1
|
Deshpande P, Chimata AV, Singh A. Exploring the role of N-acetyltransferases in diseases: a focus on N-acetyltransferase 9 in neurodegeneration. Neural Regen Res 2025; 20:2862-2871. [PMID: 39435604 PMCID: PMC11826463 DOI: 10.4103/nrr.nrr-d-24-00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Acetyltransferases, required to transfer an acetyl group on protein are highly conserved proteins that play a crucial role in development and disease. Protein acetylation is a common post-translational modification pivotal to basic cellular processes. Close to 80%-90% of proteins are acetylated during translation, which is an irreversible process that affects protein structure, function, life, and localization. In this review, we have discussed the various N-acetyltransferases present in humans, their function, and how they might play a role in diseases. Furthermore, we have focused on N-acetyltransferase 9 and its role in microtubule stability. We have shed light on how N-acetyltransferase 9 and acetylation of proteins can potentially play a role in neurodegenerative diseases. We have specifically discussed the N-acetyltransferase 9-acetylation independent function and regulation of c-Jun N-terminal kinase signaling and microtubule stability during development and neurodegeneration.
Collapse
Affiliation(s)
| | | | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
- Premedical Program, University of Dayton, Dayton, OH, USA
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
- Integrative Science and Engineering Center, University of Dayton, Dayton, OH, USA
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
2
|
Yoshinaga D, Craven I, Feng R, Prondzynski M, Shani K, Tharani Y, Mayourian J, Joseph M, Walker D, Bortolin RH, Carreon CK, Boss B, Upton S, Parker KK, Pu WT, Bezzerides VJ. Dysregulation of N-terminal acetylation causes cardiac arrhythmia and cardiomyopathy. Nat Commun 2025; 16:3604. [PMID: 40234403 PMCID: PMC12000442 DOI: 10.1038/s41467-025-58539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/21/2025] [Indexed: 04/17/2025] Open
Abstract
N-terminal acetyltransferases including NAA10 catalyze N-terminal acetylation, an evolutionarily conserved co- and post-translational modification. However, little is known about the role of N-terminal acetylation in cardiac homeostasis. To gain insight into cardiac-dependent NAA10 function, we studied a previously unidentified NAA10 variant p.(Arg4Ser) segregating with QT-prolongation, cardiomyopathy, and developmental delay in a large kindred. Here, we show that the NAA10R4S variant reduced enzymatic activity, decreased NAA10-NAA15 complex formation, and destabilized the enzymatic complex N-terminal acetyltransferase A. In NAA10R4S/Y-induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs), dysregulation of the late sodium and slow delayed rectifier potassium currents caused severe repolarization abnormalities, consistent with clinical QT prolongation. Engineered heart tissues generated from NAA10R4S/Y-iPSC-CMs had significantly decreased contractile force and sarcomeric disorganization, consistent with the pedigree's cardiomyopathic phenotype. Proteomic studies revealed dysregulation of metabolic pathways and cardiac structural proteins. We identified small molecule and genetic therapies that normalized the phenotype of NAA10R4S/Y-iPSC-CMs. Our study defines the roles of N-terminal acetylation in cardiac regulation and delineates mechanisms underlying QT prolongation, arrhythmia, and cardiomyopathy caused by NAA10 dysfunction.
Collapse
Affiliation(s)
- Daisuke Yoshinaga
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabel Craven
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rui Feng
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maksymilian Prondzynski
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin Shani
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Allston, MA, USA
| | - Yashasvi Tharani
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua Mayourian
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Milosh Joseph
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Walker
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raul H Bortolin
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Bridget Boss
- Department of Pediatric Cardiology, Dartmouth Hitchcock Medical Center, Manchester, NH, USA
| | - Sheila Upton
- Department of Medical Genetics, Dartmouth Hitchcock Medical Center, Manchester, NH, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Allston, MA, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vassilios J Bezzerides
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Cardiology, Dartmouth Hitchcock Medical Center, Manchester, NH, USA.
| |
Collapse
|
3
|
Li X, Han X, Yan H, Zhu H, Wang H, Li D, Tian Y, Su Y. From gut microbiota to host genes: A dual-regulatory pathway driving body weight variation in dagu chicken (Gallus gallus domesticus). Poult Sci 2025; 104:105067. [PMID: 40239312 PMCID: PMC12032334 DOI: 10.1016/j.psj.2025.105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
During the growth and development of animals, there is an interaction between the gut microbiota and the host genotype. The host genotype can regulate the microbiota, and in turn, the microbiota can influence host gene expression, thereby affecting the animal's production performance. This study explored the dynamic interplay between the gut microbiota and host gene expression in body weight variation in Dagu chicken, an indigenous poultry genetic resource in China. We characterized mucosa-associated microbiota across four gastrointestinal segments (duodenum, jejunum, ileum, cecum) and ileocecal chyme microbiota in 12-week-old Dagu chickens stratified by divergent body weight phenotypes, while simultaneously quantifying region-specific intestinal epithelial transcriptional regulation. 16S rDNA sequencing was employed to identify Firmicutes as the predominant bacterial phylum, with notable differences in the abundance of specific genera (e.g., Ligilactobacillus and Lactobacillus) being observed between the high- or low-body-weight groups. Enhanced biosynthesis pathways were functionally predicted in heavier roosters, whereas reduced nutrient metabolism pathways were contrasted. A conserved functional concordance was observed between regionally predominant differential microbiota and the physiological specialization of corresponding intestinal niches. Functional analysis revealed that the high-body-weight group demonstrated superior capabilities in microbial biosynthesis, whereas the low-body-weight group exhibited enhanced microbial metabolic activity. NAA80 was identified as the common differentially expressed gene across all intestinal epithelial tissues. The Gene Ontology and KEGG pathway analyses revealed elevated nutrient absorption efficiency in the high-body-weight group, while the low-body-weight group demonstrated accelerated cellular renewal rates and shorter cycles. Correlation analysis identified significant associations between gut microbiota and host genes expression profiles, with the majority of correlations being positive. These results suggest a coordinated interaction between microbial communities and host genetic regulation, potentially driving phenotypic differences in body weight performance.
Collapse
Affiliation(s)
- Xiaohan Li
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Xueru Han
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Huan Yan
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Hongyan Zhu
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Hongcai Wang
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Desheng Li
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Yumin Tian
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Yuhong Su
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China.
| |
Collapse
|
4
|
Wu H, Xu H, Man Y, Huang P, Huang L, He M. N-terminal histone acetyltransferase NAA40 modulates osteosarcoma progression by controlling AGR2 expression. Biochem Biophys Res Commun 2025; 754:151491. [PMID: 40020320 DOI: 10.1016/j.bbrc.2025.151491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/17/2025] [Accepted: 02/13/2025] [Indexed: 03/03/2025]
Abstract
PURPOSE Osteosarcoma (OS) is the most common primary malignant bone neoplasm in children and adolescents, characterized by high mortality and disability owing to frequent relapse and metastasis. However, N-alpha-acetyltransferase 40 (NAA40) molecular mechanisms underlying OS progression and metastasis remain unexplored. METHODS Bioinformatics analysis was used to evaluate NAA40 role in OS data from GEO and TARGET database. OS cell multiplication, invasion and migration were gauged in CCK8, EdU assays, and Transwell assays. RT-qPCR, ChIP-qPCR, dual luciferase reporter assay and rescue experiments were to explore NAA40 regulatory mechanism. Animal experiments further confirmed cell-based assays and NAA40 molecular mechanism. RESULTS Herein NAA40 expression was upregulated in OS samples and associated with shorter survival among patients. Functionally, NAA40 depletion resulted in reduced OS cell viability, decreased migration, and invasion in vitro. Mechanistically, NAA40 loss was associated with increased H4S1ph and H4R3me2a and decreased H4R3me2s.NAA40 overexpression improved the transcriptional activity in the promoter of AGR2. Histone marks, H3K4me3 and H3K27me3, at the AGR2 promoter were altered, inducing changes in AGR2 expression in NAA40-depleted OS cells. Anterior gradient 2 (AGR2) was identified as a downstream target of NAA40.AGR2 knockdown in OS cells resulted in reduced viability, decreased migration, and invasion. Ectopic overexpression of AGR2 partially rescued these phenotypic changes. In vivo experiments revealed that NAA40 depletion led to reduced AGR2 protein levels, inhibiting the proliferative and metastatic potential of OS cells. CONCLUSION NAA40 contributes to OS development and progression by epigenetically regulating AGR2 expression.
Collapse
Affiliation(s)
- Hanhua Wu
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Hua Xu
- Center for Education Evaluation & Faculty Development, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Yunan Man
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Piwei Huang
- Division of Spinal Surgery, The Tenth Affiliated Hospital of Guangxi Medical University (Qinzhou First People's Hospital), Qinnan District, Qinzhou, Guangxi Zhuang Autonomous Region, 535000, PR China
| | - Linhai Huang
- Division of Orthopedic Surgery, Wuming Hospital of Guangxi Medical University, Wuming District, Nanning, Guangxi Zhuang Autonomous Region, 530199, PR China.
| | - Maolin He
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China; Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China; Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China.
| |
Collapse
|
5
|
Lentzsch AM, Lee JH, Shan SO. Mechanistic Insights into Protein Biogenesis and Maturation on the Ribosome. J Mol Biol 2025:169056. [PMID: 40024436 DOI: 10.1016/j.jmb.2025.169056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
The ribosome is a major cellular machine that converts genetic information into biological function. Emerging data show that the ribosome is not only a protein synthesis machine, but also participates in the maturation of the nascent protein into properly folded and active molecules. The ribosome surface near the opening of the polypeptide exit tunnel can interact directly with the newly synthesized proteins and, more importantly, provides a platform where numerous protein biogenesis factors assemble, gain access to the nascent chain, and direct them into diverse biogenesis pathways. In this article, we review the current understanding of cotranslational protein maturation pathways, with an emphasis on systems in which biochemical studies provided a high-resolution molecular understanding and yielded generalizable mechanistic principles.
Collapse
Affiliation(s)
- Alfred M Lentzsch
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Jae Ho Lee
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
6
|
Li S, Duan Y, Luo S, Zhou F, Wu Q, Lu Z. Short-chain fatty acids and cancer. Trends Cancer 2025; 11:154-168. [PMID: 39638744 DOI: 10.1016/j.trecan.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Short-chain fatty acids (SCFAs), derived from the diet and the microbiota, serve as crucial links between the diet, gut microbiota, metabolism, immunity, and cancer. They function as energy sources through β-oxidation and regulate macromolecular synthesis, G protein-coupled receptor (GPCR) and histone deacetylase (HDAC) activities, protein modifications, signaling pathways, and gene expression in cells within the tumor microenvironment, particularly in tumor and immune cells. The critical role of SCFAs in maintaining normal homeostasis and influencing tumor progression highlights the potential of targeting SCFA-mediated cellular processes for cancer prevention and treatment.
Collapse
Affiliation(s)
- Shan Li
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Yixin Duan
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Shudi Luo
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Fangxin Zhou
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Qingang Wu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Zhimin Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
7
|
He M, Du B, Chen G, Lyu Y, Guo H, Jia X, Xia K. Naa15 Haploinsufficiency and De Novo Missense Variants Associate With Neurodevelopmental Disorders and Interfere With Neurogenesis and Neuron Development. Autism Res 2025. [PMID: 39825710 DOI: 10.1002/aur.3308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Neurodevelopmental disorders (NDDs) encompass a group of conditions that impact brain development and function, exhibiting significant genetic and clinical heterogeneity. NAA15, the auxiliary subunit of the N-terminal acetyltransferase complex, has garnered attention due to its association with NDDs. However, the precise role of NAA15 in cortical development and its contribution to NDDs remain elusive. By employing targeted sequencing on a large Chinese cohort affected by ASD and conducting an extensive literature review, we have compiled 64 distinct variants in the NAA15 gene identified among individuals with neurodevelopmental disorders. Our research demonstrates that loss of NAA15 leads to a substantial increase in neuronal count, potentially resulting in aberrant brain development and triggering repetitive as well as anxious behaviors in mice models. Furthermore, disorder-associated variants within NAA15 impair axon and synapse formation processes crucial for neural connectivity establishment. These findings shed light on the consequences of NAA15 deficiency along with its de novo mutations on brain development while unraveling the cellular mechanisms underlying NDDs.
Collapse
Affiliation(s)
- Mei He
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Bing Du
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Guodong Chen
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yongqing Lyu
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hui Guo
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
| | - Xiangbin Jia
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
8
|
Harris TJ, Trader DJ. Exploration of degrons and their ability to mediate targeted protein degradation. RSC Med Chem 2025:d4md00787e. [PMID: 39867589 PMCID: PMC11758578 DOI: 10.1039/d4md00787e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Degrons are short amino acid sequences that can facilitate the degradation of protein substrates. They can be classified as either ubiquitin-dependent or -independent based on their interactions with the ubiquitin proteasome system (UPS). These amino acid sequences are often found in exposed regions of proteins serving as either a tethering point for an interaction with an E3 ligase or initiating signaling for the direct degradation of the protein. Recent advancements in the protein degradation field have shown the therapeutic potential of both classes of degrons through leveraging their degradative effects to engage specific protein targets. This review explores what targeted protein degradation applications degrons can be used in and how they have inspired new degrader technology to target a wide variety of protein substrates.
Collapse
Affiliation(s)
- Timothy J Harris
- Department of Pharmaceutical Sciences, University of California Irvine California 92617 USA
| | - Darci J Trader
- Department of Pharmaceutical Sciences, University of California Irvine California 92617 USA
- Department of Chemistry, University of California Irvine California 92617 USA
| |
Collapse
|
9
|
Mattoo S, Arora M, Sharma P, Pore SK. Targeting mammalian N-end rule pathway for cancer therapy. Biochem Pharmacol 2025; 231:116684. [PMID: 39613115 DOI: 10.1016/j.bcp.2024.116684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Regulated protein degradation plays a crucial role in maintaining proteostasis along with protein refolding and compartmentalisation which collectively control biological functions. The N-end rule pathway is a major ubiquitin-dependent protein degradation system. The short-lived protein substrates containing destabilizing amino acid residues (N-degrons) are recognized by E3 ubiquitin ligases containing UBR box domains (N-recognin) for degradation. The dysregulated pathway fails to maintain the metabolic stability of the substrate proteins which leads to diseases. The mammalian substrates of this pathway are involved in many hallmarks of cancer such as resisting cell death, evading growth suppression, chromosomal instability, angiogenesis, and deregulation of cellular metabolism. Besides, mutations in E3 N-recognin have been detected in human cancers. In this review, we discuss the mammalian N-end rule pathway components, functions, and mechanism of degradation of substrates, and their implications in cancer pathogenesis. We also discuss the impact of pharmacological and genetic inhibition of this pathway component on cancer cells and chemoresistance. We further highlight how this pathway can be manipulated for selective protein degradation; for instance, using PROTAC technique. The challenges and future perspectives to utilize this pathway as a drug target for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Shria Mattoo
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Muskaan Arora
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Priyanka Sharma
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201311, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India.
| |
Collapse
|
10
|
Keller MA, Nakamura M. Acetyltransferase in cardiovascular disease and aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:10.20517/jca.2024.21. [PMID: 39958699 PMCID: PMC11827898 DOI: 10.20517/jca.2024.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Acetyltransferases are enzymes that catalyze the transfer of an acetyl group to a substrate, a modification referred to as acetylation. Loss-of-function variants in genes encoding acetyltransferases can lead to congenital disorders, often characterized by intellectual disability and heart and muscle defects. Their activity is influenced by dietary nutrients that alter acetyl coenzyme A levels, a key cofactor. Cardiovascular diseases, including ischemic, hypertensive, and diabetic heart diseases - leading causes of mortality in the elderly - are largely attributed to prolonged lifespan and the growing prevalence of metabolic syndrome. Acetyltransferases thus serve as a crucial link between lifestyle modifications, cardiometabolic disease, and aging through both epigenomic and non-epigenomic mechanisms. In this review, we discuss the roles and relevance of acetyltransferases. While the sirtuin family of deacetylases has been extensively studied in longevity, particularly through fasting-mediated NAD+ metabolism, recent research has brought attention to the essential roles of acetyltransferases in health and aging-related pathways, including cell proliferation, DNA damage response, mitochondrial function, inflammation, and senescence. We begin with an overview of acetyltransferases, classifying them by domain structure, including canonical and non-canonical lysine acetyltransferases, N-terminal acetyltransferases, and sialic acid O-acetyltransferases. We then discuss recent advances in understanding acetyltransferase-related pathologies, particularly focusing on cardiovascular disease and aging, and explore their potential therapeutic applications for promoting health in older individuals.
Collapse
Affiliation(s)
- Mariko Aoyagi Keller
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
11
|
Omkar S, Mitchem MM, Hoskins JR, Shrader C, Kline JT, Nitika, Fornelli L, Wickner S, Truman AW. Acetylation of the yeast Hsp40 chaperone protein Ydj1 fine-tunes proteostasis and translational fidelity. PLoS Genet 2024; 20:e1011338. [PMID: 39652584 DOI: 10.1371/journal.pgen.1011338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Proteostasis, the maintenance of cellular protein balance, is essential for cell viability and is highly conserved across all organisms. Newly synthesized proteins, or "clients," undergo sequential processing by Hsp40, Hsp70, and Hsp90 chaperones to achieve proper folding and functionality. Despite extensive characterization of post-translational modifications (PTMs) on Hsp70 and Hsp90, the modifications on Hsp40 remain less understood. This study aims to elucidate the role of lysine acetylation on the yeast Hsp40, Ydj1. By mutating acetylation sites on Ydj1's J-domain to either abolish or mimic constitutive acetylation, we observed that preventing acetylation had no noticeable phenotypic impact, whereas acetyl-mimic mutants exhibited various defects indicative of impaired Ydj1 function. Proteomic analysis revealed several Ydj1 interactions affected by J-domain acetylation, notably with proteins involved in translation. Further investigation uncovered a novel role for Ydj1 acetylation in stabilizing ribosomal subunits and ensuring translational fidelity. Our data suggest that acetylation may facilitate the transfer of Ydj1 between Ssa1 and Hsp82. Collectively, this work highlights the critical role of Ydj1 acetylation in proteostasis and translational fidelity.
Collapse
Affiliation(s)
- Siddhi Omkar
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Megan M Mitchem
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Joel R Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Courtney Shrader
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Jake T Kline
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Nitika
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Luca Fornelli
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew W Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| |
Collapse
|
12
|
Saha S, Jain BP, Ghosh DK, Ranjan A. Conformational plasticity links structural instability of NAA10 F128I and NAA10 F128L mutants to their catalytic deregulation. Comput Struct Biotechnol J 2024; 23:4047-4063. [PMID: 39610905 PMCID: PMC11603127 DOI: 10.1016/j.csbj.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
The acetylation of proteins' N-terminal amino groups by the N-acetyltransferase complexes plays a crucial role in modulating the spatial stability and functional activities of diverse human proteins. Mutations disrupting the stability and function of NAA10 result in X-linked rare genetic disorders. In this study, we conducted a global analysis of the impact of fifteen disease-associated missense mutations in NAA10. The analyses revealed that mutations in specific residues, such as Y43, V107, V111, and F128, predictably disrupted interactions essential for NAA10 stability, while most mutations (except R79C, A111W, Q129P, and N178K) expectedly led to structural destabilization. Mutations in many conserved residues within short linear motifs and post-translational modification sites were predicted to affect NAA10 functionality and regulation. All mutations were classified as pathogenic, with F128I and F128L identified as the most destabilizing mutations. The findings show that the F128L and F128I mutations employ different mechanisms for the loss of catalytic activities of NAA10F128L and NAA10F128I due to their structural instability. These two mutations induce distinct folding energy states that differentially modulate the structures of different regions of NAA10F128L and NAA10F128I. Specifically, the predicted instability caused by the F128I mutation results in decreased flexibility within the substrate-binding region, impairing the substrate peptide binding ability of NAA10F128I. Conversely, F128L is predicted to reduce the flexibility of the region containing the acetyl-CoA binding residues in NAA10F128L. Our study provides insights into the mechanism of catalytic inactivation of mutants of NAA10, particularly elucidating the mechanistic features of the structural and functional pathogenicity of the F128L and F128I mutations.
Collapse
Affiliation(s)
- Smita Saha
- Computational and Functional Genomics Group, BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Buddhi Prakash Jain
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Debasish Kumar Ghosh
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
13
|
Graf LG, Moreno-Yruela C, Qin C, Schulze S, Palm GJ, Schmöker O, Wang N, Hocking DM, Jebeli L, Girbardt B, Berndt L, Dörre B, Weis DM, Janetzky M, Albrecht D, Zühlke D, Sievers S, Strugnell RA, Olsen CA, Hofmann K, Lammers M. Distribution and diversity of classical deacylases in bacteria. Nat Commun 2024; 15:9496. [PMID: 39489725 PMCID: PMC11532494 DOI: 10.1038/s41467-024-53903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Classical Zn2+-dependent deac(et)ylases play fundamental regulatory roles in life and are well characterized in eukaryotes regarding their structures, substrates and physiological roles. In bacteria, however, classical deacylases are less well understood. We construct a Generalized Profile (GP) and identify thousands of uncharacterized classical deacylases in bacteria, which are grouped into five clusters. Systematic structural and functional characterization of representative enzymes from each cluster reveal high functional diversity, including polyamine deacylases and protein deacylases with various acyl-chain type preferences. These data are supported by multiple crystal structures of enzymes from different clusters. Through this extensive analysis, we define the structural requirements of substrate selectivity, and discovered bacterial de-D-/L-lactylases and long-chain deacylases. Importantly, bacterial deacylases are inhibited by archetypal HDAC inhibitors, as supported by co-crystal structures with the inhibitors SAHA and TSA, and setting the ground for drug repurposing strategies to fight bacterial infections. Thus, we provide a systematic structure-function analysis of classical deacylases in bacteria and reveal the basis of substrate specificity, acyl-chain preference and inhibition.
Collapse
Affiliation(s)
- Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences (SB), EPFL, Lausanne, Switzerland
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Gottfried J Palm
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Ole Schmöker
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Nancy Wang
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Dianna M Hocking
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Leila Jebeli
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Britta Girbardt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Leona Berndt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Babett Dörre
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Daniel M Weis
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Markus Janetzky
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dirk Albrecht
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Richard A Strugnell
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
14
|
de Vasconcellos Racorti N, Martinelli M, Bustos SO, Salardani M, Camacho MF, Barcick U, Fonseca Lima LR, Jedlicka LDL, Ladeira de Campos CB, Valente RH, Chammas R, Zelanis A. Mannose-6-Phosphate Isomerase Functional Status Shapes a Rearrangement in the Proteome and Degradome of Mannose-Treated Melanoma Cells. J Proteome Res 2024; 23:5177-5192. [PMID: 39420811 PMCID: PMC11536439 DOI: 10.1021/acs.jproteome.4c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Metabolic reprogramming is a ubiquitous feature of transformed cells, comprising one of the hallmarks of cancer and enabling neoplastic cells to adapt to new environments. Accumulated evidence reports on the failure of some neoplastic cells to convert mannose-6-phosphate into fructose-6-phosphate, thereby impairing tumor growth in cells displaying low levels of mannose-6-phosphate isomerase (MPI). Thus, we performed functional analyses and profiled the proteome landscape and the repertoire of substrates of proteases (degradome) of melanoma cell lines with distinct mutational backgrounds submitted to treatment with mannose. Our results suggest a significant rearrangement in the proteome and degradome of melanoma cell lines upon mannose treatment including the activation of catabolic pathways (such as protein turnover) and differences in protein N-terminal acetylation. Even though MPI protein abundance and gene expression status are not prognostic markers, perturbation in the network caused by an exogenous monosaccharide source (i.e., mannose) significantly affected the downstream interconnected biological circuitry. Therefore, as reported in this study, the proteomic/degradomic mapping of mannose downstream effects due to the metabolic rewiring caused by the functional status of the MPI enzyme could lead to the identification of specific molecular players from affected signaling circuits in melanoma.
Collapse
Affiliation(s)
| | - Matheus Martinelli
- Functional
Proteomics Laboratory, Federal University
of São Paulo − UNIFESP, São José dos Campos, São Paulo 12231-280, Brazil
| | - Silvina Odete Bustos
- Grupo
de Oncologia Experimental, Instituto do
Câncer do Estado de São Paulo − ICESP, São Paulo, São
Paulo 01246-000, Brazil
| | - Murilo Salardani
- Functional
Proteomics Laboratory, Federal University
of São Paulo − UNIFESP, São José dos Campos, São Paulo 12231-280, Brazil
| | - Maurício Frota Camacho
- Functional
Proteomics Laboratory, Federal University
of São Paulo − UNIFESP, São José dos Campos, São Paulo 12231-280, Brazil
| | - Uilla Barcick
- Functional
Proteomics Laboratory, Federal University
of São Paulo − UNIFESP, São José dos Campos, São Paulo 12231-280, Brazil
| | - Luis Roberto Fonseca Lima
- Functional
Proteomics Laboratory, Federal University
of São Paulo − UNIFESP, São José dos Campos, São Paulo 12231-280, Brazil
| | - Letícia Dias Lima Jedlicka
- Functional
Proteomics Laboratory, Federal University
of São Paulo − UNIFESP, São José dos Campos, São Paulo 12231-280, Brazil
- Instituto
de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará- Unifesspa, Marabá, Pará 68507-590, Brazil
| | - Claudia Barbosa Ladeira de Campos
- Laboratory
of Biochemistry and Molecular and Cellular Biology of Fungi, Federal University of São Paulo − UNIFESP, São José dos Campos, São Paulo 12231-280, Brazil
| | - Richard Hemmi Valente
- Laboratory
of Toxinology, Center for Research, Innovation, and Surveillance in
COVID-19 and Health Emergencies, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Roger Chammas
- Grupo
de Oncologia Experimental, Instituto do
Câncer do Estado de São Paulo − ICESP, São Paulo, São
Paulo 01246-000, Brazil
- Faculdade
de Medicina da Universidade
de São Paulo, São
Paulo 01246-903, Brazil
| | - André Zelanis
- Functional
Proteomics Laboratory, Federal University
of São Paulo − UNIFESP, São José dos Campos, São Paulo 12231-280, Brazil
| |
Collapse
|
15
|
Larsen SK, Bekkelund ÅK, Glomnes N, Arnesen T, Aksnes H. Assessing N-terminal acetylation status of cellular proteins via an antibody specific for acetylated methionine. Biochimie 2024; 226:113-120. [PMID: 39038730 DOI: 10.1016/j.biochi.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
N-terminal acetylation is being recognized as a factor affecting protein lifetime and proteostasis. It is a modification where an acetyl group is added to the N-terminus of proteins, and this occurs in 80 % of the human proteome. N-terminal acetylation is catalyzed by enzymes called N-terminal acetyltransferases (NATs). The various NATs acetylate different N-terminal amino acids, and methionine is a known target for some of the NATs. Currently, the acetylation status of most proteins can only be assessed with a limited number of methods, including mass spectrometry, which although powerful and robust, remains laborious and can only survey a fraction of the proteome. We here present testing of an antibody that was developed to specifically recognize Nt-acetylated methionine-starting proteins. We have used dot blots with synthetic acetylated and non-acetylated peptides in addition to protein analysis of lysates from NAT knockout cell lines to assess the specificity and application of this anti-Nt-acetylated methionine antibody (anti-NtAc-Met). Our results demonstrate that this antibody is indeed NtAc-specific and further show that it has selectivity for some subtypes of methionine-starting N-termini, specifically potential substrates of the NatC, NatE and NatF enzymes. We propose that this antibody may be a powerful tool to identify NAT substrates or to analyse changes in N-terminal acetylation for specific cellular proteins of interest.
Collapse
Affiliation(s)
| | - Åse K Bekkelund
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nina Glomnes
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Henriette Aksnes
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
16
|
Constantinou M, Charidemou E, Shanlitourk I, Strati K, Kirmizis A. Yeast Nat4 regulates DNA damage checkpoint signaling through its N-terminal acetyltransferase activity on histone H4. PLoS Genet 2024; 20:e1011433. [PMID: 39356727 PMCID: PMC11472955 DOI: 10.1371/journal.pgen.1011433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/14/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The DNA damage response (DDR) constitutes a vital cellular process that safeguards genome integrity. This biological process involves substantial alterations in chromatin structure, commonly orchestrated by epigenetic enzymes. Here, we show that the epigenetic modifier N-terminal acetyltransferase 4 (Nat4), known to acetylate the alpha-amino group of serine 1 on histones H4 and H2A, is implicated in the response to DNA damage in S. cerevisiae. Initially, we demonstrate that yeast cells lacking Nat4 have an increased sensitivity to DNA damage and accumulate more DNA breaks than wild-type cells. Accordingly, upon DNA damage, NAT4 gene expression is elevated, and the enzyme is specifically recruited at double-strand breaks. Delving deeper into its effects on the DNA damage signaling cascade, nat4-deleted cells exhibit lower levels of the damage-induced modification H2AS129ph (γH2A), accompanied by diminished binding of the checkpoint control protein Rad9 surrounding the double-strand break. Consistently, Mec1 kinase recruitment at double-strand breaks, critical for H2AS129ph deposition and Rad9 retention, is significantly impaired in nat4Δ cells. Consequently, Mec1-dependent phosphorylation of downstream effector kinase Rad53, indicative of DNA damage checkpoint activation, is reduced. Importantly, we found that the effects of Nat4 in regulating the checkpoint signaling cascade are mediated by its N-terminal acetyltransferase activity targeted specifically towards histone H4. Overall, this study points towards a novel functional link between histone N-terminal acetyltransferase Nat4 and the DDR, associating a new histone-modifying activity in the maintenance of genome integrity.
Collapse
Affiliation(s)
| | - Evelina Charidemou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Izge Shanlitourk
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
17
|
Wesely J, Rusielewicz T, Chen YR, Hartley B, McKenzie D, Yim MK, Maguire C, Bia R, Franklin S, Makwana R, Marchi E, Nikte M, Patil S, Sapar M, Moroziewicz D, Bauer L, Lee JT, Monsma FJ, Paull D, Lyon GJ. A repository of Ogden syndrome patient derived iPSC lines and isogenic pairs by X-chromosome screening and genome-editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.28.615067. [PMID: 39386428 PMCID: PMC11463393 DOI: 10.1101/2024.09.28.615067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting 80% of cytosolic proteins in humans. The human essential gene, NAA10, encodes the enzyme NAA10, as the catalytic subunit for the N-terminal acetyltransferase A (NatA) complex, including the accessory protein, NAA15. The first human disease directly involving NAA10 was discovered in 2011, and it was named Ogden syndrome (OS), after the location of the first affected family residing in Ogden, Utah, USA. Since that time, other variants have been found in NAA10 and NAA15. Here we describe the generation of 31 iPSC lines, with 16 from females and 15 from males. This cohort includes CRISPR-mediated correction to the wild-type genotype in 4 male lines, along with editing one female line to generate homozygous wild-type or mutant clones. Following the monoclonalizaiton and screening for X-chromosome activation status in female lines, 3 additional pairs of female lines, in which either the wild type allele is on the active X chromosome (Xa) or the pathogenic variant allele is on Xa, have been generated. Subsets of this cohort have been successfully used to make cardiomyocytes and neural progenitor cells (NPCs). These cell lines are made available to the community via the NYSCF Repository.
Collapse
Affiliation(s)
- Josephine Wesely
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Tom Rusielewicz
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Yu-Ren Chen
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Brigham Hartley
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Dayna McKenzie
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Matthew K Yim
- Roseman University, South Jordan, Utah, United States of America
- Clinical & Translational Research Core, Utah Clinical & Translational Research Institute, Salt Lake City, UT, United States of America
| | - Colin Maguire
- Clinical & Translational Research Core, Utah Clinical & Translational Research Institute, Salt Lake City, UT, United States of America
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute (K.D., M.W.S., J.S.W., S.F.), University of Utah, Salt Lake City
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute (K.D., M.W.S., J.S.W., S.F.), University of Utah, Salt Lake City
| | - Rikhil Makwana
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Manali Nikte
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Soha Patil
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Maria Sapar
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Dorota Moroziewicz
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Lauren Bauer
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Frederick J Monsma
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Gholson J Lyon
- Roseman University, South Jordan, Utah, United States of America
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, United States of America
| |
Collapse
|
18
|
Brünje A, Füßl M, Eirich J, Boyer JB, Heinkow P, Neumann U, Konert M, Ivanauskaite A, Seidel J, Ozawa SI, Sakamoto W, Meinnel T, Schwarzer D, Mulo P, Giglione C, Finkemeier I. The Plastidial Protein Acetyltransferase GNAT1 Forms a Complex With GNAT2, yet Their Interaction Is Dispensable for State Transitions. Mol Cell Proteomics 2024; 23:100850. [PMID: 39349166 PMCID: PMC11585782 DOI: 10.1016/j.mcpro.2024.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 08/18/2024] [Indexed: 10/02/2024] Open
Abstract
Protein N-acetylation is one of the most abundant co- and post-translational modifications in eukaryotes, extending its occurrence to chloroplasts within vascular plants. Recently, a novel plastidial enzyme family comprising eight acetyltransferases that exhibit dual lysine and N-terminus acetylation activities was unveiled in Arabidopsis. Among these, GNAT1, GNAT2, and GNAT3 reveal notable phylogenetic proximity, forming a subgroup termed NAA90. Our study focused on characterizing GNAT1, closely related to the state transition acetyltransferase GNAT2. In contrast to GNAT2, GNAT1 did not prove essential for state transitions and displayed no discernible phenotypic difference compared to the wild type under high light conditions, while gnat2 mutants were severely affected. However, gnat1 mutants exhibited a tighter packing of the thylakoid membranes akin to gnat2 mutants. In vitro studies with recombinant GNAT1 demonstrated robust N-terminus acetylation activity on synthetic substrate peptides. This activity was confirmed in vivo through N-terminal acetylome profiling in two independent gnat1 knockout lines. This attributed several acetylation sites on plastidial proteins to GNAT1, reflecting a subset of GNAT2's substrate spectrum. Moreover, co-immunoprecipitation coupled with mass spectrometry revealed a robust interaction between GNAT1 and GNAT2, as well as a significant association of GNAT2 with GNAT3 - the third acetyltransferase within the NAA90 subfamily. This study unveils the existence of at least two acetyltransferase complexes within chloroplasts, whereby complex formation might have a critical effect on the fine-tuning of the overall acetyltransferase activities. These findings introduce a novel layer of regulation in acetylation-dependent adjustments in plastidial metabolism.
Collapse
Affiliation(s)
- Annika Brünje
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Magdalena Füßl
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Paulina Heinkow
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Minna Konert
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Aiste Ivanauskaite
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Julian Seidel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources (IPSR) Okayama University, Kurashiki, Okayama, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources (IPSR) Okayama University, Kurashiki, Okayama, Japan
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Paula Mulo
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany.
| |
Collapse
|
19
|
Klein M, Wild K, Sinning I. Multi-protein assemblies orchestrate co-translational enzymatic processing on the human ribosome. Nat Commun 2024; 15:7681. [PMID: 39227397 PMCID: PMC11372111 DOI: 10.1038/s41467-024-51964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Nascent chains undergo co-translational enzymatic processing as soon as their N-terminus becomes accessible at the ribosomal polypeptide tunnel exit (PTE). In eukaryotes, N-terminal methionine excision (NME) by Methionine Aminopeptidases (MAP1 and MAP2), and N-terminal acetylation (NTA) by N-Acetyl-Transferase A (NatA), is the most common combination of subsequent modifications carried out on the 80S ribosome. How these enzymatic processes are coordinated in the context of a rapidly translating ribosome has remained elusive. Here, we report two cryo-EM structures of multi-enzyme complexes assembled on vacant human 80S ribosomes, indicating two routes for NME-NTA. Both assemblies form on the 80S independent of nascent chain substrates. Irrespective of the route, NatA occupies a non-intrusive 'distal' binding site on the ribosome which does not interfere with MAP1 or MAP2 binding nor with most other ribosome-associated factors (RAFs). NatA can partake in a coordinated, dynamic assembly with MAP1 through the hydra-like chaperoning function of the abundant Nascent Polypeptide-Associated Complex (NAC). In contrast to MAP1, MAP2 completely covers the PTE and is thus incompatible with NAC and MAP1 recruitment. Together, our data provide the structural framework for the coordinated orchestration of NME and NTA in protein biogenesis.
Collapse
Affiliation(s)
- Marius Klein
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
20
|
Li X, Tang H, Xu T, Wang P, Ma F, Wei H, Fang Z, Wu X, Wang Y, Xue Y, Zhang B. N-terminal acetylation orchestrates glycolate-mediated ROS homeostasis to promote rice thermoresponsive growth. THE NEW PHYTOLOGIST 2024; 243:1742-1757. [PMID: 38934055 DOI: 10.1111/nph.19928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Climate warming poses a significant threat to global crop production and food security. However, our understanding of the molecular mechanisms governing thermoresponsive development in crops remains limited. Here we report that the auxiliary subunit of N-terminal acetyltransferase A (NatA) in rice OsNAA15 is a prerequisite for rice thermoresponsive growth. OsNAA15 produces two isoforms OsNAA15.1 and OsNAA15.2, via temperature-dependent alternative splicing. Among the two, OsNAA15.1 is more likely to form a stable and functional NatA complex with the potential catalytic subunit OsNAA10, leading to a thermoresponsive N-terminal acetylome. Intriguingly, while OsNAA15.1 promotes plant growth under elevated temperatures, OsNAA15.2 exhibits an inhibitory effect. We identified two glycolate oxidases (GLO1/5) as major substrates from the thermoresponsive acetylome. These enzymes are involved in hydrogen peroxide (H2O2) biosynthesis via glycolate oxidation. N-terminally acetylated GLO1/5 undergo their degradation through the ubiquitin-proteasome system. This leads to reduced reactive oxygen species (ROS) production, thereby promoting plant growth, particularly under high ambient temperatures. Conclusively, our findings highlight the pivotal role of N-terminal acetylation in orchestrating the glycolate-mediated ROS homeostasis to facilitate thermoresponsive growth in rice.
Collapse
Affiliation(s)
- Xueting Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huashan Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pengfei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangfang Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haifang Wei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zi Fang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Biyao Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| |
Collapse
|
21
|
Lentzsch AM, Yudin D, Gamerdinger M, Chandrasekar S, Rabl L, Scaiola A, Deuerling E, Ban N, Shan SO. NAC guides a ribosomal multienzyme complex for nascent protein processing. Nature 2024; 633:718-724. [PMID: 39169182 PMCID: PMC12039536 DOI: 10.1038/s41586-024-07846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Approximately 40% of the mammalian proteome undergoes N-terminal methionine excision and acetylation, mediated sequentially by methionine aminopeptidase (MetAP) and N-acetyltransferase A (NatA), respectively1. Both modifications are strictly cotranslational and essential in higher eukaryotic organisms1. The interaction, activity and regulation of these enzymes on translating ribosomes are poorly understood. Here we perform biochemical, structural and in vivo studies to demonstrate that the nascent polypeptide-associated complex2,3 (NAC) orchestrates the action of these enzymes. NAC assembles a multienzyme complex with MetAP1 and NatA early during translation and pre-positions the active sites of both enzymes for timely sequential processing of the nascent protein. NAC further releases the inhibitory interactions from the NatA regulatory protein huntingtin yeast two-hybrid protein K4,5 (HYPK) to activate NatA on the ribosome, enforcing cotranslational N-terminal acetylation. Our results provide a mechanistic model for the cotranslational processing of proteins in eukaryotic cells.
Collapse
Affiliation(s)
- Alfred M Lentzsch
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Denis Yudin
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Martin Gamerdinger
- Department of Biology, Molecular Microbiology, University of Konstanz, Konstanz, Germany
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Laurenz Rabl
- Department of Biology, Molecular Microbiology, University of Konstanz, Konstanz, Germany
| | - Alain Scaiola
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Elke Deuerling
- Department of Biology, Molecular Microbiology, University of Konstanz, Konstanz, Germany
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
22
|
Mbatha SZ, Back CR, Devine AJ, Mulliner HM, Johns ST, Lewin H, Cheung KA, Zorn K, Stach JEM, Hayes MA, van der Kamp MW, Race PR, Willis CL. Antibiotic origami: selective formation of spirotetronates in abyssomicin biosynthesis. Chem Sci 2024:d4sc03253e. [PMID: 39144453 PMCID: PMC11318650 DOI: 10.1039/d4sc03253e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
The abyssomicins are a structurally intriguing family of bioactive natural products that include compounds with potent antibacterial, antitumour and antiviral activities. The biosynthesis of the characteristic abyssomicin spirotetronate core occurs via an enzyme-catalysed intramolecular Diels-Alder reaction, which proceeds via one of two distinct stereochemical pathways to generate products differing in configuration at the C15 spirocentre. Using the purified spirotetronate cyclases AbyU (from abyssomicin C/atrop-abyssomicin C biosynthesis) and AbmU (from abyssomicin 2/neoabyssomicin biosynthesis), in combination with synthetic substrate analogues, here we show that stereoselectivity in the spirotetronate-forming [4 + 2]-cycloaddition is controlled by a combination of factors attributable to both the enzyme and substrate. Furthermore, an achiral substrate was enzymatically cyclised to a single enantiomer of a spirocyclic product. X-ray crystal structures, molecular dynamics simulations, and assessment of substrate binding affinity and reactivity in both AbyU and AbmU establish the molecular determinants of stereochemical control in this important class of biocatalysts.
Collapse
Affiliation(s)
| | - Catherine R Back
- School of Biochemistry, University of Bristol Bristol BS8 1TD UK
| | - Andrew J Devine
- School of Chemistry, University of Bristol Bristol BS8 1TS UK
| | | | - Samuel T Johns
- School of Biochemistry, University of Bristol Bristol BS8 1TD UK
| | - Harry Lewin
- School of Biochemistry, University of Bristol Bristol BS8 1TD UK
| | - Kaiman A Cheung
- School of Chemistry, University of Bristol Bristol BS8 1TS UK
| | - Katja Zorn
- Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca Pepparedsleden 1 431 83 Mölndal Sweden
| | - James E M Stach
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Martin A Hayes
- Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca Pepparedsleden 1 431 83 Mölndal Sweden
| | | | - Paul R Race
- School of Biochemistry, University of Bristol Bristol BS8 1TD UK
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | | |
Collapse
|
23
|
Guedes JP, Boyer JB, Elurbide J, Carte B, Redeker V, Sago L, Meinnel T, Côrte-Real M, Giglione C, Aldabe R. NatB Protects Procaspase-8 from UBR4-Mediated Degradation and Is Required for Full Induction of the Extrinsic Apoptosis Pathway. Mol Cell Biol 2024; 44:358-371. [PMID: 39099191 PMCID: PMC11376409 DOI: 10.1080/10985549.2024.2382453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
N-terminal acetyltransferase B (NatB) is a major contributor to the N-terminal acetylome and is implicated in several key cellular processes including apoptosis and proteostasis. However, the molecular mechanisms linking NatB-mediated N-terminal acetylation to apoptosis and its relationship with protein homeostasis remain elusive. In this study, we generated mouse embryonic fibroblasts (MEFs) with an inactivated catalytic subunit of NatB (Naa20-/-) to investigate the impact of NatB deficiency on apoptosis regulation. Through quantitative N-terminomics, label-free quantification, and targeted proteomics, we demonstrated that NatB does not influence the proteostasis of all its substrates. Instead, our focus on putative NatB-dependent apoptotic factors revealed that NatB serves as a protective shield against UBR4 and UBR1 Arg/N-recognin-mediated degradation. Notably, Naa20-/- MEFs exhibited reduced responsiveness to an extrinsic pro-apoptotic stimulus, a phenotype that was partially reversible upon UBR4 Arg/N-recognin silencing and consequent inhibition of procaspase-8 degradation. Collectively, our results shed light on how the interplay between NatB-mediated acetylation and the Arg/N-degron pathway appears to impact apoptosis regulation, providing new perspectives in the field including in therapeutic interventions.
Collapse
Affiliation(s)
- Joana P. Guedes
- CBMA/UM – Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
- CIMA/UNAV – Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Jean Baptiste Boyer
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jasmine Elurbide
- CIMA/UNAV – Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Beatriz Carte
- CIMA/UNAV – Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Virginie Redeker
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Laila Sago
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Manuela Côrte-Real
- CBMA/UM – Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Rafael Aldabe
- CIMA/UNAV – Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
24
|
Ramazi S, Dadzadi M, Darvazi M, Seddigh N, Allahverdi A. Protein modification in neurodegenerative diseases. MedComm (Beijing) 2024; 5:e674. [PMID: 39105197 PMCID: PMC11298556 DOI: 10.1002/mco2.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Posttranslational modifications play a crucial role in governing cellular functions and protein behavior. Researchers have implicated dysregulated posttranslational modifications in protein misfolding, which results in cytotoxicity, particularly in neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and Huntington disease. These aberrant posttranslational modifications cause proteins to gather in certain parts of the brain that are linked to the development of the diseases. This leads to neuronal dysfunction and the start of neurodegenerative disease symptoms. Cognitive decline and neurological impairments commonly manifest in neurodegenerative disease patients, underscoring the urgency of comprehending the posttranslational modifications' impact on protein function for targeted therapeutic interventions. This review elucidates the critical link between neurodegenerative diseases and specific posttranslational modifications, focusing on Tau, APP, α-synuclein, Huntingtin protein, Parkin, DJ-1, and Drp1. By delineating the prominent aberrant posttranslational modifications within Alzheimer disease, Parkinson disease, and Huntington disease, the review underscores the significance of understanding the interplay among these modifications. Emphasizing 10 key abnormal posttranslational modifications, this study aims to provide a comprehensive framework for investigating neurodegenerative diseases holistically. The insights presented herein shed light on potential therapeutic avenues aimed at modulating posttranslational modifications to mitigate protein aggregation and retard neurodegenerative disease progression.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mona Darvazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Nasrin Seddigh
- Department of BiochemistryFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
25
|
Armbruster L, Pożoga M, Wu Z, Eirich J, Thulasi Devendrakumar K, De La Torre C, Miklánková P, Huber M, Bradic F, Poschet G, Weidenhausen J, Merker S, Ruppert T, Sticht C, Sinning I, Finkemeier I, Li X, Hell R, Wirtz M. Nα-acetyltransferase NAA50 mediates plant immunity independent of the Nα-acetyltransferase A complex. PLANT PHYSIOLOGY 2024; 195:3097-3118. [PMID: 38588051 DOI: 10.1093/plphys/kiae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Abstract
In humans and plants, 40% of the proteome is cotranslationally acetylated at the N-terminus by a single Nα-acetyltransferase (Nat) termed NatA. The core NatA complex is comprised of the catalytic subunit Nα-acetyltransferase 10 (NAA10) and the ribosome-anchoring subunit NAA15. The regulatory subunit Huntingtin Yeast Partner K (HYPK) and the acetyltransferase NAA50 join this complex in humans. Even though both are conserved in Arabidopsis (Arabidopsis thaliana), only AtHYPK is known to interact with AtNatA. Here we uncover the AtNAA50 interactome and provide evidence for the association of AtNAA50 with NatA at ribosomes. In agreement with the latter, a split-luciferase approach demonstrated close proximity of AtNAA50 and AtNatA in planta. Despite their interaction, AtNatA/HYPK and AtNAA50 exerted different functions in vivo. Unlike NatA/HYPK, AtNAA50 did not modulate drought tolerance or promote protein stability. Instead, transcriptome and proteome analyses of a novel AtNAA50-depleted mutant (amiNAA50) implied that AtNAA50 negatively regulates plant immunity. Indeed, amiNAA50 plants exhibited enhanced resistance to oomycetes and bacterial pathogens. In contrast to what was observed in NatA-depleted mutants, this resistance was independent of an accumulation of salicylic acid prior to pathogen exposure. Our study dissects the in vivo function of the NatA interactors HYPK and NAA50 and uncovers NatA-independent roles for NAA50 in plants.
Collapse
Affiliation(s)
- Laura Armbruster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Marlena Pożoga
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Zhongshou Wu
- Michael Smith Laboratories, University of British Columbia, V6T1Z4 Vancouver, BC, Canada
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | | | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Pavlina Miklánková
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Monika Huber
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Fabian Bradic
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Jonas Weidenhausen
- Structural Biology, Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Sabine Merker
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology of Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Ruppert
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology of Heidelberg University, 69120 Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Irmgard Sinning
- Structural Biology, Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, V6T1Z4 Vancouver, BC, Canada
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
26
|
Woo H, Oh J, Cho YJ, Oh GT, Kim SY, Dan K, Han D, Lee JS, Kim T. N-terminal acetylation of Set1-COMPASS fine-tunes H3K4 methylation patterns. SCIENCE ADVANCES 2024; 10:eadl6280. [PMID: 38996018 PMCID: PMC11244526 DOI: 10.1126/sciadv.adl6280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
H3K4 methylation by Set1-COMPASS (complex of proteins associated with Set1) is a conserved histone modification. Although it is critical for gene regulation, the posttranslational modifications of this complex that affect its function are largely unexplored. This study showed that N-terminal acetylation of Set1-COMPASS proteins by N-terminal acetyltransferases (NATs) can modulate H3K4 methylation patterns. Specifically, deleting NatA substantially decreased global H3K4me3 levels and caused the H3K4me2 peak in the 5' transcribed regions to shift to the promoters. NatA was required for N-terminal acetylation of three subunits of Set1-COMPASS: Shg1, Spp1, and Swd2. Moreover, deleting Shg1 or blocking its N-terminal acetylation via proline mutation of the target residue drastically reduced H3K4 methylation. Thus, NatA-mediated N-terminal acetylation of Shg1 shapes H3K4 methylation patterns. NatB also regulates H3K4 methylation, likely via N-terminal acetylation of the Set1-COMPASS protein Swd1. Thus, N-terminal acetylation of Set1-COMPASS proteins can directly fine-tune the functions of this complex, thereby substantially shaping H3K4 methylation patterns.
Collapse
Affiliation(s)
- Hyeonju Woo
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Junsoo Oh
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Goo Taeg Oh
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seon-Young Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03082, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - TaeSoo Kim
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
27
|
Rauscher R, Polacek N. Ribosomal RNA expansion segments and their role in ribosome biology. Biochem Soc Trans 2024; 52:1317-1325. [PMID: 38695725 PMCID: PMC11346433 DOI: 10.1042/bst20231106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 06/27/2024]
Abstract
Ribosomes are universally conserved cellular machines that catalyze protein biosynthesis. The active sites underly immense evolutionary conservation resulting in virtually identical core structures of ribosomes in all domains of life including organellar ribosomes. However, more peripheral structures of cytosolic ribosomes changed during evolution accommodating new functions and regulatory options. The expansion occurred at the riboprotein level, including more and larger ribosomal proteins and at the RNA level increasing the length of ribosomal RNA. Expansions within the ribosomal RNA occur as clusters at conserved sites that face toward the periphery of the cytosolic ribosome. Recent biochemical and structural work has shed light on how rRNA-specific expansion segments (ESs) recruit factors during translation and how they modulate translation dynamics in the cytosol. Here we focus on recent work on yeast, human and trypanosomal cytosolic ribosomes that explores the role of two specific rRNA ESs within the small and large subunit respectively. While no single regulatory strategy exists, the absence of ESs has consequences for proteomic stability and cellular fitness, rendering them fascinating evolutionary tools for tailored protein biosynthesis.
Collapse
Affiliation(s)
- Robert Rauscher
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Norbert Polacek
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
28
|
Omkar S, Shrader C, Hoskins JR, Kline JT, Mitchem MM, Nitika, Fornelli L, Wickner S, Truman AW. Acetylation of the yeast Hsp40 chaperone protein Ydj1 fine-tunes proteostasis and translational fidelity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598777. [PMID: 38915721 PMCID: PMC11195281 DOI: 10.1101/2024.06.13.598777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Proteostasis, the maintenance of cellular protein balance, is essential for cell viability and is highly conserved across all organisms. Newly synthesized proteins, or "clients," undergo sequential processing by Hsp40, Hsp70, and Hsp90 chaperones to achieve proper folding and functionality. Despite extensive characterization of post-translational modifications (PTMs) on Hsp70 and Hsp90, the modifications on Hsp40 remain less understood. This study aims to elucidate the role of lysine acetylation on the yeast Hsp40, Ydj1. By mutating acetylation sites on Ydj1's J-domain to either abolish or mimic constitutive acetylation, we observed that preventing acetylation had no noticeable phenotypic impact, whereas acetyl-mimic mutants exhibited various defects indicative of impaired Ydj1 function. Proteomic analysis revealed several Ydj1 interactions affected by J-domain acetylation, notably with proteins involved in translation. Further investigation uncovered a novel role for Ydj1 acetylation in stabilizing ribosomal subunits and ensuring translational fidelity. Our data suggest that acetylation may facilitate the transfer of Ydj1 between Ssa1 and Hsp82. Collectively, this work highlights the critical role of Ydj1 acetylation in proteostasis and translational fidelity.
Collapse
Affiliation(s)
- Siddhi Omkar
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Courtney Shrader
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Joel R. Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jake T. Kline
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019 USA
| | - Megan M. Mitchem
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Nitika
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Luca Fornelli
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019 USA
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew W. Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| |
Collapse
|
29
|
Ke J, Zhao J, Li H, Yuan L, Dong G, Wang G. Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model. Comput Biol Med 2024; 174:108330. [PMID: 38588617 DOI: 10.1016/j.compbiomed.2024.108330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
N-terminal acetylation is one of the most common and important post-translational modifications (PTM) of eukaryotic proteins. PTM plays a crucial role in various cellular processes and disease pathogenesis. Thus, the accurate identification of N-terminal acetylation modifications is important to gain insight into cellular processes and other possible functional mechanisms. Although some algorithmic models have been proposed, most have been developed based on traditional machine learning algorithms and small training datasets. Their practical applications are limited. Nevertheless, deep learning algorithmic models are better at handling high-throughput and complex data. In this study, DeepCBA, a model based on the hybrid framework of convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM), and attention mechanism deep learning, was constructed to detect the N-terminal acetylation sites. The DeepCBA was built as follows: First, a benchmark dataset was generated by selecting low-redundant protein sequences from the Uniport database and further reducing the redundancy of the protein sequences using the CD-HIT tool. Subsequently, based on the skip-gram model in the word2vec algorithm, tripeptide word vector features were generated on the benchmark dataset. Finally, the CNN, BiLSTM, and attention mechanism were combined, and the tripeptide word vector features were fed into the stacked model for multiple rounds of training. The model performed excellently on independent dataset test, with accuracy and area under the curve of 80.51% and 87.36%, respectively. Altogether, DeepCBA achieved superior performance compared with the baseline model, and significantly outperformed most existing predictors. Additionally, our model can be used to identify disease loci and drug targets.
Collapse
Affiliation(s)
- Jinsong Ke
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Jianmei Zhao
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hongfei Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lei Yuan
- Department of Hepatobiliary Surgery, Quzhou People's Hospital, Quzhou, 324000, China
| | - Guanghui Dong
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
30
|
Venezian J, Bar-Yosef H, Ben-Arie Zilberman H, Cohen N, Kleifeld O, Fernandez-Recio J, Glaser F, Shiber A. Diverging co-translational protein complex assembly pathways are governed by interface energy distribution. Nat Commun 2024; 15:2638. [PMID: 38528060 DOI: 10.1038/s41467-024-46881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
Protein-protein interactions are at the heart of all cellular processes, with the ribosome emerging as a platform, orchestrating the nascent-chain interplay dynamics. Here, to study the characteristics governing co-translational protein folding and complex assembly, we combine selective ribosome profiling, imaging, and N-terminomics with all-atoms molecular dynamics. Focusing on conserved N-terminal acetyltransferases (NATs), we uncover diverging co-translational assembly pathways, where highly homologous subunits serve opposite functions. We find that only a few residues serve as "hotspots," initiating co-translational assembly interactions upon exposure at the ribosome exit tunnel. These hotspots are characterized by high binding energy, anchoring the entire interface assembly. Alpha-helices harboring hotspots are highly thermolabile, folding and unfolding during simulations, depending on their partner subunit to avoid misfolding. In vivo hotspot mutations disrupted co-translational complexation, leading to aggregation. Accordingly, conservation analysis reveals that missense NATs variants, causing neurodevelopmental and neurodegenerative diseases, disrupt putative hotspot clusters. Expanding our study to include phosphofructokinase, anthranilate synthase, and nucleoporin subcomplex, we employ AlphaFold-Multimer to model the complexes' complete structures. Computing MD-derived interface energy profiles, we find similar trends. Here, we propose a model based on the distribution of interface energy as a strong predictor of co-translational assembly.
Collapse
Affiliation(s)
- Johannes Venezian
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | - Hagit Bar-Yosef
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | | | - Noam Cohen
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | - Juan Fernandez-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | - Fabian Glaser
- Lorry I. Lokey Interdisciplinary Center for Life Sciences & Engineering, Haifa, Israel
| | - Ayala Shiber
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel.
| |
Collapse
|
31
|
Chen P, Ye T, Li C, Praveen P, Hu Z, Li W, Shang C. Embracing the era of antimicrobial peptides with marine organisms. Nat Prod Rep 2024; 41:331-346. [PMID: 37743806 DOI: 10.1039/d3np00031a] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Covering: 2018 to Jun of 2023The efficiency of traditional antibiotics has been undermined by the proliferation of antibiotic-resistant pathogenic microorganisms, necessitating the pursuit of innovative therapeutic agents. Antimicrobial peptides (AMPs), which are part of host defence peptides found ubiquitously in nature, exhibiting a wide range of activity towards bacteria, fungi, and viruses, offer a highly promising candidate solution. The efficacy of AMPs can frequently be augmented via alterations to their amino acid sequences or structural adjustments. Given the vast reservoir of marine life forms and their distinctive ecosystems, marine AMPs stand as a burgeoning focal point in the quest for alternative peptide templates extracted from natural sources. Advances in identification and characterization techniques have accelerated the discoveries of marine AMPs, thereby stimulating AMP customization, optimization, and synthesis research endeavours. This review presents an overview of recent discoveries related to the intriguing qualities of marine AMPs. Emphasis will be placed upon post-translational modifications (PTMs) of marine AMPs and how they may impact functionality and potency. Additionally, this review considers ways in which marine PTM might support larger-scale, heterologous AMP manufacturing initiatives, providing insights into translational applications of these important biomolecules.
Collapse
Affiliation(s)
- Pengyu Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Ye
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Chunyuan Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Praveen Praveen
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science La Trobe University, Victoria, 3086, Australia.
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science La Trobe University, Victoria, 3086, Australia.
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
32
|
Chelban V, Aksnes H, Maroofian R, LaMonica LC, Seabra L, Siggervåg A, Devic P, Shamseldin HE, Vandrovcova J, Murphy D, Richard AC, Quenez O, Bonnevalle A, Zanetti MN, Kaiyrzhanov R, Salpietro V, Efthymiou S, Schottlaender LV, Morsy H, Scardamaglia A, Tariq A, Pagnamenta AT, Pennavaria A, Krogstad LS, Bekkelund ÅK, Caiella A, Glomnes N, Brønstad KM, Tury S, Moreno De Luca A, Boland-Auge A, Olaso R, Deleuze JF, Anheim M, Cretin B, Vona B, Alajlan F, Abdulwahab F, Battini JL, İpek R, Bauer P, Zifarelli G, Gungor S, Kurul SH, Lochmuller H, Da'as SI, Fakhro KA, Gómez-Pascual A, Botía JA, Wood NW, Horvath R, Ernst AM, Rothman JE, McEntagart M, Crow YJ, Alkuraya FS, Nicolas G, Arnesen T, Houlden H. Biallelic NAA60 variants with impaired n-terminal acetylation capacity cause autosomal recessive primary familial brain calcifications. Nat Commun 2024; 15:2269. [PMID: 38480682 PMCID: PMC10937998 DOI: 10.1038/s41467-024-46354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Primary familial brain calcification (PFBC) is characterized by calcium deposition in the brain, causing progressive movement disorders, psychiatric symptoms, and cognitive decline. PFBC is a heterogeneous disorder currently linked to variants in six different genes, but most patients remain genetically undiagnosed. Here, we identify biallelic NAA60 variants in ten individuals from seven families with autosomal recessive PFBC. The NAA60 variants lead to loss-of-function with lack of protein N-terminal (Nt)-acetylation activity. We show that the phosphate importer SLC20A2 is a substrate of NAA60 in vitro. In cells, loss of NAA60 caused reduced surface levels of SLC20A2 and a reduction in extracellular phosphate uptake. This study establishes NAA60 as a causal gene for PFBC, provides a possible biochemical explanation of its disease-causing mechanisms and underscores NAA60-mediated Nt-acetylation of transmembrane proteins as a fundamental process for healthy neurobiological functioning.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
- Neurobiology and Medical Genetics Laboratory, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, MD, 2004, Chisinau, Republic of Moldova.
| | - Henriette Aksnes
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Lauren C LaMonica
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Luis Seabra
- Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR 1163, Paris, France
| | | | - Perrine Devic
- Hospices Civils de Lyon, Groupement Hospitalier Sud, Service d'Explorations Fonctionnelles Neurologiques, Lyon, France
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Anne-Claire Richard
- Univ Rouen Normandie, Inserm U1245, CHU Rouen, Department of Genetics and CNRMAJ, F-76000, Rouen, France
| | - Olivier Quenez
- Univ Rouen Normandie, Inserm U1245, CHU Rouen, Department of Genetics and CNRMAJ, F-76000, Rouen, France
| | - Antoine Bonnevalle
- Univ Rouen Normandie, Inserm U1245, CHU Rouen, Department of Genetics and CNRMAJ, F-76000, Rouen, France
| | - M Natalia Zanetti
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- South Kazakhstan Medical Academy Shymkent, Shymkent, 160019, Kazakhstan
| | - Vincenzo Salpietro
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Lucia V Schottlaender
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan Domingo Perón 1500, B1629AHJ, Pilar, Argentina
- Instituto de medicina genómica (IMeG), Hospital Universitario Austral, Universidad Austral, Av. Juan Domingo Perón 1500, B1629AHJ, Pilar, Argentina
| | - Heba Morsy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Annarita Scardamaglia
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ambreen Tariq
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alistair T Pagnamenta
- Oxford NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, Oxford, United Kingdom
| | - Ajia Pennavaria
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Liv S Krogstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Åse K Bekkelund
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessia Caiella
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nina Glomnes
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
| | | | - Sandrine Tury
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Andrés Moreno De Luca
- Department of Radiology, Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
- Department of Radiology, Neuroradiology Section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
| | - Anne Boland-Auge
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Mathieu Anheim
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France
- INSERM-U964; CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Benjamin Cretin
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France
- INSERM-U964; CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, 37073, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Fahad Alajlan
- Department of Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jean-Luc Battini
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Rojan İpek
- Paediatric Neurology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Peter Bauer
- Centogene GmbH, Am Strande 7, 18055, Rostock, Germany
| | | | - Serdal Gungor
- Inonu University, Faculty of Medicine, Turgut Ozal Research Center, Department of Pediatrics, Division of Pediatric Neurology, Malatya, Turkey
| | - Semra Hiz Kurul
- Dokuz Eylul University, School of Medicine, Department of Paediatric Neurology, Izmir, Turkey
| | - Hanns Lochmuller
- Children's Hospital of Eastern Ontario Research Institute and Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sahar I Da'as
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Weill Cornell Medical College, Doha, Qatar
| | - Alicia Gómez-Pascual
- Department of Information and Communications Engineering, University of Murcia, Campus Espinardo, 30100, Murcia, Spain
| | - Juan A Botía
- Department of Information and Communications Engineering, University of Murcia, Campus Espinardo, 30100, Murcia, Spain
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andreas M Ernst
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - James E Rothman
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Meriel McEntagart
- Medical Genetics Department, St George's University Hospitals, London, SWI7 0RE, UK
| | - Yanick J Crow
- Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR 1163, Paris, France
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Gaël Nicolas
- Univ Rouen Normandie, Inserm U1245, CHU Rouen, Department of Genetics and CNRMAJ, F-76000, Rouen, France
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
- Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK.
| |
Collapse
|
33
|
Tu A, Wu M, Jiang Y, Guo L, Guo Y, Wang J, Xu G, Shi J, Chen J, Yang J, Zhong K. Regulation of Disease-Resistance Genes against CWMV Infection by NbHAG1-Mediated H3K36ac. Int J Mol Sci 2024; 25:2800. [PMID: 38474046 DOI: 10.3390/ijms25052800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Post-translational modification of proteins plays a critical role in plant-pathogen interactions. Here, we demonstrate in Nicotiana benthamiana that knockout of NbHAG1 promotes Chinese wheat mosaic virus (CWMV) infection, whereas NbHAG1 overexpression inhibits infection. Transcriptome sequencing indicated that a series of disease resistance-related genes were up-regulated after overexpression of NbHAG1. In addition, cleavage under targets and tagmentation (Cut&Tag)-qPCR results demonstrated that NbHAG1 may activate the transcription of its downstream disease-resistance genes by facilitating the acetylation level of H3K36ac. Therefore, we suggest that NbHAG1 is an important positive regulator of resistance to CWMV infestation.
Collapse
Affiliation(s)
- Aizhu Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Mila Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Lidan Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yunfei Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jinnan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Gecheng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jingjing Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
34
|
Mitchem MM, Shrader C, Abedi E, Truman AW. Novel insights into the post-translational modifications of Ydj1/DNAJA1 co-chaperones. Cell Stress Chaperones 2024; 29:1-9. [PMID: 38309209 PMCID: PMC10939075 DOI: 10.1016/j.cstres.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/18/2023] [Accepted: 11/04/2023] [Indexed: 02/05/2024] Open
Abstract
The activity of the Hsp70 molecular chaperone is regulated by a suite of helper co-chaperones that include J-proteins. Studies on J-proteins have historically focused on their expression, localization, and activation of Hsp70. There is growing evidence that the post-translational modifications (PTMs) of chaperones (the chaperone code) fine-tune chaperone function. This mini-review summarizes the current understanding of the role and regulation of PTMs on the major J-proteins Ydj1 and DNAJA1. Understanding these PTMs may provide novel therapeutic avenues for targeting chaperone activity in cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Megan M Mitchem
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Courtney Shrader
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Elizabeth Abedi
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Andrew W Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
35
|
Ma J, Yan L, Yang J, He Y, Wu L. Effect of Modification Strategies on the Biological Activity of Peptides/Proteins. Chembiochem 2024; 25:e202300481. [PMID: 38009768 DOI: 10.1002/cbic.202300481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 11/29/2023]
Abstract
Covalent attachment of biologically active peptides/proteins with functional moieties is an effective strategy to control their biodistribution, pharmacokinetics, enzymatic digestion, and toxicity. This review focuses on the characteristics of different modification strategies and their effects on the biological activity of peptides/proteins and illustrates their relevant applications and potential.
Collapse
Affiliation(s)
- Jian Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingkui Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
36
|
Daly RE, Myasnikov I, Gaglia MM. N-terminal acetylation separately promotes nuclear localization and host shutoff activity of the influenza A virus ribonuclease PA-X. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569683. [PMID: 38076881 PMCID: PMC10705558 DOI: 10.1101/2023.12.01.569683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
To counteract host antiviral responses, influenza A virus triggers a global reduction of cellular gene expression, a process termed "host shutoff." A key effector of influenza A virus host shutoff is the viral endoribonuclease PA-X, which degrades host mRNAs. While many of the molecular determinants of PA-X activity remain unknown, a previous study found that N-terminal acetylation of PA-X is required for its host shutoff activity. However, it remains unclear how this co-translational modification promotes PA-X activity. Here, we report that PA-X N-terminal acetylation has two functions that can be separated based on the position of the acetylation, i.e. on the first amino acid, the initiator methionine, or the second amino acid following initiator methionine excision. Modification at either site is sufficient to ensure PA-X localization to the nucleus. However, modification of the second amino acid is not sufficient for host shutoff activity of ectopically expressed PA-X, which specifically requires N-terminal acetylation of the initiator methionine. Interestingly, during infection N-terminal acetylation of PA-X at any position results in host shutoff activity, which is in part due to a functional interaction with the influenza protein NS1. This result reveals an unexpected role for another viral protein in PA-X activity. Our studies uncover a multifaceted role for PA-X N-terminal acetylation in regulation of this important immunomodulatory factor.
Collapse
Affiliation(s)
- Raecliffe E Daly
- Program in Cellular, Molecular and Developmental Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA, 02111, United States
- Institute for Molecular Virology and Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, WI, 53706, United States
| | - Idalia Myasnikov
- Institute for Molecular Virology and Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, WI, 53706, United States
| | - Marta Maria Gaglia
- Institute for Molecular Virology and Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, WI, 53706, United States
| |
Collapse
|
37
|
Zhu R, Chen M, Luo Y, Cheng H, Zhao Z, Zhang M. The role of N-acetyltransferases in cancers. Gene 2024; 892:147866. [PMID: 37783298 DOI: 10.1016/j.gene.2023.147866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Cancer is a major global health problem that disrupts the balance of normal cellular growth and behavior. Mounting evidence has shown that epigenetic modification, specifically N-terminal acetylation, play a crucial role in the regulation of cell growth and function. Acetylation is a co- or post-translational modification to regulate important cellular progresses such as cell proliferation, cell cycle progress, and energy metabolism. Recently, N-acetyltransferases (NATs), enzymes responsible for acetylation, regulate signal transduction pathway in various cancers including hepatocellular carcinoma, breast cancer, lung cancer, colorectal cancer and prostate cancer. In this review, we clarify the regulatory role of NATs in cancer progression, such as cell proliferation, metastasis, cell apoptosis, autophagy, cell cycle arrest and energy metabolism. Furthermore, the mechanism of NATs on cancer remains to be further studied, and few drugs have been developed. This provides us with a new idea that targeting acetylation, especially NAT-mediated acetylation, may be an attractive way for inhibiting cancer progression.
Collapse
Affiliation(s)
- Rongrong Zhu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Mengjiao Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yongjia Luo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Haipeng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhenwang Zhao
- Department of Pathology and Pathophysiology, School of Basic Medicine, Health Science Center, Hubei University of Arts and Science, Xiangyang, Hubei 441053, PR China.
| | - Min Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
38
|
Husain M. Influenza A Virus and Acetylation: The Picture Is Becoming Clearer. Viruses 2024; 16:131. [PMID: 38257831 PMCID: PMC10820114 DOI: 10.3390/v16010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Influenza A virus (IAV) is one of the most circulated human pathogens, and influenza disease, commonly known as the flu, remains one of the most recurring and prevalent infectious human diseases globally. IAV continues to challenge existing vaccines and antiviral drugs via its ability to evolve constantly. It is critical to identify the molecular determinants of IAV pathogenesis to understand the basis of flu severity in different populations and design improved antiviral strategies. In recent years, acetylation has been identified as one of the determinants of IAV pathogenesis. Acetylation was originally discovered as an epigenetic protein modification of histones. But, it is now known to be one of the ubiquitous protein modifications of both histones and non-histone proteins and a determinant of proteome complexity. Since our first observation in 2007, significant progress has been made in understanding the role of acetylation during IAV infection. Now, it is becoming clearer that acetylation plays a pro-IAV function via at least three mechanisms: (1) by reducing the host's sensing of IAV infection, (2) by dampening the host's innate antiviral response against IAV, and (3) by aiding the stability and function of viral and host proteins during IAV infection. In turn, IAV antagonizes the host deacetylases, which erase acetylation, to facilitate its replication. This review provides an overview of the research progress made on this subject so far and outlines research prospects for the significance of IAV-acetylation interplay.
Collapse
Affiliation(s)
- Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
39
|
Wang T, Wang Z, Wang R, Zhang L, Zhang Y, Lu H. Highly efficient and chemoselective blocking of free amino group by ortho-phthalaldehyde (OPA) for comprehensive analysis of protein terminome. Talanta 2024; 267:125262. [PMID: 37804787 DOI: 10.1016/j.talanta.2023.125262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/24/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
Herein, we introduced ortho-phthalaldehyde (OPA) for blocking free amino groups and established a simple and robust method for comprehensive profiling of protein terminome based on strong cation exchange chromatography (SCX) fractionation. With the highly efficient and chemoseletive amine-group blocking, we identified 2271 canonical human protein N-termini, 1650 canonical human protein C-termini, as well as 645 protein neo-N-termini from HeLa cells.
Collapse
Affiliation(s)
- Ting Wang
- Department of Chemistry and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhongjie Wang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China
| | - Rui Wang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China
| | - Ying Zhang
- Department of Chemistry and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China.
| | - Haojie Lu
- Department of Chemistry and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
40
|
Varland S, Silva RD, Kjosås I, Faustino A, Bogaert A, Billmann M, Boukhatmi H, Kellen B, Costanzo M, Drazic A, Osberg C, Chan K, Zhang X, Tong AHY, Andreazza S, Lee JJ, Nedyalkova L, Ušaj M, Whitworth AJ, Andrews BJ, Moffat J, Myers CL, Gevaert K, Boone C, Martinho RG, Arnesen T. N-terminal acetylation shields proteins from degradation and promotes age-dependent motility and longevity. Nat Commun 2023; 14:6774. [PMID: 37891180 PMCID: PMC10611716 DOI: 10.1038/s41467-023-42342-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Most eukaryotic proteins are N-terminally acetylated, but the functional impact on a global scale has remained obscure. Using genome-wide CRISPR knockout screens in human cells, we reveal a strong genetic dependency between a major N-terminal acetyltransferase and specific ubiquitin ligases. Biochemical analyses uncover that both the ubiquitin ligase complex UBR4-KCMF1 and the acetyltransferase NatC recognize proteins bearing an unacetylated N-terminal methionine followed by a hydrophobic residue. NatC KO-induced protein degradation and phenotypes are reversed by UBR knockdown, demonstrating the central cellular role of this interplay. We reveal that loss of Drosophila NatC is associated with male sterility, reduced longevity, and age-dependent loss of motility due to developmental muscle defects. Remarkably, muscle-specific overexpression of UbcE2M, one of the proteins targeted for NatC KO-mediated degradation, suppresses defects of NatC deletion. In conclusion, NatC-mediated N-terminal acetylation acts as a protective mechanism against protein degradation, which is relevant for increased longevity and motility.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, N-5006, Bergen, Norway.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| | - Rui Duarte Silva
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139, Faro, Portugal.
| | - Ine Kjosås
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Alexandra Faustino
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Annelies Bogaert
- VIB-UGent Center for Medical Biotechnology, B-9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
| | - Maximilian Billmann
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, D-53127, Bonn, Germany
| | - Hadi Boukhatmi
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes 1, CNRS, UMR6290, 35065, Rennes, France
| | - Barbara Kellen
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Michael Costanzo
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Adrian Drazic
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Camilla Osberg
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Katherine Chan
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Xiang Zhang
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Amy Hin Yan Tong
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Simonetta Andreazza
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Juliette J Lee
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Lyudmila Nedyalkova
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Matej Ušaj
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | | | - Brenda J Andrews
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Jason Moffat
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 1×8, Canada
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, B-9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
| | - Charles Boone
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- RIKEN Centre for Sustainable Resource Science, Wako, Saitama, 351-0106, Japan
| | - Rui Gonçalo Martinho
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal.
- Departmento de Ciências Médicas, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
- iBiMED - Institute of Biomedicine, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, N-5006, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, N-5021, Bergen, Norway.
| |
Collapse
|
41
|
Etherington RD, Bailey M, Boyer JB, Armbruster L, Cao X, Coates JC, Meinnel T, Wirtz M, Giglione C, Gibbs DJ. Nt-acetylation-independent turnover of SQUALENE EPOXIDASE 1 by Arabidopsis DOA10-like E3 ligases. PLANT PHYSIOLOGY 2023; 193:2086-2104. [PMID: 37427787 PMCID: PMC10602611 DOI: 10.1093/plphys/kiad406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
The acetylation-dependent (Ac/)N-degron pathway degrades proteins through recognition of their acetylated N-termini (Nt) by E3 ligases called Ac/N-recognins. To date, specific Ac/N-recognins have not been defined in plants. Here we used molecular, genetic, and multiomics approaches to characterize potential roles for Arabidopsis (Arabidopsis thaliana) DEGRADATION OF ALPHA2 10 (DOA10)-like E3 ligases in the Nt-acetylation-(NTA)-dependent turnover of proteins at global- and protein-specific scales. Arabidopsis has two endoplasmic reticulum (ER)-localized DOA10-like proteins. AtDOA10A, but not the Brassicaceae-specific AtDOA10B, can compensate for loss of yeast (Saccharomyces cerevisiae) ScDOA10 function. Transcriptome and Nt-acetylome profiling of an Atdoa10a/b RNAi mutant revealed no obvious differences in the global NTA profile compared to wild type, suggesting that AtDOA10s do not regulate the bulk turnover of NTA substrates. Using protein steady-state and cycloheximide-chase degradation assays in yeast and Arabidopsis, we showed that turnover of ER-localized SQUALENE EPOXIDASE 1 (AtSQE1), a critical sterol biosynthesis enzyme, is mediated by AtDOA10s. Degradation of AtSQE1 in planta did not depend on NTA, but Nt-acetyltransferases indirectly impacted its turnover in yeast, indicating kingdom-specific differences in NTA and cellular proteostasis. Our work suggests that, in contrast to yeast and mammals, targeting of Nt-acetylated proteins is not a major function of DOA10-like E3 ligases in Arabidopsis and provides further insight into plant ERAD and the conservation of regulatory mechanisms controlling sterol biosynthesis in eukaryotes.
Collapse
Affiliation(s)
- Ross D Etherington
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Mark Bailey
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Jean-Baptiste Boyer
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Laura Armbruster
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Xulyu Cao
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Thierry Meinnel
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Carmela Giglione
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| |
Collapse
|
42
|
Sakato-Antoku M, Balsbaugh JL, King SM. N-Terminal Processing and Modification of Ciliary Dyneins. Cells 2023; 12:2492. [PMID: 37887336 PMCID: PMC10605206 DOI: 10.3390/cells12202492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Axonemal dyneins are highly complex microtubule motors that power ciliary motility. These multi-subunit enzymes are assembled at dedicated sites within the cytoplasm. At least nineteen cytosolic factors are specifically needed to generate dynein holoenzymes and/or for their trafficking to the growing cilium. Many proteins are subject to N-terminal processing and acetylation, which can generate degrons subject to the AcN-end rule, alter N-terminal electrostatics, generate new binding interfaces, and affect subunit stoichiometry through targeted degradation. Here, we have used mass spectrometry of cilia samples and electrophoretically purified dynein heavy chains from Chlamydomonas to define their N-terminal processing; we also detail the N-terminal acetylase complexes present in this organism. We identify four classes of dynein heavy chain based on their processing pathways by two distinct acetylases, one of which is dependent on methionine aminopeptidase activity. In addition, we find that one component of both the outer dynein arm intermediate/light chain subcomplex and the docking complex is processed to yield an unmodified Pro residue, which may provide a setpoint to direct the cytosolic stoichiometry of other dynein complex subunits that contain N-terminal degrons. Thus, we identify and describe an additional level of processing and complexity in the pathways leading to axonemal dynein formation in cytoplasm.
Collapse
Affiliation(s)
- Miho Sakato-Antoku
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA;
| | - Jeremy L. Balsbaugh
- Proteomics and Metabolomics Facility, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269, USA;
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA;
| |
Collapse
|
43
|
Dutta H, Jain N. Post-translational modifications and their implications in cancer. Front Oncol 2023; 13:1240115. [PMID: 37795435 PMCID: PMC10546021 DOI: 10.3389/fonc.2023.1240115] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
Post-translational modifications (PTMs) are crucial regulatory mechanisms that alter the properties of a protein by covalently attaching a modified chemical group to some of its amino acid residues. PTMs modulate essential physiological processes such as signal transduction, metabolism, protein localization, and turnover and have clinical relevance in cancer and age-related pathologies. Majority of proteins undergo post-translational modifications, irrespective of their occurrence in or after protein biosynthesis. Post-translational modifications link to amino acid termini or side chains, causing the protein backbone to get cleaved, spliced, or cyclized, to name a few. These chemical modifications expand the diversity of the proteome and regulate protein activity, structure, locations, functions, and protein-protein interactions (PPIs). This ability to modify the physical and chemical properties and functions of proteins render PTMs vital. To date, over 200 different protein modifications have been reported, owing to advanced detection technologies. Some of these modifications include phosphorylation, glycosylation, methylation, acetylation, and ubiquitination. Here, we discuss about the existing as well as some novel post-translational protein modifications, with their implications in aberrant states, which will help us better understand the modified sites in different proteins and the effect of PTMs on protein functions in core biological processes and progression in cancer.
Collapse
Affiliation(s)
- Hashnu Dutta
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
44
|
Sugaya N, Tanaka S, Keyamura K, Noda S, Akanuma G, Hishida T. N-terminal acetyltransferase NatB regulates Rad51-dependent repair of double-strand breaks in Saccharomyces cerevisiae. Genes Genet Syst 2023; 98:61-72. [PMID: 37331807 DOI: 10.1266/ggs.23-00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Homologous recombination (HR) is a highly accurate mechanism for repairing DNA double-strand breaks (DSBs) that arise from various genotoxic insults and blocked replication forks. Defects in HR and unscheduled HR can interfere with other cellular processes such as DNA replication and chromosome segregation, leading to genome instability and cell death. Therefore, the HR process has to be tightly controlled. Protein N-terminal acetylation is one of the most common modifications in eukaryotic organisms. Studies in budding yeast implicate a role for NatB acetyltransferase in HR repair, but precisely how this modification regulates HR repair and genome integrity is unknown. In this study, we show that cells lacking NatB, a dimeric complex composed of Nat3 and Mdm2, are sensitive to the DNA alkylating agent methyl methanesulfonate (MMS), and that overexpression of Rad51 suppresses the MMS sensitivity of nat3Δ cells. Nat3-deficient cells have increased levels of Rad52-yellow fluorescent protein foci and fail to repair DSBs after release from MMS exposure. We also found that Nat3 is required for HR-dependent gene conversion and gene targeting. Importantly, we observed that nat3Δ mutation partially suppressed MMS sensitivity in srs2Δ cells and the synthetic sickness of srs2Δ sgs1Δ cells. Altogether, our results indicate that NatB functions upstream of Srs2 to activate the Rad51-dependent HR pathway for DSB repair.
Collapse
Affiliation(s)
- Natsuki Sugaya
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| | - Shion Tanaka
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| | - Kenji Keyamura
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| | - Shunsuke Noda
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| | - Genki Akanuma
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| | - Takashi Hishida
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| |
Collapse
|
45
|
Varland S, Brønstad KM, Skinner SJ, Arnesen T. A nonsense variant in the N-terminal acetyltransferase NAA30 may be associated with global developmental delay and tracheal cleft. Am J Med Genet A 2023; 191:2402-2410. [PMID: 37387332 DOI: 10.1002/ajmg.a.63338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/03/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Most human proteins are N-terminally acetylated by N-terminal acetyltransferases (NATs), which play crucial roles in many cellular functions. The NatC complex, comprising the catalytic subunit NAA30 and the auxiliary subunits NAA35 and NAA38, is estimated to acetylate up to 20% of the human proteome in a co-translational manner. Several NAT enzymes have been linked to rare genetic diseases, causing developmental delay, intellectual disability, and heart disease. Here, we report a de novo heterozygous NAA30 nonsense variant c.244C>T (p.Q82*) (NM_001011713.2), which was identified by whole exome sequencing in a 5-year-old boy presenting with global development delay, autism spectrum disorder, hypotonia, tracheal cleft, and recurrent respiratory infections. Biochemical studies were performed to assess the functional impact of the premature stop codon on NAA30's catalytic activity. We find that NAA30-Q82* completely disrupts the N-terminal acetyltransferase activity toward a classical NatC substrate using an in vitro acetylation assay. This finding corresponds with structural modeling showing that the truncated NAA30 variant lacks the entire GNAT domain, which is required for catalytic activity. This study suggests that defective NatC-mediated N-terminal acetylation can cause disease, thus expanding the spectrum of NAT variants linked to genetic disease.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | | | - Stephanie J Skinner
- Department of Pediatrics, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
46
|
Wang Y, Hu T, He Y, Su C, Wang Z, Zhou X. N-terminal acetylation of the βC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus is critical for its viral pathogenicity. Virology 2023; 586:1-11. [PMID: 37473501 DOI: 10.1016/j.virol.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
N-terminal acetylation (N-acetylation) is one of the most common protein modifications and plays crucial roles in viability and stress responses in animals and plants. However, very little is known about N-acetylation of viral proteins. Here, we identified the Thr residue at position 2 (Thr-2) in the βC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus (TYLCCNB-βC1) as a novel N-acetylation site. Furthermore, the effects of TYLCCNB-βC1 N-acetylation on its function as a pathogenicity factor were determined via N-acetylation mutants in Nicotiana benthamiana plants. We found that N-acetylation of TYLCCNB-βC1 is critical for its self-interaction in the nucleus and viral pathogenesis, and that removal of N-acetylation of TYLCCNB-βC1 attenuated tomato yellow leaf curl China virus-induced symptoms and led to accelerated degradation of TYLCCNB-βC1 through the ubiquitin-proteasome system. Our data reveal a protective effect of N-acetylation of TYLCCNB-βC1 on its pathogenesis and demonstrate an antagonistic crosstalk between N-acetylation and ubiquitination in this geminiviral protein.
Collapse
Affiliation(s)
- Yaqin Wang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tao Hu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuting He
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chenlu Su
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000, China.
| | - Xueping Zhou
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
47
|
Deshpande P, Chimata AV, Snider E, Singh A, Kango-Singh M, Singh A. N-Acetyltransferase 9 ameliorates Aβ42-mediated neurodegeneration in the Drosophila eye. Cell Death Dis 2023; 14:478. [PMID: 37507384 PMCID: PMC10382493 DOI: 10.1038/s41419-023-05973-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, manifests as accumulation of amyloid-beta-42 (Aβ42) plaques and intracellular accumulation of neurofibrillary tangles (NFTs) that results in microtubule destabilization. Targeted expression of human Aβ42 (GMR > Aβ42) in developing Drosophila eye retinal neurons results in Aβ42 plaque(s) and mimics AD-like extensive neurodegeneration. However, there remains a gap in our understanding of the underlying mechanism(s) for Aβ42-mediated neurodegeneration. To address this gap in information, we conducted a forward genetic screen, and identified N-acetyltransferase 9 (Mnat9) as a genetic modifier of GMR > Aβ42 neurodegenerative phenotype. Mnat9 is known to stabilize microtubules by inhibiting c-Jun-N- terminal kinase (JNK) signaling. We found that gain-of-function of Mnat9 rescues GMR > Aβ42 mediated neurodegenerative phenotype whereas loss-of-function of Mnat9 exhibits the converse phenotype of enhanced neurodegeneration. Here, we propose a new neuroprotective function of Mnat9 in downregulating the JNK signaling pathway to ameliorate Aβ42-mediated neurodegeneration, which is independent of its acetylation activity. Transgenic flies expressing human NAT9 (hNAT9), also suppresses Aβ42-mediated neurodegeneration thereby suggesting functional conservation in the interaction of fly Mnat9 or hNAT9 with JNK-mediated neurodegeneration. These studies add to the repertoire of molecular mechanisms that mediate cell death response following accumulation of Aβ42 and may provide new avenues for targeting neurodegeneration.
Collapse
Affiliation(s)
| | | | - Emily Snider
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Aditi Singh
- Interdisciplinary Graduate Studies, College of Arts and Sciences, University of Dayton, Dayton, OH, 45469, USA
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
- Premedical Program, University of Dayton, Dayton, OH, 45469, USA
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA.
- Premedical Program, University of Dayton, Dayton, OH, 45469, USA.
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA.
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
48
|
Guzman UH, Aksnes H, Ree R, Krogh N, Jakobsson ME, Jensen LJ, Arnesen T, Olsen JV. Loss of N-terminal acetyltransferase A activity induces thermally unstable ribosomal proteins and increases their turnover in Saccharomyces cerevisiae. Nat Commun 2023; 14:4517. [PMID: 37500638 PMCID: PMC10374663 DOI: 10.1038/s41467-023-40224-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Protein N-terminal (Nt) acetylation is one of the most abundant modifications in eukaryotes, covering ~50-80 % of the proteome, depending on species. Cells with defective Nt-acetylation display a wide array of phenotypes such as impaired growth, mating defects and increased stress sensitivity. However, the pleiotropic nature of these effects has hampered our understanding of the functional impact of protein Nt-acetylation. The main enzyme responsible for Nt-acetylation throughout the eukaryotic kingdom is the N-terminal acetyltransferase NatA. Here we employ a multi-dimensional proteomics approach to analyze Saccharomyces cerevisiae lacking NatA activity, which causes global proteome remodeling. Pulsed-SILAC experiments reveals that NatA-deficient strains consistently increase degradation of ribosomal proteins compared to wild type. Explaining this phenomenon, thermal proteome profiling uncovers decreased thermostability of ribosomes in NatA-knockouts. Our data are in agreement with a role for Nt-acetylation in promoting stability for parts of the proteome by enhancing the avidity of protein-protein interactions and folding.
Collapse
Affiliation(s)
- Ulises H Guzman
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Rasmus Ree
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Magnus E Jakobsson
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Lars J Jensen
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Department of Biosciences, University of Bergen, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
49
|
Chang YH. Impact of Protein N α-Modifications on Cellular Functions and Human Health. Life (Basel) 2023; 13:1613. [PMID: 37511988 PMCID: PMC10381334 DOI: 10.3390/life13071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Most human proteins are modified by enzymes that act on the α-amino group of a newly synthesized polypeptide. Methionine aminopeptidases can remove the initiator methionine and expose the second amino acid for further modification by enzymes responsible for myristoylation, acetylation, methylation, or other chemical reactions. Specific acetyltransferases can also modify the initiator methionine and sometimes the acetylated methionine can be removed, followed by further modifications. These modifications at the protein N-termini play critical roles in cellular protein localization, protein-protein interaction, protein-DNA interaction, and protein stability. Consequently, the dysregulation of these modifications could significantly change the development and progression status of certain human diseases. The focus of this review is to highlight recent progress in our understanding of the roles of these modifications in regulating protein functions and how these enzymes have been used as potential novel therapeutic targets for various human diseases.
Collapse
Affiliation(s)
- Yie-Hwa Chang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University Medical School, Saint Louis, MO 63104, USA
| |
Collapse
|
50
|
Abstract
Most proteins receive an acetyl group at the N terminus while in their nascency as the result of modification by co-translationally acting N-terminal acetyltransferases (NATs). The N-terminal acetyl group can influence several aspects of protein functionality. From studies of NAT-lacking cells, it is evident that several cellular processes are affected by this modification. More recently, an increasing number of genetic cases have demonstrated that N-terminal acetylation has crucial roles in human physiology and pathology. In this Cell Science at a Glance and the accompanying poster, we provide an overview of the human NAT enzymes and their properties, substrate coverage, cellular roles and connections to human disease.
Collapse
Affiliation(s)
- Henriette Aksnes
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Nina McTiernan
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Department of Biological Sciences, University of Bergen, 5009 Bergen, Norway
- Department of Surgery, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|