1
|
Li H, Zhang F, Wang D, Luo S, Ding Z, Bao H, Zhang S, Fan C, Ji W, Wang S. Specific Cell Adhesion at Nano-Biointerfaces: Synergistic Effect of Topographical Matching and Molecular Recognition. NANO LETTERS 2025; 25:7097-7106. [PMID: 40240287 DOI: 10.1021/acs.nanolett.5c01197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Specific cell adhesion is essential for functional biointerfaces, especially in cancer diagnosis. However, the role of surface nanotopography in this process remains unclear. Herein, we reveal the critical role of surface nanotopography by measuring adhesion forces utilizing fluidic force microscopy (FluidFM). The antibody-coated nanospiky surface exhibits cell adhesion force 1 to 2 orders of magnitude higher than those of the flat, nanospiky, and antibody-coated flat surfaces. This amplified effect is related to a time-dependent reversal, with adhesion force on nanospiky surfaces initially weaker than that on flat surfaces but eventually surpassing it. Mathematical simulations further demonstrate that micro-nanostructured surfaces maximize contact points, enabling multiscale, multipoint cell-substrate interactions, consistent with experimental results. From thermodynamic and kinetic perspectives, we propose a multiscale, multipoint recognition model based on the synergistic effect of topographical matching and molecular recognition. Our findings provide valuable clues for biointerface design in cancer diagnosis, drug screening, and tissue engineering.
Collapse
Affiliation(s)
- Haonan Li
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Feilong Zhang
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Duanda Wang
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Shihang Luo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Zhuoli Ding
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Han Bao
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Sen Zhang
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Chunyan Fan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Wei Ji
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Shutao Wang
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| |
Collapse
|
2
|
Xue H, Wang L, Yao H, Shen S, Zhao X, Yuan C, Yu L, Chen G, Liu J. Single-Cell Endoscopy for Multifunctional Live-Cell Molecular Analysis. BIOSENSORS 2025; 15:244. [PMID: 40277557 PMCID: PMC12024890 DOI: 10.3390/bios15040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
Molecular analyses of individual cells with high resolution, specificity, and sensitivity can not only reveal cellular heterogeneity but also provide a better understanding of diseases and accelerate drug discoveries. Single-cell endoscopy is an advanced live-cell technique that relies on a smart endoscope that allows minimally invasive probing of the interiors of individual cells. Compared with other single-cell analysis techniques, single-cell endoscopy has shown great promise in applications such as flexible single-cell manipulation, ultrasensitive sensing, and precise intracellular delivery. In this review, we aim to map out the landscape of recent advances in single-cell endoscopy techniques by focusing on both fundamental considerations and significant progress over the past decade. Specifically, we summarize the predominant live-cell endoscopes, including their fabrication and characterization. Furthermore, a series of valuable intracellular molecular sensing events, such as nucleic acids, proteins, ions, etc., are introduced with a main emphasis on how single-cell endoscopy can solve these issues and what merits single-cell endoscopy can provide. Finally, we briefly outline the remaining challenges and directions for the future development of single-cell endoscopy techniques.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Luting Yu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (H.X.); (L.W.); (H.Y.); (S.S.); (X.Z.); (C.Y.); (G.C.)
| | | | - Jia Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (H.X.); (L.W.); (H.Y.); (S.S.); (X.Z.); (C.Y.); (G.C.)
| |
Collapse
|
3
|
Lam CD, Park S. Nanomechanical characterization of soft nanomaterial using atomic force microscopy. Mater Today Bio 2025; 31:101506. [PMID: 40018054 PMCID: PMC11867545 DOI: 10.1016/j.mtbio.2025.101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 03/01/2025] Open
Abstract
Atomic force microscopy (AFM) is a promising method for generating high-spatial-resolution images, providing insightful perspectives on the nanomechanical attributes of soft matter, including cells, bacteria, viruses, proteins, and nanoparticles. AFM is widely used in biological and pharmaceutical sciences because it can scrutinize mechanical properties under physiological conditions. We comprehensively reviewed experimental techniques and fundamental mathematical models to investigate the mechanical properties, including elastic moduli and binding forces, of soft materials. To determine these mechanical properties, two-dimensional arrays of force-distance (f-d) curves are obtained through AFM indentation experiments using the force volume technique. For elasticity determination, models are divided into approach f-d curve-based models, represented by the Hertz model, and retract f-d curve-based models, exemplified by the Johnson-Kendall-Roberts and Derjaguin-Müller-Toporov models. Especially, the Chen, Tu, and Cappella models, developed from the Hertz model, are used for thin samples on hard substrates. Additionally, the establishment of physical or chemical bonds during indentation experiments, observable in retract f-d curves, is crucial for the adhesive properties of samples and binding affinity between antibodies (receptors) and antigens (ligands). Chemical force microscopy, single-molecule force spectroscopy, and single-cell force spectroscopy are primary AFM methods that provide a comprehensive view of such properties through retract curve analysis. Furthermore, this paper, structured into key thematic sections, also reviews the exemplary application of AFM across multiple scientific disciplines. Notably, cancer cells are softer than healthy cells, although more sophisticated investigations are required for prognostic applications. AFM also investigates how bacteria adapt to antibiotics, addressing antimicrobial resistance, and reveals that stiffer virus capsids indicate reduced infectivity, aiding in the development of new strategies to combat viral infections. Moreover, AFM paves the way for innovative therapeutic approaches in designing effective drug delivery systems by providing insights into the physical properties of soft nanoparticles and the binding affinity of target moieties. Our review provides researchers with representative studies applying AFM to a wide range of cross-disciplinary research.
Collapse
Affiliation(s)
- Chi-Dat Lam
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Soyeun Park
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| |
Collapse
|
4
|
Thomas-Chemin O, Janel S, Boumehdi Z, Séverac C, Trevisiol E, Dague E, Duprés V. Advancing High-Throughput Cellular Atomic Force Microscopy with Automation and Artificial Intelligence. ACS NANO 2025; 19:5045-5062. [PMID: 39883411 DOI: 10.1021/acsnano.4c07729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Atomic force microscopy (AFM) has reached a significant level of maturity in biology, demonstrated by the diversity of modes for obtaining not only topographical images but also insightful mechanical and adhesion data by performing force measurements on delicate samples with a controlled environment (e.g., liquid, temperature, pH). Numerous studies have applied AFM to describe biological phenomena at the molecular and cellular scales, and even on tissues. Despite these advances, AFM is not established as a diagnostic tool in the biomedical field. This article describes the reasons for this gap, focusing on one of the main weaknesses of bio-AFM: its low data throughput. We review current efforts to improve the automation of AFM measurements in particular on living cells, as well as the developments in automating data analysis. For the latter, artificial intelligence (AI) is progressively employed to classify data to distinguish healthy and diseased cells or tissues. Finally, we propose a roadmap to foster the application of bio-AFM into medical diagnostics.
Collapse
Affiliation(s)
| | - Sébastien Janel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Zeyd Boumehdi
- LAAS-CNRS, CNRS, Université de Toulouse, 31400 Toulouse, France
| | - Childérick Séverac
- LAAS-CNRS, CNRS, Université de Toulouse, 31400 Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31100 Toulouse, France
| | - Emmanuelle Trevisiol
- LAAS-CNRS, CNRS, Université de Toulouse, 31400 Toulouse, France
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31400 Toulouse, France
| | - Etienne Dague
- LAAS-CNRS, CNRS, Université de Toulouse, 31400 Toulouse, France
| | - Vincent Duprés
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
5
|
Xu X, Wen Q, Lan T, Zeng L, Zeng Y, Lin S, Qiu M, Na X, Yang C. Time-resolved single-cell transcriptomic sequencing. Chem Sci 2024; 15:19225-19246. [PMID: 39568874 PMCID: PMC11575584 DOI: 10.1039/d4sc05700g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/19/2024] [Indexed: 11/22/2024] Open
Abstract
Cells experience continuous transformation under both physiological and pathological circumstances. Single-cell RNA sequencing (scRNA-seq) is competent in disclosing the disparities of cells; nevertheless, it poses challenges in linking the individual cell state at distinct time points. Although computational approaches based on scRNA-seq data have been put forward for trajectory analysis, the result is based on assumptions and fails to reflect the actual states. Consequently, it is necessary to incorporate a "time anchor" into the scRNA-seq library for the temporal documentation of the dynamic expression pattern. This review comprehensively overviews the time-resolved single-cell transcriptomic sequencing methodologies and applications. As scRNA-seq functions as the basis for profiling single-cell expression patterns, the review initially introduces various scRNA-seq approaches. Subsequently, the review focuses on the different experimental strategies for introducing a "time anchor" to scRNA-seq, highlighting their principles, strengths, weaknesses, and comparing their adaptation in various scenarios. Next, it provides a brief summary of applications in immunity response, cancer progression, and embryo development. Finally, the review concludes with a forward-looking perspective on future advancements in time-resolved single-cell transcriptomic sequencing.
Collapse
Affiliation(s)
- Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Technology for Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University Fuzhou 350122 China
| | - Qianxi Wen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Tianchen Lan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Liuqing Zeng
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yonghao Zeng
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Shiyan Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Minghao Qiu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xing Na
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| |
Collapse
|
6
|
Yang Y, Wen D, Lin F, Song X, Pang R, Sun W, Yu D, Zhang Z, Yu T, Kong J, Zhang L, Cao X, Liao W, Wang D, Yang Q, Liang J, Zhang N, Li K, Xiong C, Liu Y. Suppression of non-muscle myosin II boosts T cell cytotoxicity against tumors. SCIENCE ADVANCES 2024; 10:eadp0631. [PMID: 39485850 PMCID: PMC11529714 DOI: 10.1126/sciadv.adp0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024]
Abstract
Increasing evidence highlights the importance of immune mechanoregulation in establishing and sustaining tumor-specific cytotoxicity required for desirable immunotherapeutic outcomes. However, the molecular connections between mechanobiological inputs and outputs and the designated immune activities remain largely unclear. Here, we show that partial inhibition of non-muscle myosin II (NM II) augmented the traction force exerted by T cells and potentiated T cell cytotoxicity against tumors. By using T cells from mice and patients with cancer, we found that NM II is required for the activity of NKX3-2 in maintaining the expression of ADGRB3, which shapes the filamentous actin (F-actin) organization and ultimately attributes to the reduced traction force of T cells in the tumor microenvironment. In animal models, suppressing the NM II-NKX3-2-ADGRB3 pathway in T cells effectively suppressed tumor growth and improved the efficacy of the checkpoint-specific immunotherapy. Overall, this work provides insights into the biomechanical regulation of T cell cytotoxicity that can be exploited to optimize clinical immunotherapies.
Collapse
Affiliation(s)
- Yingyun Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dahan Wen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Xiaowei Song
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruiyang Pang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Weihao Sun
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Donglin Yu
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ziyi Zhang
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tao Yu
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jie Kong
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Lei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyuan Cao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wanying Liao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dingding Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qianyi Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junbo Liang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ning Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kailong Li
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chunyang Xiong
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Yuying Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, CAMS, Beijing, China
| |
Collapse
|
7
|
Yoo J, Ahn J, Ha H, Claud Jonas J, Kim C, Ham Kim H. Single-Beam Acoustic Tweezers for Cell Biology: Molecular to In Vivo Level. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1269-1288. [PMID: 39250365 DOI: 10.1109/tuffc.2024.3456083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Acoustic tweezers have attracted attention in various fields of cell biology, including in vitro single-cell and intercellular mechanics. Compared with other tweezing technologies such as optical and magnetic tweezers, acoustic tweezers possess stronger forces and are safer for use in biological systems. However, due to the limited spatial resolution or limited size of target objects, acoustic tweezers have primarily been used to manipulate cells in vitro. To extend the advantages of acoustic tweezers to other levels (e.g., molecular and in vivo levels), researchers have recently developed various types of acoustic tweezers such as single-beam acoustic tweezers (SBATs), surface acoustic wave (SAW) tweezers, and acoustic-streaming tweezers. Among these, SBATs utilize a single-focused beam, making the transducer and system simple, noninvasive, and capable of producing strong forces compared with other types of tweezers. Depending on the acoustic beam pattern, SBATs can be classified into Rayleigh regime, Mie regime, and acoustic vortex with different trapping dynamics and application levels. In this review, we provide an overview of the principles and configuration of each type of SBAT, their applications ranging from molecular to in vivo studies, and their limitations and prospects. Thus, this review demonstrates the significance and potential of SBAT technology in biophysics and biomedical engineering.
Collapse
|
8
|
Patino CA, Sarikaya S, Mukherjee P, Pathak N, Espinosa HD. Well Plate-Based Localized Electroporation Workflow for Rapid Optimization of Intracellular Delivery. Bio Protoc 2024; 14:e5037. [PMID: 39100599 PMCID: PMC11291937 DOI: 10.21769/bioprotoc.5037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 08/06/2024] Open
Abstract
Efficient and nontoxic delivery of foreign cargo into cells is a critical step in many biological studies and cell engineering workflows with applications in areas such as biomanufacturing and cell-based therapeutics. However, effective molecular delivery into cells involves optimizing several experimental parameters. In the case of electroporation-based intracellular delivery, there is a need to optimize parameters like pulse voltage, duration, buffer type, and cargo concentration for each unique application. Here, we present the protocol for fabricating and utilizing a high-throughput multi-well localized electroporation device (LEPD) assisted by deep learning-based image analysis to enable rapid optimization of experimental parameters for efficient and nontoxic molecular delivery into cells. The LEPD and the optimization workflow presented herein are relevant to both adherent and suspended cell types and different molecular cargo (DNA, RNA, and proteins). The workflow enables multiplexed combinatorial experiments and can be adapted to cell engineering applications requiring in vitro delivery. Key features • A high-throughput multi-well localized electroporation device (LEPD) that can be optimized for both adherent and suspended cell types. • Allows for multiplexed experiments combined with tailored pulse voltage, duration, buffer type, and cargo concentration. • Compatible with various molecular cargoes, including DNA, RNA, and proteins, enhancing its versatility for cell engineering applications. • Integration with deep learning-based image analysis enables rapid optimization of experimental parameters.
Collapse
Affiliation(s)
- Cesar A. Patino
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Sevketcan Sarikaya
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, USA
| | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, USA
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, USA
| |
Collapse
|
9
|
Quek YJ, Tay A. Nanoscale Methods for Longitudinal Extraction of Intracellular Contents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314184. [PMID: 38459829 DOI: 10.1002/adma.202314184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Longitudinal analysis of intracellular contents including gene and protein expression is crucial for deciphering the fundamentally dynamic nature of cells. This offers invaluable insights into complex tissue composition and behavior, and drives progress in disease diagnosis, biomarker discovery, and drug development. Traditional longitudinal analysis workflows, involving the destruction of cells at various timepoints, limit insights to singular moments and fail to account for cellular heterogeneity. Current non-destructive approaches, like temporal modeling with single-cell ribonucleic acid sequencing (RNA-seq) and live-cell fluorescence imaging, either rely on biological assumptions or possess the risk of cellular perturbation. Recent advances in nanoscale technologies for non-destructive intracellular content extraction offer a promising solution to these challenges. These novel methods work at the nanoscale to non-destructively access cellular membranes and can be broadly classified into three mechanisms: tip-facilitated aspiration, membrane-based, and probe-based methods. This perspective focuses on these emerging nanotechnologies for repeated intracellular content extraction. Their potential in longitudinal analysis is discussed, the critical requirements for effective repeated sampling are addressed, and the suitability of each technique for various applications is explored. Furthermore, unresolved challenges in repeated sampling are highlighted to encourage further research in this growing field.
Collapse
Affiliation(s)
- Ying Jie Quek
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- Tissue Engineering Programme, National University of Singapore, Singapore, 117510, Singapore
| |
Collapse
|
10
|
Medina-Ramirez IE, Macias-Diaz JE, Masuoka-Ito D, Zapien JA. Holotomography and atomic force microscopy: a powerful combination to enhance cancer, microbiology and nanotoxicology research. DISCOVER NANO 2024; 19:64. [PMID: 38594446 PMCID: PMC11003950 DOI: 10.1186/s11671-024-04003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Modern imaging strategies are paramount to studying living systems such as cells, bacteria, and fungi and their response to pathogens, toxicants, and nanomaterials (NMs) as modulated by exposure and environmental factors. The need to understand the processes and mechanisms of damage, healing, and cell survivability of living systems continues to motivate the development of alternative imaging strategies. Of particular interest is the use of label-free techniques (microscopy procedures that do not require sample staining) that minimize interference of biological processes by foreign marking substances and reduce intense light exposure and potential photo-toxicity effects. This review focuses on the synergic capabilities of atomic force microscopy (AFM) as a well-developed and robust imaging strategy with demonstrated applications to unravel intimate details in biomedical applications, with the label-free, fast, and enduring Holotomographic Microscopy (HTM) strategy. HTM is a technique that combines holography and tomography using a low intensity continuous illumination laser to investigate (quantitatively and non-invasively) cells, microorganisms, and thin tissue by generating three-dimensional (3D) images and monitoring in real-time inner morphological changes. We first review the operating principles that form the basis for the complementary details provided by these techniques regarding the surface and internal information provided by HTM and AFM, which are essential and complimentary for the development of several biomedical areas studying the interaction mechanisms of NMs with living organisms. First, AFM can provide superb resolution on surface morphology and biomechanical characterization. Second, the quantitative phase capabilities of HTM enable superb modeling and quantification of the volume, surface area, protein content, and mass density of the main components of cells and microorganisms, including the morphology of cells in microbiological systems. These capabilities result from directly quantifying refractive index changes without requiring fluorescent markers or chemicals. As such, HTM is ideal for long-term monitoring of living organisms in conditions close to their natural settings. We present a case-based review of the principal uses of both techniques and their essential contributions to nanomedicine and nanotoxicology (study of the harmful effects of NMs in living organisms), emphasizing cancer and infectious disease control. The synergic impact of the sequential use of these complementary strategies provides a clear drive for adopting these techniques as interdependent fundamental tools.
Collapse
Affiliation(s)
- Iliana E Medina-Ramirez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico.
| | - J E Macias-Diaz
- Department of Mathematics and Physics, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - David Masuoka-Ito
- Department of Stomatology, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - Juan Antonio Zapien
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
11
|
Ernst C, Andreassen PR, Giger GH, Nguyen BD, Gäbelein CG, Guillaume-Gentil O, Fattinger SA, Sellin ME, Hardt WD, Vorholt JA. Direct Salmonella injection into enteroid cells allows the study of host-pathogen interactions in the cytosol with high spatiotemporal resolution. PLoS Biol 2024; 22:e3002597. [PMID: 38684033 PMCID: PMC11057982 DOI: 10.1371/journal.pbio.3002597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Intestinal epithelial cells (IECs) play pivotal roles in nutrient uptake and in the protection against gut microorganisms. However, certain enteric pathogens, such as Salmonella enterica serovar Typhimurium (S. Tm), can invade IECs by employing flagella and type III secretion systems (T3SSs) with cognate effector proteins and exploit IECs as a replicative niche. Detection of flagella or T3SS proteins by IECs results in rapid host cell responses, i.e., the activation of inflammasomes. Here, we introduce a single-cell manipulation technology based on fluidic force microscopy (FluidFM) that enables direct bacteria delivery into the cytosol of single IECs within a murine enteroid monolayer. This approach allows to specifically study pathogen-host cell interactions in the cytosol uncoupled from preceding events such as docking, initiation of uptake, or vacuole escape. Consistent with current understanding, we show using a live-cell inflammasome reporter that exposure of the IEC cytosol to S. Tm induces NAIP/NLRC4 inflammasomes via its known ligands flagellin and T3SS rod and needle. Injected S. Tm mutants devoid of these invasion-relevant ligands were able to grow in the cytosol of IECs despite the absence of T3SS functions, suggesting that, in the absence of NAIP/NLRC4 inflammasome activation and the ensuing cell death, no effector-mediated host cell manipulation is required to render the epithelial cytosol growth-permissive for S. Tm. Overall, the experimental system to introduce S. Tm into single enteroid cells enables investigations into the molecular basis governing host-pathogen interactions in the cytosol with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Chantal Ernst
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Gabriel H. Giger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Bidong D. Nguyen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | | | - Stefan A. Fattinger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mikael E. Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Julia A. Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Mulder EJ, Moser B, Delgado J, Steinhardt R, Esser-Kahn AP. Protocol for localized macrophage stimulation with small-molecule TLR agonist via fluidic force microscopy. STAR Protoc 2024; 5:102873. [PMID: 38427566 PMCID: PMC10918328 DOI: 10.1016/j.xpro.2024.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 03/03/2024] Open
Abstract
Here, we present a protocol to deliver nanoliter volumes of Toll-like receptor (TLR) agonist onto a culture of nuclear factor κB (NF-κB) reporter macrophages using fluidic force microscopy and a micron-scale probe. We describe steps for quantifying the dose of agonist by modeling their diffusion with experimental inputs. We then detail procedures for quantifying and categorizing macrophage responses to individual and varied doses and combining agonist concentration and macrophage response to analyze the NF-κB response to localized TLR stimulation. For complete details on the use and execution of this protocol, please refer to Mulder et al. (2024).1.
Collapse
Affiliation(s)
| | - Brittany Moser
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer Delgado
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Rachel Steinhardt
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Aaron P Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
13
|
Mulder EJ, Moser B, Delgado J, Steinhardt RC, Esser-Kahn AP. Evidence of collective influence in innate sensing using fluidic force microscopy. Front Immunol 2024; 15:1340384. [PMID: 38322261 PMCID: PMC10844469 DOI: 10.3389/fimmu.2024.1340384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
The innate immune system initiates early response to infection by sensing molecular patterns of infection through pattern-recognition receptors (PRRs). Previous work on PRR stimulation of macrophages revealed significant heterogeneity in single cell responses, suggesting the importance of individual macrophage stimulation. Current methods either isolate individual macrophages or stimulate a whole culture and measure individual readouts. We probed single cell NF-κB responses to localized stimuli within a naïve culture with Fluidic Force Microscopy (FluidFM). Individual cells stimulated in naïve culture were more sensitive compared to individual cells in uniformly stimulated cultures. In cluster stimulation, NF-κB activation decreased with increased cell density or decreased stimulation time. Our results support the growing body of evidence for cell-to-cell communication in macrophage activation, and limit potential mechanisms. Such a mechanism might be manipulated to tune macrophage sensitivity, and the density-dependent modulation of sensitivity to PRR signals could have relevance to biological situations where macrophage density increases.
Collapse
Affiliation(s)
| | | | | | | | - Aaron P. Esser-Kahn
- Esser-Kahn Lab, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| |
Collapse
|
14
|
Gulati K, Adachi T. Profiling to Probing: Atomic force microscopy to characterize nano-engineered implants. Acta Biomater 2023; 170:15-38. [PMID: 37562516 DOI: 10.1016/j.actbio.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Surface modification of implants in the nanoscale or implant nano-engineering has been recognized as a strategy for augmenting implant bioactivity and achieving long-term implant success. Characterizing and optimizing implant characteristics is crucial to achieving desirable effects post-implantation. Modified implant enables tailored, guided and accelerated tissue integration; however, our understanding is limited to multicellular (bulk) interactions. Finding the nanoscale forces experienced by a single cell on nano-engineered implants will aid in predicting implants' bioactivity and engineering the next generation of bioactive implants. Atomic force microscope (AFM) is a unique tool that enables surface characterization and understanding of the interactions between implant surface and biological tissues. The characterization of surface topography using AFM to gauge nano-engineered implants' characteristics (topographical, mechanical, chemical, electrical and magnetic) and bioactivity (adhesion of cells) is presented. A special focus of the review is to discuss the use of single-cell force spectroscopy (SCFS) employing AFM to investigate the minute forces involved with the adhesion of a single cell (resident tissue cell or bacterium) to the surface of nano-engineered implants. Finally, the research gaps and future perspectives relating to AFM-characterized current and emerging nano-engineered implants are discussed towards achieving desirable bioactivity performances. This review highlights the use of advanced AFM-based characterization of nano-engineered implant surfaces via profiling (investigating implant topography) or probing (using a single cell as a probe to study precise adhesive forces with the implant surface). STATEMENT OF SIGNIFICANCE: Nano-engineering is emerging as a surface modification platform for implants to augment their bioactivity and achieve favourable treatment outcomes. In this extensive review, we closely examine the use of Atomic Force Microscopy (AFM) to characterize the properties of nano-engineered implant surfaces (topography, mechanical, chemical, electrical and magnetic). Next, we discuss Single-Cell Force Spectroscopy (SCFS) via AFM towards precise force quantification encompassing a single cell's interaction with the implant surface. This interdisciplinary review will appeal to researchers from the broader scientific community interested in implants and cell adhesion to implants and provide an improved understanding of the surface characterization of nano-engineered implants.
Collapse
Affiliation(s)
- Karan Gulati
- Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto 606-8507, Japan; The University of Queensland, School of Dentistry, Herston QLD 4006, Australia.
| | - Taiji Adachi
- Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
15
|
Vigetti L, Tardieux I. Fostering innovation to solve the biomechanics of microbe-host interactions: Focus on the adhesive forces underlying Apicomplexa parasite biology. Biol Cell 2023; 115:e202300016. [PMID: 37227253 DOI: 10.1111/boc.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
The protozoa, Toxoplasma gondii and Plasmodium spp., are preeminent members of the Apicomplexa parasitic phylum in large part due to their public health and economic impact. Hence, they serve as model unicellular eukaryotes with which to explore the repertoire of molecular and cellular strategies that specific developmental morphotypes deploy to timely adjust to their host(s) in order to perpetuate. In particular, host tissue- and cell-invasive morphotypes termed zoites alternate extracellular and intracellular lifestyles, thereby sensing and reacting to a wealth of host-derived biomechanical cues over their partnership. In the recent years, biophysical tools especially related to real time force measurement have been introduced, teaching us how creative are these microbes to shape a unique motility system that powers fast gliding through a variety of extracellular matrices, across cellular barriers, in vascular systems or into host cells. Equally performant was this toolkit to start illuminating how parasites manipulate their hosting cell adhesive and rheological properties to their advantage. In this review, besides highlighting major discoveries along the way, we discuss the most promising development, synergy, and multimodal integration in active noninvasive force microscopy methods. These should in the near future unlock current limitations and allow capturing, from molecules to tissues, the many biomechanical and biophysical interplays over the dynamic host and microbe partnership.
Collapse
Affiliation(s)
- Luis Vigetti
- Team Biomechanics of Host-Parasite Interactions, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, University of Grenoble Alpes, Grenoble, France
| | - Isabelle Tardieux
- Team Biomechanics of Host-Parasite Interactions, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
16
|
Raj M K, Priyadarshani J, Karan P, Bandyopadhyay S, Bhattacharya S, Chakraborty S. Bio-inspired microfluidics: A review. BIOMICROFLUIDICS 2023; 17:051503. [PMID: 37781135 PMCID: PMC10539033 DOI: 10.1063/5.0161809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Biomicrofluidics, a subdomain of microfluidics, has been inspired by several ideas from nature. However, while the basic inspiration for the same may be drawn from the living world, the translation of all relevant essential functionalities to an artificially engineered framework does not remain trivial. Here, we review the recent progress in bio-inspired microfluidic systems via harnessing the integration of experimental and simulation tools delving into the interface of engineering and biology. Development of "on-chip" technologies as well as their multifarious applications is subsequently discussed, accompanying the relevant advancements in materials and fabrication technology. Pointers toward new directions in research, including an amalgamated fusion of data-driven modeling (such as artificial intelligence and machine learning) and physics-based paradigm, to come up with a human physiological replica on a synthetic bio-chip with due accounting of personalized features, are suggested. These are likely to facilitate physiologically replicating disease modeling on an artificially engineered biochip as well as advance drug development and screening in an expedited route with the minimization of animal and human trials.
Collapse
Affiliation(s)
- Kiran Raj M
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Jyotsana Priyadarshani
- Department of Mechanical Engineering, Biomechanics Section (BMe), KU Leuven, Celestijnenlaan 300, 3001 Louvain, Belgium
| | - Pratyaksh Karan
- Géosciences Rennes Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Saumyadwip Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Soumya Bhattacharya
- Achira Labs Private Limited, 66b, 13th Cross Rd., Dollar Layout, 3–Phase, JP Nagar, Bangalore, Karnataka 560078, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
17
|
Feng Y, Li M. Micropipette-assisted atomic force microscopy for single-cell 3D manipulations and nanomechanical measurements. NANOSCALE 2023; 15:13346-13358. [PMID: 37526589 DOI: 10.1039/d3nr02404k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Mechanical cues play a crucial role in regulating physiological and pathological processes, and atomic force microscopy (AFM) has become an important and standard tool for measuring the mechanical properties of single cells. In particular, providing a capability to manipulate cells in a three-dimensional (3D) space benefits enhancing the applications of AFM measurements in cell biology. Here, we present the complementary integration of AFM and micropipette micromanipulation, which allows precise 3D manipulations and nanomechanical measurements of single living cells. A micropipette micromanipulation system under the guidance of optical microscopy was established to isolate single living cells, and polydimethylsiloxane (PDMS) micropillar substrates were used to physically immobilize the isolated living cells for downstream AFM detection. The viscoelastic properties (Young's modulus, relaxation time, viscosity) of cells were quantitatively measured by AFM-based indentation assay. The effectiveness of micropipette-assisted AFM in single-cell analysis was confirmed on both living animal suspended cells and living animal adherent cells, showing dramatic changes in cell mechanics in different states and revealing the dynamics of single cells grown on micropillar arrays. The study demonstrates the great potential of a micropipette to aid AFM in single-cell manipulations for better accessing the mechanical cues involved in cellular processes, which will allow additional studies of single-cell mechanics and will benefit the field of mechanobiology.
Collapse
Affiliation(s)
- Yaqi Feng
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Yang S, Rufo J, Zhong R, Rich J, Wang Z, Lee LP, Huang TJ. Acoustic tweezers for high-throughput single-cell analysis. Nat Protoc 2023; 18:2441-2458. [PMID: 37468650 PMCID: PMC11052649 DOI: 10.1038/s41596-023-00844-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/18/2023] [Indexed: 07/21/2023]
Abstract
Acoustic tweezers provide an effective means for manipulating single cells and particles in a high-throughput, precise, selective and contact-free manner. The adoption of acoustic tweezers in next-generation cellular assays may advance our understanding of biological systems. Here we present a comprehensive set of instructions that guide users through device fabrication, instrumentation setup and data acquisition to study single cells with an experimental throughput that surpasses traditional methods, such as atomic force microscopy and micropipette aspiration, by several orders of magnitude. With acoustic tweezers, users can conduct versatile experiments that require the trapping, patterning, pairing and separation of single cells in a myriad of applications ranging across the biological and biomedical sciences. This procedure is widely generalizable and adaptable for investigations in materials and physical sciences, such as the spinning motion of colloids or the development of acoustic-based quantum simulations. Overall, the device fabrication requires ~12 h, the experimental setup of the acoustic tweezers requires 1-2 h and the cell manipulation experiment requires ~30 min to complete. Our protocol is suitable for use by interdisciplinary researchers in biology, medicine, engineering and physics.
Collapse
Affiliation(s)
- Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Joseph Rufo
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Zeyu Wang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, South Korea.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
19
|
Hengsteler J, Kanes KA, Khasanova L, Momotenko D. Beginner's Guide to Micro- and Nanoscale Electrochemical Additive Manufacturing. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:71-91. [PMID: 37068744 DOI: 10.1146/annurev-anchem-091522-122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical additive manufacturing is an advanced microfabrication technology capable of producing features of almost unlimited geometrical complexity. A unique combination of the capacity to process conductive materials, design freedom, and micro- to nanoscale resolution offered by these electrochemical techniques promises tremendous opportunities for a multitude of future applications spanning microelectronics, sensing, robotics, and energy storage. This review aims to equip readers with the basic principles of electrochemical 3D printing at the small length scale. By describing the basic principles of electrochemical additive manufacturing technology and using the recent advances in the field, this beginner's guide illustrates how controlling the fundamental phenomena that underpin the print process can be used to vary dimensions, morphology, and microstructure of printed structures.
Collapse
Affiliation(s)
- Julian Hengsteler
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Karuna Aurel Kanes
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany;
| | - Liaisan Khasanova
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany;
| | - Dmitry Momotenko
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany;
| |
Collapse
|
20
|
Angeloni L, Popa B, Nouri-Goushki M, Minneboo M, Zadpoor AA, Ghatkesar MK, Fratila-Apachitei LE. Fluidic Force Microscopy and Atomic Force Microscopy Unveil New Insights into the Interactions of Preosteoblasts with 3D-Printed Submicron Patterns. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204662. [PMID: 36373704 DOI: 10.1002/smll.202204662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Physical patterns represent potential surface cues for promoting osteogenic differentiation of stem cells and improving osseointegration of orthopedic implants. Understanding the early cell-surface interactions and their effects on late cellular functions is essential for a rational design of such topographies, yet still elusive. In this work, fluidic force microscopy (FluidFM) and atomic force microscopy (AFM) combined with optical and electron microscopy are used to quantitatively investigate the interaction of preosteoblasts with 3D-printed patterns after 4 and 24 h of culture. The patterns consist of pillars with the same diameter (200 nm) and interspace (700 nm) but distinct heights (500 and 1000 nm) and osteogenic properties. FluidFM reveals a higher cell adhesion strength after 24 h of culture on the taller pillars (32 ± 7 kPa versus 21.5 ± 12.5 kPa). This is associated with attachment of cells partly on the sidewalls of these pillars, thus requiring larger normal forces for detachment. Furthermore, the higher resistance to shear forces observed for these cells indicates an enhanced anchorage and can be related to the persistence and stability of lamellipodia. The study explains the differential cell adhesion behavior induced by different pillar heights, enabling advancements in the rational design of osteogenic patterns.
Collapse
Affiliation(s)
- Livia Angeloni
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Bogdan Popa
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Mahdiyeh Nouri-Goushki
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Michelle Minneboo
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Murali K Ghatkesar
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| |
Collapse
|
21
|
Eskhan A, Johnson D. Microscale characterization of abiotic surfaces and prediction of their biofouling/anti-biofouling potential using the AFM colloidal probe technique. Adv Colloid Interface Sci 2022; 310:102796. [DOI: 10.1016/j.cis.2022.102796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
|
22
|
Mukherjee P, Park SH, Pathak N, Patino CA, Bao G, Espinosa HD. Integrating Micro and Nano Technologies for Cell Engineering and Analysis: Toward the Next Generation of Cell Therapy Workflows. ACS NANO 2022; 16:15653-15680. [PMID: 36154011 DOI: 10.1021/acsnano.2c05494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The emerging field of cell therapy offers the potential to treat and even cure a diverse array of diseases for which existing interventions are inadequate. Recent advances in micro and nanotechnology have added a multitude of single cell analysis methods to our research repertoire. At the same time, techniques have been developed for the precise engineering and manipulation of cells. Together, these methods have aided the understanding of disease pathophysiology, helped formulate corrective interventions at the cellular level, and expanded the spectrum of available cell therapeutic options. This review discusses how micro and nanotechnology have catalyzed the development of cell sorting, cellular engineering, and single cell analysis technologies, which have become essential workflow components in developing cell-based therapeutics. The review focuses on the technologies adopted in research studies and explores the opportunities and challenges in combining the various elements of cell engineering and single cell analysis into the next generation of integrated and automated platforms that can accelerate preclinical studies and translational research.
Collapse
Affiliation(s)
- Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - So Hyun Park
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Cesar A Patino
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Gang Bao
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Abstract
In a recent issue in Nature, Chen et al. present Live-seq, a single-cell transcriptomic profiling method using picoliter scale single-cell cytoplasmic biopsies instead of complete cell lysis. Since the cells quickly recover and basically remain unaffected after the cytoplasmic extraction, the authors transform single-cell RNA sequencing (scRNA-seq) from an end point to a temporal analysis platform.
Collapse
Affiliation(s)
- Robert Horvath
- Nanobiosensorics Laboratory, ELKH EK MFA, Budapest, Hungary
| |
Collapse
|
24
|
Gäbelein C, Reiter MA, Ernst C, Giger GH, Vorholt JA. Engineering Endosymbiotic Growth of E. coli in Mammalian Cells. ACS Synth Biol 2022; 11:3388-3396. [PMID: 36194551 PMCID: PMC9594318 DOI: 10.1021/acssynbio.2c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Endosymbioses are cellular mergers in which one cell lives within another cell and have led to major evolutionary transitions, most prominently to eukaryogenesis. Generation of synthetic endosymbioses aims to provide a defined starting point for studying fundamental processes in emerging endosymbiotic systems and enable the engineering of cells with novel properties. Here, we tested the potential of different bacteria for artificial endosymbiosis in mammalian cells. To this end, we adopted the fluidic force microscopy technology to inject diverse bacteria directly into the cytosol of HeLa cells and examined the endosymbiont-host interactions by real-time fluorescence microscopy. Among them, Escherichia coli grew exponentially within the cytoplasm, however, at a faster pace than its host cell. To slow down the intracellular growth of E. coli, we introduced auxotrophies in E. coli and demonstrated that the intracellular growth rate can be reduced by limiting the uptake of aromatic amino acids. In consequence, the survival of the endosymbiont-host pair was prolonged. The presented experimental framework enables studying endosymbiotic candidate systems at high temporal resolution and at the single cell level. Our work represents a starting point for engineering a stable, vertically inherited endosymbiosis.
Collapse
|
25
|
Nagy ÁG, Székács I, Bonyár A, Horvath R. Cell-substratum and cell-cell adhesion forces and single-cell mechanical properties in mono- and multilayer assemblies from robotic fluidic force microscopy. Eur J Cell Biol 2022; 101:151273. [PMID: 36088812 DOI: 10.1016/j.ejcb.2022.151273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
The epithelium covers, protects, and actively regulates various formations and cavities of the human body. During embryonic development the assembly of the epithelium is crucial to the organoid formation, and the invasion of the epithelium is an essential step in cancer metastasis. Live cell mechanical properties and associated forces presumably play an important role in these biological processes. However, the direct measurement of cellular forces in a precise and high-throughput manner is still challenging. We studied the cellular adhesion maturation of epithelial Vero monolayers by measuring single-cell force-spectra with high-throughput fluidic force microscopy (robotic FluidFM). Vero cells were grown on gelatin-covered plates in different seeding concentrations, and cell detachment forces were recorded from the single-cell state, through clustered island formation, to their complete assembly into a sparse and then into a tight monolayer. A methodology was proposed to separate cell-substratum and cell-cell adhesion force and energy (work of adhesion) contributions based on the recorded force-distance curves. For comparison, cancerous HeLa cells were also measured in the same settings. During Vero monolayer formation, a significantly strengthening adhesive tendency was found, showing the development of cell-cell contacts. Interestingly, this type of step-by-step maturation was absent in HeLa cells. The attachment of cancerous HeLa cells to the assembled epithelial monolayers was also measured, proposing a new high-throughput method to investigate the biomechanics of cancer cell invasion. We found that HeLa cells adhere significantly stronger to the tight Vero monolayer than cells of the same origin. Moreover, the mechanical characteristics of Vero monolayers upon cancerous HeLa cell influence were recorded and analyzed. All these results provide insight into the qualitative assessment of cell-substratum and cell-cell mechanical contacts in mono- and multilayered assemblies and demonstrate the robustness and speed of the robotic FluidFM technology to reveal biomechanical properties of live cell assemblies with statistical significances.
Collapse
Affiliation(s)
- Ágoston G Nagy
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary; Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Inna Székács
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Attila Bonyár
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary.
| |
Collapse
|
26
|
Hu Q, Lu J, Zhang X, Liu R, Yang SH. Mitochondria transplantation/transfer between single cells. J Cereb Blood Flow Metab 2022; 42:1748-1750. [PMID: 35726581 PMCID: PMC9441722 DOI: 10.1177/0271678x221109685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitochondrial transplantation/transfer has been increasingly recognized as a potential way for cell and tissue revitalization. In a recent study, Gabelein et al. reported a novel method for single cells mitochondria transplantation using "nanosyringe". This technique combines atomic force microscopy, optical microscopy, and nanofluidics that enable intra- and intercellular organelle micromanipulation and cell-to-cell mitochondria transplantation with up to 95% success rate. The transferred mitochondria fuse to the host mitochondrial network and donor mtDNA incorporate into the recipient mitochondrial genome. The nanosyringe technique provides a novel tool for future mitochondrial research to offer insight into mitochondrial replacement therapy for stroke and fundamental mitochondrial biology.
Collapse
Affiliation(s)
- Qin Hu
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Jianfei Lu
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Ran Liu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
27
|
Chen W, Guillaume-Gentil O, Rainer PY, Gäbelein CG, Saelens W, Gardeux V, Klaeger A, Dainese R, Zachara M, Zambelli T, Vorholt JA, Deplancke B. Live-seq enables temporal transcriptomic recording of single cells. Nature 2022; 608:733-740. [PMID: 35978187 PMCID: PMC9402441 DOI: 10.1038/s41586-022-05046-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/29/2022] [Indexed: 11/26/2022]
Abstract
Single-cell transcriptomics (scRNA-seq) has greatly advanced our ability to characterize cellular heterogeneity1. However, scRNA-seq requires lysing cells, which impedes further molecular or functional analyses on the same cells. Here, we established Live-seq, a single-cell transcriptome profiling approach that preserves cell viability during RNA extraction using fluidic force microscopy2,3, thus allowing to couple a cell's ground-state transcriptome to its downstream molecular or phenotypic behaviour. To benchmark Live-seq, we used cell growth, functional responses and whole-cell transcriptome read-outs to demonstrate that Live-seq can accurately stratify diverse cell types and states without inducing major cellular perturbations. As a proof of concept, we show that Live-seq can be used to directly map a cell's trajectory by sequentially profiling the transcriptomes of individual macrophages before and after lipopolysaccharide (LPS) stimulation, and of adipose stromal cells pre- and post-differentiation. In addition, we demonstrate that Live-seq can function as a transcriptomic recorder by preregistering the transcriptomes of individual macrophages that were subsequently monitored by time-lapse imaging after LPS exposure. This enabled the unsupervised, genome-wide ranking of genes on the basis of their ability to affect macrophage LPS response heterogeneity, revealing basal Nfkbia expression level and cell cycle state as important phenotypic determinants, which we experimentally validated. Thus, Live-seq can address a broad range of biological questions by transforming scRNA-seq from an end-point to a temporal analysis approach.
Collapse
Affiliation(s)
- Wanze Chen
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering and Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Pernille Yde Rainer
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering and Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christoph G Gäbelein
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Wouter Saelens
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering and Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering and Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Amanda Klaeger
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering and Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Riccardo Dainese
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering and Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Magda Zachara
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering and Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Julia A Vorholt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering and Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
28
|
Patino CA, Pathak N, Mukherjee P, Park SH, Bao G, Espinosa HD. Multiplexed high-throughput localized electroporation workflow with deep learning-based analysis for cell engineering. SCIENCE ADVANCES 2022; 8:eabn7637. [PMID: 35867793 PMCID: PMC9307252 DOI: 10.1126/sciadv.abn7637] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/07/2022] [Indexed: 05/06/2023]
Abstract
Manipulation of cells for applications such as biomanufacturing and cell-based therapeutics involves introducing biomolecular cargoes into cells. However, successful delivery is a function of multiple experimental factors requiring several rounds of optimization. Here, we present a high-throughput multiwell-format localized electroporation device (LEPD) assisted by deep learning image analysis that enables quick optimization of experimental factors for efficient delivery. We showcase the versatility of the LEPD platform by successfully delivering biomolecules into different types of adherent and suspension cells. We also demonstrate multicargo delivery with tight dosage distribution and precise ratiometric control. Furthermore, we used the platform to achieve functional gene knockdown in human induced pluripotent stem cells and used the deep learning framework to analyze protein expression along with changes in cell morphology. Overall, we present a workflow that enables combinatorial experiments and rapid analysis for the optimization of intracellular delivery protocols required for genetic manipulation.
Collapse
Affiliation(s)
- Cesar A. Patino
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208, USA
| | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208, USA
| | - So Hyun Park
- Department of Bioengineering, Rice University, 6500 Main St, Houston, TX 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, 6500 Main St, Houston, TX 77030, USA
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
29
|
Ouyang Q, Xie Z, Liu J, Gong M, Yu H. Application of Atomic Force Microscopy as Advanced Asphalt Testing Technology: A Comprehensive Review. Polymers (Basel) 2022; 14:polym14142851. [PMID: 35890627 PMCID: PMC9316586 DOI: 10.3390/polym14142851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
In the past three decades, researchers have engaged in the relationship between the composition, macro performance, and microstructure of asphalt. There are many research results in the use of atomic force microscopy (AFM) to study the microstructure and related mechanisms of asphalt. Based on previous studies, the performance of asphalt from its microstructure has been observed and analyzed, and different evaluation indices and modification methods have been proposed, providing guidance toward improving the performance of asphalt materials and benefiting potential applications. This review focuses on the typical application and analysis of AFM in the study of the aging regeneration and modification properties of asphalt. Additionally, this review introduces the history of the rheological and chemical testing of asphalt materials and the history of using AFM to investigate asphalt. Furthermore, this review introduces the basic principles of various modes of application of AFM in the microstructure of asphalt, providing a research direction for the further popularization and application of AFM in asphalt or other materials in the future. This review aims to provide a reference and direction for researchers to further popularize the application of AFM in asphalt and standardize the testing methods of AFM. This paper is also helpful in further exploring the relationship between the microstructure and macro performance of asphalt.
Collapse
Affiliation(s)
- Qijian Ouyang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; (Q.O.); (Z.X.); (J.L.)
| | - Zhiwei Xie
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; (Q.O.); (Z.X.); (J.L.)
| | - Jinhai Liu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; (Q.O.); (Z.X.); (J.L.)
| | - Minghui Gong
- State Key Laboratory of High Performance Civil Engineering Materials, Nanjing 210096, China;
| | - Huayang Yu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; (Q.O.); (Z.X.); (J.L.)
- State Key Laboratory of High Performance Civil Engineering Materials, Nanjing 210096, China;
- Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology, Guangzhou 510641, China
- Correspondence:
| |
Collapse
|
30
|
Qiu Y, Chien CC, Maroulis B, Bei J, Gaitas A, Gong B. Extending applications of AFM to fluidic AFM in single living cell studies. J Cell Physiol 2022; 237:3222-3238. [PMID: 35696489 PMCID: PMC9378449 DOI: 10.1002/jcp.30809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/30/2022]
Abstract
In this article, a review of a series of applications of atomic force microscopy (AFM) and fluidic Atomic Force Microscopy (fluidic AFM, hereafter fluidFM) in single-cell studies is presented. AFM applications involving single-cell and extracellular vesicle (EV) studies, colloidal force spectroscopy, and single-cell adhesion measurements are discussed. FluidFM is an offshoot of AFM that combines a microfluidic cantilever with AFM and has enabled the research community to conduct biological, pathological, and pharmacological studies on cells at the single-cell level in a liquid environment. In this review, capacities of fluidFM are discussed to illustrate (1) the speed with which sequential measurements of adhesion using coated colloid beads can be done, (2) the ability to assess lateral binding forces of endothelial or epithelial cells in a confluent cell monolayer in an appropriate physiological environment, and (3) the ease of measurement of vertical binding forces of intercellular adhesion between heterogeneous cells. Furthermore, key applications of fluidFM are reviewed regarding to EV absorption, manipulation of a single living cell by intracellular injection, sampling of cellular fluid from a single living cell, patch clamping, and mass measurements of a single living cell.
Collapse
Affiliation(s)
- Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chen-Chi Chien
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Basile Maroulis
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,BioMedical Engineering & Imaging Institute, Leon and Norma Hess Center for Science and Medicine, New York City, New York, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.,Sealy Center for Vector Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Institute for Human Infectious and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
31
|
Nagy ÁG, Kanyó N, Vörös A, Székács I, Bonyár A, Horvath R. Population distributions of single-cell adhesion parameters during the cell cycle from high-throughput robotic fluidic force microscopy. Sci Rep 2022; 12:7747. [PMID: 35546603 PMCID: PMC9095720 DOI: 10.1038/s41598-022-11770-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022] Open
Abstract
Single-cell adhesion plays an essential role in biological and biomedical sciences, but its precise measurement for a large number of cells is still a challenging task. At present, typical force measuring techniques usually offer low throughput, a few cells per day, and therefore are unable to uncover phenomena emerging at the population level. In this work, robotic fluidic force microscopy (FluidFM) was utilized to measure the adhesion parameters of cells in a high-throughput manner to study their population distributions in-depth. The investigated cell type was the genetically engineered HeLa Fucci construct with cell cycle-dependent expression of fluorescent proteins. This feature, combined with the high-throughput measurement made it possible for the first time to characterize the single-cell adhesion distributions at various stages of the cell cycle. It was found that parameters such as single-cell adhesion force and energy follow a lognormal population distribution. Therefore, conclusions based on adhesion data of a low number of cells or treating the population as normally distributed can be misleading. Moreover, we found that the cell area was significantly the smallest, and the area normalized maximal adhesion force was significantly the largest for the colorless cells (the mitotic (M) and early G1 phases). Notably, the parameter characterizing the elongation of the cells until the maximum level of force between the cell and its substratum was also dependent on the cell cycle, which quantity was the smallest for the colorless cells. A novel parameter, named the spring coefficient of the cell, was introduced as the fraction of maximal adhesion force and maximal cell elongation during the mechanical detachment, which was found to be significantly the largest for the colorless cells. Cells in the M phase adhere in atypical way, with so-called reticular adhesions, which are different from canonical focal adhesions. We first revealed that reticular adhesion can exert a higher force per unit area than canonical focal adhesions, and cells in this phase are significantly stiffer. The possible biological consequences of these findings were also discussed, together with the practical relevance of the observed population-level adhesion phenomena.
Collapse
Affiliation(s)
- Ágoston G Nagy
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary.,Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Nicolett Kanyó
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Alexandra Vörös
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Inna Székács
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Attila Bonyár
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary.
| |
Collapse
|
32
|
Mukherjee P, Patino CA, Pathak N, Lemaitre V, Espinosa HD. Deep Learning-Assisted Automated Single Cell Electroporation Platform for Effective Genetic Manipulation of Hard-to-Transfect Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107795. [PMID: 35315229 PMCID: PMC9119920 DOI: 10.1002/smll.202107795] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Indexed: 05/03/2023]
Abstract
Genome engineering of cells using CRISPR/Cas systems has opened new avenues for pharmacological screening and investigating the molecular mechanisms of disease. A critical step in many such studies is the intracellular delivery of the gene editing machinery and the subsequent manipulation of cells. However, these workflows often involve processes such as bulk electroporation for intracellular delivery and fluorescence activated cell sorting for cell isolation that can be harsh to sensitive cell types such as human-induced pluripotent stem cells (hiPSCs). This often leads to poor viability and low overall efficacy, requiring the use of large starting samples. In this work, a fully automated version of the nanofountain probe electroporation (NFP-E) system, a nanopipette-based single-cell electroporation method is presented that provides superior cell viability and efficiency compared to traditional methods. The automated system utilizes a deep convolutional network to identify cell locations and a cell-nanopipette contact algorithm to position the nanopipette over each cell for the application of electroporation pulses. The automated NFP-E is combined with microconfinement arrays for cell isolation to demonstrate a workflow that can be used for CRISPR/Cas9 gene editing and cell tracking with potential applications in screening studies and isogenic cell line generation.
Collapse
Affiliation(s)
- Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
- iNfinitesimal LLC, Skokie, IL, 60077, USA
| | - Cesar A Patino
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- iNfinitesimal LLC, Skokie, IL, 60077, USA
| | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | | | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
- iNfinitesimal LLC, Skokie, IL, 60077, USA
| |
Collapse
|
33
|
Guillaume-Gentil O, Gäbelein CG, Schmieder S, Martinez V, Zambelli T, Künzler M, Vorholt JA. Injection into and extraction from single fungal cells. Commun Biol 2022; 5:180. [PMID: 35233064 PMCID: PMC8888671 DOI: 10.1038/s42003-022-03127-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022] Open
Abstract
The direct delivery of molecules and the sampling of endogenous compounds into and from living cells provide powerful means to modulate and study cellular functions. Intracellular injection and extraction remain challenging for fungal cells that possess a cell wall. The most common methods for intracellular delivery into fungi rely on the initial degradation of the cell wall to generate protoplasts, a step that represents a major bottleneck in terms of time, efficiency, standardization, and cell viability. Here, we show that fluidic force microscopy enables the injection of solutions and cytoplasmic fluid extraction into and out of individual fungal cells, including unicellular model yeasts and multicellular filamentous fungi. The approach is strain- and cargo-independent and opens new opportunities for manipulating and analyzing fungi. We also perturb individual hyphal compartments within intact mycelial networks to study the cellular response at the single cell level. Guillaume-Gentil et al. describe a method that employs a modified AFM tip for selectively sampling from and injecting into individual fungal cells of differing morphology. The authors describe extensive modifications on their system previously used for mammalian cells to overcome many of the challenges associated with working on single fungal cells.
Collapse
Affiliation(s)
| | | | - Stefanie Schmieder
- Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Vincent Martinez
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Tomaso Zambelli
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Markus Künzler
- Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
34
|
Zanetti M, Chen SN, Conti M, Taylor MRG, Sbaizero O, Mestroni L, Lazzarino M. Microfabricated cantilevers for parallelized cell-cell adhesion measurements. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:147-156. [PMID: 34304293 DOI: 10.1007/s00249-021-01563-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Single-cell adhesion measured with atomic force microscopy (AFM) offers outstanding time and force resolution and allows the investigation of many important phenomena with unmatched precision. However, this technique suffers from serious practical limitations that hinder its effective application to a broader set of situations. Here we propose a different strategy based on the fabrication of large cantilevers and on the culture of the cells directly on them. Cantilevers are fabricated by standard micromachining, with an active area of 300 × 300 µm. A wedged structure is created so that the cantilever surface lies parallel to the substrate when mounted on an AFM system, so that the adhesion measurement probes the whole surface area at the same time. Thanks to the large area, cells can be seeded and grown on the cantilevers the day before the experiment, and let recover to optimal condition for the experiment. We used Human Embryonic Kidney cells, HEK 293A, to demonstrate the measurement of adhesion forces of up to 100 cells in parallel, and obtain a straightforward measurement of the average single cell adhesion energy. Our approach can improve significantly the cell-cell and cell-substrate adhesion statistics, reduce the experiment time and allow the investigation of the adhesion properties of cells that do not grow well in solution or on low adherent substrates, or that develop their characteristic features only after several hours or days of culture on a solid and adherent substrate.
Collapse
Affiliation(s)
- Michele Zanetti
- CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149, Trieste, Italy
- University of Trieste, 34127, Trieste, Italy
| | - Suet Nee Chen
- Molecular Genetics, Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045-2507, USA
| | - Martina Conti
- CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149, Trieste, Italy
- University of Trieste, 34127, Trieste, Italy
| | - Matthew R G Taylor
- Molecular Genetics, Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045-2507, USA
| | | | - Luisa Mestroni
- Molecular Genetics, Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045-2507, USA
| | - Marco Lazzarino
- CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149, Trieste, Italy.
- Molecular Genetics, Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045-2507, USA.
| |
Collapse
|
35
|
Gäbelein CG, Feng Q, Sarajlic E, Zambelli T, Guillaume-Gentil O, Kornmann B, Vorholt JA. Mitochondria transplantation between living cells. PLoS Biol 2022; 20:e3001576. [PMID: 35320264 PMCID: PMC8942278 DOI: 10.1371/journal.pbio.3001576] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria and the complex endomembrane system are hallmarks of eukaryotic cells. To date, it has been difficult to manipulate organelle structures within single live cells. We developed a FluidFM-based approach to extract, inject, and transplant organelles from and into living cells with subcellular spatial resolution. The technology combines atomic force microscopy, optical microscopy, and nanofluidics to achieve force and volume control with real-time inspection. We developed dedicated probes that allow minimally invasive entry into cells and optimized fluid flow to extract specific organelles. When extracting single or a defined number of mitochondria, their morphology transforms into a pearls-on-a-string phenotype due to locally applied fluidic forces. We show that the induced transition is calcium independent and results in isolated, intact mitochondria. Upon cell-to-cell transplantation, the transferred mitochondria fuse to the host cells mitochondrial network. Transplantation of healthy and drug-impaired mitochondria into primary keratinocytes allowed monitoring of mitochondrial subpopulation rescue. Fusion with the mitochondrial network of recipient cells occurred 20 minutes after transplantation and continued for over 16 hours. After transfer of mitochondria and cell propagation over generations, donor mitochondrial DNA (mtDNA) was replicated in recipient cells without the need for selection pressure. The approach opens new prospects for the study of organelle physiology and homeostasis, but also for therapy, mechanobiology, and synthetic biology. Mitochondria and the complex endomembrane system are hallmarks of eukaryotic cells, but it has proved difficult to manipulate organelle structures within single live cells. This study describes a novel microfluidic device that allows the extraction of organelles, including mitochondria, from viable cells and their reintroduction into recipient host cells.
Collapse
Affiliation(s)
| | - Qian Feng
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | - Tomaso Zambelli
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Benoît Kornmann
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
36
|
Sancho A, Taskin MB, Wistlich L, Stahlhut P, Wittmann K, Rossi A, Groll J. Cell Adhesion Assessment Reveals a Higher Force per Contact Area on Fibrous Structures Compared to Flat Substrates. ACS Biomater Sci Eng 2022; 8:649-658. [DOI: 10.1021/acsbiomaterials.1c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Sancho
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
- Department of Automatic Control and Systems Engineering, University of the Basque Country UPV/EHU, Plaza de Europa 1, 20018 Donostia, Spain
| | - Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Laura Wistlich
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Katharina Wittmann
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Angela Rossi
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), 97070 Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
37
|
Lipke PN, Rauceo JM, Viljoen A. Cell-Cell Mating Interactions: Overview and Potential of Single-Cell Force Spectroscopy. Int J Mol Sci 2022; 23:ijms23031110. [PMID: 35163034 PMCID: PMC8835621 DOI: 10.3390/ijms23031110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
It is an understatement that mating and DNA transfer are key events for living organisms. Among the traits needed to facilitate mating, cell adhesion between gametes is a universal requirement. Thus, there should be specific properties for the adhesion proteins involved in mating. Biochemical and biophysical studies have revealed structural information about mating adhesins, as well as their specificities and affinities, leading to some ideas about these specialized adhesion proteins. Recently, single-cell force spectroscopy (SCFS) has added important findings. In SCFS, mating cells are brought into contact in an atomic force microscope (AFM), and the adhesive forces are monitored through the course of mating. The results have shown some remarkable characteristics of mating adhesins and add knowledge about the design and evolution of mating adhesins.
Collapse
Affiliation(s)
- Peter N. Lipke
- Biology Department, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Correspondence: (P.N.L.); (A.V.)
| | - Jason M. Rauceo
- Department of Sciences, John Jay College of the City University of New York, New York, NY 10019, USA;
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4–5, bte L7.07.07, 1348 Louvain-la-Neuve, Belgium
- Correspondence: (P.N.L.); (A.V.)
| |
Collapse
|
38
|
Zhang KS, Nadkarni AV, Paul R, Martin AM, Tang SKY. Microfluidic Surgery in Single Cells and Multicellular Systems. Chem Rev 2022; 122:7097-7141. [PMID: 35049287 DOI: 10.1021/acs.chemrev.1c00616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microscale surgery on single cells and small organisms has enabled major advances in fundamental biology and in engineering biological systems. Examples of applications range from wound healing and regeneration studies to the generation of hybridoma to produce monoclonal antibodies. Even today, these surgical operations are often performed manually, but they are labor intensive and lack reproducibility. Microfluidics has emerged as a powerful technology to control and manipulate cells and multicellular systems at the micro- and nanoscale with high precision. Here, we review the physical and chemical mechanisms of microscale surgery and the corresponding design principles, applications, and implementations in microfluidic systems. We consider four types of surgical operations: (1) sectioning, which splits a biological entity into multiple parts, (2) ablation, which destroys part of an entity, (3) biopsy, which extracts materials from within a living cell, and (4) fusion, which joins multiple entities into one. For each type of surgery, we summarize the motivating applications and the microfluidic devices developed. Throughout this review, we highlight existing challenges and opportunities. We hope that this review will inspire scientists and engineers to continue to explore and improve microfluidic surgical methods.
Collapse
Affiliation(s)
- Kevin S Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ambika V Nadkarni
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, United States
| | - Rajorshi Paul
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Adrian M Martin
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
39
|
Luo M, Yang W, Cartwright TN, Higgins JMG, Chen J. Simultaneous Measurement of Single-Cell Mechanics and Cell-to-Materials Adhesion Using Fluidic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:620-628. [PMID: 34981921 DOI: 10.1021/acs.langmuir.1c01973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The connection between cells and their substrate is essential for biological processes such as cell migration. Atomic force microscopy nanoindentation has often been adopted to measure single-cell mechanics. Very recently, fluidic force microscopy has been developed to enable rapid measurements of cell adhesion. However, simultaneous characterization of the cell-to-material adhesion and viscoelastic properties of the same cell is challenging. In this study, we present a new approach to simultaneously determine these properties for single cells, using fluidic force microscopy. For MCF-7 cells grown on tissue-culture-treated polystyrene surfaces, we found that the adhesive force and adhesion energy were correlated for each cell. Well-spread cells tended to have stronger adhesion, which may be due to the greater area of the contact between cellular adhesion receptors and the surface. By contrast, the viscoelastic properties of MCF-7 cells cultured on the same surface appeared to have little dependence on cell shape. This methodology provides an integrated approach to better understand the biophysics of multiple cell types.
Collapse
Affiliation(s)
- Ma Luo
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
| | - Wenjian Yang
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Research Center for Intelligent Sensing Systems, Zhijiang Laboratory, Hangzhou 311100, China
| | - Tyrell N Cartwright
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
| |
Collapse
|
40
|
Atakhani A, Bogdziewiez L, Verger S. Characterising the mechanics of cell-cell adhesion in plants. QUANTITATIVE PLANT BIOLOGY 2022; 3:e2. [PMID: 37077973 PMCID: PMC10095952 DOI: 10.1017/qpb.2021.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 05/03/2023]
Abstract
Cell-cell adhesion is a fundamental feature of multicellular organisms. To ensure multicellular integrity, adhesion needs to be tightly controlled and maintained. In plants, cell-cell adhesion remains poorly understood. Here, we argue that to be able to understand how cell-cell adhesion works in plants, we need to understand and quantitatively measure the mechanics behind it. We first introduce cell-cell adhesion in the context of multicellularity, briefly explain the notions of adhesion strength, work and energy and present the current knowledge concerning the mechanisms of cell-cell adhesion in plants. Because still relatively little is known in plants, we then turn to animals, but also algae, bacteria, yeast and fungi, and examine how adhesion works and how it can be quantitatively measured in these systems. From this, we explore how the mechanics of cell adhesion could be quantitatively characterised in plants, opening future perspectives for understanding plant multicellularity.
Collapse
Affiliation(s)
- Asal Atakhani
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Léa Bogdziewiez
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Stéphane Verger
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- Author for correspondence: S. Verger, E-mail:
| |
Collapse
|
41
|
Beshay PE, Cortes-Medina MG, Menyhert MM, Song JW. The biophysics of cancer: emerging insights from micro- and nanoscale tools. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100056. [PMID: 35156093 PMCID: PMC8827905 DOI: 10.1002/anbr.202100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a complex and dynamic disease that is aberrant both biologically and physically. There is growing appreciation that physical abnormalities with both cancer cells and their microenvironment that span multiple length scales are important drivers for cancer growth and metastasis. The scope of this review is to highlight the key advancements in micro- and nano-scale tools for delineating the cause and consequences of the aberrant physical properties of tumors. We focus our review on three important physical aspects of cancer: 1) solid mechanical properties, 2) fluid mechanical properties, and 3) mechanical alterations to cancer cells. Beyond posing physical barriers to the delivery of cancer therapeutics, these properties are also known to influence numerous biological processes, including cancer cell invasion and migration leading to metastasis, and response and resistance to therapy. We comment on how micro- and nanoscale tools have transformed our fundamental understanding of the physical dynamics of cancer progression and their potential for bridging towards future applications at the interface of oncology and physical sciences.
Collapse
Affiliation(s)
- Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| | | | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
42
|
Pan J, Kmieciak T, Liu YT, Wildenradt M, Chen YS, Zhao Y. Quantifying molecular- to cellular-level forces in living cells. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2021; 54:483001. [PMID: 34866655 PMCID: PMC8635116 DOI: 10.1088/1361-6463/ac2170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mechanical cues have been suggested to play an important role in cell functions and cell fate determination, however, such physical quantities are challenging to directly measure in living cells with single molecule sensitivity and resolution. In this review, we focus on two main technologies that are promising in probing forces at the single molecule level. We review their theoretical fundamentals, recent technical advancements, and future directions, tailored specifically for interrogating mechanosensitive molecules in live cells.
Collapse
Affiliation(s)
- Jason Pan
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Tommy Kmieciak
- Department of Engineering Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yen-Ting Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Matthew Wildenradt
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yun-Sheng Chen
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yang Zhao
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 N. Wright Street, Urbana, IL 61801, United States of America
| |
Collapse
|
43
|
Hur J, Chung AJ. Microfluidic and Nanofluidic Intracellular Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004595. [PMID: 34096197 PMCID: PMC8336510 DOI: 10.1002/advs.202004595] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/14/2021] [Indexed: 05/05/2023]
Abstract
Innate cell function can be artificially engineered and reprogrammed by introducing biomolecules, such as DNAs, RNAs, plasmid DNAs, proteins, or nanomaterials, into the cytosol or nucleus. This process of delivering exogenous cargos into living cells is referred to as intracellular delivery. For instance, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing begins with internalizing Cas9 protein and guide RNA into cells, and chimeric antigen receptor-T (CAR-T) cells are prepared by delivering CAR genes into T lymphocytes for cancer immunotherapies. To deliver external biomolecules into cells, tools, including viral vectors, and electroporation have been traditionally used; however, they are suboptimal for achieving high levels of intracellular delivery while preserving cell viability, phenotype, and function. Notably, as emerging solutions, microfluidic and nanofluidic approaches have shown remarkable potential for addressing this open challenge. This review provides an overview of recent advances in microfluidic and nanofluidic intracellular delivery strategies and discusses new opportunities and challenges for clinical applications. Furthermore, key considerations for future efforts to develop microfluidics- and nanofluidics-enabled next-generation intracellular delivery platforms are outlined.
Collapse
Affiliation(s)
- Jeongsoo Hur
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Aram J. Chung
- School of Biomedical EngineeringInterdisciplinary Program in Precision Public HealthKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
44
|
Role of Extracellular Vimentin in Cancer-Cell Functionality and Its Influence on Cell Monolayer Permeability Changes Induced by SARS-CoV-2 Receptor Binding Domain. Int J Mol Sci 2021; 22:ijms22147469. [PMID: 34299089 PMCID: PMC8303762 DOI: 10.3390/ijms22147469] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 12/23/2022] Open
Abstract
The cytoskeletal protein vimentin is secreted under various physiological conditions. Extracellular vimentin exists primarily in two forms: attached to the outer cell surface and secreted into the extracellular space. While surface vimentin is involved in processes such as viral infections and cancer progression, secreted vimentin modulates inflammation through reduction of neutrophil infiltration, promotes bacterial elimination in activated macrophages, and supports axonal growth in astrocytes through activation of the IGF-1 receptor. This receptor is overexpressed in cancer cells, and its activation pathway has significant roles in general cellular functions. In this study, we investigated the functional role of extracellular vimentin in non-tumorigenic (MCF-10a) and cancer (MCF-7) cells through the evaluation of its effects on cell migration, proliferation, adhesion, and monolayer permeability. Upon treatment with extracellular recombinant vimentin, MCF-7 cells showed increased migration, proliferation, and adhesion, compared to MCF-10a cells. Further, MCF-7 monolayers showed reduced permeability, compared to MCF-10a monolayers. It has been shown that the receptor binding domain of SARS-CoV-2 spike protein can alter blood-brain barrier integrity. Surface vimentin also acts as a co-receptor between the SARS-CoV-2 spike protein and the cell-surface angiotensin-converting enzyme 2 receptor. Therefore, we also investigated the permeability of MCF-10a and MCF-7 monolayers upon treatment with extracellular recombinant vimentin, and its modulation of the SARS-CoV-2 receptor binding domain. These findings show that binding of extracellular recombinant vimentin to the cell surface enhances the permeability of both MCF-10a and MCF-7 monolayers. However, with SARS-CoV-2 receptor binding domain addition, this effect is lost with MCF-7 monolayers, as the extracellular vimentin binds directly to the viral domain. This defines an influence of extracellular vimentin in SARS-CoV-2 infections.
Collapse
|
45
|
Männik J, Teshima TF, Wolfrum B, Yang D. Lab-on-a-chip based mechanical actuators and sensors for single-cell and organoid culture studies. JOURNAL OF APPLIED PHYSICS 2021; 129:210905. [PMID: 34103765 PMCID: PMC8175090 DOI: 10.1063/5.0051875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/10/2021] [Indexed: 05/04/2023]
Abstract
All living cells constantly experience and respond to mechanical stresses. The molecular networks that activate in cells in response to mechanical stimuli are yet not well-understood. Our limited knowledge stems partially from the lack of available tools that are capable of exerting controlled mechanical stress to individual cells and at the same time observing their responses at subcellular to molecular resolution. Several tools such as rheology setups, micropipetes, and magnetic tweezers have been used in the past. While allowing to quantify short-time viscoelastic responses, these setups are not suitable for long-term observations of cells and most of them have low throughput. In this Perspective, we discuss lab-on-a-chip platforms that have the potential to overcome these limitations. Our focus is on devices that apply shear, compressive, tensile, and confinement derived stresses to single cells and organoid cultures. We compare different design strategies for these devices and highlight their advantages, drawbacks, and future potential. While the majority of these devices are used for fundamental research, some of them have potential applications in medical diagnostics and these applications are also discussed.
Collapse
Affiliation(s)
- Jaan Männik
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA
- Author to whom correspondence should be addressed:
| | | | | | - Da Yang
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
46
|
Brimmo AT, Menachery A, Sukumar P, Qasaimeh MA. Noncontact Multiphysics Probe for Spatiotemporal Resolved Single-Cell Manipulation and Analyses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100801. [PMID: 34008302 DOI: 10.1002/smll.202100801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Heterogeneity and spatial arrangement of individual cells within tissues are critical to the identity of the host multicellular organism. While current single-cell techniques are capable of resolving heterogeneity, they mostly rely on extracting target cells from their physiological environment and hence lose the spatiotemporal resolution required for understanding cellular networks. Here, a multifunctional noncontact scanning probe that can precisely perform multiple manipulation procedures on living single-cells, while within their physiological tissue environment, is demonstrated. The noncontact multiphysics probe (NMP) consists of fluidic apertures and "hump" shaped electrodes that simultaneously confine reagents and electric signals with a single-cell resolution. The NMP's unique electropermealization-based approach in transferring macromolecules through the cell membrane is presented. The technology's adjustable spatial ability is demonstrated by transfecting adjacent single-cells with different DNA plasmid vectors. The NMP technology also opens the door for controllable cytoplasm extraction from living single-cells. This powerful application is demonstrated by executing multiple time point biopsies on adherent cells without affecting the integrity of the extracted macromolecules or the viability of cells. Furthermore, the NMP's function as an electro-thermal based microfluidic whole-cell tweezer is reported. This work offers a multifunctional tool with unprecedented probing features for spatiotemporal single-cell analysis within tissue samples.
Collapse
Affiliation(s)
- Ayoola T Brimmo
- Division of Engineering, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, UAE
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Anoop Menachery
- Division of Engineering, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, UAE
| | - Pavithra Sukumar
- Division of Engineering, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, UAE
| | - Mohammad A Qasaimeh
- Division of Engineering, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, UAE
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| |
Collapse
|
47
|
Kaladharan K, Kumar A, Gupta P, Illath K, Santra TS, Tseng FG. Microfluidic Based Physical Approaches towards Single-Cell Intracellular Delivery and Analysis. MICROMACHINES 2021; 12:631. [PMID: 34071732 PMCID: PMC8228766 DOI: 10.3390/mi12060631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
The ability to deliver foreign molecules into a single living cell with high transfection efficiency and high cell viability is of great interest in cell biology for applications in therapeutic development, diagnostics, and drug delivery towards personalized medicine. Various physical delivery methods have long demonstrated the ability to deliver cargo molecules directly to the cytoplasm or nucleus and the mechanisms underlying most of the approaches have been extensively investigated. However, most of these techniques are bulk approaches that are cell-specific and have low throughput delivery. In comparison to bulk measurements, single-cell measurement technologies can provide a better understanding of the interactions among molecules, organelles, cells, and the microenvironment, which can aid in the development of therapeutics and diagnostic tools. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great interest. In recent years, single-cell technologies have become increasingly robust and accessible, although limitations exist. This review article aims to cover various microfluidic-based physical methods for single-cell intracellular delivery such as electroporation, mechanoporation, microinjection, sonoporation, optoporation, magnetoporation, and thermoporation and their analysis. The mechanisms of various physical methods, their applications, limitations, and prospects are also elaborated.
Collapse
Affiliation(s)
- Kiran Kaladharan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan; (K.K.); (A.K.)
| | - Ashish Kumar
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan; (K.K.); (A.K.)
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India; (P.G.); (K.I.)
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India; (P.G.); (K.I.)
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India; (P.G.); (K.I.)
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan; (K.K.); (A.K.)
| |
Collapse
|
48
|
Mishra YG, Manavathi B. Focal adhesion dynamics in cellular function and disease. Cell Signal 2021; 85:110046. [PMID: 34004332 DOI: 10.1016/j.cellsig.2021.110046] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Acting as a bridge between the cytoskeleton of the cell and the extra cellular matrix (ECM), the cell-ECM adhesions with integrins at their core, play a major role in cell signalling to direct mechanotransduction, cell migration, cell cycle progression, proliferation, differentiation, growth and repair. Biochemically, these adhesions are composed of diverse, yet an organised group of structural proteins, receptors, adaptors, various enzymes including protein kinases, phosphatases, GTPases, proteases, etc. as well as scaffolding molecules. The major integrin adhesion complexes (IACs) characterised are focal adhesions (FAs), invadosomes (podosomes and invadopodia), hemidesmosomes (HDs) and reticular adhesions (RAs). The varied composition and regulation of the IACs and their signalling, apart from being an integral part of normal cell survival, has been shown to be of paramount importance in various developmental and pathological processes. This review per-illustrates the recent advancements in the research of IACs, their crucial roles in normal as well as diseased states. We have also touched on few of the various methods that have been developed over the years to visualise IACs, measure the forces they exert and study their signalling and molecular composition. Having such pertinent roles in the context of various pathologies, these IACs need to be understood and studied to develop therapeutical targets. We have given an update to the studies done in recent years and described various techniques which have been applied to study these structures, thereby, providing context in furthering research with respect to IAC targeted therapeutics.
Collapse
Affiliation(s)
- Yasaswi Gayatri Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
49
|
Bian K, Gerber C, Heinrich AJ, Müller DJ, Scheuring S, Jiang Y. Scanning probe microscopy. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00033-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Abstract
Mycobacteria have unique cell envelopes, surface properties, and growth dynamics, which all play a part in the ability of these important pathogens to infect, evade host immunity, disseminate, and resist antibiotic challenges. Recent atomic force microscopy (AFM) studies have brought new insights into the nanometer-scale ultrastructural, adhesive, and mechanical properties of mycobacteria. The molecular forces with which mycobacterial adhesins bind to host factors, like heparin and fibronectin, and the hydrophobic properties of the mycomembrane have been unraveled by AFM force spectroscopy studies. Real-time correlative AFM and fluorescence imaging have delineated a complex interplay between surface ultrastructure, tensile stresses within the cell envelope, and cellular processes leading to division. The unique capabilities of AFM, which include subdiffraction-limit topographic imaging and piconewton force sensitivity, have great potential to resolve important questions that remain unanswered on the molecular interactions, surface properties, and growth dynamics of this important class of pathogens.
Collapse
|