1
|
Khandokar Y, Cheng TY, Wang CJH, Cao TP, Nagampalli RSK, Sivaraman KK, Van Rhijn I, Rossjohn J, Moody DB, Le Nours J. Molecular basis for presentation of N-myristoylated peptides by the chicken YF1*7.1 molecule. J Biol Chem 2025:110253. [PMID: 40412526 DOI: 10.1016/j.jbc.2025.110253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/27/2025] Open
Abstract
Major Histocompatibility Complex I (MHC-I) and MHC-I-like molecules play a central role in mediating immunity. Through their conservation across all taxa of jawed vertebrates, the MHC-I-like proteins have adapted to present non-peptidic antigens to distinct T cell populations. While our understanding of the structure-function relationship of MHC-I and MHC-I-like molecules in humans and mice is well established, the nature of the antigens presented by MHC-I- like molecules in 'non-model' species remains unclear. Here, using a mammalian recombinant expression system combined with mass spectrometry approaches, we identified N-myristoylated peptides as endogenous ligands for the chicken MHC-I-like protein YF1*7.1. Given the importance of N-myristoylation in viral pathogenesis, we determined the crystal structure of YF1*7.1 in complex with two N-myristoylated peptides derived from Marek's disease virus (MDV), demonstrating the molecular basis that underpins the presentation of N-myristoylated peptides from MDV, a highly contagious and fatal viral neoplastic disease in chickens. Thus, the identified ligands are distinct from unmodified peptides found in classical MHC-I and -II as well as diverse amphipathic lipids captured by CD1 proteins. Collectively, our study lays the foundation for further molecular and functional characterization of YF1*7.1 and more broadly of the role of the MHC-I encoded by the MHC-Y gene cluster in protection against highly contagious viral neoplastic diseases in chickens.
Collapse
Affiliation(s)
- Yogesh Khandokar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Tan Yun Cheng
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carl J H Wang
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Thinh-Phat Cao
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Raghavendra S K Nagampalli
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Komagal Kannan Sivaraman
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
2
|
Suzuki H, Kunimatsu Y, Yoshioka Y, Asa M, Yamasaki S, Sugita M, Morita D. TAP-independent induction of N-myristoylated lipopeptide-specific CTLs in transgenic mice expressing the rhesus MHC class I allomorph, Mamu-B*098. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf082. [PMID: 40334079 DOI: 10.1093/jimmun/vkaf082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/27/2025] [Indexed: 05/09/2025]
Abstract
A novel subset of classical major histocompatibility complex class I molecules has recently been identified in rhesus monkeys that mediates the presentation of N-myristoylated lipopeptides, rather than conventional peptides, to CD8+ cytotoxic T lymphocytes (CTLs). For example, the rhesus Mamu-B*098 allomorph binds an N-terminal 5-mer fragment (C14 fatty acid-Gly-Gly-Ala-Ile-Ser; C14nef5) derived from the N-myristoylated SIV Nef protein and activates C14nef5-specific CTLs. Additionally, a transporter for antigen presentation (TAP)-independent cell-surface expression was observed for Mamu-B*098 in the in vitro transfection experiments, leading us to hypothesize that TAP-independent pathways may exist for CTL activation. To address this directly, we generated transgenic mice expressing Mamu-B*098 and analyzed its function under TAP-deficient conditions. We first confirmed that its expression level was unchanged on the surface of TAP-deficient cells compared with that of TAP-sufficient cells. Second, the CD8+ T cell population, but not the CD4+ T cell population, increased in TAP knockout (KO) mice as a result of the acquisition of Mamu-B*098 expression. Third, C14nef5-specific, Mamu-B*098-restricted CD8+ T cells were readily inducible in Mamu-B*098 transgenic/TAP KO but not in nontransgenic/TAP KO mice. Finally, the CD8+ T cells expressed cytolytic granule contents and functioned as CTLs. These findings provide evidence that in addition to conventional peptide-specific CTL responses that require TAP, an alternative TAP-independent pathway for CTL activation exists in primates. This novel pathway may be valuable when TAP is targeted by pathogenic viruses for immune evasion. We propose that the established concept of major histocompatibility complex class I biology may require modifications to incorporate TAP-independent pathways of lipopeptide-specific CTL responses.
Collapse
Affiliation(s)
- Hiromu Suzuki
- Laboratory of Cell Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuka Kunimatsu
- Laboratory of Cell Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuya Yoshioka
- Laboratory of Cell Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Minori Asa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Daisuke Morita
- Laboratory of Cell Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Øye H, Lundekvam M, Caiella A, Hellesvik M, Arnesen T. Protein N-terminal modifications: molecular machineries and biological implications. Trends Biochem Sci 2025; 50:290-310. [PMID: 39837675 DOI: 10.1016/j.tibs.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
The majority of eukaryotic proteins undergo N-terminal (Nt) modifications facilitated by various enzymes. These enzymes, which target the initial amino acid of a polypeptide in a sequence-dependent manner, encompass peptidases, transferases, cysteine oxygenases, and ligases. Nt modifications - such as acetylation, fatty acylations, methylation, arginylation, and oxidation - enhance proteome complexity and regulate protein targeting, stability, and complex formation. Modifications at protein N termini are thereby core components of a large number of biological processes, including cell signaling and motility, autophagy regulation, and plant and animal oxygen sensing. Dysregulation of Nt-modifying enzymes is implicated in several human diseases. In this feature review we provide an overview of the various protein Nt modifications occurring either co- or post-translationally, the enzymes involved, and the biological impact.
Collapse
Affiliation(s)
- Hanne Øye
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Malin Lundekvam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessia Caiella
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
4
|
Santini S, Lartigue A, Alempic JM, Couté Y, Belmudes L, Brazelton WJ, Lang SQ, Claverie JM, Legendre M, Abergel C. Pacmanvirus isolated from the Lost City hydrothermal field extends the concept of transpoviron beyond the family Mimiviridae. THE ISME JOURNAL 2025; 19:wraf002. [PMID: 39789911 PMCID: PMC11788076 DOI: 10.1093/ismejo/wraf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/29/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
The microbial sampling of submarine hydrothermal vents remains challenging, with even fewer studies focused on viruses. Here we report what is to our knowledge the first isolation of a eukaryotic virus from the Lost City hydrothermal field, by co-culture with the laboratory host Acanthamoeba castellanii. This virus, named pacmanvirus lostcity, is closely related to previously isolated pacmanviruses (strains A23 and S19), clustering in a divergent clade within the long-established family Asfarviridae. The icosahedral particles of this virus are 200 nm in diameter, with an electron-dense core surrounded by an inner membrane. The viral genome of 395 708 bp (33% G + C) has been predicted to encode 473 proteins. However, besides these standard properties, pacmanvirus lostcity was found to be associated with a new type of selfish genetic element, 7 kb in length, whose architecture and gene content are reminiscent of those of transpovirons, hitherto specific to the family Mimiviridae. As in previously described transpovirons, this selfishg genetic element propagates as an episome within its host virus particles and exhibits partial recombination with its genome. In addition, an unrelated episome with a length of 2 kb was also found to be associated with pacmanvirus lostcity. Together, the transpoviron and the 2-kb episome might participate in exchanges between pacmanviruses and other DNA virus families. It remains to be elucidated if the presence of these mobile genetic elements is restricted to pacmanviruses or was simply overlooked in other members of the Asfarviridae.
Collapse
Affiliation(s)
- Sébastien Santini
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| | - Audrey Lartigue
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| | - Jean-Marie Alempic
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Lucid Belmudes
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - William J Brazelton
- School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Susan Q Lang
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA United States
| | - Jean-Michel Claverie
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| | - Matthieu Legendre
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| | - Chantal Abergel
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| |
Collapse
|
5
|
Ding W, Gu J, Xu W, Wu J, Huang Y, Zhang S, Lin S. The Biosynthesis and Applications of Protein Lipidation. Chem Rev 2024; 124:12176-12212. [PMID: 39441663 DOI: 10.1021/acs.chemrev.4c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Protein lipidation dramatically affects protein structure, localization, and trafficking via remodeling protein-membrane and protein-protein interactions through hydrophobic lipid moieties. Understanding the biosynthesis of lipidated proteins, whether natural ones or mimetics, is crucial for reconstructing, validating, and studying the molecular mechanisms and biological functions of protein lipidation. In this Perspective, we first provide an overview of the natural enzymatic biosynthetic pathways of protein lipidation in mammalian cells, focusing on the enzymatic machineries and their chemical linkages. We then discuss strategies to biosynthesize protein lipidation in mammalian cells by engineering modification machineries and substrates. Additionally, we explore site-specific protein lipidation biosynthesis in vitro via enzyme-mediated ligations and in vivo primarily through genetic code expansion strategies. We also discuss the use of small molecule tools to modulate the process of protein lipidation biosynthesis. Finally, we provide concluding remarks and discuss future directions for the biosynthesis and applications of protein lipidation.
Collapse
Affiliation(s)
- Wenlong Ding
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Jiayu Gu
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenyuan Xu
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
| | - Jing Wu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiwen Huang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuai Zhang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Shixian Lin
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
6
|
Rivière F, Dian C, Dutheil RF, Monassa P, Giglione C, Meinnel T. Novel, tightly structurally related N-myristoyltransferase inhibitors display equally potent yet distinct inhibitory mechanisms. Structure 2024; 32:1737-1750.e3. [PMID: 39208793 DOI: 10.1016/j.str.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
N-myristoyltransferases (NMTs) catalyze essential acylations of N-terminal alpha or epsilon amino groups of glycines or lysines. Here, we reveal that peptides tightly fitting the optimal glycine recognition pattern of human NMTs are potent prodrugs relying on a single-turnover mechanism. Sequence scanning of the inhibitory potency of the series closely reflects NMT glycine substrate specificity rules, with the lead inhibitor blocking myristoylation by NMTs of various species. We further redesigned the series based on the recently recognized lysine-myristoylation mechanism by taking advantage of (1) the optimal peptide chassis and (2) lysine side chain mimicry with unnatural enantiomers. Unlike the lead series, the inhibitory properties of the new compounds rely on the protonated state of the side chain amine, which stabilizes a salt bridge with the catalytic base at the active site. Our study provides the basis for designing first-in-class NMT inhibitors tailored for infectious diseases and alternative active site targeting.
Collapse
Affiliation(s)
- Frédéric Rivière
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Cyril Dian
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Rémi F Dutheil
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Paul Monassa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Altun B, Zengin K, Yayli Dabag S, Yesilyurt A, Nalcacioglu R, Demirbag Z. Characterization of an envelope protein 118L in invertebrate iridescent virus 6 (IIV6). Virus Genes 2024; 60:549-558. [PMID: 38922563 DOI: 10.1007/s11262-024-02082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Invertebrate iridescent virus 6 (IIV6) is a nucleocytoplasmic insect virus and a member of the family Iridoviridae. The IIV6 genome consists of 212,482 bp of linear dsDNA with 215 non-overlapping and putative protein-encoding ORFs. The IIV6 118L ORF is conserved in all sequenced members of the Iridoviridae and encodes a 515 amino acid protein with three predicted transmembrane domains and several N-glycosylation/N-myristoylation sites. In this study, we characterized the 118L ORF by both deleting it from the viral genome and silencing its expression with dsRNA in infected insect cells. The homologous recombination method was used to replace 118L ORF with the green fluorescent protein (gfp) gene. Virus mutants in which the 118L gene sequence had been replaced with gfp were identified by fluorescence microscopy but could not be propagated separately from the wild-type virus in insect cells. Unsuccessful attempts to isolate the mutant virus with the 118L gene deletion suggested that the protein is essential for virus replication. To support this result, we used dsRNA to target the 118L gene and showed that treatment resulted in a 99% reduction in virus titer. Subsequently, we demonstrated that 118L-specific antibodies produced against the 118L protein expressed in the baculovirus vector system were able to neutralize the virus infection. All these results indicate that 118L is a viral envelope protein that is required for the initiation of virus replication.
Collapse
Affiliation(s)
- Betul Altun
- Department of Molecular Biology and Genetic, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Kubra Zengin
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Sevde Yayli Dabag
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Aydin Yesilyurt
- Tonya Vocational School, Trabzon University, Trabzon, Turkey
| | - Remziye Nalcacioglu
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Zihni Demirbag
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey.
| |
Collapse
|
8
|
Urquiza J, Cuesta-Geijo MÁ, García-Dorival I, Fernández Ó, del Puerto A, Díaz JF, Alonso C. Identification of a Potential Entry-Fusion Complex Based on Sequence Homology of African Swine Fever and Vaccinia Virus. Viruses 2024; 16:349. [PMID: 38543715 PMCID: PMC10975062 DOI: 10.3390/v16030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 05/23/2024] Open
Abstract
African swine fever virus (ASFV) belongs to the family of Asfarviridae, part of the group of nucleocytoplasmic large DNA viruses (NCLDV). Little is known about the internalization of ASFV in the host cell and the fusion membrane events that take place at early stages of the infection. Poxviruses, also members of the NCLDV and represented by vaccinia virus (VACV), are large, enveloped, double-stranded DNA viruses. Poxviruses were considered unique in having an elaborate entry-fusion complex (EFC) composed of 11 highly conserved proteins integrated into the membrane of mature virions. Recent advances in methodological techniques have again revealed several connections between VACV EFC proteins. In this study, we explored the possibility of an analogous ASFV EFC by identifying ten candidate proteins exhibiting structural similarities with VACV EFC proteins. This could reveal key functions of these ASFV proteins, drawing attention to shared features between the two virus families, suggesting the potential existence of an ASFV entry-fusion complex.
Collapse
Affiliation(s)
- Jesús Urquiza
- Departamento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.Á.C.-G.); (I.G.-D.); (A.d.P.)
| | - Miguel Ángel Cuesta-Geijo
- Departamento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.Á.C.-G.); (I.G.-D.); (A.d.P.)
| | - Isabel García-Dorival
- Departamento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.Á.C.-G.); (I.G.-D.); (A.d.P.)
| | - Óscar Fernández
- Unidad BICS, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (Ó.F.); (J.F.D.)
| | - Ana del Puerto
- Departamento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.Á.C.-G.); (I.G.-D.); (A.d.P.)
| | - José Fernando Díaz
- Unidad BICS, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (Ó.F.); (J.F.D.)
| | - Covadonga Alonso
- Departamento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.Á.C.-G.); (I.G.-D.); (A.d.P.)
| |
Collapse
|
9
|
Abstract
N-myristoyltransferase 1 (NMT1) is an indispensable eukaryotic enzyme that catalyses the transfer of myristoyl groups to the amino acid terminal residues of numerous proteins. This catalytic process is required for the growth and development of many eukaryotes and viruses. Elevated expression and activity of NMT1 is observed to varying degrees in a variety of tumour types (e.g. colon, lung and breast tumours). Furthermore, an elevated level of NMT1 in tumours is associated with poor survival. Therefore, a relationship exists between NMT1 and tumours. In this review, we discuss the underlying mechanisms by which NMT1 is associated with tumour development from the perspective of oncogene signalling, involvement in cellular metabolism, and endoplasmic reticulum stress. Several NMT inhibitors used in cancer treatment are introduced. The review will provide some directions for future research.Key MessagesElevated expression and activity of NMT1 is observed to varying degrees in a variety of tumour types which creates the possibility of targeting NMT1 in tumours.NMT1-mediated myristoylation plays a pivotal role in cancer cell metabolism and may be particularly relevant to cancer metastasis and drug resistance. These insights can be used to direct potential therapeutic avenues for NMT1 inhibitors.
Collapse
Affiliation(s)
- Hong Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Xu
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic OncologyShanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic OncologyShanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Medical Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Tayal S, Bhatnagar S. Role of molecular mimicry in the SARS-CoV-2-human interactome for pathogenesis of cardiovascular diseases: An update to ImitateDB. Comput Biol Chem 2023; 106:107919. [PMID: 37463554 DOI: 10.1016/j.compbiolchem.2023.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Mimicry of host proteins is a strategy employed by pathogens to hijack host functions. Domain and motif mimicry was explored in the experimental and predicted SARS-CoV-2-human interactome. The host first interactor proteins were also added to capture the continuum of the interactions. The domains and motifs of the proteins were annotated using NCBI CD Search and ScanProsite, respectively. Host and pathogen proteins with a common host interactor and similar domain/motif constitute a mimicry pair indicating global structural similarity (domain mimicry pair; DMP) or local sequence similarity (motif mimicry pair; MMP). 593 DMPs and 7,02,472 MMPs were determined. AAA, DEXDc and Macro domains were frequent among DMPs whereas glycosylation, myristoylation and RGD motifs were abundant among MMP. The proteins involved in mimicry were visualised as a SARS-CoV-2 mimicry interaction network. The host proteins were enriched in multiple CVD pathways indicating the role of mimicry in COVID-19 associated CVDs. Bridging nodes were identified as potential drug targets. Approved antihypertensive and anti-inflammatory drugs are proposed for repurposing against COVID-19 associated CVDs. The SARS-CoV-2 mimicry data has been updated in ImitateDB (http://imitatedb.sblab-nsit.net/SARSCoV2Mimicry). Determination of key mechanisms, proteins, pathways, drug targets and repurposing candidates is critical for developing therapeutics for SARS CoV-2 associated CVDs.
Collapse
Affiliation(s)
- Sonali Tayal
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi 110078, India.
| |
Collapse
|
11
|
García-Dorival I, Cuesta-Geijo MÁ, Galindo I, Del Puerto A, Barrado-Gil L, Urquiza J, Alonso C. Elucidation of the Cellular Interactome of African Swine Fever Virus Fusion Proteins and Identification of Potential Therapeutic Targets. Viruses 2023; 15:v15051098. [PMID: 37243184 DOI: 10.3390/v15051098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
African swine fever virus (ASFV) encodes more than 150 proteins, most of them of unknown function. We used a high-throughput proteomic analysis to elucidate the interactome of four ASFV proteins, which potentially mediate a critical step of the infection cycle, the fusion and endosomal exit of the virions. Using affinity purification and mass spectrometry, we were able to identify potential interacting partners for those ASFV proteins P34, E199L, MGF360-15R and E248R. Representative molecular pathways for these proteins were intracellular and Golgi vesicle transport, endoplasmic reticulum organization, lipid biosynthesis, and cholesterol metabolism. Rab geranyl geranylation emerged as a significant hit, and also Rab proteins, which are crucial regulators of the endocytic pathway and interactors of both p34 and E199L. Rab proteins co-ordinate a tight regulation of the endocytic pathway that is necessary for ASFV infection. Moreover, several interactors were proteins involved in the molecular exchange at ER membrane contacts. These ASFV fusion proteins shared interacting partners, suggesting potential common functions. Membrane trafficking and lipid metabolism were important categories, as we found significant interactions with several enzymes of the lipid metabolism. These targets were confirmed using specific inhibitors with antiviral effect in cell lines and macrophages.
Collapse
Affiliation(s)
- Isabel García-Dorival
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Miguel Ángel Cuesta-Geijo
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Inmaculada Galindo
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Ana Del Puerto
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Lucía Barrado-Gil
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Jesús Urquiza
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Covadonga Alonso
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| |
Collapse
|
12
|
Kuz CA, Ozsahin E, Nalcacioglu R, Demirbag Z. Transcriptional Analysis of the Gene Encoding the Putative Myristoylated Membrane Protein (ORF458R) of Invertebrate Iridescent Virus 6 (IIV6). Mol Biol 2023. [DOI: 10.1134/s0026893323030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Morita D, Asa M, Sugita M. Engagement with the TCR induces plasticity in antigenic ligands bound to MHC class I and CD1 molecules. Int Immunol 2023; 35:7-17. [PMID: 36053252 DOI: 10.1093/intimm/dxac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
Complementarity-determining regions (CDRs) of αβ T-cell receptors (TCRs) sense peptide-bound MHC (pMHC) complexes via chemical interactions, thereby mediating antigen specificity and MHC restriction. Flexible finger-like movement of CDR loops contributes to the establishment of optimal interactions with pMHCs. In contrast, peptide ligands captured in MHC molecules are considered more static because of the rigid hydrogen-bond network that stabilizes peptide ligands in the antigen-binding groove of MHC molecules. An array of crystal structures delineating pMHC complexes in TCR-docked and TCR-undocked forms is now available, which enables us to assess TCR engagement-induced conformational changes in peptide ligands. In this short review, we overview conformational changes in MHC class I-bound peptide ligands upon TCR docking, followed by those for CD1-bound glycolipid ligands. Finally, we analyze the co-crystal structure of the TCR:lipopeptide-bound MHC class I complex that we recently reported. We argue that TCR engagement-induced conformational changes markedly occur in lipopeptide ligands, which are essential for exposure of a primary T-cell epitope to TCRs. These conformational changes are affected by amino acid residues, such as glycine, that do not interact directly with TCRs. Thus, ligand recognition by specific TCRs involves not only T-cell epitopes but also non-epitopic amino acid residues. In light of their critical function, we propose to refer to these residues as non-epitopic residues affecting ligand plasticity and antigenicity (NR-PA).
Collapse
Affiliation(s)
- Daisuke Morita
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minori Asa
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Priyamvada L, Kallemeijn WW, Faronato M, Wilkins K, Goldsmith CS, Cotter CA, Ojeda S, Solari R, Moss B, Tate EW, Satheshkumar PS. Inhibition of vaccinia virus L1 N-myristoylation by the host N-myristoyltransferase inhibitor IMP-1088 generates non-infectious virions defective in cell entry. PLoS Pathog 2022; 18:e1010662. [PMID: 36215331 PMCID: PMC9584500 DOI: 10.1371/journal.ppat.1010662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/20/2022] [Accepted: 08/26/2022] [Indexed: 11/06/2022] Open
Abstract
We have recently shown that the replication of rhinovirus, poliovirus and foot-and-mouth disease virus requires the co-translational N-myristoylation of viral proteins by human host cell N-myristoyltransferases (NMTs), and is inhibited by treatment with IMP-1088, an ultrapotent small molecule NMT inhibitor. Here, we examine the importance of N-myristoylation during vaccinia virus (VACV) infection in primate cells and demonstrate the anti-poxviral effects of IMP-1088. N-myristoylated proteins from VACV and the host were metabolically labelled with myristic acid alkyne during infection using quantitative chemical proteomics. We identified VACV proteins A16, G9 and L1 to be N-myristoylated. Treatment with NMT inhibitor IMP-1088 potently abrogated VACV infection, while VACV gene expression, DNA replication, morphogenesis and EV formation remained unaffected. Importantly, we observed that loss of N-myristoylation resulted in greatly reduced infectivity of assembled mature virus particles, characterized by significantly reduced host cell entry and a decline in membrane fusion activity of progeny virus. While the N-myristoylation of VACV entry proteins L1, A16 and G9 was inhibited by IMP-1088, mutational and genetic studies demonstrated that the N-myristoylation of L1 was the most critical for VACV entry. Given the significant genetic identity between VACV, monkeypox virus and variola virus L1 homologs, our data provides a basis for further investigating the role of N-myristoylation in poxviral infections as well as the potential of selective NMT inhibitors like IMP-1088 as broad-spectrum poxvirus inhibitors.
Collapse
Affiliation(s)
- Lalita Priyamvada
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Wouter W. Kallemeijn
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Monica Faronato
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Kimberly Wilkins
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Cynthia S. Goldsmith
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Catherine A. Cotter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Suany Ojeda
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Clinipace, Morrisville, North Carolina, United States of America
| | - Roberto Solari
- National Heart and Lung Institute, Imperial College of Science, Technology & Medicine, London, United Kingdom
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Edward W. Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | | |
Collapse
|
15
|
Protein Myristoylation Plays a Role in the Nuclear Entry of the Parvovirus Minute Virus of Mice. J Virol 2022; 96:e0111822. [PMID: 35950857 PMCID: PMC9472656 DOI: 10.1128/jvi.01118-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Being nonpathogenic to humans, rodent parvoviruses (PVs) are naturally oncolytic viruses with great potential as anti-cancer agents. As these viruses replicate in the host cell nucleus, they must gain access to the nucleus during infection. The PV minute virus of mice (MVM) and several other PVs transiently disrupt the nuclear envelope (NE) and enter the nucleus through the resulting breaks. However, the molecular basis of this unique nuclear entry pathway remains uncharacterized. In this study, we used MVM as a model to investigate the molecular mechanism by which PVs induce NE disruption during viral nuclear entry. By combining bioinformatics analyses, metabolic labeling assays, mutagenesis, and pharmacological inhibition, we identified a functional myristoylation site at the sequence 78GGKVGH83 of the unique portion of the capsid protein VP1 (VP1u) of MVM. Performing proteolytic cleavage studies with a peptide containing this myristoylation site or with purified virions, we found tryptophan at position 77 of MVM VP1u is susceptible to chymotrypsin cleavage, implying this cleavage exposes G (glycine) 78 at the N-terminus of VP1u for myristoylation. Subsequent experiments using inhibitors of myristoylation and cellular proteases with MVM-infected cells, or an imaging-based quantitative NE permeabilization assay, further indicate protein myristoylation and a chymotrypsin-like activity are essential for MVM to locally disrupt the NE during viral nuclear entry. We thus propose a model for the nuclear entry of MVM in which NE disruption is mediated by VP1u myristoylation after the intact capsid undergoes proteolytic processing to expose the required N-terminal G for myristoylation. IMPORTANCE Rodent parvoviruses (PVs), including minute virus of mice (MVM), have the ability to infect and kill cancer cells and thereby possess great potential in anti-cancer therapy. In fact, some of these viruses are currently being investigated in both preclinical studies and clinical trials to treat a wide variety of cancers. However, the detailed mechanism of how PVs enter the cell nucleus remains unknown. In this study, we for the first time demonstrated a chemical modification called "myristoylation" of a MVM protein plays an essential role in the nuclear entry of the virus. We also showed, in addition to protein myristoylation, a chymotrypsin-like activity, which may come from cellular proteasomes, is required for MVM to get myristoylated and enter the nucleus. These findings deepen our understanding on how MVM and other related PVs infect host cells and provide new insights for the development of PV-based anti-cancer therapies.
Collapse
|
16
|
Arteaga-Resendiz NK, Rodea GE, Ribas-Aparicio RM, Olivares-Cervantes AL, Castelán-Vega JA, Olivares-Trejo JDJ, Mendoza-Elizalde S, López-Villegas EO, Colín C, Aguilar-Rodea P, Reyes-López A, Salazar García M, Velázquez-Guadarrama N. HP0953 - hypothetical virulence factor overexpresion and localization during Helicobacter pylori infection of gastric epithelium. World J Gastroenterol 2022; 28:3886-3902. [PMID: 36157534 PMCID: PMC9367236 DOI: 10.3748/wjg.v28.i29.3886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/26/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The high prevalence and persistence of Helicobacter pylori (H. pylori) infection, as well as the diversity of pathologies related to it, suggest that the virulence factors used by this microorganism are varied. Moreover, as its proteome contains 340 hypothetical proteins, it is important to investigate them to completely understand the mechanisms of its virulence and survival. We have previously reported that the hypothetical protein HP0953 is overexpressed during the first hours of adhesion to inert surfaces, under stress conditions, suggesting its role in the environmental survival of this bacterium and perhaps as a virulence factor.
AIM To investigate the expression and localization of HP0953 during adhesion to an inert surface and against gastric (AGS) cells.
METHODS Expression analysis was performed for HP0953 during H. pylori adhesion. HP0953 expression at 0, 3, 12, 24, and 48 h was evaluated and compared using the Kruskal-Wallis equality-of-populations rank test. Recombinant protein was produced and used to obtain polyclonal antibodies for immunolocalization. Immunogold technique was performed on bacterial sections during adherence to inert surfaces and AGS cells, which was analyzed by transmission electron microscopy. HP0953 protein sequence was analyzed to predict the presence of a signal peptide and transmembrane helices, both provided by the ExPASy platform, and using the GLYCOPP platform for glycosylation sites. Different programs, via, I-TASSER, RaptorX, and HHalign-Kbest, were used to perform three-dimensional modeling.
RESULTS HP0953 exhibited its maximum expression at 12 h of infection in gastric epithelium cells. Immunogold technique revealed HP0953 localization in the cytoplasm and accumulation in some peripheral areas of the bacterial body, with greater expression when it is close to AGS cells. Bioinformatics analysis revealed the presence of a signal peptide that interacts with the transmembrane region and then allows the release of the protein to the external environment. The programs also showed a similarity with the Tip-alpha protein of H. pylori. Tip-alpha is an exotoxin that penetrates cells and induces tumor necrosis factor alpha production, and HP0953 could have a similar function as posttranslational modification sites were found; modifications in turn require enzymes located in eukaryotic cells. Thus, to be functional, HP0953 may necessarily need to be translocated inside the cell where it can trigger different mechanisms producing cellular damage.
CONCLUSION The location of HP0953 around infected cells, the probable posttranslational modifications, and its similarity to an exotoxin suggest that this protein is a virulence factor.
Collapse
Affiliation(s)
- Nancy K Arteaga-Resendiz
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
- Posgrado en Biomedicina y Biotecnología Molecular, Laboratorio de Producción y Control de Biológicos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Gerardo E Rodea
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Rosa María Ribas-Aparicio
- Posgrado en Biomedicina y Biotecnología Molecular, Laboratorio de Producción y Control de Biológicos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Alma L Olivares-Cervantes
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Juan Arturo Castelán-Vega
- Posgrado en Biomedicina y Biotecnología Molecular, Laboratorio de Producción y Control de Biológicos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - José de Jesús Olivares-Trejo
- Laboratorio de Adquisición de Hierro, Universidad Autónoma de la Ciudad México, Posgrado Ciencias Genómica, Mexico City 03100, Mexico
| | - Sandra Mendoza-Elizalde
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Edgar O López-Villegas
- Laboratorio Central de Microscopía, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Christian Colín
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Pamela Aguilar-Rodea
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Alfonso Reyes-López
- Centro de estudios económicos y sociales en salud, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Marcela Salazar García
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
17
|
Tayal S, Bhatia V, Mehrotra T, Bhatnagar S. ImitateDB: A database for domain and motif mimicry incorporating host and pathogen protein interactions. Amino Acids 2022; 54:923-934. [PMID: 35487995 PMCID: PMC9054641 DOI: 10.1007/s00726-022-03163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/09/2022] [Indexed: 11/26/2022]
Abstract
Molecular mimicry of host proteins by pathogens constitutes a strategy to hijack the host pathways. At present, there is no dedicated resource for mimicked domains and motifs in the host-pathogen interactome. In this work, the experimental host-pathogen (HP) and host-host (HH) protein-protein interactions (PPIs) were collated. The domains and motifs of these proteins were annotated using CD Search and ScanProsite, respectively. Host and pathogen proteins with a shared host interactor and similar domain/motif constitute a mimicry pair exhibiting global structural similarity (domain mimicry pair; DMP) or local sequence motif similarity (motif mimicry pair; MMP). Mimicry pairs are likely to be co-expressed and co-localized. 1,97,607 DMPs and 32,67,568 MMPs were identified in 49,265 experimental HP-PPIs and organized in a web-based resource, ImitateDB ( http://imitatedb.sblab-nsit.net ) that can be easily queried. The results are externally integrated using hyperlinked domain PSSM ID, motif ID, protein ID and PubMed ID. Kinase, UL36, Smc and DEXDc were frequent DMP domains whereas protein kinase C phosphorylation, casein kinase 2 phosphorylation, glycosylation and myristoylation sites were frequent MMP motifs. Novel DMP domains SANT, Tudor, PhoX and MMP motif microbody C-terminal targeting signal, cornichon signature and lipocalin signature were proposed. ImitateDB is a novel resource for identifying mimicry in interacting host and pathogen proteins.
Collapse
Affiliation(s)
- Sonali Tayal
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Venugopal Bhatia
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India
| | - Tanya Mehrotra
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India.
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
18
|
Pennington H, Lee J. Lassa virus glycoprotein complex review: insights into its unique fusion machinery. Biosci Rep 2022; 42:BSR20211930. [PMID: 35088070 PMCID: PMC8844875 DOI: 10.1042/bsr20211930] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Lassa virus (LASV), an arenavirus endemic to West Africa, causes Lassa fever-a lethal hemorrhagic fever. Entry of LASV into the host cell is mediated by the glycoprotein complex (GPC), which is the only protein located on the viral surface and comprises three subunits: glycoprotein 1 (GP1), glycoprotein 2 (GP2), and a stable signal peptide (SSP). The LASV GPC is a class one viral fusion protein, akin to those found in viruses such as human immunodeficiency virus (HIV), influenza, Ebola virus (EBOV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These viruses are enveloped and utilize membrane fusion to deliver their genetic material to the host cell. Like other class one fusion proteins, LASV-mediated membrane fusion occurs through an orchestrated sequence of conformational changes in its GPC. The receptor-binding subunit, GP1, first engages with a host cell receptor then undergoes a unique receptor switch upon delivery to the late endosome. The acidic pH and change in receptor result in the dissociation of GP1, exposing the fusion subunit, GP2, such that fusion can occur. These events ultimately lead to the formation of a fusion pore so that the LASV genetic material is released into the host cell. Interestingly, the mature GPC retains its SSP as a third subunit-a feature that is unique to arenaviruses. Additionally, the fusion domain contains two separate fusion peptides, instead of a standard singular fusion peptide. Here, we give a comprehensive review of the LASV GPC components and their unusual features.
Collapse
Affiliation(s)
- Hallie N. Pennington
- Department of Chemistry and Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, MD 20740, U.S.A
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, MD 20740, U.S.A
| |
Collapse
|
19
|
Xu Y, Shi Z, Bao L. An expanding repertoire of protein acylations. Mol Cell Proteomics 2022; 21:100193. [PMID: 34999219 PMCID: PMC8933697 DOI: 10.1016/j.mcpro.2022.100193] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 01/03/2023] Open
Abstract
Protein post-translational modifications play key roles in multiple cellular processes by allowing rapid reprogramming of individual protein functions. Acylation, one of the most important post-translational modifications, is involved in different physiological activities including cell differentiation and energy metabolism. In recent years, the progression in technologies, especially the antibodies against acylation and the highly sensitive and effective mass spectrometry–based proteomics, as well as optimized functional studies, greatly deepen our understanding of protein acylation. In this review, we give a general overview of the 12 main protein acylations (formylation, acetylation, propionylation, butyrylation, malonylation, succinylation, glutarylation, palmitoylation, myristoylation, benzoylation, crotonylation, and 2-hydroxyisobutyrylation), including their substrates (histones and nonhistone proteins), regulatory enzymes (writers, readers, and erasers), biological functions (transcriptional regulation, metabolic regulation, subcellular targeting, protein–membrane interactions, protein stability, and folding), and related diseases (cancer, diabetes, heart disease, neurodegenerative disease, and viral infection), to present a complete picture of protein acylations and highlight their functional significance in future research. Provide a general overview of the 12 main protein acylations. Acylation of viral proteins promotes viral integration and infection. Hyperacylation of histone has antitumous and neuroprotective effects. MS is widely used in the identification of acylation but has its challenges.
Collapse
Affiliation(s)
- Yuxuan Xu
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China
| | - Zhenyu Shi
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China
| | - Li Bao
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China.
| |
Collapse
|
20
|
Cuesta-Geijo MÁ, García-Dorival I, del Puerto A, Urquiza J, Galindo I, Barrado-Gil L, Lasala F, Cayuela A, Sorzano COS, Gil C, Delgado R, Alonso C. New insights into the role of endosomal proteins for African swine fever virus infection. PLoS Pathog 2022; 18:e1009784. [PMID: 35081156 PMCID: PMC8820605 DOI: 10.1371/journal.ppat.1009784] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/07/2022] [Accepted: 01/11/2022] [Indexed: 01/01/2023] Open
Abstract
African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocytic pathway. While the endosomal maturation entails luminal acidification, the decrease in pH acts on the multilayer structure of the virion dissolving the outer capsid. Upon decapsidation, the inner viral membrane is exposed to interact with the limiting membrane of the late endosome for fusion. Viral fusion is then necessary for the egress of incoming virions from endosomes into the cytoplasm, however this remains an intriguing and yet essential process for infection, specifically for the egress of viral nucleic acid into the cytoplasm for replication. ASFV proteins E248R and E199L, located at the exposed inner viral membrane, might be implicated in the fusion step. An interaction between these viral proteins and cellular endosomal proteins such as the Niemann-Pick C type 1 (NPC1) and lysosomal membrane proteins (Lamp-1 and -2) was shown. Furthermore, the silencing of these proteins impaired ASFV infection. It was also observed that NPC1 knock-out cells using CRISPR jeopardized ASFV infection and that the progression and endosomal exit of viral cores was arrested within endosomes at viral entry. These results suggest that the interactions of ASFV proteins with some endosomal proteins might be important for the membrane fusion step. In addition to this, reductions on ASFV infectivity and replication in NPC1 KO cells were accompanied by fewer and smaller viral factories. Our findings pave the way to understanding the role of proteins of the endosomal membrane in ASFV infection. African swine fever virus (ASFV) causes a deadly disease of pigs and wild boars that was endemic in Africa but has spread in recent years to Europe, Asia and Oceania with a high socioeconomic impact. ASFV enters the cell by endocytosis and has adapted to the endosomal conditions to acquire infectivity. Fusion of the internal viral membrane with the endosomal membrane is required for the exit of viral DNA into the cytoplasm to start replication. We have found that ASF virion internal membrane proteins E248R and E199L interact with the endosomal proteins Niemann Pick C1 (NPC1) and lysosomal membrane proteins (Lamp)-1 and -2. And, appear to be required for endosomal trafficking of ASF virions endosomal traffic and exit to the cytoplasm in the cell entry process. These molecules act regulating cholesterol flux from the endosome to the endoplasmic reticulum, and appear to be important for the viral infection cycle. In silenced and knockout cells, ASFV infection was affected at early and later stages. In null cells, virion entry and progression through the endosomal pathway at entry was arrested and several viral cores were retained at late endosomes without entering the fusion phase for cytoplasmic exit. These results provide new insights into the role of endosomal proteins for ASFV infection.
Collapse
Affiliation(s)
- Miguel Ángel Cuesta-Geijo
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Isabel García-Dorival
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Ana del Puerto
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Jesús Urquiza
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Inmaculada Galindo
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Lucía Barrado-Gil
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Fátima Lasala
- Instituto de Investigación Hospital 12 de Octubre Imas12, Madrid, Spain
| | - Ana Cayuela
- Centro Nacional de Biotecnología CSIC, Madrid, Spain
| | | | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | - Rafael Delgado
- Instituto de Investigación Hospital 12 de Octubre Imas12, Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Covadonga Alonso
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- * E-mail:
| |
Collapse
|
21
|
Giglione C, Meinnel T. Mapping the myristoylome through a complete understanding of protein myristoylation biochemistry. Prog Lipid Res 2021; 85:101139. [PMID: 34793862 DOI: 10.1016/j.plipres.2021.101139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022]
Abstract
Protein myristoylation is a C14 fatty acid modification found in all living organisms. Myristoylation tags either the N-terminal alpha groups of cysteine or glycine residues through amide bonds or lysine and cysteine side chains directly or indirectly via glycerol thioester and ester linkages. Before transfer to proteins, myristate must be activated into myristoyl coenzyme A in eukaryotes or, in bacteria, to derivatives like phosphatidylethanolamine. Myristate originates through de novo biosynthesis (e.g., plants), from external uptake (e.g., human tissues), or from mixed origins (e.g., unicellular organisms). Myristate usually serves as a molecular anchor, allowing tagged proteins to be targeted to membranes and travel across endomembrane networks in eukaryotes. In this review, we describe and discuss the metabolic origins of protein-bound myristate. We review strategies for in vivo protein labeling that take advantage of click-chemistry with reactive analogs, and we discuss new approaches to the proteome-wide discovery of myristate-containing proteins. The machineries of myristoylation are described, along with how protein targets can be generated directly from translating precursors or from processed proteins. Few myristoylation catalysts are currently described, with only N-myristoyltransferase described to date in eukaryotes. Finally, we describe how viruses and bacteria hijack and exploit myristoylation for their pathogenicity.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
22
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
23
|
Kumar N, Kaushik R, Tennakoon C, Uversky VN, Longhi S, Zhang KYJ, Bhatia S. Comprehensive Intrinsic Disorder Analysis of 6108 Viral Proteomes: From the Extent of Intrinsic Disorder Penetrance to Functional Annotation of Disordered Viral Proteins. J Proteome Res 2021; 20:2704-2713. [PMID: 33719450 DOI: 10.1021/acs.jproteome.1c00011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Much of our understanding of proteins and proteomes comes from the traditional protein structure-function paradigm. However, in the last 2 decades, both computational and experimental studies have provided evidence that a large fraction of functional proteomes across different domains of life consists of intrinsically disordered proteins, thus triggering a quest to unravel and decipher protein intrinsic disorder. Unlike structured/ordered proteins, intrinsically disordered proteins/regions (IDPs/IDRs) do not possess a well-defined structure under physiological conditions and exist as highly dynamic conformational ensembles. In spite of this peculiarity, these proteins have crucial roles in cell signaling and regulation. To date, studies on the abundance and function of IDPs/IDRs in viruses are rather limited. To fill this gap, we carried out an extensive and thorough bioinformatics analysis of 283 000 proteins from 6108 reference viral proteomes. We analyzed protein intrinsic disorder from multiple perspectives, such as abundance of IDPs/IDRs across diverse virus types, their functional annotations, and subcellular localization in taxonomically divergent hosts. We show that the content of IDPs/IDRs in viral proteomes varies broadly as a function of virus genome types and taxonomically divergent hosts. We have combined the two most commonly used and accurate IDP predictors' results with charge-hydropathy (CH) versus cumulative distribution function (CDF) plots to categorize the viral proteins according to their IDR content and physicochemical properties. Mapping of gene ontology on the disorder content of viral proteins reveals that IDPs are primarily involved in key virus-host interactions and host antiviral immune response downregulation, which are reinforced by the post-translational modifications tied to disorder-enriched viral proteins. The present study offers detailed insights into the prevalence of the intrinsic disorder in viral proteomes and provides appealing targets for the design of novel therapeutics.
Collapse
Affiliation(s)
- Naveen Kumar
- Diagnostics & Vaccines Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Rahul Kaushik
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States.,Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Aix Marseille Université, CNRS, 13288 Marseille, France
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Sandeep Bhatia
- Diagnostics & Vaccines Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| |
Collapse
|
24
|
Zazula R, Moravec M, Pehal F, Nejtek T, Protuš M, Müller M. Myristic Acid Serum Levels and Their Significance for Diagnosis of Systemic Inflammatory Response, Sepsis, and Bacteraemia. J Pers Med 2021; 11:jpm11040306. [PMID: 33923419 PMCID: PMC8074080 DOI: 10.3390/jpm11040306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 01/10/2023] Open
Abstract
Myristic acid is identified as a metabolite with the highest diagnostic sensitivity and specificity in the metabolome of patients with bacteraemia. Its significant decrease has been observed in patients with septic shock not responding to treatment. Another study has reported a close correlation of myristic acid levels with the outcome of severe trauma patients. Myristic acid concentrations were investigated in a cohort of septic patients and patients with Systemic Inflammatory Response Syndrome (SIRS) in 5 consecutive days following diagnosis and compared to healthy controls. The study population groups-Sepsis 34, SIRS 31, and Healthy Control 120 patients were included. Serum samples were analyzed using gas chromatography and mass spectrometry. The myristic acid levels in the Sepsis Group and SIRS Group were found to be significantly higher when compared to healthy controls. The serum concentration of myristic acid in septic patients with bacteraemia was higher than in septic patients without bacteraemia. Most patients with sepsis and SIRS had the highest levels of myristic acid within 24 h after an established diagnosis. Myristic acid should be considered as a new candidate marker of severe inflammation and sepsis. A simplified analysis and sufficient body of validated data are necessary steps towards the introduction of this metabolite into routine clinical practice.
Collapse
Affiliation(s)
- Roman Zazula
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and Thomayer University Hospital, 140 59 Prague, Czech Republic; (M.M.); (F.P.); (T.N.); (M.M.)
- Correspondence: ; Tel.: +420-261-083-811
| | - Michal Moravec
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and Thomayer University Hospital, 140 59 Prague, Czech Republic; (M.M.); (F.P.); (T.N.); (M.M.)
| | - František Pehal
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and Thomayer University Hospital, 140 59 Prague, Czech Republic; (M.M.); (F.P.); (T.N.); (M.M.)
| | - Tomáš Nejtek
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and Thomayer University Hospital, 140 59 Prague, Czech Republic; (M.M.); (F.P.); (T.N.); (M.M.)
| | - Marek Protuš
- Department of Anaesthesiology, Resuscitation and Intensive Care, Institute for Clinical and Experimental Medicine, First Faculty of Medicine, Charles University, 140 21 Prague, Czech Republic;
| | - Martin Müller
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and Thomayer University Hospital, 140 59 Prague, Czech Republic; (M.M.); (F.P.); (T.N.); (M.M.)
| |
Collapse
|
25
|
Protein N-myristoylation: functions and mechanisms in control of innate immunity. Cell Mol Immunol 2021; 18:878-888. [PMID: 33731917 PMCID: PMC7966921 DOI: 10.1038/s41423-021-00663-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Protein N-myristoylation is an important fatty acylation catalyzed by N-myristoyltransferases (NMTs), which are ubiquitous enzymes in eukaryotes. Specifically, attachment of a myristoyl group is vital for proteins participating in various biological functions, including signal transduction, cellular localization, and oncogenesis. Recent studies have revealed unexpected mechanisms indicating that protein N-myristoylation is involved in host defense against microbial and viral infections. In this review, we describe the current understanding of protein N-myristoylation (mainly focusing on myristoyl switches) and summarize its crucial roles in regulating innate immune responses, including TLR4-dependent inflammatory responses and demyristoylation-induced innate immunosuppression during Shigella flexneri infection. Furthermore, we examine the role of myristoylation in viral assembly, intracellular host interactions, and viral spread during human immunodeficiency virus-1 (HIV-1) infection. Deeper insight into the relationship between protein N-myristoylation and innate immunity might enable us to clarify the pathogenesis of certain infectious diseases and better harness protein N-myristoylation for new therapeutics.
Collapse
|
26
|
Jakhmola S, Indari O, Kashyap D, Varshney N, Das A, Manivannan E, Jha HC. Mutational analysis of structural proteins of SARS-CoV-2. Heliyon 2021; 7:e06572. [PMID: 33778179 PMCID: PMC7980187 DOI: 10.1016/j.heliyon.2021.e06572] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 transmissibility is higher than that of other human coronaviruses; therefore, it poses a threat to the populated communities. We investigated mutations among envelope (E), membrane (M), and spike (S) proteins from different isolates of SARS-CoV-2 and plausible signaling influenced by mutated virus in a host. We procured updated protein sequences from the NCBI virus database. Mutations were analyzed in the retrieved sequences of the viral proteins through multiple sequence alignment. Additionally, the data was subjected to ScanPROSITE to analyse if the mutations generated a relevant sequence for host signaling. Unique mutations in E, M, and S proteins resulted in modification sites like PKC phosphorylation and N-myristoylation sites. Based on structural analysis, our study revealed that the D614G mutation in the S protein diminished the interaction with T859 and K854 of adjacent chains. Moreover, the S protein of SARS-CoV-2 consists of an Arg-Gly-Asp (RGD) tripeptide sequence, which could potentially interact with various members of integrin family receptors. RGD sequence in S protein might aid in the initial virus attachment. We speculated crucial host pathways which the mutated isolates of SARS-CoV-2 may alter like PKC, Src, and integrin mediated signaling pathways. PKC signaling is known to influence the caveosome/raft pathway which is critical for virus entry. Additionally, the myristoylated proteins might activate NF-κB, a master molecule of inflammation. Thus the mutations may contribute to the disease pathogenesis and distinct lung pathophysiological changes. Further the frequently occurring mutations in the protein can be studied for possible therapeutic interventions.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Omkar Indari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Dharmendra Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Nidhi Varshney
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Ayan Das
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | | | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
27
|
Role of Host-Mediated Post-Translational Modifications (PTMs) in RNA Virus Pathogenesis. Int J Mol Sci 2020; 22:ijms22010323. [PMID: 33396899 PMCID: PMC7796338 DOI: 10.3390/ijms22010323] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins’ functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.
Collapse
|
28
|
Kosciuk T, Lin H. N-Myristoyltransferase as a Glycine and Lysine Myristoyltransferase in Cancer, Immunity, and Infections. ACS Chem Biol 2020; 15:1747-1758. [PMID: 32453941 DOI: 10.1021/acschembio.0c00314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein myristoylation, the addition of a 14-carbon saturated acyl group, is an abundant modification implicated in biological events as diverse as development, immunity, oncogenesis, and infections. N-Myristoyltransferase (NMT) is the enzyme that catalyzes this modification. Many elegant studies have established the rules guiding the catalysis including substrate amino acid sequence requirements with the indispensable N-terminal glycine, and a co-translational mode of action. Recent advances in technology such as the development of fatty acid analogs, small molecule inhibitors, and new proteomic strategies, allowed a deeper insight into the NMT activity and function. Here we focus on discussing recent work demonstrating that NMT is also a lysine myristoyltransferase, the enzyme's regulation by a previously unnoticed solvent channel, and the mechanism of NMT regulation by protein-protein interactions. We also summarize recent findings on NMT's role in cancer, immunity, and infections and the advances in pharmacological targeting of myristoylation. Our analyses highlight opportunities for further understanding and discoveries.
Collapse
Affiliation(s)
- Tatsiana Kosciuk
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
29
|
Broncel M, Dominicus C, Vigetti L, Nofal SD, Bartlett EJ, Touquet B, Hunt A, Wallbank BA, Federico S, Matthews S, Young JC, Tate EW, Tardieux I, Treeck M. Profiling of myristoylation in Toxoplasma gondii reveals an N-myristoylated protein important for host cell penetration. eLife 2020; 9:e57861. [PMID: 32618271 PMCID: PMC7373427 DOI: 10.7554/elife.57861] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/27/2020] [Indexed: 12/26/2022] Open
Abstract
N-myristoylation is a ubiquitous class of protein lipidation across eukaryotes and N-myristoyl transferase (NMT) has been proposed as an attractive drug target in several pathogens. Myristoylation often primes for subsequent palmitoylation and stable membrane attachment, however, growing evidence suggests additional regulatory roles for myristoylation on proteins. Here we describe the myristoylated proteome of Toxoplasma gondii using chemoproteomic methods and show that a small-molecule NMT inhibitor developed against related Plasmodium spp. is also functional in Toxoplasma. We identify myristoylation on a transmembrane protein, the microneme protein 7 (MIC7), which enters the secretory pathway in an unconventional fashion with the myristoylated N-terminus facing the lumen of the micronemes. MIC7 and its myristoylation play a crucial role in the initial steps of invasion, likely during the interaction with and penetration of the host cell. Myristoylation of secreted eukaryotic proteins represents a substantial expansion of the functional repertoire of this co-translational modification.
Collapse
Affiliation(s)
- Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Caia Dominicus
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Luis Vigetti
- Institute for Advanced Biosciences, Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble AlpesGrenobleFrance
| | - Stephanie D Nofal
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Edward J Bartlett
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City CampusLondonUnited Kingdom
| | - Bastien Touquet
- Institute for Advanced Biosciences, Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble AlpesGrenobleFrance
| | - Alex Hunt
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Bethan A Wallbank
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Stefania Federico
- The Peptide Chemistry STP, The Francis Crick InstituteLondonUnited Kingdom
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
| | - Joanna C Young
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City CampusLondonUnited Kingdom
| | - Isabelle Tardieux
- Institute for Advanced Biosciences, Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble AlpesGrenobleFrance
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
30
|
Takahara M, Kamiya N. Synthetic Strategies for Artificial Lipidation of Functional Proteins. Chemistry 2020; 26:4645-4655. [DOI: 10.1002/chem.201904568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Mari Takahara
- Department of Materials Science & Chemical EngineeringNational Institute of TechnologyKitakyushu College 5-20-1 Shii Kokuraminamiku Kitakyushu 802-0985 Japan
| | - Noriho Kamiya
- Department of Applied ChemistryGraduate School of Engineering 744 Motooka Nishiku Fukuoka 819-0395 Japan
- Division of Biotechnology, Center for Future ChemistryKyushu University 744 Motooka Nishiku Fukuoka 819-0395 Japan
| |
Collapse
|
31
|
Requirement of the acyl-CoA carrier ACBD6 in myristoylation of proteins: Activation by ligand binding and protein interaction. PLoS One 2020; 15:e0229718. [PMID: 32108178 PMCID: PMC7046191 DOI: 10.1371/journal.pone.0229718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/11/2020] [Indexed: 01/01/2023] Open
Abstract
Glycine N-myristoylation is an essential acylation modification modulating the functions, stability, and membrane association of diverse cytosolic proteins in human cells. Myristoyl-CoA is the 14-carbon acyl donor of the acyltransferase reaction. Acyl-CoAs of a chain length compatible with the binding site of the N-myristoyltransferase enzymes (NMT) are competitive inhibitors, and the mechanism protecting these enzymes from unwanted acyl-CoA species requires the acyl-CoA binding protein ACBD6. The acyl-CoA binding domain (ACB) and the ankyrin-repeat motifs (ANK) of ACBD6 can perform their functions independently. Interaction of ANK with human NMT2 was necessary and sufficient to provide protection. Fusion of the ANK module to the acyl-CoA binding protein ACBD1 was sufficient to confer the NMT-stimulatory property of ACBD6 to the chimera. The ACB domain is dispensable and sequestration of the competitor was not the basis for NMT2 protection. Acyl-CoAs bound to ACB modulate the function of the ANK module and act as positive effector of the allosteric activation of the enzyme. The functional relevance of homozygous mutations in ACBD6 gene, which have not been associated with a disease so far, is presented. Skin-derived fibroblasts of two unrelated individuals with neurodevelopmental disorder and carrying loss of function mutations in the ACBD6 gene were deficient in protein N-myristoylation. These cells were sensitive to substrate analog competing for myristoyl-CoA binding to NMT. These findings account for the requirement of an ANK-containing acyl-CoA binding protein in the cellular mechanism protecting the NMT enzymes and establish that in human cells, ACBD6 supports the N-myristoylation of proteins.
Collapse
|
32
|
Kordyukova LV, Serebryakova MV, Khrustalev VV, Veit M. Differential S-Acylation of Enveloped Viruses. Protein Pept Lett 2019; 26:588-600. [PMID: 31161979 DOI: 10.2174/0929866526666190603082521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
Post-translational modifications often regulate protein functioning. Covalent attachment of long chain fatty acids to cysteine residues via a thioester linkage (known as protein palmitoylation or S-acylation) affects protein trafficking, protein-protein and protein-membrane interactions. This post-translational modification is coupled to membrane fusion or virus assembly and may affect viral replication in vitro and thus also virus pathogenesis in vivo. In this review we outline modern methods to study S-acylation of viral proteins and to characterize palmitoylproteomes of virus infected cells. The palmitoylation site predictor CSS-palm is critically tested against the Class I enveloped virus proteins. We further focus on identifying the S-acylation sites directly within acyl-peptides and the specific fatty acid (e.g, palmitate, stearate) bound to them using MALDI-TOF MS-based approaches. The fatty acid heterogeneity/ selectivity issue attracts now more attention since the recently published 3D-structures of two DHHC-acyl-transferases gave a hint how this might be achieved.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Vladislav V Khrustalev
- Department of General Chemistry, Belarusian State Medical University, Minsk 220116, Belarus
| | - Michael Veit
- Institut für Virologie, Vet.-Med. Faculty, Free University Berlin, Berlin 14163, Germany
| |
Collapse
|
33
|
Kulshreshtha A, Kumar Y, Roshan P, Bhattacharjee B, Mukherjee SK, Hallan V. AC4 protein of tomato leaf curl Palampur virus is an RNA silencing suppressor and a pathogenicity determinant. Microb Pathog 2019; 135:103636. [PMID: 31377236 DOI: 10.1016/j.micpath.2019.103636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023]
Abstract
Plants deploy RNA silencing as a natural defence against invading viruses involving sequence-specific degradation of the viral RNAs. As a counter-defence strategy, viruses encode suppressor proteins that simultaneously target different steps of the silencing machinery. Tomato leaf curl Palampur virus (ToLCPalV) is a bipartite begomovirus in Geminiviridae family. It is responsible for significant reduction in the crop yield and quality. DNA-A of the virus encodes for six proteins whereas DNA-B codes for two proteins. In this study, all viral genes were screened for their role in suppression of green fluorescent protein (GFP) silencing in Nicotiana tabacum cv. Xanthi, employing agrobacterium based co-infiltration assay. The assay identified AC4 as a potential suppressor of RNA silencing. In addition, AC4 expression also suppressed virus-induced gene silencing (VIGS) of the phytoene desaturase (PDS) gene in N. benthamiana. Potato virus X (PVX) mediated transient expression of the AC4 in N. benthamiana showed enhanced symptoms that include downward leaf curling, leaf puckering and tissue necrosis. Further, N. benthamiana lines stably expressing AC4 showed severe developmental abnormalities. Mutational analysis suggested that glycine at 2nd position is essential for AC4 pathogenicity. Collectively, these findings demonstrate the role of ToLCPalV AC4 in viral pathogenesis, disease establishment and suppression of gene silencing.
Collapse
Affiliation(s)
- Aditya Kulshreshtha
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India; Plant Virus Lab, Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Yogesh Kumar
- Department of Biotechnology, DAV University, Jalandhar, 144012, Punjab, India
| | - Poonam Roshan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India; Plant Virus Lab, Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Bipasha Bhattacharjee
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India; Plant Virus Lab, Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Sunil Kumar Mukherjee
- Division of Plant Pathology, India Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Vipin Hallan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India; Plant Virus Lab, Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India.
| |
Collapse
|
34
|
Yamamoto Y, Morita D, Shima Y, Midorikawa A, Mizutani T, Suzuki J, Mori N, Shiina T, Inoko H, Tanaka Y, Mikami B, Sugita M. Identification and Structure of an MHC Class I-Encoded Protein with the Potential to Present N-Myristoylated 4-mer Peptides to T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3349-3358. [PMID: 31043477 DOI: 10.4049/jimmunol.1900087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/11/2019] [Indexed: 11/19/2022]
Abstract
Similar to host proteins, N-myristoylation occurs for viral proteins to dictate their pathological function. However, this lipid-modifying reaction creates a novel class of "lipopeptide" Ags targeted by host CTLs. The primate MHC class I-encoded protein, Mamu-B*098, was previously shown to bind N-myristoylated 5-mer peptides. Nevertheless, T cells exist that recognize even shorter lipopeptides, and much remains to be elucidated concerning the molecular mechanisms of lipopeptide presentation. We, in this study, demonstrate that the MHC class I allele, Mamu-B*05104, binds the N-myristoylated 4-mer peptide (C14-Gly-Gly-Ala-Ile) derived from the viral Nef protein for its presentation to CTLs. A phylogenetic tree analysis indicates that these classical MHC class I alleles are not closely associated; however, the high-resolution x-ray crystallographic analyses indicate that both molecules share lipid-binding structures defined by the exceptionally large, hydrophobic B pocket to accommodate the acylated glycine (G1) as an anchor. The C-terminal isoleucine (I4) of C14-Gly-Gly-Ala-Ile anchors at the F pocket, which is distinct from that of Mamu-B*098 and is virtually identical to that of the peptide-presenting MHC class I molecule, HLA-B51. The two central amino acid residues (G2 and A3) are only exposed externally for recognition by T cells, and the methyl side chain on A3 constitutes a major T cell epitope, underscoring that the epitopic diversity is highly limited for lipopeptides as compared with that for MHC class I-presented long peptides. These structural features suggest that lipopeptide-presenting MHC class I alleles comprise a distinct MHC class I subset that mediates an alternative pathway for CTL activation.
Collapse
Affiliation(s)
- Yukie Yamamoto
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daisuke Morita
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoko Shima
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akihiro Midorikawa
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsuaki Mizutani
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Juri Suzuki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Naoki Mori
- Laboratory of Chemical Ecology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Yoshimasa Tanaka
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; and
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
35
|
Suwanmanee S, Mahakhunkijcharoen Y, Ampawong S, Leaungwutiwong P, Missé D, Luplertlop N. Inhibition of N-myristoyltransferase1 affects dengue virus replication. Microbiologyopen 2019; 8:e00831. [PMID: 30848105 PMCID: PMC6741125 DOI: 10.1002/mbo3.831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/05/2023] Open
Abstract
Dengue virus (DENV) causes dengue fever, a self‐limiting disease that could be fatal due to serious complications. No specific treatment is currently available and the preventative vaccine is only partially protective. To develop a potential drug target for dengue fever, we need to understand its biology and pathogenesis thoroughly. N‐myristoyltransferase (NMT) is an N‐terminal protein lipidation enzyme that catalyzes the covalent cotranslational attachment of fatty acids to the amino‐terminal glycine residue of a number of proteins, leading to the modulation of various signaling molecules. In this study, we investigated the interaction of dengue viral proteins with host NMT and its subsequent effect on DENV. Our bioinformatics, molecular docking, and far‐western blotting analyses demonstrated the interaction of viral envelope protein (E) with NMT. The gene expression of NMT was strongly elevated in a dependent manner during the viral replication phase in dendritic cells. Moreover, NMT gene silencing significantly inhibited DENV replication in dendritic cells. Further studies investigating the target cell types of other host factors are suggested.
Collapse
Affiliation(s)
- San Suwanmanee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yuvadee Mahakhunkijcharoen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Dorothée Missé
- MIVEGEC UMR 224, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
36
|
Mei Y, Wang Y, Hu T, Yang X, Lozano-Duran R, Sunter G, Zhou X. Nucleocytoplasmic Shuttling of Geminivirus C4 Protein Mediated by Phosphorylation and Myristoylation Is Critical for Viral Pathogenicity. MOLECULAR PLANT 2018; 11:1466-1481. [PMID: 30523782 DOI: 10.1016/j.molp.2018.10.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 05/13/2023]
Abstract
Many geminivirus C4 proteins induce severe developmental abnormalities in plants. We previously demonstrated that Tomato leaf curl Yunnan virus (TLCYnV) C4 induces plant developmental abnormalities at least partically by decreasing the accumulation of NbSKη, an ortholog of Arabidopsis BIN2 kinase involved in the brassinosteroid signaling pathway, in the nucleus through directing it to the plasma membrane. However, the molecular mechanism by which the membrane-associated C4 modifies the localization of NbSKη in the host cell remains unclear. Here, we show that TLCYnV C4 is a nucleocytoplasmic shuttle protein, and that C4 shuttling is accompanied by nuclear export of NbSKη. TLCYnV C4 is phosphorylated by NbSKη in the nucleus, which promotes myristoylation of the viral protein. Myristoylation of phosphorylated C4 favors its interaction with exportin-α (XPO I), which in turn facilitates nuclear export of the C4/NbSKη complex. Supporting this model, chemical inhibition of N-myristoyltransferases or exportin-α enhanced nuclear retention of C4, and mutations of the putative phosphorylation or myristoylation sites in C4 resulted in increased nuclear retention of C4 and thus decreased severity of C4-induced developmental abnormalities. The impact of C4 on development is also lessened when a nuclear localization signal or a nuclear export signal is added to its C-terminus, restricting it to a specific cellular niche and therefore impairing nucleocytoplasmic shuttling. Taken together, our results suggest that nucleocytoplasmic shuttling of TLCYnV C4, enabled by phosphorylation by NbSKη, myristoylation, and interaction with exportin-α, is critical for its function as a pathogenicity factor.
Collapse
Affiliation(s)
- Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tao Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Garry Sunter
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
37
|
Corbic Ramljak I, Stanger J, Real-Hohn A, Dreier D, Wimmer L, Redlberger-Fritz M, Fischl W, Klingel K, Mihovilovic MD, Blaas D, Kowalski H. Cellular N-myristoyltransferases play a crucial picornavirus genus-specific role in viral assembly, virion maturation, and infectivity. PLoS Pathog 2018; 14:e1007203. [PMID: 30080883 PMCID: PMC6089459 DOI: 10.1371/journal.ppat.1007203] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/13/2018] [Accepted: 07/05/2018] [Indexed: 01/06/2023] Open
Abstract
In nearly all picornaviruses the precursor of the smallest capsid protein VP4 undergoes co-translational N-terminal myristoylation by host cell N-myristoyltransferases (NMTs). Curtailing this modification by mutation of the myristoylation signal in poliovirus has been shown to result in severe assembly defects and very little, if any, progeny virus production. Avoiding possible pleiotropic effects of such mutations, we here used pharmacological abrogation of myristoylation with the NMT inhibitor DDD85646, a pyrazole sulfonamide originally developed against trypanosomal NMT. Infection of HeLa cells with coxsackievirus B3 in the presence of this drug decreased VP0 acylation at least 100-fold, resulting in a defect both early and late in virus morphogenesis, which diminishes the yield of viral progeny by about 90%. Virus particles still produced consisted mainly of provirions containing RNA and uncleaved VP0 and, to a substantially lesser extent, of mature virions with cleaved VP0. This indicates an important role of myristoylation in the viral maturation cleavage. By electron microscopy, these RNA-filled particles were indistinguishable from virus produced under control conditions. Nevertheless, their specific infectivity decreased by about five hundred fold. Since host cell-attachment was not markedly impaired, their defect must lie in the inability to transfer their genomic RNA into the cytosol, likely at the level of endosomal pore formation. Strikingly, neither parechoviruses nor kobuviruses are affected by DDD85646, which appears to correlate with their native capsid containing only unprocessed VP0. Individual knockout of the genes encoding the two human NMT isozymes in haploid HAP1 cells further demonstrated the pivotal role for HsNMT1, with little contribution by HsNMT2, in the virus replication cycle. Our results also indicate that inhibition of NMT can possibly be exploited for controlling the infection by a wide spectrum of picornaviruses.
Collapse
Affiliation(s)
- Irena Corbic Ramljak
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Julia Stanger
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Antonio Real-Hohn
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Dominik Dreier
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Laurin Wimmer
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | | | - Wolfgang Fischl
- Haplogen GmbH, Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | | | - Dieter Blaas
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Heinrich Kowalski
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
38
|
Ozsahin E, van Oers MM, Nalcacioglu R, Demirbag Z. Protein–protein interactions among the structural proteins of Chilo iridescent virus. J Gen Virol 2018; 99:851-859. [DOI: 10.1099/jgv.0.001067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Emine Ozsahin
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Monique M. van Oers
- Wageningen University and Research, Laboratory of Virology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Remziye Nalcacioglu
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Zihni Demirbag
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
39
|
Karki M, Kumar A, Venkatesan G, Arya S, Pandey AB. Genetic analysis of L1R myristoylated protein of Capripoxviruses reveals structural homogeneity among poxviruses. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 58:224-231. [PMID: 29306003 DOI: 10.1016/j.meegid.2018.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/27/2017] [Accepted: 01/01/2018] [Indexed: 10/18/2022]
Abstract
Sheeppox virus (SPPV) and goatpox virus (GTPV) are members of the genus Capripoxvirus (CaPV) of the family Poxviridae. CaPVs are responsible for important contagious diseases of small ruminants that are enzootic to the Indian sub-continent, Central and Northern Africa and the Middle East. In the present study, the sequence and phylogenetic analysis of the L1R gene of sixteen CaPV isolates (seven SPPV and nine GTPV) from India were performed along with 3D homology modeling of the L1R protein. L1R is a myristoylated protein responsible for virion assembly and being present on intracellular mature virion (IMV) surface, it is also a potent target for eliciting neutralizing antibodies. Sequence analysis of CaPV L1R gene revealed an ORF of 738bp with >99% and >96% identity within species and between species, respectively, at both nucleotide as well as amino acid levels. Phylogenetic analysis displayed distinct clusters of members of genus Capripoxvirus, as GTPV, SPPV and LSDV. L1R at the protein level showed various species-specific signature residues that may be useful for future grouping or genotyping of CaPV members. CaPV L1R was predicted to possess myristoylation motif GAAASIQTTVNTLNEKI and a potential N-glycosylation site at amino acid residue 50 (Asn). Despite of different host specificity in poxviruses, comparative sequence analysis of L1R proteins revealed highly conserved nature with presence of myristoylation motif (GXXXS) and six cysteine residues forming three disulfide bonds among all poxviruses. The conserved and immunogenic nature of the CaPV L1R gene may prove to be a potential candidate/target for developing molecular diagnostics including recombinant protein based assays and prophylactics for the control of CaPV diseases in tropical countries like India.
Collapse
Affiliation(s)
- Monu Karki
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital, Uttarakhand, India
| | - Amit Kumar
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital, Uttarakhand, India
| | - Gnanavel Venkatesan
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital, Uttarakhand, India.
| | - Sargam Arya
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital, Uttarakhand, India
| | - A B Pandey
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital, Uttarakhand, India
| |
Collapse
|
40
|
Kordyukova LV, Shtykova EV, Baratova LA, Svergun DI, Batishchev OV. Matrix proteins of enveloped viruses: a case study of Influenza A virus M1 protein. J Biomol Struct Dyn 2018; 37:671-690. [PMID: 29388479 DOI: 10.1080/07391102.2018.1436089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Influenza A virus, a member of the Orthomyxoviridae family of enveloped viruses, is one of the human and animal top killers, and its structure and components are therefore extensively studied during the last decades. The most abundant component, M1 matrix protein, forms a matrix layer (scaffold) under the viral lipid envelope, and the functional roles as well as structural peculiarities of the M1 protein are still under heavy debate. Despite multiple attempts of crystallization, no high resolution structure is available for the full length M1 of Influenza A virus. The likely reason for the difficulties lies in the intrinsic disorder of the M1 C-terminal part preventing diffraction quality crystals to be grown. Alternative structural methods including synchrotron small-angle X-ray scattering (SAXS), atomic force microscopy, cryo-electron microscopy/tomography are therefore widely applied to understand the structure of M1, its self-association and interactions with the lipid membrane and the viral nucleocapsid. These methods reveal striking similarities in the behavior of M1 and matrix proteins of other enveloped RNA viruses, with the differences accompanied by the specific features of the viral lifecycles, thus suggesting common interaction principles and, possibly, common evolutional ancestors. The structural information on the Influenza A virus M1 protein obtained to the date strongly suggests that the intrinsic disorder in the C-terminal domain has important functional implications.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Eleonora V Shtykova
- b Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences , Moscow , Russian Federation.,c Semenov Institute of Chemical Physics , Russian Academy of Sciences , Moscow , Russian Federation
| | - Lyudmila A Baratova
- a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | | | - Oleg V Batishchev
- e Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Moscow , Russian Federation.,f Moscow Institute of Physics and Technology , Dolgoprudniy , Russian Federation
| |
Collapse
|
41
|
Jia K, Yuan Y, Liu W, Liu L, Qin Q, Yi M. Identification of Inhibitory Compounds Against Singapore Grouper Iridovirus Infection by Cell Viability-Based Screening Assay and Droplet Digital PCR. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:35-44. [PMID: 29209860 DOI: 10.1007/s10126-017-9785-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Singapore grouper iridovirus (SGIV) is one of the major causative agents of fish diseases and has caused significant economic losses in the aquaculture industry. There is currently no commercial vaccine or effective antiviral treatment against SGIV infection. Annually, an increasing number of small molecule compounds from various sources have been produced, and many are proved to be potential inhibitors against viruses. Here, a high-throughput in vitro cell viability-based screening assay was developed to identify antiviral compounds against SGIV using the luminescent-based CellTiter-Glo reagent in cultured grouper spleen cells by quantificational measurement of the cytopathic effects induced by SGIV infection. This assay was utilized to screen for potential SGIV inhibitors from five customized compounds which had been reported to be capable of inhibiting other viruses and 30 compounds isolated from various marine organisms, and three of them [ribavirin, harringtonine, and 2-hydroxytetradecanoic acid (2-HOM)] were identified to be effective on inhibiting SGIV infection, which was further confirmed with droplet digital PCR (ddPCR). In addition, the ddPCR results revealed that ribavirin and 2-HOM inhibited SGIV replication and entry in a dose-dependent manner, and harringtonine could reduce SGIV replication rather than entry at the working concentration without significant toxicity. These findings provided an easy and reliable cell viability-based screening assay to identify compounds with anti-SGIV effect and a way of studying the anti-SGIV mechanism of compounds.
Collapse
Affiliation(s)
- Kuntong Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yongming Yuan
- Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore, 117543, Singapore
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lan Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
42
|
Peng T, Hang HC. Chemical Proteomic Profiling of Protein Fatty-Acylation in Microbial Pathogens. Curr Top Microbiol Immunol 2018; 420:93-110. [PMID: 30128826 DOI: 10.1007/82_2018_126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein fatty-acylation describes the covalent modification of protein with fatty acids during or after translation. Chemical proteomic profiling methods have provided new opportunities to explore protein fatty-acylation in microbial pathogens. Recent studies suggest that protein fatty-acylation is essential to survival and pathogenesis of eukaryotic pathogens such as parasites and fungi. Moreover, fatty-acylation in host cells can be exploited or manipulated by pathogenic bacteria. Herein, we first review the prevalent classes of fatty-acylation in microbial pathogens and the chemical proteomic profiling methods for their global analysis. We then summarize recent fatty-acylation profiling studies performed in eukaryotic pathogens and during bacterial infections, highlighting how they contribute to functional characterization of fatty-acylation under these contexts.
Collapse
Affiliation(s)
- Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
43
|
Breach: Host Membrane Penetration and Entry by Nonenveloped Viruses. Trends Microbiol 2017; 26:525-537. [PMID: 29079499 DOI: 10.1016/j.tim.2017.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 11/22/2022]
Abstract
Disruption of host membranes by nonenveloped viruses, which allows the nucleocapsid or genome to enter the cytosol, is a mechanistically diverse process. Although the membrane-penetrating agents are usually small, hydrophobic or amphipathic peptides deployed from the capsid interior during entry, their manner of membrane interaction varies substantially. In this review, we discuss recent data about the molecular pathways for externalization of viral peptides amidst conformational alterations in the capsid, as well as mechanisms of membrane penetration, which is influenced by structural features of the peptides themselves as well as physicochemical properties of membranes, and other host factors. The membrane-penetrating components of nonenveloped viruses constitute an interesting class of cell-penetrating peptides, and may have potential therapeutic value for gene transfer.
Collapse
|
44
|
Lin J, Dargazany R, Alexander-Katz A. Lipid Flip-Flop and Pore Nucleation on Zwitterionic Bilayers are Asymmetric under Ionic Imbalance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603708. [PMID: 28426163 DOI: 10.1002/smll.201603708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/11/2017] [Indexed: 06/07/2023]
Abstract
Lipid flip-flop and its associated transient pore formation are key thermodynamic properties of living cell membranes. However, there is a lack of understanding of whether ionic imbalance that exists ubiquitously across cell membranes affects lipid flip-flop and its associated functions. Potential of mean force calculations show that the free-energy barrier of lipid flip-flop on the extracellular leaflet reduces with the presence of ionic imbalance, whereas the barrier on the intracellular leaflet is generally not affected. The linear decrease of the activation energy of lipid flip-flop on the extracellular leaflet is consistent with the experimentally measured conductance-voltage relationship of zwitterionic lipid bilayers. This suggests: 1) lipid flip-flop has a directionality under physiological conditions and phospholipids accumulate at a rate on the order of 105 µm-2 h-1 on the cytoplasmic side of cell membranes; 2) ion permeation across a lipid membrane is moderated by lipid flip-flop; 3) the energy barrier of pore formation is aligned with the weaker leaflet that has a lower energy of lipid flip-flop. The asymmetry of lipid flip-flop and pore nucleation may have substantial implications for protein translocation, signaling, enzymatic activities, vesicle fusion, and transportation of biomolecules on cell membranes.
Collapse
Affiliation(s)
- Jiaqi Lin
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Roozbeh Dargazany
- College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Alfredo Alexander-Katz
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
45
|
Price SJ. Comparative Genomics of Amphibian-like Ranaviruses, Nucleocytoplasmic Large DNA Viruses of Poikilotherms. Evol Bioinform Online 2016; 11:71-82. [PMID: 27812275 PMCID: PMC5081246 DOI: 10.4137/ebo.s33490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
Recent research on genome evolution of large DNA viruses has highlighted a number of incredibly dynamic processes that can facilitate rapid adaptation. The genomes of amphibian-like ranaviruses – double-stranded DNA viruses infecting amphibians, reptiles, and fish (family Iridoviridae) – were examined to assess variation in genome content and evolutionary processes. The viruses studied were closely related, but their genome content varied considerably, with 29 genes identified that were not present in all of the major clades. Twenty-one genes had evidence of recombination, while a virus isolated from a captive reptile appeared to be a mosaic of two divergent parents. Positive selection was also found to be acting on more than a quarter of Ranavirus genes and was found most frequently in the Spanish common midwife toad virus, which has had a severe impact on amphibian host communities. Efforts to resolve the root of this group by inclusion of an outgroup were inconclusive, but a set of core genes were identified, which recovered a well-supported species tree.
Collapse
Affiliation(s)
- Stephen J Price
- Genetics, Evolution and Environment department, UCL Genetics Institute, London, UK.; Institute of Zoology, Zoological Society of London (ZSL), London, UK
| |
Collapse
|
46
|
Hipp K, Rau P, Schäfer B, Pfannstiel J, Jeske H. Translation, modification and cellular distribution of two AC4 variants of African cassava mosaic virus in yeast and their pathogenic potential in plants. Virology 2016; 498:136-148. [PMID: 27584591 DOI: 10.1016/j.virol.2016.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 11/29/2022]
Abstract
Plant infecting geminiviruses encode a small (A)C4 protein within the open reading frame of the replication-initiator protein. In African cassava mosaic virus, two in-frame start codons may be used for the translation of a longer and a shorter AC4 variant. Both were fused to green fluorescent protein or glutathione-S-transferase genes and expressed in fission yeast. The longer variant accumulated in discrete spots in the cytoplasm, whereas the shorter variant localized to the plasma membrane. A similar expression pattern was found in plants. A myristoylation motif may promote a targeting of the shorter variant to the plasma membrane. Mass spectrometry analysis of the yeast-expressed shorter variant detected the corresponding myristoylation. The biological relevance of the second start codon was confirmed using mutated infectious clones. Whereas mutating the first start codon had no effect on the infectivity in Nicotiana benthamiana plants, the second start codon proved to be essential.
Collapse
Affiliation(s)
- Katharina Hipp
- University of Stuttgart, Institute of Biomaterials and biomolecular Systems, Department of Molecular Biology and Plant Virology, Pfaffenwaldring 57, 70550 Stuttgart, Germany.
| | - Peter Rau
- University of Stuttgart, Institute of Biomaterials and biomolecular Systems, Department of Molecular Biology and Plant Virology, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | - Benjamin Schäfer
- University of Stuttgart, Institute of Biomaterials and biomolecular Systems, Department of Molecular Biology and Plant Virology, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | - Jens Pfannstiel
- University of Hohenheim, Mass Spectrometry Core Facility, August-von-Hartmann-Straße 3, 70599 Stuttgart, Germany
| | - Holger Jeske
- University of Stuttgart, Institute of Biomaterials and biomolecular Systems, Department of Molecular Biology and Plant Virology, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| |
Collapse
|
47
|
Myristoylation of the Arenavirus Envelope Glycoprotein Stable Signal Peptide Is Critical for Membrane Fusion but Dispensable for Virion Morphogenesis. J Virol 2016; 90:8341-50. [PMID: 27412594 DOI: 10.1128/jvi.01124-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/01/2016] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED Arenaviruses are responsible for severe and often fatal hemorrhagic disease. In the absence of effective antiviral therapies and vaccines, these viruses pose serious threats to public health and biodefense. Arenaviruses enter the host cell by fusion of the viral and endosomal membranes, a process mediated by the virus envelope glycoprotein GPC. Unlike other class I viral fusion proteins, GPC retains its stable signal peptide (SSP) as an essential third subunit in the mature complex. SSP spans the membrane twice and is myristoylated at its cytoplasmic N terminus. Mutations that abolish SSP myristoylation have been shown to reduce pH-induced cell-cell fusion activity of ectopically expressed GPC to ∼20% of wild-type levels. In order to examine the role of SSP myristoylation in the context of the intact virus, we used reverse genetics to generate Junín viruses (Candid #1 isolate) in which the critical glycine-2 residue in SSP was either replaced by alanine (G2A) or deleted (ΔG2). These mutant viruses produced smaller foci of infection in Vero cells and showed an ∼5-fold reduction in specific infectivity, commensurate with the defect in cell-cell fusion. However, virus assembly and GPC incorporation into budded virions were unaffected. Our findings suggest that the myristate moiety is cryptically disposed in the prefusion GPC complex and may function late in the fusion process to promote merging of the viral and cellular membranes. IMPORTANCE Hemorrhagic fever arenaviruses pose significant threats to public health and biodefense. Arenavirus entry into the host cell is promoted by the virus envelope glycoprotein GPC. Unlike other viral envelope glycoproteins, GPC contains a myristoylated stable signal peptide (SSP) as an essential third subunit. Myristoylation has been shown to be important for the membrane fusion activity of recombinantly expressed GPC. Here, we use reverse genetics to study the role of SSP myristoylation in the context of the intact virion. We find that nonmyristoylated GPC mutants of the Candid #1 strain of Junín virus display a commensurate deficiency in their infectivity, albeit without additional defects in virion assembly and budding. These results suggest that SSP myristoylation may function late in the fusion process to facilitate merging of the viral and cellular membranes. Antiviral agents that target this novel aspect of GPC membrane fusion may be useful in the treatment of arenavirus hemorrhagic fevers.
Collapse
|
48
|
Morita D, Sugita M. Lipopeptides: a novel antigen repertoire presented by major histocompatibility complex class I molecules. Immunology 2016; 149:139-45. [PMID: 27402593 DOI: 10.1111/imm.12646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 01/13/2023] Open
Abstract
Post-translationally modified peptides, such as those containing either phosphorylated or O-glycosylated serine/threonine residues, may be presented to cytotoxic T lymphocytes (CTLs) by MHC class I molecules. Most of these modified peptides are captured in the MHC class I groove in a similar manner to that for unmodified peptides. N-Myristoylated 5-mer lipopeptides have recently been identified as a novel chemical class of MHC class I-presented antigens. The rhesus classical MHC class I allele, Mamu-B*098, was found to be capable of binding N-myristoylated lipopeptides and presenting them to CTLs. A high-resolution X-ray crystallographic analysis of the Mamu-B*098:lipopeptide complex revealed that the myristic group as well as conserved C-terminal serine residue of the lipopeptide ligand functioned as anchors, whereas the short stretch of three amino acid residues located in the middle of the lipopeptides was only exposed externally with the potential to interact directly with specific T-cell receptors. Therefore, the modes of lipopeptide-ligand interactions with MHC class I and with T-cell receptors are novel and fundamentally distinct from that for MHC class I-presented peptides. Another lipopeptide-presenting MHC class I allele has now been identified, leading us to the prediction that MHC class I molecules may be separated on a functional basis into two groups: one presenting long peptides and the other presenting short lipopeptides. Since the N-myristoylation of viral proteins is often linked to pathogenesis, CTLs capable of sensing N-myristoylation may serve to control pathogenic viruses, raising the possibility for the development of a new type of lipopeptide vaccine.
Collapse
Affiliation(s)
- Daisuke Morita
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
49
|
Molecular and Genetic Characterization of HIV-1 Tat Exon-1 Gene from Cameroon Shows Conserved Tat HLA-Binding Epitopes: Functional Implications. Viruses 2016; 8:v8070196. [PMID: 27438849 PMCID: PMC4974531 DOI: 10.3390/v8070196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/24/2016] [Accepted: 07/12/2016] [Indexed: 12/26/2022] Open
Abstract
HIV-1 Tat plays a critical role in viral transactivation. Subtype-B Tat has potential use as a therapeutic vaccine. However, viral genetic diversity and population genetics would significantly impact the efficacy of such a vaccine. Over 70% of the 37-million HIV-infected individuals are in sub-Saharan Africa (SSA) and harbor non-subtype-B HIV-1. Using specimens from 100 HIV-infected Cameroonians, we analyzed the sequences of HIV-1 Tat exon-1, its functional domains, post-translational modifications (PTMs), and human leukocyte antigens (HLA)-binding epitopes. Molecular phylogeny revealed a high genetic diversity with nine subtypes, CRF22_01A1/CRF01_AE, and negative selection in all subtypes. Amino acid mutations in Tat functional domains included N24K (44%), N29K (58%), and N40K (30%) in CRF02_AG, and N24K in all G subtypes. Motifs and phosphorylation analyses showed conserved amidation, N-myristoylation, casein kinase-2 (CK2), serine and threonine phosphorylation sites. Analysis of HLA allelic frequencies showed that epitopes for HLAs A*0205, B*5301, Cw*0401, Cw*0602, and Cw*0702 were conserved in 58%-100% of samples, with B*5301 epitopes having binding affinity scores > 100 in all subtypes. This is the first report of N-myristoylation, amidation, and CK2 sites in Tat; these PTMs and mutations could affect Tat function. HLA epitopes identified could be useful for designing Tat-based vaccines for highly diverse HIV-1 populations, as in SSA.
Collapse
|
50
|
Salah Ud-Din AIM, Tikhomirova A, Roujeinikova A. Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT). Int J Mol Sci 2016; 17:E1018. [PMID: 27367672 PMCID: PMC4964394 DOI: 10.3390/ijms17071018] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) catalyze the transfer of an acyl moiety from acyl coenzyme A (acyl-CoA) to a diverse group of substrates and are widely distributed in all domains of life. This review of the currently available data acquired on GNAT enzymes by a combination of structural, mutagenesis and kinetic methods summarizes the key similarities and differences between several distinctly different families within the GNAT superfamily, with an emphasis on the mechanistic insights obtained from the analysis of the complexes with substrates or inhibitors. It discusses the structural basis for the common acetyltransferase mechanism, outlines the factors important for the substrate recognition, and describes the mechanism of action of inhibitors of these enzymes. It is anticipated that understanding of the structural basis behind the reaction and substrate specificity of the enzymes from this superfamily can be exploited in the development of novel therapeutics to treat human diseases and combat emerging multidrug-resistant microbial infections.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Alexandra Tikhomirova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|