1
|
Al Madhoun A, Haddad D, Kochumon S, Thomas R, Miranda L, George P, Abu-Khalaf N, Al-Mulla F, Ahmad R. TNF-α/NF-κB mediated upregulation of Dectin-1 in hyperglycemic obesity: implications for metabolic inflammation and diabetes. J Transl Med 2025; 23:462. [PMID: 40270030 PMCID: PMC12016449 DOI: 10.1186/s12967-025-06303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/23/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Dectin-1, a key innate immune receptor, plays a critical role in cellular responses and is implicated in chronic inflammation and metabolic syndromes. This study addresses a pivotal gap in elucidating the regulatory mechanism governing Dectin-1 expressionin obesity and diabetes, hypothesizing that hyperglycemia and TNF-α synergistically upregulate Dectin-1 in adipose tissue (AT), thereby exacerbating inflammatory responses and contributing to metabolic dysfunction. METHODS The study included 95 overweight and obese Kuwaiti individuals, categorized into prediabetic (HbA1c < 6.5%) and diabetic (HbA1c ≥ 6.5%) groups. Anthropometric and clinical measurements were recorded. AT biopsies were obtained for RNA extraction and immunohistochemistry. Pre-adipocytes from lean and obese individuals were cultured, differentiated into adipocytes, and treated with TNF-α under normal or high-glucose conditions to assess Dectin-1 expression. Chromatin immunoprecipitation (ChIP) assays analyzed NF-κB binding to the Dectin-1 promoter. Wildtype and TNF-α-/- mice were used to evaluate TNF-α's effect on Dectin-1 expression in AT. RESULTS Our data demonstrate that hyperglycemic obesity significantly induces Dectin-1 expression in AT through the TNF-α/NF-κB signaling pathway. In a cohort of 95 obese individuals, subdivided into prediabetics (HbA1c < 6.5%, n = 49) and diabetics (HbA1c ≥ 6.5%, n = 46), a strong positive correlation was observed between AT Dectin-1 transcripts and plasma HbA1c levels exclusively in diabetic participants, underscoring the specificity of Dectin-1 upregulation in hyperglycemic conditions. Elevated Dectin-1 expression was consistently associated to increased inflammation markers. Immunohistochemical analysis revealed co-localization and concurrent upregulation of Dectin-1 and TNF-α proteins in hyperglycemic AT. Functional assays in TNF-α deficient mice and human adipocytes further validated that TNF-α and hyperglycemia act cooperatively to regulate Dectin-1 expression. Mechanistically, we demonstrated that NF-κB directly binds to the Dectin-1 promoter, mediating its transcriptional activation in response to glucose and TNF-α. CONCLUSION This study significantly advances the understanding of upregulation Dectin-1 in metabolic inflammation, filling a crucial niche in diabetes research and suggesting new therapeutic targets for obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Dasman, 15462, Kuwait.
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait.
| | - Dania Haddad
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Shihab Kochumon
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Reeby Thomas
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Lavina Miranda
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Dasman, 15462, Kuwait
| | - Preethi George
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Dasman, 15462, Kuwait
| | - Nermeen Abu-Khalaf
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Dasman, 15462, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
2
|
Iqbal M, Yu Q, Tang J, Xiang J. Unraveling the gut microbiota's role in obesity: key metabolites, microbial species, and therapeutic insights. J Bacteriol 2025:e0047924. [PMID: 40183584 DOI: 10.1128/jb.00479-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Obesity, characterized by excessive fat accumulation, stems from an imbalance between energy intake and expenditure, with the gut microbiota playing a crucial role. This review highlights how gut microbiota influences metabolic pathways, inflammation, and adipose tissue regulation in obesity. Specific bacteria and metabolites, such as lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs), modulate gut permeability, inflammation, and energy harvest, impacting obesity development. Certain gut bacteria, including Clostridium XIVb, Dorea spp., Enterobacter cloacae, and Collinsella aerofaciens, promote obesity by increasing energy harvest, gut permeability, and inflammatory response through LPS translocation into the bloodstream. Conversely, beneficial bacteria like Akkermansia muciniphila, Lactobacillus spp., and Bifidobacterium spp. enhance gut barrier integrity, regulate SCFA production, and modulate fasting-induced adipose factor, which collectively support metabolic health by reducing fat storage and inflammation. Metabolites such as SCFAs (acetate, propionate, and butyrate) interact with G-protein coupled receptors to regulate lipid metabolism and promote the browning of white adipose tissue (WAT), thus enhancing thermogenesis and energy expenditure. However, LPS contributes to insulin resistance and fat accumulation, highlighting the dual roles of these microbial metabolites in both supporting and disrupting metabolic function. Therapeutic interventions targeting gut microbiota, such as promoting WAT browning and activating brown adipose tissue (BAT), hold promise for obesity management. However, personalized approaches are necessary due to individual microbiome variability. Further research is essential to translate these insights into microbiota-based clinical therapies.
Collapse
Affiliation(s)
- Majid Iqbal
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Yu
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Changsha, Hunan, China
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Changsha, Hunan, China
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juanjuan Xiang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Bernhardt SM, House CD. Bisphenol A and DDT disrupt adipocyte function in the mammary gland: implications for breast cancer risk and progression. Front Oncol 2025; 15:1490898. [PMID: 40034592 PMCID: PMC11873108 DOI: 10.3389/fonc.2025.1490898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
As breast cancer incidence continues to rise worldwide, there is a pressing need to understand the environmental factors that contribute to its development. Obesogens, including Bisphenol A (BPA) and Dichlorodiphenyltrichloroethane (DDT), are highly prevalent in the environment, and have been associated with obesity and metabolic dysregulation. BPA and DDT, known to disrupt hormone signaling in breast epithelial cells, also promote adipogenesis, lipogenesis, and adipokine secretion in adipose tissue, directly contributing to the pathogenesis of obesity. While the adipose-rich mammary gland may be particularly vulnerable to environmental obesogens, there is a scarcity of research investigating obesogen-mediated changes in adipocytes that drive oncogenic transformation of breast epithelial cells. Here, we review the preclinical and clinical evidence linking BPA and DDT to impaired mammary gland development and breast cancer risk. We discuss how the obesogen-driven mechanisms that contribute to obesity, including changes in adipogenesis, lipogenesis, and adipokine secretion, could provide a pro-inflammatory, nutrient-rich environment that promotes activation of oncogenic pathways in breast epithelial cells. Understanding the role of obesogens in breast cancer risk and progression is essential for informing public health guidelines aimed at minimizing obesogen exposure, to ultimately reduce breast cancer incidence and improve outcomes for women.
Collapse
Affiliation(s)
- Sarah M. Bernhardt
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Carrie D. House
- Department of Biology, San Diego State University, San Diego, CA, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
4
|
Morciano C, Gugliandolo S, Capece U, Di Giuseppe G, Mezza T, Ciccarelli G, Soldovieri L, Brunetti M, Avolio A, Splendore A, Pontecorvi A, Giaccari A, Cinti F. SGLT2 inhibition and adipose tissue metabolism: current outlook and perspectives. Cardiovasc Diabetol 2024; 23:449. [PMID: 39702365 PMCID: PMC11660748 DOI: 10.1186/s12933-024-02539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) have emerged as important agents for the treatment of type 2 diabetes mellitus (T2DM). SGLT2 inhibitors have been associated with improved cardiovascular outcomes, not only through their immediate hemodynamic effects-such as glycosuria and (at least temporary) increased natriuresis-but also due to their multifaceted impact on metabolism. Recently, studies have also focused on the effects of SGLT2 inhibitors on adipose tissue. Aside from the well-documented effects on human adiposity, SGLT2i have shown, both in vitro and in murine models, the ability to reduce fat mass, upregulate genes related to browning of white adipose tissue, influence adipocyte size and fatty acid oxidation, and improve oxidative stress and overall metabolic health. In humans, even though data are still limited, recent evidence seems to confirm that the SGLT2i effects observed in cardiovascular outcome trials could be partially explained by their impact on adipose tissue. This review aims to clarify the impact of SGLT2i on adipose tissue, highlighting their role in metabolic health and their potential to transform treatment strategies for T2DM beyond glucose metabolism.
Collapse
Affiliation(s)
- Cassandra Morciano
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Cliniche e Sperimentali, Medicina Interna - Università degli studi di Brescia, Brescia, BS, Italy
| | - Shawn Gugliandolo
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Capece
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianfranco Di Giuseppe
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Teresa Mezza
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gea Ciccarelli
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura Soldovieri
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Brunetti
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Adriana Avolio
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Amelia Splendore
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alfredo Pontecorvi
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giaccari
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Francesca Cinti
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
5
|
Kisar Tunca S, Unal R. Adipocyte-derived fatty acid uptake induces obesity-related breast cancer progression: a review. Mol Biol Rep 2024; 52:39. [PMID: 39644365 DOI: 10.1007/s11033-024-10139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Obesity is a metabolic disorder that occurs when excess energy taken into the body is stored as fat. It is known that this metabolic imbalance affects the development of other diseases such as cancer, cardiovascular diseases, insulin resistance, and diabetes. The main cellular component of adipose tissue is adipocytes, and the environmental interactions of adipocytes are important to study the mechanism of disorder formation. Breast tissue is rich in adipose tissue and obesity is known to be an important risk factor in the development of breast cancer. Altered adipogenesis and lipogenesis processes in adipocytes in breast tissue support tumor development through the transfer of fatty acids released from adipocytes. We believe that blending adipocyte biology with breast cancer development is important for investigating the mechanisms that regulate breast tumor malignant behavior and providing new targets for treatment. Fatty acids, which are an energy source for breast cancer cells, are discussed from molecular perspectives in this review.
Collapse
Affiliation(s)
- Selin Kisar Tunca
- Faculty of Science, Department of Molecular Biology and Genetics, Mugla Sitki Kocman University, Mugla, Turkey
| | - Resat Unal
- Faculty of Science, Department of Molecular Biology and Genetics, Mugla Sitki Kocman University, Mugla, Turkey.
| |
Collapse
|
6
|
Mo YY, Han YX, Xu SN, Jiang HL, Wu HX, Cai JM, Li L, Bu YH, Xiao F, Liang HD, Wen Y, Liu YZ, Yin YL, Zhou HD. Adipose Tissue Plasticity: A Comprehensive Definition and Multidimensional Insight. Biomolecules 2024; 14:1223. [PMID: 39456156 PMCID: PMC11505740 DOI: 10.3390/biom14101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Adipose tissue is composed of adipocytes, stromal vascular fraction, nerves, surrounding immune cells, and the extracellular matrix. Under various physiological or pathological conditions, adipose tissue shifts cellular composition, lipid storage, and organelle dynamics to respond to the stress; this remodeling is called "adipose tissue plasticity". Adipose tissue plasticity includes changes in the size, species, number, lipid storage capacity, and differentiation function of adipocytes, as well as alterations in the distribution and cellular composition of adipose tissue. This plasticity has a major role in growth, obesity, organismal protection, and internal environmental homeostasis. Moreover, certain thresholds exist for this plasticity with significant individualized differences. Here, we comprehensively elaborate on the specific connotation of adipose tissue plasticity and the relationship between this plasticity and the development of many diseases. Meanwhile, we summarize possible strategies for treating obesity in response to adipose tissue plasticity, intending to provide new insights into the dynamic changes in adipose tissue and contribute new ideas to relevant clinical problems.
Collapse
Affiliation(s)
- Yu-Yao Mo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Xin Han
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Shi-Na Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hong-Li Jiang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hui-Xuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Jun-Min Cai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yan-Hong Bu
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha 410012, China;
| | - Fen Xiao
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Han-Dan Liang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Ying Wen
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Ze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
| | - Yu-Long Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| |
Collapse
|
7
|
Hu Y, Huang Y, Jiang Y, Weng L, Cai Z, He B. The Different Shades of Thermogenic Adipose Tissue. Curr Obes Rep 2024; 13:440-460. [PMID: 38607478 DOI: 10.1007/s13679-024-00559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE OF REVIEW By providing a concise overview of adipose tissue types, elucidating the regulation of adipose thermogenic capacity in both physiological contexts and chronic wasting diseases (a protracted hypermetabolic state that precipitates sustained catabolism and consequent progressive corporeal atrophy), and most importantly, delving into the ongoing discourse regarding the role of adipose tissue thermogenic activation in chronic wasting diseases, this review aims to provide researchers with a comprehensive understanding of the field. RECENT FINDINGS Adipose tissue, traditionally classified as white, brown, and beige (brite) based on its thermogenic activity and potential, is intricately regulated by complex mechanisms in response to exercise or cold exposure. This regulation is adipose depot-specific and dependent on the duration of exposure. Excessive thermogenic activation of adipose tissue has been observed in chronic wasting diseases and has been considered a pathological factor that accelerates disease progression. However, this conclusion may be confounded by the detrimental effects of excessive lipolysis. Recent research also suggests that such activation may play a beneficial role in the early stages of chronic wasting disease and provide potential therapeutic effects. A more comprehensive understanding of the changes in adipose tissue thermogenesis under physiological and pathological conditions, as well as the underlying regulatory mechanisms, is essential for the development of novel interventions to improve health and prevent disease.
Collapse
Affiliation(s)
- Yunwen Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yijie Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yangjing Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lvkan Weng
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
8
|
Zakic T, Pekovic-Vaughan V, Cvoro A, Korac A, Jankovic A, Korac B. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue. FEBS Lett 2024; 598:2106-2134. [PMID: 38140817 DOI: 10.1002/1873-3468.14794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, UK
| | | | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
9
|
Pallio G, Mannino F. New Insights into Adipose Tissue Metabolic Function and Dysfunction, 2nd Edition. Int J Mol Sci 2024; 25:9258. [PMID: 39273207 PMCID: PMC11394891 DOI: 10.3390/ijms25179258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The adipose organ is well recognized for its role in energy storage and mobilization, responding to nutrient availability, the body's needs, and thermogenesis, thereby regulating the organism's energy balance [...].
Collapse
Affiliation(s)
- Giovanni Pallio
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Federica Mannino
- Department of Medicine and Surgery, University of Enna "Kore", Contrada Santa Panasia, 94100 Enna, Italy
| |
Collapse
|
10
|
Karanfil AS, Louis F, Sowa Y, Matsusaki M. Cationic polymer effect on brown adipogenic induction of dedifferentiated fat cells. Mater Today Bio 2024; 27:101157. [PMID: 39113911 PMCID: PMC11304885 DOI: 10.1016/j.mtbio.2024.101157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity and its associated comorbidities place a substantial burden on public health. Given the considerable potential of brown adipose tissue in addressing metabolic disorders that contribute to dysregulation of the body's energy balance, this area is an intriguing avenue for research. This study aimed to assess the impact of various polymers, including collagen type I, fibronectin, laminin, gelatin, gellan gum, and poly-l-lysine (PLL), on the in vitro brown adipogenic differentiation of dedifferentiated fat cells within a fibrin gel matrix. The findings, obtained through RT-qPCR, immunofluorescent imaging, ELISA assay, and mitochondria assessment, revealed that PLL exhibited a significant browning-inducing effect. Compared to fibrin-only brown-like drops after two weeks of incubation in brown adipogenic medium, PLL showed 6 (±3) times higher UCP1 gene expression, 5 (±2) times higher UCP1 concentration by ELISA assay, and 2 (±1) times higher mitochondrial content. This effect can be attributed to PLL's electrostatic properties, which potentially facilitate the cellular uptake of crucial brown adipogenic inducers such as the thyroid hormone, triiodothyronine (T3), and insulin from the induction medium.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Osaka University, Japan
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Osaka University, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Osaka University, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Osaka University, Japan
| |
Collapse
|
11
|
Baldelli S, Aiello G, Mansilla Di Martino E, Campaci D, Muthanna FMS, Lombardo M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients 2024; 16:2436. [PMID: 39125318 PMCID: PMC11313710 DOI: 10.3390/nu16152436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue (AT), composed mainly of adipocytes, plays a critical role in lipid control, metabolism, and energy storage. Once considered metabolically inert, AT is now recognized as a dynamic endocrine organ that regulates food intake, energy homeostasis, insulin sensitivity, thermoregulation, and immune responses. This review examines the multifaceted role of adiponectin, a predominant adipokine released by AT, in glucose and fatty acid metabolism. We explore the regulatory mechanisms of adiponectin, its physiological effects and its potential as a therapeutic target for metabolic diseases such as type 2 diabetes, cardiovascular disease and fatty liver disease. Furthermore, we analyze the impact of various dietary patterns, specific nutrients, and physical activities on adiponectin levels, highlighting strategies to improve metabolic health. Our comprehensive review provides insights into the critical functions of adiponectin and its importance in maintaining systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Eliana Mansilla Di Martino
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Diego Campaci
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Fares M. S. Muthanna
- Pharmacy Department, Faculty of Medicine and Health Sciences, University of Science and Technology-Aden, Alshaab Street, Enmaa City 22003, Yemen
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| |
Collapse
|
12
|
Chen J, Pan Y, Lu Y, Fang X, Ma T, Chen X, Wang Y, Fang X, Zhang C, Song C. The Function and Mechanism of Long Noncoding RNAs in Adipogenic Differentiation. Genes (Basel) 2024; 15:875. [PMID: 39062654 PMCID: PMC11275360 DOI: 10.3390/genes15070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Adipocytes are crucial for maintaining energy balance. Adipocyte differentiation involves distinct stages, including the orientation stage, clone amplification stage, clone amplification termination stage, and terminal differentiation stage. Understanding the regulatory mechanisms governing adipogenic differentiation is essential for comprehending the physiological processes and identifying potential biomarkers and therapeutic targets for metabolic diseases, ultimately improving glucose and fat metabolism. Adipogenic differentiation is influenced not only by key factors such as hormones, the peroxisome proliferator-activated receptor (PPAR) family, and the CCATT enhancer-binding protein (C/EBP) family but also by noncoding RNA, including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA). Among these, lncRNA has been identified as a significant regulator in adipogenic differentiation. Research has demonstrated various ways in which lncRNAs contribute to the molecular mechanisms of adipogenic differentiation. Throughout the adipogenesis process, lncRNAs modulate adipocyte differentiation and development by influencing relevant signaling pathways and transcription factors. This review provides a brief overview of the function and mechanism of lncRNAs in adipogenic differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (J.C.); (Y.P.); (Y.L.); (X.F.); (T.M.); (X.C.); (Y.W.); (X.F.)
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (J.C.); (Y.P.); (Y.L.); (X.F.); (T.M.); (X.C.); (Y.W.); (X.F.)
| |
Collapse
|
13
|
Rebeaud M, Lacombe M, Fallone F, Milhas D, Roumiguié M, Vaysse C, Attané C, Muller C. Specificities of mammary and periprostatic adipose tissues: A perspective from cancer research. ANNALES D'ENDOCRINOLOGIE 2024; 85:220-225. [PMID: 38871505 DOI: 10.1016/j.ando.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
In addition to the major subcutaneous and visceral adipose tissues (AT), other adipose depots are dispersed throughout the body and are found in close interaction with proximal organs such as mammary and periprostatic AT (MAT and PPAT respectively). These ATs have an effect on proximal organ function during physiological processes and diseases such as cancer. We highlighted here some of their most distinctive features in terms of tissular organization and responses to external stimuli and discussed how obesity affects them based on our current knowledge.
Collapse
Affiliation(s)
- Marie Rebeaud
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France
| | - Mathilde Lacombe
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France
| | - Frédérique Fallone
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France
| | - Delphine Milhas
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France
| | - Mathieu Roumiguié
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France; Département d'urologie, CHU de Toulouse, 1, avenue du Professeur-Jean-Poulhès, 31400 Toulouse, France
| | - Charlotte Vaysse
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France; Département de chirurgie gynécologique-oncologique, institut universitaire du cancer de Toulouse-Oncopole, CHU de Toulouse, 1, avenue Irène-Joliot-Curie, 31059 Toulouse cedex 9, France
| | - Camille Attané
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France
| | - Catherine Muller
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France.
| |
Collapse
|
14
|
Fève B, Cintid S, Beaupère C, Vatier C, Vigouroux C, Vali A, Capeau J, Grosfed A, Moldes M. Pink adipose tissue: A paradigm of adipose tissue plasticity. ANNALES D'ENDOCRINOLOGIE 2024; 85:248-251. [PMID: 38871512 DOI: 10.1016/j.ando.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Adipose tissue is highly plastic, as illustrated mainly by the transdifferentiation of white adipocytes into beige adipocytes, depending on environmental conditions. However, during gestation and lactation in rodent, there is an amazing phenomenon of transformation of subcutaneous adipose tissue into mammary glandular tissue, known as pink adipose tissue, capable of synthesizing and secreting milk. Recent work using transgenic lineage-tracing experiments, mainly carried out in Saverio Cinti's team, has demonstrated very convincingly that this process does indeed correspond to a transdifferentiation of white adipocytes into mammary alveolar cells (pink adipocytes) during gestation and lactation. This phenomenon is reversible, since during the post-lactation phase, pink adipocytes revert to the white adipocyte phenotype. The molecular mechanisms underlying this reversible transdifferentiation remain poorly understood.
Collapse
Affiliation(s)
- Bruno Fève
- Centre de recherche Saint-Antoine, UMR_938, Inserm, Sorbonne université, 75012 Paris, France; Institute of CardioMetabolism and Nutrition, ICAN, Inserm, Sorbonne université, 75013 Paris, France; Service d'endocrinologie, CRMR PRISIS, AP-HP, hôpital Saint-Antoine, 75012 Paris, France.
| | - Saverio Cintid
- Center for the Study of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Carine Beaupère
- Centre de recherche Saint-Antoine, UMR_938, Inserm, Sorbonne université, 75012 Paris, France; Institute of CardioMetabolism and Nutrition, ICAN, Inserm, Sorbonne université, 75013 Paris, France
| | - Camille Vatier
- Centre de recherche Saint-Antoine, UMR_938, Inserm, Sorbonne université, 75012 Paris, France; Institute of CardioMetabolism and Nutrition, ICAN, Inserm, Sorbonne université, 75013 Paris, France; Service d'endocrinologie, CRMR PRISIS, AP-HP, hôpital Saint-Antoine, 75012 Paris, France
| | - Corinne Vigouroux
- Centre de recherche Saint-Antoine, UMR_938, Inserm, Sorbonne université, 75012 Paris, France; Institute of CardioMetabolism and Nutrition, ICAN, Inserm, Sorbonne université, 75013 Paris, France; Service d'endocrinologie, CRMR PRISIS, AP-HP, hôpital Saint-Antoine, 75012 Paris, France
| | - Anna Vali
- Centre de recherche Saint-Antoine, UMR_938, Inserm, Sorbonne université, 75012 Paris, France; Institute of CardioMetabolism and Nutrition, ICAN, Inserm, Sorbonne université, 75013 Paris, France
| | - Jacqueline Capeau
- Centre de recherche Saint-Antoine, UMR_938, Inserm, Sorbonne université, 75012 Paris, France; Institute of CardioMetabolism and Nutrition, ICAN, Inserm, Sorbonne université, 75013 Paris, France
| | - Alexandra Grosfed
- Centre de recherche Saint-Antoine, UMR_938, Inserm, Sorbonne université, 75012 Paris, France; Institute of CardioMetabolism and Nutrition, ICAN, Inserm, Sorbonne université, 75013 Paris, France
| | - Marthe Moldes
- Centre de recherche Saint-Antoine, UMR_938, Inserm, Sorbonne université, 75012 Paris, France; Institute of CardioMetabolism and Nutrition, ICAN, Inserm, Sorbonne université, 75013 Paris, France
| |
Collapse
|
15
|
Kim K, Wann J, Kim HG, So J, Rosen ED, Roh HC. Uncoupling protein 1-driven Cre (Ucp1-Cre) is expressed in the epithelial cells of mammary glands and various non-adipose tissues. Mol Metab 2024; 84:101948. [PMID: 38677508 PMCID: PMC11070624 DOI: 10.1016/j.molmet.2024.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVE Uncoupling protein 1 (UCP1), a mitochondrial protein responsible for nonshivering thermogenesis in adipose tissue, serves as a distinct marker for thermogenic brown and beige adipocytes. Ucp1-Cre mice are thus widely used to genetically manipulate these thermogenic adipocytes. However, evidence suggests that UCP1 may also be expressed in non-adipocyte cell types. In this study, we investigated the presence of UCP1 expression in different mouse tissues that have not been previously reported. METHODS We employed Ucp1-Cre mice crossed with Cre-inducible transgenic reporter Nuclear tagging and Translating Ribosome Affinity Purification (NuTRAP) mice to investigate Ucp1-Cre expression in various tissues of adult female mice and developing embryos. Tamoxifen-inducible Ucp1-CreERT2 mice crossed with NuTRAP mice were used to assess active Ucp1 expression in adult mice. Immunostaining, RNA analysis, and single-cell/nucleus RNA-seq (sc/snRNA-seq) data analysis were performed to determine the expression of endogenous UCP1 and Ucp1-Cre-driven reporter expression. We also investigated the impact of UCP1 deficiency on mammary gland development and function using Ucp1-knockout (KO) mice. RESULTS Ucp1-Cre expression was observed in the mammary glands within the inguinal white adipose tissue of female Ucp1-Cre; NuTRAP mice. Ucp1-Cre was activated during embryonic development in various tissues, including mammary glands, as well as in the brain, kidneys, eyes, and ears, specifically in epithelial cells in these organs. However, Ucp1-CreERT2 showed no or only partial activation in these tissues of adult mice, indicating the potential for low or transient expression of endogenous Ucp1. While sc/snRNA-seq data suggest potential expression of UCP1 in mammary epithelial cells in adult mice and humans, Ucp1-KO female mice displayed normal mammary gland development and function. CONCLUSIONS Our findings reveal widespread Ucp1-Cre expression in various non-adipose tissue types, starting during early development. These results highlight the importance of exercising caution when interpreting data and devising experiments involving Ucp1-Cre mice.
Collapse
Affiliation(s)
- Kyungchan Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jamie Wann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hyeong-Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jisun So
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Hyun Cheol Roh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
16
|
Perugini J, Smorlesi A, Acciarini S, Mondini E, Colleluori G, Pirazzini C, Kwiatkowska KM, Garagnani P, Franceschi C, Zingaretti MC, Dani C, Giordano A, Cinti S. Adipo-Epithelial Transdifferentiation in In Vitro Models of the Mammary Gland. Cells 2024; 13:943. [PMID: 38891075 PMCID: PMC11171678 DOI: 10.3390/cells13110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Subcutaneous adipocytes are crucial for mammary gland epithelial development during pregnancy. Our and others' previous data have suggested that adipo-epithelial transdifferentiation could play a key role in the mammary gland alveolar development. In this study, we tested whether adipo-epithelial transdifferentiation occurs in vitro. Data show that, under appropriate co-culture conditions with mammary epithelial organoids (MEOs), mature adipocytes lose their phenotype and acquire an epithelial one. Interestingly, even in the absence of MEOs, extracellular matrix and diffusible growth factors are able to promote adipo-epithelial transdifferentiation. Gene and protein expression studies indicate that transdifferentiating adipocytes exhibit some characteristics of milk-secreting alveolar glands, including significantly higher expression of milk proteins such as whey acidic protein and β-casein. Similar data were also obtained in cultured human multipotent adipose-derived stem cell adipocytes. A miRNA sequencing experiment on the supernatant highlighted mir200c, which has a well-established role in the mesenchymal-epithelial transition, as a potential player in this phenomenon. Collectively, our data show that adipo-epithelial transdifferentiation can be reproduced in in vitro models where this phenomenon can be investigated at the molecular level.
Collapse
Affiliation(s)
- Jessica Perugini
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Arianna Smorlesi
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Samantha Acciarini
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Eleonora Mondini
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Georgia Colleluori
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Chiara Pirazzini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (C.P.); (K.M.K.); (P.G.); (C.F.)
| | - Katarzyna Malgorzata Kwiatkowska
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (C.P.); (K.M.K.); (P.G.); (C.F.)
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (C.P.); (K.M.K.); (P.G.); (C.F.)
- IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (C.P.); (K.M.K.); (P.G.); (C.F.)
- Laboratory of Systems Medicine of Healthy Aging, Institute of Biology and Biomedicine and Institute of Information Technology, Mathematics and Mechanics, Department of Applied Mathematics, N. I. Lobachevsky State University, 603005 Nizhny Novgorod, Russia
| | - Maria Cristina Zingaretti
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Christian Dani
- Faculté de Médecine, CNRS, INSERM, iBV, Université Côte d’Azur, CEDEX 2, F-06107 Nice, France;
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| |
Collapse
|
17
|
Tahergorabi Z, Lotfi H, Rezaei M, Aftabi M, Moodi M. Crosstalk between obesity and cancer: a role for adipokines. Arch Physiol Biochem 2024; 130:155-168. [PMID: 34644215 DOI: 10.1080/13813455.2021.1988110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Adipose tissue is a complex organ that is increasingly being recognised as the largest endocrine organ in the body. Adipocytes among multiple cell types of adipose tissue can secrete a variety of adipokines, which are involved in signalling pathways and these can be changed by obesity and cancer. There are proposed mechanisms to link obesity/adiposity to cancer development including adipocytokine dysregulation. Among these adipokines, leptin acts through multiple pathways including the STAT3, MAPK, and PI3K pathways involved in cell growth. Adiponectin has the opposite action from leptin in tumour growth partly because of increased apoptotic responses of p53 and Bax. Visfatin increases cancer cell proliferation through ERK1/2, PI3K/AKT, and p38 which are stimulated by proinflammatory cytokines. Omentin through the PI3K/Akt-Nos pathway is involved in cancer-tumour development. Apelin might be involved through angiogenesis in tumour progressions. PAI-1 via its anti-fibrinolytic activity on cell adhesion and uPA/uPAR activity influence cancer cell growth.
Collapse
Affiliation(s)
- Zoya Tahergorabi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Department of Physiology, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamed Lotfi
- Khatamolanbia Hospital, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Maryam Rezaei
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Department of Internal Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Aftabi
- Faculty of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Mitra Moodi
- Social Determinants of Health Research Center, Department of Health Promotion and Education, School of Health, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
18
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
19
|
Fang W, Xie S, Deng W. Epicardial Adipose Tissue: a Potential Therapeutic Target for Cardiovascular Diseases. J Cardiovasc Transl Res 2024; 17:322-333. [PMID: 37848803 DOI: 10.1007/s12265-023-10442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
With increased ageing of the population, cardiovascular disease (CVD) has become the most important factor endangering human health worldwide. Although the treatment of CVD has become increasingly advanced, there are still a considerable number of patients with conditions that have not improved. According to the latest clinical guidelines of the European Cardiovascular Association, obesity has become an independent risk factor for CVD. Adipose tissue includes visceral adipose tissue and subcutaneous adipose tissue. Many previous studies have focused on subcutaneous adipose tissue, but visceral adipose tissue has been rarely studied. However, as a type of visceral adipose tissue, epicardial adipose tissue (EAT) has attracted the attention of researchers because of its unique anatomical and physiological characteristics. This review will systematically describe the physiological characteristics and evaluation methods of EAT and emphasize the important role and treatment measures of EAT in CVD.
Collapse
Affiliation(s)
- Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
20
|
Cani PD, Van Hul M. Gut microbiota in overweight and obesity: crosstalk with adipose tissue. Nat Rev Gastroenterol Hepatol 2024; 21:164-183. [PMID: 38066102 DOI: 10.1038/s41575-023-00867-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 03/02/2024]
Abstract
Overweight and obesity are characterized by excessive fat mass accumulation produced when energy intake exceeds energy expenditure. One plausible way to control energy expenditure is to modulate thermogenic pathways in white adipose tissue (WAT) and/or brown adipose tissue (BAT). Among the different environmental factors capable of influencing host metabolism and energy balance, the gut microbiota is now considered a key player. Following pioneering studies showing that mice lacking gut microbes (that is, germ-free mice) or depleted of their gut microbiota (that is, using antibiotics) developed less adipose tissue, numerous studies have investigated the complex interactions existing between gut bacteria, some of their membrane components (that is, lipopolysaccharides), and their metabolites (that is, short-chain fatty acids, endocannabinoids, bile acids, aryl hydrocarbon receptor ligands and tryptophan derivatives) as well as their contribution to the browning and/or beiging of WAT and changes in BAT activity. In this Review, we discuss the general physiology of both WAT and BAT. Subsequently, we introduce how gut bacteria and different microbiota-derived metabolites, their receptors and signalling pathways can regulate the development of adipose tissue and its metabolic capacities. Finally, we describe the key challenges in moving from bench to bedside by presenting specific key examples.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
21
|
Tsilingiris D, Vallianou NG, Spyrou N, Kounatidis D, Christodoulatos GS, Karampela I, Dalamaga M. Obesity and Leukemia: Biological Mechanisms, Perspectives, and Challenges. Curr Obes Rep 2024; 13:1-34. [PMID: 38159164 PMCID: PMC10933194 DOI: 10.1007/s13679-023-00542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To examine the epidemiological data on obesity and leukemia; evaluate the effect of obesity on leukemia outcomes in childhood acute lymphoblastic leukemia (ALL) survivors; assess the potential mechanisms through which obesity may increase the risk of leukemia; and provide the effects of obesity management on leukemia. Preventive (diet, physical exercise, obesity pharmacotherapy, bariatric surgery) measures, repurposing drugs, candidate therapeutic agents targeting oncogenic pathways of obesity and insulin resistance in leukemia as well as challenges of the COVID-19 pandemic are also discussed. RECENT FINDINGS Obesity has been implicated in the development of 13 cancers, such as breast, endometrial, colon, renal, esophageal cancers, and multiple myeloma. Leukemia is estimated to account for approximately 2.5% and 3.1% of all new cancer incidence and mortality, respectively, while it represents the most frequent cancer in children younger than 5 years. Current evidence indicates that obesity may have an impact on the risk of leukemia. Increased birthweight may be associated with the development of childhood leukemia. Obesity is also associated with worse outcomes and increased mortality in leukemic patients. However, there are several limitations and challenges in meta-analyses and epidemiological studies. In addition, weight gain may occur in a substantial number of childhood ALL survivors while the majority of studies have documented an increased risk of relapse and mortality among patients with childhood ALL and obesity. The main pathophysiological pathways linking obesity to leukemia include bone marrow adipose tissue; hormones such as insulin and the insulin-like growth factor system as well as sex hormones; pro-inflammatory cytokines, such as IL-6 and TNF-α; adipocytokines, such as adiponectin, leptin, resistin, and visfatin; dyslipidemia and lipid signaling; chronic low-grade inflammation and oxidative stress; and other emerging mechanisms. Obesity represents a risk factor for leukemia, being among the only known risk factors that could be prevented or modified through weight loss, healthy diet, and physical exercise. Pharmacological interventions, repurposing drugs used for cardiometabolic comorbidities, and bariatric surgery may be recommended for leukemia and obesity-related cancer prevention.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Nikolaos Spyrou
- Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, 1190 One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | | | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Str, 12462, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527, Athens, Greece.
| |
Collapse
|
22
|
Fortunato IM, Pereira QC, Oliveira FDS, Alvarez MC, dos Santos TW, Ribeiro ML. Metabolic Insights into Caffeine's Anti-Adipogenic Effects: An Exploration through Intestinal Microbiota Modulation in Obesity. Int J Mol Sci 2024; 25:1803. [PMID: 38339081 PMCID: PMC10855966 DOI: 10.3390/ijms25031803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Obesity, a chronic condition marked by the excessive accumulation of adipose tissue, not only affects individual well-being but also significantly inflates healthcare costs. The physiological excess of fat manifests as triglyceride (TG) deposition within adipose tissue, with white adipose tissue (WAT) expansion via adipocyte hyperplasia being a key adipogenesis mechanism. As efforts intensify to address this global health crisis, understanding the complex interplay of contributing factors becomes critical for effective public health interventions and improved patient outcomes. In this context, gut microbiota-derived metabolites play an important role in orchestrating obesity modulation. Microbial lipopolysaccharides (LPS), secondary bile acids (BA), short-chain fatty acids (SCFAs), and trimethylamine (TMA) are the main intestinal metabolites in dyslipidemic states. Emerging evidence highlights the microbiota's substantial role in influencing host metabolism and subsequent health outcomes, presenting new avenues for therapeutic strategies, including polyphenol-based manipulations of these microbial populations. Among various agents, caffeine emerges as a potent modulator of metabolic pathways, exhibiting anti-inflammatory, antioxidant, and obesity-mitigating properties. Notably, caffeine's anti-adipogenic potential, attributed to the downregulation of key adipogenesis regulators, has been established. Recent findings further indicate that caffeine's influence on obesity may be mediated through alterations in the gut microbiota and its metabolic byproducts. Therefore, the present review summarizes the anti-adipogenic effect of caffeine in modulating obesity through the intestinal microbiota and its metabolites.
Collapse
Affiliation(s)
- Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Fabricio de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| |
Collapse
|
23
|
Takahashi H, Ito R, Matsumura Y, Sakai J. Environmental factor reversibly determines cellular identity through opposing Integrators that unify epigenetic and transcriptional pathways. Bioessays 2024; 46:e2300084. [PMID: 38013256 DOI: 10.1002/bies.202300084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Organisms must adapt to environmental stresses to ensure their survival and prosperity. Different types of stresses, including thermal, mechanical, and hypoxic stresses, can alter the cellular state that accompanies changes in gene expression but not the cellular identity determined by a chromatin state that remains stable throughout life. Some tissues, such as adipose tissue, demonstrate remarkable plasticity and adaptability in response to environmental cues, enabling reversible cellular identity changes; however, the mechanisms underlying these changes are not well understood. We hypothesized that positive and/or negative "Integrators" sense environmental cues and coordinate the epigenetic and transcriptional pathways required for changes in cellular identity. Adverse environmental factors such as pollution disrupt the coordinated control contributing to disease development. Further research based on this hypothesis will reveal how organisms adapt to fluctuating environmental conditions, such as temperature, extracellular matrix stiffness, oxygen, cytokines, and hormonal cues by changing their cellular identities.
Collapse
Grants
- JP20gm1310007 Japan Agency for Medical Research and Development
- JP16H06390 Ministry of Education, Culture, Sports, Science and Technology
- JP21H04826 Ministry of Education, Culture, Sports, Science and Technology
- JP20H04835 Ministry of Education, Culture, Sports, Science and Technology
- JP20K21747 Ministry of Education, Culture, Sports, Science and Technology
- JP22K18411 Ministry of Education, Culture, Sports, Science and Technology
- JP21K21211 Ministry of Education, Culture, Sports, Science and Technology
- JP19J11909 Ministry of Education, Culture, Sports, Science and Technology
- JPMJPF2013 Japan Science and Technology Agency
Collapse
Affiliation(s)
- Hiroki Takahashi
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ryo Ito
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihiro Matsumura
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Juro Sakai
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Yu X, Zhang T, Cheng X, Ma L. Breast cancer cells and adipocytes in hypoxia: metabolism regulation. Discov Oncol 2024; 15:11. [PMID: 38236337 PMCID: PMC10796890 DOI: 10.1007/s12672-024-00865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024] Open
Abstract
Adipocytes play a significant role in breast cancer due to the unique histological structure of the breast. These have not only been detected adjacent to breast cancer cells but they have also been implicated in cancer development. Adipocytes in obese individuals and tumor microenvironment (TME) have a common feature, that is, hypoxia. The increased expression of hypoxia-inducible factor (HIF)-1α is known to alter the metabolism and functions of adipocytes. In this study, we described the mechanism linking the hypoxia-sensing pathway manifested by HIF to adipocytes and breast cancer and discussed the mechanism underlying the role of hypoxic adipocytes in breast cancer development from the perspective of metabolic remodeling. The processes and pathways in hypoxic adipocytes could be a promising target in breast cancer therapy.
Collapse
Affiliation(s)
- Xin Yu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tianqi Zhang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaozhi Cheng
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li Ma
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
25
|
Brezak M, Kubec L, Sumbalova Koledova Z. Differentiation of Fibroblasts to Adipocytes in 3D for a Co-culture with Mammary Organoids and Immunohistological Analysis. Methods Mol Biol 2024; 2764:131-144. [PMID: 38393592 DOI: 10.1007/978-1-0716-3674-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Mammary epithelial ducts, the main functional compartment of the mammary gland, are embedded in an adipocyte-rich stroma, which is essential for proper mammary gland development, function, and tissue homeostasis. Moreover, the adipocyte compartment has an important role in cancer progression. To better understand cell-to-cell interactions and the role of the adipocytes in the mammary gland, development of proper in vitro models which realistically mimic in vivo conditions has been essential. In this chapter, we describe a simple and effective method for generating mammary gland adipocytes from mammary fibroblasts and their subsequent co-culture with mammary epithelial organoids to further investigate the role of adipocytes in epithelial development and morphogenesis.
Collapse
Affiliation(s)
- Matea Brezak
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lukas Kubec
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Sumbalova Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Laboratory of Tissue Morphogenesis and Cancer, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
26
|
Pontes LPP, Alves Nakakura FC, Neto NIP, Boldarine VT, Maza PK, Santos PF, Avila F, Silva-Neto AF, Antunes HKM, Dâmaso AR, Oyama LM. Resistance and Aerobic Training Were Effective in Activating Different Markers of the Browning Process in Obesity. Int J Mol Sci 2023; 25:275. [PMID: 38203446 PMCID: PMC10778972 DOI: 10.3390/ijms25010275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Lifestyle changes regarding diet composition and exercise training have been widely used as a non-pharmacological clinical strategy in the treatment of obesity, a complex and difficult-to-control disease. Taking the potential of exercise in the browning process and in increasing thermogenesis into account, the aim of this paper was to evaluate the effect of resistance, aerobic, and combination training on markers of browning of white adipose tissue from rats with obesity who were switched to a balanced diet with normal calorie intake. Different types of training groups promote a reduction in the adipose tissue and delta mass compared to the sedentary high-fat diet group (HS). Interestingly, irisin in adipose tissues was higher in the resistance exercise (RE) and aerobic exercise (AE) groups compared to control groups. Moreover, in adipose tissue, the fibroblast growth factor 21 (FGF21), coactivator 1 α (PGC1α), and peroxisome proliferator-activated receptor gamma (PPARγ) were higher in response to resistance training RE compared with the control groups, respectively. Additionally, uncoupling protein 1 (UCP1) showed higher levels in response to group AE compared to the HS group. In conclusion, the browning process in white adipose tissue responds differently toward different training exercise protocols, with resistance and aerobic training efficient in activating different biomarkers of the browning process, upregulating irisin, FGF21, PGC1α, PPARγ, and UCP1 in WAT, which together may suggest an improvement in the thermogenic process in the adipose tissue. Considering the experimental conditions of the present investigation, we suggest future research to pave new avenues to be applied in clinical practices to combat obesity.
Collapse
Affiliation(s)
- Lidia Passinho Paz Pontes
- Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo 04023060, Brazil; (L.P.P.P.); (F.C.A.N.); (N.I.P.N.); (V.T.B.); (P.K.M.); (P.F.S.); (F.A.); (A.F.S.-N.); (A.R.D.)
| | - Fernanda Cristina Alves Nakakura
- Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo 04023060, Brazil; (L.P.P.P.); (F.C.A.N.); (N.I.P.N.); (V.T.B.); (P.K.M.); (P.F.S.); (F.A.); (A.F.S.-N.); (A.R.D.)
| | - Nelson Inácio Pinto Neto
- Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo 04023060, Brazil; (L.P.P.P.); (F.C.A.N.); (N.I.P.N.); (V.T.B.); (P.K.M.); (P.F.S.); (F.A.); (A.F.S.-N.); (A.R.D.)
| | - Valter Tadeu Boldarine
- Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo 04023060, Brazil; (L.P.P.P.); (F.C.A.N.); (N.I.P.N.); (V.T.B.); (P.K.M.); (P.F.S.); (F.A.); (A.F.S.-N.); (A.R.D.)
| | - Paloma Korehisa Maza
- Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo 04023060, Brazil; (L.P.P.P.); (F.C.A.N.); (N.I.P.N.); (V.T.B.); (P.K.M.); (P.F.S.); (F.A.); (A.F.S.-N.); (A.R.D.)
| | - Paloma Freire Santos
- Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo 04023060, Brazil; (L.P.P.P.); (F.C.A.N.); (N.I.P.N.); (V.T.B.); (P.K.M.); (P.F.S.); (F.A.); (A.F.S.-N.); (A.R.D.)
| | - Felipe Avila
- Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo 04023060, Brazil; (L.P.P.P.); (F.C.A.N.); (N.I.P.N.); (V.T.B.); (P.K.M.); (P.F.S.); (F.A.); (A.F.S.-N.); (A.R.D.)
| | - Artur Francisco Silva-Neto
- Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo 04023060, Brazil; (L.P.P.P.); (F.C.A.N.); (N.I.P.N.); (V.T.B.); (P.K.M.); (P.F.S.); (F.A.); (A.F.S.-N.); (A.R.D.)
| | - Hanna Karen Moreira Antunes
- Department of Psychobiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo 04023060, Brazil;
| | - Ana Raimunda Dâmaso
- Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo 04023060, Brazil; (L.P.P.P.); (F.C.A.N.); (N.I.P.N.); (V.T.B.); (P.K.M.); (P.F.S.); (F.A.); (A.F.S.-N.); (A.R.D.)
| | - Lila Missae Oyama
- Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo 04023060, Brazil; (L.P.P.P.); (F.C.A.N.); (N.I.P.N.); (V.T.B.); (P.K.M.); (P.F.S.); (F.A.); (A.F.S.-N.); (A.R.D.)
| |
Collapse
|
27
|
Palacios-Marin I, Serra D, Jiménez-Chillarón JC, Herrero L, Todorčević M. Childhood obesity: Implications on adipose tissue dynamics and metabolic health. Obes Rev 2023; 24:e13627. [PMID: 37608466 DOI: 10.1111/obr.13627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/24/2023]
Abstract
Obesity is the leading risk factor for the development of type 2 diabetes and cardiovascular diseases. Childhood obesity represents an alarming health challenge because children with obesity are prone to remain with obesity throughout their life and have an increased morbidity and mortality risk. The ability of adipose tissue to store lipids and expand in size during excessive calorie intake is its most remarkable characteristic. Cellular and lipid turnovers determine adipose tissue size and are closely related with metabolic status. The mechanisms through which adipose tissue expands and how this affects systemic metabolic homeostasis are still poorly characterized. Furthermore, the mechanism through which increased adiposity extends from childhood to adulthood and its implications in metabolic health are in most part, still unknown. More studies on adipose tissue development in healthy and children with obesity are urgently needed. In the present review, we summarize the dynamics of white adipose tissue, from developmental origins to the mechanisms that allows it to grow and expand throughout lifetime and during obesity in children and in different mouse models used to address this largely unknown field. Specially, highlighting the role that excessive adiposity during the early life has on future's adipose tissue dynamics and individual's health.
Collapse
Affiliation(s)
- Ivonne Palacios-Marin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep C Jiménez-Chillarón
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Physiological Sciences, School of Medicine, Universitat de Barcelona, L'Hospitalet de Llobregat, Catalonia, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marijana Todorčević
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
28
|
Kim K, Wann J, Kim HG, So J, Rosen ED, Roh HC. Uncoupling protein 1-driven Cre ( Ucp1-Cre) is expressed in the epithelial cells of mammary glands and various non-adipose tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563175. [PMID: 37905088 PMCID: PMC10614976 DOI: 10.1101/2023.10.19.563175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Objective Uncoupling protein 1 (UCP1), a mitochondrial protein responsible for nonshivering thermogenesis in adipose tissue, serves as a distinct marker for thermogenic brown and beige adipocytes. Ucp1-Cre mice are thus widely used to genetically manipulate these thermogenic adipocytes. However, evidence suggests that UCP1 may also be expressed in non-adipocyte cell types. In this study, we investigated the presence of UCP1 expression in different mouse tissues that have not been previously reported. Methods We employed Ucp1-Cre mice crossed with Cre-inducible transgenic reporter Nuclear tagging and Translating Ribosome Affinity Purification (NuTRAP) mice, to investigate Ucp1-Cre expression in various tissues of adult female mice and developing embryos. Tamoxifen-inducible Ucp1-CreERT2 mice crossed with NuTRAP mice were used to assess active UCP1 expression. Immunostaining, RNA analysis, and single-cell/nucleus RNA-seq (sc/snRNA-seq) data analysis were performed to determine the expression of endogenous UCP1 and Ucp1-Cre-driven reporter expression. We also investigated the impact of UCP1 deficiency on mammary gland development and function using Ucp1-knockout (KO) mice. Results Ucp1-Cre expression was observed in the mammary glands within the inguinal white adipose tissue of female Ucp1-Cre; NuTRAP mice. However, endogenous Ucp1 was not actively expressed as Ucp1-CreERT2 failed to induce the reporter expression in the mammary glands. Ucp1-Cre was activated during embryonic development in various tissues, including mammary glands, as well as in the brain, kidneys, eyes, and ears, specifically in epithelial cells in these organs. While sc/snRNA-seq data suggest potential expression of UCP1 in mammary epithelial cells in adult mice and humans, Ucp1-KO female mice displayed normal mammary gland development and function. Conclusions Our findings reveal widespread Ucp1-Cre expression in various non-adipose tissue types, starting during early development. These results highlight the importance of exercising caution when interpreting data and devising experiments involving Ucp1-Cre mice.
Collapse
Affiliation(s)
- Kyungchan Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jamie Wann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hyeong-Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jisun So
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Evan D. Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Hyun Cheol Roh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
29
|
Fan Y, Jin L, He Z, Wei T, Luo T, Zhang J, Liu C, Dai C, A C, Liang Y, Tao X, Lv X, Gu Y, Li M. A cell transcriptomic profile provides insights into adipocytes of porcine mammary gland across development. J Anim Sci Biotechnol 2023; 14:126. [PMID: 37805503 PMCID: PMC10560433 DOI: 10.1186/s40104-023-00926-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/03/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Studying the composition and developmental mechanisms in mammary gland is crucial for healthy growth of newborns. The mammary gland is inherently heterogeneous, and its physiological function dependents on the gene expression of multiple cell types. Most studies focused on epithelial cells, disregarding the role of neighboring adipocytes. RESULTS Here, we constructed the largest transcriptomic dataset of porcine mammary gland cells thus far. The dataset captured 126,829 high-quality nuclei from physiological mammary glands across five developmental stages (d 90 of gestation, G90; d 0 after lactation, L0; d 20 after lactation, L20; 2 d post natural involution, PI2; 7 d post natural involution, PI7). Seven cell types were identified, including epithelial cells, adipocytes, endothelial cells, fibroblasts cells, immune cells, myoepithelial cells and precursor cells. Our data indicate that mammary glands at different developmental stages have distinct phenotypic and transcriptional signatures. During late gestation (G90), the differentiation and proliferation of adipocytes were inhibited. Meanwhile, partly epithelial cells were completely differentiated. Pseudo-time analysis showed that epithelial cells undergo three stages to achieve lactation, including cellular differentiation, hormone sensing, and metabolic activation. During lactation (L0 and L20), adipocytes area accounts for less than 0.5% of mammary glands. To maintain their own survival, the adipocyte exhibited a poorly differentiated state and a proliferative capacity. Epithelial cells initiate lactation upon hormonal stimulation. After fulfilling lactation mission, their undergo physiological death under high intensity lactation. Interestingly, the physiological dead cells seem to be actively cleared by immune cells via CCL21-ACKR4 pathway. This biological process may be an important mechanism for maintaining homeostasis of the mammary gland. During natural involution (PI2 and PI7), epithelial cell populations dedifferentiate into mesenchymal stem cells to maintain the lactation potential of mammary glands for the next lactation cycle. CONCLUSION The molecular mechanisms of dedifferentiation, proliferation and redifferentiation of adipocytes and epithelial cells were revealed from late pregnancy to natural involution. This cell transcriptomic profile constitutes an essential reference for future studies in the development and remodeling of the mammary gland at different stages.
Collapse
Affiliation(s)
- Yongliang Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, 610041 China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Zhiping He
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Tiantian Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Tingting Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Can Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Changjiu Dai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Chao A
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yan Liang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Xuan Tao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Xuebin Lv
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Yiren Gu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, 610041 China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
30
|
Tang Y, Wang YD, Wang YY, Liao ZZ, Xiao XH. Skeletal muscles and gut microbiota-derived metabolites: novel modulators of adipocyte thermogenesis. Front Endocrinol (Lausanne) 2023; 14:1265175. [PMID: 37867516 PMCID: PMC10588486 DOI: 10.3389/fendo.2023.1265175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Obesity occurs when overall energy intake surpasses energy expenditure. White adipose tissue is an energy storage site, whereas brown and beige adipose tissues catabolize stored energy to generate heat, which protects against obesity and obesity-associated metabolic disorders. Metabolites are substrates in metabolic reactions that act as signaling molecules, mediating communication between metabolic sites (i.e., adipose tissue, skeletal muscle, and gut microbiota). Although the effects of metabolites from peripheral organs on adipose tissue have been extensively studied, their role in regulating adipocyte thermogenesis requires further investigation. Skeletal muscles and intestinal microorganisms are important metabolic sites in the body, and their metabolites play an important role in obesity. In this review, we consolidated the latest research on skeletal muscles and gut microbiota-derived metabolites that potentially promote adipocyte thermogenesis. Skeletal muscles can release lactate, kynurenic acid, inosine, and β-aminoisobutyric acid, whereas the gut secretes bile acids, butyrate, succinate, cinnabarinic acid, urolithin A, and asparagine. These metabolites function as signaling molecules by interacting with membrane receptors or controlling intracellular enzyme activity. The mechanisms underlying the reciprocal exchange of metabolites between the adipose tissue and other metabolic organs will be a focal point in future studies on obesity. Furthermore, understanding how metabolites regulate adipocyte thermogenesis will provide a basis for establishing new therapeutic targets for obesity.
Collapse
Affiliation(s)
- Yi Tang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhe-Zhen Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
31
|
Singh P, Ali SA. Mature white adipocyte plasticity during mammary gland remodelling and cancer. CELL INSIGHT 2023; 2:100123. [PMID: 37771567 PMCID: PMC10522874 DOI: 10.1016/j.cellin.2023.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023]
Abstract
Mammary gland growth and differentiation predominantly rely on stromal-epithelial cellular communication. Specifically, mammary adipocytes play a crucial role in ductal morphogenesis, as well as in the proliferation and differentiation of mammary epithelial cells. The process of lactation entails a reduction in the levels of white adipose tissue associated with the MG, allowing for the expansion of milk-producing epithelial cells. Subsequently, during involution and the regression of the milk-producing unit, adipocyte layers resurface, occupying the vacated space. This dynamic phenomenon underscores the remarkable plasticity and expansion of adipose tissue. Traditionally considered terminally differentiated, adipocytes have recently been found to exhibit plasticity in certain contexts. Unraveling the significance of this cell type within the MG could pave the way for novel approaches to reduce the risk of breast cancer and enhance lactation performance. Moreover, a comprehensive understanding of adipocyte trans- and de-differentiation processes holds promise for the development of innovative therapeutic interventions targeting cancer, fibrosis, obesity, type 2 diabetes, and other related diseases. Additionally, adipocytes may find utility in the realm of regenerative medicine. This review article provides a comprehensive examination of recent advancements in our understanding of MG remodelling, with a specific focus on the tissue-specific functions of adipocytes and their role in the development of cancer. By synthesizing current knowledge in this field, it aims to consolidate our understanding of adipocyte biology within the context of mammary gland biology, thereby fostering further research and discovery in this vital area.
Collapse
Affiliation(s)
- Parul Singh
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, 132001, India
- Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, 132001, India
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center, 69120, Heidelberg, Germany
| |
Collapse
|
32
|
Palacios-Marin I, Serra D, Jimenez-Chillarón J, Herrero L, Todorčević M. Adipose Tissue Dynamics: Cellular and Lipid Turnover in Health and Disease. Nutrients 2023; 15:3968. [PMID: 37764752 PMCID: PMC10535304 DOI: 10.3390/nu15183968] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The alarming increase in obesity and its related metabolic health complications, such as type 2 diabetes, has evolved into a global pandemic. Obesity is mainly characterized by excessive accumulation of adipose tissue, primarily due to an imbalance between energy intake and expenditure. Prolonged positive energy balance leads to the expansion of existing adipocytes (hypertrophy) and/or an increase in preadipocyte and adipocyte number (hyperplasia) to accommodate excess energy intake. However, obesity is not solely defined by increases in adipocyte size and number. The turnover of adipose tissue cells also plays a crucial role in the development and progression of obesity. Cell turnover encompasses the processes of cell proliferation, differentiation, and apoptosis, which collectively regulate the overall cell population within adipose tissue. Lipid turnover represents another critical factor that influences how adipose tissue stores and releases energy. Our understanding of adipose tissue lipid turnover in humans remains limited due to the slow rate of turnover and methodological constraints. Nonetheless, disturbances in lipid metabolism are strongly associated with altered adipose tissue lipid turnover. In obesity, there is a decreased rate of triglyceride removal (lipolysis followed by oxidation), leading to the accumulation of triglycerides over time. This review provides a comprehensive summary of findings from both in vitro and in vivo methods used to study the turnover of adipose cells and lipids in metabolic health and disease. Understanding the mechanisms underlying cellular and lipid turnover in obesity is essential for developing strategies to mitigate the adverse effects of excess adiposity.
Collapse
Affiliation(s)
- Ivonne Palacios-Marin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, E-08950 Barcelona, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Josep Jimenez-Chillarón
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, E-08950 Barcelona, Spain
- Department of Physiological Sciences, School of Medicine, University of Barcelona, E-08907 L’Hospitalet, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Marijana Todorčević
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
33
|
Piłat P, Szpila G, Stojko M, Nocoń J, Smolarczyk J, Żmudka K, Moll M, Hawranek M. Modern and Non-Invasive Methods of Fat Removal. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1378. [PMID: 37629668 PMCID: PMC10456392 DOI: 10.3390/medicina59081378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Adipocytes accumulate triacylglycerols as an energy store, thereby causing an increase in the adipose tissue volume. Weight gain can be prevented through damage to the adipocyte structure or an increase in the body's metabolic rate. Commonly used methods to disintegrate the cell membrane of adipocytes include injection lipolysis, cryolipolysis, ultrasonic lipolysis, radiofrequency lipolysis, laser lipolysis, carboxytherapy, and lipolysis using an electromagnetic field. The names of these methods suggest which substances are being used, and their main advantages are a very low invasiveness, as well as effectiveness. However, new discoveries in medicine, along with individuals' desire to improve their appearance, have resulted in numerous studies on more ways of reducing body fat. Great potential is seen in beige adipocytes, which can be transformed, i.e., "recruited" from white adipocytes, or synthesized de novo; they also show thermogenic properties. One of the stimuli inducing the formation of beige adipocytes is cold and B3-adrenergic stimulation. Based on these findings, the researchers created, for example, cooling clothing. Additionally, curcumin and natural anthocyanins have proven to be helpful in the treatment of obesity and diabetes, by stimulating the secretion of glucagon-like peptide-1, and inducing the formation of beige adipocytes. Another study showed that the conversion of white adipose tissue is indirectly influenced by interleukin-6 secreted by the muscles, the expression of which is increased in people actively exercising. Moreover, there is potential in adenosine analogs, fenoldopam, rhubarb, the herbal extract Ephedra sinica Stapf, electroacupuncture simulation, and the drug CBL-514. Despite knowledge and experience, the ideal method for a quick and noticeable, but safe and non-invasive reduction of body fat has not been found yet. The research conducted nowadays may bring us closer to the development of a universal method, and turn out to be a breakthrough in the fight against overweight and obesity.
Collapse
Affiliation(s)
- Patrycja Piłat
- Student’s Scientific Society, Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (G.S.); (M.S.); (J.N.); (K.Ż.); (M.M.)
- Student’s Scientific Society, III Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Gabriela Szpila
- Student’s Scientific Society, Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (G.S.); (M.S.); (J.N.); (K.Ż.); (M.M.)
| | - Michał Stojko
- Student’s Scientific Society, Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (G.S.); (M.S.); (J.N.); (K.Ż.); (M.M.)
- Student’s Scientific Society, III Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jakub Nocoń
- Student’s Scientific Society, Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (G.S.); (M.S.); (J.N.); (K.Ż.); (M.M.)
| | - Joanna Smolarczyk
- Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 50-055 Katowice, Poland;
| | - Karol Żmudka
- Student’s Scientific Society, Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (G.S.); (M.S.); (J.N.); (K.Ż.); (M.M.)
| | - Martyna Moll
- Student’s Scientific Society, Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (G.S.); (M.S.); (J.N.); (K.Ż.); (M.M.)
| | - Michał Hawranek
- III Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
34
|
Cinti S. Obese Adipocytes Have Altered Redox Homeostasis with Metabolic Consequences. Antioxidants (Basel) 2023; 12:1449. [PMID: 37507987 PMCID: PMC10376822 DOI: 10.3390/antiox12071449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
White and brown adipose tissues are organized to form a real organ, the adipose organ, in mice and humans. White adipocytes of obese animals and humans are hypertrophic. This condition is accompanied by a series of organelle alterations and stress of the endoplasmic reticulum. This stress is mainly due to reactive oxygen species activity and accumulation, lending to NLRP3 inflammasome activation. This last causes death of adipocytes by pyroptosis and the formation of large cellular debris that must be removed by macrophages. During their chronic scavenging activity, macrophages produce several secretory products that have collateral consequences, including interference with insulin receptor activity, causing insulin resistance. The latter is accompanied by an increased noradrenergic inhibitory innervation of Langerhans islets with de-differentiation of beta cells and type 2 diabetes. The whitening of brown adipocytes could explain the different critical death size of visceral adipocytes and offer an explanation for the worse clinical consequence of visceral fat accumulation. White to brown transdifferentiation has been proven in mice and humans. Considering the energy-dispersing activity of brown adipose tissue, transdifferentiation opens new therapeutic perspectives for obesity and related disorders.
Collapse
Affiliation(s)
- Saverio Cinti
- Scientific Director Centre of Obesity, Marche Polytechnic University, Via Tronto 10a, 60126 Ancona, Italy
| |
Collapse
|
35
|
Hanin G, Ferguson-Smith AC. Mammary adipocyte flow cytometry as a tool to study mammary gland biology. FEBS Open Bio 2023; 13:1218-1227. [PMID: 37394996 DOI: 10.1002/2211-5463.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 07/04/2023] Open
Abstract
The mammary gland is a vital exocrine organ that has evolved in mammals to secrete milk and provide nutrition to ensure the growth and survival of the neonate The mouse mammary gland displays extraordinary plasticity each time the female undergoes pregnancy and lactation, including a sophisticated process of tertiary branching and alveologenesis to form a branched epithelial tree and subsequently milk-producing alveoli. Upon the cessation of lactation, the gland remodels back to a simple ductal architecture via highly regulated involution processes. At the cellular level, the plasticity is characterised by proliferation of mammary cell populations, differentiation and apoptosis, accompanied by major changes in cell function and morphology. The mammary epithelium requires a specific stromal environment to grow, known as the mammary fat pad. Mammary adipocytes are one of the most prominent cell types in the fat pad, but despite their vast proportion in the tissue and their crucial interaction with epithelial cells, their physiology remains largely unknown. Over the past decade, the need to understand the properties and contribution of mammary adipocytes has become more recognised. However, the development of adequate methods and protocols to study this cellular niche is still lagging, partially due to their fragile nature, the difficulty of isolating them, the lack of reliable cell surface markers and the heterogenous environment in this tissue, which differs from other adipocyte depots. Here, we describe a new rapid and simple flow cytometry protocol specifically designed for the analysis and isolation of mouse mammary adipocytes across mammary gland developmental stages.
Collapse
Affiliation(s)
- Geula Hanin
- Department of Genetics, University of Cambridge, UK
| | | |
Collapse
|
36
|
Karanfil AS, Louis F, Matsusaki M. Biofabrication of vascularized adipose tissues and their biomedical applications. MATERIALS HORIZONS 2023; 10:1539-1558. [PMID: 36789675 DOI: 10.1039/d2mh01391f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent advances in adipose tissue engineering and cell biology have led to the development of innovative therapeutic strategies in regenerative medicine for adipose tissue reconstruction. To date, the many in vitro and in vivo models developed for vascularized adipose tissue engineering cover a wide range of research areas, including studies with cells of various origins and types, polymeric scaffolds of natural and synthetic derivation, models presented using decellularized tissues, and scaffold-free approaches. In this review, studies on adipose tissue types with different functions, characteristics and body locations have been summarized with 3D in vitro fabrication approaches. The reason for the particular focus on vascularized adipose tissue models is that current liposuction and fat transplantation methods are unsuitable for adipose tissue reconstruction as the lack of blood vessels results in inadequate nutrient and oxygen delivery, leading to necrosis in situ. In the first part of this paper, current studies and applications of white and brown adipose tissues are presented according to the polymeric materials used, focusing on the studies which could show vasculature in vitro and after in vivo implantation, and then the research on adipose tissue fabrication and applications are explained.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|
37
|
Seibt KD, Scheu T, Koch C, Ghaffari MH, Sauerwein H. Ultrasound characterization of mammary gland development in heifer calves fed at two different levels until weaning. Anat Histol Embryol 2023; 52:500-511. [PMID: 36718667 DOI: 10.1111/ahe.12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
Ultrasound technologies allow for a non-invasive assessment of mammary gland (MG) development, the differentiation between the tissue types of the MG, and the evaluation of changes in its composition. This study aimed to work out a detailed description of the different stages of MG development that are visually discernible by ultrasonography for providing a template to classify the different structures. With this basis, the qualitative categorization of the developmental stage, as well as further quantitative assessments via pixel densities in the structures of interest, should be facilitated. Ultrasonic images were acquired from all four quarters of 37 German Holstein heifer calves fed either at a high feeding level of milk replacer (MR; 14% solids) at 10 L/day (1.4 kg MR/day; HI, n = 18) or at a restrictive low level of 5.7 L/day (0.8 kg MR/day; RES, n = 19) until linear weaning from week 13 to 14 of life. Ultrasound MG scans were performed first in week 3 of life, fortnightly from week 8-16, and in week 20 of life, in standing position, of each quarter, using a B-mode ultrasound device equipped with a linear probe (18 MHz). The developmental stages of the mammary gland parenchyma (PAR), visible in ultrasound images, obtained over 20 weeks of life, were categorized, described, and drawn by hand. On this basis, a template for classifying the visible categories of mammary PAR development and its surrounding tissue (SURR), and for measuring their pixel brightness was created thus providing an ultrasonographic atlas of the developing bovine MG, describing 11 categories. The ultrasound images were further classified by PAR structure, and pixel brightness was measured in PAR and SURR by using ImageJ Fiji. The difference in pixel brightness between PAR and SURR, the delta (Δ) pixel value was calculated. With increasing age, higher atlas categories of PAR developmental stages were shown. Pixel values, i.e. the brightness of PAR, its SURR, and Δ pixel value changed with age but were neither affected by the feeding group nor by a group × time interaction. With progressing PAR development, its pixel brightness increased from week 10 to 20 of life, i.e., the PAR became more hyperechoic since it spread and grew into its SURR. The atlas can serve as a template for the categorization and qualitative assessment of MG structures and for the quantitative assessment of PAR's development by measuring pixel brightness. With our study, we could show the structural development in PAR as well as in SURR in MG simultaneously in early life and confirm the spreading of PAR into its SURR by ultrasound scanning.
Collapse
Affiliation(s)
| | - Theresa Scheu
- Educational and Research Centre for Animal Husbandry, Münchweiler an der Alsenz, Germany
| | - Christian Koch
- Educational and Research Centre for Animal Husbandry, Münchweiler an der Alsenz, Germany
| | | | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| |
Collapse
|
38
|
Petito G, Cioffi F, Magnacca N, de Lange P, Senese R, Lanni A. Adipose Tissue Remodeling in Obesity: An Overview of the Actions of Thyroid Hormones and Their Derivatives. Pharmaceuticals (Basel) 2023; 16:ph16040572. [PMID: 37111329 PMCID: PMC10146771 DOI: 10.3390/ph16040572] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic syndrome and obesity have become important health issues of epidemic proportions and are often the cause of related pathologies such as type 2 diabetes (T2DM), hypertension, and cardiovascular disease. Adipose tissues (ATs) are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. An ample body of evidence indicates that in some pathophysiological conditions, the aberrant remodeling of adipose tissue may provoke dysregulation in the production of various adipocytokines and metabolites, thus leading to disorders in metabolic organs. Thyroid hormones (THs) and some of their derivatives, such as 3,5-diiodo-l-thyronine (T2), exert numerous functions in a variety of tissues, including adipose tissues. It is known that they can improve serum lipid profiles and reduce fat accumulation. The thyroid hormone acts on the brown and/or white adipose tissues to induce uncoupled respiration through the induction of the uncoupling protein 1 (UCP1) to generate heat. Multitudinous investigations suggest that 3,3',5-triiodothyronine (T3) induces the recruitment of brown adipocytes in white adipose depots, causing the activation of a process known as "browning". Moreover, in vivo studies on adipose tissues show that T2, in addition to activating brown adipose tissue (BAT) thermogenesis, may further promote the browning of white adipose tissue (WAT), and affect adipocyte morphology, tissue vascularization, and the adipose inflammatory state in rats receiving a high-fat diet (HFD). In this review, we summarize the mechanism by which THs and thyroid hormone derivatives mediate adipose tissue activity and remodeling, thus providing noteworthy perspectives on their efficacy as therapeutic agents to counteract such morbidities as obesity, hypercholesterolemia, hypertriglyceridemia, and insulin resistance.
Collapse
Affiliation(s)
- Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Nunzia Magnacca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
39
|
He T, Wang S, Li S, Shen H, Hou L, Liu Y, Wei Y, Xie F, Zhang Z, Zhao Z, Mo C, Guo H, Huang Q, Zhang R, Shen D, Li B. Suppression of preadipocyte determination by SOX4 limits white adipocyte hyperplasia in obesity. iScience 2023; 26:106289. [PMID: 36968079 PMCID: PMC10030912 DOI: 10.1016/j.isci.2023.106289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Preadipocyte determination expanding the pool of preadipocytes is a vital process in adipocyte hyperplasia, but the molecular mechanisms underlying this process are yet to be elucidated. Herein, SRY-related HMG box transcription factor 4 (SOX4) was identified as a critical target in response to BMP4- and TGFβ-regulated preadipocyte determination. SOX4 deficiency is sufficient to promote preadipocyte determination in mesenchymal stem cells (MSCs) and acquisition of preadipocyte properties in nonadipogenic lineages, while its overexpression impairs the adipogenic capacity of preadipocytes and converts them into nonadipogenic lineages. Mechanism studies indicated that SOX4 activates and cooperates with LEF1 to retain the nuclear localization of β-catenin, thus mediating the crosstalk between TGFβ/BMP4 signaling pathway and Wnt signaling pathway to regulate the preadipocyte determination. In vivo studies demonstrated that SOX4 promotes the adipogenic-nonadipogenic conversion and suppresses the adipocyte hyperplasia. Together, our findings highlight the importance of SOX4 in regulating the adipocyte hyperplasia in obesity.
Collapse
Affiliation(s)
- Ting He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Shuai Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Shengnan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Huanming Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Lingfeng Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Yunjia Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Yixin Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Fuan Xie
- Xiamen University Research Center of Retroperitoneal, Tumor Committee of Oncology Society of Chinese Medical Association, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiming Zhang
- Xiamen Cell Therapy Research Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Zehang Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Chunli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Qingsong Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Rui Zhang
- Xiamen Cell Therapy Research Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
- Corresponding author
| | - Dongyan Shen
- Xiamen Cell Therapy Research Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
- Corresponding author
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
- Corresponding author
| |
Collapse
|
40
|
Świątkiewicz I, Wróblewski M, Nuszkiewicz J, Sutkowy P, Wróblewska J, Woźniak A. The Role of Oxidative Stress Enhanced by Adiposity in Cardiometabolic Diseases. Int J Mol Sci 2023; 24:ijms24076382. [PMID: 37047352 PMCID: PMC10094567 DOI: 10.3390/ijms24076382] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Cardiometabolic diseases (CMDs), including cardiovascular disease (CVD), metabolic syndrome (MetS), and type 2 diabetes (T2D), are associated with increased morbidity and mortality. The growing prevalence of CVD is mostly attributed to the aging population and common occurrence of risk factors, such as high systolic blood pressure, elevated plasma glucose, and increased body mass index, which led to a global epidemic of obesity, MetS, and T2D. Oxidant–antioxidant balance disorders largely contribute to the pathogenesis and outcomes of CMDs, such as systemic essential hypertension, coronary artery disease, stroke, and MetS. Enhanced and disturbed generation of reactive oxygen species in excess adipose tissue during obesity may lead to increased oxidative stress. Understanding the interplay between adiposity, oxidative stress, and cardiometabolic risks can have translational impacts, leading to the identification of novel effective strategies for reducing the CMDs burden. The present review article is based on extant results from basic and clinical studies and specifically addresses the various aspects associated with oxidant–antioxidant balance disorders in the course of CMDs in subjects with excess adipose tissue accumulation. We aim at giving a comprehensive overview of existing knowledge, knowledge gaps, and future perspectives for further basic and clinical research. We provide insights into both the mechanisms and clinical implications of effects related to the interplay between adiposity and oxidative stress for treating and preventing CMDs. Future basic research and clinical trials are needed to further examine the mechanisms of adiposity-enhanced oxidative stress in CMDs and the efficacy of antioxidant therapies for reducing risk and improving outcome of patients with CMDs.
Collapse
|
41
|
Maniyadath B, Zhang Q, Gupta RK, Mandrup S. Adipose tissue at single-cell resolution. Cell Metab 2023; 35:386-413. [PMID: 36889280 PMCID: PMC10027403 DOI: 10.1016/j.cmet.2023.02.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Adipose tissue exhibits remarkable plasticity with capacity to change in size and cellular composition under physiological and pathophysiological conditions. The emergence of single-cell transcriptomics has rapidly transformed our understanding of the diverse array of cell types and cell states residing in adipose tissues and has provided insight into how transcriptional changes in individual cell types contribute to tissue plasticity. Here, we present a comprehensive overview of the cellular atlas of adipose tissues focusing on the biological insight gained from single-cell and single-nuclei transcriptomics of murine and human adipose tissues. We also offer our perspective on the exciting opportunities for mapping cellular transitions and crosstalk, which have been made possible by single-cell technologies.
Collapse
Affiliation(s)
- Babukrishna Maniyadath
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Qianbin Zhang
- Department of Internal Medicine, Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rana K Gupta
- Department of Internal Medicine, Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Susanne Mandrup
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
42
|
Corral A, Alcala M, Carmen Duran-Ruiz M, Arroba AI, Ponce-Gonzalez JG, Todorčević M, Serra D, Calderon-Dominguez M, Herrero L. Role of long non-coding RNAs in adipose tissue metabolism and associated pathologies. Biochem Pharmacol 2022; 206:115305. [DOI: 10.1016/j.bcp.2022.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
|
43
|
Boulet N, Briot A, Galitzky J, Bouloumié A. The Sexual Dimorphism of Human Adipose Depots. Biomedicines 2022; 10:2615. [PMID: 36289874 PMCID: PMC9599294 DOI: 10.3390/biomedicines10102615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 08/21/2023] Open
Abstract
The amount and the distribution of body fat exhibit trajectories that are sex- and human species-specific and both are determinants for health. The enhanced accumulation of fat in the truncal part of the body as a risk factor for cardiovascular and metabolic diseases is well supported by epidemiological studies. In addition, a possible independent protective role of the gluteofemoral fat compartment and of the brown adipose tissue is emerging. The present narrative review summarizes the current knowledge on sexual dimorphism in fat depot amount and repartition and consequences on cardiometabolic and reproductive health. The drivers of the sex differences and fat depot repartition, considered to be the results of complex interactions between sex determination pathways determined by the sex chromosome composition, genetic variability, sex hormones and the environment, are discussed. Finally, the inter- and intra-depot heterogeneity in adipocytes and progenitors, emphasized recently by unbiased large-scale approaches, is highlighted.
Collapse
Affiliation(s)
| | | | | | - Anne Bouloumié
- Inserm, Unité Mixte de Recherche (UMR) 1297, Team 1, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse, F-31432 Toulouse, France
| |
Collapse
|
44
|
Yan XR, Shi T, Xiao JY, Liu YF, Zheng HL. In vitro transdifferentiated signatures of goat preadipocytes into mammary epithelial cells revealed by DNA methylation and transcriptome profiling. J Biol Chem 2022; 298:102604. [PMID: 36257406 PMCID: PMC9668736 DOI: 10.1016/j.jbc.2022.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
During mammary development, the transdifferentiation of mammary preadipocytes is one of the important sources for lactating mammary epithelial cells (MECs). However, there is limited knowledge about the mechanisms of dynamic regulation of transcriptome and genome-wide DNA methylation in the preadipocyte transdifferentiation process. Here, to gain more insight into these mechanisms, preadipocytes were isolated from adipose tissues from around the goat mammary gland (GM-preadipocytes). The GM-preadipocytes were cultured on Matrigel in conditioned media made from goat MECs to induce GM-preadipocyte-to-MEC transdifferentiation. The transdifferentiated GM-preadipocytes showed high abundance of keratin 18, which is a marker protein of MECs, and formed mammary acinar-like structures after 8 days of induction. Then, we performed transcriptome and DNA methylome profiling of the GM-preadipocytes and transdifferentiated GM-preadipocytes, respectively, and the differentially expressed genes and differentially methylated genes that play underlying roles in the process of transdifferentiation were obtained. Subsequently, we identified the candidate transcription factors in regulating the GM-preadipocyte-to-MEC transdifferentiation by transcription factor-binding motif enrichment analysis of differentially expressed genes and differentially methylated genes. Meanwhile, the secretory proteome of GM-preadipocytes cultured in conditioned media was also detected. By integrating the transcriptome, DNA methylome, and proteome, three candidate genes, four proteins, and several epigenetic regulatory axes were further identified, which are involved in regulation of the cell cycle, cell polarity establishment, cell adhesion, cell reprogramming, and adipocyte plasticity. These findings provide novel insights into the molecular mechanism of preadipocyte transdifferentiation and mammary development.
Collapse
|
45
|
Zeng W, Yang F, Shen WL, Zhan C, Zheng P, Hu J. Interactions between central nervous system and peripheral metabolic organs. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1929-1958. [PMID: 35771484 DOI: 10.1007/s11427-021-2103-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
According to Descartes, minds and bodies are distinct kinds of "substance", and they cannot have causal interactions. However, in neuroscience, the two-way interaction between the brain and peripheral organs is an emerging field of research. Several lines of evidence highlight the importance of such interactions. For example, the peripheral metabolic systems are overwhelmingly regulated by the mind (brain), and anxiety and depression greatly affect the functioning of these systems. Also, psychological stress can cause a variety of physical symptoms, such as bone loss. Moreover, the gut microbiota appears to play a key role in neuropsychiatric and neurodegenerative diseases. Mechanistically, as the command center of the body, the brain can regulate our internal organs and glands through the autonomic nervous system and neuroendocrine system, although it is generally considered to be outside the realm of voluntary control. The autonomic nervous system itself can be further subdivided into the sympathetic and parasympathetic systems. The sympathetic division functions a bit like the accelerator pedal on a car, and the parasympathetic division functions as the brake. The high center of the autonomic nervous system and the neuroendocrine system is the hypothalamus, which contains several subnuclei that control several basic physiological functions, such as the digestion of food and regulation of body temperature. Also, numerous peripheral signals contribute to the regulation of brain functions. Gastrointestinal (GI) hormones, insulin, and leptin are transported into the brain, where they regulate innate behaviors such as feeding, and they are also involved in emotional and cognitive functions. The brain can recognize peripheral inflammatory cytokines and induce a transient syndrome called sick behavior (SB), characterized by fatigue, reduced physical and social activity, and cognitive impairment. In summary, knowledge of the biological basis of the interactions between the central nervous system and peripheral organs will promote the full understanding of how our body works and the rational treatment of disorders. Thus, we summarize current development in our understanding of five types of central-peripheral interactions, including neural control of adipose tissues, energy expenditure, bone metabolism, feeding involving the brain-gut axis and gut microbiota. These interactions are essential for maintaining vital bodily functions, which result in homeostasis, i.e., a natural balance in the body's systems.
Collapse
Affiliation(s)
- Wenwen Zeng
- Institute for Immunology, and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China. .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, 100084, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Wei L Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Cheng Zhan
- Department of Hematology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,National Institute of Biological Sciences, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China. .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
46
|
Yin X, Chen Y, Ruze R, Xu R, Song J, Wang C, Xu Q. The evolving view of thermogenic fat and its implications in cancer and metabolic diseases. Signal Transduct Target Ther 2022; 7:324. [PMID: 36114195 PMCID: PMC9481605 DOI: 10.1038/s41392-022-01178-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractThe incidence of metabolism-related diseases like obesity and type 2 diabetes mellitus has reached pandemic levels worldwide and increased gradually. Most of them are listed on the table of high-risk factors for malignancy, and metabolic disorders systematically or locally contribute to cancer progression and poor prognosis of patients. Importantly, adipose tissue is fundamental to the occurrence and development of these metabolic disorders. White adipose tissue stores excessive energy, while thermogenic fat including brown and beige adipose tissue dissipates energy to generate heat. In addition to thermogenesis, beige and brown adipocytes also function as dynamic secretory cells and a metabolic sink of nutrients, like glucose, fatty acids, and amino acids. Accordingly, strategies that activate and expand thermogenic adipose tissue offer therapeutic promise to combat overweight, diabetes, and other metabolic disorders through increasing energy expenditure and enhancing glucose tolerance. With a better understanding of its origins and biological functions and the advances in imaging techniques detecting thermogenesis, the roles of thermogenic adipose tissue in tumors have been revealed gradually. On the one hand, enhanced browning of subcutaneous fatty tissue results in weight loss and cancer-associated cachexia. On the other hand, locally activated thermogenic adipocytes in the tumor microenvironment accelerate cancer progression by offering fuel sources and is likely to develop resistance to chemotherapy. Here, we enumerate current knowledge about the significant advances made in the origin and physiological functions of thermogenic fat. In addition, we discuss the multiple roles of thermogenic adipocytes in different tumors. Ultimately, we summarize imaging technologies for identifying thermogenic adipose tissue and pharmacologic agents via modulating thermogenesis in preclinical experiments and clinical trials.
Collapse
|
47
|
Al Madhoun A, Kochumon S, Al-Rashed F, Sindhu S, Thomas R, Miranda L, Al-Mulla F, Ahmad R. Dectin-1 as a Potential Inflammatory Biomarker for Metabolic Inflammation in Adipose Tissue of Individuals with Obesity. Cells 2022; 11:2879. [PMID: 36139454 PMCID: PMC9496833 DOI: 10.3390/cells11182879] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
In obesity, macrophage activation and infiltration in adipose tissue (AT) underlie chronic low-grade inflammation-induced insulin resistance. Although dectin-1 is primarily a pathogen recognition receptor and innate immune response modulator, its role in metabolic syndromes remains to be clarified. This study aimed to investigate the dectin-1 gene expression in subcutaneous AT in the context of obesity and associated inflammatory markers. Subcutaneous AT biopsies were collected from 59 nondiabetic (lean/overweight/obese) individuals. AT gene expression levels of dectin-1 and inflammatory markers were determined via real-time reverse transcriptase-quantitative polymerase chain reaction. Dectin-1 protein expression was assessed using immunohistochemistry. Plasma lipid profiles were measured by ELISA. AT dectin-1 transcripts and proteins were significantly elevated in obese as compared to lean individuals. AT dectin-1 transcripts correlated positively with body mass index and fat percentage (r ≥ 0.340, p ≤ 0.017). AT dectin-1 RNA levels correlated positively with clinical parameters, including plasma C-reactive protein and CCL5/RANTES, but negatively with that of adiponectin. The expression of dectin-1 transcripts was associated with that of various proinflammatory cytokines, chemokines, and their cognate receptors (r ≥ 0.300, p ≤ 0.05), but not with anti-inflammatory markers. Dectin-1 and members of the TLR signaling cascade were found to be significantly associated, suggesting an interplay between the two pathways. Dectin-1 expression was correlated with monocyte/macrophage markers, including CD16, CD68, CD86, and CD163, suggesting its monocytes/macrophage association in an adipose inflammatory microenvironment. Dectin-1 expression was independently predicted by CCR5, CCL20, TLR2, and MyD88. In conclusion, dectin-1 may be regarded as an AT biomarker of metabolic inflammation in obesity.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Shihab Kochumon
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Reeby Thomas
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Lavina Miranda
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| |
Collapse
|
48
|
Wu Y, Li X, Li Q, Cheng C, Zheng L. Adipose tissue-to-breast cancer crosstalk: Comprehensive insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188800. [PMID: 36103907 DOI: 10.1016/j.bbcan.2022.188800] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
The review focuses on mechanistic evidence for the link between obesity and breast cancer. According to the IARC study, there is sufficient evidence that obesity is closely related to a variety of cancers. Among them, breast cancer is particularly disturbed by adipose tissue due to the unique histological structure of the breast. The review introduces the relationship between obesity and breast cancer from two aspects, including factors that promote tumorigenesis or metastasis. We summarize alterations in adipokines and metabolic pathways that contribute to breast cancer development. Breast cancer metastasis is closely related to obesity-induced pro-inflammatory microenvironment, adipose stem cells, and miRNAs. Based on the mechanism by which obesity causes breast cancer, we list possible therapeutic directions, including reducing the risk of breast cancer and inhibiting the progression of breast cancer. We also discussed the risk of autologous breast remodeling and fat transplantation. Finally, the causes of the obesity paradox and the function of enhancing immunity are discussed. Evaluating the balance between obesity-induced inflammation and enhanced immunity warrants further study.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Xu Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Qiong Li
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Chienshan Cheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China.
| |
Collapse
|
49
|
Li H, Konja D, Wang L, Wang Y. Sex Differences in Adiposity and Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23169338. [PMID: 36012601 PMCID: PMC9409326 DOI: 10.3390/ijms23169338] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Body fat distribution is a well-established predictor of adverse medical outcomes, independent of overall adiposity. Studying body fat distribution sheds insights into the causes of obesity and provides valuable information about the development of various comorbidities. Compared to total adiposity, body fat distribution is more closely associated with risks of cardiovascular diseases. The present review specifically focuses on the sexual dimorphism in body fat distribution, the biological clues, as well as the genetic traits that are distinct from overall obesity. Understanding the sex determinations on body fat distribution and adiposity will aid in the improvement of the prevention and treatment of cardiovascular diseases (CVD).
Collapse
|
50
|
Peraldi P, Loubat A, Chignon-Sicard B, Dani C, Ladoux A. Identification of Human Breast Adipose Tissue Progenitors Displaying Distinct Differentiation Potentials and Interactions with Cancer Cells. Biomedicines 2022; 10:biomedicines10081928. [PMID: 36009475 PMCID: PMC9406003 DOI: 10.3390/biomedicines10081928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Breast adipose tissue (AT) participates in the physiological evolution and remodeling of the mammary gland due to its high plasticity. It is also a favorable microenvironment for breast cancer progression. However, information on the properties of human breast adipose progenitor cells (APCs) involved in breast physiology or pathology is scant. We performed differential enzymatic dissociation of human breast AT lobules. We isolated and characterized two populations of APCs. Here we report that these distinct breast APC populations selectively expressed markers suitable for characterization. The population preferentially expressing ALPL (MSCA1) showed higher adipogenic potential. The population expressing higher levels of INHBA and CD142 acquired myofibroblast characteristics upon TGF-β treatment and a myo-cancer-associated fibroblast profile in the presence of breast cancer cells. This population expressed the immune checkpoint CD274 (PD-L1) and facilitated the expansion of breast cancer mammospheres compared with the adipogenic population. Indeed, the breast, as with other fat depots, contains distinct types of APCs with differences in their ability to specialize. This indicates that they were differentially involved in breast remodeling. Their interactions with breast cancer cells revealed differences in the potential for tumor dissemination and estrogen receptor expression, and these differences might be relevant to improve therapies targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Pascal Peraldi
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
| | - Agnès Loubat
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
| | - Bérengère Chignon-Sicard
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
- Department of Plastic and Reconstructive Surgery, Pasteur 2 Hospital, Université Côte d’Azur, 06107 Nice, France
| | - Christian Dani
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
| | - Annie Ladoux
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
- CNRS, Institute of Biology Valrose (iBV), University of Nice Sophia-Antipolis, 28 Avenue de Valombrose, CEDEX 2, 06107 Nice, France
- Correspondence:
| |
Collapse
|