1
|
Azil S, Mbaye MM, Louanjli N, Ghazi B, Benkhalifa M. Phospholipase C zeta: a hidden face of sperm for oocyte activation and early embryonic development. Obstet Gynecol Sci 2024; 67:467-480. [PMID: 39086217 PMCID: PMC11424188 DOI: 10.5468/ogs.24019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/10/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Oocyte activation is a fundamental event in mammalian fertilization and is initiated by a cascade of calcium signaling and oscillation pathways. Phospholipase C zeta (PLCζ) is involved in modulating cortical granule exocytosis, releasing oocyte meiotic arrest, regulating gene expression, and early embryogenesis. These processes are considered to be initiated and controlled by PLCζ activity via the inositol-1,4,5-triphosphate pathway. The decrease or absence of functional PLCζ due to mutational defects in protein expression or maintenance can impair male fertility. In this literature review, we highlight the significance of PLCζ as a sperm factor involved in oocyte activation, its mechanism of action, the signaling pathway involved, and its close association with oocyte activation. Finally, we discuss the relationship between male infertility and PLCζ deficiency.
Collapse
Affiliation(s)
- Soukaina Azil
- Department of Faculty of Medicine, Mohammed VI University of Health and Sciences, Casablanca, Morocco
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Mohammed VI Center for Research & Innovation, Casablanca, Morocco
- IVF Center IRIFIV, Iris Clinic, Casablanca, Morocco
- Labomac IVF Centers and Clinical Laboratory Medicine, Casablanca, Morocco
| | - Modou Mamoune Mbaye
- Department of Faculty of Medicine, Mohammed VI University of Health and Sciences, Casablanca, Morocco
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Mohammed VI Center for Research & Innovation, Casablanca, Morocco
- IVF Center IRIFIV, Iris Clinic, Casablanca, Morocco
- Labomac IVF Centers and Clinical Laboratory Medicine, Casablanca, Morocco
| | - Noureddine Louanjli
- IVF Center IRIFIV, Iris Clinic, Casablanca, Morocco
- Labomac IVF Centers and Clinical Laboratory Medicine, Casablanca, Morocco
| | - Bouchra Ghazi
- Department of Faculty of Medicine, Mohammed VI University of Health and Sciences, Casablanca, Morocco
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Mohammed VI Center for Research & Innovation, Casablanca, Morocco
| | - Moncef Benkhalifa
- Reproductive Medicine, Developmental and Reproductive Biology, Regional University Hospital & School of Medicine and Peritox Laboratory, Picardie University Jules Verne, Amiens, France
| |
Collapse
|
2
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
3
|
Ai JY, Liu CF, Zhang W, Rao GW. Current status of drugs targeting PDGF/PDGFR. Drug Discov Today 2024; 29:103989. [PMID: 38663580 DOI: 10.1016/j.drudis.2024.103989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/30/2024]
Abstract
As an important proangiogenic factor, platelet-derived growth factor (PDGF) and its receptor PDGFR are highly expressed in a variety of tumors, fibrosis, cardiovascular and neurodegenerative diseases. Targeting the PDGF/PDGFR pathway is therefore a promising therapeutic strategy. At present, a variety of PDGF/PDGFR targeted drugs with potential therapeutic effects have been developed, mainly including PDGF agonists, inhibitors targeting PDGFR and proteolysis targeting chimera (PROTACs). This review clarifies the structure, biological function and disease correlation of PDGF and PDGFR, and it discusses the current status of PDGFR-targeted drugs, so as to provide a reference for subsequent research.
Collapse
Affiliation(s)
- Jing-Yan Ai
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chen-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
4
|
Arabiotorre A, Bankaitis VA, Grabon A. Regulation of phosphoinositide metabolism in Apicomplexan parasites. Front Cell Dev Biol 2023; 11:1163574. [PMID: 37791074 PMCID: PMC10543664 DOI: 10.3389/fcell.2023.1163574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/11/2023] [Indexed: 10/05/2023] Open
Abstract
Phosphoinositides are a biologically essential class of phospholipids that contribute to organelle membrane identity, modulate membrane trafficking pathways, and are central components of major signal transduction pathways that operate on the cytosolic face of intracellular membranes in eukaryotes. Apicomplexans (such as Toxoplasma gondii and Plasmodium spp.) are obligate intracellular parasites that are important causative agents of disease in animals and humans. Recent advances in molecular and cell biology of Apicomplexan parasites reveal important roles for phosphoinositide signaling in key aspects of parasitosis. These include invasion of host cells, intracellular survival and replication, egress from host cells, and extracellular motility. As Apicomplexans have adapted to the organization of essential signaling pathways to accommodate their complex parasitic lifestyle, these organisms offer experimentally tractable systems for studying the evolution, conservation, and repurposing of phosphoinositide signaling. In this review, we describe the regulatory mechanisms that control the spatial and temporal regulation of phosphoinositides in the Apicomplexan parasites Plasmodium and T. gondii. We further discuss the similarities and differences presented by Apicomplexan phosphoinositide signaling relative to how these pathways are regulated in other eukaryotic organisms.
Collapse
Affiliation(s)
- Angela Arabiotorre
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
| | - Vytas A. Bankaitis
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
- Department of Biochemistry and Biophysics Texas A&M University College Station, College Station, TX, United States
- Department of Chemistry Texas A&M University College Station, College Station, TX, United States
| | - Aby Grabon
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
| |
Collapse
|
5
|
Fang Y, Jiang J, Ding H, Li X, Xie X. Phospholipase C: Diverse functions in plant biotic stress resistance and fungal pathogenicity. MOLECULAR PLANT PATHOLOGY 2023; 24:1192-1202. [PMID: 37119461 PMCID: PMC10423330 DOI: 10.1111/mpp.13343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Phospholipase C (PLC) generates various second messenger molecules and mediates phospholipid hydrolysis. In recent years, the important roles of plant and fungal PLC in disease resistance and pathogenicity, respectively, have been determined. However, the roles of PLC in plants and fungi are unintegrated and relevant literature is disorganized. This makes it difficult for researchers to implement PLC-based strategies to improve disease resistance in plants. In this comprehensive review, we summarize the structure, classification, and phylogeny of the PLCs involved in plant biotic stress resistance and fungal pathogenicity. PLCs can be divided into two groups, nonspecific PLC (NPC) and phosphatidylinositol-specific PLC (PI-PLC), which present marked differences in phylogenetic evolution. The products of PLC genes in fungi play significant roles in physiological activity and pathogenesis, whereas those encoded by plant PLC genes mediate the immune response to fungi. This review provides a perspective for the future control of plant fungal diseases.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Guizhou UniversityGuiyangChina
| | - Haixia Ding
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Guizhou UniversityGuiyangChina
| | - Xin Xie
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| |
Collapse
|
6
|
Ding Y, Dang B, Zhang Y, Hu S, Wang Y, Zhao C, Zhang T, Gao Z. Paeonol attenuates Substance P-induced urticaria by inhibiting Src kinase phosphorylation in mast cells. Cell Immunol 2023; 388-389:104728. [PMID: 37224634 DOI: 10.1016/j.cellimm.2023.104728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Treatment of chronic urticaria is challenging, the discovery of effective therapeutic drugs is urgently in demand. PURPOSE To study the effect and mechanism of Paeonol targeting mast cells and its therapeutic effect on chronic urticaria. STUDY DESIGN We developed a chronic urticaria model in vivo and mast cell model in vitro examined the effect of Paeonol in the treatment of chronic urticaria and its mechanism of action in mast cells. METHOD The anti-anaphylactoid effect of Paeonol was evaluated in PCA and systemic anaphylaxis models. The treatment role of Paeonol was studied in urticaria model. The release of cytokines and chemokines was measured using enzyme immunoassay kits. Western blot analysis was conducted to investigate phosphorylation of Src, PI3K, and PLC. In vitro kinase assays were conducted to investigate the kinase activity of Lyn, PLC, PI3K and Src. RESULTS In our study, Paeonol was able to attenuate evans blue leakage, serum histamine and chemokine release in a passive skin allergic reaction model. Simultaneously, Paeonol inhibited vasodilation and mast cell degranulation in C57BL/6 mice. Further research found that Paeonol alleviated symptoms such as erythema and rash in the Substance P-induced urticaria model, this is accompanied by inhibiting the release of related inflammatory factors. Validation experiments on mast cells in vitro found that Paeonol inhibited the activation of Src-PI3K/Lyn-PLC-NF-κB signaling pathway by crosslinking with Src kinase. Moreover, calcium influx, mast cell degranulation, cytokines generation and chemotaxis were reduced in LAD2 cells. Molecular docking experiments revealed that Paeonol is a specific antagonist targeting Src kinase in the treatment of skin diseases such as urticaria. CONCLUSION Paeonol, a herb-derived phenolic compound, can provide drug candidate for developing new drug in treatment of skin disease such as urticaria. SIGNIFICANCE STATEMENT In this study, we primarily examined the effect of Paeonol in the treatment of chronic urticaria and its mechanism of action in mast cells. Interestingly, Paeonol was found to regulate Src kinase activity downstream of MRGPRX2 triggered signaling cascade in mast cells. Therefore, this plant-derived phenolic compound may provide a therapeutic option for the treatment of chronic urticaria.
Collapse
Affiliation(s)
- Yuanyuan Ding
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Baowen Dang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yonghui Zhang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Shiting Hu
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuejin Wang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chenrui Zhao
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tao Zhang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zijun Gao
- Department of Anesthesiology, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
7
|
Singh V, Rai R, Mathew BJ, Chourasia R, Singh AK, Kumar A, Chaurasiya SK. Phospholipase C: underrated players in microbial infections. Front Cell Infect Microbiol 2023; 13:1089374. [PMID: 37139494 PMCID: PMC10149971 DOI: 10.3389/fcimb.2023.1089374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/21/2023] [Indexed: 05/05/2023] Open
Abstract
During bacterial infections, one or more virulence factors are required to support the survival, growth, and colonization of the pathogen within the host, leading to the symptomatic characteristic of the disease. The outcome of bacterial infections is determined by several factors from both host as well as pathogen origin. Proteins and enzymes involved in cellular signaling are important players in determining the outcome of host-pathogen interactions. phospholipase C (PLCs) participate in cellular signaling and regulation by virtue of their ability to hydrolyze membrane phospholipids into di-acyl-glycerol (DAG) and inositol triphosphate (IP3), which further causes the activation of other signaling pathways involved in various processes, including immune response. A total of 13 PLC isoforms are known so far, differing in their structure, regulation, and tissue-specific distribution. Different PLC isoforms have been implicated in various diseases, including cancer and infectious diseases; however, their roles in infectious diseases are not clearly understood. Many studies have suggested the prominent roles of both host and pathogen-derived PLCs during infections. PLCs have also been shown to contribute towards disease pathogenesis and the onset of disease symptoms. In this review, we have discussed the contribution of PLCs as a determinant of the outcome of host-pathogen interaction and pathogenesis during bacterial infections of human importance.
Collapse
Affiliation(s)
- Vinayak Singh
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Rupal Rai
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Bijina J. Mathew
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Rashmi Chourasia
- Department of Chemistry, IES University, Bhopal, Madhya Pradesh, India
| | - Anirudh K. Singh
- School of Sciences, SAM Global University, Raisen, Madhya Pradesh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| | - Shivendra K. Chaurasiya
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
- *Correspondence: Shivendra K. Chaurasiya,
| |
Collapse
|
8
|
MAS-related G protein-coupled receptors X (MRGPRX): Orphan GPCRs with potential as targets for future drugs. Pharmacol Ther 2022; 238:108259. [DOI: 10.1016/j.pharmthera.2022.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
|
9
|
Phoenix KN, Yue Z, Yue L, Cronin CG, Liang BT, Hoeppner LH, Claffey KP. PLCβ2 Promotes VEGF-Induced Vascular Permeability. Arterioscler Thromb Vasc Biol 2022; 42:1229-1241. [PMID: 35861069 PMCID: PMC9492642 DOI: 10.1161/atvbaha.122.317645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Regulation of vascular permeability is critical to maintaining tissue metabolic homeostasis. VEGF (vascular endothelial growth factor) is a key stimulus of vascular permeability in acute and chronic diseases including ischemia reperfusion injury, sepsis, and cancer. Identification of novel regulators of vascular permeability would allow for the development of effective targeted therapeutics for patients with unmet medical need. METHODS In vitro and in vivo models of VEGFA-induced vascular permeability, pathological permeability, quantitation of intracellular calcium release and cell entry, and phosphatidylinositol 4,5-bisphosphate levels were evaluated with and without modulation of PLC (phospholipase C) β2. RESULTS Global knock-out of PLCβ2 in mice resulted in blockade of VEGFA-induced vascular permeability in vivo and transendothelial permeability in primary lung endothelial cells. Further work in an immortalized human microvascular cell line modulated with stable knockdown of PLCβ2 recapitulated the observations in the mouse model and primary cell assays. Additionally, loss of PLCβ2 limited both intracellular release and extracellular entry of calcium following VEGF stimulation as well as reduced basal and VEGFA-stimulated levels of phosphatidylinositol 4,5-bisphosphate compared to control cells. Finally, loss of PLCβ2 in both a hyperoxia-induced lung permeability model and a cardiac ischemia:reperfusion model resulted in improved animal outcomes when compared with wild-type controls. CONCLUSIONS The results implicate PLCβ2 as a key positive regulator of VEGF-induced vascular permeability through regulation of both calcium flux and phosphatidylinositol 4,5-bisphosphate levels at the cellular level. Targeting of PLCβ2 in a therapeutic setting may provide a novel approach to regulating vascular permeability in patients.
Collapse
Affiliation(s)
- Kathryn N. Phoenix
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| | - Zhichao Yue
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT
| | - Lixia Yue
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT
| | - Chunxia G. Cronin
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT
| | - Bruce T. Liang
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT
| | - Luke H. Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Kevin P. Claffey
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
10
|
Okada M, Nakagawa-Saito Y, Mitobe Y, Sugai A, Togashi K, Suzuki S, Kitanaka C. Inhibition of the Phospholipase Cε-c-Jun N-Terminal Kinase Axis Suppresses Glioma Stem Cell Properties. Int J Mol Sci 2022; 23:ijms23158785. [PMID: 35955917 PMCID: PMC9369372 DOI: 10.3390/ijms23158785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Glioma stem cells (GSCs), the cancer stem cells of glioblastoma multiforme (GBM), contribute to the malignancy of GBM due to their resistance to therapy and tumorigenic potential; therefore, the development of GSC-targeted therapies is urgently needed to improve the poor prognosis of GBM patients. The molecular mechanisms maintaining GSCs need to be elucidated in more detail for the development of GSC-targeted therapy. In comparison with patient-derived GSCs and their differentiated counterparts, we herein demonstrated for the first time that phospholipase C (PLC)ε was highly expressed in GSCs, in contrast to other PLC isoforms. A broad-spectrum PLC inhibitor suppressed the viability of GSCs, but not their stemness. Nevertheless, the knockdown of PLCε suppressed the survival of GSCs and induced cell death. The stem cell capacity of residual viable cells was also suppressed. Moreover, the survival of mice that were transplanted with PLCε knockdown-GSCs was longer than the control group. PLCε maintained the stemness of GSCs via the activation of JNK. The present study demonstrated for the first time that PLCε plays a critical role in maintaining the survival, stemness, and tumor initiation capacity of GSCs. Our study suggested that PLCε is a promising anti-GSC therapeutic target.
Collapse
Affiliation(s)
- Masashi Okada
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Correspondence: ; Tel.: +81-23-628-5214
| | - Yurika Nakagawa-Saito
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yuta Mitobe
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Ophthalmology and Visual Sciences, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Clinical Oncology, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| |
Collapse
|
11
|
Solomon S, Sampathkumar NK, Carre I, Mondal M, Chennell G, Vernon AC, Ruepp MD, Mitchell JC. Heterozygous expression of the Alzheimer's disease-protective PLCγ2 P522R variant enhances Aβ clearance while preserving synapses. Cell Mol Life Sci 2022; 79:453. [PMID: 35895133 PMCID: PMC9329165 DOI: 10.1007/s00018-022-04473-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND A rare coding variant, P522R, in the phospholipase C gamma 2 (PLCG2) gene has been identified as protective against late-onset Alzheimer's disease (AD), but the mechanism is unknown. PLCG2 is exclusively expressed in microglia within the central nervous system, and altered microglial function has been implicated in the progression of AD. METHODS Healthy control hiPSCs were CRISPR edited to generate cells heterozygous and homozygous for the PLCG2P522R variant. Microglia derived from these hiPSC's were used to investigate the impact of PLCγ2P522R on disease relevant processes, specifically microglial capacity to take up amyloid beta (Aβ) and synapses. Targeted qPCR assessment was conducted to explore expression changes in core AD linked and microglial genes, and mitochondrial function was assessed using an Agilent Seahorse assay. RESULTS Heterozygous expression of the P522R variant resulted in increased microglial clearance of Aβ, while preserving synapses. This was associated with the upregulation of a number of genes, including the anti-inflammatory cytokine Il-10, and the synapse-linked CX3CR1, as well as alterations in mitochondrial function, and increased cellular motility. The protective capacity of PLCγ2P522R appeared crucially dependent on (gene) 'dose', as cells homozygous for the variant showed reduced synapse preservation, and a differential gene expression profile relative to heterozygous cells. CONCLUSION These findings suggest that PLCγ2P522R may result in increased surveillance by microglia, and prime them towards an anti-inflammatory state, with an increased capacity to respond to increasing energy demands, but highlights the delicate balance of this system, with increasing PLCγ2P522R 'dose' resulting in reduced beneficial impacts.
Collapse
Affiliation(s)
- Shiden Solomon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- UK Dementia Research Institute, King’s College London, London, UK
| | - Nirmal Kumar Sampathkumar
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- UK Dementia Research Institute, King’s College London, London, UK
- Present Address: Alzheimer’s Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Ivo Carre
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- UK Dementia Research Institute, King’s College London, London, UK
| | - Mrityunjoy Mondal
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- UK Dementia Research Institute, King’s College London, London, UK
| | - George Chennell
- Wohl Cellular Imaging Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Marc-David Ruepp
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- UK Dementia Research Institute, King’s College London, London, UK
| | - Jacqueline C Mitchell
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
12
|
Ali U, Lu S, Fadlalla T, Iqbal S, Yue H, Yang B, Hong Y, Wang X, Guo L. The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Prog Lipid Res 2022; 86:101158. [PMID: 35134459 DOI: 10.1016/j.plipres.2022.101158] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
Abstract
Cell membranes are the initial site of stimulus perception from environment and phospholipids are the basic and important components of cell membranes. Phospholipases hydrolyze membrane lipids to generate various cellular mediators. These phospholipase-derived products, such as diacylglycerol, phosphatidic acid, inositol phosphates, lysophopsholipids, and free fatty acids, act as second messengers, playing vital roles in signal transduction during plant growth, development, and stress responses. This review focuses on the structure, substrate specificities, reaction requirements, and acting mechanism of several phospholipase families. It will discuss their functional significance in plant growth, development, and stress responses. In addition, it will highlight some critical knowledge gaps in the action mechanism, metabolic and signaling roles of these phospholipases and their products in the context of plant growth, development and stress responses.
Collapse
Affiliation(s)
- Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tarig Fadlalla
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Sidra Iqbal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Hong Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
13
|
Khan SM, Faisal ARM, Nila TA, Binti NN, Hosen MI, Shekhar HU. A computational in silico approach to predict high-risk coding and non-coding SNPs of human PLCG1 gene. PLoS One 2021; 16:e0260054. [PMID: 34793541 PMCID: PMC8601573 DOI: 10.1371/journal.pone.0260054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/31/2021] [Indexed: 11/28/2022] Open
Abstract
PLCG1 gene is responsible for many T-cell lymphoma subtypes, including peripheral T-cell lymphoma (PTCL), angioimmunoblastic T-cell lymphoma (AITL), cutaneous T-cell lymphoma (CTCL), adult T-cell leukemia/lymphoma along with other diseases. Missense mutations of this gene have already been found in patients of CTCL and AITL. The non-synonymous single nucleotide polymorphisms (nsSNPs) can alter the protein structure as well as its functions. In this study, probable deleterious and disease-related nsSNPs in PLCG1 were identified using SIFT, PROVEAN, PolyPhen-2, PhD-SNP, Pmut, and SNPS&GO tools. Further, their effect on protein stability was checked along with conservation and solvent accessibility analysis by I-mutant 2.0, MUpro, Consurf, and Netsurf 2.0 server. Some SNPs were finalized for structural analysis with PyMol and BIOVIA discovery studio visualizer. Out of the 16 nsSNPs which were found to be deleterious, ten nsSNPs had an effect on protein stability, and six mutations (L411P, R355C, G493D, R1158H, A401V and L455F) were predicted to be highly conserved. Among the six highly conserved mutations, four nsSNPs (R355C, A401V, L411P and L455F) were part of the catalytic domain. L411P, L455F and G493D made significant structural change in the protein structure. Two mutations-Y210C and R1158H had post-translational modification. In the 5' and 3' untranslated region, three SNPs, rs139043247, rs543804707, and rs62621919 showed possible miRNA target sites and DNA binding sites. This in silico analysis has provided a structured dataset of PLCG1 gene for further in vivo researches. With the limitation of computational study, it can still prove to be an asset for the identification and treatment of multiple diseases associated with the target gene.
Collapse
Affiliation(s)
- Safayat Mahmud Khan
- Department of Biochemistry and Molecular Biology, Clinical Biochemistry and Translational Medicine Laboratory, University of Dhaka, Dhaka, Bangladesh
| | - Ar-Rafi Md. Faisal
- Department of Biochemistry and Molecular Biology, Clinical Biochemistry and Translational Medicine Laboratory, University of Dhaka, Dhaka, Bangladesh
| | - Tasnin Akter Nila
- Department of Biochemistry and Molecular Biology, Clinical Biochemistry and Translational Medicine Laboratory, University of Dhaka, Dhaka, Bangladesh
| | - Nabila Nawar Binti
- Department of Biochemistry and Molecular Biology, Clinical Biochemistry and Translational Medicine Laboratory, University of Dhaka, Dhaka, Bangladesh
| | - Md. Ismail Hosen
- Department of Biochemistry and Molecular Biology, Clinical Biochemistry and Translational Medicine Laboratory, University of Dhaka, Dhaka, Bangladesh
| | - Hossain Uddin Shekhar
- Department of Biochemistry and Molecular Biology, Clinical Biochemistry and Translational Medicine Laboratory, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
14
|
Sagar S, Singh A. Emerging role of phospholipase C mediated lipid signaling in abiotic stress tolerance and development in plants. PLANT CELL REPORTS 2021; 40:2123-2133. [PMID: 34003316 DOI: 10.1007/s00299-021-02713-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Environmental stimuli are primarily perceived at the plasma membrane. Stimuli perception leads to membrane disintegration and generation of molecules which trigger lipid signaling. In plants, lipid signaling regulates important biological functions however, the molecular mechanism involved is unclear. Phospholipases C (PLCs) are important lipid-modifying enzymes in eukaryotes. In animals, PLCs by hydrolyzing phospholipids, such as phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] generate diacylglycerol (DAG) and inositol- 1,4,5-trisphosphate (IP3). However, in plants their phosphorylated variants i.e., phosphatidic acid (PA) and inositol hexakisphosphate (IP6) are proposed to mediate lipid signaling. Specific substrate preferences divide PLCs into phosphatidylinositol-PLC (PI-PLC) and non-specific PLCs (NPC). PLC activity is regulated by various cellular factors including, calcium (Ca2+) concentration, phospholipid substrate, and post-translational modifications. Both PI-PLCs and NPCs are implicated in plants' response to stresses and development. Emerging evidences show that PLCs regulate structural and developmental features, like stomata movement, microtubule organization, membrane remodelling and root development under abiotic stresses. Thus, crucial insights are provided into PLC mediated regulatory mechanism of abiotic stress responses in plants. In this review, we describe the structure and regulation of plant PLCs. In addition, cellular and physiological roles of PLCs in abiotic stresses, phosphorus deficiency, aluminium toxicity, pollen tube growth, and root development are discussed.
Collapse
Affiliation(s)
- Sushma Sagar
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
15
|
Samarina N, Ssebyatika G, Tikla T, Waldmann JY, Abere B, Nanna V, Marasco M, Carlomagno T, Krey T, Schulz TF. Recruitment of phospholipase Cγ1 to the non-structural membrane protein pK15 of Kaposi Sarcoma-associated herpesvirus promotes its Src-dependent phosphorylation. PLoS Pathog 2021; 17:e1009635. [PMID: 34143834 PMCID: PMC8244865 DOI: 10.1371/journal.ppat.1009635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/30/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022] Open
Abstract
Kaposi Sarcoma-associated herpesvirus (KSHV) causes three human malignancies, Kaposi Sarcoma (KS), Primary Effusion Lymphoma (PEL) and the plasma cell variant of multicentric Castleman’s Disease (MCD), as well as an inflammatory cytokine syndrome (KICS). Its non-structural membrane protein, pK15, is among a limited set of viral proteins expressed in KSHV-infected KS tumor cells. Following its phosphorylation by Src family tyrosine kinases, pK15 recruits phospholipase C gamma 1 (PLCγ1) to activate downstream signaling cascades such as the MEK/ERK, NFkB and PI3K pathway, and thereby contributes to the increased proliferation and migration as well as the spindle cell morphology of KSHV-infected endothelial cells. Here, we show that a phosphorylated Y481EEVL motif in pK15 preferentially binds into the PLCγ1 C-terminal SH2 domain (cSH2), which is involved in conformational changes occurring during the activation of PLCγ1 by receptor tyrosine kinases. We determined the crystal structure of a pK15 12mer peptide containing the phosphorylated pK15 Y481EEVL motif in complex with a shortened PLCγ1 tandem SH2 (tSH2) domain. This structure demonstrates that the pK15 peptide binds to the PLCγ1 cSH2 domain in a position that is normally occupied by the linker region connecting the PLCγ1 cSH2 and SH3 domains. We also show that longer pK15 peptides containing the phosphorylated pK15 Y481EEVL motif can increase the Src-mediated phosphorylation of the PLCγ1 tSH2 region in vitro. This pK15-induced increase in Src-mediated phosphorylation of PLCγ1 can be inhibited with the small pK15-derived peptide which occupies the PLCγ1 cSH2 domain. Our findings thus suggest that pK15 may act as a scaffold protein to promote PLCγ1 activation in a manner similar to the cellular scaffold protein SLP-76, which has been shown to promote PLCγ1 activation in the context of T-cell receptor signaling. Reminiscent of its positional homologue in Epstein-Barr Virus, LMP2A, pK15 may therefore mimic aspects of antigen-receptor signaling. Our findings also suggest that it may be possible to inhibit the recruitment and activation of PLCγ1 pharmacologically. Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) causes three human malignancies (Kaposi Sarcoma, Primary Effusion Lymphoma, Multicentric Castleman’s Disease) and an inflammatory condition, KICS. One of its non-structural membrane proteins, pK15, is expressed in tumor cells and has previously been shown to contribute to its ability to reactivate from latency and to its pathogenetic properties in endothelial cells by recruiting the cellular signaling enzyme phospholipase Cγ1 (PLCγ1). Here we investigate the interaction of pK15 with PLCγ1, report the structure of a PLCγ1 domain in complex with a pK15 peptide and show that pK15 primes PLCγ1 for phosphorylation by the cellular kinase Src. We also show that the pK15-dependent activation of PLCγ1 can be inhibited with a small peptide. Our findings therefore identify the pK15-PLCγ1 interaction as a putative druggable target and provide the basis for the development of small molecule inhibitors that could perhaps serve to inhibit KSHV replication and pathogenesis.
Collapse
Affiliation(s)
- Naira Samarina
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover Braunschweig Site, Hannover, Germany
| | | | - Tanvi Tikla
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover Braunschweig Site, Hannover, Germany
| | - Ja-Yun Waldmann
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover Braunschweig Site, Hannover, Germany
| | - Bizunesh Abere
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover Braunschweig Site, Hannover, Germany
| | - Vittoria Nanna
- Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
| | | | - Teresa Carlomagno
- Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover Braunschweig Site, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover Braunschweig Site, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
16
|
Llorente-Ovejero A, Martínez-Gardeazabal J, Moreno-Rodríguez M, Lombardero L, González de San Román E, Manuel I, Giralt MT, Rodríguez-Puertas R. Specific Phospholipid Modulation by Muscarinic Signaling in a Rat Lesion Model of Alzheimer's Disease. ACS Chem Neurosci 2021; 12:2167-2181. [PMID: 34037379 PMCID: PMC9162383 DOI: 10.1021/acschemneuro.1c00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
![]()
Alzheimer’s disease (AD) represents
the most common cause
of dementia worldwide and has been consistently associated with the
loss of basal forebrain cholinergic neurons (BFCNs) leading to impaired
cholinergic neurotransmission, aberrant synaptic function, and altered
structural lipid metabolism. In this sense, membrane phospholipids
(PLs) can be used for de novo synthesis of choline (Ch) for the further
obtaining of acetylcholine (ACh) when its availability is compromised.
Specific lipid species involved in the metabolism of Ch have been
identified as possible biomarkers of phenoconversion to AD. Using
a rat model of BFCN lesion, we have evaluated the lipid composition
and muscarinic signaling in brain areas related to cognitive processes.
The loss of BFCN resulted in alterations of varied lipid species related
to Ch metabolism at nucleus basalis magnocellularis (NMB) and cortical
projection areas. The activity of muscarinic receptors (mAChR) was
decreased in the NMB and increased in the hippocampus according to
the subcellular distribution of M1/M2 mAChR
which could explain the learning and memory impairment reported in
this AD rat model. These results suggest that the modulation of specific
lipid metabolic routes could represent an alternative therapeutic
strategy to potentiate cholinergic neurotransmission and preserve
cell membrane integrity in AD.
Collapse
Affiliation(s)
- Alberto Llorente-Ovejero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Jonatan Martínez-Gardeazabal
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Marta Moreno-Rodríguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Laura Lombardero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Estíbaliz González de San Román
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
- Neurodegenerative Diseases, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - María Teresa Giralt
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
- Neurodegenerative Diseases, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
17
|
Ligands and Signaling of Mas-Related G Protein-Coupled Receptor-X2 in Mast Cell Activation. Rev Physiol Biochem Pharmacol 2021; 179:139-188. [PMID: 33479839 DOI: 10.1007/112_2020_53] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mas-related G protein-coupled receptor-X2 (MRGPRX2) is known as a novel receptor to activate mast cells (MCs). MRGPRX2 plays a dual role in promoting MC-dependent host defense and immunomodulation and contributing to the pathogenesis of pseudo-allergic drug reactions, pain, itching, and inflammatory diseases. In this article, we discuss the possible signaling pathways of MCs activation mediated by MRGPRX2 and summarize and classify agonists and inhibitors of MRGPRX2 in MCs activation. MRGPRX2 is a low-affinity and low-selectivity receptor, which allows it to interact with a diverse group of ligands. Diverse MRGPRX2 ligands utilize conserved residues in its transmembrane (TM) domains and carboxyl-terminus Ser/Thr residues to undergo ligand binding and G protein coupling. The coupling likely initiates phosphorylation cascades, induces Ca2+ mobilization, and causes degranulation and generation of cytokines and chemokines via MAPK and NF-κB pathways, resulting in MCs activation. Agonists of MRGPRX2 on MCs are divided into peptides (including antimicrobial peptides, neuropeptides, MC degranulating peptides, peptide hormones) and nonpeptides (including FDA-approved drugs). Inhibitors of MRGPRX2 include non-selective GPCR inhibitors, herbal extracts, small-molecule MRGPRX2 antagonists, and DNA aptamer drugs. Screening and classifying MRGPRX2 ligands and summarizing their signaling pathways would improve our understanding of MRGPRX2-mediated physiological and pathological effects on MCs.
Collapse
|
18
|
Rezaei Adariani S, Kazemein Jasemi NS, Bazgir F, Wittich C, Amin E, Seidel CAM, Dvorsky R, Ahmadian MR. A comprehensive analysis of RAS-effector interactions reveals interaction hotspots and new binding partners. J Biol Chem 2021; 296:100626. [PMID: 33930461 PMCID: PMC8163975 DOI: 10.1016/j.jbc.2021.100626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
RAS effectors specifically interact with GTP-bound RAS proteins to link extracellular signals to downstream signaling pathways. These interactions rely on two types of domains, called RAS-binding (RB) and RAS association (RA) domains, which share common structural characteristics. Although the molecular nature of RAS-effector interactions is well-studied for some proteins, most of the RA/RB-domain-containing proteins remain largely uncharacterized. Here, we searched through human proteome databases, extracting 41 RA domains in 39 proteins and 16 RB domains in 14 proteins, each of which can specifically select at least one of the 25 members in the RAS family. We next comprehensively investigated the sequence–structure–function relationship between different representatives of the RAS family, including HRAS, RRAS, RALA, RAP1B, RAP2A, RHEB1, and RIT1, with all members of RA domain family proteins (RASSFs) and the RB-domain-containing CRAF. The binding affinity for RAS-effector interactions, determined using fluorescence polarization, broadly ranged between high (0.3 μM) and very low (500 μM) affinities, raising interesting questions about the consequence of these variable binding affinities in the regulation of signaling events. Sequence and structural alignments pointed to two interaction hotspots in the RA/RB domains, consisting of an average of 19 RAS-binding residues. Moreover, we found novel interactions between RRAS1, RIT1, and RALA and RASSF7, RASSF9, and RASSF1, respectively, which were systematically explored in sequence–structure–property relationship analysis, and validated by mutational analysis. These data provide a set of distinct functional properties and putative biological roles that should now be investigated in the cellular context.
Collapse
Affiliation(s)
- Soheila Rezaei Adariani
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany
| | - Farhad Bazgir
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Wittich
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany
| | - Ehsan Amin
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany; Medical Faculty, Institute of Neural and Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Claus A M Seidel
- Chair of Molecular Physical Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Radovan Dvorsky
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
19
|
Bustos G, Ahumada-Castro U, Silva-Pavez E, Puebla A, Lovy A, Cesar Cardenas J. The ER-mitochondria Ca 2+ signaling in cancer progression: Fueling the monster. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:49-121. [PMID: 34392932 DOI: 10.1016/bs.ircmb.2021.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death worldwide. All major tumor suppressors and oncogenes are now recognized to have fundamental connections with metabolic pathways. A hallmark feature of cancer cells is a reprogramming of their metabolism even when nutrients are available. Increasing evidence indicates that most cancer cells rely on mitochondrial metabolism to sustain their energetic and biosynthetic demands. Mitochondria are functionally and physically coupled to the endoplasmic reticulum (ER), the major calcium (Ca2+) storage organelle in mammalian cells, through special domains known as mitochondria-ER contact sites (MERCS). In this domain, the release of Ca2+ from the ER is mainly regulated by inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), a family of Ca2+ release channels activated by the ligand IP3. IP3R mediated Ca2+ release is transferred to mitochondria through the mitochondrial Ca2+ uniporter (MCU). Once in the mitochondrial matrix, Ca2+ activates several proteins that stimulate mitochondrial performance. The role of IP3R and MCU in cancer, as well as the other proteins that enable the Ca2+ communication between these two organelles is just beginning to be understood. Here, we describe the function of the main players of the ER mitochondrial Ca2+ communication and discuss how this particular signal may contribute to the rise and development of cancer traits.
Collapse
Affiliation(s)
- Galdo Bustos
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Ulises Ahumada-Castro
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Eduardo Silva-Pavez
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Andrea Puebla
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Alenka Lovy
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, United States.
| | - J Cesar Cardenas
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, United States; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
20
|
Magno L, Bunney TD, Mead E, Svensson F, Bictash MN. TREM2/PLCγ2 signalling in immune cells: function, structural insight, and potential therapeutic modulation. Mol Neurodegener 2021; 16:22. [PMID: 33823896 PMCID: PMC8022522 DOI: 10.1186/s13024-021-00436-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/24/2021] [Indexed: 01/21/2023] Open
Abstract
The central role of the resident innate immune cells of the brain (microglia) in neurodegeneration has become clear over the past few years largely through genome-wide association studies (GWAS), and has rapidly become an active area of research. However, a mechanistic understanding (gene to function) has lagged behind. That is now beginning to change, as exemplified by a number of recent exciting and important reports that provide insight into the function of two key gene products – TREM2 (Triggering Receptor Expressed On Myeloid Cells 2) and PLCγ2 (Phospholipase C gamma2) – in microglia, and their role in neurodegenerative disorders. In this review we explore and discuss these recent advances and the opportunities that they may provide for the development of new therapies.
Collapse
Affiliation(s)
- Lorenza Magno
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK.
| | - Tom D Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Emma Mead
- Alzheimer's Research UK Oxford Drug Discovery Institute, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7FZ, UK
| | - Fredrik Svensson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Magda N Bictash
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
21
|
Alfahad D, Alharethi S, Alharbi B, Mawlood K, Dash P. PtdIns(4,5)P2 and PtdIns(3,4,5)P3 dynamics during focal adhesions assembly and disassembly in a cancer cell line. ACTA ACUST UNITED AC 2021; 44:381-392. [PMID: 33402865 PMCID: PMC7759192 DOI: 10.3906/biy-2004-108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/27/2020] [Indexed: 01/22/2023]
Abstract
Focal adhesions (FAs) are large assemblies of proteins that mediate intracellular signals between the cytoskeleton and the extracellular matrix (ECM). The turnover of FA proteins plays a critical regulatory role in cancer cell migration. Plasma membrane lipids locally generated or broken down by different inositide kinases and phosphatase enzymes to activate and recruit proteins to specific regions in the plasma membrane. Presently, little attention has been given to the use of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) fluorescent biosensors in order to determine the spatiotemporal organisation of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 within and around or during assembly and disassembly of FAs. In this study, specific biosensors were used to detect PtdIns(4,5)P2, PtdIns(3,4,5)P3, and FAs proteins conjugated to RFP/GFP in order to monitor changes of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 levels within FAs. We demonstrated that the localisation of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 were moderately correlated with that of FA proteins. Furthermore, we demonstrate that local levels of PtdIns(4,5)P2 increased within FA assembly and declined within FA disassembly. However, PtdIns(3,4,5)P3 levels remained constant within FAs assembly and disassembly. In conclusion, this study shows that PtdIns(4,5)P2 and PtdIns(3,4,5)P3 localised in FAs may be regulated differently during FA assembly and disassembly.
Collapse
Affiliation(s)
- Dhurgham Alfahad
- Department of Pathological Analysis, College of Science, Thi-Qar University, Thi-Qar Iraq
| | - Salem Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran Saudi Arabia
| | - Bandar Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, University of Hail, Hail Saudi Arabia
| | - Khatab Mawlood
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, University of Hail, Hail Saudi Arabia
| | - Philip Dash
- Department of Pathological Analysis, College of Science, Thi-Qar University, Thi-Qar Iraq.,Department of Biomedical Sciences, School of Biological Sciences, University of Reading, Reading United Kingdom
| |
Collapse
|
22
|
Yang T, Wang P, Yin X, Zhang J, Huo M, Gao J, Li G, Teng X, Yu H, Huang W, Wang Y. The histone deacetylase inhibitor PCI-24781 impairs calcium influx and inhibits proliferation and metastasis in breast cancer. Am J Cancer Res 2021; 11:2058-2076. [PMID: 33500709 PMCID: PMC7797697 DOI: 10.7150/thno.48314] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Histone deacetylases (HDACs) are involved in key cellular processes and have been implicated in cancer. As such, compounds that target HDACs or drugs that target epigenetic markers may be potential candidates for cancer therapy. This study was therefore aimed to identify a potential epidrug with low toxicity and high efficiency as anti-tumor agents. Methods: We first screened an epigenetic small molecule inhibitor library to screen for an epidrug for breast cancer. The candidate was identified as PCI-24781 and was characterized for half maximal inhibitory concentration (IC50), for specificity to breast cancer cells, and for effects on carcinogenesis and metastatic properties of breast cancer cell lines in vitro. A series of in silico and in vitro analyses were further performed of PCI-24781 to identify and understand its target. Results: Screening of an epigenetic inhibitor library in MDA-MB-231 cells, a malignant cancer cell line, showed that PCI-24781 is a potential anti-tumor drug specific to breast cancer. Ca2+ related pathways were identified as a potential target of PCI-24781. Further analyses showed that PCI-24781 inhibited Gαq-PLCβ3-mediated calcium signaling by activating the expression of regulator of G-protein signaling 2 (RGS2) to reduce cell proliferation, metastasis, and differentiation, resulting in cell death in breast cancer. In addition, RGS2 depletion reversed anti-tumor effect and inhibition of calcium influx induced by PCI-24781 treatment in breast cancer cells. Conclusions: We have demonstrated that PCI-24781 is an effective anti-tumor therapeutic agent that targets calcium signaling by activating RGS2. This study also provides a novel perspective into the use of HDAC inhibitors for cancer therapy.
Collapse
|
23
|
Parker PJ, Brown SJ, Calleja V, Chakravarty P, Cobbaut M, Linch M, Marshall JJT, Martini S, McDonald NQ, Soliman T, Watson L. Equivocal, explicit and emergent actions of PKC isoforms in cancer. Nat Rev Cancer 2021; 21:51-63. [PMID: 33177705 DOI: 10.1038/s41568-020-00310-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 01/02/2023]
Abstract
The maturing mutational landscape of cancer genomes, the development and application of clinical interventions and evolving insights into tumour-associated functions reveal unexpected features of the protein kinase C (PKC) family of serine/threonine protein kinases. These advances include recent work showing gain or loss-of-function mutations relating to driver or bystander roles, how conformational constraints and plasticity impact this class of proteins and how emergent cancer-associated properties may offer opportunities for intervention. The profound impact of the tumour microenvironment, reflected in the efficacy of immune checkpoint interventions, further prompts to incorporate PKC family actions and interventions in this ecosystem, informed by insights into the control of stromal and immune cell functions. Drugging PKC isoforms has offered much promise, but when and how is not obvious.
Collapse
Affiliation(s)
- Peter J Parker
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, UK.
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, UK.
| | - Sophie J Brown
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, UK
| | - Veronique Calleja
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, UK
| | | | - Mathias Cobbaut
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, UK
| | - Mark Linch
- UCL Cancer Institute, University College London, London, UK
| | | | - Silvia Martini
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, UK
| | - Neil Q McDonald
- Signalling and Structural Biology Laboratory, Francis Crick Institute, London, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, UK
| | - Tanya Soliman
- Centre for Cancer Genomics and Computational Biology, Bart's Cancer Institute, London, UK
| | - Lisa Watson
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
24
|
Parker PJ, Lockwood N, Davis K, Kelly JR, Soliman TN, Pardo AL, Marshall JJT, Redmond JM, Vitale M, Silvia Martini. A cancer-associated, genome protective programme engaging PKCε. Adv Biol Regul 2020; 78:100759. [PMID: 33039823 PMCID: PMC7689578 DOI: 10.1016/j.jbior.2020.100759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022]
Abstract
Associated with their roles as targets for tumour promoters, there has been a long-standing interest in how members of the protein kinase C (PKC) family act to modulate cell growth and division. This has generated a great deal of observational data, but has for the most part not afforded clear mechanistic insights into the control mechanisms at play. Here, we review the roles of PKCε in protecting transformed cells from non-disjunction. In this particular cell cycle context, there is a growing understanding of the pathways involved, affording biomarker and interventional insights and opportunities.
Collapse
Affiliation(s)
- Peter J Parker
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, Guy's Campus, London, SE1 1UL, UK.
| | - Nicola Lockwood
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Khalil Davis
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Joanna R Kelly
- Cancer Research UK, Manchester Institute, Alderley Park, SK10 4TG, UK
| | - Tanya N Soliman
- Barts Cancer Institute, Charterhouse Square, London, EC1M 6BE, UK
| | - Ainara Lopez Pardo
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | | | | | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Martini
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
25
|
PLCɛ maintains the functionality of AR signaling in prostate cancer via an autophagy-dependent mechanism. Cell Death Dis 2020; 11:716. [PMID: 32879302 PMCID: PMC7468107 DOI: 10.1038/s41419-020-02917-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Androgen receptor (AR) signaling is a major driver of prostate cancer (CaP). Although most therapies targeting AR are initially effective in CaP patients, drug resistance is inevitable, mainly because of the inappropriate re-activation of AR pathway. However, the underlying mechanisms remain largely unknown. Here, we found that phospholipase C epsilon (PLCɛ) was highly expressed in CaP samples, and was closely associated with AR signaling activities. PLCɛ depletion triggered enhanced autophagic activities via AMPK/ULK1 pathway, causing autophagy-mediated AR degradation and inhibition of AR nuclear translocation. This subsequently reduced AR signals in CaP and inhibited AR-driven cell migration/invasion. Furthermore, a positive correlation between PLCɛ and AR signaling activity was also observed in bicalutamide-resistant CaP samples and in AR-antagonist-resistant CaP cell models. PLCɛ depletion resulted in the failure to establish AR-antagonist-resistant CaP cell lines, and hindered the metastatic prowess of already established ones. These findings suggest that PLCɛ-mediated autophagic activity alteration is indispensible for the functionality of AR signaling and for CaP development.
Collapse
|
26
|
Pu J, Li T, Liu N, Luo C, Quan Z, Li L, Wu X. PLCε knockdown enhances the radiosensitivity of castration‑resistant prostate cancer via the AR/PARP1/DNA‑PKcs axis. Oncol Rep 2020; 43:1397-1412. [PMID: 32323799 PMCID: PMC7108056 DOI: 10.3892/or.2020.7520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) has been used as a therapeutic option for treatment of prostate cancer (PCa) for a number of years; however, patients frequently develop RT resistance, particularly in castration-resistant PCa (CRPC), although the underlying mechanisms remain unknown. Understanding the underlying mechanism of RT resistance in CRPC may potentially highlight novel targets to improve therapeutic options for patients with PCa. In the present study, the expression levels of phospholipase Cε (PLCε), androgen receptor (AR) and DNA-dependent protein kinase catalytic subunit (PKcs) were examined in PCa tissue samples and PCa cells, and the effects of PLCε knockdown on AR and DNA damage repair (DDR)-related molecules were determined. The association between PLCε, AR and Poly (ADP-ribose) polymerase 1 (PARP1), as well as their respective roles in radiation resistance, were assessed using gene knockdown and pharmaceutical inhibitors or activators. A chromatin immunoprecipitation assay was used to determine the epigenetic regulatory effects of PLCε on PARP1. Animal experiments were performed to assess whether the mechanisms observed in vitro could be replicated in vivo. The expression levels of PLCε, AR and DNA-PKcs were significantly upregulated in PCa, particularly in CRPC. PLCε knockdown reduced the viability and increased apoptosis of cells subjected to radiation. Additionally, PLCε deficiency suppressed DDR progression by downregulating an AR and PARP1 positive feedback loop and the associated downstream molecules following radiation. PLCε depletion also increased the presence of histone H3 lysine 27 trimethylation in the PARP1 promoter region, suggesting increased methylation of the PARP1 gene and thus resulting in reduced expression of PARP1. In vivo, PLCε knockdown significantly potentiated the effects of radiation on tumor growth. Taken together, the results of the present study demonstrated that PLCε knockdown enhanced the radiosensitivity of CRPC by downregulating the AR/PARP1/DNA-PKcs axis.
Collapse
Affiliation(s)
- Jun Pu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ting Li
- Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Nanjing Liu
- Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chunli Luo
- Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Luo Li
- Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
27
|
Iqbal S, Ali U, Fadlalla T, Li Q, Liu H, Lu S, Guo L. Genome wide characterization of phospholipase A & C families and pattern of lysolipids and diacylglycerol changes under abiotic stresses in Brassica napus L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:101-112. [PMID: 31855816 DOI: 10.1016/j.plaphy.2019.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Plant phospholipase A (PLA) and C (PLC) families are least explored in terms of structure, diversity and their roles in membrane lipid remodeling under stress conditions. In this study, we performed gene family analysis, determined gene expression in different tissues and monitored transcriptional regulation of patatin-related PLA family and PLC family in oil crop Brassica napus under dehydration, salt, abscisic acid and cold stress. The identified 29 BnapPLA genes and 40 BnaPLC genes shared high similarities with Arabidopsis pPLAs and PLCs, respectively. This study highlighted the expression pattern of BnapPLAs and BnaPLCs in different tissues and their expression in response to abiotic stresses in Brassica napus. The results revealed that several members of BnapPLA3, PI-PLC1/2 and NPC1 were actively regulated by abiotic stresses. Lipid changes at different time points under stress conditions were also measured. Lipid profiling revealed that the level of lysophospholipids and diacylglycerol (DAG) showed a varied pattern of changes under different abiotic stress treatments. The change of lipids correlated with the transcriptional regulation of a few specific members of pPLA and PLC families. Our study suggested that A and C-type phospholipases in Brassica napus may have diverse physiological and regulatory roles in abiotic stress response and tolerance.
Collapse
Affiliation(s)
- Sidra Iqbal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Department of Agriculture, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tarig Fadlalla
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
28
|
Liu Y, Bunney TD, Khosa S, Macé K, Beckenbauer K, Askwith T, Maslen S, Stubbs C, de Oliveira TM, Sader K, Skehel M, Gavin AC, Phillips C, Katan M. Structural insights and activating mutations in diverse pathologies define mechanisms of deregulation for phospholipase C gamma enzymes. EBioMedicine 2020; 51:102607. [PMID: 31918402 PMCID: PMC7000336 DOI: 10.1016/j.ebiom.2019.102607] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND PLCγ enzymes are key nodes in cellular signal transduction and their mutated and rare variants have been recently implicated in development of a range of diseases with unmet need including cancer, complex immune disorders, inflammation and neurodegenerative diseases. However, molecular nature of activation and the impact and dysregulation mechanisms by mutations, remain unclear; both are critically dependent on comprehensive characterization of the intact PLCγ enzymes. METHODS For structural studies we applied cryo-EM, cross-linking mass spectrometry and hydrogen-deuterium exchange mass spectrometry. In parallel, we compiled mutations linked to main pathologies, established their distribution and assessed their impact in cells and in vitro. FINDINGS We define structure of a complex containing an intact, autoinhibited PLCγ1 and the intracellular part of FGFR1 and show that the interaction is centred on the nSH2 domain of PLCγ1. We define the architecture of PLCγ1 where an autoinhibitory interface involves the cSH2, spPH, TIM-barrel and C2 domains; this relative orientation occludes PLCγ1 access to its substrate. Based on this framework and functional characterization, the mechanism leading to an increase in PLCγ1 activity for the largest group of mutations is consistent with the major, direct impact on the autoinhibitory interface. INTERPRETATION We reveal features of PLCγ enzymes that are important for determining their activation status. Targeting such features, as an alternative to targeting the PLC active site that has so far not been achieved for any PLC, could provide new routes for clinical interventions related to various pathologies driven by PLCγ deregulation. FUND: CR UK, MRC and AstaZeneca.
Collapse
Affiliation(s)
- Yang Liu
- Discovery Sciences, R&D, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Tom D. Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Sakshi Khosa
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Kévin Macé
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Katharina Beckenbauer
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Trevor Askwith
- Drug Discovery Group, Translational Research Office, School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Kasim Sader
- Cambridge Cryo-EM Pharmaceutical Consortium, Thermo Fisher Scientific, 11 JJ Thomson Avenue, Madingley Road, Cambridge, CB3 0FF, UK
| | - Mark Skehel
- Drug Discovery Group, Translational Research Office, School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Anne-Claude Gavin
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, UK
- Department for Cell Physiology and Metabolism, University of Geneva, Centre Medical Universitaire, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | | | - Matilda Katan
- Discovery Sciences, R&D, AstraZeneca, Cambridge, CB4 0WG, UK
| |
Collapse
|
29
|
Abstract
Phospholipase C (PLC) family members constitute a family of diverse enzymes. Thirteen different family members have been cloned. These family members have unique structures that mediate various functions. Although PLC family members all appear to signal through the bi-products of cleaving phospholipids, it is clear that each family member, and at times each isoform, contributes to unique cellular functions. This chapter provides a review of the current literature on PLC. In addition, references have been provided for more in-depth information regarding areas that are not discussed including tyrosine kinase activation of PLC. Understanding the roles of the individual PLC enzymes, and their distinct cellular functions, will lead to a better understanding of the physiological roles of these enzymes in the development of diseases and the maintenance of homeostasis.
Collapse
|
30
|
Receptor Tyrosine Kinases in Development: Insights from Drosophila. Int J Mol Sci 2019; 21:ijms21010188. [PMID: 31888080 PMCID: PMC6982143 DOI: 10.3390/ijms21010188] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022] Open
Abstract
Cell-to-cell communication mediates a plethora of cellular decisions and behaviors that are crucial for the correct and robust development of multicellular organisms. Many of these signals are encoded in secreted hormones or growth factors that bind to and activate cell surface receptors, to transmit the cue intracellularly. One of the major superfamilies of cell surface receptors are the receptor tyrosine kinases (RTKs). For nearly half a century RTKs have been the focus of intensive study due to their ability to alter fundamental aspects of cell biology, such as cell proliferation, growth, and shape, and because of their central importance in diseases such as cancer. Studies in model organisms such a Drosophila melanogaster have proved invaluable for identifying new conserved RTK pathway components, delineating their contributions, and for the discovery of conserved mechanisms that control RTK-signaling events. Here we provide a brief overview of the RTK superfamily and the general mechanisms used in their regulation. We further highlight the functions of several RTKs that govern distinct cell-fate decisions in Drosophila and explore how their activities are developmentally controlled.
Collapse
|
31
|
Abstract
Ca2+ binding proteins (CBP) are of key importance for calcium to play its role as a pivotal second messenger. CBP bind Ca2+ in specific domains, contributing to the regulation of its concentration at the cytosol and intracellular stores. They also participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e. decoding Ca2+ signals. Since CBP are integral to normal physiological processes, possible roles for them in a variety of diseases has attracted growing interest in recent years. In addition, research on CBP has been reinforced with advances in the structural characterization of new CBP family members. In this chapter we have updated a previous review on CBP, covering in more depth potential participation in physiopathological processes and candidacy for pharmacological targets in many diseases. We review intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins, calcineurin and neuronal Ca2+ sensor proteins (NCS). We also address intracellular CBP lacking the EF-hand domain: annexins, CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), proteins that contain a C2 domain (such as protein kinase C (PKC) or synaptotagmin) and other proteins of interest, such as regucalcin or proprotein convertase subtisilin kexins (PCSK). Finally, we summarise the latest findings on extracellular CBP, classified according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) ɣ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors.
Collapse
|
32
|
PLCε regulates prostate cancer mitochondrial oxidative metabolism and migration via upregulation of Twist1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:337. [PMID: 31383001 PMCID: PMC6683382 DOI: 10.1186/s13046-019-1323-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/14/2019] [Indexed: 12/17/2022]
Abstract
Background Metabolic rewiring is a common feature of many cancer types, including prostate cancer (PCa). Alterations in master genes lead to mitochondrial metabolic rewiring and provide an appealing target to inhibit cancer progression and improve survival. Phospholipase C (PLC)ε is a regulator of tumor generation and progression. However, its role in mitochondrial metabolism remains unclear. Methods The GEO, The Cancer Genome Atlas, and the GTEx databases were used to determine Twist1 mRNA levels in tumors and their non-tumor counterparts. Fifty-five PCa and 48 benign prostatic hypertrophy tissue samples were tested for the presence of PLCε and Twist1 immunohistochemically. An association between PLCε and Twist1 was determined by Pearson’s correlation analysis. PLCε was knocked down with a lentiviral short hairpin RNA. Mitochondrial activity was assessed by measuring the oxygen consumption rate. Western blotting analyses were used to measure levels of PPARβ, Twist1, phosphorylated (p)-Twist1, p-MEK, p-ERK, p-P38, and p-c-Jun N-terminal kinase (JNK). Cells were treated with inhibitors of MEK, JNK, and P38 MAPK, and an agonist and inhibitor of peroxisome proliferator activated receptor (PPAR) β, to evaluate which signaling pathways were involved in PLCε-mediated Twist1 expression. The stability of Twist1 was determined after blocking protein synthesis with cycloheximide. Reporter assays utilized E-cadherin or N-cadherin luciferase reporters under depletion of PLCε or Twist1. Transwell assays assessed cell migration. Finally, a nude mouse tumor xenograft assay was conducted to verify the role of PLCε in tumor formation. Results Our findings revealed that the expression of PLCε was positively associated with Twist1 in clinical PCa samples. PLCε knockdown promoted mitochondrial oxidative metabolism in PCa cells. Mechanistically, PLCε increased phosphorylation of Twist1 and stabilized the Twist1 protein through MAPK signaling. The transcriptional activity of Twist1, and the Twist1-mediated epithelial-to-mesenchymal transition, cell migration, and transcription regulation, were suppressed by PLCε knockdown and by blocking PPARβ nuclear translocation. The tumor xenograft assay demonstrated that PLCε depletion diminished PCa cell tumorigenesis. Conclusions These findings reveal an undiscovered physiological role for PLCε in the suppression of mitochondrial oxidative metabolism that has significant implications for understanding PCa occurrence and migration. Electronic supplementary material The online version of this article (10.1186/s13046-019-1323-8) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Hwang HJ, Yang YR, Kim HY, Choi Y, Park KS, Lee H, Ma JS, Yamamoto M, Kim J, Chae YC, Choi JH, Cocco L, Berggren PO, Jang HJ, Suh PG. Phospholipase C‐β1 potentiates glucose‐stimulated insulin secretion. FASEB J 2019; 33:10668-10679. [DOI: 10.1096/fj.201802732rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hyeon-Jeong Hwang
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
| | - Yong Ryoul Yang
- Aging Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonSouth Korea
| | - Hye Yun Kim
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
| | - Yoonji Choi
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
| | - Kyoung-Su Park
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
| | - Ho Lee
- Cancer Experimental Resources BranchNational Cancer CenterGoyang-siSouth Korea
| | - Ji Su Ma
- Department of ImmunoparasitologyResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Masahiro Yamamoto
- Department of ImmunoparasitologyResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Jaeyoon Kim
- Department of Molecular Medicine and SurgeryThe Rolf Luft Research Center for Diabetes and EndocrinologyKarolinska InstitutetStockholmSweden
- Division of Integrative Biosciences and BiotechnologyPohang University of Science and TechnologyPohangSouth Korea
| | - Young Chan Chae
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
| | - Jang Hyun Choi
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
- Korea Mouse Phenotyping CenterUlsan National Institute of Science and TechnologyUlsanSouth Korea
| | - Lucio Cocco
- Department of Biomedical SciencesSignalling LaboratoryUniversity of BolognaBolognaItaly
| | - Per-Olof Berggren
- Department of Molecular Medicine and SurgeryThe Rolf Luft Research Center for Diabetes and EndocrinologyKarolinska InstitutetStockholmSweden
- Division of Integrative Biosciences and BiotechnologyPohang University of Science and TechnologyPohangSouth Korea
| | - Hyun-Jun Jang
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
| | - Pann-Ghill Suh
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
| |
Collapse
|
34
|
Blunsom NJ, Cockcroft S. Phosphatidylinositol synthesis at the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158471. [PMID: 31173893 DOI: 10.1016/j.bbalip.2019.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/23/2022]
Abstract
Phosphatidylinositol (PI) is a minor phospholipid with a characteristic fatty acid profile; it is highly enriched in stearic acid at the sn-1 position and arachidonic acid at the sn-2 position. PI is phosphorylated into seven specific derivatives, and individual species are involved in a vast array of cellular functions including signalling, membrane traffic, ion channel regulation and actin dynamics. De novo PI synthesis takes place at the endoplasmic reticulum where phosphatidic acid (PA) is converted to PI in two enzymatic steps. PA is also produced at the plasma membrane during phospholipase C signalling, where hydrolysis of phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) leads to the production of diacylglycerol which is rapidly phosphorylated to PA. This PA is transferred to the ER to be also recycled back to PI. For the synthesis of PI, CDP-diacylglycerol synthase (CDS) converts PA to the intermediate, CDP-DG, which is then used by PI synthase to make PI. The de novo synthesised PI undergoes remodelling to acquire its characteristic fatty acid profile, which is altered in p53-mutated cancer cells. In mammals, there are two CDS enzymes at the ER, CDS1 and CDS2. In this review, we summarise the de novo synthesis of PI at the ER and the enzymes involved in its subsequent remodelling to acquire its characteristic acyl chains. We discuss how CDS, the rate limiting enzymes in PI synthesis are regulated by different mechanisms. During phospholipase C signalling, the CDS1 enzyme is specifically upregulated by cFos via protein kinase C.
Collapse
Affiliation(s)
- Nicholas J Blunsom
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Shamshad Cockcroft
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK.
| |
Collapse
|
35
|
Sun W, Li L, Du Z, Quan Z, Yuan M, Cheng H, Gao Y, Luo C, Wu X. Combination of phospholipase Cε knockdown with GANT61 sensitizes castration‑resistant prostate cancer cells to enzalutamide by suppressing the androgen receptor signaling pathway. Oncol Rep 2019; 41:2689-2702. [PMID: 30864728 PMCID: PMC6448124 DOI: 10.3892/or.2019.7054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Castration‑resistant prostate cancer (CRPC) is a major challenge in the treatment of prostate cancer (PCa). Phospholipase Cε (PLCε), an oncogene, has been found to be involved in the carcinogenesis, tumor proliferation and migration of several types of cancer. The effects, however, of PLCε on CRPC remains unclear. In the present study, the expression of PLCε and glioma‑associated homolog (Gli)‑1/Gli‑2 in benign prostatic hyperplasia (BPH), PCa and CRPC tissues and cells was investigated, and the correlations between PLCε and Gli‑1/Gli‑2 in CRPC tissues and cell lines were further explored. In addition, the effect of PLCε on cell proliferation and invasion was assessed in CRPC cell lines, and the sensitivity of EN‑R and 22RV1 cells to enzalutamide following the downregulation of PLCε expression was determined using lentivirus‑mediated shPLCε and/or treatment with specific Gli inhibitor GANT61. It was found that the PLCε expression was excessively upregulated in the majority of CRPC tissues, and PLCε positivity was linked to poor progression‑free survival (PFS) and overall survival (OS) in patients with PCa. Furthermore, PLCε knockdown significantly suppressed CRPC cell proliferation and invasion. Of note, it was found that PLCε knockdown increased the sensitivity of CRPC cells to enzalutamide in vitro by suppressing androgen receptor (AR) activities via the non‑canonical Hedgehog/Gli‑2 and p‑STAT3 signaling pathways. PLCε knockdown was shown to increase the sensitivity of CRPC cell xenografts to enzalutamide in vivo. Finally, the combination of PLCε knockdown with GANT61 significantly sensitized CRPC cells to enzalutamide. Collectively, the results of the present study suggest that PLCε is a potential therapeutic target for CRPC.
Collapse
Affiliation(s)
- Wei Sun
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Luo Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhongbo Du
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mengjuan Yuan
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Honglin Cheng
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yingying Gao
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chunli Luo
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
36
|
Takatori S, Wang W, Iguchi A, Tomita T. Genetic Risk Factors for Alzheimer Disease: Emerging Roles of Microglia in Disease Pathomechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:83-116. [PMID: 30747419 DOI: 10.1007/978-3-030-05542-4_5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accumulation of aggregated amyloid β (Aβ) peptides in the brain is deeply involved in Alzheimer disease (AD) pathogenesis. Mutations in APP and presenilins play major roles in Aβ pathology in rare autosomal-dominant forms of AD, whereas pathomechanisms of sporadic AD, accounting for the majority of cases, remain unknown. In this chapter, we review current knowledge on genetic risk factors of AD, clarified by recent advances in genome analysis technology. Interestingly, TREM2 and many genes associated with disease risk are predominantly expressed in microglia, suggesting that these risk factors are involved in pathogenicity through common mechanisms involving microglia. Therefore, we focus on factors closely associated with microglia and discuss their possible roles in pathomechanisms of AD. Furthermore, we review current views on the pathological roles of microglia and emphasize the importance of microglial changes in response to Aβ deposition and mechanisms underlying the phenotypic changes. Importantly, functional outcomes of microglial activation can be both protective and deleterious to neurons. We further describe the involvement of microglia in tau pathology and the activation of other glial cells. Through these topics, we shed light on microglia as a promising target for drug development for AD and other neurological disorders.
Collapse
Affiliation(s)
- Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Wenbo Wang
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Akihiro Iguchi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
37
|
Nelson M, Adams T, Ojo C, Carroll MA, Catapane EJ. Manganese toxicity is targeting an early step in the dopamine signal transduction pathway that controls lateral cilia activity in the bivalve mollusc Crassostrea virginica. Comp Biochem Physiol C Toxicol Pharmacol 2018; 213:1-6. [PMID: 30010023 PMCID: PMC6103847 DOI: 10.1016/j.cbpc.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
Manganese is a neurotoxin causing manganism, a Parkinson-like clinical disorder. Manganese has been shown to interfere with dopaminergic neurotransmission, but the neurotoxic mechanism involved is not fully resolved. In the bivalve mollusc Crassostrea virginica also known as the eastern oyster, beating rates of lateral cilia of the gill are controlled by dopaminergic-serotonergic innervation originating from their cerebral and visceral ganglia. Terminal release of dopamine activates D2-like receptors on these gill cells inhibiting adenylyl cyclase and slowing cilia beating rates. In C. virginica, manganese treatment disrupts this dopaminergic innervation of the gill, preventing the normal cilio-inhibitory response of lateral cells to dopamine. In this study an adenylyl cyclase activator (forskolin) and two different inhibitors (MDL-12,330A and SQ 22,536) were used to determine if manganese had any effects on the adenylyl cyclase step of the dopamine D2 receptor signal transduction pathway. The results showed that neither the adenylyl cyclase activator nor the inhibitors were affected by manganese in the control of lateral ciliary activity. This suggests that in C. virginica the mechanism of manganese toxicity on the dopaminergic control of lateral ciliary activity is targeting an early step in the D2R signal transduction pathway, which may involve interference with D2 receptor activation or alternatively some other downstream signaling activity that does not affect adenylyl cyclase.
Collapse
Affiliation(s)
- Michael Nelson
- Department of Biology, Medgar Evers College, 1638 Bedford Ave, Brooklyn, NY 11225, USA
| | - Trevon Adams
- Department of Biology, Medgar Evers College, 1638 Bedford Ave, Brooklyn, NY 11225, USA
| | - Christiana Ojo
- Department of Biology, Medgar Evers College, 1638 Bedford Ave, Brooklyn, NY 11225, USA
| | - Margaret A Carroll
- Department of Biology, Medgar Evers College, 1638 Bedford Ave, Brooklyn, NY 11225, USA
| | - Edward J Catapane
- Department of Biology, Medgar Evers College, 1638 Bedford Ave, Brooklyn, NY 11225, USA.
| |
Collapse
|
38
|
Nicholson MW, Sweeney A, Pekle E, Alam S, Ali AB, Duchen M, Jovanovic JN. Diazepam-induced loss of inhibitory synapses mediated by PLCδ/ Ca 2+/calcineurin signalling downstream of GABAA receptors. Mol Psychiatry 2018; 23:1851-1867. [PMID: 29904150 PMCID: PMC6232101 DOI: 10.1038/s41380-018-0100-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/09/2018] [Accepted: 05/01/2018] [Indexed: 11/29/2022]
Abstract
Benzodiazepines facilitate the inhibitory actions of GABA by binding to γ-aminobutyric acid type A receptors (GABAARs), GABA-gated chloride/bicarbonate channels, which are the key mediators of transmission at inhibitory synapses in the brain. This activity underpins potent anxiolytic, anticonvulsant and hypnotic effects of benzodiazepines in patients. However, extended benzodiazepine treatments lead to development of tolerance, a process which, despite its important therapeutic implications, remains poorly characterised. Here we report that prolonged exposure to diazepam, the most widely used benzodiazepine in clinic, leads to a gradual disruption of neuronal inhibitory GABAergic synapses. The loss of synapses and the preceding, time- and dose-dependent decrease in surface levels of GABAARs, mediated by dynamin-dependent internalisation, were blocked by Ro 15-1788, a competitive benzodiazepine antagonist, and bicuculline, a competitive GABA antagonist, indicating that prolonged enhancement of GABAAR activity by diazepam is integral to the underlying molecular mechanism. Characterisation of this mechanism has revealed a metabotropic-type signalling downstream of GABAARs, involving mobilisation of Ca2+ from the intracellular stores and activation of the Ca2+/calmodulin-dependent phosphatase calcineurin, which, in turn, dephosphorylates GABAARs and promotes their endocytosis, leading to disassembly of inhibitory synapses. Furthermore, functional coupling between GABAARs and Ca2+ stores was sensitive to phospholipase C (PLC) inhibition by U73122, and regulated by PLCδ, a PLC isoform found in direct association with GABAARs. Thus, a PLCδ/Ca2+/calcineurin signalling cascade converts the initial enhancement of GABAARs by benzodiazepines to a long-term downregulation of GABAergic synapses, this potentially underpinning the development of pharmacological and behavioural tolerance to these widely prescribed drugs.
Collapse
Affiliation(s)
| | - Aaron Sweeney
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Eva Pekle
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Sabina Alam
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Afia B Ali
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Michael Duchen
- Neuroscience, Physiology and Pharmacology, University College London, WC1E 6BT, London, UK
| | | |
Collapse
|
39
|
Phospholipid molecular species composition of Chinese traditional low-salt fermented fish inoculated with different starter cultures. Food Res Int 2018; 111:87-96. [DOI: 10.1016/j.foodres.2018.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 01/20/2023]
|
40
|
Koss H, Bunney TD, Esposito D, Martins M, Katan M, Driscoll PC. Dynamic Allostery in PLCγ1 and Its Modulation by a Cancer Mutation Revealed by MD Simulation and NMR. Biophys J 2018; 115:31-45. [PMID: 29972810 PMCID: PMC6035297 DOI: 10.1016/j.bpj.2018.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol phospholipase Cγ (PLCγ) is an intracellular membrane-associated second-messenger signaling protein activated by tyrosine kinases such as fibroblast growth factor receptor 1. PLCγ contains the regulatory γ-specific array (γSA) comprising a tandem Src homology 2 (SH2) pair, an SH3 domain, and a split pleckstrin homology domain. Binding of an activated growth factor receptor to γSA leads to Tyr783 phosphorylation and consequent PLCγ activation. Several disease-relevant mutations in γSA have been identified; all lead to elevated phospholipase activity. In this work, we describe an allosteric mechanism that connects the Tyr783 phosphorylation site to the nSH2-cSH2 junction and involves dynamic interactions between the cSH2-SH3 linker and cSH2. Molecular dynamics simulations of the tandem SH2 protein suggest that Tyr783 phosphorylation is communicated to the nSH2-cSH2 junction by modulating cSH2 binding to sections of the cSH2-SH3 linker. NMR chemical shift perturbation analyses for designed tandem SH2 constructs reveal combined fast and slow dynamic processes that can be attributed to allosteric communication involving these regions of the protein, establishing an example in which complex N-site exchange can be directly inferred from 1H,15N-HSQC spectra. Furthermore, in tandem SH2 and γSA constructs, molecular dynamics and NMR results show that the Arg687Trp mutant in PLCγ1 (equivalent to the cancer mutation Arg665Trp in PLCγ2) perturbs the dynamic allosteric pathway. This combined experimental and computational study reveals a rare example of multistate kinetics involved in a dynamic allosteric process that is modulated in the context of a disease-relevant mutation. The allosteric influences and the weakened binding of the cSH2-SH3 linker to cSH2 should be taken into account in any more holistic investigation of PLCγ regulation.
Collapse
Affiliation(s)
- Hans Koss
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | - Tom D Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | | | - Marta Martins
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | | |
Collapse
|
41
|
Alipanah L, Winge P, Rohloff J, Najafi J, Brembu T, Bones AM. Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum. PLoS One 2018; 13:e0193335. [PMID: 29474408 PMCID: PMC5825098 DOI: 10.1371/journal.pone.0193335] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 02/08/2018] [Indexed: 01/12/2023] Open
Abstract
Phosphorus, an essential element for all living organisms, is a limiting nutrient in many regions of the ocean due to its fast recycling. Changes in phosphate (Pi) availability in aquatic systems affect diatom growth and productivity. We investigated the early adaptive mechanisms in the marine diatom Phaeodactylum tricornutum to P deprivation using a combination of transcriptomics, metabolomics, physiological and biochemical experiments. Our analysis revealed strong induction of gene expression for proteins involved in phosphate acquisition and scavenging, and down-regulation of processes such as photosynthesis, nitrogen assimilation and nucleic acid and ribosome biosynthesis. P deprivation resulted in alterations of carbon allocation through the induction of the pentose phosphate pathway and cytosolic gluconeogenesis, along with repression of the Calvin cycle. Reorganization of cellular lipids was indicated by coordinated induced expression of phospholipases, sulfolipid biosynthesis enzymes and a putative betaine lipid biosynthesis enzyme. A comparative analysis of nitrogen- and phosphorus-deprived P. tricornutum revealed both common and distinct regulation patterns in response to phosphate and nitrate stress. Regulation of central carbon metabolism and amino acid metabolism was similar, whereas unique responses were found in nitrogen assimilation and phosphorus scavenging in nitrogen-deprived and phosphorus-deprived cells, respectively.
Collapse
Affiliation(s)
- Leila Alipanah
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per Winge
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jens Rohloff
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Javad Najafi
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tore Brembu
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle M. Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
42
|
Nakhaei-Rad S, Haghighi F, Nouri P, Rezaei Adariani S, Lissy J, Kazemein Jasemi NS, Dvorsky R, Ahmadian MR. Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Crit Rev Biochem Mol Biol 2018; 53:130-156. [PMID: 29457927 DOI: 10.1080/10409238.2018.1431605] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeideh Nakhaei-Rad
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Fereshteh Haghighi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Parivash Nouri
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Soheila Rezaei Adariani
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Jana Lissy
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Neda S Kazemein Jasemi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Radovan Dvorsky
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Mohammad Reza Ahmadian
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| |
Collapse
|
43
|
Abstract
Phospholipases are lipolytic enzymes that hydrolyze phospholipid substrates at specific ester bonds. Phospholipases are widespread in nature and play very diverse roles from aggression in snake venom to signal transduction, lipid mediator production, and metabolite digestion in humans. Phospholipases vary considerably in structure, function, regulation, and mode of action. Tremendous advances in understanding the structure and function of phospholipases have occurred in the last decades. This introductory chapter is aimed at providing a general framework of the current understanding of phospholipases and a discussion of their mechanisms of action and emerging biological functions.
Collapse
|
44
|
Lo Vasco VR, Leopizzi M, Di Maio V, Di Raimo T, Cesa S, Masci A, Rocca CD. LPS, Oleuropein and Blueberry extracts affect the survival, morphology and Phosphoinositide signalling in stimulated human endothelial cells. J Cell Commun Signal 2017; 11:317-327. [PMID: 28452007 PMCID: PMC5704039 DOI: 10.1007/s12079-017-0391-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/13/2017] [Indexed: 10/19/2022] Open
Abstract
Endothelial cells (EC) act as leading actors in angiogenesis. Understanding the complex network of signal transduction pathways which regulate angiogenesis might offer insights in the regulation of normal and pathological events, including tumours, vascular, inflammatory and immune diseases. The effects of olive oil and of Blueberry extracts upon the phosphoinositide (PI)-specific phospholipase C (PLC) enzymes were evaluated both in quiescent and inflammatory stimulated human umbilical vein EC (HUVEC) using molecular biology (multiliquid bioanalysis) and immunofluorescence techniques. Oleuropein significantly increased the number of surviving HUVEC compared to untreated controls, suggesting that it favours the survival and proliferation of EC. Our results suggest that Oleuropein might be useful to induce EC proliferation, an important event during angiogenesis, with special regard to wound healing. Blueberry extracts increased the number of surviving HUVEC, although the comparison to untreated controls did not result statistically significant. Lipopolysaccharide (LPS) administration significantly reduced the number of live HUVEC. LPS can also modify the expression of selected PLC genes. Adding Blueberry extracts to LPS treated HUVEC cultures did not significantly modify the variations of PLC expression induced by LPS. Oleuropein increased or reduced the expression of PLC genes, and statistically significant results were identified for selected PLC isoforms. Oleuropein also modified the effects of LPS upon PLC genes' expression. Thus, our results corroborate the hypothesis that Oleuropein owns anti-inflammatory activity. The intracellular localization of PLC enzymes was modified by the different treatments we used. Podosome-like structures were observed in differently LPS treated HUVEC.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Policlinico Umberto I, Sapienza University of Rome, viale dell'Università 33, 00161, Rome, Italy.
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Latina, Rome, Italy
| | - Valeria Di Maio
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Latina, Rome, Italy
| | - Tania Di Raimo
- Medical Oncology Unit, San Filippo Neri Hospital, ASL Roma 1, Rome, Italy
| | - Stefania Cesa
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Alessandra Masci
- Department of Experimental Medicine, Research Unit on Food Science and Human Nutrition, Sapienza University of Rome, Rome, Italy
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Latina, Rome, Italy
| |
Collapse
|
45
|
Jiang D, Zhuang J, Peng W, Lu Y, Liu H, Zhao Q, Chi C, Li X, Zhu G, Xu X, Yan C, Xu Y, Ge J, Pang J. Phospholipase Cγ1 Mediates Intima Formation Through Akt-Notch1 Signaling Independent of the Phospholipase Activity. J Am Heart Assoc 2017; 6:JAHA.117.005537. [PMID: 28698260 PMCID: PMC5586285 DOI: 10.1161/jaha.117.005537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Vascular smooth muscle cell proliferation, migration, and dedifferentiation are critical for vascular diseases. Recently, it was demonstrated that Notch receptors have opposing effects on intima formation after vessel injury. Therefore, it is important to investigate the specific regulatory pathways that activate the different Notch receptors. Methods and Results There was a time‐ and dose‐dependent activation of Notch1 by angiotensin II and platelet‐derived growth factor in vascular smooth muscle cells. When phospholipase Cγ1 (PLCγ1) expression was reduced by small interfering RNA, Notch1 activation and Hey2 expression (Notch target gene) induced by angiotensin II or platelet‐derived growth factor were remarkably inhibited, while Notch2 degradation was not affected. Mechanistically, we observed an association of PLCγ1 and Akt, which increased after angiotensin II or platelet‐derived growth factor stimulation. PLCγ1 knockdown significantly inhibited Akt activation. Importantly, PLCγ1 phospholipase site mutation (no phospholipase activity) did not affect Akt activation. Furthermore, PLCγ1 depletion inhibited platelet‐derived growth factor–induced vascular smooth muscle cell proliferation, migration, and dedifferentiation, while it increased apoptosis. In vivo, PLCγ1 and control small interfering RNA were delivered periadventitially in pluronic gel and complete carotid artery ligation was performed. Morphometric analysis 21 days after ligation demonstrated that PLCγ1 small interfering RNA robustly attenuated intima area and intima/media ratio compared with the control group. Conclusions PLCγ1‐Akt–mediated Notch1 signaling is crucial for intima formation. This effect is attributable to PLCγ1‐Akt interaction but not PLCγ1 phospholipase activity. Specific inhibition of the PLCγ1 and Akt interaction will be a promising therapeutic strategy for preventing vascular remodeling.
Collapse
Affiliation(s)
- Dongyang Jiang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhui Zhuang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenhui Peng
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuyan Lu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Liu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhao
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Chi
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiankai Li
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guofu Zhu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangbin Xu
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Chen Yan
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Yawei Xu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinjiang Pang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China .,Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
46
|
Topological organisation of the phosphatidylinositol 4,5-bisphosphate-phospholipase C resynthesis cycle: PITPs bridge the ER-PM gap. Biochem J 2017; 473:4289-4310. [PMID: 27888240 DOI: 10.1042/bcj20160514c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022]
Abstract
Phospholipase C (PLC) is a receptor-regulated enzyme that hydrolyses phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) triggering three biochemical consequences, the generation of soluble inositol 1,4,5-trisphosphate (IP3), membrane-associated diacylglycerol (DG) and the consumption of PM PI(4,5)P2 Each of these three signals triggers multiple molecular processes impacting key cellular properties. The activation of PLC also triggers a sequence of biochemical reactions, collectively referred to as the PI(4,5)P2 cycle that culminates in the resynthesis of this lipid. The biochemical intermediates of this cycle and the enzymes that mediate these reactions are topologically distributed across two membrane compartments, the PM and the endoplasmic reticulum (ER). At the PM, the DG formed during PLC activation is rapidly converted into phosphatidic acid (PA) that needs to be transported to the ER where the machinery for its conversion into PI is localised. Conversely, PI from the ER needs to be rapidly transferred to the PM where it can be phosphorylated by lipid kinases to regenerate PI(4,5)P2 Thus, two lipid transport steps between membrane compartments through the cytosol are required for the replenishment of PI(4,5)P2 at the PM. Here, we review the topological constraints in the PI(4,5)P2 cycle and current understanding how these constraints are overcome during PLC signalling. In particular, we discuss the role of lipid transfer proteins in this process. Recent findings on the biochemical properties of a membrane-associated lipid transfer protein of the PITP family, PITPNM proteins (alternative name RdgBα/Nir proteins) that localise to membrane contact sites are discussed. Studies in both Drosophila and mammalian cells converge to provide a resolution to the conundrum of reciprocal transfer of PA and PI during PLC signalling.
Collapse
|
47
|
Han EH, Petrella DP, Blakeslee JJ. 'Bending' models of halotropism: incorporating protein phosphatase 2A, ABCB transporters, and auxin metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3071-3089. [PMID: 28899081 DOI: 10.1093/jxb/erx127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Salt stress causes worldwide reductions in agricultural yields, a problem that is exacerbated by the depletion of global freshwater reserves and the use of contaminated or recycled water (i.e. effluent water). Additionally, salt stress can occur as cultivated areas are subjected to frequent rounds of irrigation followed by periods of moderate to severe evapotranspiration, which can result in the heterogeneous aggregation of salts in agricultural soils. Our understanding of the later stages of salt stress and the mechanisms by which salt is transported out of cells and roots has greatly improved over the last decade. The precise mechanisms by which plant roots perceive salt stress and translate this perception into adaptive, directional growth away from increased salt concentrations (i.e. halotropism), however, are not well understood. Here, we provide a review of the current knowledge surrounding the early responses to salt stress and the initiation of halotropism, including lipid signaling, protein phosphorylation cascades, and changes in auxin metabolism and/or transport. Current models of halotropism have focused on the role of PIN2- and PIN1-mediated auxin efflux in initiating and controlling halotropism. Recent studies, however, suggest that additional factors such as ABCB transporters, protein phosphatase 2A activity, and auxin metabolism should be included in the model of halotropic growth.
Collapse
Affiliation(s)
- Eun Hyang Han
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
| | - Dominic P Petrella
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
| | - Joshua J Blakeslee
- Department of Horticulture and Crop Science, OARDC Metabolite Analysis Cluster (OMAC), The Ohio State University/OARDC, Wooster, OH, USA
| |
Collapse
|
48
|
Lo Vasco VR, Leopizzi M, Scotto d’Abusco A, Rocca CD. Different Expression and Localization of Phosphoinositide Specific Phospholipases C in Human Osteoblasts, Osteosarcoma Cell Lines, Ewing Sarcoma and Synovial Sarcoma. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2017. [DOI: 10.15171/ajmb.2017.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Bone hardness and strength depends on mineralization, which involves a complex process in which calcium phosphate, produced by bone-forming cells, was shed around the fibrous matrix. This process is strictly regulated, and a number of signal transduction systems were interested in calcium metabolism, such as the phosphoinositide (PI) pathway and related phospholipase C (PLC) enzymes. Objectives: Our aim was to search for common patterns of expression in osteoblasts, as well as in ES and SS. Methods: We analysed the PLC enzymes in human osteoblasts and osteosarcoma cell lines MG-63 and SaOS-2. We compared the obtained results to the expression of PLCs in samples of patients affected with Ewing sarcoma (ES) and synovial sarcoma (SS). Results: In osteoblasts, MG-63 cells and SaOS-2 significant differences were identified in the expression of PLC δ4 and PLC η subfamily isoforms. Differences were also identified regarding the expression of PLCs in ES and SS. Most ES and SS did not express PLCB1, which was expressed in most osteoblasts, MG-63 and SaOS-2 cells. Conversely, PLCB2, unexpressed in the cell lines, was expressed in some ES and SS. However, PLCH1 was expressed in SaOS-2 and inconstantly expressed in osteoblasts, while it was expressed in ES and unexpressed in SS. The most relevant difference observed in ES compared to SS regarded PLC ε and PLC η isoforms. Conclusion: MG-63 and SaOS-2 osteosarcoma cell lines might represent an inappropriate experimental model for studies about the analysis of signal transduction in osteoblasts
Collapse
Affiliation(s)
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino –Sapienza University, Latina, Rome, Italy
| | - Anna Scotto d’Abusco
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino –Sapienza University, Latina, Rome, Italy
| |
Collapse
|
49
|
Zhang B, Wang Y, Liu JY. Genome-wide identification and characterization of phospholipase C gene family in cotton (Gossypium spp.). SCIENCE CHINA-LIFE SCIENCES 2017; 61:88-99. [PMID: 28547583 DOI: 10.1007/s11427-017-9053-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/01/2017] [Indexed: 01/05/2023]
Abstract
Phospholipase C (PLC) are important regulatory enzymes involved in several lipid and Ca2+-dependent signaling pathways. Previous studies have elucidated the versatile roles of PLC genes in growth, development and stress responses of many plants, however, the systematic analyses of PLC genes in the important fiber-producing plant, cotton, are still deficient. In this study, through genome-wide survey, we identified twelve phosphatidylinositol-specific PLC (PI-PLC) and nine non-specific PLC (NPC) genes in the allotetraploid upland cotton Gossypium hirsutum and nine PI-PLC and six NPC genes in two diploid cotton G. arboretum and G.raimondii, respectively. The PI-PLC and NPC genes of G. hirsutum showed close phylogenetic relationship with their homologous genes in the diploid cottons and Arabidopsis. Segmental and tandem duplication contributed greatly to the formation of the gene family. Expression profiling indicated that few of the PLC genes are constitutely expressed, whereas most of the PLC genes are preferentially expressed in specific tissues and abiotic stress conditions. Promoter analyses further implied that the expression of these PLC genes might be regulated by MYB transcription factors and different phytohormones. These results not only suggest an important role of phospholipase C members in cotton plant development and abiotic stress response but also provide good candidate targets for future molecular breeding of superior cotton cultivars.
Collapse
Affiliation(s)
- Bing Zhang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanmei Wang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
50
|
Shao Q, Luo X, Yang D, Wang C, Cheng Q, Xiang T, Ren G. Phospholipase Cδ1 suppresses cell migration and invasion of breast cancer cells by modulating KIF3A-mediated ERK1/2/β- catenin/MMP7 signalling. Oncotarget 2017; 8:29056-29066. [PMID: 28423710 PMCID: PMC5438712 DOI: 10.18632/oncotarget.16072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
Phospholipase C δ1 (PLCD1) encodes an enzyme involved in energy metabolism, calcium homeostasis and intracellular movement. It is located at 3p22 in a region that is frequently deleted in multiple cancers, and the PLCD1 enzyme is a potential tumour suppressor in breast cancer that inhibits matrix metalloprotease (MMP) 7, but the detailed mechanism remains elusive. In this study, we found that PLCD1 was downregulated in breast cancers, and the gain-or-loss functional assay revealed that PLCD1 inhibited cell migration and invasion in vitro via the ERK1/2/β-catenin/MMP7 signalling pathway. Furthermore, KIF3A was identified as a downstream mediator of PLCD1, and there was an inverse correlation between the expression of PLCD1 and KIF3A. Knockdown of KIF3A expression alone suppressed cell migration and invasion, and attenuated ERK1/2/β-catenin/MMP7 signalling that was reactivated by knocking down PLCD1 in vitro. Collectively, our findings suggest that PLCD1 acts as a tumour suppressor, by KIF3A-mediated suppression of ERK1/2/β-catenin/MMP7 signalling, at least in part, in breast cancer.
Collapse
Affiliation(s)
- Qing Shao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinrong Luo
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dejuan Yang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Can Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiao Cheng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|