1
|
Palese F, Rakotobe M, Zurzolo C. Transforming the concept of connectivity: unveiling tunneling nanotube biology and their roles in brain development and neurodegeneration. Physiol Rev 2025; 105:1823-1865. [PMID: 40067081 DOI: 10.1152/physrev.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 02/03/2025] [Indexed: 05/08/2025] Open
Abstract
Tunneling nanotubes (TNTs) are thin tubular membrane protrusions that connect distant cells, generating a complex cellular network. Over the past few decades, research on TNTs has provided important insights into their biology, including structural composition, formation mechanisms, modulators, and functionality. It has been discovered that TNTs allow cytoplasmic continuity between connected cells, facilitating fast intercellular communication via both passive and active exchange of materials. These features are pivotal in the nervous system, where rapid processing of inputs is physiologically required. TNTs have been implicated in the progression of neurodegenerative diseases and cancer in various in vitro models, and TNT-like structures have also been observed in the developing brain and in vivo. This highlights their significant role in pathophysiological processes. In this comprehensive review we aim to provide an extensive overview of TNTs, starting from key structural features and mechanisms of formation and describing the main experimental techniques used to detect these structures both in vitro and in vivo. We focus primarily on the nervous system, where the discovery of TNTs could prompt a reconsideration of the brain functioning as individual units (the neuronal theory of Cajal) versus neurons being physically connected, as Golgi believed. We illustrate the involvement of TNTs in brain development and neurodegenerative states and highlight the limitations and future research needs in this field.
Collapse
Affiliation(s)
- Francesca Palese
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
| | - Malalaniaina Rakotobe
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
| | - Chiara Zurzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Zhang J, Jiang H, Liu S, Xian Z, Zhao L, Li Y, Lu W, Shao C, Chai S. Bone marrow mesenchymal stem cells transport connexin43 via tunneling nanotubes to alleviate isopreterenol-induced myocardial hypertrophy. Stem Cell Res Ther 2025; 16:229. [PMID: 40329337 PMCID: PMC12057053 DOI: 10.1186/s13287-025-04339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Paracrine signaling plays an important role in stem cell therapy. However, it alone cannot fully explain the therapeutic mechanisms of stem cell therapy in treating heart diseases. Recently, tunneling nanotubes (TNTs)-a novel type of long-distance intercellular connectional structure-have been identified between mesenchymal stem cells (MSCs) and cardiomyocytes (CMs). TNTs mediate the transmission of multiple signaling molecules, enabling cells to exert different biological functions. In the present study, we investigated the role of TNTs in MSC-based therapy for myocardial hypertrophy. METHODS MSCs And CMs were co Cultured for 24 h with or without isopreterenol (ISO) to induce myocardial hypertrophy. Confocal microscopy was used to quantify and analyze the number, morphology, composition, and cell source of TNTs between MSCs and CMs. the effects of ISO on CMs were assessed by comparing cell area (measured by confocal microscopy) and expression levels of hypertrophy Related genes (using qRT PCR) under co Culture and trans Well culture conditions. Flow cytometry was employed to assess the transfer of connexin43 (Cx43) from MSCs to CMs; lentivirus Mediated Cx43 overexpression and Cx43 siRNA were used to investigate the effects of Cx43 on ISO Induced myocardial hypertrophy. RESULTS ISO stimulation significantly increased the number, length, and thickness of TNTs between MSCs and CMs (Number: P < 0.05; length and thickness: P < 0.01). ISO also increased the proportion of TNTs containing microtubules and those derived from MSCs (P < 0.05). Co-culture conditions were more effective than trans-well culture in alleviating ISO-induced myocardial hypertrophy (P < 0.05). Furthermore, Cx43 was observed in TNTs, and ISO enhanced the transfer of Cx43-mCherry from MSCs to co-cultured CMs (P < 0.05). Overexpression of Cx43 in CMs alleviated myocardial hypertrophy, whereas knocking down of Cx43 in MSCs reduced their ability to alleviate myocardial hypertrophy (P < 0.05). CONCLUSIONS Our results demonstrate that ISO promotes the formation of TNTs, particularly between MSCs and CMs, and induces changes in the morphology of TNTs (thickening and lengthening). Additionally, MSCs transmitted Cx43 to CMs via TNTs, which contributes to the alleviation of ISO-induced myocardial hypertrophy. These results suggest that TNTs represent an important mechanism in MSC-mediated therapy for myocardial hypertrophy.
Collapse
Affiliation(s)
- Jianghui Zhang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing, China.
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China.
| | - Hongfeng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Sa Liu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Zhong Xian
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Limin Zhao
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Yue Li
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Wenxiu Lu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Changrong Shao
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Sanbao Chai
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing, China.
| |
Collapse
|
3
|
Cao Z, Xie S, Yang X, Wei N, Zhao Y, Sun M, Lin X, Shi M, Cao R. JEV NS1' protein enhances cell-to-cell viral spread by inducing the formation of tunneling nanotubes. Vet Microbiol 2025; 304:110494. [PMID: 40187292 DOI: 10.1016/j.vetmic.2025.110494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 04/07/2025]
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne virus, can infect various host cells. However, the efficiency with which JEV spreads from cell to cell remains unclear. This study demonstrates that JEV infection can induce the formation of tunneling nanotubes (TNTs), which is mediated by the viral NS1' protein. Further investigations revealed that NS1' protein induces TNTs formation by interacting with PAK1. The establishment of TNTs facilitates the transport of JEV virions and the NS1' protein, thereby evading neutralization by antibodies. In conclusion, our study elucidates the mechanism through which JEV induces the formation of TNTs in host cells and highlights a novel pathway for JEV intercellular spread.
Collapse
Affiliation(s)
- Ziyu Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengda Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingmiao Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Wei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yundi Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyuan Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Miaolei Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Ying Y, Hu S, Shu Y, He B, Cheng G, Wang H, Tao N, Hoffman R, Shi D, Chen Z, Chen X, Gao J. Epimedin C promotes mitochondrial transfer and delays thymus atrophy in 4-VCD induced mimetic-menopausal mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156452. [PMID: 39919331 DOI: 10.1016/j.phymed.2025.156452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Prevention of thymus atrophy during menopause is of great significance for improving the immune function and overall health of menopausal women. Epimedin C is one of the major bioactive compounds in Herba Epimedii, a traditional herbal medicine for the treatment of menopausal syndrome in China, but the action and mechanism of Epimedin C in the treatment of menopausal thymus atrophy remains unclear. OBJECTIVE To study the effect of Epimedin C on thymus atrophy in 4-vinylcyclohexene diepoxide (4-VCD) induced mimetic-menopausal mice and explore its mechanism from new perspectives of tunneling nanotubes (TNTs) formation and mitochondrial transfer (MitoT). METHOD The effects of Epimedin C in the 4-VCD induced menopause-like phenotype in mice were observed, and the thymic output function was evaluated by the quantitative detection of T cell receptor excision circles (TRECs). The structure of the thymus was observed by H&E. The arrangement and quantity of different cell subpopulations of thymic epithelial cells (TECs) and thymocytes were detected by multiple fluorescent staining and flow cytometry. Mitochondrial morphology was observed with transmission electron microscopy. LC-MS/MS was used to analyze and identify the differential protein expression in thymus before and after Epimedin C treatment. Actin polymerization inhibitor was used to verify the possible mechanism of Epimedin C. The treadmilling-balance of actin, TNTs formation, and MitoT processes were observed by specific fluorescent probe labeling. The interaction between G-actin, Thymosin β4 (Tβ4), and Epimedin C were studied by protein cross-linking assay. RESULTS Epimedin C significantly increased the thymus weight and the area of the thymus medulla, increased the grip strength and bone strength in 4-VCD induced mimetic-menopausal mice, and enhanced ovarian secretion function. It could affect the thymus output, increase CK5 and CK8 expression, maintain the reticular structure of TECs, inhibit the differentiation of thymocytes into double positive cells (CD4+CD8+) and CD4SP (CD3+TCR β+CD4+CD8-) cells. Epimedin C promoted the conversion of G-actin to F-actin and accelerated MitoT via stimulating the TNTs formation, which related with the downregulation of Tβ4 and obstruction to the formation of Tβ4-G-actin complex. CONCLUSION Epimedin C can promote TEC activity in 4-VCD induced mimetic-menopausal mice by decreasing the expression of Tβ4, inhibiting the binding of Tβ4 to G-actin, promoting the F-actin polymerization and the TNTs-depended MitoT.
Collapse
Affiliation(s)
- Yuyuan Ying
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Shiyu Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yaoying Shu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Bingqian He
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Guilin Cheng
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Haixin Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Nana Tao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Robert Hoffman
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China; Yo San University of Traditional Chinese Medicine, Los Angeles, 90066, USA
| | - Dongling Shi
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Zhijin Chen
- Quzhou maternal and Child Health Hospital, Quzhou, Zhejiang, 324003, China.
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, SAR, 999078, China.
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, SAR, 999078, China.
| |
Collapse
|
5
|
Korenkova O, Liu S, Prlesi I, Pepe A, Albadri S, Del Bene F, Zurzolo C. Tunneling nanotubes enable intercellular transfer in zebrafish embryos. Dev Cell 2025; 60:524-534.e3. [PMID: 39541978 DOI: 10.1016/j.devcel.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/25/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Tunneling nanotubes (TNTs) are thin intercellular connections that facilitate the transport of diverse cargoes, ranging from ions to organelles. While TNT studies have predominantly been conducted in cell cultures, the existence of open-ended TNTs within live organisms remains unverified. Despite the observation of intercellular connections during embryonic development across various species, their functional role in facilitating material transfer between connected cells has not been confirmed. In this study, we performed mosaic labeling of gastrula cells in zebrafish embryos to demonstrate the coexistence of TNT-like structures alongside other cellular protrusions. These embryonic TNT-like connections exhibited a morphology similar to that of TNTs described in cell culture, appeared to have similar formation mechanisms, and could be induced by Eps8 overexpression and CK666 treatment. Most notably, we demonstrated their capability to transfer both soluble cargoes and organelles, thus confirming their open-endedness. This study demonstrates the existence of functional, open-ended TNTs in a living embryo.
Collapse
Affiliation(s)
- Olga Korenkova
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, 75015 Paris, France; Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Shiyu Liu
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, 75015 Paris, France; Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Inès Prlesi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, 75015 Paris, France
| | - Anna Pepe
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, 75015 Paris, France
| | - Shahad Albadri
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Chiara Zurzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, 75015 Paris, France.
| |
Collapse
|
6
|
Michita RT, Tran LB, Bark SJ, Kumar D, Toner SA, Jose J, Mysorekar IU, Narayanan A. Zika virus NS1 drives tunneling nanotube formation for mitochondrial transfer and stealth transmission in trophoblasts. Nat Commun 2025; 16:1803. [PMID: 39979240 PMCID: PMC11842757 DOI: 10.1038/s41467-025-56927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
Zika virus (ZIKV) is unique among orthoflaviviruses in its vertical transmission capacity in humans, yet the underlying mechanisms remain incompletely understood. Here, we show that ZIKV induces tunneling nanotubes (TNTs) in placental trophoblasts which facilitate transfer of viral particles, proteins, mitochondria, and RNA to neighboring uninfected cells. TNT formation is driven exclusively via ZIKV non-structural protein 1 (NS1). Specifically, the N-terminal 1-50 amino acids of membrane-bound ZIKV NS1 are necessary for triggering TNT formation in host cells. Trophoblasts infected with TNT-deficient ZIKVΔTNT mutant virus elicited a robust antiviral IFN-λ 1/2/3 response relative to WT ZIKV, suggesting TNT-mediated trafficking allows ZIKV cell-to-cell transmission camouflaged from host defenses. Using affinity purification-mass spectrometry of cells expressing wild-type NS1 or non-TNT forming NS1, we found mitochondrial proteins are dominant NS1-interacting partners. We demonstrate that ZIKV infection or NS1 expression induces elevated mitochondria levels in trophoblasts and that mitochondria are siphoned via TNTs from healthy to ZIKV-infected cells. Together our findings identify a stealth mechanism that ZIKV employs for intercellular spread among placental trophoblasts, evasion of antiviral interferon response, and the hijacking of mitochondria to augment its propagation and survival and offers a basis for novel therapeutic developments targeting these interactions to limit ZIKV dissemination.
Collapse
Affiliation(s)
- Rafael T Michita
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Long B Tran
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Steven J Bark
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Deepak Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shay A Toner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Huffington Centre on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Anoop Narayanan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA.
| |
Collapse
|
7
|
Hassanpour P, Sadeghsoltani F, Saghebasl S, Boroumand S, Khanicheragh P, Tafti SHA, Rahbarghazi R, Rahmati M. Mitochondrial transplantation for cardioprotection and induction of angiogenesis in ischemic heart disease. Stem Cell Res Ther 2025; 16:54. [PMID: 39920826 PMCID: PMC11806797 DOI: 10.1186/s13287-025-04193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
To date, the regenerative potential of mitochondrial transplantation (MT) has been extensively investigated under several pathologies. Among various cardiovascular diseases, ischemic heart disease (IHD), the most prevalent pathological condition in human medicine, is induced by coronary artery narrowing, or occlusion, leading to bulk necrotic changes and fibrosis within the myocardium. Data associated with the pro-angiogenic activity of mitochondria have not been completely elucidated in terms of cardiac tissue regeneration. Here, we aimed to highlight the recent studies and advantages related to the application of mitochondrial mass in the ischemic myocardium. How and by which mechanisms, mitochondria can reduce aberrant myocardial tissue remodeling via different pathways such as angiogenesis and de novo blood formation was discussed in detail. We hope that data from the current review article help us understand the molecular and cellular mechanisms by which transplanted mitochondria exert their regenerative properties in the ischemic myocardium.
Collapse
Affiliation(s)
- Parisa Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | | | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safieh Boroumand
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Khanicheragh
- Student Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran.
| | - Mohammad Rahmati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.
| |
Collapse
|
8
|
Brestoff JR, Singh KK, Aquilano K, Becker LB, Berridge MV, Boilard E, Caicedo A, Crewe C, Enríquez JA, Gao J, Gustafsson ÅB, Hayakawa K, Khoury M, Lee YS, Lettieri-Barbato D, Luz-Crawford P, McBride HM, McCully JD, Nakai R, Neuzil J, Picard M, Rabchevsky AG, Rodriguez AM, Sengupta S, Sercel AJ, Suda T, Teitell MA, Thierry AR, Tian R, Walker M, Zheng M. Recommendations for mitochondria transfer and transplantation nomenclature and characterization. Nat Metab 2025; 7:53-67. [PMID: 39820558 DOI: 10.1038/s42255-024-01200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/05/2024] [Indexed: 01/19/2025]
Abstract
Intercellular mitochondria transfer is an evolutionarily conserved process in which one cell delivers some of their mitochondria to another cell in the absence of cell division. This process has diverse functions depending on the cell types involved and physiological or disease context. Although mitochondria transfer was first shown to provide metabolic support to acceptor cells, recent studies have revealed diverse functions of mitochondria transfer, including, but not limited to, the maintenance of mitochondria quality of the donor cell and the regulation of tissue homeostasis and remodelling. Many mitochondria-transfer mechanisms have been described using a variety of names, generating confusion about mitochondria transfer biology. Furthermore, several therapeutic approaches involving mitochondria-transfer biology have emerged, including mitochondria transplantation and cellular engineering using isolated mitochondria. In this Consensus Statement, we define relevant terminology and propose a nomenclature framework to describe mitochondria transfer and transplantation as a foundation for further development by the community as this dynamic field of research continues to evolve.
Collapse
Affiliation(s)
- Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Keshav K Singh
- Department of Genetics, I Heersink School of Medicine, University of Alabama at Birmhingham, Birmingham, AL, USA.
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Lance B Becker
- Department of Emergency Medicine, Northwell Health, Manhassett, NY, USA
- Department of Emergency Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Michael V Berridge
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Eric Boilard
- Département de Microbiologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Québec, Canada
| | - Andrés Caicedo
- Instituto de Investigaciones en Biomedicina and Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Clair Crewe
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de salud Carlos III (CIBERFES), Madrid, Spain
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Åsa B Gustafsson
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Harvard Medical School, Massachusetts General Hospital East 149-2401, Charlestown, MA, USA
| | - Maroun Khoury
- IMPACT Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Universidad de los Andes, Santiago, Chile
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | | | - Patricia Luz-Crawford
- IMPACT Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Universidad de los Andes, Santiago, Chile
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Heidi M McBride
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - James D McCully
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ritsuko Nakai
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Alexander G Rabchevsky
- Department of Physiology & the Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Anne-Marie Rodriguez
- UMR CNRS 8263, INSERM U1345, Development, Adaptation and Ageing, Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | | | - Alexander J Sercel
- MitoWorld, National Laboratory for Education Transformation, Oakland, CA, USA
| | - Toshio Suda
- Institute of Hematology, Blood Diseases Hospital, Chinese Academy of Sciences and Peking Union Medical College, Tianjin, China
| | - Michael A Teitell
- Department of Pathology and Laboratory Medicine, Department of Bioengineering, and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Alain R Thierry
- Institute of Research in Cancerology of Montpellier, INSERM U1194, University of Montpellier, ICM, Institut du Cancer de Montpellier, Montpellier, France
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, USA
| | - Melanie Walker
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School of the University of Western Australia, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
9
|
Keller KE, Kaech Petrie S. Nanotubules and Cellular Communication in Trabecular Meshwork Cells. Methods Mol Biol 2025; 2858:49-62. [PMID: 39433666 DOI: 10.1007/978-1-0716-4140-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Glaucoma causes dysfunction to tissues located in the anterior and posterior eye. In the anterior eye, the trabecular meshwork (TM) is the site of pathogenesis, where decreased TM cell numbers and alterations to the amount and composition of extracellular matrix hinder outflow of aqueous humor fluid from the anterior chamber. This causes intraocular pressure (IOP) elevation. Elevated IOP, a main risk factor for primary open-angle glaucoma, damages the axons of retinal ganglion cells in the posterior eye, which ultimately leads to blindness. Thus, clinical treatment paradigms for glaucoma are focused on reducing IOP. Normotensive IOPs are established by balancing the production of aqueous fluid from the ciliary body with drainage through the TM to Schlemm's canal. When IOP becomes elevated, TM cells coordinate a homeostatic response to lower IOP, which requires effective and efficient cellular communication. Tunneling nanotubes (TNTs) are transient specialized structures that allow cells to communicate with one another. Actin-rich tubes allow direct transmission of signals and cargoes between cells. This is important to overcome limitations of diffusion-based signaling in aqueous environments such as the anterior eye. Here, we describe a live-cell imaging method for monitoring TNTs in primary TM cells.
Collapse
Affiliation(s)
- Kate E Keller
- Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA.
| | | |
Collapse
|
10
|
He H, Huang W, Pan Z, Wang L, Yang Z, Chen Z. Intercellular Mitochondrial transfer: Therapeutic implications for energy metabolism in heart failure. Pharmacol Res 2025; 211:107555. [PMID: 39710083 DOI: 10.1016/j.phrs.2024.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Heart failure (HF) remains one of the leading causes of high morbidity and mortality globally. Impaired cardiac energy metabolism plays a critical role in the pathological progression of HF. Various forms of HF exhibit marked differences in energy metabolism, particularly in mitochondrial function and substrate utilization. Recent studies have increasingly highlighted that improving energy metabolism in HF patients as a crucial treatment strategy. Mitochondrial transfer is emerging as a promising and precisely regulated therapeutic strategy for treating metabolic disorders. This paper specifically reviews the characteristics of mitochondrial energy metabolism across different types of HF and explores the modes and mechanisms of mitochondrial transfer between different cell types in the heart, such as cardiomyocytes, fibroblasts, and immune cells. We focused on the therapeutic potential of intercellular mitochondrial transfer in improving energy metabolism disorders in HF. We also discuss the role of signal transduction in mitochondrial transfer, highlighting that mitochondria not only function as energy factories but also play crucial roles in intercellular communication, metabolic regulation, and tissue repair. This study provides new insights into improving energy metabolism in heart failure patients and proposes promising new therapeutic strategies.
Collapse
Affiliation(s)
- Huan He
- State Key Laboratory of Traditional Chinese Medicine Syndrome, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Weiwei Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Zigang Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Lingjun Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Zhongqi Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China.
| | - Zixin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China.
| |
Collapse
|
11
|
Li H, Sun W, Gong W, Han Y. Transfer and fates of damaged mitochondria: role in health and disease. FEBS J 2024; 291:5342-5364. [PMID: 38545811 DOI: 10.1111/febs.17119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 12/19/2024]
Abstract
Intercellular communication is pivotal in mediating the transfer of mitochondria from donor to recipient cells. This process orchestrates various biological functions, including tissue repair, cell proliferation, differentiation and cancer invasion. Typically, dysfunctional and depolarized mitochondria are eliminated through intracellular or extracellular pathways. Nevertheless, increasing evidence suggests that intercellular transfer of damaged mitochondria is associated with the pathogenesis of diverse diseases. This review investigates the prevalent triggers of mitochondrial damage and the underlying mechanisms of mitochondrial transfer, and elucidates the role of directional mitochondrial transfer in both physiological and pathological contexts. Additionally, we propose potential previously unknown mechanisms mediating mitochondrial transfer and explore their prospective roles in disease prevention and therapy.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Weiyun Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenwen Gong
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Baldwin JG, Heuser-Loy C, Saha T, Schelker RC, Slavkovic-Lukic D, Strieder N, Hernandez-Lopez I, Rana N, Barden M, Mastrogiovanni F, Martín-Santos A, Raimondi A, Brohawn P, Higgs BW, Gebhard C, Kapoor V, Telford WG, Gautam S, Xydia M, Beckhove P, Frischholz S, Schober K, Kontarakis Z, Corn JE, Iannacone M, Inverso D, Rehli M, Fioravanti J, Sengupta S, Gattinoni L. Intercellular nanotube-mediated mitochondrial transfer enhances T cell metabolic fitness and antitumor efficacy. Cell 2024; 187:6614-6630.e21. [PMID: 39276774 PMCID: PMC11623344 DOI: 10.1016/j.cell.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 02/20/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024]
Abstract
Mitochondrial loss and dysfunction drive T cell exhaustion, representing major barriers to successful T cell-based immunotherapies. Here, we describe an innovative platform to supply exogenous mitochondria to T cells, overcoming these limitations. We found that bone marrow stromal cells establish nanotubular connections with T cells and leverage these intercellular highways to transplant stromal cell mitochondria into CD8+ T cells. Optimal mitochondrial transfer required Talin 2 on both donor and recipient cells. CD8+ T cells with donated mitochondria displayed enhanced mitochondrial respiration and spare respiratory capacity. When transferred into tumor-bearing hosts, these supercharged T cells expanded more robustly, infiltrated the tumor more efficiently, and exhibited fewer signs of exhaustion compared with T cells that did not take up mitochondria. As a result, mitochondria-boosted CD8+ T cells mediated superior antitumor responses, prolonging animal survival. These findings establish intercellular mitochondrial transfer as a prototype of organelle medicine, opening avenues to next-generation cell therapies.
Collapse
Affiliation(s)
- Jeremy G Baldwin
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Christoph Heuser-Loy
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Tanmoy Saha
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Roland C Schelker
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Dragana Slavkovic-Lukic
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Nicholas Strieder
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | | | - Nisha Rana
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; University of Regensburg, Regensburg, Germany
| | - Markus Barden
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Fabio Mastrogiovanni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Azucena Martín-Santos
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Andrea Raimondi
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philip Brohawn
- Translational Science and Experimental Medicine, Early R&I, AstraZeneca, Gaithersburg, MD, USA
| | | | - Claudia Gebhard
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Veena Kapoor
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William G Telford
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sanjivan Gautam
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Xydia
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany; Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Philipp Beckhove
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; University of Regensburg, Regensburg, Germany; Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Sina Frischholz
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kilian Schober
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Zacharias Kontarakis
- Genome Engineering and Measurement Laboratory (GEML), ETH Zürich, Zürich, Switzerland; Functional Genomics Center Zürich, ETH Zürich, University of Zürich, Zürich 8057, Switzerland
| | - Jacob E Corn
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Donato Inverso
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Jessica Fioravanti
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shiladitya Sengupta
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; University of Regensburg, Regensburg, Germany; Center for Immunomedicine in Transplantation and Oncology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
13
|
Chen M, Zhao D. Invisible Bridges: Unveiling the Role and Prospects of Tunneling Nanotubes in Cancer Therapy. Mol Pharm 2024; 21:5413-5429. [PMID: 39373242 PMCID: PMC11539062 DOI: 10.1021/acs.molpharmaceut.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Tunneling nanotubes (TNTs) are essential intercellular communication channels that significantly impact cancer pathophysiology, affecting tumor progression and resistance. This review methodically examines the mechanisms of TNTs formation, their structural characteristics, and their functional roles in material and signal transmission between cells. Highlighting their regulatory functions within the tumor microenvironment, TNTs are crucial for modulating cell survival, proliferation, drug resistance, and immune evasion. The review critically evaluates the therapeutic potential of TNTs, focusing on their applications in targeted drug delivery and gene therapy. It also proposes future research directions to thoroughly understand TNTs biogenesis, identify cell-specific molecular targets, and develop advanced technologies for the real-time monitoring of TNTs. By integrating insights from molecular biology, nanotechnology, and immunology, this review highlights the transformative potential of TNTs in advancing cancer treatment strategies.
Collapse
Affiliation(s)
- Meiru Chen
- Department
of Gastroenterology, The Second Hospital of Hebei Medical University,
Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei 050000, China
- Department
of Gastroenterology, Hengshui People’s
Hospital, Hengshui, Hebei 053000, China
| | - Dongqiang Zhao
- Department
of Gastroenterology, The Second Hospital of Hebei Medical University,
Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
14
|
Rakotobe M, Zurzolo C. [Tunneling nanotubes (TNTs): An essential yet overlooked modality of inter-cellular communication]. Med Sci (Paris) 2024; 40:829-836. [PMID: 39656980 DOI: 10.1051/medsci/2024152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Tunneling nanotubes (TNTs) are open membranous protrusions that allow direct communication between distant cells. Recent research has revealed their significant biological roles, prompting a reassessment of many physiological and pathological processes, especially in the nervous system where TNT properties could play a key physiological role. TNT-like connections have been observed in the developing brain and are implicated in neurodegenerative diseases, brain cancers, as well as in other diseases, underscoring their importance in pathophysiological events. This review covers the key features of TNTs, including their structural properties, formation mechanisms, and detection challenges. We also explore their functions, focusing on the nervous system. The discovery of TNTs may lead to a reconsideration of brain function as a physically connected neuronal network, as proposed by Golgi, complementing Cajal's theory of neurons as separate entities.
Collapse
Affiliation(s)
- Malalaniaina Rakotobe
- Trafic membranaire et pathogénèse, Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Paris, France
| | - Chiara Zurzolo
- Trafic membranaire et pathogénèse, Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Paris, France
| |
Collapse
|
15
|
Zhang L, Wang Y, Cai X, Mao X, Sun H. Deciphering the CNS-glioma dialogue: Advanced insights into CNS-glioma communication pathways and their therapeutic potential. J Cent Nerv Syst Dis 2024; 16:11795735241292188. [PMID: 39493257 PMCID: PMC11528668 DOI: 10.1177/11795735241292188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
The field of cancer neuroscience has rapidly evolved, shedding light on the complex interplay between the nervous system and cancer, with a particular focus on the relationship between the central nervous system (CNS) and gliomas. Recent advancements have underscored the critical influence of CNS activity on glioma progression, emphasizing the roles of neurons and neuroglial cells in both the onset and evolution of gliomas. This review meticulously explores the primary communication pathways between the CNS and gliomas, encompassing neuro-glioma synapses, paracrine mechanisms, extracellular vesicles, tunneling nanotubes, and the integrative CNS-immune-glioma axis. It also evaluates current and emerging therapeutic interventions aimed at these pathways and proposes forward-looking perspectives for research in this domain.
Collapse
Affiliation(s)
- Lu Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yajing Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxi Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyuan Mao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Alekseenko I, Zhukova L, Kondratyeva L, Buzdin A, Chernov I, Sverdlov E. Tumor Cell Communications as Promising Supramolecular Targets for Cancer Chemotherapy: A Possible Strategy. Int J Mol Sci 2024; 25:10454. [PMID: 39408784 PMCID: PMC11476449 DOI: 10.3390/ijms251910454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Fifty-two years have passed since President Nixon launched the "War on Cancer". Despite unparalleled efforts and funds allocated worldwide, the outlined goals were not achieved because cancer treatment approaches such as chemotherapy, radiation therapy, hormonal and targeted therapies have not fully met the expectations. Based on the recent literature, a new direction in cancer therapy can be proposed which targets connections between cancer cells and their microenvironment by chemical means. Cancer-stromal synapses such as immunological synapses between cancer and immune cells provide an attractive target for this approach. Such synapses form ligand-receptor clusters on the interface of the interacting cells. They share a common property of involving intercellular clusters of spatially proximate and cooperatively acting proteins. Synapses provide the space for the focused intercellular signaling molecules exchange. Thus, the disassembly of cancer-stromal synapses may potentially cause the collapse of various tumors. Additionally, the clustered arrangement of synapse components offers opportunities to enhance treatment safety and precision by using targeted crosslinking chemical agents which may inactivate cancer synapses even in reduced concentrations. Furthermore, attaching a cleavable cell-permeable toxic agent(s) to a crosslinker may further enhance the anti-cancer effect of such therapeutics. The highlighted approach promises to be universal, relatively simple and cost-efficient. We also hope that, unlike chemotherapeutic and immune drugs that interact with a single target, by using supramolecular large clusters that include many different components as a target, the emergence of a resistance characteristic of chemo- and immunotherapy is extremely unlikely.
Collapse
Affiliation(s)
- Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.); (A.B.); (I.C.)
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Lyudmila Zhukova
- Department of Oncology, SBIH “Moscow Clinical Scientific and Practical Center Named After A.S. Loginov” DHM, 111123 Moscow, Russia;
| | - Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.); (A.B.); (I.C.)
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.); (A.B.); (I.C.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119992 Moscow, Russia
- Oncobox LLC, 121205 Moscow, Russia
| | - Igor Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.); (A.B.); (I.C.)
| | - Eugene Sverdlov
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
17
|
Notario Manzano R, Chaze T, Rubinstein E, Penard E, Matondo M, Zurzolo C, Brou C. Proteomic landscape of tunneling nanotubes reveals CD9 and CD81 tetraspanins as key regulators. eLife 2024; 13:RP99172. [PMID: 39250349 PMCID: PMC11383530 DOI: 10.7554/elife.99172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Tunneling nanotubes (TNTs) are open actin- and membrane-based channels, connecting remote cells and allowing direct transfer of cellular material (e.g. vesicles, mRNAs, protein aggregates) from the cytoplasm to the cytoplasm. Although they are important especially, in pathological conditions (e.g. cancers, neurodegenerative diseases), their precise composition and their regulation were still poorly described. Here, using a biochemical approach allowing to separate TNTs from cell bodies and from extracellular vesicles and particles (EVPs), we obtained the full composition of TNTs compared to EVPs. We then focused on two major components of our proteomic data, the CD9 and CD81 tetraspanins, and further investigated their specific roles in TNT formation and function. We show that these two tetraspanins have distinct non-redundant functions: CD9 participates in stabilizing TNTs, whereas CD81 expression is required to allow the functional transfer of vesicles in the newly formed TNTs, possibly by regulating docking to or fusion with the opposing cell.
Collapse
Affiliation(s)
- Roberto Notario Manzano
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
- Sorbonne Université, ED394 - Physiologie, Physiopathologie et Thérapeutique, Paris, France
| | - Thibault Chaze
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Eric Rubinstein
- Centre d'Immunologie et des Maladies Infectieuses, Inserm, CNRS, Sorbonne Université, CIMI-Paris, Paris, France
| | - Esthel Penard
- Ultrastructural BioImaging Core Facility (UBI), C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
| | - Christel Brou
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
18
|
Wang B, Xiong Y, Deng X, Wang Y, Gong S, Yang S, Yang B, Yang Y, Leng Y, Li W, Li W. The role of intercellular communication in diabetic nephropathy. Front Immunol 2024; 15:1423784. [PMID: 39238645 PMCID: PMC11374600 DOI: 10.3389/fimmu.2024.1423784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Diabetic nephropathy, a common and severe complication of diabetes, is the leading cause of end-stage renal disease, ultimately leading to renal failure and significantly affecting the prognosis and lives of diabetics worldwide. However, the complexity of its developmental mechanisms makes treating diabetic nephropathy a challenging task, necessitating the search for improved therapeutic targets. Intercellular communication underlies the direct and indirect influence and interaction among various cells within a tissue. Recently, studies have shown that beyond traditional communication methods, tunnel nanotubes, exosomes, filopodial tip vesicles, and the fibrogenic niche can influence pathophysiological changes in diabetic nephropathy by disrupting intercellular communication. Therefore, this paper aims to review the varied roles of intercellular communication in diabetic nephropathy, focusing on recent advances in this area.
Collapse
Affiliation(s)
- Bihan Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinqi Deng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunhao Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyuan Gong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baichuan Yang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuhang Yang
- The First Clinical College of Wuhan University, Wuhan, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
20
|
Park J, Wu Y, Suk Kim J, Byun J, Lee J, Oh YK. Cytoskeleton-modulating nanomaterials and their therapeutic potentials. Adv Drug Deliv Rev 2024; 211:115362. [PMID: 38906478 DOI: 10.1016/j.addr.2024.115362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
The cytoskeleton, an intricate network of protein fibers within cells, plays a pivotal role in maintaining cell shape, enabling movement, and facilitating intracellular transport. Its involvement in various pathological states, ranging from cancer proliferation and metastasis to the progression of neurodegenerative disorders, underscores its potential as a target for therapeutic intervention. The exploration of nanotechnology in this realm, particularly the use of nanomaterials for cytoskeletal modulation, represents a cutting-edge approach with the promise of novel treatments. Inorganic nanomaterials, including those derived from gold, metal oxides, carbon, and black phosphorus, alongside organic variants such as peptides and proteins, are at the forefront of this research. These materials offer diverse mechanisms of action, either by directly interacting with cytoskeletal components or by influencing cellular signaling pathways that, in turn, modulate the cytoskeleton. Recent advancements have introduced magnetic field-responsive and light-responsive nanomaterials, which allow for targeted and controlled manipulation of the cytoskeleton. Such precision is crucial in minimizing off-target effects and enhancing therapeutic efficacy. This review explores the importance of research into cytoskeleton-targeting nanomaterials for developing therapeutic interventions for a range of diseases. It also addresses the progress made in this field, the challenges encountered, and future directions for using nanomaterials to modulate the cytoskeleton. The continued exploration of nanomaterials for cytoskeleton modulation holds great promise for advancing therapeutic strategies against a broad spectrum of diseases, marking a significant step forward in the intersection of nanotechnology and medicine.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
21
|
Wang Q, Zhu K, Zhang A. SIRT1-mediated tunnelling nanotubes may be a potential intervention target for arsenic-induced hepatocyte senescence and liver damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174502. [PMID: 38971248 DOI: 10.1016/j.scitotenv.2024.174502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Arsenic, a widespread environmental poison, can cause significant liver damage upon exposure. Mitochondria are the most sensitive organelles to external factors. Dysfunctional mitochondria play a crucial role in cellular senescence and liver damage. Tunnelling nanotubes (TNTs), membrane structures formed between cells, with fibrous actin (F-actin) serving as the scaffold, facilitate mitochondrial transfer between cells. Notably, TNTs mediate the delivery of healthy mitochondria to damaged cells, thereby mitigating cellular damage. Although limited studies have suggested that F-actin may be modulated by the longevity gene SIRT1, the association between arsenic-induced liver damage and this mechanism remains unexplored. The findings of the current study indicate that arsenic suppresses SIRT1 and F-actin in the rat liver and MIHA cells, impeding the formation of TNTs and mitochondrial transfer between MIHA cells, thereby playing a pivotal role in mitochondrial dysfunction, cellular senescence and liver damage induced by arsenic. Notably, increasing SIRT1 levels effectively mitigated liver mitochondrial dysfunction and cellular senescence triggered by arsenic, highlighting SIRT1's crucial regulatory function. This research provides novel insights into the mechanisms underlying arsenic-induced liver damage, paving the way for the development of targeted preventive and therapeutic drugs to address arsenic-induced liver damage.
Collapse
Affiliation(s)
- Qi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, People's Republic of China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases, Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, Guizhou, People's Republic of China
| | - Kai Zhu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, People's Republic of China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases, Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, Guizhou, People's Republic of China.
| |
Collapse
|
22
|
Devarasou S, Kang M, Shin JH. Biophysical perspectives to understanding cancer-associated fibroblasts. APL Bioeng 2024; 8:021507. [PMID: 38855445 PMCID: PMC11161195 DOI: 10.1063/5.0199024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
The understanding of cancer has evolved significantly, with the tumor microenvironment (TME) now recognized as a critical factor influencing the onset and progression of the disease. This broader perspective challenges the traditional view that cancer is primarily caused by mutations, instead emphasizing the dynamic interaction between different cell types and physicochemical factors within the TME. Among these factors, cancer-associated fibroblasts (CAFs) command attention for their profound influence on tumor behavior and patient prognoses. Despite their recognized importance, the biophysical and mechanical interactions of CAFs within the TME remain elusive. This review examines the distinctive physical characteristics of CAFs, their morphological attributes, and mechanical interactions within the TME. We discuss the impact of mechanotransduction on CAF function and highlight how these cells communicate mechanically with neighboring cancer cells, thereby shaping the path of tumor development and progression. By concentrating on the biomechanical regulation of CAFs, this review aims to deepen our understanding of their role in the TME and to illuminate new biomechanical-based therapeutic strategies.
Collapse
Affiliation(s)
- Somayadineshraj Devarasou
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| | - Minwoo Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| | - Jennifer H. Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| |
Collapse
|
23
|
Tsai FC, Guérin G, Pernier J, Bassereau P. Actin-membrane linkers: Insights from synthetic reconstituted systems. Eur J Cell Biol 2024; 103:151402. [PMID: 38461706 DOI: 10.1016/j.ejcb.2024.151402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
At the cell surface, the actin cytoskeleton and the plasma membrane interact reciprocally in a variety of processes related to the remodeling of the cell surface. The actin cytoskeleton has been known to modulate membrane organization and reshape the membrane. To this end, actin-membrane linking molecules play a major role in regulating actin assembly and spatially direct the interaction between the actin cytoskeleton and the membrane. While studies in cells have provided a wealth of knowledge on the molecular composition and interactions of the actin-membrane interface, the complex molecular interactions make it challenging to elucidate the precise actions of the actin-membrane linkers at the interface. Synthetic reconstituted systems, consisting of model membranes and purified proteins, have been a powerful approach to elucidate how actin-membrane linkers direct actin assembly to drive membrane shape changes. In this review, we will focus only on several actin-membrane linkers that have been studied by using reconstitution systems. We will discuss the design principles of these reconstitution systems and how they have contributed to the understanding of the cellular functions of actin-membrane linkers. Finally, we will provide a perspective on future research directions in understanding the intricate actin-membrane interaction.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| | - Gwendal Guérin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France
| | - Julien Pernier
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94800, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| |
Collapse
|
24
|
Li Y, Yang Z, Zhang S, Li J. Miro-mediated mitochondrial transport: A new dimension for disease-related abnormal cell metabolism? Biochem Biophys Res Commun 2024; 705:149737. [PMID: 38430606 DOI: 10.1016/j.bbrc.2024.149737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Mitochondria are versatile and highly dynamic organelles found in eukaryotic cells that play important roles in a variety of cellular processes. The importance of mitochondrial transport in cell metabolism, including variations in mitochondrial distribution within cells and intercellular transfer, has grown in recent years. Several studies have demonstrated that abnormal mitochondrial transport represents an early pathogenic alteration in a variety of illnesses, emphasizing its significance in disease development and progression. Mitochondrial Rho GTPase (Miro) is a protein found on the outer mitochondrial membrane that is required for cytoskeleton-dependent mitochondrial transport, mitochondrial dynamics (fusion and fission), and mitochondrial Ca2+ homeostasis. Miro, as a critical regulator of mitochondrial transport, has yet to be thoroughly investigated in illness. This review focuses on recent developments in recognizing Miro as a crucial molecule in controlling mitochondrial transport and investigates its roles in diverse illnesses. It also intends to shed light on the possibilities of targeting Miro as a therapeutic method for a variety of diseases.
Collapse
Affiliation(s)
- Yanxing Li
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Zhen Yang
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Shumei Zhang
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Jianjun Li
- Department of Cardiology, Jincheng People's Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi, People's Republic of China.
| |
Collapse
|
25
|
Liang LY, Geoghegan ND, Mlodzianoski M, Leis A, Whitehead LW, Surudoi MG, Young SN, Janes P, Shepherd D, Ghosal D, Rogers KL, Murphy JM, Lucet IS. Co-clustering of EphB6 and ephrinB1 in trans restrains cancer cell invasion. Commun Biol 2024; 7:461. [PMID: 38627519 PMCID: PMC11021433 DOI: 10.1038/s42003-024-06118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
EphB6 is an understudied ephrin receptor tyrosine pseudokinase that is downregulated in multiple types of metastatic cancers. Unlike its kinase-active counterparts which autophosphorylate and transmit signals upon intercellular interaction, little is known about how EphB6 functions in the absence of intrinsic kinase activity. Here, we unveil a molecular mechanism of cell-cell interaction driven by EphB6. We identify ephrinB1 as a cognate ligand of EphB6 and show that in trans interaction of EphB6 with ephrinB1 on neighboring cells leads to the formation of large co-clusters at the plasma membrane. These co-clusters exhibit a decreased propensity towards endocytosis, suggesting a unique characteristic for this type of cell-cell interaction. Using lattice light-sheet microscopy, 3D structured illumination microscopy and cryo-electron tomography techniques, we show that co-clustering of EphB6 and ephrinB1 promotes the formation of double-membrane tubular structures between cells. Importantly, we also demonstrate that these intercellular structures stabilize cell-cell adhesion, leading to a reduction in the invasive behavior of cancer cells. Our findings rationalize a role for EphB6 pseudokinase as a tumor suppressor when interacting with its ligands in trans.
Collapse
Affiliation(s)
- Lung-Yu Liang
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Niall D Geoghegan
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Michael Mlodzianoski
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Andrew Leis
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Lachlan W Whitehead
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Minglyanna G Surudoi
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Peter Janes
- Olivia Newton-John Cancer Research Institute and La Trobe School of Cancer Medicine, Level 5, ONJ Centre, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Doulin Shepherd
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Isabelle S Lucet
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
26
|
Subramaniam S, Boregowda S. Curbing Rhes Actions: Mechanism-based Molecular Target for Huntington's Disease and Tauopathies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:21-29. [PMID: 36959146 DOI: 10.2174/1871527322666230320103518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/25/2023]
Abstract
A highly interconnected network of diverse brain regions is necessary for the precise execution of human behaviors, including cognitive, psychiatric, and motor functions. Unfortunately, degeneration of specific brain regions causes several neurodegenerative disorders, but the mechanisms that elicit selective neuronal vulnerability remain unclear. This knowledge gap greatly hinders the development of effective mechanism-based therapies, despite the desperate need for new treatments. Here, we emphasize the importance of the Rhes (Ras homolog-enriched in the striatum) protein as an emerging therapeutic target. Rhes, an atypical small GTPase with a SUMO (small ubiquitin-like modifier) E3-ligase activity, modulates biological processes such as dopaminergic transmission, alters gene expression, and acts as an inhibitor of motor stimuli in the brain striatum. Mutations in the Rhes gene have also been identified in selected patients with autism and schizophrenia. Moreover, Rhes SUMOylates pathogenic form of mutant huntingtin (mHTT) and tau, enhancing their solubility and cell toxicity in Huntington's disease and tauopathy models. Notably, Rhes uses membrane projections resembling tunneling nanotubes to transport mHTT between cells and Rhes deletion diminishes mHTT spread in the brain. Thus, we predict that effective strategies aimed at diminishing brain Rhes levels will prevent or minimize the abnormalities that occur in HD and tauopathies and potentially in other brain disorders. We review the emerging technologies that enable specific targeting of Rhes in the brain to develop effective disease-modifying therapeutics.
Collapse
Affiliation(s)
- Srinivasa Subramaniam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, C323, Florida, Jupiter, 33458, USA
| | - Siddaraju Boregowda
- Department of Molecular Therapeutics, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, C323, Florida, Jupiter, 33458, USA
| |
Collapse
|
27
|
Rey-Barroso J, Dufrançais O, Vérollet C. Tunneling Nanotubes in Myeloid Cells: Perspectives for Health and Infectious Diseases. Results Probl Cell Differ 2024; 73:419-434. [PMID: 39242388 DOI: 10.1007/978-3-031-62036-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Tunneling nanotubes (TNTs) are cellular connections, which represent a novel route for cell-to-cell communication. Strong evidence points to a role for TNTs in the intercellular transfer of signals, molecules, organelles, and pathogens, involving them in many cellular functions. In myeloid cells (e.g., monocytes/macrophages, dendritic cells, and osteoclasts), intercellular communication via TNT contributes to their differentiation and immune functions, by favoring material and pathogen transfer, as well as cell fusion. This chapter addresses the complexity of the definition and characterization of TNTs in myeloid cells, the different processes involved in their formation, their existence in vivo, and finally their function(s) in health and infectious diseases, with the example of HIV-1 infection.
Collapse
Affiliation(s)
- Javier Rey-Barroso
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Ophélie Dufrançais
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Toulouse, France.
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Buenos Aires, Argentina.
| |
Collapse
|
28
|
Kapoor D, Sharma P, Saini A, Azhar E, Elste J, Kohlmeir EK, Shukla D, Tiwari V. Tunneling Nanotubes: The Cables for Viral Spread and Beyond. Results Probl Cell Differ 2024; 73:375-417. [PMID: 39242387 DOI: 10.1007/978-3-031-62036-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Multicellular organisms require cell-to-cell communication to maintain homeostasis and thrive. For cells to communicate, a network of filamentous, actin-rich tunneling nanotubes (TNTs) plays a pivotal role in facilitating efficient cell-to-cell communication by connecting the cytoplasm of adjacent or distant cells. Substantial documentation indicates that diverse cell types employ TNTs in a sophisticated and intricately organized fashion for both long and short-distance communication. Paradoxically, several pathogens, including viruses, exploit the structural integrity of TNTs to facilitate viral entry and rapid cell-to-cell spread. These pathogens utilize a "surfing" mechanism or intracellular transport along TNTs to bypass high-traffic cellular regions and evade immune surveillance and neutralization. Although TNTs are present across various cell types in healthy tissue, their magnitude is increased in the presence of viruses. This heightened induction significantly amplifies the role of TNTs in exacerbating disease manifestations, severity, and subsequent complications. Despite significant advancements in TNT research within the realm of infectious diseases, further studies are imperative to gain a precise understanding of TNTs' roles in diverse pathological conditions. Such investigations are essential for the development of novel therapeutic strategies aimed at leveraging TNT-associated mechanisms for clinical applications. In this chapter, we emphasize the significance of TNTs in the life cycle of viruses, showcasing the potential for a targeted approach to impede virus-host cell interactions during the initial stages of viral infections. This approach holds promise for intervention and prevention strategies.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Pankaj Sharma
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Akash Saini
- Hinsdale Central High School, Hinsdale, IL, USA
| | - Eisa Azhar
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - James Elste
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | | | - Deepak Shukla
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA.
| |
Collapse
|
29
|
Budinger D, Baker V, Heneka MT. Tunneling Nanotubes in the Brain. Results Probl Cell Differ 2024; 73:203-227. [PMID: 39242381 DOI: 10.1007/978-3-031-62036-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Tunneling nanotubes (TNTs) have emerged as intriguing structures facilitating intercellular communications across diverse cell types, which are integral to several biological processes, as well as participating in various disease progression. This review provides an in-depth analysis of TNTs, elucidating their structural characteristics and functional roles, with a particular focus on their significance within the brain environment and their implications in neurological and neurodegenerative disorders. We explore the interplay between TNTs and neurological diseases, offering potential mechanistic insights into disease progression, while also highlighting their potential as viable therapeutic targets. Additionally, we address the significant challenges associated with studying TNTs, from technical limitations to their investigation in complex biological systems. By addressing some of these challenges, this review aims to pave the way for further exploration into TNTs, establishing them as a central focus in advancing our understanding of neurodegenerative disorders.
Collapse
Affiliation(s)
- Dimitri Budinger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Vivian Baker
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg.
| |
Collapse
|
30
|
Henderson JM, Ljubojevic N, Belian S, Chaze T, Castaneda D, Battistella A, Giai Gianetto Q, Matondo M, Descroix S, Bassereau P, Zurzolo C. Tunnelling nanotube formation is driven by Eps8/IRSp53-dependent linear actin polymerization. EMBO J 2023; 42:e113761. [PMID: 38009333 PMCID: PMC10711657 DOI: 10.15252/embj.2023113761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023] Open
Abstract
Tunnelling nanotubes (TNTs) connect distant cells and mediate cargo transfer for intercellular communication in physiological and pathological contexts. How cells generate these actin-mediated protrusions to span lengths beyond those attainable by canonical filopodia remains unknown. Through a combination of micropatterning, microscopy, and optical tweezer-based approaches, we demonstrate that TNTs formed through the outward extension of actin achieve distances greater than the mean length of filopodia and that branched Arp2/3-dependent pathways attenuate the extent to which actin polymerizes in nanotubes, thus limiting their occurrence. Proteomic analysis using epidermal growth factor receptor kinase substrate 8 (Eps8) as a positive effector of TNTs showed that, upon Arp2/3 inhibition, proteins enhancing filament turnover and depolymerization were reduced and Eps8 instead exhibited heightened interactions with the inverted Bin/Amphiphysin/Rvs (I-BAR) domain protein IRSp53 that provides a direct connection with linear actin polymerases. Our data reveals how common protrusion players (Eps8 and IRSp53) form tunnelling nanotubes, and that when competing pathways overutilizing such proteins and monomeric actin in Arp2/3 networks are inhibited, processes promoting linear actin growth dominate to favour tunnelling nanotube formation.
Collapse
Affiliation(s)
- J Michael Henderson
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
- Present address:
Department of ChemistryBowdoin CollegeBrunswickMEUSA
| | - Nina Ljubojevic
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Sorbonne UniversitéParisFrance
| | - Sevan Belian
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Thibault Chaze
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut PasteurParisFrance
| | - Daryl Castaneda
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Keele UniversityKeeleUK
| | - Aude Battistella
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
| | - Quentin Giai Gianetto
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut PasteurParisFrance
- Bioinformatics and Biostatistics Hub, Computational Biology DepartmentCNRS USR 3756, Institut PasteurParisFrance
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut PasteurParisFrance
| | - Stéphanie Descroix
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
- Institut Pierre‐Gilles de GennesParisFrance
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
| | - Chiara Zurzolo
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
31
|
Mysorekar I, Michita R, Tran L, Bark S, Kumar D, Toner S, Jose J, Narayanan A. Zika Virus NS1 Drives Tunneling Nanotube Formation for Mitochondrial Transfer, Enhanced Survival, Interferon Evasion, and Stealth Transmission in Trophoblasts. RESEARCH SQUARE 2023:rs.3.rs-3674059. [PMID: 38106210 PMCID: PMC10723532 DOI: 10.21203/rs.3.rs-3674059/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Zika virus (ZIKV) infection continues to pose a significant public health concern due to limited available preventive measures and treatments. ZIKV is unique among flaviviruses in its vertical transmission capacity (i.e., transmission from mother to fetus) yet the underlying mechanisms remain incompletely understood. Here, we show that both African and Asian lineages of ZIKV induce tunneling nanotubes (TNTs) in placental trophoblasts and multiple other mammalian cell types. Amongst investigated flaviviruses, only ZIKV strains trigger TNTs. We show that ZIKV-induced TNTs facilitate transfer of viral particles, proteins, and RNA to neighboring uninfected cells. ZIKV TNT formation is driven exclusively via its non-structural protein 1 (NS1); specifically, the N-terminal region (50 aa) of membrane-bound NS1 is necessary and sufficient for triggering TNT formation in host cells. Using affinity purification-mass spectrometry of cells infected with wild-type NS1 or non-TNT forming NS1 (pNS1ΔTNT) proteins, we found mitochondrial proteins are dominant NS1-interacting partners, consistent with the elevated mitochondrial mass we observed in infected trophoblasts. We demonstrate that mitochondria are siphoned via TNTs from healthy to ZIKV-infected cells, both homotypically and heterotypically, and inhibition of mitochondrial respiration reduced viral replication in trophoblast cells. Finally, ZIKV strains lacking TNT capabilities due to mutant NS1 elicited a robust antiviral IFN-λ 1/2/3 response, indicating ZIKV's TNT-mediated trafficking also allows ZIKV cell-cell transmission that is camouflaged from host defenses. Together, our findings identify a new stealth mechanism that ZIKV employs for intercellular spread among placental trophoblasts, evasion of antiviral interferon response, and the hijacking of mitochondria to augment its propagation and survival. Discerning the mechanisms of ZIKV intercellular strategies offers a basis for novel therapeutic developments targeting these interactions to limit its dissemination.
Collapse
|
32
|
Liu L, Yang J, Otani Y, Shiga T, Yamaguchi A, Oda Y, Hattori M, Goto T, Ishibashi S, Kawashima-Sonoyama Y, Ishihara T, Matsuzaki Y, Akamatsu W, Fujitani M, Taketani T. MELAS-Derived Neurons Functionally Improve by Mitochondrial Transfer from Highly Purified Mesenchymal Stem Cells (REC). Int J Mol Sci 2023; 24:17186. [PMID: 38139018 PMCID: PMC10742994 DOI: 10.3390/ijms242417186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode (MELAS) syndrome, caused by a single base substitution in mitochondrial DNA (m.3243A>G), is one of the most common maternally inherited mitochondrial diseases accompanied by neuronal damage due to defects in the oxidative phosphorylation system. There is no established treatment. Our previous study reported a superior restoration of mitochondrial function and bioenergetics in mitochondria-deficient cells using highly purified mesenchymal stem cells (RECs). However, whether such exogenous mitochondrial donation occurs in mitochondrial disease models and whether it plays a role in the recovery of pathological neuronal functions is unknown. Here, utilizing induced pluripotent stem cells (iPSC), we differentiated neurons with impaired mitochondrial function from patients with MELAS. MELAS neurons and RECs/mesenchymal stem cells (MSCs) were cultured under contact or non-contact conditions. Both RECs and MSCs can donate mitochondria to MELAS neurons, but RECs are more excellent than MSCs for mitochondrial transfer in both systems. In addition, REC-mediated mitochondrial transfer significantly restored mitochondrial function, including mitochondrial membrane potential, ATP/ROS production, intracellular calcium storage, and oxygen consumption rate. Moreover, mitochondrial function was maintained for at least three weeks. Thus, REC-donated exogenous mitochondria might offer a potential therapeutic strategy for treating neurological dysfunction in MELAS.
Collapse
Affiliation(s)
- Lu Liu
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| | - Jiahao Yang
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| | - Yoshinori Otani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (Y.O.); (M.F.)
| | - Takahiro Shiga
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (T.S.); (A.Y.); (W.A.)
| | - Akihiro Yamaguchi
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (T.S.); (A.Y.); (W.A.)
| | - Yasuaki Oda
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| | - Miho Hattori
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| | - Tsukimi Goto
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
- Clinical Laboratory Division, Shimane University Hospital, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Shuichi Ishibashi
- Department of Digestive and General Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan;
| | - Yuki Kawashima-Sonoyama
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| | - Takaya Ishihara
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (T.I.); (Y.M.)
| | - Yumi Matsuzaki
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (T.I.); (Y.M.)
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (T.S.); (A.Y.); (W.A.)
| | - Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (Y.O.); (M.F.)
| | - Takeshi Taketani
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| |
Collapse
|
33
|
Belian S, Korenkova O, Zurzolo C. Actin-based protrusions at a glance. J Cell Sci 2023; 136:jcs261156. [PMID: 37987375 DOI: 10.1242/jcs.261156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
Actin-based protrusions are at the base of many fundamental cellular processes, such as cell adhesion, migration and intercellular communication. In recent decades, the discovery of new types of actin-based protrusions with unique functions has enriched our comprehension of cellular processes. However, as the repertoire of protrusions continues to expand, the rationale behind the classification of newly identified and previously known structures becomes unclear. Although current nomenclature allows good categorization of protrusions based on their functions, it struggles to distinguish them when it comes to structure, composition or formation mechanisms. In this Cell Science at a Glance article, we discuss the different types of actin-based protrusions, focusing on filopodia, cytonemes and tunneling nanotubes, to help better distinguish and categorize them based on their structural and functional differences and similarities.
Collapse
Affiliation(s)
- Sevan Belian
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, F-75015 Paris, France
- Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Olga Korenkova
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, F-75015 Paris, France
- Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Chiara Zurzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, F-75015 Paris, France
| |
Collapse
|
34
|
Sáenz-de-Santa-María I, Henderson JM, Pepe A, Zurzolo C. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking. Curr Protoc 2023; 3:e939. [PMID: 37994667 DOI: 10.1002/cpz1.939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Tunneling nanotubes (TNTs) are thin membranous channels providing a direct cytoplasmic connection between remote cells. They are commonly observed in different cell cultures and increasing evidence supports their role in intercellular communication, and pathogen and amyloid protein transfer. However, the study of TNTs presents several pitfalls (e.g., difficulty in preserving such delicate structures, possible confusion with other protrusions, structural and functional heterogeneity, etc.) and therefore requires thoroughly designed approaches. The methods described in this protocol represent a guideline for the characterization of TNTs (or TNT-like structures) in cell culture. Specifically, optimized protocols to (1) identify TNTs and the cytoskeletal elements present inside them; (2) evaluate TNT frequency in cell culture; (3) unambiguously distinguish them from other cellular connections or protrusions; (4) monitor their formation in living cells; (5) characterize TNTs by a micropatterning approach; and (6) investigate TNT ultrastructure by cryo-EM are provided. Finally, this article describes how to assess TNT-mediated cell-to-cell transfer of cellular components, which is a fundamental criterion for identifying functional TNTs. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Identification of tunneling nanotubes Alternate Protocol 1: Identifying the cytoskeletal elements present in tunneling nanotubes Alternate Protocol 2: Distinguishing tunneling nanotubes from intercellular bridges formed during cell division Basic Protocol 2: Deciphering tunneling nanotube formation and lifetime by live fluorescent microscopy Alternate Protocol 3: Deciphering tunneling nanotube formation using a live-compatible dye Basic Protocol 3: Assessing tunneling nanotubes functionality in intercellular transfer Alternate Protocol 4: Flow cytometry approach to quantify the rate of vesicle or mitochondria transfer Support Protocol: Controls to support TNT-mediated transfer Basic Protocol 4: Studies of tunneling nanotubes by cell micropatterning Basic Protocol 5: Characterization of the ultrastructure of tunneling nanotubes by cryo-EM.
Collapse
Affiliation(s)
- Inés Sáenz-de-Santa-María
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Paris, France
| | - J Michael Henderson
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Paris, France
| | - Anna Pepe
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Paris, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Paris, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
35
|
Melwani PK, Pandey BN. Tunneling nanotubes: The intercellular conduits contributing to cancer pathogenesis and its therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189028. [PMID: 37993000 DOI: 10.1016/j.bbcan.2023.189028] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Tunneling nanotubes (TNTs) are intercellular conduits which meet the communication needs of non-adjacent cells situated in the same tissue but at distances up to a few hundred microns. TNTs are unique type of membrane protrusion which contain F-actin and freely hover over substratum in the extracellular space to connect the distant cells. TNTs, known to form through actin remodeling mechanisms, are intercellular bridges that connect cytoplasm of two cells, and facilitate the transfer of organelles, molecules, and pathogens among the cells. In tumor microenvironment, TNTs act as communication channel among cancer, normal, and immune cells to facilitate the transfer of calcium waves, mitochondria, lysosomes, and proteins, which in turn contribute to the survival, metastasis, and chemo-resistance in cancer cells. Recently, TNTs were shown to mediate the transfer of nanoparticles, drugs, and viruses between cells, suggesting that TNTs could be exploited as a potential route for delivery of anti-cancer agents and oncolytic viruses to the target cells. The present review discusses the emerging concepts and role of TNTs in the context of chemo- and radio-resistance with implications in the cancer therapy.
Collapse
Affiliation(s)
- Pooja Kamal Melwani
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Badri Narain Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
36
|
Liccardo F, Śniegocka M, Tito C, Iaiza A, Ottone T, Divona M, Travaglini S, Mattei M, Cicconi R, Miglietta S, Familiari G, Nottola SA, Petrozza V, Tamagnone L, Voso MT, Masciarelli S, Fazi F. Retinoic acid and proteotoxic stress induce AML cell death overcoming stromal cell protection. J Exp Clin Cancer Res 2023; 42:223. [PMID: 37653435 PMCID: PMC10469880 DOI: 10.1186/s13046-023-02793-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) patients bearing the ITD mutation in the tyrosine kinase receptor FLT3 (FLT3-ITD) present a poor prognosis and a high risk of relapse. FLT3-ITD is retained in the endoplasmic reticulum (ER) and generates intrinsic proteotoxic stress. We devised a strategy based on proteotoxic stress, generated by the combination of low doses of the differentiating agent retinoic acid (R), the proteasome inhibitor bortezomib (B), and the oxidative stress inducer arsenic trioxide (A). METHODS We treated FLT3-ITD+ AML cells with low doses of the aforementioned drugs, used alone or in combinations and we investigated the induction of ER and oxidative stress. We then performed the same experiments in an in vitro co-culture system of FLT3-ITD+ AML cells and bone marrow stromal cells (BMSCs) to assess the protective role of the niche on AML blasts. Eventually, we tested the combination of drugs in an orthotopic murine model of human AML. RESULTS The combination RBA exerts strong cytotoxic activity on FLT3-ITD+ AML cell lines and primary blasts isolated from patients, due to ER homeostasis imbalance and generation of oxidative stress. AML cells become completely resistant to the combination RBA when treated in co-culture with BMSCs. Nonetheless, we could overcome such protective effects by using high doses of ascorbic acid (Vitamin C) as an adjuvant. Importantly, the combination RBA plus ascorbic acid significantly prolongs the life span of a murine model of human FLT3-ITD+ AML without toxic effects. Furthermore, we show for the first time that the cross-talk between AML and BMSCs upon treatment involves disruption of the actin cytoskeleton and the actin cap, increased thickness of the nuclei, and relocalization of the transcriptional co-regulator YAP in the cytosol of the BMSCs. CONCLUSIONS Our findings strengthen our previous work indicating induction of proteotoxic stress as a possible strategy in FLT3-ITD+ AML therapy and open to the possibility of identifying new therapeutic targets in the crosstalk between AML and BMSCs, involving mechanotransduction and YAP signaling.
Collapse
Affiliation(s)
- Francesca Liccardo
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Martyna Śniegocka
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Alessia Iaiza
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
- Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Maurizio Mattei
- Department of Biology, University of Tor Vergata, Rome, Italy
- Centro Interdipartimentale-CIMETA, University of Tor Vergata, Rome, Italy
| | - Rosella Cicconi
- Centro Interdipartimentale-CIMETA, University of Tor Vergata, Rome, Italy
| | - Selenia Miglietta
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Section of Human Anatomy, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Section of Human Anatomy, Sapienza University of Rome, Rome, Italy
| | - Stefania Annarita Nottola
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Section of Human Anatomy, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-Surgical Sciences & Biotechnologies, Center for Biophotonics, Sapienza University of Rome, Latina, Italy
| | - Luca Tamagnone
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Catholic University of the Sacred Hearth, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
- Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy.
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
37
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
38
|
Capobianco DL, Simone L, Svelto M, Pisani F. Intercellular crosstalk mediated by tunneling nanotubes between central nervous system cells. What we need to advance. Front Physiol 2023; 14:1214210. [PMID: 37670766 PMCID: PMC10475722 DOI: 10.3389/fphys.2023.1214210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023] Open
Abstract
Long-range intercellular communication between Central Nervous System (CNS) cells is an essential process for preserving CNS homeostasis. Paracrine signaling, extracellular vesicles, neurotransmitters and synapses are well-known mechanisms involved. A new form of intercellular crosstalk mechanism based on Tunneling Nanotubes (TNTs), suggests a new way to understand how neural cells interact with each other in controlling CNS functions. TNTs are long intercellular bridges that allow the intercellular transfer of cargoes and signals from one cell to another contributing to the control of tissue functionality. CNS cells communicate with each other via TNTs, through which ions, organelles and other signals are exchanged. Unfortunately, almost all these results were obtained through 2D in-vitro models, and fundamental mechanisms underlying TNTs-formation still remain elusive. Consequently, many questions remain open, and TNTs role in CNS remains largely unknown. In this review, we briefly discuss the state of the art regarding TNTs identification and function. We highlight the gaps in the knowledge of TNTs and discuss what is needed to accelerate TNTs-research in CNS-physiology. To this end, it is necessary to: 1) Develop an ad-hoc TNTs-imaging and software-assisted processing tool to improve TNTs-identification and quantification, 2) Identify specific molecular pathways involved into TNTs-formation, 3) Use in-vitro 3D-CNS and animal models to investigate TNTs-role in a more physiological context pushing the limit of live-microscopy techniques. Although there are still many steps to be taken, we believe that the study of TNTs is a new and fascinating frontier that could significantly contribute to deciphering CNS physiology.
Collapse
Affiliation(s)
- D. L. Capobianco
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Bari, Italy
| | - L. Simone
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, San Giovanni Rotondo, Italy
| | - M. Svelto
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Bari, Italy
| | - F. Pisani
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Bari, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
39
|
Duan Q, Zhang Q, Nie K, Huang R, Yang J, He P, Tie Z, Huang H, Ma G, Zhang Y, Gao Y, Wang L. Myo1d promotes alpha-synuclein transfer from brain microvascular endothelial cells to pericytes through tunneling nanotubes. iScience 2023; 26:107458. [PMID: 37575183 PMCID: PMC10416064 DOI: 10.1016/j.isci.2023.107458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
α-Synuclein preformed fibrils (α-syn PFF) in the blood can cross the blood-brain barrier and invade the central nervous system. Our previous study proved that α-syn PFF can be taken up by brain microvascular endothelial cells (BMVECs). Here, we found that α-syn PFF spread from BMVECs to pericytes with the highest transmission efficiency. We observed abundant tunneling nanotubes (TNTs) connecting BMVECs and pericytes, and α-syn PFF transmitted through these TNTs. Furthermore, α-syn PFF accumulation in BMVECs did not promote TNT formation, but activated the molecular motor Myo1d. Inhibition of Myo1d prevented α-syn PFF transfer from BMVECs to pericytes and decreased the colocalization of Myo1d and F-actin in BMVECs. In summary, we are the first to demonstrate that α-syn PFF spread from BMVECs to pericytes through a mechanism involving TNTs and myosin. Targeting Myo1d may be a promising approach to prevent α-syn spreading from the blood to the brain.
Collapse
Affiliation(s)
- Qingrui Duan
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qingxi Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Kun Nie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Rui Huang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jianhua Yang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Peikun He
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zihui Tie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Haifeng Huang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Guixian Ma
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yuyuan Gao
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Lijuan Wang
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
40
|
Wang J, Shang KT, Ma QH, Dong ZY, Chen YH, Yao YF. Herpes Simplex Virus Type 1 Infection Induces the Formation of Tunneling Nanotubes. Microorganisms 2023; 11:1916. [PMID: 37630476 PMCID: PMC10456791 DOI: 10.3390/microorganisms11081916] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is human specific virus. The intercellular transmission of HSV-1 is essential in its pathogenesis. The tunneling nanotube (TNT), a new mode connecting distant cells, has been found to play an important role in the spread of various viruses like human immunodeficiency virus (HIV) and influenza virus. However, whether HSV-1 can be transmitted through TNTs has not been confirmed. The purpose of this study was to clarify this, and further to determine the effect of inhibiting the actin-related protein 2/3 (Arp2/3) complex on the intercellular transmission of HSV-1. A scanning electron microscope and fluorescence microscope detected the formation of TNTs between HSV-1 infected cells. Envelope glycoprotein D (gD) and envelope glycoprotein E (gE) of HSV-1 and viral particles were observed in TNTs. Treatment with CK666, an inhibitor of the Arp2/3 complex, reduced the number of TNTs by approximately 40-80%. At the same time, the DNA level of HSV-1 in cells and the number of plaque formation units (PFU) were also reduced by nearly 30%. These findings indicated that TNT contributes to HSV-1 transmission and that the inhibition of the Arp2/3 complex could impair HSV-1 transmission, which not only provides a novel insight into the transmission mode of HSV-1, but also a putative new antiviral target.
Collapse
Affiliation(s)
- Jie Wang
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou 310016, China; (J.W.)
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou 310016, China
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou 310003, China
- Department of Ophthalmology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 219 Moganshan Road, Hangzhou 310005, China
| | - Kun-Te Shang
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou 310016, China; (J.W.)
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou 310016, China
| | - Qiong-Hong Ma
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou 310016, China; (J.W.)
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou 310016, China
| | - Zhao-Ying Dong
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou 310016, China; (J.W.)
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou 310016, China
| | - Yi-Hong Chen
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou 310016, China; (J.W.)
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou 310016, China
| | - Yu-Feng Yao
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou 310016, China; (J.W.)
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou 310016, China
| |
Collapse
|
41
|
Bowman RL, Wang D, Eom DS. A macrophage subpopulation promotes airineme-mediated intercellular communication in a matrix metalloproteinase-9 dependent manner. Cell Rep 2023; 42:112818. [PMID: 37454294 PMCID: PMC10530396 DOI: 10.1016/j.celrep.2023.112818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Tissue-resident macrophages are heterogeneous and perform location-dependent functions. Skin resident macrophages play intriguing roles in long-distance intercellular signaling by mediating cellular protrusions called airinemes in zebrafish. These macrophages relay signaling molecules containing airineme vesicles between pigment cells, and their absence disrupts airineme-mediated signaling and pigment pattern formation. It is unknown if the same macrophages control both these signaling and typical immune functions or if a separate subpopulation functions in intercellular communication. With high-resolution imaging and genetic ablation approaches, we identify a macrophage subpopulation responsible for airineme-mediated signaling. These seem to be distinct from conventional skin-resident macrophages by their ameboid morphology and faster or expansive migratory behaviors. They resemble ectoderm-derived macrophages termed metaphocytes. Metaphocyte ablation markedly decreases airineme extension and signaling. In addition, these ameboid/metaphocytes require matrix metalloproteinase-9 for their migration and airineme-mediated signaling. These results reveal a macrophage subpopulation with specialized functions in airineme-mediated signaling, which may play roles in other aspects of intercellular communication.
Collapse
Affiliation(s)
- Raquel Lynn Bowman
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Daoqin Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Dae Seok Eom
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
42
|
Yang J, Liu L, Oda Y, Wada K, Ago M, Matsuda S, Hattori M, Goto T, Ishibashi S, Kawashima-Sonoyama Y, Matsuzaki Y, Taketani T. Extracellular Vesicles and Cx43-Gap Junction Channels Are the Main Routes for Mitochondrial Transfer from Ultra-Purified Mesenchymal Stem Cells, RECs. Int J Mol Sci 2023; 24:10294. [PMID: 37373439 DOI: 10.3390/ijms241210294] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondria are essential organelles for maintaining intracellular homeostasis. Their dysfunction can directly or indirectly affect cell functioning and is linked to multiple diseases. Donation of exogenous mitochondria is potentially a viable therapeutic strategy. For this, selecting appropriate donors of exogenous mitochondria is critical. We previously demonstrated that ultra-purified bone marrow-derived mesenchymal stem cells (RECs) have better stem cell properties and homogeneity than conventionally cultured bone marrow-derived mesenchymal stem cells. Here, we explored the effect of contact and noncontact systems on three possible mitochondrial transfer mechanisms involving tunneling nanotubes, connexin 43 (Cx43)-mediated gap junction channels (GJCs), and extracellular vesicles (Evs). We show that Evs and Cx43-GJCs provide the main mechanism for mitochondrial transfer from RECs. Through these two critical mitochondrial transfer pathways, RECs could transfer a greater number of mitochondria into mitochondria-deficient (ρ0) cells and could significantly restore mitochondrial functional parameters. Furthermore, we analyzed the effect of exosomes (EXO) on the rate of mitochondrial transfer from RECs and recovery of mitochondrial function. REC-derived EXO appeared to promote mitochondrial transfer and slightly improve the recovery of mtDNA content and oxidative phosphorylation in ρ0 cells. Thus, ultrapure, homogenous, and safe stem cell RECs could provide a potential therapeutic tool for diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiahao Yang
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Lu Liu
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yasuaki Oda
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Keisuke Wada
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Mako Ago
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Shinichiro Matsuda
- Department of Medical Oncology, Shimane University Hospital, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Miho Hattori
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Tsukimi Goto
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Shuichi Ishibashi
- Department of Digestive and General Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yuki Kawashima-Sonoyama
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yumi Matsuzaki
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Takeshi Taketani
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| |
Collapse
|
43
|
Padmanabhan S, Manjithaya R. Leaderless secretory proteins of the neurodegenerative diseases via TNTs: a structure-function perspective. Front Mol Neurosci 2023; 16:983108. [PMID: 37396786 PMCID: PMC10308029 DOI: 10.3389/fnmol.2023.983108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Neurodegenerative disease-causing proteins such as alpha-synuclein, tau, and huntingtin are known to traverse across cells via exosomes, extracellular vesicles and tunneling nanotubes (TNTs). There seems to be good synergy between exosomes and TNTs in intercellular communication. Interestingly, many of the known major neurodegenerative proteins/proteolytic products are leaderless and are also reported to be secreted out of the cell via unconventional protein secretion. Such classes contain intrinsically disordered proteins and regions (IDRs) within them. The dynamic behavior of these proteins is due to their heterogenic conformations that is exhibited owing to various factors that occur inside the cells. The amino acid sequence along with the chemical modifications has implications on the functional roles of IDRs inside the cells. Proteins that form aggregates resulting in neurodegeneration become resistant to degradation by the processes of autophagy and proteasome system thus leading to Tunneling nanotubes, TNT formation. The proteins that traverse across TNTs may or may not be dependent on the autophagy machinery. It is not yet clear whether the conformation of the protein plays a crucial role in its transport from one cell to another without getting degraded. Although there is some experimental data, there are many grey areas which need to be revisited. This review provides a different perspective on the structural and functional aspects of these leaderless proteins that get secreted outside the cell. In this review, attention has been focused on the characteristic features that lead to aggregation of leaderless secretory proteins (from structural-functional aspect) with special emphasis on TNTs.
Collapse
|
44
|
Zaninello M, Bean C. Highly Specialized Mechanisms for Mitochondrial Transport in Neurons: From Intracellular Mobility to Intercellular Transfer of Mitochondria. Biomolecules 2023; 13:938. [PMID: 37371518 DOI: 10.3390/biom13060938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The highly specialized structure and function of neurons depend on a sophisticated organization of the cytoskeleton, which supports a similarly sophisticated system to traffic organelles and cargo vesicles. Mitochondria sustain crucial functions by providing energy and buffering calcium where it is needed. Accordingly, the distribution of mitochondria is not even in neurons and is regulated by a dynamic balance between active transport and stable docking events. This system is finely tuned to respond to changes in environmental conditions and neuronal activity. In this review, we summarize the mechanisms by which mitochondria are selectively transported in different compartments, taking into account the structure of the cytoskeleton, the molecular motors and the metabolism of neurons. Remarkably, the motor proteins driving the mitochondrial transport in axons have been shown to also mediate their transfer between cells. This so-named intercellular transport of mitochondria is opening new exciting perspectives in the treatment of multiple diseases.
Collapse
Affiliation(s)
- Marta Zaninello
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Camilla Bean
- Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
45
|
Chakraborty R, Nonaka T, Hasegawa M, Zurzolo C. Tunnelling nanotubes between neuronal and microglial cells allow bi-directional transfer of α-Synuclein and mitochondria. Cell Death Dis 2023; 14:329. [PMID: 37202391 DOI: 10.1038/s41419-023-05835-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
Tunnelling Nanotubes (TNTs) facilitate contact-mediated intercellular communication over long distances. Material transfer via TNTs can range from ions and intracellular organelles to protein aggregates and pathogens. Prion-like toxic protein aggregates accumulating in several neurodegenerative pathologies, such as Alzheimer's, Parkinson's, and Huntington's diseases, have been shown to spread via TNTs not only between neurons, but also between neurons-astrocytes, and neurons-pericytes, indicating the importance of TNTs in mediating neuron-glia interactions. TNT-like structures were also reported between microglia, however, their roles in neuron-microglia interaction remain elusive. In this work, we quantitatively characterise microglial TNTs and their cytoskeletal composition, and demonstrate that TNTs form between human neuronal and microglial cells. We show that α-Synuclein (α-Syn) aggregates increase the global TNT-mediated connectivity between cells, along with the number of TNT connections per cell pair. Homotypic TNTs formed between microglial cells, and heterotypic TNTs between neuronal and microglial cells are furthermore shown to be functional, allowing movement of both α-Syn and mitochondria. Quantitative analysis shows that α-Syn aggregates are transferred predominantly from neuronal to microglial cells, possibly as a mechanism to relieve the burden of accumulated aggregates. By contrast, microglia transfer mitochondria preferably to α-Syn burdened neuronal cells over the healthy ones, likely as a potential rescue mechanism. Besides describing novel TNT-mediated communication between neuronal and microglial cells, this work allows us to better understand the cellular mechanisms of spreading neurodegenerative diseases, shedding light on the role of microglia.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
- Université Paris Saclay, Gif-sur-Yvette, Paris, France
| | - Takashi Nonaka
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chiara Zurzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
46
|
Mahadik P, Patwardhan S. ECM stiffness-regulated exosomal thrombospondin-1 promotes tunneling nanotubes-based cellular networking in breast cancer cells. Arch Biochem Biophys 2023; 742:109624. [PMID: 37146866 DOI: 10.1016/j.abb.2023.109624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023]
Abstract
Intercellular communication is pivotal in various stages of cancer progression. For smart and effective communication, cancer cells employ diverse modes of messaging that may be further fine-tuned by the microenvironmental changes. Extracellular matrix (ECM) stiffening due to excess deposition and crosslinking of collagen is one of the crucial tumor-microenvironmental changes that influence a plethora of cellular processes, including cell-cell communication. We herein studied the crosstalk between exosomes and tunneling nanotubes (TNT), the two distinct means of cell-cell communication under varying ECM-stiffness conditions. We show that exosomes promote the formation of tunneling nanotubes in breast cancer cells, which results in cellular internet. Interestingly, exosomes drastically increased the fraction of cells connected by TNT; however, they elicited no effect on the number of TNTs per pair of connected cells or the length of TNT. The observed pro-TNT effects of exosomes were found to be ECM-stiffness dependent. ECM-stiffness tuned exosomes were found to promote TNT formation predominantly via the 'cell dislodgment model'. At the molecular level, exosomal thrombospondin-1 was identified as a critical pro-TNT factor. These findings underline the influence of ECM stiffening on two diverse modes of cell communication and their interdependence, which may have significant implications in cancer biomedical research.
Collapse
Affiliation(s)
- Pratiksha Mahadik
- Patwardhan Lab, Advanced Centre for Treatment, Research and Education in Cancer, (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Sejal Patwardhan
- Patwardhan Lab, Advanced Centre for Treatment, Research and Education in Cancer, (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
47
|
Chakraborty R, Belian S, Zurzolo C. Hijacking intercellular trafficking for the spread of protein aggregates in neurodegenerative diseases: a focus on tunneling nanotubes (TNTs). EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:27-43. [PMID: 39698299 PMCID: PMC11648486 DOI: 10.20517/evcna.2023.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 12/20/2024]
Abstract
Over the years, the influence of secretory mechanisms on intercellular communication has been extensively studied. In the central nervous system (CNS), both trans-synaptic (neurotransmitter-based) and long-distance (extracellular vesicles-based) communications regulate activities and homeostasis. In less than a couple of decades, however, there has been a major paradigm shift in our understanding of intercellular communication. Increasing evidence suggests that besides secretory mechanisms (via extracellular vesicles), several cells are capable of establishing long-distance communication routes referred to as Tunneling Nanotubes (TNTs). TNTs are membranous bridges classically supported by F-Actin filaments, allowing for the exchange of different types of intracellular components between the connected cells, ranging from ions and organelles to pathogens and toxic protein aggregates. The roles of TNTs in pathological spreading of several neurodegenerative conditions such as Prion diseases, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) have been well established. However, the fragile nature of these structures and lack of specific biomarkers raised some skepticism regarding their existence. In this review, we will first place TNTs within the spectrum of intercellular communication mechanisms before discussing their known and hypothesized biological relevance in vitro and in vivo in physiological and neurodegenerative contexts. Finally, we discuss the challenges and promising prospects in the field of TNT studies.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris F-75015, France
- Université Paris Saclay, Gif-sur-Yvette, Paris 91190, France
- Authors contributed equally
| | - Sevan Belian
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris F-75015, France
- Université Paris Saclay, Gif-sur-Yvette, Paris 91190, France
- Authors contributed equally
| | - Chiara Zurzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris F-75015, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
48
|
Dong LF, Rohlena J, Zobalova R, Nahacka Z, Rodriguez AM, Berridge MV, Neuzil J. Mitochondria on the move: Horizontal mitochondrial transfer in disease and health. J Cell Biol 2023; 222:213873. [PMID: 36795453 PMCID: PMC9960264 DOI: 10.1083/jcb.202211044] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Mammalian genes were long thought to be constrained within somatic cells in most cell types. This concept was challenged recently when cellular organelles including mitochondria were shown to move between mammalian cells in culture via cytoplasmic bridges. Recent research in animals indicates transfer of mitochondria in cancer and during lung injury in vivo, with considerable functional consequences. Since these pioneering discoveries, many studies have confirmed horizontal mitochondrial transfer (HMT) in vivo, and its functional characteristics and consequences have been described. Additional support for this phenomenon has come from phylogenetic studies. Apparently, mitochondrial trafficking between cells occurs more frequently than previously thought and contributes to diverse processes including bioenergetic crosstalk and homeostasis, disease treatment and recovery, and development of resistance to cancer therapy. Here we highlight current knowledge of HMT between cells, focusing primarily on in vivo systems, and contend that this process is not only (patho)physiologically relevant, but also can be exploited for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Lan-Feng Dong
- https://ror.org/02sc3r913School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia,Lan-Feng Dong:
| | - Jakub Rohlena
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | - Renata Zobalova
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | - Zuzana Nahacka
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | | | | | - Jiri Neuzil
- https://ror.org/02sc3r913School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia,https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic,Faculty of Science, Charles University, Prague, Czech Republic,First Faculty of Medicine, Charles University, Prague, Czech Republic,Correspondence to Jiri Neuzil: ,
| |
Collapse
|
49
|
Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell Biosci 2022; 12:66. [PMID: 35590379 PMCID: PMC9121600 DOI: 10.1186/s13578-022-00805-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/01/2022] [Indexed: 12/16/2022] Open
Abstract
Mitochondria play a pivotal role in energy generation and cellular physiological processes. These organelles are highly dynamic, constantly changing their morphology, cellular location, and distribution in response to cellular stress. In recent years, the phenomenon of mitochondrial transfer has attracted significant attention and interest from biologists and medical investigators. Intercellular mitochondrial transfer occurs in different ways, including tunnelling nanotubes (TNTs), extracellular vesicles (EVs), and gap junction channels (GJCs). According to research on intercellular mitochondrial transfer in physiological and pathological environments, mitochondrial transfer hold great potential for maintaining body homeostasis and regulating pathological processes. Multiple research groups have developed artificial mitochondrial transfer/transplantation (AMT/T) methods that transfer healthy mitochondria into damaged cells and recover cellular function. This paper reviews intercellular spontaneous mitochondrial transfer modes, mechanisms, and the latest methods of AMT/T. Furthermore, potential application value and mechanism of AMT/T in disease treatment are also discussed.
Collapse
|
50
|
Han M, Woottum M, Mascarau R, Vahlas Z, Verollet C, Benichou S. Mechanisms of HIV-1 cell-to-cell transfer to myeloid cells. J Leukoc Biol 2022; 112:1261-1271. [PMID: 35355323 DOI: 10.1002/jlb.4mr0322-737r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
In addition to CD4+ T lymphocytes, cells of the myeloid lineage such as macrophages, dendritic cells (DCs), and osteoclasts (OCs) are emerging as important target cells for HIV-1, as they likely participate in all steps of pathogenesis, including sexual transmission and early virus dissemination in both lymphoid and nonlymphoid tissues where they can constitute persistent virus reservoirs. At least in vitro, these myeloid cells are poorly infected by cell-free viral particles. In contrast, intercellular virus transmission through direct cell-to-cell contacts may be a predominant mode of virus propagation in vivo leading to productive infection of these myeloid target cells. HIV-1 cell-to-cell transfer between CD4+ T cells mainly through the formation of the virologic synapse, or from infected macrophages or dendritic cells to CD4+ T cell targets, have been extensively described in vitro. Recent reports demonstrate that myeloid cells can be also productively infected through virus homotypic or heterotypic cell-to-cell transfer between macrophages or from virus-donor-infected CD4+ T cells, respectively. These modes of infection of myeloid target cells lead to very efficient spreading in these poorly susceptible cell types. Thus, the goal of this review is to give an overview of the different mechanisms reported in the literature for cell-to-cell transfer and spreading of HIV-1 in myeloid cells.
Collapse
Affiliation(s)
- Mingyu Han
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| | - Marie Woottum
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| | - Rémi Mascarau
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Zoï Vahlas
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Serge Benichou
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| |
Collapse
|