 09/24/2020] [Indexed: 11/27/2022]
Abstract
Ozone (O3) is a widespread air pollutant that produces cardiovascular and pulmonary dysfunction possibly mediated by activation of central stress centers. Epidemiological data suggest that sedentary lifestyles may exacerbate responses to air pollutants such as O3. We sought to assess neurological changes in response to O3 exposure and an active lifestyle. We developed an animal model in which female Long-Evans rats were either sedentary or active with continuous access to running wheels starting at postnatal day (PND) 22 until the age of PND 100 and then exposed to O3 (0, 0.25, 0.5 or 1.0 ppm) 5 h/day for two consecutive days. We found significantly more reactive microglia within the hippocampus (HIP) in animals exposed to O3 in both sedentary and active rats. No changes were detected in astrocytic coverage. We next analyzed mitochondrial bioenergetic parameters (complex I, complex II and complex IV). Complex I activity was significantly affected by exercise in hypothalamus (HYP). Complex II activity was significantly affected by both exercise and O3 exposure in the HIP. Concomitant with the changes in enzymatic activity, there were also effects on expression of genes related to mitochondrial bioenergetics and antioxidant production. These results demonstrate that O3 induces microglia reactivity within stress centers of the brain and that mitochondrial bioenergetics are altered. Some of these effects may be augmented by exercise, suggesting a role for lifestyle in O3 effects on brain mitochondrial bioenergetics parameters in agreement with our previous reports on other endpoints.
Collapse
Affiliation(s)
- Matthew Valdez
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA; Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, United States of America
| | - Joseph M Valdez
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Danielle Freeborn
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Andrew F M Johnstone
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Prasada Rao S Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
41
|
Snow SJ, Henriquez AR, Fenton JI, Goeden T, Fisher A, Vallanat B, Angrish M, Richards JE, Schladweiler MC, Cheng WY, Wood CE, Tong H, Kodavanti UP. Diets enriched with coconut, fish, or olive oil modify peripheral metabolic effects of ozone in rats. Toxicol Appl Pharmacol 2020; 410:115337. [PMID: 33217375 DOI: 10.1016/j.taap.2020.115337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Dietary factors may modulate metabolic effects of air pollutant exposures. We hypothesized that diets enriched with coconut oil (CO), fish oil (FO), or olive oil (OO) would alter ozone-induced metabolic responses. Male Wistar-Kyoto rats (1-month-old) were fed normal diet (ND), or CO-, FO-, or OO-enriched diets. After eight weeks, animals were exposed to air or 0.8 ppm ozone, 4 h/day for 2 days. Relative to ND, CO- and OO-enriched diet increased body fat, serum triglycerides, cholesterols, and leptin, while all supplements increased liver lipid staining (OO > FO > CO). FO increased n-3, OO increased n-6/n-9, and all supplements increased saturated fatty-acids. Ozone increased total cholesterol, low-density lipoprotein, branched-chain amino acids (BCAA), induced hyperglycemia, glucose intolerance, and changed gene expression involved in energy metabolism in adipose and muscle tissue in rats fed ND. Ozone-induced glucose intolerance was exacerbated by OO-enriched diet. Ozone increased leptin in CO- and FO-enriched groups; however, BCAA increases were blunted by FO and OO. Ozone-induced inhibition of liver cholesterol biosynthesis genes in ND-fed rats was not evident in enriched dietary groups; however, genes involved in energy metabolism and glucose transport were increased in rats fed FO and OO-enriched diet. FO- and OO-enriched diets blunted ozone-induced inhibition of genes involved in adipose tissue glucose uptake and cholesterol synthesis, but exacerbated genes involved in adipose lipolysis. Ozone-induced decreases in muscle energy metabolism genes were similar in all dietary groups. In conclusion, CO-, FO-, and OO-enriched diets modified ozone-induced metabolic changes in a diet-specific manner, which could contribute to altered peripheral energy homeostasis.
Collapse
Affiliation(s)
- Samantha J Snow
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, United States
| | - Travis Goeden
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, United States
| | - Anna Fisher
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Beena Vallanat
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Michelle Angrish
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Judy E Richards
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Wan-Yun Cheng
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Charles E Wood
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Haiyan Tong
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|
42
|
Wagner JG, Barkauskas CE, Vose A, Lewandowski RP, Harkema JR, Tighe RM. Repetitive Ozone Exposures and Evaluation of Pulmonary Inflammation and Remodeling in Diabetic Mouse Strains. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:117009. [PMID: 33253011 PMCID: PMC7703867 DOI: 10.1289/ehp7255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Epidemiological studies support the hypothesis that diabetes alters pulmonary responses to air pollutants like ozone (O 3 ). The mechanism(s) underlying these associations and potential links among diabetes, O 3 , and lung inflammation and remodeling are currently unknown. OBJECTIVES The goal was to determine whether pulmonary responses to repetitive ozone exposures are exacerbated in murine strains that are hyperglycemic and insulin resistant. METHODS Normoglycemic and insulin-sensitive C57BL/6J mice; hyperglycemic, but mildly insulin-resistant, KK mice; and hyperglycemic and markedly insulin-resistant KKAy mice were used for ozone exposure studies. All animals were exposed to filtered air (FA) or repetitive ozone (0.5 ppm O 3 , 4 h/d, for 13 consecutive weekdays). Tissue analysis was performed 24 h following the final exposure. This analysis included bronchoalveolar lavage (BAL) for cell and fluid analysis, and tissue for pathology, immunohistology, mRNA, and hydroxyproline. RESULTS Following repetitive O 3 exposure, higher bronchoalveolar lavage fluid inflammatory cells were observed in all mice (KKAy > KK > C 57 BL / 6 ), with a notable influx of neutrophils and eosinophils in KK and KKAy mice. Although the lungs of O 3 -exposed C57BL/6J and KK mice had minimal centriacinar histological changes without fibrosis, the lungs of O 3 -exposed KKAy mice contained marked epithelial hyperplasia in proximal alveolar ducts and adjacent alveoli with associated centriacinar fibrosis. Fibrosis in O 3 -exposed KKAy lungs was confirmed with immunohistochemistry, tissue hydroxyproline content, and tissue mRNA expression of fibrosis-associated genes (Ccl11, Il13, and Mmp12). Immunofluorescence staining and confocal microscopy revealed alterations in the structure and composition of the airway and alveolar epithelium in regions of fibrosis. DISCUSSION Our results demonstrate that in diabetic animal strains repetitive ambient ozone exposure led to early and exaggerated pulmonary inflammation and remodeling. Changes in distal and interstitial airspaces and the activation of Th2 inflammatory and profibrotic pathways in experimental animals provide a preliminary, mechanistic framework to support the emerging epidemiological associations among air pollution, diabetes, and lung disease. https://doi.org/10.1289/EHP7255.
Collapse
Affiliation(s)
- James G. Wagner
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | | | - Aaron Vose
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Ryan P. Lewandowski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Jack R. Harkema
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Robert M. Tighe
- Department of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
43
|
Abstract
Air pollutants pose a serious worldwide health hazard, causing respiratory and cardiovascular morbidity and mortality. Pollutants perturb the autonomic nervous system, whose function is critical to cardiopulmonary homeostasis. Recent studies suggest that pollutants can stimulate defensive sensory nerves within the cardiopulmonary system, thus providing a possible mechanism for pollutant-induced autonomic dysfunction. A better understanding of the mechanisms involved would likely improve the management and treatment of pollution-related disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
44
|
Offspring susceptibility to metabolic alterations due to maternal high-fat diet and the impact of inhaled ozone used as a stressor. Sci Rep 2020; 10:16353. [PMID: 33004997 PMCID: PMC7530537 DOI: 10.1038/s41598-020-73361-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
The influence of maternal high-fat diet (HFD) on metabolic response to ozone was examined in Long-Evans rat offspring. F0 females were fed control diet (CD; 10%kcal from fat) or HFD (60%kcal from fat) starting at post-natal day (PND) 30. Rats were bred on PND 72. Dietary regimen was maintained until PND 30 when all offspring were switched to CD. On PND 40, F1 offspring (n = 10/group/sex) were exposed to air or 0.8 ppm ozone for 5 h. Serum samples were collected for global metabolomic analysis (n = 8/group/sex). Offspring from HFD dams had increased body fat and weight relative to CD. Metabolomic analysis revealed significant sex-, diet-, and exposure-related changes. Maternal HFD increased free fatty acids and decreased phospholipids (male > female) in air-exposed rats. Microbiome-associated histidine and tyrosine metabolites were increased in both sexes, while 1,5-anhydroglucitol levels decreased in males indicating susceptibility to insulin resistance. Ozone decreased monohydroxy fatty acids and acyl carnitines and increased pyruvate along with TCA cycle intermediates in females (HFD > CD). Ozone increased various amino acids, polyamines, and metabolites of gut microbiota in HFD female offspring indicating gut microbiome alterations. Collectively, these data suggest that maternal HFD increases offspring susceptibility to metabolic alterations in a sex-specific manner when challenged with environmental stressors.
Collapse
|
45
|
Thomson EM. Air Pollution, Stress, and Allostatic Load: Linking Systemic and Central Nervous System Impacts. J Alzheimers Dis 2020; 69:597-614. [PMID: 31127781 PMCID: PMC6598002 DOI: 10.3233/jad-190015] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Air pollution is a risk factor for cardiovascular and respiratory morbidity and mortality. A growing literature also links exposure to diverse air pollutants (e.g., nanoparticles, particulate matter, ozone, traffic-related air pollution) with brain health, including increased incidence of neurological and psychiatric disorders such as cognitive decline, dementia (including Alzheimer’s disease), anxiety, depression, and suicide. A critical gap in our understanding of adverse impacts of pollutants on the central nervous system (CNS) is the early initiating events triggered by pollutant inhalation that contribute to disease progression. Recent experimental evidence has shown that particulate matter and ozone, two common pollutants with differing characteristics and reactivity, can activate the hypothalamic-pituitary-adrenal (HPA) axis and release glucocorticoid stress hormones (cortisol in humans, corticosterone in rodents) as part of a neuroendocrine stress response. The brain is highly sensitive to stress: stress hormones affect cognition and mental health, and chronic stress can produce profound biochemical and structural changes in the brain. Chronic activation and/or dysfunction of the HPA axis also increases the burden on physiological stress response systems, conceptualized as allostatic load, and is a common pathway implicated in many diseases. The present paper provides an overview of how systemic stress-dependent biological responses common to particulate matter and ozone may provide insight into early CNS effects of pollutants, including links with oxidative, inflammatory, and metabolic processes. Evidence of pollutant effect modification by non-chemical stressors (e.g., socioeconomic position, psychosocial, noise), age (prenatal to elderly), and sex will also be reviewed in the context of susceptibility across the lifespan.
Collapse
Affiliation(s)
- Errol M Thomson
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
46
|
Henriquez AR, Snow SJ, Schladweiler MC, Miller CN, Kodavanti UP. Independent roles of beta-adrenergic and glucocorticoid receptors in systemic and pulmonary effects of ozone. Inhal Toxicol 2020; 32:155-169. [PMID: 32366144 DOI: 10.1080/08958378.2020.1759736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background: The release of catecholamines is preceded by glucocorticoids during a stress response. We have shown that ozone-induced pulmonary responses are mediated through the activation of stress hormone receptors.Objective: To examine the interdependence of beta-adrenergic (βAR) and glucocorticoid receptors (GRs), we inhibited βAR while inducing GR or inhibited GR while inducing βAR and examined ozone-induced stress response.Methods: Twelve-week-old male Wistar-Kyoto rats were pretreated daily with saline or propranolol (PROP; βAR-antagonist; 10 mg/kg-i.p.; starting 7-d prior to exposure) followed-by saline or dexamethasone (DEX) sulfate (GR-agonist; 0.02 mg/kg-i.p.; starting 1-d prior to exposure) and exposed to air or 0.8 ppm ozone (4 h/d × 2-d). In a second experiment, rats were similarly pretreated with corn-oil or mifepristone (MIFE; GR-antagonist, 30 mg/kg-s.c.) followed by saline or clenbuterol (CLEN; β2AR-agonist; 0.02 mg/kg-i.p.) and exposed.Results: DEX and PROP + DEX decreased adrenal, spleen and thymus weights in all rats. DEX and MIFE decreased and increased corticosterone, respectively. Ozone-induced pulmonary protein leakage, inflammation and IL-6 increases were inhibited by PROP or PROP + DEX and exacerbated by CLEN or CLEN + MIFE. DEX and ozone-induced while MIFE reversed lymphopenia (MIFE > CLEN + MIFE). DEX exacerbated while PROP, MIFE, or CLEN + MIFE inhibited ozone-induced hyperglycemia and glucose intolerance. Ozone inhibited glucose-mediated insulin release.Conclusions: In summary, 1) activating βAR, even with GR inhibition, exacerbated and inhibiting βAR, even with GR activation, attenuated ozone-induced pulmonary effects; and 2) activating GR exacerbated ozone systemic effects, but with βAR inhibition, this exacerbation was less remarkable. These data suggest the independent roles of βAR in pulmonary and dependent roles of βAR and GR in systemic effects of ozone.
Collapse
Affiliation(s)
- Andres R Henriquez
- Department of Energy, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Colette N Miller
- Department of Energy, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
47
|
Wong SF, Yap PS, Mak JW, Chan WLE, Khor GL, Ambu S, Chu WL, Mohamad MS, Ibrahim Wong N, Ab. Majid NL, Abd. Hamid HA, Rodzlan Hasani WS, Mohd Yussoff MFB, Aris HTB, Ab. Rahman EB, M. Rashid ZB. Association between long-term exposure to ambient air pollution and prevalence of diabetes mellitus among Malaysian adults. Environ Health 2020; 19:37. [PMID: 32245482 PMCID: PMC7119016 DOI: 10.1186/s12940-020-00579-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/18/2020] [Indexed: 02/16/2023]
Abstract
BACKGROUND Malaysia has the highest rate of diabetes mellitus (DM) in the Southeast Asian region, and has ongoing air pollution and periodic haze exposure. METHODS Diabetes data were derived from the Malaysian National Health and Morbidity Surveys conducted in 2006, 2011 and 2015. The air pollution data (NOx, NO2, SO2, O3 and PM10) were obtained from the Department of Environment Malaysia. Using multiple logistic and linear regression models, the association between long-term exposure to these pollutants and prevalence of diabetes among Malaysian adults was evaluated. RESULTS The PM10 concentration decreased from 2006 to 2014, followed by an increase in 2015. Levels of NOx decreased while O3 increased annually. The air pollutant levels based on individual modelled air pollution exposure as measured by the nearest monitoring station were higher than the annual averages of the five pollutants present in the ambient air. The prevalence of overall diabetes increased from 11.4% in 2006 to 21.2% in 2015. The prevalence of known diabetes, underdiagnosed diabetes, overweight and obesity also increased over these years. There were significant positive effect estimates of known diabetes at 1.125 (95% CI, 1.042, 1.213) for PM10, 1.553 (95% CI, 1.328, 1.816) for O3, 1.271 (95% CI, 1.088, 1.486) for SO2, 1.124 (95% CI, 1.048, 1.207) for NO2, and 1.087 (95% CI, 1.024, 1.153) for NOx for NHMS 2006. The adjusted annual average levels of PM10 [1.187 (95% CI, 1.088, 1.294)], O3 [1.701 (95% CI, 1.387, 2.086)], NO2 [1.120 (95% CI, 1.026, 1.222)] and NOx [1.110 (95% CI, 1.028, 1.199)] increased significantly from NHMS 2006 to NHMS 2011 for overall diabetes. This was followed by a significant decreasing trend from NHMS 2011 to 2015 [0.911 for NO2, and 0.910 for NOx]. CONCLUSION The findings of this study suggest that long-term exposure to O3 is an important associated factor of underdiagnosed DM risk in Malaysia. PM10, NO2 and NOx may have mixed effect estimates towards the risk of DM, and their roles should be further investigated with other interaction models. Policy and intervention measures should be taken to reduce air pollution in Malaysia.
Collapse
Affiliation(s)
- Shew Fung Wong
- Institute for Research, Development and Innovation (IRDI), International Medical University, 57000 Kuala Lumpur, Malaysia
- School of Medicine, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Poh Sin Yap
- Institute for Research, Development and Innovation (IRDI), International Medical University, 57000 Kuala Lumpur, Malaysia
- School of Postgraduate Studies, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Joon Wah Mak
- Institute for Research, Development and Innovation (IRDI), International Medical University, 57000 Kuala Lumpur, Malaysia
- School of Medicine, International Medical University, 57000 Kuala Lumpur, Malaysia
- School of Postgraduate Studies, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Wan Ling Elaine Chan
- Institute for Research, Development and Innovation (IRDI), International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Geok Lin Khor
- School of Postgraduate Studies, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Stephen Ambu
- Institute for Research, Development and Innovation (IRDI), International Medical University, 57000 Kuala Lumpur, Malaysia
- School of Medicine, International Medical University, 57000 Kuala Lumpur, Malaysia
- School of Postgraduate Studies, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Wan Loy Chu
- Institute for Research, Development and Innovation (IRDI), International Medical University, 57000 Kuala Lumpur, Malaysia
- School of Medicine, International Medical University, 57000 Kuala Lumpur, Malaysia
- School of Postgraduate Studies, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Maria Safura Mohamad
- Institute for Public Health, Ministry of Health, 40170 Shah Alam, Selangor Malaysia
| | | | - Nur Liana Ab. Majid
- Institute for Public Health, Ministry of Health, 40170 Shah Alam, Selangor Malaysia
| | | | | | | | - Hj. Tahir bin Aris
- Institute for Public Health, Ministry of Health, 40170 Shah Alam, Selangor Malaysia
| | - Ezahtulsyahreen Bt. Ab. Rahman
- Department of Environment, Ministry of Energy, Technology, Science, Environment and Climate Change, 62662 Putrajaya, Malaysia
| | - Zaleha Bt. M. Rashid
- Department of Environment, Ministry of Energy, Technology, Science, Environment and Climate Change, 62662 Putrajaya, Malaysia
| |
Collapse
|
48
|
Miller CN, Stewart EJ, Snow SJ, Williams WC, Richards JH, Thompson LC, Schladweiler MC, Farraj AK, Kodavanti UP, Dye JA. Ozone Exposure During Implantation Increases Serum Bioactivity in HTR-8/SVneo Trophoblasts. Toxicol Sci 2020; 168:535-550. [PMID: 30649513 DOI: 10.1093/toxsci/kfz003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Implantation is a sensitive window in reproductive development during which disruptions may increase the risk of adverse pregnancy outcomes including intrauterine growth restriction. Ozone exposure during implantation in rats reduces fetal weight near the end of gestation, potentially though impaired trophoblast migration and invasion and altered implantation. The current study characterized changes in ventilation, pulmonary injury, and circulating factors including hormonal, inflammatory, and metabolic markers related to exposure to ozone (0.4-1.2 ppm) for 4-h on gestation days 5 and 6 (window of implantation) in Long-Evans dams. To determine the effects of this exposure on trophoblast function, placental-derived, first trimester, HTR-8/SVneo cells were exposed to serum from air- or ozone (0.8 ppm×4 h)-exposed dams and examined for impacts on metabolic capacity, wound-closure, and invasion. Peri-implantation exposure to ozone induced ventilatory dysfunction and lung vascular leakage in pregnant rats, with little effect on most of the circulating markers measured. However, ozone inhalation induced a significant reduction in several serum cytokines (interferon-γ, interleukin-6, and interleukin-13). Treatment of HTR-8/SVneo trophoblasts with serum from ozone-exposed dams for 16-h downregulated metabolic capacity, wound-closure, and invasion through a Matrigel membrane compared with both air-serum and fetal bovine serum-treated cells. Ozone-serum treated cells increased the release of a critical inhibitor of invasion and angiogenesis (soluble fms-like receptor 1; sFlt1) compared with air-serum treatment. Together, our data suggest that circulating factors in the serum of pregnant rats exposed to ozone during implantation receptivity can hinder critical processes of implantation (eg, invasion and migration) and impair trophoblast metabolic capacity.
Collapse
Affiliation(s)
- Colette N Miller
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Erica J Stewart
- Oak Ridge Institute for Science and Education, Research Triangle Park, North Carolina 27711
| | - Samantha J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Wanda C Williams
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Judy H Richards
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Leslie C Thompson
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Aimen K Farraj
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Janice A Dye
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
49
|
Tang X, Zhou JB, Luo F, Han Y, Heianza Y, Cardoso MA, Qi L. Air pollution and gestational diabetes mellitus: evidence from cohort studies. BMJ Open Diabetes Res Care 2020; 8:8/1/e000937. [PMID: 32193198 PMCID: PMC7103802 DOI: 10.1136/bmjdrc-2019-000937] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
Exposure to different air pollutants has been linked to type 2 diabetes mellitus, but the evidence for the association between air pollutants and gestational diabetes mellitus (GDM) has not been systematically evaluated. We systematically retrieved relevant studies from PubMed, Embase, and the Web of Science, and performed stratified analyses and regression analyses. Thirteen studies were analyzed, comprising 1 547 154 individuals from nine retrospective studies, three prospective studies, and one case-control study. Increased exposure to particulate matter ≤2.5 µm in diameter (PM2.5) was not associated with the increased risk of GDM (adjusted OR 1.03, 95% CI 0.99 to 1.06). However, subgroup analysis showed positive correlation of PM2.5 exposure in the second trimester with an increased risk of GDM (combined OR 1.07, 95% CI 1.00 to 1.13). Among pollutants other than PM2.5, significant association between GDM and nitrogen dioxide (NO2) (OR 1.05, 95% CI 1.01 to 1.10), nitrogen oxide (NOx) (OR 1.03, 95% CI 1.01 to 1.05), and sulfur dioxide (SO2) (OR 1.09, 95% CI 1.03 to 1.15) was noted. There was no significant association between exposure to black carbon or ozone or carbon monoxide or particulate matter ≤10 µm in diameter and GDM. Thus, systematic review of existing evidence demonstrated association of exposure to NO2, NOx, and SO2, and the second trimester exposure of PM2.5 with the increased risk of GDM. Caution may be exercised while deriving conclusions from existing evidence base because of the limited number and the observational nature of studies.
Collapse
Affiliation(s)
- Xingyao Tang
- Department of Education, Beijing Tongren Hospital, Beijing, China
| | - Jian-Bo Zhou
- Department of Endocrinology, Beijing Tongren Hospital, Beijing, China
| | - Fuqiang Luo
- Department of Education, Beijing Tongren Hospital, Beijing, China
| | - Yipeng Han
- Department of Education, Beijing Tongren Hospital, Beijing, China
| | - Yoriko Heianza
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Marly Augusto Cardoso
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Lu Qi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
50
|
Abplanalp WT, Wickramasinghe NS, Sithu SD, Conklin DJ, Xie Z, Bhatnagar A, Srivastava S, O'Toole TE. Benzene Exposure Induces Insulin Resistance in Mice. Toxicol Sci 2020; 167:426-437. [PMID: 30346588 DOI: 10.1093/toxsci/kfy252] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Benzene is a ubiquitous pollutant associated with hematotoxicity but its metabolic effects are unknown. We sought to determine if and how exposure to volatile benzene impacted glucose handling. We exposed wild type C57BL/6 mice to volatile benzene (50 ppm × 6 h/day) or HEPA-filtered air for 2 or 6 weeks and measured indices of oxidative stress, inflammation, and insulin signaling. Compared with air controls, we found that mice inhaling benzene demonstrated increased plasma glucose (p = .05), insulin (p = .03), and HOMA-IR (p = .05), establishing a state of insulin and glucose intolerance. Moreover, insulin-stimulated Akt phosphorylation was diminished in the liver (p = .001) and skeletal muscle (p = .001) of benzene-exposed mice, accompanied by increases in oxidative stress and Nf-κb phosphorylation (p = .025). Benzene-exposed mice also demonstrated elevated levels of Mip1-α transcripts and Socs1 (p = .001), but lower levels of Irs-2 tyrosine phosphorylation (p = .0001). Treatment with the superoxide dismutase mimetic, TEMPOL, reversed benzene-induced effects on oxidative stress, Nf-κb phosphorylation, Socs1 expression, Irs-2 tyrosine phosphorylation, and systemic glucose intolerance. These findings suggest that exposure to benzene induces insulin resistance and that this may be a sensitive indicator of inhaled benzene toxicity. Persistent ambient benzene exposure may be a heretofore unrecognized contributor to the global human epidemics of diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Wesley T Abplanalp
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292
| | - Nalinie S Wickramasinghe
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Srinivas D Sithu
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Daniel J Conklin
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Zhengzhi Xie
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Aruni Bhatnagar
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Sanjay Srivastava
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Timothy E O'Toole
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| |
Collapse
|