1
|
Zani K, Hobeika J, Sun Y, Kohler C, Cherian A, Fields T, Jia Q, Tang L, Hysmith ND, Margolis EB. Nasal microbiota predictors for methicillin resistant Staphylococcus colonization in critically ill children. PLoS One 2025; 20:e0316460. [PMID: 39813207 PMCID: PMC11734933 DOI: 10.1371/journal.pone.0316460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Surveillance cultures to identify patients colonized with methicillin-resistant Staphylococcus aureus (MRSA) is recommended at pediatric intensive care unit (PICU) admission but doesn't capture other methicillin-resistant Staphylococcus and is resource intensive. We determined the prevalence and identified nasal microbiome predictors for methicillin-resistant Staphylococcus colonization at the time of PICU admission. STUDY DESIGN A prospective cohort study was performed in a 20-bed pediatric intensive care unit (PICU) between 2020-2021. Anterior nares nasal swabs processed for MRSA culture, nasal microbiome and mecA+ qPCR were obtained within first five days after PICU admission. Predictive values of methicillin-resistant Staphylococcus carriage on symptoms of infection and for nasal microbiome attributes were calculated. RESULTS A total of 5 (8.0%) of 62 patients had a nares culture positive for MRSA and 22 (35.5%) of 63 patients had methicillin-resistant Staphylococcus (MRSA or methicillin-resistant coagulase-negative Staphylococci). In univariate analysis, carriage with MRSA or MRCoNS was associated with having a fever during PICU stay. Colonization with a distinct set of microbes (including Haemophilus, Streptococcus, Prevotella and Corynebacterium sp.) was predictive of having methicillin-resistant Staphylococcus colonization. CONCLUSIONS Carriage with methicillin-resistant Staphylococcus may lead to transmission in critically ill pediatric patients. Carriage of particular nasal microbes appears to facilitate colonization with methicillin-resistant Staphylococcus.
Collapse
Affiliation(s)
- Kathleen Zani
- Department of Pediatrics, Division of Critical Care, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Joseph Hobeika
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Yilun Sun
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Christina Kohler
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Anju Cherian
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Trinity Fields
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Qidong Jia
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Li Tang
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Nicholas D. Hysmith
- Department of Pediatrics, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Elisa B. Margolis
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, United States of America
- Department of Pediatrics, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN, United States of America
| |
Collapse
|
2
|
Davis SC, Gil J, Solis M, Strong R. The efficacy of a nitric oxide-releasing formulation on nares isolated Methicillin-Resistant Staphylococcus aureus in porcine wound infection model. Front Cell Infect Microbiol 2024; 14:1501360. [PMID: 39691695 PMCID: PMC11649637 DOI: 10.3389/fcimb.2024.1501360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Background The colonization of Staphylococcus aureus (SA) acquired in nosocomial infections may develop acute and chronic infections such as Methicillin-Resistant Staphylococcus aureus (MRSA) in the nose. As a commensal microorganism with the ability to form a biofilm, SA can dwell on the skin, nostrils, throat, perineum, and axillae of healthy humans. Nitric oxide (NO) is an unstable gas with various molecular functions and has antimicrobial properties which are converted into many potential treatments. Methods Methicillin-Resistant Staphylococcus aureus MRSA BAA1686 isolated from nasal infection was used in a porcine wound infection model. Deep partial-thickness wounds (10mm x 7mm x 0.5mm) were made on three animals using a specialized electrokeratome. All wounds were inoculated and then covered with polyurethane film dressings for biofilm formation. After 48 hours, three wounds were recovered from each animal for baseline enumeration. The remaining wounds were randomly assigned to six treatment groups and treated once daily. The treatment groups are as follows: NO topical ointments concentrations of 0.3, 0.9 and 1.8%, Vehicle Ointment, Mupirocin 2%, and Untreated Control. Microbiological recoveries were conducted on day 4 and day 7. Results The greatest efficacy observed from the NO formulations against MRSA BAA1686 was the 1.8% concentration. This agent was able to reduce more than 99% of bacterial counts when compared to Baseline, Vehicle Ointment, and Untreated Control wounds on both assessment days. Mupirocin 2% was the overall best treatment against MRSA BAA1686 on both assessment days, with a significant reduction (p ≤ 0.05) of 4.70 ± 0.13 Log CFU/mL from day 4 to day 7. Conclusions Overall, the positive control Mupirocin 2% was the most effective in eliminating MRSA BAA1686 throughout the study. This experiment demonstrated a downward trend from the highest concentration of NO topical ointment formulations to the lowest concentrations on both assessment days (0.3% - 1.8%). Out of all NO topical ointments, the highest concentration (1.8%) was the most effective with the potential to be an alternative treatment against a MRSA nasal strain biofilm.
Collapse
Affiliation(s)
- Stephen C. Davis
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | | | | |
Collapse
|
3
|
Fariñas-Guerrero F, Villatoro AJ, Martinez-Manzanares E, López-Gigosos R. Occurrence of Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus pseudintermedius colonization among veterinarians in the province of Malaga, Spain. Vet World 2024; 17:2719-2724. [PMID: 39897375 PMCID: PMC11784035 DOI: 10.14202/vetworld.2024.2719-2724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/31/2024] [Indexed: 02/04/2025] Open
Abstract
Background and Aim Staphylococcus pseudintermedius and Staphylococcus aureus are common colonizing pathogens in companion animals. These opportunistic pathogens can cause infections of varying frequency and severity in humans and pets. Studies on Staphylococcus colonization in veterinarians are scarce. This study aimed to investigate the colonization of the nostrils and hands by S. aureus, Staphylococcus epidermidis, and S. pseudintermedius among healthy clinical practice veterinarians in the province of Malaga (Spain), with a particular focus on their potential antibiotic resistance. Materials and Methods A request for voluntary participation was extended to professionals from the Official College of Veterinarians of Malaga. Nasal and hand swabs were collected by two trained technicians in January 2024, and all samples were delivered to the laboratory within 24 h. Gram staining, catalase, oxidase, and coagulase tests were performed. The susceptibility of the isolated bacteria to 11 antibiotics was evaluated. Results A total of 50 clinical practice veterinarians were enrolled in the study, comprising 36 women and 14 men from 31 veterinary clinics across Málaga province. A total of 32% of the nasal samples yielded S. aureus, whereas 64% were found to contain S. epidermidis. In total, 30% of the hand samples yielded S. aureus and 30% yielded S. epidermidis. The participants did not exhibit any strains of S. pseudintermedius in their nasal samples or hands. Two strains (11.1%) of methicillin-resistant S. aureus were isolated from 18 strains isolated from nostrils. Furthermore, a high prevalence of S. aureus strains resistant to ampicillin (94.4%) and amoxicillin (72.2%) was observed. Conclusions The colonization profiles of veterinary professionals were similar to those observed in the general population. Further research is required among veterinary professionals, companion animals, and their owners to better understand the colonization processes and the pet-human interface within a "One Health" approach.
Collapse
Affiliation(s)
- Fernando Fariñas-Guerrero
- Institute of Clinical Immunology and Infectious Diseases, 29010 Málaga, Spain
- Cátedra One Health. Málaga University and Official College of Veterinarians, 29010 Málaga, Spain
| | - Antonio J. Villatoro
- Cátedra One Health. Málaga University and Official College of Veterinarians, 29010 Málaga, Spain
- Immune Stem (Immunology and Cell Therapy), 29018, Málaga, Spain
| | - Eduardo Martinez-Manzanares
- Cátedra One Health. Málaga University and Official College of Veterinarians, 29010 Málaga, Spain
- Department of Microbiology, Faculty of Medicine, Málaga University, 29010, Málaga, Spain
| | - Rosa López-Gigosos
- Cátedra One Health. Málaga University and Official College of Veterinarians, 29010 Málaga, Spain
- Department of Public Health and Psychiatry, Faculty of Medicine, Málaga University, 29010, Málaga, Spain
| |
Collapse
|
4
|
Islam S, Nasrin N, Tithi NS, Khatun F, Asaduzzaman M, Topa AF, Kabir MF, Haque FKM, Jubair M, Rahman M, Lehmann C. Antimicrobial Susceptibility and Genomic Profiles of Multidrug-Resistant Staphylococcus aureus from Nasopharynx of Asymptomatic Children in Dhaka, Bangladesh. Life (Basel) 2024; 14:971. [PMID: 39202713 PMCID: PMC11355696 DOI: 10.3390/life14080971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Children carrying Staphylococcus aureus in their nasopharynx are at a higher risk of contracting systemic infection. Due to lack of sufficient information regarding such carriage, this study was conducted to explore the prevalence, antibiotic susceptibility, and genomic profiles of S. aureus isolated from nasopharyngeal samples of 163 randomly selected asymptomatic Bangladeshi children aged from 5-<15 years. Antibiotic susceptibility pattern and genomic analysis of the samples were conducted using standard microbiological methods and genomic tools. The carriage was confirmed in 44 (27%) children who were mostly well nourished without respiratory symptoms in the last 3 months. Higher carriage was observed among the younger age group (5-<10 years) who completed vaccines for pneumonia (p = 0.002) and influenza (p = 0.004). Among the isolates, 84.1% were multidrug-resistant and 47.5% (n = 40) were methicillin-resistant S. aureus (MRSA). All the isolates (100%) were resistant to cefixime with higher resistance to ampicillin (95.5%) and penicillin (90.9%). Among the three investigated isolates, two were ST80 (ID-1 and ID-52) and one was a novel strain (ID-19) with the presence of aph-Stph, blaI, blaZ, dha1, fosB, lmrS, mepA, norA, and tet38 genes. The current research demonstrates a high incidence of multidrug-resistant S. aureus and reports the first instance of ST80 in asymptomatic children in Bangladesh.
Collapse
Affiliation(s)
- Sufia Islam
- Department of Pharmacy, East West University, Dhaka 1212, Bangladesh; (N.N.); (N.S.T.); (F.K.); (A.F.T.)
| | - Nishat Nasrin
- Department of Pharmacy, East West University, Dhaka 1212, Bangladesh; (N.N.); (N.S.T.); (F.K.); (A.F.T.)
| | - Nigar Sultana Tithi
- Department of Pharmacy, East West University, Dhaka 1212, Bangladesh; (N.N.); (N.S.T.); (F.K.); (A.F.T.)
| | - Farjana Khatun
- Department of Pharmacy, East West University, Dhaka 1212, Bangladesh; (N.N.); (N.S.T.); (F.K.); (A.F.T.)
| | - Muhammad Asaduzzaman
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh;
- School of Pharmacy, BRAC University, Dhaka 1212, Bangladesh
| | - Anika Fatema Topa
- Department of Pharmacy, East West University, Dhaka 1212, Bangladesh; (N.N.); (N.S.T.); (F.K.); (A.F.T.)
| | - Md Farhad Kabir
- Nutrition & Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh;
| | | | - Mohammad Jubair
- Genome Centre, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (M.J.); (M.R.)
| | - Mustafizur Rahman
- Genome Centre, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (M.J.); (M.R.)
- Virology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| |
Collapse
|
5
|
Radhouani M, Starkl P. Adjuvant-independent airway sensitization and infection mouse models leading to allergic asthma. FRONTIERS IN ALLERGY 2024; 5:1423938. [PMID: 39157265 PMCID: PMC11327155 DOI: 10.3389/falgy.2024.1423938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/05/2024] [Indexed: 08/20/2024] Open
Abstract
Asthma is a chronic respiratory disease of global importance. Mouse models of allergic asthma have been instrumental in advancing research and novel therapeutic strategies for patients. The application of relevant allergens and physiological routes of exposure in such models has led to valuable insights into the complexities of asthma onset and development as well as key disease mechanisms. Furthermore, environmental microbial exposures and infections have been shown to play a fundamental part in asthma pathogenesis and alter disease outcome. In this review, we delve into physiological mouse models of allergic asthma and explore literature reports on most significant interplays between microbial infections and asthma development with relevance to human disease.
Collapse
Affiliation(s)
- Mariem Radhouani
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp Starkl
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Kumari P, Banerjee SK, Murty US, Ravichandiran V, Mohan U. Harnessing the combined effect of antivirulence agent trans-chalcone with bactericidal curcumin against sortase A enzyme to tackle Gram-positive bacterial infections. Folia Microbiol (Praha) 2024; 69:639-652. [PMID: 37930610 DOI: 10.1007/s12223-023-01097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Gram-positive bacteria are responsible for a wide range of infections in humans. In most Gram-positive bacteria, sortase A plays a significant role in attaching virulence factors to the bacteria's cell wall. These cell surface proteins play a significant role in virulence and pathogenesis. Even though antibiotics are available to treat these infections, there is a continuous search for an alternative strategy due to an increase in antibiotic resistance. Thus, using anti-sortase drugs to combat these bacterial infections may be a promising approach. Here, we describe a method for targeting Gram-positive bacterial infection by combining curcumin and trans-chalcone as sortase A inhibitors. We have used curcumin and trans-chalcone alone and in combination as a sortase A inhibitor. We have seen ~78%, ~43%, and ~94% inhibition when treated with curcumin, trans-chalcone, and a combination of both compounds, respectively. The compounds have also shown a significant effect on biofilm formation, IgG binding, protein A recruitment, and IgG deposition. We discovered that combining curcumin and trans-chalcone is more effective against Gram-positive bacteria than either compound alone. The present work demonstrated that a combination of these natural compounds could be used as an antivirulence therapy against Gram-positive bacterial infection.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, 781101, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, 781101, India
| | | | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, 700054, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, 700054, India.
| |
Collapse
|
7
|
Calvo M, Stefani S, Migliorisi G. Bacterial Infections in Intensive Care Units: Epidemiological and Microbiological Aspects. Antibiotics (Basel) 2024; 13:238. [PMID: 38534673 DOI: 10.3390/antibiotics13030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Intensive care units constitute a critical setting for the management of infections. The patients' fragilities and spread of multidrug-resistant microorganisms lead to relevant difficulties in the patients' care. Recent epidemiological surveys documented the Gram-negative bacteria supremacy among intensive care unit (ICU) infection aetiologies, accounting for numerous multidrug-resistant isolates. Regarding this specific setting, clinical microbiology support holds a crucial role in the definition of diagnostic algorithms. Eventually, the complete patient evaluation requires integrating local epidemiological knowledge into the best practice and the standardization of antimicrobial stewardship programs. Clinical laboratories usually receive respiratory tract and blood samples from ICU patients, which express a significant predisposition to severe infections. Therefore, conventional or rapid diagnostic workflows should be modified depending on patients' urgency and preliminary colonization data. Additionally, it is essential to complete each microbiological report with rapid phenotypic minimum inhibitory concentration (MIC) values and information about resistance markers. Microbiologists also help in the eventual integration of ultimate genome analysis techniques into complicated diagnostic workflows. Herein, we want to emphasize the role of the microbiologist in the decisional process of critical patient management.
Collapse
Affiliation(s)
- Maddalena Calvo
- U.O.C. Laboratory Analysis Unit, A.O.U. "Policlinico-San Marco", Via S. Sofia 78, 95123 Catania, Italy
| | - Stefania Stefani
- U.O.C. Laboratory Analysis Unit, A.O.U. "Policlinico-San Marco", Via S. Sofia 78, 95123 Catania, Italy
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy
| | - Giuseppe Migliorisi
- U.O.C. Laboratory Analysis Unit, A.O. "G.F. Ingrassia", Corso Calatafimi 1002, 90131 Palermo, Italy
| |
Collapse
|
8
|
Narongpun P, Chanchaithong P, Yamagishi J, Thapa J, Nakajima C, Suzuki Y. Whole-Genome Investigation of Zoonotic Transmission of Livestock-Associated Methicillin-Resistant Staphylococcus aureus Clonal Complex 398 Isolated from Pigs and Humans in Thailand. Antibiotics (Basel) 2023; 12:1745. [PMID: 38136779 PMCID: PMC10741195 DOI: 10.3390/antibiotics12121745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) has been widespread globally in pigs and humans for decades. Nasal colonization of LA-MRSA is regarded as an occupational hazard to people who are regularly involved in livestock production. Our previous study suggested pig-to-human transmission caused by LA-MRSA clonal complex (CC) 398, using traditional molecular typing methods. Instead, this study aimed to investigate the zoonotic transmission of LA-MRSA CC398 using whole genome sequencing (WGS) technologies. A total of 63 LA-MRSA isolates were identified and characterized in Thailand. Further, the 16 representatives of LA-MRSA CC9 and CC398, including porcine and worker isolates, were subjected to WGS on the Illumina Miseq platform. Core-genome single nucleotide polymorphism (SNP)-based analyses verify the zoonotic transmission caused by LA-MRSA CC398 in two farms. WGS-based characterization suggests the emergence of a novel staphylococcal cassette chromosome (SCC) mec type, consisting of multiple cassette chromosome recombinase (ccr) gene complexes via genetic recombination. Additionally, the WGS analyses revealed putative multi-resistant plasmids and several cross-resistance genes, conferring resistance against drugs of last resort used in humans such as quinupristin/dalfopristin and linezolid. Significantly, LA-MRSA isolates, in this study, harbored multiple virulence genes that may become a serious threat to an immunosuppressive population, particularly for persons who are in close contact with LA-MRSA carriers.
Collapse
Affiliation(s)
- Pawarut Narongpun
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (P.N.); (J.T.)
| | - Pattrarat Chanchaithong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Junya Yamagishi
- Division of Collaboration and Education, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan;
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (P.N.); (J.T.)
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (P.N.); (J.T.)
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (P.N.); (J.T.)
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
9
|
Raineri EJM, Maaß S, Wang M, Brushett S, Palma Medina LM, Sampol Escandell N, Altulea D, Raangs E, de Jong A, Vera Murguia E, Feil EJ, Friedrich AW, Buist G, Becher D, García-Cobos S, Couto N, van Dijl JM. Staphylococcus aureus populations from the gut and the blood are not distinguished by virulence traits-a critical role of host barrier integrity. MICROBIOME 2022; 10:239. [PMID: 36567349 PMCID: PMC9791742 DOI: 10.1186/s40168-022-01419-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The opportunistic pathogen Staphylococcus aureus is an asymptomatically carried member of the microbiome of about one third of the human population at any given point in time. Body sites known to harbor S. aureus are the skin, nasopharynx, and gut. In particular, the mechanisms allowing S. aureus to pass the gut epithelial barrier and to invade the bloodstream were so far poorly understood. Therefore, the objective of our present study was to investigate the extent to which genetic differences between enteric S. aureus isolates and isolates that caused serious bloodstream infections contribute to the likelihood of invasive disease. RESULTS Here, we present genome-wide association studies (GWAS) that compare the genome sequences of 69 S. aureus isolates from enteric carriage by healthy volunteers and 95 isolates from bloodstream infections. We complement our GWAS results with a detailed characterization of the cellular and extracellular proteomes of the representative gut and bloodstream isolates, and by assaying the virulence of these isolates with infection models based on human gut epithelial cells, human blood cells, and a small animal infection model. Intriguingly, our results show that enteric and bloodstream isolates with the same sequence type (ST1 or ST5) are very similar to each other at the genomic and proteomic levels. Nonetheless, bloodstream isolates are not necessarily associated with an invasive profile. Furthermore, we show that the main decisive factor preventing infection of gut epithelial cells in vitro is the presence of a tight barrier. CONCLUSIONS Our data show that virulence is a highly variable trait, even within a single clone. Importantly, however, there is no evidence that blood stream isolates possess a higher virulence potential than those from the enteric carriage. In fact, some gut isolates from healthy carriers were more virulent than bloodstream isolates. Based on our present observations, we propose that the integrity of the gut epithelial layer, rather than the pathogenic potential of the investigated enteric S. aureus isolates, determines whether staphylococci from the gut microbiome will become invasive pathogens. Video Abstract.
Collapse
Affiliation(s)
- Elisa J. M. Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Siobhan Brushett
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura M. Palma Medina
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Department of Medicine Huddinge, Present Address: Center for Infectious Medicine, Karolinska Institute, Huddinge, Sweden
| | - Neus Sampol Escandell
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dania Altulea
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erwin Raangs
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Elias Vera Murguia
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Edward J. Feil
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Alex W. Friedrich
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Silvia García-Cobos
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Reference and Research Laboratory On Antimicrobial Resistance and Healthcare Associated Infections, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Natacha Couto
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Holm MKA, Jørgensen KM, Bagge K, Worning P, Pedersen M, Westh H, Monk JM, Bartels MD. Estimated Roles of the Carrier and the Bacterial Strain When Methicillin-Resistant Staphylococcus aureus Decolonization Fails: a Case-Control Study. Microbiol Spectr 2022; 10:e0129622. [PMID: 36000891 PMCID: PMC9602359 DOI: 10.1128/spectrum.01296-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/06/2022] [Indexed: 12/30/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common bacterial pathogen that frequently colonizes healthy individuals, with potential to cause invasive infection. In Denmark, to keep the prevalence low, MRSA carriers are recommended to undergo decolonization treatments, but achieving decolonization is challenging. Knowledge about the factors contributing to decolonization is scarce. We aimed to identify bacterial genome and clinical factors influencing MRSA decolonization. We identified all new MRSA patients above 2 years of age within the Hvidovre catchment area, Copenhagen, Denmark, in 2017 and 2018. Carriers were defined as chronic carriers (cases) if they were MRSA positive after two or more treatments and as nonchronic carriers (controls) if they were MRSA free after the first or second treatment. Using whole-genome sequencing (WGS), we constructed a pangenome of bacterial strains. With the incorporation of bacterial genome and clinical patient data, machine learning and multivariate analyses were performed to determine the factors associated with decolonization. A total of 477 MRSA carriers were included. An age of ≥13 years was significantly associated with nonchronic carriage. We identified 278 bacterial genetic features that were statistically significantly associated with chronic carriage (P < 0.05 by Fisher's exact test). Chronic MRSA carriage was predicted with 68% accuracy using a combination of bacterial genome data and patient clinical data. Decolonization success is multifactorial. Apart from the 68% predicted accuracy found in this study, we estimate that the remaining 32% is a result of host factors and microbiome composition. IMPORTANCE Carriage of methicillin-resistant Staphylococcus aureus (MRSA) and other multiresistant bacteria is a prerequisite for infection and transmission. Successful decolonization treatment removes these risks. We aimed to identify bacterial genome and host clinical factors that influence MRSA decolonization to estimate the roles of the carrier and the bacterial strain, respectively, when decolonization fails. The long-term goal, beyond this study, is to optimize decolonization success, minimize MRSA transmission, and, ultimately, improve the quality of life of MRSA carriers.
Collapse
Affiliation(s)
- Mona Katrine Alberthe Holm
- Department of Clinical Microbiology, Copenhagen University Hospital—Amager and Hvidovre, Copenhagen, Denmark
| | | | - Kristian Bagge
- Department of Clinical Microbiology, Copenhagen University Hospital—Amager and Hvidovre, Copenhagen, Denmark
| | - Peder Worning
- Department of Clinical Microbiology, Copenhagen University Hospital—Amager and Hvidovre, Copenhagen, Denmark
| | - Michael Pedersen
- Department of Clinical Microbiology, Copenhagen University Hospital—Amager and Hvidovre, Copenhagen, Denmark
| | - Henrik Westh
- Department of Clinical Microbiology, Copenhagen University Hospital—Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan M. Monk
- Systems Biology Research Group, Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Mette Damkjær Bartels
- Department of Clinical Microbiology, Copenhagen University Hospital—Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Grousd JA, Dresden BP, Riesmeyer AM, Cooper VS, Bomberger JM, Richardson AR, Alcorn JF. Novel Requirement for Staphylococcal Cell Wall-Anchored Protein SasD in Pulmonary Infection. Microbiol Spectr 2022; 10:e0164522. [PMID: 36040164 PMCID: PMC9603976 DOI: 10.1128/spectrum.01645-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/16/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus can complicate preceding viral infections, including influenza virus. A bacterial infection combined with a preceding viral infection, known as superinfection, leads to worse outcomes than a single infection. Most of the pulmonary infection literature focuses on the changes in immune responses to bacteria between homeostatic and virally infected lungs. However, it is unclear how much of an influence bacterial virulence factors have in single or superinfection. Staphylococcal species express a broad range of cell wall-anchored proteins (CWAs) that have roles in host adhesion, nutrient acquisition, and immune evasion. We screened the importance of these CWAs using mutants lacking individual CWAs in vivo in both bacterial pneumonia and influenza superinfection. In bacterial pneumonia, the lack of individual CWAs leads to various decreases in bacterial burden, lung damage, and immune infiltration into the lung. However, the presence of a preceding influenza infection partially abrogates the requirement for CWAs. In the screen, we found that the uncharacterized CWA S. aureus surface protein D (SasD) induced changes in both inflammatory and homeostatic lung markers. We further characterized a SasD mutant (sasD A50.1) in the context of pneumonia. Mice infected with sasD A50.1 have decreased bacterial burden, inflammatory responses, and mortality compared to wild-type S. aureus. Mice also have reduced levels of interleukin-1β (IL-1β), likely derived from macrophages. Reductions in IL-1β transcript levels as well as increased macrophage viability point at differences in cell death pathways. These data identify a novel virulence factor for S. aureus that influences inflammatory signaling within the lung. IMPORTANCE Staphylococcus aureus is a common commensal bacterium that can cause severe infections, such as pneumonia. In the lung, viral infections increase the risk of staphylococcal pneumonia, leading to combined infections known as superinfections. The most common virus associated with S. aureus pneumonia is influenza, and superinfections lead to worse patient outcomes than either infection alone. While there is much known about how the immune system differs between healthy and virally infected lungs, the role of bacterial virulence factors in single and superinfection is less understood. The significance of our research is identifying bacterial components that play a role in the initiation of lung injury, which could lead to future therapies to prevent pulmonary single or superinfection with S. aureus.
Collapse
Affiliation(s)
- Jennifer A. Grousd
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brooke P. Dresden
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Abigail M. Riesmeyer
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vaughn S. Cooper
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer M. Bomberger
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony R. Richardson
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John F. Alcorn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Ghssein G, Ezzeddine Z. The Key Element Role of Metallophores in the Pathogenicity and Virulence of Staphylococcus aureus: A Review. BIOLOGY 2022; 11:1525. [PMID: 36290427 PMCID: PMC9598555 DOI: 10.3390/biology11101525] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
The ubiquitous bacterium Staphylococcus aureus causes many diseases that sometimes can be fatal due to its high pathogenicity. The latter is caused by the ability of this pathogen to secrete secondary metabolites, enabling it to colonize inside the host causing infection through various processes. Metallophores are secondary metabolites that enable bacteria to sequester metal ions from the surrounding environment since the availability of metal ions is crucial for bacterial metabolism and virulence. The uptake of iron and other metal ions such as nickel and zinc is one of these essential mechanisms that gives this germ its virulence properties and allow it to overcome the host immune system. Additionally, extensive interactions occur between this pathogen and other bacteria as they compete for resources. Staphylococcus aureus has high-affinity metal import pathways including metal ions acquisition, recruitment and metal-chelate complex import. These characteristics give this bacterium the ability to intake metallophores synthesized by other bacteria, thus enabling it to compete with other microorganisms for the limited nutrients. In scarce host conditions, free metal ions are extremely low because they are confined to storage and metabolic molecules, so metal ions are sequestered by metallophores produced by this bacterium. Both siderophores (iron chelating molecules) and staphylopine (wide- spectrum metallophore) are secreted by Staphylococcus aureus giving it infectious properties. The genetic regulation of the synthesis and export together with the import of metal loaded metallophores are well established and are all covered in this review.
Collapse
Affiliation(s)
- Ghassan Ghssein
- Department of Laboratory Sciences, Faculty of Public Health, Islamic University of Lebanon, Khalde P.O. Box 30014, Lebanon
| | - Zeinab Ezzeddine
- Department of Laboratory Sciences, Faculty of Public Health, Islamic University of Lebanon, Khalde P.O. Box 30014, Lebanon
| |
Collapse
|
13
|
Functional and Immunological Studies Revealed a Second Superantigen Toxin in Staphylococcal Enterotoxin C Producing Staphylococcus aureus Strains. Toxins (Basel) 2022; 14:toxins14090595. [PMID: 36136533 PMCID: PMC9504012 DOI: 10.3390/toxins14090595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is a human and animal pathogen as well as a commensal bacterium. It can be a causative agent of severe, life-threatening infections with high mortality, e.g., toxic shock syndrome, septic shock, and multi-organ failure. S. aureus strains secrete a number of toxins. Exotoxins/enterotoxins are considered important in the pathogenesis of the above-mentioned conditions. Exotoxins, e.g., superantigen toxins, cause uncontrolled and polyclonal T cell activation and unregulated activation of inflammatory cytokines. Here we show the importance of genomic analysis of infectious strains in order to identify disease-causing exotoxins. Further, we show through functional analysis of superantigenic properties of staphylococcal exotoxins that even very small amounts of a putative superantigenic contaminant can have a significant mitogenic effect. The results show expression and production of two distinct staphylococcal exotoxins, SEC and SEL, in several strains from clinical isolates. Antibodies against both toxins are required to neutralise the superantigenic activity of staphylococcal supernatants and purified staphylococcal toxins.
Collapse
|
14
|
Staphylococcus aureus-induced immunosuppression mediated by IL-10 and IL-27 facilitates nasal colonisation. PLoS Pathog 2022; 18:e1010647. [PMID: 35776778 PMCID: PMC9282462 DOI: 10.1371/journal.ppat.1010647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/14/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus persistently colonises the anterior nares of a significant proportion of the healthy population, however the local immune response elicited during S. aureus nasal colonisation remains ill-defined. Local activation of IL-17/IL-22 producing T cells are critical for controlling bacterial clearance from the nasal cavity. However, recurrent and long-term colonisation is commonplace indicating efficient clearance does not invariably occur. Here we identify a central role for the regulatory cytokine IL-10 in facilitating bacterial persistence during S. aureus nasal colonisation in a murine model. IL-10 is produced rapidly within the nasal cavity following S. aureus colonisation, primarily by myeloid cells. Colonised IL-10-/- mice demonstrate enhanced IL-17+ and IL-22+ T cell responses and more rapidly clear bacteria from the nasal tissues as compared with wild-type mice. S. aureus also induces the regulatory cytokine IL-27 within the nasal tissue, which acts upstream of IL-10 promoting its production. IL-27 blockade reduces IL-10 production within the nasal cavity and improves bacterial clearance. TLR2 signalling was confirmed to be central to controlling the IL-10 response. Our findings conclude that during nasal colonisation S. aureus creates an immunosuppressive microenvironment through the local induction of IL-27 and IL-10, to dampen protective T cell responses and facilitate its persistence. Nasal colonisation by the bacterium Staphylococcus aureus is a very common occurrence in the human population. However there is a lack of knowledge on the immune response that controls nasal colonisation. It is known that a local pro-inflammatory immune response is important for bacterial clearance, however sustained colonisation is commonplace suggesting efficient clearance may not be occurring. Here we demonstrate for the first time that S. aureus is manipulating the host immune response by promoting immunosuppression in the nasal cavity which enables bacterial survival. We found that the regulatory proteins IL-10 and IL-27 are central to this suppressive response and result in reduced protective T cell responses. We also demonstrate that S. aureus is inducing IL-27 production to enhance IL-10 production in order to prolong bacterial colonisation. Our findings show that the host-pathogen interaction during nasal colonisation is more complex than previously described and that S. aureus is capable of manipulating the regulatory immune response of the host for its’ own benefit.
Collapse
|
15
|
Zhang Y, Gallant É, Park JD, Seyedsayamdost MR. The Small-Molecule Language of Dynamic Microbial Interactions. Annu Rev Microbiol 2022; 76:641-660. [PMID: 35679616 PMCID: PMC10171915 DOI: 10.1146/annurev-micro-042722-091052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although microbes are routinely grown in monocultures in the laboratory, they are almost never encountered as single species in the wild. Our ability to detect and identify new microorganisms has advanced significantly in recent years, but our understanding of the mechanisms that mediate microbial interactions has lagged behind. What makes this task more challenging is that microbial alliances can be dynamic, consisting of multiple phases. The transitions between phases, and the interactions in general, are often mediated by a chemical language consisting of small molecules, also referred to as secondary metabolites or natural products. In this microbial lexicon, the molecules are like words and through their effects on recipient cells they convey meaning. The current review highlights three dynamic microbial interactions in which some of the words and their meanings have been characterized, especially those that mediate transitions in selected multiphasic associations. These systems provide insights into the principles that govern microbial symbioses and a playbook for interrogating similar associations in diverse ecological niches. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; ,
| | - Étienne Gallant
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| | - Jong-Duk Park
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| | - Mohammad R Seyedsayamdost
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , .,Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| |
Collapse
|
16
|
Chen W, Chen Z, Lai Q, Zhang Y, Long M, Liang B, Liu Z. Specific and ultrasensitive detection of Staphylococcus aureus with a catechol-chitosan redox capacitor based electrochemical aptasensor. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
The effect of nickel ions on the susceptibility of bacteria to ciprofloxacin and ampicillin. Folia Microbiol (Praha) 2022; 67:649-657. [PMID: 35353362 DOI: 10.1007/s12223-022-00960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/19/2022] [Indexed: 11/04/2022]
Abstract
To explore the interaction effects of ciprofloxacin and ampicillin with nickel on the growth of bacteria, Staphylococcus aureus strain ATCC 29213, Enterococcus faecalis ATCC 29212 and Escherichia coli ATCC 25922 were used. Minimum inhibitory concentrations (MICs) were determined for nickel, ciprofloxacin and ampicillin, and the checkerboard method was used to assess their cumulative effects on bacterial growth. The interactions between the metal and antibiotics were assessed by the fractional inhibitory concentration (FIC). The MICs for ciprofloxacin and ampicillin were 0.31 and 1 mg/L for E. faecalis, 0.62 and 1 mg/L for S. aureus and 0.005 and 2.5 for E. coli, respectively. The MIC for nickel was 1000 mg/L for all bacteria. The FIC results for ciprofloxacin and nickel demonstrated an antagonistic effect of the two agents on the growth of E. coli and E. faecalis and an additive effect on S. aureus. The FICs for ampicillin and nickel demonstrated a synergistic effect on the growth of E. faecalis and E. coli. Different interactions of metals and antibiotics were observed depending on the bacteria and the type of antibiotic.
Collapse
|
18
|
Hughey MC, Rebollar EA, Harris RN, Ibáñez R, Loftus SC, House LL, Minbiole KPC, Bletz MC, Medina D, Shoemaker WR, Swartwout MC, Belden LK. An experimental test of disease resistance function in the skin-associated bacterial communities of three tropical amphibian species. FEMS Microbiol Ecol 2022; 98:6536914. [PMID: 35212765 DOI: 10.1093/femsec/fiac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/14/2022] Open
Abstract
Variation in the structure of host-associated microbial communities has been correlated with the occurrence and severity of disease in diverse host taxa, suggesting a key role of the microbiome in pathogen defense. However, whether these correlations are typically a cause or consequence of pathogen exposure remains an open question, and requires experimental approaches to disentangle. In amphibians, infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd) alters the skin microbial community in some host species, whereas in other species, the skin microbial community appears to mediate infection dynamics. In this study, we completed experimental Bd exposures in three species of tropical frogs (Agalychnis callidryas, Dendropsophus ebraccatus, Craugastor fitzingeri) that were sympatric with Bd at the time of the study. For all three species, we identified key taxa within the skin bacterial communities that were linked to Bd infection dynamics. We also measured higher Bd infection intensities in D. ebraccatus and C. fitzingeri that were associated with higher mortality in C. fitzingeri. Our findings indicate that microbially-mediated pathogen resistance is a complex trait that can vary within and across host species, and suggest that symbiont communities that have experienced prior selection for defensive microbes may be less likely to be disturbed by pathogen exposure.
Collapse
Affiliation(s)
- Myra C Hughey
- Biology Department; Vassar College; 124 Raymond Avenue; Poughkeepsie, NY 12604; USA
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, México
| | - Reid N Harris
- Department of Biology, James Madison University, Harrisonburg, VA, USA
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama. Sistema Nacional de Investigación, SENACYT, Panamá, Republic of Panama
| | | | | | | | - Molly C Bletz
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - William R Shoemaker
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | | | - Lisa K Belden
- Department of Biological Sciences, VA Tech, Blacksburg, VA, USA
| |
Collapse
|
19
|
Differences between Staphylococcus aureus nasal carriage and IgE-sensitization to Staphylococcus aureus enterotoxin on risk factors and effects in adult population. Allergy Asthma Clin Immunol 2022; 18:6. [PMID: 35101089 PMCID: PMC8805341 DOI: 10.1186/s13223-022-00648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Staphylococcus aureus (SA) nasal carriage (SA carriage) and IgE-sensitization to SA enterotoxin (SE IgE-sensitization) are known to be associated with chronic airway disease.
Objective
This study aimed to evaluate the differences in risk factors, type 2 inflammation and respiratory symptoms between SA carriage and SE IgE-sensitization.
Methods
We conducted a cross-sectional study of a community-based adult population to evaluate the environmental exposure and health impact of the Pohang Industrial Complex, Korea. Participants were examined based on self-reported questionnaires, nasal swab, and blood sampling.
Results
There were 307 participants, and the overall prevalence of SA carriage and SE IgE-sensitization was 26.1% (80/307) and 25.7% (79/307), respectively. An urban environment was significantly correlated with SA carriage, whereas age and obesity were significantly correlated with SE IgE-sensitization. SA carriage was not associated with an increase in total IgE and blood eosinophil count, whereas SE IgE-sensitization was associated with an increased total IgE and blood eosinophil count. SA carriage was significantly correlated with cough persisting for more than three weeks (OR, 3.044; 95% CI, 1.137–8.153) and sputum (OR, 2.429; 95% CI, 1.008–5.854). SE IgE-sensitization was a significant correlation with only sputum (OR, 2.452; 95% CI, 1.066–5.640). SA carriage and SE IgE-sensitization showed a synergistic effect on the prevalence of cough and sputum.
Conclusion
SA carriage was associated with the urban environment, and SE IgE-sensitization was associated with the elderly and obesity. SA carriage and SE IgE-sensitization had different correlation with type 2 inflammation and airway symptoms.
Collapse
|
20
|
Chen F, Zhang J, Ji HJ, Kim MK, Kim KW, Choi JI, Han SH, Lim S, Seo HS, Ahn KB. Deinococcus radiodurans Exopolysaccharide Inhibits Staphylococcus aureus Biofilm Formation. Front Microbiol 2022; 12:712086. [PMID: 35002990 PMCID: PMC8739996 DOI: 10.3389/fmicb.2021.712086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Deinococcus radiodurans is an extremely resistant bacterium against extracellular stress owing to on its unique physiological functions and the structure of its cellular constituents. Interestingly, it has been reported that the pattern of alteration in Deinococcus proportion on the skin is negatively correlated with skin inflammatory diseases, whereas the proportion of Staphylococcus aureus was increased in patients with chronic skin inflammatory diseases. However, the biological mechanisms of deinococcal interactions with other skin commensal bacteria have not been studied. In this study, we hypothesized that deinococcal cellular constituents play a pivotal role in preventing S. aureus colonization by inhibiting biofilm formation. To prove this, we first isolated cellular constituents, such as exopolysaccharide (DeinoPol), cell wall (DeinoWall), and cell membrane (DeinoMem), from D. radiodurans and investigated their inhibitory effects on S. aureus colonization and biofilm formation in vitro and in vivo. Among them, only DeinoPol exhibited an anti-biofilm effect without affecting bacterial growth and inhibiting staphylococcal colonization and inflammation in a mouse skin infection model. Moreover, the inhibitory effect was impaired in the Δdra0033 strain, a mutant that cannot produce DeinoPol. Remarkably, DeinoPol not only interfered with S. aureus biofilm formation at early and late stages but also disrupted a preexisting biofilm by inhibiting the production of poly-N-acetylglucosamine (PNAG), a key molecule required for S. aureus biofilm formation. Taken together, the present study suggests that DeinoPol is a key molecule in the negative regulation of S. aureus biofilm formation by D. radiodurans. Therefore, DeinoPol could be applied to prevent and/or treat infections or inflammatory diseases associated with S. aureus biofilms.
Collapse
Affiliation(s)
- Fengjia Chen
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, South Korea
| | - Jing Zhang
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Hyun Jung Ji
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Min-Kyu Kim
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Kyoung Whun Kim
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Sangyong Lim
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, South Korea
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, South Korea
| | - Ki Bum Ahn
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| |
Collapse
|
21
|
Schoen ME, Jahne MA, Garland J, Ramirez L, Lopatkin AJ, Hamilton KA. Quantitative Microbial Risk Assessment of Antimicrobial Resistant and Susceptible Staphylococcus aureus in Reclaimed Wastewaters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15246-15255. [PMID: 34699171 PMCID: PMC8721656 DOI: 10.1021/acs.est.1c04038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The annual risks of colonization, skin infection, bloodstream infection (BSI), and disease burden from exposures to antibiotic-resistant and susceptible Staphylococcus aureus (S. aureus) were estimated using quantitative microbial risk assessment (QMRA). We estimated the probability of nasal colonization after immersion in wastewater (WW) or greywater (GW) treated across a range of treatment alternatives and subsequent infection. Horizontal gene transfer was incorporated into the treatment model but had little effect on the predicted risk. The cumulative annual probability of infection (resulting from self-inoculation) was most sensitive to the treatment log10 reduction value (LRV), S. aureus concentration, and the newly calculated morbidity ratios and was below the health benchmark of 10-4 infections per person per year (ppy) given a treatment LRV of roughly 3.0. The predicted annual disability-adjusted life years (DALYs), which were dominated by BSI, were below the health benchmark of 10-6 DALYs ppy for resistant and susceptible S. aureus, given LRVs of 4.5 and 3.5, respectively. Thus, the estimated infection risks and disease burdens resulting from nasal colonization are below the relevant health benchmarks for risk-based, nonpotable, or potable reuse systems but possibly above for immersion in minimally treated GW or WW. Strain-specific data to characterize dose-response and concentration in WW are needed to substantiate the QMRA.
Collapse
Affiliation(s)
- Mary E Schoen
- Soller Environmental, LLC, 3022 King Street, Berkeley, California 94703, United States
| | - Michael A Jahne
- U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Jay Garland
- U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Lucia Ramirez
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Allison J Lopatkin
- Department of Biology, Barnard College, New York, New York 10027, United States
- Department Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York 10027, United States
- Data Science Institute, Columbia University, New York, New York 10027, United States
- Department of Systems Biology, Columbia University, New York, New York 10027, United States
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment, 660 S College Avenue, Tempe Arizona 85281, United States
- The Biodesign Center for Environmental Health Engineering, 1001 S McAllister Avenue, Tempe Arizona 85287, United States
| |
Collapse
|
22
|
Van Belkum A, Gros MF, Ferry T, Lustig S, Laurent F, Durand G, Jay C, Rochas O, Ginocchio CC. Novel strategies to diagnose prosthetic or native bone and joint infections. Expert Rev Anti Infect Ther 2021; 20:391-405. [PMID: 34384319 DOI: 10.1080/14787210.2021.1967745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Bone and Joint Infections (BJI) are medically important, costly and occur in native and prosthetic joints. Arthroplasties will increase significantly in absolute numbers over time as well as the incidence of Prosthetic Joint Infections (PJI). Diagnosis of BJI and PJI is sub-optimal. The available diagnostic tests have variable effectiveness, are often below standard in sensitivity and/or specificity, and carry significant contamination risks during the collection of clinical samples. Improvement of diagnostics is urgently needed. AREAS COVERED We provide a narrative review on current and future diagnostic microbiology technologies. Pathogen identification, antibiotic resistance detection, and assessment of the epidemiology of infections via bacterial typing are considered useful for improved patient management. We confirm the continuing importance of culture methods and successful introduction of molecular, mass spectrometry-mediated and next-generation genome sequencing technologies. The diagnostic algorithms for BJI must be better defined, especially in the context of diversity of both disease phenotypes and clinical specimens rendered available. EXPERT OPINION Whether interventions in BJI or PJI are surgical or chemo-therapeutic (antibiotics and bacteriophages included), prior sensitive and specific pathogen detection remains a therapy-substantiating necessity. Innovative tests for earlier and more sensitive and specific detection of bacterial pathogens in BJI are urgently needed.
Collapse
Affiliation(s)
- Alex Van Belkum
- bioMérieux, Open Innovation and Partnerships, 3 Route De Port Michaud, La Balme Les Grottes, France
| | | | - Tristan Ferry
- Service Des Maladies Infectieuses Et Tropicales, Hospices Civils De Lyon, Hôpital De La Croix-Rousse, Lyon, France.,Maladies Infectieuses, Université Claude Bernard Lyon 1, Villeurbanne, France.,Centre Interrégional De Référence Pour La Prise En Charge Des Infections Ostéo-articulaires Complexes (Crioac Lyon), Hôpital De La Croix-Rousse, Lyon, France.,Ciri - Centre International De Recherche En Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1CNRS, UMR5308, Ecole Normale Supérieure De Lyon, Univ Lyon, Lyon, France
| | - Sebastien Lustig
- Maladies Infectieuses, Université Claude Bernard Lyon 1, Villeurbanne, France.,Service De Chirurgie Orthopédique, Hôpital De La Croix-Rousse, Lyon, France
| | - Frédéric Laurent
- Service Des Maladies Infectieuses Et Tropicales, Hospices Civils De Lyon, Hôpital De La Croix-Rousse, Lyon, France.,Ciri - Centre International De Recherche En Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1CNRS, UMR5308, Ecole Normale Supérieure De Lyon, Univ Lyon, Lyon, France
| | | | - Corinne Jay
- bioMérieux, BioFire Development Emea, Grenoble, France
| | - Olivier Rochas
- Corporate Business Development, bioMérieux, Marcy-l'Étoile, France
| | | |
Collapse
|
23
|
Schroven K, Aertsen A, Lavigne R. Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation. FEMS Microbiol Rev 2021; 45:5902850. [PMID: 32897318 DOI: 10.1093/femsre/fuaa041] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Bacteria-infecting viruses (phages) and their hosts maintain an ancient and complex relationship. Bacterial predation by lytic phages drives an ongoing phage-host arms race, whereas temperate phages initiate mutualistic relationships with their hosts upon lysogenization as prophages. In human pathogens, these prophages impact bacterial virulence in distinct ways: by secretion of phage-encoded toxins, modulation of the bacterial envelope, mediation of bacterial infectivity and the control of bacterial cell regulation. This review builds the argument that virulence-influencing prophages hold extensive, unexplored potential for biotechnology. More specifically, it highlights the development potential of novel therapies against infectious diseases, to address the current antibiotic resistance crisis. First, designer bacteriophages may serve to deliver genes encoding cargo proteins which repress bacterial virulence. Secondly, one may develop small molecules mimicking phage-derived proteins targeting central regulators of bacterial virulence. Thirdly, bacteria equipped with phage-derived synthetic circuits which modulate key virulence factors could serve as vaccine candidates to prevent bacterial infections. The development and exploitation of such antibacterial strategies will depend on the discovery of other prophage-derived, virulence control mechanisms and, more generally, on the dissection of the mutualistic relationship between temperate phages and bacteria, as well as on continuing developments in the synthetic biology field.
Collapse
Affiliation(s)
- Kaat Schroven
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| |
Collapse
|
24
|
Bacterial Exposure to Nickel: Influence on Adhesion and Biofilm Formation on Orthodontic Archwires and Sensitivity to Antimicrobial Agents. MATERIALS 2021; 14:ma14164603. [PMID: 34443123 PMCID: PMC8397954 DOI: 10.3390/ma14164603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/11/2023]
Abstract
The presence of nickel could modify bacterial behavior and susceptibility to antimicrobial agents. Adhesion and biofilm formation on orthodontic archwires can be a source of bacterial colonization and possible health hazards. Staphylococcus aureus was subjected to exposure and adaptation to various sub-inhibitory concentrations of nickel. Five strains of bacteria adapted to nickel in concentrations of 62.5-1000 μg/mL were tested for adhesion and biofilm formation on nickel-titanium archwires. Archwires were previously incubated in artificial saliva. Bacteria were incubated with orthodontic wire with stirring for 4 h (adhesion) and 24 h (biofilm formation). The number of adherent bacteria was determined after sonication and cultivation on the Muller-Hinton agar. Disk diffusion method was performed on all bacteria to assess the differences in antimicrobial susceptibility. Bacteria adapted to lower concentrations of nickel adhered better to nickel-titanium than strains adapted to higher concentrations of nickel (p < 0.05). Biofilm formation was highest in strains adapted to 250 and 500 μg/mL of nickel (p < 0.05). The highest biofilm biomass was measured for strains adapted to 250 μg/mL, followed by those adapted to 1000 μg/mL. Bacteria adapted to lower concentrations of nickel demonstrated lower inhibition zone diameters in the disk diffusion method (p < 0.05), indicating increased antimicrobial resistance. In conclusion, bacteria adapted to 250 μg/mL of nickel ions adhered better, demonstrated higher biofilm formation and often had higher antimicrobial resistance than other adapted and non-adapted strains.
Collapse
|
25
|
Coutinho TDNP, Barroso FDD, da Silva CR, da Silva AR, Cabral VPDF, Sá LGDAV, Cândido TM, da Silva LJ, Ferreira TL, da Silva WMB, Silva J, Marinho ES, Cavalcanti BC, Moraes MO, Nobre Júnior H, Andrade Neto JBD. EFFECTS OF KETAMINE IN METHICILLIN RESISTANT S. aureus AND IN SILICO INTERACTION WITH SORTASE A. Can J Microbiol 2021; 67:885-893. [PMID: 34314621 DOI: 10.1139/cjm-2021-0093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the main human pathogens and is responsible for many diseases ranging from skin infections to more invasive infections. These infections are dangerous and expensive to treat because these strains are resistant to a large number of conventional antibiotics. Having said that, Antibacterial effect of ketamine against MRSA strains, its mechanism of action and in silico interaction with sortase A was evaluated. The antibacterial effect of ketamine was assessed by the broth microdilution method. Subsequently, the mechanism of action was assessed using flow cytometry and molecular docking assays with sortase A. Our results showed that Ketamine has a significant antibacterial activity against MRSA strains in the range of 2.49 to 3.73 mM. Their mechanism of action involves alterations in the membrane integrity and DNA damage, reducing cell viability that provoke death by apoptosis. In addition, Ketamine compound had affinity for S. aureus sortase A. These results indicate that this compound can be an alternative to develop new strategies to combat of infections caused by MRSA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jacilene Silva
- State University of Ceara, 67843, Fortaleza, CE, Brazil;
| | | | | | | | - Hélio Nobre Júnior
- Federal University of Ceará, Department of Clinical and Toxicological Analysis, Rua Capitão Francisco Pedro, 1210 - Rodolfo Teófilo, Fortaleza, Brazil, 60430-370;
| | | |
Collapse
|
26
|
Raineri EJM, Altulea D, van Dijl JM. Staphylococcal trafficking and infection - from 'nose to gut' and back. FEMS Microbiol Rev 2021; 46:6321165. [PMID: 34259843 PMCID: PMC8767451 DOI: 10.1093/femsre/fuab041] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is an opportunistic human pathogen, which is a leading cause of infections worldwide. The challenge in treating S. aureus infection is linked to the development of multidrug-resistant strains and the mechanisms employed by this pathogen to evade the human immune defenses. In addition, S. aureus can hide asymptomatically in particular ‘protective’ niches of the human body for prolonged periods of time. In the present review, we highlight recently gained insights in the role of the human gut as an endogenous S. aureus reservoir next to the nasopharynx and oral cavity. In addition, we address the contribution of these ecological niches to staphylococcal transmission, including the roles of particular triggers as modulators of the bacterial dissemination. In this context, we present recent advances concerning the interactions between S. aureus and immune cells to understand their possible roles as vehicles of dissemination from the gut to other body sites. Lastly, we discuss the factors that contribute to the switch from colonization to infection. Altogether, we conclude that an important key to uncovering the pathogenesis of S. aureus infection lies hidden in the endogenous staphylococcal reservoirs, the trafficking of this bacterium through the human body and the subsequent immune responses.
Collapse
Affiliation(s)
- Elisa J M Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dania Altulea
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Cheong JZA, Johnson CJ, Wan H, Liu A, Kernien JF, Gibson ALF, Nett JE, Kalan LR. Priority effects dictate community structure and alter virulence of fungal-bacterial biofilms. THE ISME JOURNAL 2021; 15:2012-2027. [PMID: 33558690 PMCID: PMC8245565 DOI: 10.1038/s41396-021-00901-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Polymicrobial biofilms are a hallmark of chronic wound infection. The forces governing assembly and maturation of these microbial ecosystems are largely unexplored but the consequences on host response and clinical outcome can be significant. In the context of wound healing, formation of a biofilm and a stable microbial community structure is associated with impaired tissue repair resulting in a non-healing chronic wound. These types of wounds can persist for years simmering below the threshold of classically defined clinical infection (which includes heat, pain, redness, and swelling) and cycling through phases of recurrent infection. In the most severe outcome, amputation of lower extremities may occur if spreading infection ensues. Here we take an ecological perspective to study priority effects and competitive exclusion on overall biofilm community structure in a three-membered community comprised of strains of Staphylococcus aureus, Citrobacter freundii, and Candida albicans derived from a chronic wound. We show that both priority effects and inter-bacterial competition for binding to C. albicans biofilms significantly shape community structure on both abiotic and biotic substrates, such as ex vivo human skin wounds. We further show attachment of C. freundii to C. albicans is mediated by mannose-binding lectins. Co-cultures of C. freundii and C. albicans trigger the yeast-to-hyphae transition, resulting in a significant increase in neutrophil death and inflammation compared to either species alone. Collectively, the results presented here facilitate our understanding of fungal-bacterial interactions and their effects on host-microbe interactions, pathogenesis, and ultimately, wound healing.
Collapse
Affiliation(s)
- J Z Alex Cheong
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Chad J Johnson
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Hanxiao Wan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Aiping Liu
- Department of Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - John F Kernien
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Angela L F Gibson
- Department of Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Jeniel E Nett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
28
|
Guimarães VA, Le Scornet A, Khemici V, Hausmann S, Armitano J, Prados J, Jousselin A, Manzano C, Linder P, Redder P. RNase J1 and J2 Are Host-Encoded Factors for Plasmid Replication. Front Microbiol 2021; 12:586886. [PMID: 34017314 PMCID: PMC8129170 DOI: 10.3389/fmicb.2021.586886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmids need to ensure their transmission to both daughter-cells when their host divides, but should at the same time avoid overtaxing their hosts by directing excessive host-resources toward production of plasmid factors. Naturally occurring plasmids have therefore evolved regulatory mechanisms to restrict their copy-number in response to the volume of the cytoplasm. In many plasmid families, copy-number control is mediated by a small plasmid-specified RNA, which is continuously produced and rapidly degraded, to ensure that its concentration is proportional to the current plasmid copy-number. We show here that pSA564 from the RepA_N-family is regulated by a small antisense RNA (RNA1), which, when over-expressed in trans, blocks plasmid replication and cures the bacterial host. The 5' untranslated region (5'UTR) of the plasmid replication initiation gene (repA) potentially forms two mutually exclusive secondary structures, ON and OFF, where the latter both sequesters the repA ribosome binding site and acts as a rho-independent transcriptional terminator. Duplex formation between RNA1 and the 5'UTR shifts the equilibrium to favor the putative OFF-structure, enabling a single small RNA to down-regulate repA expression at both transcriptional and translational levels. We further examine which sequence elements on the antisense RNA and on its 5'UTR target are needed for this regulation. Finally, we identify the host-encoded exoribonucleases RNase J1 and J2 as the enzymes responsible for rapidly degrading the replication-inhibiting section of RNA1. This region accumulates and blocks RepA expression in the absence of either RNase J1 or J2, which are therefore essential host factors for pSA564 replication in Staphylococcus aureus.
Collapse
Affiliation(s)
- Vanessa Andrade Guimarães
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandre Le Scornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Paul Sabatier University, Toulouse, France
| | - Vanessa Khemici
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joshua Armitano
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Prados
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ambre Jousselin
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Paul Sabatier University, Toulouse, France
| | - Caroline Manzano
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Linder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peter Redder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Paul Sabatier University, Toulouse, France
| |
Collapse
|
29
|
Nørreslet LB, Edslev SM, Clausen ML, Flachs EM, Ebbehøj NE, Andersen PS, Agner T. Hand eczema and temporal variation of Staphylococcus aureus clonal complexes: A prospective observational study. J Am Acad Dermatol 2021; 87:1006-1013. [PMID: 33878413 DOI: 10.1016/j.jaad.2021.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hand eczema (HE) is frequently associated with Staphylococcus aureus; however, its role in the pathogenesis of HE is poorly understood. OBJECTIVE To investigate the temporal variation in S aureus subtypes, ie, clonal complex (CC) types, on the hands and relate it to S aureus colonization in the nose and severity in a cohort of HE patients. METHODS S aureus from the hands and nose of 50 adult HE patients and 50 controls was prospectively identified at 5 visits over 3 weeks. RESULTS S aureus was identified on the hands of 23 (46%) patients at 2 or more visits and on the hands of 1 control once. Of the HE patients with S aureus colonization, 78% had the same S aureus CC type over time. Twenty-one patients had the same S aureus CC type on the hands and in the nose. Persistent colonization was strongly related to an increased disease severity. LIMITATIONS A relatively small S aureus culture-positive population. CONCLUSION The temporal stability of S aureus CC type and high occurrence of the identical subtypes on the hands and in the nose imply that S aureus colonization in patients with HE is of a more permanent nature. Taken together with the finding that persistent colonization and HE severity are clearly related, our results indicate that S aureus may contribute to the perpetuating course of HE.
Collapse
Affiliation(s)
- Line B Nørreslet
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Sofie M Edslev
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Maja-Lisa Clausen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Esben M Flachs
- Department of Occupational and Environmental Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Niels E Ebbehøj
- Department of Occupational and Environmental Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Paal S Andersen
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Tove Agner
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Fernandes de Oliveira LM, Steindorff M, Darisipudi MN, Mrochen DM, Trübe P, Bröker BM, Brönstrup M, Tegge W, Holtfreter S. Discovery of Staphylococcus aureus Adhesion Inhibitors by Automated Imaging and Their Characterization in a Mouse Model of Persistent Nasal Colonization. Microorganisms 2021; 9:microorganisms9030631. [PMID: 33803564 PMCID: PMC8002927 DOI: 10.3390/microorganisms9030631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 01/26/2023] Open
Abstract
Due to increasing mupirocin resistance, alternatives for Staphylococcus aureus nasal decolonization are urgently needed. Adhesion inhibitors are promising new preventive agents that may be less prone to induce resistance, as they do not interfere with the viability of S. aureus and therefore exert less selection pressure. We identified promising adhesion inhibitors by screening a library of 4208 compounds for their capacity to inhibit S. aureus adhesion to A-549 epithelial cells in vitro in a novel automated, imaging-based assay. The assay quantified DAPI-stained nuclei of the host cell; attached bacteria were stained with an anti-teichoic acid antibody. The most promising candidate, aurintricarboxylic acid (ATA), was evaluated in a novel persistent S. aureus nasal colonization model using a mouse-adapted S. aureus strain. Colonized mice were treated intranasally over 7 days with ATA using a wide dose range (0.5–10%). Mupirocin completely eliminated the bacteria from the nose within three days of treatment. In contrast, even high concentrations of ATA failed to eradicate the bacteria. To conclude, our imaging-based assay and the persistent colonization model provide excellent tools to identify and validate new drug candidates against S. aureus nasal colonization. However, our first tested candidate ATA failed to induce S. aureus decolonization.
Collapse
Affiliation(s)
- Liliane Maria Fernandes de Oliveira
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Marina Steindorff
- Helmholtz Centre for Infection Research, Department of Chemical Biology, 38124 Braunschweig, Germany (M.B.)
| | - Murthy N. Darisipudi
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Daniel M. Mrochen
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Patricia Trübe
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Barbara M. Bröker
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Mark Brönstrup
- Helmholtz Centre for Infection Research, Department of Chemical Biology, 38124 Braunschweig, Germany (M.B.)
| | - Werner Tegge
- Helmholtz Centre for Infection Research, Department of Chemical Biology, 38124 Braunschweig, Germany (M.B.)
- Correspondence: (W.T.); (S.H.)
| | - Silva Holtfreter
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
- Correspondence: (W.T.); (S.H.)
| |
Collapse
|
31
|
Identification of Nasal Gammaproteobacteria with Potent Activity against Staphylococcus aureus: Novel Insights into the "Noncarrier" State. mSphere 2021; 6:6/1/e01015-20. [PMID: 33408227 PMCID: PMC7802429 DOI: 10.1128/msphere.01015-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nasal carriage of Staphylococcus aureus is a risk factor for infection, but it is not yet understood why some individuals carry nasal S. aureus persistently, intermittently, or seemingly not at all when tested via culture methods. This study compared the nasal microbiomes of established S. aureus carriers and noncarriers, identified species associated with noncarriage, and tested them for anti-S. aureus activity using assays developed to model the nutrient-limited nasal mucosa. Staphylococcus aureus nasal carriage provides the bacterial reservoir for opportunistic infection. In comparing the nasal microbiomes of culture-defined persistent S. aureus carriers versus noncarriers, we detected S. aureus DNA in all noses, including those with an established history of S. aureus negativity based on culture. Colonization with Gammaproteobacteria, including Klebsiella aerogenes, Citrobacter koseri, Moraxella lincolnii, and select Acinetobacter spp., was associated with S. aureus noncarriage. We next developed physiological competition assays for testing anti-S. aureus activity of isolated nasal species, utilizing medium modeling the nutrient-limited fluid of the nasal mucosa, polarized primary nasal epithelia, and nasal secretions. K. aerogenes from the nose of an S. aureus noncarrier demonstrated >99% inhibition of S. aureus recovery in all assays, even when S. aureus was coincubated in 9-fold excess. Secreted S. aureus inhibitory proteins from K. aerogenes and M. lincolnii were heat-stable and <30 kDa, fitting the profile of antimicrobial peptides. C. koseri, Acinetobacter haemolyticus, Acinetobacter junii, and Acinetobacter schindleri inhibited S. aureus recovery on nasal epithelia in a contact-dependent manner, while several other species either had no effect or promoted S. aureus growth. Collectively, this project is one of the first to identify resident nasal microbial species that impede S. aureus survival, and it implies that detectable nasal S. aureus results from shifts in microbial community composition. IMPORTANCE Nasal carriage of Staphylococcus aureus is a risk factor for infection, but it is not yet understood why some individuals carry nasal S. aureus persistently, intermittently, or seemingly not at all when tested via culture methods. This study compared the nasal microbiomes of established S. aureus carriers and noncarriers, identified species associated with noncarriage, and tested them for anti-S. aureus activity using assays developed to model the nutrient-limited nasal mucosa. We determined that all nostril swabs contain S. aureus DNA, even swabs from hosts considered to be long-term noncarriers. Select members of the Gammaproteobacteria class were more prevalent in noncarrier than carrier nostrils and demonstrated potent activity against multiple strains of S. aureus. The results described here provide a better understanding of how the nasal microbiome controls S. aureus growth and viability and may be useful in the design of improved S. aureus decolonization strategies.
Collapse
|
32
|
|
33
|
Kumari P, Nath Y, Murty US, Ravichandiran V, Mohan U. Sortase A Mediated Bioconjugation of Common Epitopes Decreases Biofilm Formation in Staphylococcus aureus. Front Microbiol 2020; 11:1702. [PMID: 32903711 PMCID: PMC7438799 DOI: 10.3389/fmicb.2020.01702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most notorious pathogens and is frequently associated with nosocomial infections imposing serious risk to immune-compromised patients. This is in part due to its ability to colonize at the surface of indwelling medical devices and biofilm formation. Combating the biofilm formation with antibiotics has its own challenges like higher values of minimum inhibitory concentrations. Here, we describe a new approach to target biofilm formation by Gram positive bacteria. Sortase A is a transpeptidase enzyme which is responsible for tagging of around ∼22 cell surface proteins onto the outer surface. These proteins play a major role in the bacterial virulence. Sortase A recognizes its substrate through LPXTG motif. Here, we use this approach to install the synthetic peptide substrates onS. aureus. Sortase A substrate mimic, 6His-LPETG peptide was synthesized using solid phase peptide chemistry. Incorporation of the peptide on the cell surface was measured using ELISA. Effect of peptide incubation on Staphylococcus aureus biofilm was also studied. 71.1% biofilm inhibition was observed with 100 μM peptide while on silicon coated rubber latex catheter, 45.82% inhibition was observed. The present work demonstrates the inability of surface modified S. aureus to establish biofilm formation thereby presenting a novel method for attenuating its virulence.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Yutika Nath
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | | | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
34
|
Ge C, Monk IR, Monard SC, Bedford JG, Braverman J, Stinear TP, Wakim LM. Neutrophils play an ongoing role in preventing bacterial pneumonia by blocking the dissemination of
Staphylococcus aureus
from the upper to the lower airways. Immunol Cell Biol 2020; 98:577-594. [DOI: 10.1111/imcb.12343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Chenghao Ge
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
- School of Medicine Tsinghua University Beijing China
| | - Ian R Monk
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| | - Sarah C Monard
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| | - James G Bedford
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| | - Jessica Braverman
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| |
Collapse
|
35
|
Volpe V, Giacomodonato MN, Sordelli DO, Insausti M, Buzzola FR, Grünhut M. Ciprofloxacin loaded o/w microemulsion against Staphylococcus aureus. Analytical and biological studies for topical and intranasal administration. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Extracellular vesicles produced by human and animal Staphylococcus aureus strains share a highly conserved core proteome. Sci Rep 2020; 10:8467. [PMID: 32439871 PMCID: PMC7242376 DOI: 10.1038/s41598-020-64952-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is an important opportunistic pathogen of humans and animals. It produces extracellular vesicles (EVs) that are involved in cellular communication and enable inter-kingdom crosstalk, the delivery of virulence factors and modulation of the host immune response. The protein content of EVs determines their biological functions. Clarifying which proteins are selected, and how, is of crucial value to understanding the role of EVs in pathogenesis and the development of molecular delivery systems. Here, we postulated that S. aureus EVs share a common proteome containing components involved in cargo sorting. The EV proteomes of five S. aureus strains originating from human, bovine, and ovine hosts were characterised. The clustering of EV proteomes reflected the diversity of the producing strains. A total of 253 proteins were identified, 119 of which composed a core EV proteome with functions in bacterial survival, pathogenesis, and putatively in EV biology. We also identified features in the sequences of EV proteins and the corresponding genes that could account for their packaging into EVs. Our findings corroborate the hypothesis of a selective sorting of proteins into EVs and offer new perspectives concerning the roles of EVs in S. aureus pathogenesis in specific host niches.
Collapse
|
37
|
Molecular Epidemiology of Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus in Wild, Captive and Laboratory Rats: Effect of Habitat on the Nasal S. aureus Population. Toxins (Basel) 2020; 12:toxins12020080. [PMID: 31991690 PMCID: PMC7076793 DOI: 10.3390/toxins12020080] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/10/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022] Open
Abstract
Rats are a reservoir of human- and livestock-associated methicillin-resistant Staphylococcus aureus (MRSA). However, the composition of the natural S. aureus population in wild and laboratory rats is largely unknown. Here, 144 nasal S. aureus isolates from free-living wild rats, captive wild rats and laboratory rats were genotyped and profiled for antibiotic resistances and human-specific virulence genes. The nasal S. aureus carriage rate was higher among wild rats (23.4%) than laboratory rats (12.3%). Free-living wild rats were primarily colonized with isolates of clonal complex (CC) 49 and CC130 and maintained these strains even in husbandry. Moreover, upon livestock contact, CC398 isolates were acquired. In contrast, laboratory rats were colonized with many different S. aureus lineages—many of which are commonly found in humans. Five captive wild rats were colonized with CC398-MRSA. Moreover, a single CC30-MRSA and two CC130-MRSA were detected in free-living or captive wild rats. Rat-derived S. aureus isolates rarely harbored the phage-carried immune evasion gene cluster or superantigen genes, suggesting long-term adaptation to their host. Taken together, our study revealed a natural S. aureus population in wild rats, as well as a colonization pressure on wild and laboratory rats by exposure to livestock- and human-associated S. aureus, respectively.
Collapse
|
38
|
Mariani J, Favero C, Carugno M, Pergoli L, Ferrari L, Bonzini M, Cattaneo A, Pesatori AC, Bollati V. Nasal Microbiota Modifies the Effects of Particulate Air Pollution on Plasma Extracellular Vesicles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020611. [PMID: 31963616 PMCID: PMC7013854 DOI: 10.3390/ijerph17020611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Air pollution exposure has been linked to modifications of both extracellular vesicle (EV) concentration and nasal microbiota structure (NMB), which might act as the respiratory health gatekeeper. This study aimed to assess whether an unbalanced NMB could modify the effect of particulate matter (PM) exposure on plasmatic EV levels. Due to two different NMB taxonomical profiles characterized by a widely different relative abundance of the Moraxella genus, the enrolled population was stratified into Mor- (balanced NMB) and Mor+ (unbalanced NMB) groups (Moraxella genus's cut-off ≤25% and >25%, respectively). EV features were assessed by nanoparticle tracking analysis (NTA) and flow-cytometry (FC). Multivariable analyses were applied on EV outcomes to evaluate a possible association between PM10 and PM2.5 and plasmatic EV levels. The Mor- group revealed positive associations between PM levels and plasmatic CD105+ EVs (GMR = 4.39 p = 0.02) as for total EV count (GMR = 1.92 p = 0.02). Conversely, the Mor+ group showed a negative association between exposure and EV outcomes (CD66+ GMR = 0.004 p = 0.01; EpCAM+ GMR = 0.005 p = 0.01). Our findings provide an insight regarding how a balanced NMB may help to counteract PM exposure effects in terms of plasmatic EV concentration. Further research is necessary to understand the relationship between the host and the NMB to disentangle the mechanism exerted by inhaled pollutants in modulating EVs and NMB.
Collapse
Affiliation(s)
- Jacopo Mariani
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Chiara Favero
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Michele Carugno
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Laura Pergoli
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Luca Ferrari
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Matteo Bonzini
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Cattaneo
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy;
| | - Angela Cecilia Pesatori
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-503-20147
| |
Collapse
|
39
|
Epinecidin-1 Protects against Methicillin Resistant Staphylococcus aureus Infection and Sepsis in Pyemia Pigs. Mar Drugs 2019; 17:md17120693. [PMID: 31835381 PMCID: PMC6950563 DOI: 10.3390/md17120693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) may be found on the skin, nose, and throats of long-term hospitalized patients. While MRSA infections are usually minor, serious infections and death may occur in immunocompromised or diabetic patients, or after exposure of MRSA to blood. This report demonstrates that the antimicrobial peptide (AMP) epinecidin-1 (Epi-1) efficiently protects against MRSA infection in a pyemia pig model. We first found that Epi-1 exhibits bactericidal activity against MRSA. Next, pharmacokinetic analysis revealed that Epi-1 was stable in serum for 4 h after injection, followed by a gradual decrease. This pharmacokinetic profile suggested Epi-1 may bind serum albumin, which was confirmed in vitro. Harmful effects were not observed for doses up to 100 mg/kg body weight in pigs. When Epi-1 was supplied as a curative agent 30 min post-infection, MRSA-induced abnormalities in blood uric acid (UA), blood urea nitrogen (BUN), creatine (CRE), GOT, and GPT levels were restored to normal levels. We further showed that the bactericidal activity of Epi-1 was higher than that of the antibiotic drug vancomycin. Epi-1 significantly decreased MRSA counts in the blood, liver, kidney, heart, and lungs of infected pigs. Elevated levels of serum C reactive protein (CRP), proinflammatory cytokine IL6, IL1β, and TNFα were also attenuated by Epi-1 treatment. Moreover, the MRSA genes, enterotoxin (et)-A, et-B, intrinsic methicillin resistance A (mecA), and methicillin resistance factor A (femA), were significantly reduced or abolished in MRSA-infected pigs after treatment with Epi-1. Hematoxylin and eosin staining of heart, liver, lung, and kidney sections indicated that Epi-1 attenuated MRSA toxicity in infected pigs. A survival study showed that the pyemia pigs infected with MRSA alone died within a week, whereas the pigs post-treated with 2.5 mg/kg Epi-1 were completely protected against death. The present investigation, thus, demonstrates that Epi-1 effectively protects pyemia pigs against pathogenic MRSA without major toxic side effects.
Collapse
|
40
|
Ceccarelli F, Perricone C, Olivieri G, Cipriano E, Spinelli FR, Valesini G, Conti F. Staphylococcus aureus Nasal Carriage and Autoimmune Diseases: From Pathogenic Mechanisms to Disease Susceptibility and Phenotype. Int J Mol Sci 2019; 20:ijms20225624. [PMID: 31717919 PMCID: PMC6888194 DOI: 10.3390/ijms20225624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022] Open
Abstract
The role of infective agents in autoimmune diseases (ADs) development has been historically investigated, but in the last years has been strongly reconsidered due to the interest in the link between the microbiome and ADs. Together with the gut, the skin microbiome is characterized by the presence of several microorganisms, potentially influencing innate and adaptive immune response. S. aureus is one of the most important components of the skin microbiome that can colonize anterior nares without clinical manifestations. Data from the literature demonstrates a significantly higher prevalence of nasal colonization in ADs patients in comparison with healthy subjects, suggesting a possible role in terms of disease development and phenotypes. Thus, in the present narrative review we focused on the mechanisms by which S. aureus could influence the immune response and on its relationship with ADs, in particular granulomatosis with polyangiitis, rheumatoid arthritis, and systemic lupus erythematosus.
Collapse
|
41
|
Focusing on the Host Side of Host-Pathogen Interactions. Clin Ther 2019; 41:1904-1906. [PMID: 31623920 DOI: 10.1016/j.clinthera.2019.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
|
42
|
Casadei E, Tacchi L, Lickwar CR, Espenschied ST, Davison JM, Muñoz P, Rawls JF, Salinas I. Commensal Bacteria Regulate Gene Expression and Differentiation in Vertebrate Olfactory Systems Through Transcription Factor REST. Chem Senses 2019; 44:615-630. [PMID: 31403159 PMCID: PMC6796929 DOI: 10.1093/chemse/bjz050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sensory systems such as the olfactory system detect chemical stimuli and thereby determine the relationships between the animal and its surroundings. Olfaction is one of the most conserved and ancient sensory systems in vertebrates. The vertebrate olfactory epithelium is colonized by complex microbial communities, but microbial contribution to host olfactory gene expression remains unknown. In this study, we show that colonization of germ-free zebrafish and mice with microbiota leads to widespread transcriptional responses in olfactory organs as measured in bulk tissue transcriptomics and RT-qPCR. Germ-free zebrafish olfactory epithelium showed defects in pseudostratification; however, the size of the olfactory pit and the length of the cilia were not different from that of colonized zebrafish. One of the mechanisms by which microbiota control host transcriptional programs is by differential expression and activity of specific transcription factors (TFs). REST (RE1 silencing transcription factor, also called NRSF) is a zinc finger TF that binds to the conserved motif repressor element 1 found in the promoter regions of many neuronal genes with functions in neuronal development and differentiation. Colonized zebrafish and mice showed increased nasal expression of REST, and genes with reduced expression in colonized animals were strongly enriched in REST-binding motifs. Nasal commensal bacteria promoted in vitro differentiation of Odora cells by regulating the kinetics of REST expression. REST knockdown resulted in decreased Odora cell differentiation in vitro. Our results identify a conserved mechanism by which microbiota regulate vertebrate olfactory transcriptional programs and reveal a new role for REST in sensory organs.
Collapse
Affiliation(s)
- Elisa Casadei
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, USA
| | - Luca Tacchi
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Scott T Espenschied
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - James M Davison
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Pilar Muñoz
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
43
|
Leonard AC, Petrie LE, Cox G. Bacterial Anti-adhesives: Inhibition of Staphylococcus aureus Nasal Colonization. ACS Infect Dis 2019; 5:1668-1681. [PMID: 31374164 DOI: 10.1021/acsinfecdis.9b00193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacterial adhesion to the skin and mucosa is often a fundamental and early step in host colonization, the establishment of bacterial infections, and pathology. This process is facilitated by adhesins on the surface of the bacterial cell that recognize host cell molecules. Interfering with bacterial host cell adhesion, so-called anti-adhesive therapeutics, offers promise for the development of novel approaches to control bacterial infections. In this review, we focus on the discovery of anti-adhesives targeting the high priority pathogen Staphylococcus aureus. This organism remains a major clinical burden, and S. aureus nasal colonization is associated with poor clinical outcomes. We describe the molecular basis of nasal colonization and highlight potentially efficacious targets for the development of novel nasal decolonization strategies.
Collapse
Affiliation(s)
- Allison C. Leonard
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Laurenne E. Petrie
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
44
|
Revisiting Bacterial Interference in the Age of Methicillin-resistant Staphylococcus aureus: Insights Into Staphylococcus aureus Carriage, Pathogenicity and Potential Control. Pediatr Infect Dis J 2019; 38:958-966. [PMID: 31274832 PMCID: PMC6692185 DOI: 10.1097/inf.0000000000002411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bacteria compete with each other for local supremacy in biologic and environmental niches. In humans, who host an array of commensal bacteria, the presence of one species or strain can sometimes prevent colonization by another, a phenomenon known as "bacterial interference." We describe how, in the 1960s, infants (and later adults) were actively inoculated with a relatively benign strain of Staphylococcus aureus, 502A, to prevent colonization with an epidemic S. aureus strain, 80/81. This introduced bacterial interference as a clinical approach to disease prevention, but little was known about the mechanisms of interference at that time. Since then, much has been learned about how bacteria interact with each other and the host to establish carriage, compete for niches and shift from harmless commensal to invasive pathogen. We provide an overview of these findings and summarize recent studies in which the genome and function of 502A were compared with those of the current epidemic strain, USA300, providing insight into differences in their invasiveness and immunogenicity. Although staphylococcal vaccines have been developed, none has yet been approved for clinical use. Further studies of staphylococcal strains and the molecular characteristics that lead to exclusion of specific bacteria from some niches may provide an alternative path to disease prevention.
Collapse
|
45
|
Magadan S, Jouneau L, Boudinot P, Salinas I. Nasal Vaccination Drives Modifications of Nasal and Systemic Antibody Repertoires in Rainbow Trout. THE JOURNAL OF IMMUNOLOGY 2019; 203:1480-1492. [PMID: 31413108 DOI: 10.4049/jimmunol.1900157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
Bony fish represent the most basal vertebrate branch with a dedicated mucosal immune system, which comprises immunologically heterogeneous microenvironments armed with innate and adaptive components. In rainbow trout (Oncorhynchus mykiss), a nasopharynx-associated lymphoid tissue (NALT) was recently described as a diffuse network of myeloid and lymphoid cells located in the olfactory organ of fish. Several studies have demonstrated high levels of protection conferred by nasal vaccines against viral and bacterial pathogens; however, the mechanisms underlying the observed protection are not well understood. We applied 5'RACE and a deep sequencing-based approach to investigate the clonal structure of the systemic and mucosal rainbow trout B cell repertoire. The analysis of Ig repertoire in control trout suggests different structures of IgM and IgT spleen and NALT repertoires, with restricted repertoire diversity in NALT. Nasal and injection vaccination with a bacterial vaccine revealed unique dynamics of IgM and IgT repertoires at systemic and mucosal sites and the remarkable ability of nasal vaccines to induce spleen Ig responses. Our findings provide an important immunological basis for the effectiveness of nasal vaccination in fish and other vertebrate animals and will help the design of future nasal vaccination strategies.
Collapse
Affiliation(s)
- Susana Magadan
- Center of Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131.,Immunology Laboratory, Biomedical Research Center (CINBIO), University of Vigo, Vigo, 36310 Pontevedra, Spain; and
| | - Luc Jouneau
- Virologie et Immunologie Moleculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas Cedex, France
| | - Pierre Boudinot
- Virologie et Immunologie Moleculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas Cedex, France
| | - Irene Salinas
- Center of Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131;
| |
Collapse
|
46
|
Sakwinska O, Bosco N. Host Microbe Interactions in the Lactating Mammary Gland. Front Microbiol 2019; 10:1863. [PMID: 31456777 PMCID: PMC6701204 DOI: 10.3389/fmicb.2019.01863] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
The bacteria present in human milk constitute the human milk microbiome (hMM). Both the older culture-based work and the more recent studies using molecular detection of bacterial DNA have reached similar conclusions: the hMM mostly consists of commensal staphylococci such as Staphylococcus epidermidis, and streptococci. The prevalence of other bacterial groups such lactobacilli varies widely, while the abundance and prevalence of bifidobacteria is generally low. Recently, the hMM became accepted as a part of a physiologically normal state with suggested potential health benefits. Most research on the hMM has focused on its composition and potential effect on the breastfed infant. A major role as a microbiome inoculum for the infant gut has been proposed, but remains to be clearly demonstrated. Herein, we also discuss the emerging connection between the hMM and mammary gland physiology and lactation. Similarities between the mammary gland and mucosal interfaces are considerable, and in particular mucosal-like immune attributes of mammary gland. The potential role of hMM-host interactions in the mammary gland in maternal health is explored with a primary focus on lactational mastitis.
Collapse
Affiliation(s)
- Olga Sakwinska
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Nabil Bosco
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- Nestlé Research Singapore Hub, Singapore, Singapore
| |
Collapse
|
47
|
Scheuch M, Freiin von Rheinbaben S, Kabisch A, Engeßer J, Ahrendt S, Dabers T, Kohler C, Holtfreter S, Bröker BM, Stracke S. Staphylococcus aureus colonization in hemodialysis patients: a prospective 25 months observational study. BMC Nephrol 2019; 20:153. [PMID: 31060511 PMCID: PMC6503363 DOI: 10.1186/s12882-019-1332-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/12/2019] [Indexed: 12/24/2022] Open
Abstract
Background Dialysis patients are frequently exposed to Staphylococcus aureus due to stays in dialysis centers, hospitals or rest homes. The hemodialysis vascular access is a potential entry site for S. aureus, in particular when using a central venous catheter (CVC) which increases the risk of sepsis compared to arteriovenous (AV) fistula. We prospectively followed a cohort of 86 hemodialysis patients from an outpatient dialysis center over 25 months analyzing S. aureus carrier status, S. aureus infection rates and mortality. Methods Demographic data and patients´ medical histories were collected and followed from all hemodialysis patients. Blood samples, nasal swabs and swabs from the hemodialysis vascular access site were taken every six months for a period of 25 months and tested for S. aureus. Strains were cultured and further characterized by spa PCR and microarray-based genotyping. Resulting data were compared with those from the general population. Results In cross-sectional analyses, an average of 40% of hemodialysis patients were S. aureus carriers compared to 27% in the general population. Longitudinally, a total of 65% were S. aureus carriers: 16% were persistent carriers, 43% were intermittently colonized. The most common S. aureus lineage in the dialysis patient cohort was the clonal complex (CC) 8 and the spa type t008, while in the general population, the clonal complex CC30 dominates. During the study period, we observed six S. aureus-associated blood stream infections with one S. aureus attributable death. S. aureus carriers with an AV fistula were more densely colonized in the nasal mucosa compared to patients with a CVC. Overall mortality was lower for hemodialysis patients with a positive S. aureus carrier status compared to non-carriers (hazard ratio of 0.19). Conclusions Compared to the general population, hemodialysis patients were more frequently colonized with S. aureus and displayed both different S. aureus colonization densities as well as lineages, possibly explained by more frequent exposure to health care environments. The lower overall mortality in carriers compared to non-carriers is intriguing and will be investigated in detail in the future. Trial registration ISRCTN 14385893, 2. October 2018, retrospectively registered. Electronic supplementary material The online version of this article (10.1186/s12882-019-1332-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Scheuch
- Department of Internal Medicine A, Division of Nephrology, University Medicine Greifswald, Greifswald, Germany
| | | | - Antje Kabisch
- Department of Internal Medicine A, Division of Nephrology, University Medicine Greifswald, Greifswald, Germany
| | - Jonas Engeßer
- Department of Internal Medicine A, Division of Nephrology, University Medicine Greifswald, Greifswald, Germany
| | - Susanne Ahrendt
- Kuratorium für Dialyse und Nierentransplantation e.V., KfH-Nierenzentrum Greifswald, Greifswald, Germany
| | - Thomas Dabers
- Department of Internal Medicine A, Division of Nephrology, University Medicine Greifswald, Greifswald, Germany.,Kuratorium für Dialyse und Nierentransplantation e.V., KfH-Nierenzentrum Greifswald, Greifswald, Germany
| | - Christian Kohler
- Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Silva Holtfreter
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Barbara M Bröker
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sylvia Stracke
- Department of Internal Medicine A, Division of Nephrology, University Medicine Greifswald, Greifswald, Germany. .,Kuratorium für Dialyse und Nierentransplantation e.V., KfH-Nierenzentrum Greifswald, Greifswald, Germany.
| |
Collapse
|
48
|
Zheng Y, Shang W, Peng H, Rao Y, Zhao X, Hu Z, Yang Y, Hu Q, Tan L, Xiong K, Li S, Zhu J, Hu X, Zhou R, Li M, Rao X. Virulence Determinants Are Required for Brain Abscess Formation Through Staphylococcus aureus Infection and Are Potential Targets of Antivirulence Factor Therapy. Front Microbiol 2019; 10:682. [PMID: 31024479 PMCID: PMC6460967 DOI: 10.3389/fmicb.2019.00682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/19/2019] [Indexed: 11/24/2022] Open
Abstract
Bacterial brain abscesses (BAs) are difficult to treat with conventional antibiotics. Thus, the development of alternative therapeutic strategies for BAs is of high priority. Identifying the virulence determinants that contribute to BA formation induced by Staphylococcus aureus would improve the effectiveness of interventions for this disease. In this study, RT-qPCR was performed to compare the expression levels of 42 putative virulence determinants of S. aureus strains Newman and XQ during murine BA formation, ear colonization, and bacteremia. The alterations in the expression levels of 23 genes were further confirmed through specific TaqMan RT-qPCR. Eleven S. aureus genes that persistently upregulated expression levels during BA infection were identified, and their functions in BA formation were confirmed through isogenic mutant experiments. Bacterial loads and BA volumes in mice infected with isdA, isdC, lgt, hla, or spa deletion mutants and the hla/spa double mutant strain were lower than those in mice infected with the wild-type Newman strain. The therapeutic application of monoclonal antibodies against Hla and SpA decreased bacterial loads and BA volume in mice infected with Newman. This study provides insights into the virulence determinants that contribute to staphylococcal BA formation and a paradigm for antivirulence factor therapy against S. aureus infections.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Yifan Rao
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| | - Xia Zhao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Kun Xiong
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Shu Li
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Junmin Zhu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Xiaomei Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Renjie Zhou
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ming Li
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, China
| |
Collapse
|
49
|
Szafrańska AK, Junker V, Steglich M, Nübel U. Rapid cell division of Staphylococcus aureus during colonization of the human nose. BMC Genomics 2019; 20:229. [PMID: 30894139 PMCID: PMC6425579 DOI: 10.1186/s12864-019-5604-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/13/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is an important opportunistic pathogen and a commensal bacterium, thriving in the nasal cavities of 20% of the human population. Little is known about the dynamics of asymptomatic colonization and the occasional transition to infectious disease. RESULTS In this study, we inferred that S. aureus cells replicate every one to three hours on average while colonizing the human nose, based on two independent lines of genomic evidence. First, we collected nasal swab samples from human subjects, extracted and sequenced metagenomic DNA, and analyzed the distribution of sequencing coverage along the staphylococcal chromosome. Calibration of this data by comparison to a laboratory culture enabled measuring S. aureus cell division rates in nasal samples. Second, we applied mutation accumulation experiments paired with genome sequencing to measure spontaneous mutation rates at a genome scale. Relating these mutation rates to annual evolutionary rates confirmed that nasal S. aureus continuously pass several thousand cell divisions per year when averaged over large, globally distributed populations and over many years, corresponding to generation times of less than two hours. CONCLUSIONS The cell division rates we determined were higher than the fastest documented rates during fulminant disease progression (in a mouse model of systemic infection) and much higher than those previously measured in expectorated sputum from cystic fibrosis patients. This paper supplies absolute in-vivo generation times for an important bacterial commensal, indicating that colonization of the human upper respiratory tract is characterized by a highly dynamic equilibrium between bacterial growth and removal.
Collapse
Affiliation(s)
- Anna K Szafrańska
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany.,German Center for Infection Research (DZIF), Braunschweig site, Germany
| | - Vera Junker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Matthias Steglich
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany.,German Center for Infection Research (DZIF), Braunschweig site, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany. .,German Center for Infection Research (DZIF), Braunschweig site, Germany. .,Braunschweig Integrated Centre of Systems Biology (BRICS), Technical University Braunschweig, Braunschweig, Germany.
| |
Collapse
|
50
|
Methicillin-Resistant Staphylococcus aureus Nasal Colonization among Healthcare Workers at Kampala International University Teaching Hospital, Southwestern Uganda. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2019; 2019:4157869. [PMID: 30984319 PMCID: PMC6431477 DOI: 10.1155/2019/4157869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/17/2018] [Accepted: 02/11/2019] [Indexed: 01/02/2023]
Abstract
Whereas Staphylococcus aureus is a pathogen, it colonizes healthy people as normal flora without causing any symptoms or illness. Probably because of greater exposure, healthcare workers (HCWs) are more colonized, serving as reservoir for endogenous infections as well as dissemination. In developing countries including Uganda, there is scarcity of the literature on S. aureus carriage among HCWs, making infection control difficult. This study aimed at determining the nasal carriage rate and comparing the antimicrobial susceptibility profiles of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA) isolates from HCWs of Kampala International University Teaching Hospital. Nasal swab specimens from HCWs were screened for MRSA using both phenotypic and genotypic methods. Antimicrobial susceptibility testing of the MRSA and MSSA isolates was performed using the Kirby–Bauer disc diffusion method. Out of the 97 participants, 28 (28.8%) participants were nasal carriers of S. aureus of which 13 (46.4%) were phenotypically MRSA (resistant to cefoxitin) and 8 (28.6%) were genotypically MRSA (had mecA gene). Only 6 isolates of the 13 isolates (46%) which showed resistance to cefoxitin had mecA gene detectable while 2 (13.3%) of the 15 cefoxitin susceptible isolates were found to carry mecA gene. The study thus shows that methicillin resistance in S. aureus may not only be determined by mecA gene.
Collapse
|