1
|
Bariod L, Fuentes E, Millet M, White J, Jacquiod S, Moreau J, Monceau K. Exposure to pesticides is correlated with gut microbiota alterations in a farmland raptor. ENVIRONMENT INTERNATIONAL 2025; 199:109436. [PMID: 40252553 DOI: 10.1016/j.envint.2025.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/21/2025] [Accepted: 04/03/2025] [Indexed: 04/21/2025]
Abstract
The gut microbiota is crucial for host health and can be impacted by various environmental disruptions, yet the effects of multiple pesticide exposures on farmland organisms' microbiomes remain largely unexplored. We assessed microbiota changes in a wild apex predator exposed to multiple pesticides in agricultural landscapes. Pesticides, including acetochlor and quinoxyfen, which are supposed to be banned, were significantly positively correlated with certain key bacteria from Actinobacteria, Alphaproteobacteria and Gammaproteobacteria classes. Our results light up the potential collateral effect of pesticides on gut bacterial assemblages through unknown mechanisms. These effects could result in dysbiosis and the promotion of potential pathogens and/or the selection of bacteria that might allow the organism to detoxify the organism. Although formal metagenomic analyses would be required soon, these microbial shifts underline the broader ecological consequences of pesticide exposure, emphasising the need for integrated biodiversity conservation and ecosystem management to protect environmental and public health.
Collapse
Affiliation(s)
- Léa Bariod
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France
| | - Elva Fuentes
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France
| | - Maurice Millet
- Université de Strasbourg, CNRS-UMR 7515, ICPEES, 67087 Strasbourg cedex 2, France
| | - Joël White
- Centre de Recherche sur la Biodiversité et l'Environnement, UMR 5300, CNRS-IRD-UT3-INPT, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Samuel Jacquiod
- INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie, 21000 Dijon, France
| | - Jérôme Moreau
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France
| | - Karine Monceau
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France; LTSER "Zone Atelier Plaine & Val de Sèvre", CNRS, 79360 Villiers-en-Bois, France.
| |
Collapse
|
2
|
Fablet L, Bonin A, Zarzoso‐Lacoste D, Dubut V, Walch L. Exploring Bird Gut Microbiota Through Opportunistic Fecal Sampling: Ecological and Evolutionary Perspectives. Ecol Evol 2025; 15:e71291. [PMID: 40230867 PMCID: PMC11995298 DOI: 10.1002/ece3.71291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
Wetland ecosystems are facing alarming rates of destruction and degradation, posing significant challenges for avian populations reliant on these habitats. Bird health is closely linked to the composition of their intestinal microbiota, which is primarily influenced by local conditions, primarily through diet. Building on our previous work identifying dietary variations among bird populations in marshes within a Ramsar site along the Somme and Avre rivers (France), this pilot study aimed to assess the relevance of using fecal samples collected from the ground to characterize avian intestinal microbiota via 16S rRNA metabarcoding. We hypothesized that this noninvasive sampling method would capture how bird traits and environmental factors shape fecal microbiota composition. Sampling was conducted during the breeding season at seven locations (six within the Ramsar site and one on its outskirts) spanning rural or peri-urban environments. A total of 52 fecal samples from nine bird species or families, predominantly waterbirds, were analyzed for bacterial composition. At the phylum level, Firmicutes and Proteobacteria were predominant, with the relative abundance of genera such as Clostridium, Rothia, Bacillus, Caldilinea and Pseudomonas varying among bird species. The potential enteropathogen Campylobacter was primarily detected in samples from peri-urban sites. Multivariate analyses revealed significant variations in bacterial composition associated with bird trophic guild, ecology, body length, pond surface and habitat location. Additionally, a weak correlation was observed between host phylogeny and microbiota composition. Although the limited sample size, particularly for some species, constrains the robustness of these findings, the observed trends align with ecological expectations. This study highlights the potential of opportunistically collected fecal samples as a low-impact tool for exploring the relationship between bird gut microbiota and their habitat.
Collapse
Affiliation(s)
- Laura Fablet
- Sorbonne Université, CNRS, IRD, INRAEUniversité Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Sciences (IEES‐Paris)ParisFrance
| | | | - Diane Zarzoso‐Lacoste
- UMR CNRS 7058 Ecologie et Dynamique Des Systèmes Anthropisés (EDYSAN)Université de Picardie Jules VerneAmiensFrance
| | - Vincent Dubut
- Aix Marseille UnivAvignon Université, CNRS, IRD, IMBEMarseilleFrance
- ADENEKOSaint‐GironsFrance
| | - Laurence Walch
- Sorbonne Université, CNRS, IRD, INRAEUniversité Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Sciences (IEES‐Paris)ParisFrance
| |
Collapse
|
3
|
Ncho CM, Gupta V, Goel A, Jeong CM, Jung JY, Ha SY, Eom JU, Yang HS, Yang JK, Choi YH. Impact of dietary polyphenols from shredded, steam-exploded pine on growth performance, organ indices, meat quality, and cecal microbiota of broiler chickens. Poult Sci 2025; 104:105088. [PMID: 40154182 PMCID: PMC11995072 DOI: 10.1016/j.psj.2025.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025] Open
Abstract
The chicken's gastrointestinal tract is home to complex and diverse microbial communities that can be manipulated to enhance health and productivity. Although polyphenols have recently attracted the attention of researchers due to their potent antioxidant capabilities, their impact on the gut microbiota remains largely unexplored. Hence, in this study, we conducted a comprehensive analysis of the effects of dietary supplementation with polyphenol-rich extract from shredded, steam-exploded pine particles (PSPP) on growth, meat quality, and gut microbial dynamics in broiler chickens. Supplementation of PSPP was found to significantly improve birds' FCR until the third week of the trial but only marginally affected meat quality. Based on metataxonomic analyses of the cecal microbiotas of broilers fed increasing concentrations of PSPP, dietary PSPP modulated the composition of the cecal microbiota of the birds with a concomitant increase of Bacteroidetes and a decrease in the Firmicutes population. Similar trends were observed for the proportions of Alistipes and Faecalibacterium at the genus level. Additionally, 43 unique bacterial species were detected in the cecal microbiome of birds fed with PSPP. However, microbial diversity did not vary significantly among treatment groups. A particularly interesting finding was the specialization observed in the microbiome of birds receiving PSPP supplementation. Microbial co-occurrence network analyses revealed substantial modifications in their network structure when compared to control birds. Families like Rikenellaceae and Eubacteriaceae were notably absent, and the number of microbial interactions was drastically lower in the PSPP-fed group. Microbial taxa modeling revealed that the impact of increasing dietary PSPP levels primarily affected genus-level taxa, showing a decreasing trend. Overall, this offers compelling evidence that continuous PSPP supplementation may not only alter the composition of intestinal microbes but also have a profound effect on the interactions among different microbial species. Conversely, PSPP had minimal effects on broilers' performance and meat quality.
Collapse
Affiliation(s)
- Chris Major Ncho
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Vaishali Gupta
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Akshat Goel
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chae-Mi Jeong
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji-Young Jung
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Si-Young Ha
- Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong-Uk Eom
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Han-Sul Yang
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jae-Kyung Yang
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yang-Ho Choi
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
4
|
Lu Z, Wang Z, Jia H, Meng D, Wu D. Captivity Reduces Diversity and Shifts Composition of the Great Bustard ( Otis tarda dybowskii) Microbiome. Ecol Evol 2025; 15:e70836. [PMID: 39803193 PMCID: PMC11718221 DOI: 10.1002/ece3.70836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Captivity offers protection for endangered species, but for bustards, captive individuals face a higher risk of disease and exhibit lower reintroduction success rates. Changes in the diversity of host bacterial and fungal microbiota may be a significant factor influencing reintroduction success. The great bustard (Otis tarda) is a globally recognized endangered bird species. Previous research on the gut microbiota of the great bustard has been limited, hindering effective conservation efforts. Therefore, this study utilized high-throughput sequencing of the 16S rRNA and Internal Transcribed Spacer (ITS) genes to compare the gut bacterial and fungal microbiota of great bustards in different environments. The results revealed a significant decline in alpha diversity and notable changes in microbial community structure in captive environments. Changes in diet and habitat are likely major factors contributing to these shifts. Consequently, managing rescued wild animals by increasing dietary diversity and exposure to natural environmental reservoirs may enhance the success rate of reintroduction efforts.
Collapse
Affiliation(s)
- Zhiyuan Lu
- College of Life SciencesCangzhou Normal UniversityCangzhouChina
- Collaborative Innovation Center for Wetland Conservation and Green Development of Hebei ProvinceHengshui UniversityHengshuiChina
| | - Zhucheng Wang
- College of Life SciencesCangzhou Normal UniversityCangzhouChina
| | - Hexue Jia
- Collaborative Innovation Center for Wetland Conservation and Green Development of Hebei ProvinceHengshui UniversityHengshuiChina
- Center for Wetland Conservation and ResearchHengshui UniversityHengshuiChina
| | - Derong Meng
- College of Life SciencesCangzhou Normal UniversityCangzhouChina
| | - Dayong Wu
- Hebei Key Laboratory of Wetland Ecology and ConservationHengshuiChina
| |
Collapse
|
5
|
Corl A, Charter M, Rozman G, Turjeman S, Toledo S, Kamath PL, Getz WM, Nathan R, Bowie RCK. Social, environmental, and developmental factors affect the microbiota of barn owls (Tyto alba) in a cross-fostering experiment. Anim Microbiome 2024; 6:77. [PMID: 39719636 DOI: 10.1186/s42523-024-00365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Species host diverse microbial communities that can impact their digestion and health, which has led to much interest in understanding the factors that influence their microbiota. We studied the developmental, environmental, and social factors that influence the microbiota of nestling barn owls (Tyto alba) through a partial cross-fostering experiment that manipulated the social and nest environment of the nestlings. We then examined the nestling microbiota before and three weeks after the exchange of nestlings between nests, along with the microbiota of the adults at the nest and nestlings in unmanipulated nests. RESULTS We found that nestlings had higher bacterial diversity and different bacterial communities than adults. The microbiota of nestlings was more like that of their mothers than their fathers, but the similarity to the father tended to increase with the amount of time the father was in close proximity to the nest, as measured from movement data. Cross-fostered offspring had higher bacterial diversity and greater changes in bacterial community composition over time than control offspring. Cross-fostering led the microbiota of the nestlings in the experiment to converge on similar bacterial communities. The microbiota of nestling owls therefore rapidly changed along with alterations to their social and nest environments. CONCLUSIONS These results highlight the dynamic nature of the microbiota during early development and that social interactions can shape microbial communities.
Collapse
Affiliation(s)
- Ammon Corl
- Museum of Vertebrate Zoology, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA, 94720-3160, USA.
- Department of Integrative Biology, University of California, Berkeley, 3060 Valley Life Sciences Building, Berkeley, CA, 94720, USA.
| | - Motti Charter
- The Shamir Research Institute, Department of Geography and Environmental Studies, University of Haifa, 199 Aba Hushi Boulevard, Mount Carmel, Haifa, 3498838, Israel
| | - Gabe Rozman
- Movement Ecology Lab, Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, 91904, Israel
| | - Sondra Turjeman
- Movement Ecology Lab, Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, 91904, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Sivan Toledo
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Pauline L Kamath
- School of Food and Agriculture, University of Maine, 5735 Hitchner Hall, Orono, ME, 04469, USA
- Maine Center for Genetics in the Environment, University of Maine, 5703 Alumni Hall, Orono, ME, 04469, USA
| | - Wayne M Getz
- Environmental Science, Policy, and Management, University of California, Berkeley, VLSB 5048-B, Berkeley, CA, 94720, USA
- School of Mathematical Sciences, University of KwaZulu, Natal, South Africa
| | - Ran Nathan
- Movement Ecology Lab, Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, 91904, Israel
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA, 94720-3160, USA.
- Department of Integrative Biology, University of California, Berkeley, 3060 Valley Life Sciences Building, Berkeley, CA, 94720, USA.
| |
Collapse
|
6
|
Pepke ML, Hansen SB, Limborg MT. Unraveling host regulation of gut microbiota through the epigenome-microbiome axis. Trends Microbiol 2024; 32:1229-1240. [PMID: 38839511 DOI: 10.1016/j.tim.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
Recent studies of dynamic interactions between epigenetic modifications of a host organism and the composition or activity of its associated gut microbiota suggest an opportunity for the host to shape its microbiome through epigenetic alterations that lead to changes in gene expression and noncoding RNA activity. We use insights from microbiota-induced epigenetic changes to review the potential of the host to epigenetically regulate its gut microbiome, from which a bidirectional 'epigenome-microbiome axis' emerges. This axis embeds environmentally induced variation, which may influence the adaptive evolution of host-microbe interactions. We furthermore present our perspective on how the epigenome-microbiome axis can be understood and investigated within a holo-omic framework with potential applications in the applied health and food sciences.
Collapse
Affiliation(s)
- Michael L Pepke
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark.
| | - Søren B Hansen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark.
| |
Collapse
|
7
|
Tang B, Wang Y, Dong Y, Cui Q, Zeng Z, He S, Zhao W, Lancuo Z, Li S, Wang W. The Catalog of Microbial Genes and Metagenome-Assembled Genomes from the Gut Microbiomes of Five Typical Crow Species on the Qinghai-Tibetan Plateau. Microorganisms 2024; 12:2033. [PMID: 39458342 PMCID: PMC11510465 DOI: 10.3390/microorganisms12102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
While considerable progress has been made in understanding the complex relationships between gut microbiomes and their hosts, especially in mammals and humans, the functions of these microbial communities in avian species remain largely unexplored. This gap in knowledge is particularly notable, given the critical roles gut microbiomes are known to play in facilitating crucial physiological functions, such as digestion, nutrient absorption, and immune system development. Corvidae birds are omnivorous and widely distributed across various habitats, exhibiting strong adaptability and often displaying the traits of accompanying humans. However, to date, information on species composition, sequenced genomes, and functional characteristics of crow gut microbes is lacking. Herein, we constructed the first relatively comprehensive crows gut microbial gene catalog (2.74 million genes) and 195 high-quality and medium-quality metagenome-assembled genomes using 53 metagenomic samples from five typical crow species (Pyrrhocorax pyrrhocorax, Corvus dauuricus, Corvus frugilegus, Corvus macrorhynchos, and Corvus corax) on the Qinghai-Tibetan Plateau. The species composition of gut microbiota at the phylum and genus levels was revealed for these five crow species. Simultaneously, numerous types of prevalent pathogenic bacteria were identified, indicating the potential of these crows to transmit diseases within the local community. At the functional level, we annotated a total of 356 KEGG functional pathways, six CAZyme categories, and 3607 virulence factor genes in the gut microbiomes of the crows. The gut microbiota of five distinct crow species underwent a comparative analysis, which uncovered significant differences in their composition, diversity, and functional structures. Over 36% of MAGs showed no overlap with existing databases, suggesting they might represent new species. Consequently, these findings enriched the dataset of microbial genomes associated with crows' digestive systems. Overall, this study offers crucial baseline information regarding the gut microbial gene catalog and genomes in crows, potentially aiding microbiome-based research, as well as an evaluation of the health risks to humans from the bacterial pathogens transmitted by wild birds.
Collapse
Affiliation(s)
- Boyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (B.T.); (Y.W.); (Y.D.); (Q.C.)
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| | - You Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (B.T.); (Y.W.); (Y.D.); (Q.C.)
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| | - Yonggang Dong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (B.T.); (Y.W.); (Y.D.); (Q.C.)
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| | - Quanchao Cui
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (B.T.); (Y.W.); (Y.D.); (Q.C.)
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| | - Zhanhao Zeng
- Animal Disease Prevention and Control Center of Qinghai Province, Xining 810016, China;
| | - Shunfu He
- Xining Wildlife Park of Qinghai Province, Xining 810016, China; (S.H.); (W.Z.)
| | - Wenxin Zhao
- Xining Wildlife Park of Qinghai Province, Xining 810016, China; (S.H.); (W.Z.)
| | - Zhuoma Lancuo
- College of Finance and Economics, Qinghai University, Xining 810016, China;
| | - Shaobin Li
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Wen Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (B.T.); (Y.W.); (Y.D.); (Q.C.)
| |
Collapse
|
8
|
Liukkonen M, Muriel J, Martínez-Padilla J, Nord A, Pakanen VM, Rosivall B, Tilgar V, van Oers K, Grond K, Ruuskanen S. Seasonal and environmental factors contribute to the variation in the gut microbiome: A large-scale study of a small bird. J Anim Ecol 2024; 93:1475-1492. [PMID: 39041321 DOI: 10.1111/1365-2656.14153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
Environmental variation can shape the gut microbiome, but broad/large-scale data on among and within-population heterogeneity in the gut microbiome and the associated environmental factors of wild populations is lacking. Furthermore, previous studies have limited taxonomical coverage, and knowledge about wild avian gut microbiomes is still scarce. We investigated large-scale environmental variation in the gut microbiome of wild adult great tits across the species' European distribution range. We collected fecal samples to represent the gut microbiome and used the 16S rRNA gene sequencing to characterize the bacterial gut microbiome. Our results show that gut microbiome diversity is higher during winter and that there are compositional differences between winter and summer gut microbiomes. During winter, individuals inhabiting mixed forest habitat show higher gut microbiome diversity, whereas there was no similar association during summer. Also, temperature was found to be a small contributor to compositional differences in the gut microbiome. We did not find significant differences in the gut microbiome among populations, nor any association between latitude, rainfall and the gut microbiome. The results suggest that there is a seasonal change in wild avian gut microbiomes, but that there are still many unknown factors that shape the gut microbiome of wild bird populations.
Collapse
Affiliation(s)
- Martta Liukkonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Jaime Muriel
- Department of Biology, University of Turku, Turku, Finland
| | - Jesús Martínez-Padilla
- Department of Biodiversity Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC), Jaca, Spain
| | - Andreas Nord
- Department of Biology, Lund University, Lund, Sweden
| | | | - Balázs Rosivall
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Vallo Tilgar
- Department of Zoology, Tartu University, Tartu, Estonia
| | - Kees van Oers
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Kirsten Grond
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, USA
| | - Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
9
|
Kamiński M, Chyb A, Matson KD, Minias P. Constitutive innate immune defenses in relation to urbanization and population density in an urban bird, the feral pigeon Columba livia domestica. Integr Zool 2024. [PMID: 39295232 DOI: 10.1111/1749-4877.12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Urbanization processes modulate the immunological challenges faced by animals. Urban habitat transformations reshape pathogen diversity and abundance, while high population density-common in urban exploiter species-promotes disease transmission. Responses to urbanization may include adaptive adjustments of constitutive innate immune defenses (e.g. complement system and natural antibodies [NAbs]), which serve as first-line protection against infections. Here, we investigated associations of habitat urbanization and host population density with complement and NAbs in an urban bird, the feral pigeon Columba livia domestica. To do so, we employed the hemolysis-hemagglutination assay to analyze nearly 200 plasma samples collected across urbanization and pigeon population density gradients in five major cities in Poland. We found a negative association between urbanization score and hemagglutination (i.e. NAbs activity), but not hemolysis (i.e. complement activity), indicating either immunosuppression or adaptive downregulation of this immune defense in highly transformed urban landscape. Population density was not significantly related to either immune parameter, providing no evidence for density-dependent modulation of immune defenses. At the same time, there was a negative association of hemolysis with condition (scaled mass index), suggesting resource allocation trade-offs or contrasting effects of the urban environment on immune defenses and body condition. The results demonstrate that habitat structure can be an important factor shaping the immune defenses of the feral pigeon, although these associations were not mediated by variation in population density. Our study highlights the complexity of the links between immune defenses in wildlife and urbanization and reinforces the need for comprehensive ecoimmunological studies on urban animals.
Collapse
Affiliation(s)
- Maciej Kamiński
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Amelia Chyb
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Kevin D Matson
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, Netherlands
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
10
|
Russell AC, Kenna MA, Huynh AV, Rice AM. Microbial DNA extraction method for avian feces and preen oil from diverse species. Ecol Evol 2024; 14:e70220. [PMID: 39224152 PMCID: PMC11368492 DOI: 10.1002/ece3.70220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
As DNA sequencing technology continues to rapidly improve, studies investigating the microbial communities of host organisms (i.e., microbiota) are becoming not only more popular but also more financially accessible. Across many taxa, microbiomes can have important impacts on organismal health and fitness. To evaluate the microbial community composition of a particular microbiome, microbial DNA must be successfully extracted. Fecal samples are often easy to collect and are a good source of gut microbial DNA. Additionally, interest in the avian preen gland microbiome is rapidly growing, due to the importance of preen oil for many aspects of avian life. Microbial DNA extractions from avian fecal and preen oil samples present multiple challenges, however. Here, we describe a modified PrepMan Ultra Sample Preparation Reagent microbial DNA extraction method that is less expensive than other commonly used methodologies and is highly effective for both fecal and preen oil samples collected from a broad range of avian species. We expect our method will facilitate microbial DNA extractions from multiple avian microbiome reservoirs, which have previously proved difficult and expensive. Our method therefore increases the feasibility of future studies of avian host microbiomes.
Collapse
Affiliation(s)
- Austin C. Russell
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Margaret A. Kenna
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Alex Van Huynh
- Department of BiologyDeSales UniversityCenter ValleyPennsylvaniaUSA
| | - Amber M. Rice
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| |
Collapse
|
11
|
Martínez-Renau E, Martín-Platero AM, Bodawatta KH, Martín-Vivaldi M, Martínez-Bueno M, Poulsen M, Soler JJ. Social environment influences microbiota and potentially pathogenic bacterial communities on the skin of developing birds. Anim Microbiome 2024; 6:47. [PMID: 39148142 PMCID: PMC11325624 DOI: 10.1186/s42523-024-00327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 06/28/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Animal bacterial symbionts are established early in life, either through vertical transmission and/or by horizontal transmission from both the physical and the social environment, such as direct contact with con- or heterospecifics. The social environment particularly can influence the acquisition of both mutualistic and pathogenic bacteria, with consequences for the stability of symbiotic communities. However, segregating the effects of the shared physical environment from those of the social interactions is challenging, limiting our current knowledge on the role of the social environment in structuring bacterial communities in wild animals. Here, we take advantage of the avian brood-parasite system of Eurasian magpies (Pica pica) and great spotted cuckoos (Clamator glandarius) to explore how the interspecific social environment (magpie nestlings developing with or without heterospecifics) affects bacterial communities on uropygial gland skin. RESULTS We demonstrated interspecific differences in bacterial community compositions in members of the two species when growing up in monospecific nests. However, the bacterial community of magpies in heterospecific nests was richer, more diverse, and more similar to their cuckoo nest-mates than when growing up in monospecific nests. These patterns were alike for the subset of microbes that could be considered core, but when looking at the subset of potentially pathogenic bacterial genera, cuckoo presence reduced the relative abundance of potentially pathogenic bacterial genera on magpies. CONCLUSIONS Our findings highlight the role of social interactions in shaping the assembly of the avian skin bacterial communities during the nestling period, as exemplified in a brood parasite-host system.
Collapse
Affiliation(s)
- Ester Martínez-Renau
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain.
| | - Antonio M Martín-Platero
- Departamento de Microbiología, Universidad de Granada, 18071, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
| | - Kasun H Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Martín-Vivaldi
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
- Departamento de Zoología, Universidad de Granada, 18071, Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, 18071, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain.
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain.
| |
Collapse
|
12
|
Kaczvinsky C, Levy H, Preston S, Youngflesh C, Clucas G, Lynch HJ, Hart T, Smith AL. The influence of biotic and abiotic factors on the bacterial microbiome of gentoo penguins (Pygoscelis papua) in their natural environment. Sci Rep 2024; 14:17933. [PMID: 39095393 PMCID: PMC11297207 DOI: 10.1038/s41598-024-66460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
The microbiome is a key factor in the health, well-being, and success of vertebrates, contributing to the adaptive capacity of the host. However, the impact of geographic and biotic factors that may affect the microbiome of wild birds in polar environments is not well defined. To address this, we determined the bacterial 16S rRNA gene sequence profiles in faecal samples from pygoscelid penguin populations in the Scotia Arc, focusing on gentoo penguins. This mesopredatory group breeds in defined colonies across a wide geographic range. Since diet could influence microbiome structure, we extracted dietary profiles from a eukaryotic 18S rRNA gene sequence profile. The bacterial microbiome profiles were considered in the context of a diverse set of environmental and ecological measures. Integrating wide geographic sampling with bacterial 16S and eukaryotic 18S rRNA gene sequencing of over 350 faecal samples identified associations between the microbiome profile and a suite of geographic and ecological factors. Microbiome profiles differed according to host species, colony identity, distance between colonies, and diet. Interestingly there was also a relationship between the proportion of host DNA (in relation to total 18S rRNA gene signal) and the microbiome, which may reflect gut passage time. Colony identity provided the strongest association with differences in microbiome profiles indicating that local factors play a key role in the microbiome structure of these polar seabirds. This may reflect the influence of local transfer of microbes either via faecal-oral routes, during chick feeding or other close contact events. Other factors including diet and host species also associate with variation in microbiome profile, and in at least some locations, the microbiome composition varies considerably between individuals. Given the variation in penguin microbiomes associated with diverse factors there is potential for disruption of microbiome associations at a local scale that could influence host health, productivity, and immunological competence. The microbiome represents a sensitive indicator of changing conditions, and the implications of any changes need to be considered in the wider context of environmental change and other stressors.
Collapse
Affiliation(s)
- Chloe Kaczvinsky
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Hila Levy
- Office of Science and Technology Policy, Executive Office of the President, 1650 Pennsylvania Avenue, Washington, DC, 20504, USA
| | - Stephen Preston
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Casey Youngflesh
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Gemma Clucas
- Cornell Lab of Ornithology, 159 Sapsucker Woods Rd., Ithaca, NY, 14850, USA
| | - Heather J Lynch
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
- Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Tom Hart
- Oxford Brookes University, Gypsy Lane, Headington, Oxford, OX3 0BP, UK.
| | - Adrian L Smith
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
13
|
Li W, Cheng L, He X, He G, Liu Y, Sang Z, Wang Y, Shao M, Xiong T, Xu H, Zhao J. Gut fungi of black-necked cranes (Grus nigricollis) respond to dietary changes during wintering. BMC Microbiol 2024; 24:232. [PMID: 38951807 PMCID: PMC11218170 DOI: 10.1186/s12866-024-03396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Migratory birds exhibit heterogeneity in foraging strategies during wintering to cope with environmental and migratory pressures, and gut bacteria respond to changes in host diet. However, less is known about the dynamics of diet and gut fungi during the wintering period in black-necked cranes (Grus nigricollis). RESULTS In this work, we performed amplicon sequencing of the trnL-P6 loop and ITS1 regions to characterize the dietary composition and gut fungal composition of black-necked cranes during wintering. Results indicated that during the wintering period, the plant-based diet of black-necked cranes mainly consisted of families Poaceae, Solanaceae, and Polygonaceae. Among them, the abundance of Solanaceae, Polygonaceae, Fabaceae, and Caryophyllaceae was significantly higher in the late wintering period, which also led to a more even consumption of various food types by black-necked cranes during this period. The diversity of gut fungal communities and the abundance of core fungi were more conserved during the wintering period, primarily dominated by Ascomycota and Basidiomycota. LEfSe analysis (P < 0.05, LDA > 2) found that Pyxidiophora, Pseudopeziza, Sporormiella, Geotrichum, and Papiliotrema were significantly enriched in early winter, Ramularia and Dendryphion were significantly enriched in mid-winter, Barnettozyma was significantly abundant in late winter, and Pleuroascus was significantly abundant in late winter. Finally, mantel test revealed a significant correlation between winter diet and gut fungal. CONCLUSIONS This study revealed the dynamic changes in the food composition and gut fungal community of black-necked cranes during wintering in Dashanbao. In the late wintering period, their response to environmental and migratory pressures was to broaden their diet, increase the intake of non-preferred foods, and promote a more balanced consumption ratio of various foods. Balanced food composition played an important role in stabilizing the structure of the gut fungal community. While gut fungal effectively enhanced the host's food utilization rate, they may also faced potential risks of introducing pathogenic fungi. Additionally, we recongnized the limitations of fecal testing in studying the composition of animal gut fungal, as it cannot effectively distinguished between fungal taxa from food or soil inadvertently ingested and intestines. Future research on functions such as cultivation and metagenomics may further elucidate the role of fungi in the gut ecosystem.
Collapse
Affiliation(s)
- Wenhao Li
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, China
| | - Lijun Cheng
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong, 657000, China
| | - Xin He
- Sichuan Academy of Grassland Sciences, Chengdu, 610000, China
| | - Guiwen He
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong, 657000, China
| | - Yutong Liu
- Sichuan Academy of Grassland Sciences, Chengdu, 610000, China
| | - Zhenglin Sang
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong, 657000, China
| | - Yuanjian Wang
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Zhaotong, Yunnan Province, 657000, China
| | - Mingcui Shao
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Zhaotong, Yunnan Province, 657000, China
| | - Tingsong Xiong
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Zhaotong, Yunnan Province, 657000, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, China.
| | - Junsong Zhao
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China.
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong, 657000, China.
| |
Collapse
|
14
|
Wang Y, Zhai J, Tang B, Dong Y, Sun S, He S, Zhao W, Lancuo Z, Jia Q, Wang W. Metagenomic comparison of gut communities between wild and captive Himalayan griffons. Front Vet Sci 2024; 11:1403932. [PMID: 38784654 PMCID: PMC11112026 DOI: 10.3389/fvets.2024.1403932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Himalayan griffons (Gyps himalayensis), known as the scavenger of nature, are large scavenging raptors widely distributed on the Qinghai-Tibetan Plateau and play an important role in maintaining the balance of the plateau ecosystem. The gut microbiome is essential for host health, helping to maintain homeostasis, improving digestive efficiency, and promoting the development of the immune system. Changes in environment and diet can affect the composition and function of gut microbiota, ultimately impacting the host health and adaptation. Captive rearing is considered to be a way to protect Himalayan griffons and increase their population size. However, the effects of captivity on the structure and function of the gut microbial communities of Himalayan griffons are poorly understood. Still, availability of sequenced metagenomes and functional information for most griffons gut microbes remains limited. Methods In this study, metagenome sequencing was used to analyze the composition and functional structures of the gut microbiota of Himalayan griffons under wild and captive conditions. Results Our results showed no significant differences in the alpha diversity between the two groups, but significant differences in beta diversity. Taxonomic classification revealed that the most abundant phyla in the gut of Himalayan griffons were Fusobacteriota, Proteobacteria, Firmicutes_A, Bacteroidota, Firmicutes, Actinobacteriota, and Campylobacterota. At the functional level, a series of Kyoto Encyclopedia of Genes and Genome (KEGG) functional pathways, carbohydrate-active enzymes (CAZymes) categories, virulence factor genes (VFGs), and pathogen-host interactions (PHI) were annotated and compared between the two groups. In addition, we recovered nearly 130 metagenome-assembled genomes (MAGs). Discussion In summary, the present study provided a first inventory of the microbial genes and metagenome-assembled genomes related to the Himalayan griffons, marking a crucial first step toward a wider investigation of the scavengers microbiomes with the ultimate goal to contribute to the conservation and management strategies for this near threatened bird.
Collapse
Affiliation(s)
- You Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Jundie Zhai
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Boyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Yonggang Dong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Shengzhen Sun
- Animal Disease Prevention and Control Center of Qinghai Province, Xining, Qinghai, China
| | - Shunfu He
- Xining Wildlife Park of Qinghai Province, Xining, Qinghai, China
| | - Wenxin Zhao
- Xining Wildlife Park of Qinghai Province, Xining, Qinghai, China
| | - Zhuoma Lancuo
- College of Finance and Economics, Qinghai University, Xining, Qinghai, China
| | - Qiangqiang Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Wen Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
15
|
Włodarczyk R, Drzewińska-Chańko J, Kamiński M, Meissner W, Rapczyński J, Janik-Superson K, Krawczyk D, Strapagiel D, Ożarowska A, Stępniewska K, Minias P. Stopover habitat selection drives variation in the gut microbiome composition and pathogen acquisition by migrating shorebirds. FEMS Microbiol Ecol 2024; 100:fiae040. [PMID: 38515294 PMCID: PMC11008731 DOI: 10.1093/femsec/fiae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024] Open
Abstract
Long-distance host movements play a major regulatory role in shaping microbial communities of their digestive tract. Here, we studied gut microbiota composition during seasonal migration in five shorebird species (Charadrii) that use different migratory (stopover) habitats. Our analyses revealed significant interspecific variation in both composition and diversity of gut microbiome, but the effect of host identity was weak. A strong variation in gut microbiota was observed between coastal and inland (dam reservoir and river valley) stopover habitats within species. Comparisons between host age classes provided support for an increasing alpha diversity of gut microbiota during ontogeny and an age-related remodeling of microbiome composition. There was, however, no correlation between microbiome and diet composition across study species. Finally, we detected high prevalence of avian pathogens, which may cause zoonotic diseases in humans (e.g. Vibrio cholerae) and we identified stopover habitat as one of the major axes of variation in the bacterial pathogen exposure risk in shorebirds. Our study not only sheds new light on ecological processes that shape avian gut microbiota, but also has implications for our better understanding of host-pathogen interface and the role of birds in long-distance transmission of pathogens.
Collapse
Affiliation(s)
- Radosław Włodarczyk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| | - Joanna Drzewińska-Chańko
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| | - Maciej Kamiński
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| | - Włodzimierz Meissner
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Jan Rapczyński
- Forestry Student Scientific Association, Ornithological Section, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland
| | - Katarzyna Janik-Superson
- University of Lodz, Faculty of Biology and Environmental Protection, Biobank Lab, Department of Oncobiology and Epigenetics, Pomorska 139, 90-235 Łódź, Poland
| | - Dawid Krawczyk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, Banacha 12/16, 90-237 Łódź, Poland
| | - Dominik Strapagiel
- University of Lodz, Faculty of Biology and Environmental Protection, Biobank Lab, Department of Oncobiology and Epigenetics, Pomorska 139, 90-235 Łódź, Poland
| | - Agnieszka Ożarowska
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Katarzyna Stępniewska
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Piotr Minias
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| |
Collapse
|
16
|
Dunbar A, Drigo B, Djordjevic SP, Donner E, Hoye BJ. Impacts of coprophagic foraging behaviour on the avian gut microbiome. Biol Rev Camb Philos Soc 2024; 99:582-597. [PMID: 38062990 DOI: 10.1111/brv.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024]
Abstract
Avian gut microbial communities are complex and play a fundamental role in regulating biological functions within an individual. Although it is well established that diet can influence the structure and composition of the gut microbiota, foraging behaviour may also play a critical, yet unexplored role in shaping the composition, dynamics, and adaptive potential of avian gut microbiota. In this review, we examine the potential influence of coprophagic foraging behaviour on the establishment and adaptability of wild avian gut microbiomes. Coprophagy involves the ingestion of faeces, sourced from either self (autocoprophagy), conspecific animals (allocoprophagy), or heterospecific animals. Much like faecal transplant therapy, coprophagy may (i) support the establishment of the gut microbiota of young precocial species, (ii) directly and indirectly provide nutritional and energetic requirements, and (iii) represent a mechanism by which birds can rapidly adapt the microbiota to changing environments and diets. However, in certain contexts, coprophagy may also pose risks to wild birds, and their microbiomes, through increased exposure to chemical pollutants, pathogenic microbes, and antibiotic-resistant microbes, with deleterious effects on host health and performance. Given the potentially far-reaching consequences of coprophagy for avian microbiomes, and the dearth of literature directly investigating these links, we have developed a predictive framework for directing future research to understand better when and why wild birds engage in distinct types of coprophagy, and the consequences of this foraging behaviour. There is a need for comprehensive investigation into the influence of coprophagy on avian gut microbiotas and its effects on host health and performance throughout ontogeny and across a range of environmental perturbations. Future behavioural studies combined with metagenomic approaches are needed to provide insights into the function of this poorly understood behaviour.
Collapse
Affiliation(s)
- Alice Dunbar
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Barbara Drigo
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- UniSA STEM, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5001, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
| | - Erica Donner
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), University of South Australia, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Bethany J Hoye
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
17
|
Zhang Y, He X, Mo X, Wu H, Zhao D. Similarities and differences: species and diet impact gut microbiota of captive pheasants. PeerJ 2024; 12:e16979. [PMID: 38560462 PMCID: PMC10979745 DOI: 10.7717/peerj.16979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024] Open
Abstract
The fecal microbiota plays an important role in maintaining animal health and is closely related to host life activities. In recent years, there have been an increasing number of studies on the fecal microbiota from birds. An exploration of the effects of species and living environments on the composition of gut microbiota will provide better protection for wildlife. In this study, non-injury sampling and 16S rDNA high-throughput sequencing were used to investigate the bacterial composition and diversity of the fecal microbiota in silver pheasants (Lophura nycthemera) and golden pheasants (Chrysolophus pictus) from Tianjin Zoo and Beijing Wildlife Park. The results showed that the abundance of Firmicutes was the highest in all fecal samples. At the genus level, Bacteroides was the common dominant bacteria, while there were some differences in other dominant bacteria genera. There were significant differences in fecal microbial composition between the golden pheasants from Tianjin Zoo and Beijing Wildlife Park. The metabolic analysis and functional prediction suggested that the gut microbiota composition and host metabolism were influenced by dietary interventions and living conditions. The results of this study provide the basis for further research of intestinal microbial of L. nycthemera and C. pictus, and valuable insights for conservation of related species.
Collapse
Affiliation(s)
- Yushuo Zhang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xin He
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xiuhong Mo
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Hong Wu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Dapeng Zhao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
18
|
Ruuskanen S. Early-life environmental effects on birds: epigenetics and microbiome as mechanisms underlying long-lasting phenotypic changes. J Exp Biol 2024; 227:jeb246024. [PMID: 38449325 DOI: 10.1242/jeb.246024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Although the long-lasting effects of variation in early-life environment have been well documented across organisms, the underlying causal mechanisms are only recently starting to be unraveled. Yet understanding the underlying mechanisms of long-lasting effects can help us predict how organisms will respond to changing environments. Birds offer a great system in which to study developmental plasticity and its underlying mechanisms owing to the production of large external eggs and variation in developmental trajectories, combined with a long tradition of applied, physiological, ecological and evolutionary research. Epigenetic changes (such as DNA methylation) have been suggested to be a key mechanism mediating long-lasting effects of the early-life environment across taxa. More recently, changes in the early-life gut microbiome have been identified as another potential mediator of developmental plasticity. As a first step in understanding whether these mechanisms contribute to developmental plasticity in birds, this Review summarizes how changes in early-life environment (both prenatal and postnatal) influence epigenetic markers and the gut microbiome. The literature shows how both early-life biotic (such as resources and social environment) and abiotic (thermal environment and various anthropogenic stressors) factors modify epigenetic markers and the gut microbiome in birds, yet data concerning many other environmental factors are limited. The causal links of these modifications to lasting phenotypic changes are still scarce, but changes in the hypothalamic-pituitary-adrenal axis have been identified as one putative pathway. This Review identifies several knowledge gaps, including data on the long-term effects, stability of the molecular changes, and lack of diversity in the systems studied, and provides directions for future research.
Collapse
Affiliation(s)
- Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, 40500 Jyväskylä, Finland
- Department of Biology, University of Turku, Vesilinnankatu 5, 20500 Turku, Finland
| |
Collapse
|
19
|
Rudzki EN, Antonson ND, Jones TM, Schelsky WM, Trevelline BK, Hauber ME, Kohl KD. Host avian species and environmental conditions influence the microbial ecology of brood parasitic brown-headed cowbird nestlings: What rules the roost? Mol Ecol 2024; 33:e17289. [PMID: 38327124 DOI: 10.1111/mec.17289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
The role of species interactions, as well as genetic and environmental factors, all likely contribute to the composition and structure of the gut microbiome; however, disentangling these independent factors under field conditions represents a challenge for a functional understanding of gut microbial ecology. Avian brood parasites provide unique opportunities to investigate these questions, as brood parasitism results in parasite and host nestlings being raised in the same nest, by the same parents. Here we utilized obligate brood parasite brown-headed cowbird nestlings (BHCO; Molothrus ater) raised by several different host passerine species to better understand, via 16S rRNA sequencing, the microbial ecology of brood parasitism. First, we compared faecal microbial communities of prothonotary warbler nestlings (PROW; Protonotaria citrea) that were either parasitized or non-parasitized by BHCO and communities among BHCO nestlings from PROW nests. We found that parasitism by BHCO significantly altered both the community membership and community structure of the PROW nestling microbiota, perhaps due to the stressful nest environment generated by brood parasitism. In a second dataset, we compared faecal microbiotas from BHCO nestlings raised by six different host passerine species. Here, we found that the microbiota of BHCO nestlings was significantly influenced by the parental host species and the presence of an inter-specific nestmate. Thus, early rearing environment is important in determining the microbiota of brood parasite nestlings and their companion nestlings. Future work may aim to understand the functional effects of this microbiota variability on nestling performance and fitness.
Collapse
Affiliation(s)
- Elizabeth N Rudzki
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nicholas D Antonson
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Todd M Jones
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Wendy M Schelsky
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Prairie Research Institute, Illinois Natural History Survey, University of Illinois, Champaign, Illinois, USA
| | - Brian K Trevelline
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Advanced Science Research Center and Program in Psychology, Graduate Center, City University of New York, New York, New York, USA
| | - Kevin D Kohl
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Ahmad AR, Ridgeway S, Shibl AA, Idaghdour Y, Jha AR. Falcon gut microbiota is shaped by diet and enriched in Salmonella. PLoS One 2024; 19:e0293895. [PMID: 38289900 PMCID: PMC10826950 DOI: 10.1371/journal.pone.0293895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/20/2023] [Indexed: 02/01/2024] Open
Abstract
The gut microbiome is increasingly being appreciated as a master regulator of animal health. However, avian gut microbiome studies commonly focus on birds of economic importance and the gut microbiomes of raptors remain underexplored. Here we examine the gut microbiota of 29 captive falcons-raptors of historic importance-in the context of avian evolution by sequencing the V4 region of the 16S rRNA gene. Our results reveal that evolutionary histories and diet are significantly associated with avian gut microbiota in general, whereas diet plays a major role in shaping the falcon gut microbiota. Multiple analyses revealed that gut microbial diversity, composition, and relative abundance of key diet-discriminating bacterial genera in the falcon gut closely resemble those of carnivorous raptors rather than those of their closest phylogenetic relatives. Furthermore, the falcon microbiota is dominated by Firmicutes and contains Salmonella at appreciable levels. Salmonella presence was associated with altered functional capacity of the falcon gut microbiota as its abundance is associated with depletion of multiple predicted metabolic pathways involved in protein mass buildup, muscle maintenance, and enrichment of antimicrobial compound degradation, thus increasing the pathogenic potential of the falcon gut. Our results point to the necessity of screening for Salmonella and other human pathogens in captive birds to safeguard both the health of falcons and individuals who come in contact with these birds.
Collapse
Affiliation(s)
- Anique R. Ahmad
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Samuel Ridgeway
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Ahmed A. Shibl
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Aashish R. Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
21
|
Hem S, Cummins ML, Wyrsch ER, Drigo B, Hoye BJ, Maute K, Sanderson-Smith M, Gorman J, Bogema DR, Jenkins C, Deutscher AT, Yam J, Hai F, Donner E, Jarocki VM, Djordjevic SP. Genomic analysis of Citrobacter from Australian wastewater and silver gulls reveals novel sequence types carrying critically important antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168608. [PMID: 37977387 DOI: 10.1016/j.scitotenv.2023.168608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Antimicrobial resistance (AMR) is a major public health concern, and environmental bacteria have been recognized as important reservoirs of antimicrobial resistance genes (ARGs). Citrobacter, a common environmental bacterium and opportunistic pathogen in humans and other animals, has been largely understudied in terms of its diversity and AMR potential. Whole-genome (short-read) sequencing on a total of 77 Citrobacter isolates obtained from Australian silver gull (Chroicocephalus novaehollandiae) (n = 17) and influent wastewater samples (n = 60) was performed, revealing a diverse Citrobacter population, with seven different species and 33 sequence types, 17 of which were novel. From silver gull using non-selective media we isolated a broader range of species with little to no mobilised ARG carriage. Wastewater isolates (selected using Carbapenem- Resistant Enterobacterales (CRE) selective media) carried a heavy burden of ARGs (up to 21 ARGs, conferring resistance to nine classes of antibiotics), with several novel multidrug-resistant (MDR) lineages identified, including C. braakii ST1110, which carried ARGs conferring resistance to eight to nine classes of antibiotics, and C. freundii ST1105, which carried two carbapenemase genes, blaIMP-4 in class 1 integron structure, and blaKPC-2. Additionally, we identified an MDR C. portucalensis isolate carrying blaNDM-1, blaSHV-12, and mcr-9. We identified IncC, IncM2, and IncP6 plasmids as the likely vectors for many of the critically important mobilised ARGs. Phylogenetic analyses were performed to assess any epidemiological linkages between isolation sources, demonstrating low relatedness across sources beyond the ST level. However, these analyses did reveal some closer relationships between strains from disparate wastewater sources despite their collection some 13,000 km apart. These findings support the need for future surveillance of Citrobacter populations in wastewater and wildlife populations to monitor for potential opportunistic human pathogens.
Collapse
Affiliation(s)
- Sopheak Hem
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia; The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, Australia
| | - Max L Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia; The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, Australia
| | - Ethan R Wyrsch
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia; The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, Australia
| | - Barbara Drigo
- UniSA STEM, University of South Australia, Adelaide, SA, Australia
| | - Bethany J Hoye
- School of Earth, Atmospheric and Life Sciences, University of Wollongong NSW, Australia; Environmental Futures Research Centre, University of Wollongong NSW, Australia
| | - Kimberly Maute
- School of Earth, Atmospheric and Life Sciences, University of Wollongong NSW, Australia; Environmental Futures Research Centre, University of Wollongong NSW, Australia
| | - Martina Sanderson-Smith
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, NSW, Australia
| | - Jody Gorman
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, NSW, Australia
| | - Daniel R Bogema
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, Australia
| | - Cheryl Jenkins
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, Australia
| | - Ania T Deutscher
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, Australia
| | - Jerald Yam
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, Australia
| | - Faisal Hai
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, NSW, Australia
| | - Erica Donner
- Cooperative Research Centre for Solving Antimicrobial resistance in Agribusiness, Food, and Environments (CRC SAAFE), Adelaide, South Australia, Australia; Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Veronica M Jarocki
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia; The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, Australia.
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia; The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
22
|
Dosi A, Meziti A, Tounta E, Koemtzopoulos K, Komnenou A, Dendrinos P, Kormas K. Fecal and skin microbiota of two rescued Mediterranean monk seal pups during rehabilitation. Microbiol Spectr 2024; 12:e0280523. [PMID: 38084980 PMCID: PMC10783143 DOI: 10.1128/spectrum.02805-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE This study showed that during the rehabilitation of two rescued Mediterranean monk seal pups (Monachus monachus), the skin and fecal bacterial communities showed similar succession patterns between the two individuals. This finding means that co-housed pups share their microbiomes, and this needs to be considered in cases of infection outbreaks and their treatment. The housing conditions, along with the feeding scheme and care protocols, including the admission of antibiotics as prophylaxis, probiotics, and essential food supplements, resulted in bacterial communities with no apparent pathogenic bacteria. This is the first contribution to the microbiome of the protected seal species of M. monachus and contributes to the animal's conservation practices through its microbiome.
Collapse
Affiliation(s)
- Aggeliki Dosi
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| | - Alexandra Meziti
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| | - Eleni Tounta
- MOm/Hellenic Society for the Study and Protection of the Monk Seal, Athens, Greece
| | - Kimon Koemtzopoulos
- MOm/Hellenic Society for the Study and Protection of the Monk Seal, Athens, Greece
| | - Anastasia Komnenou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Dendrinos
- MOm/Hellenic Society for the Study and Protection of the Monk Seal, Athens, Greece
| | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| |
Collapse
|
23
|
Baranova MN, Pilipenko EA, Gabibov AG, Terekhov SS, Smirnov IV. Animal Microbiomes as a Source of Novel Antibiotic-Producing Strains. Int J Mol Sci 2023; 25:537. [PMID: 38203702 PMCID: PMC10779147 DOI: 10.3390/ijms25010537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Natural compounds continue to serve as the most fruitful source of new antimicrobials. Analysis of bacterial genomes have revealed that the biosynthetic potential of antibiotic producers by far exceeds the number of already discovered structures. However, due to the repeated discovery of known substances, it has become necessary to change both approaches to the search for antibiotics and the sources of producer strains. The pressure of natural selection and the diversity of interactions in symbiotic communities make animal microbiomes promising sources of novel substances. Here, microorganisms associated with various animals were examined in terms of their antimicrobial agents. The application of alternative cultivation techniques, ultrahigh-throughput screening, and genomic analysis facilitated the investigation of compounds produced by unique representatives of the animal microbiota. We believe that new strategies of antipathogen defense will be discovered by precisely studying cell-cell and host-microbe interactions in microbiomes in the wild.
Collapse
Affiliation(s)
- Margarita N. Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
| | - Ekaterina A. Pilipenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Stanislav S. Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
24
|
Bodawatta KH, Kogut M, Taylor MW. Editorial: Evolution and diversity of avian gut microbiomes. Front Microbiol 2023; 14:1348762. [PMID: 38192288 PMCID: PMC10773680 DOI: 10.3389/fmicb.2023.1348762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Affiliation(s)
- Kasun H. Bodawatta
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kogut
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
| | - Michael W. Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Sun Y, Hao Y, Zhang Q, Liu X, Wang L, Li J, Li M, Li D. Coping with extremes: Alternations in diet, gut microbiota, and hepatic metabolic functions in a highland passerine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167079. [PMID: 37714349 DOI: 10.1016/j.scitotenv.2023.167079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
In wild animals, diet and gut microbiota interactions are critical moderators of metabolic functions and are highly contingent on habitat conditions. Challenged by the extreme conditions of high-altitude environments, the strategies implemented by highland animals to adjust their diet and gut microbial composition and modulate their metabolic substrates remain largely unexplored. By employing a typical human commensal species, the Eurasian tree sparrow (Passer montanus, ETS), as a model species, we studied the differences in diet, digestive tract morphology and enzyme activity, gut microbiota, and metabolic energy profiling between highland (the Qinghai-Tibet Plateau, QTP; 3230 m) and lowland (Shijiazhuang, Hebei; 80 m) populations. Our results showed that highland ETSs had enlarged digestive organs and longer small intestinal villi, while no differences in key digestive enzyme activities were observed between the two populations. The 18S rRNA sequencing results revealed that the dietary composition of highland ETSs were more animal-based and less plant-based than those of the lowland ones. Furthermore, 16S rRNA sequencing results suggested that the intestinal microbial communities were structurally segregated between populations. PICRUSt metagenome predictions further indicated that the expression patterns of microbial genes involved in material and energy metabolism, immune system and infection, and xenobiotic biodegradation were strikingly different between the two populations. Analysis of liver metabolomics revealed significant metabolic differences between highland and lowland ETSs in terms of substrate utilization, as well as distinct sex-specific alterations in glycerophospholipids. Furthermore, the interplay between diet, liver metabolism, and gut microbiota suggests a dietary shift resulting in corresponding changes in gut microbiota and metabolic functions. Our findings indicate that highland ETSs have evolved to optimize digestion and absorption, rely on more protein-rich foods, and possess gut microbiota tailored to their dietary composition, likely adaptive physiological and ecological strategies adopted to cope with extreme highland environments.
Collapse
Affiliation(s)
- Yanfeng Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Qian Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xu Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Juyong Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Mo Li
- College of Life Sciences, Cangzhou Normal University, Cangzhou 061001, China.
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
26
|
Jones I, Marsh K, Handby TM, Hopkins K, Slezacek J, Bearhop S, Harrison XA. The influence of diet on gut microbiome and body mass dynamics in a capital-breeding migratory bird. PeerJ 2023; 11:e16682. [PMID: 38130921 PMCID: PMC10734429 DOI: 10.7717/peerj.16682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Gut-associated microbial communities are known to play a vital role in the health and fitness of their hosts. Though studies investigating the factors associated with among-individual variation in microbiome structure in wild animal species are increasing, knowledge of this variation at the individual level is scarce, despite the clear link between microbiome and nutritional status uncovered in humans and model organisms. Here, we combine detailed observational data on life history and foraging preference with 16S rRNA profiling of the faecal microbiome to investigate the relationship between diet, microbiome stability and rates of body mass gain in a migratory capital-breeding bird, the light-bellied Brent goose (Branta bernicla hrota). Our findings suggest that generalist feeders have microbiomes that are intermediate in diversity and composition between two foraging specialisms, and also show higher within-individual plasticity. We also suggest a link between foraging phenotype and the rates of mass gain during the spring staging of a capital breeder. This study offers rare insight into individual-level temporal dynamics of the gut microbiome of a wild host. Further work is needed to uncover the functional link between individual dietary choices, gut microbiome structure and stability, and the implications this has for the reproductive success of this capital breeder.
Collapse
Affiliation(s)
- Isabelle Jones
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Kirsty Marsh
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Tess M. Handby
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Kevin Hopkins
- Institute of Zoology, Zoological Socety of London, London, United Kingdom
| | - Julia Slezacek
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Stuart Bearhop
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Xavier A. Harrison
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
27
|
Navine AK, Paxton KL, Paxton EH, Hart PJ, Foster JT, McInerney N, Fleischer RC, Videvall E. Microbiomes associated with avian malaria survival differ between susceptible Hawaiian honeycreepers and sympatric malaria-resistant introduced birds. Mol Ecol 2023; 32:6659-6670. [PMID: 36281504 DOI: 10.1111/mec.16743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
Of the estimated 55 Hawaiian honeycreepers (subfamily Carduelinae) only 17 species remain, nine of which the International Union for Conservation of Nature considers endangered. Among the most pressing threats to honeycreeper survival is avian malaria, caused by the introduced blood parasite Plasmodium relictum, which is increasing in distribution in Hawai'i as a result of climate change. Preventing further honeycreeper decline will require innovative conservation strategies that confront malaria from multiple angles. Research on mammals has revealed strong connections between gut microbiome composition and malaria susceptibility, illuminating a potential novel approach to malaria control through the manipulation of gut microbiota. One honeycreeper species, Hawai'i 'amakihi (Chlorodrepanis virens), persists in areas of high malaria prevalence, indicating they have acquired some level of immunity. To investigate if avian host-specific microbes may be associated with malaria survival, we characterized cloacal microbiomes and malaria infection for 174 'amakihi and 172 malaria-resistant warbling white-eyes (Zosterops japonicus) from Hawai'i Island using 16S rRNA gene metabarcoding and quantitative polymerase chain reaction. Neither microbial alpha nor beta diversity covaried with infection, but 149 microbes showed positive associations with malaria survivors. Among these were Escherichia and Lactobacillus spp., which appear to mitigate malaria severity in mammalian hosts, revealing promising candidates for future probiotic research for augmenting malaria immunity in sensitive endangered species.
Collapse
Affiliation(s)
- Amanda K Navine
- Biology Department, University of Hawai'i at Hilo, Hilo, Hawaii, USA
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Kristina L Paxton
- Hawai'i Cooperative Studies Unit, University of Hawai'i at Hilo, Hawai'i National Park, Hawaii, USA
| | - Eben H Paxton
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawai'i National Park, Hawaii, USA
| | - Patrick J Hart
- Biology Department, University of Hawai'i at Hilo, Hilo, Hawaii, USA
| | - Jeffrey T Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Nancy McInerney
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Elin Videvall
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Brunetti AE, Lyra ML, Monteiro JPC, Zurano JP, Baldo D, Haddad CFB, Moeller AH. Convergence of gut microbiota in myrmecophagous amphibians. Proc Biol Sci 2023; 290:20232223. [PMID: 37964521 PMCID: PMC10646458 DOI: 10.1098/rspb.2023.2223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
The gut microbiome composition of terrestrial vertebrates is known to converge in response to common specialized dietary strategies, like leaf-eating (folivory) or ant- and termite-eating (myrmecophagy). To date, such convergence has been studied in mammals and birds, but has been neglected in amphibians. Here, we analysed 15 anuran species (frogs and toads) representing five Neotropical families and demonstrated the compositional convergence of the gut microbiomes of distantly related myrmecophagous species. Specifically, we found that the gut microbial communities of bufonids and microhylids, which have independently evolved myrmecophagy, were significantly more similar than expected based on their hosts' evolutionary divergence. Conversely, we found that gut microbiome composition was significantly associated with host evolutionary history in some cases. For instance, the microbiome composition of Xenohyla truncata, one of the few known amphibians that eat fruits, was not different from those of closely related tree frogs with an arthropod generalist diet. Bacterial taxa overrepresented in myrmecophagous species relative to other host families include Paludibacter, Treponema, and Rikenellaceae, suggesting diet-mediated selection and prey-to-predator transmission likely driving the observed compositional convergence. This study provides a basis for examining the roles of the gut microbiome in host tolerance and sequestration of toxic alkaloids from ants and termites.
Collapse
Affiliation(s)
- Andrés E. Brunetti
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (IBS, UNaM-CONICET), Posadas, Misiones 3300, Argentina
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Mariana L. Lyra
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Juliane P. C. Monteiro
- Departamento de Biodiversidade e Centro de Aquicultura da UNESP (CAUNESP), Instituto de Biociências, UNESP-Universidade Estadual Paulista, Rio Claro, SP 13506-900, Brazil
| | - Juan P. Zurano
- Instituto de Biología Subtropical (IBS, UNaM-CONICET), Puerto Iguazú, Misiones 3370, Argentina
| | - Diego Baldo
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (IBS, UNaM-CONICET), Posadas, Misiones 3300, Argentina
| | - Celio F. B. Haddad
- Departamento de Biodiversidade e Centro de Aquicultura da UNESP (CAUNESP), Instituto de Biociências, UNESP-Universidade Estadual Paulista, Rio Claro, SP 13506-900, Brazil
| | - Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
29
|
Trevelline BK, Sprockett D, DeLuca WV, Andreadis CR, Moeller AH, Tonra CM. Convergent remodelling of the gut microbiome is associated with host energetic condition over long-distance migration. Funct Ecol 2023; 37:2840-2854. [PMID: 38249446 PMCID: PMC10795773 DOI: 10.1111/1365-2435.14430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/25/2023] [Indexed: 01/23/2024]
Abstract
The gut microbiome can be thought of as a virtual organ given its immense metabolic capacity and profound effects on host physiology. Migratory birds are capable of adaptively modulating many aspects of their physiology to facilitate long-distance movements, raising the hypothesis that their microbiome may undergo a parallel remodeling process that helps to meet the energetic demands of migration.To test this hypothesis, we investigated changes in gut microbiome composition and function over the fall migration of the Blackpoll Warbler (Setophaga striata), which exhibits one of the longest known autumnal migratory routes of any songbird and rapidly undergoes extensive physiological remodeling during migration.Overall, our results showed that the Blackpoll Warbler microbiome differed significantly across phases of fall migration. This pattern was driven by a dramatic increase in the relative abundance of Proteobacteria, and more specifically a single 16S rRNA gene amplicon sequence variant belonging to the family Enterobacteriaceae. Further, Blackpoll Warblers exhibited a progressive reduction in microbiome diversity and within-group variance over migration, indicating convergence of microbiome composition among individuals during long-distance migration. Metagenomic analysis revealed that the gut microbiome of staging individuals was enriched in bacterial pathways involved in vitamin, amino acid, and fatty acid biosynthesis, as well as carbohydrate metabolism, and that these pathways were in turn positively associated with host body mass and subcutaneous fat deposits.Together, these results provide evidence that the gut microbiome of migratory birds may undergo adaptive remodeling to meet the physiological and energetic demands of long-distance migration.
Collapse
Affiliation(s)
- Brian K. Trevelline
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Daniel Sprockett
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | | | - Catherine R. Andreadis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, USA
| | - Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Christopher M. Tonra
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
30
|
Zhang S, Shen Y, Wang S, Lin Z, Su R, Jin F, Zhang Y. Responses of the gut microbiota to environmental heavy metal pollution in tree sparrow (Passer montanus) nestlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115480. [PMID: 37716068 DOI: 10.1016/j.ecoenv.2023.115480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Gut microbiota plays a critical role in regulating the health and adaptation of wildlife. However, our understanding of how exposure to environmental heavy metals influences the gut microbiota of wild birds, particularly during the vulnerable and sensitive nestling stage, remains limited. In order to investigate the relationship between heavy metals and the gut microbiota, we analyzed the characteristics of gut microbiota and heavy metals levels in tree sparrow nestlings at different ages (6, 9 and 12-day-old). The study was conducted in two distinct areas: Baiyin (BY), which is heavily contaminated with heavy metals, and Liujiaxia (LJX), a relatively unpolluted area. Our result reveled a decrease in gut microbiota diversity and increased inter-individual variation among nestlings in BY. However, we also observed an increase in the abundance of bacterial groups and an up-regulation of bacterial metabolic functions associated with resistance to heavy metals toxicity in BY. Furthermore, we identified a metal-associated shift in the relative abundance of microbial taxa in 12-day-old tree sparrow nestlings in BY, particularly involving Aeromonadaceae, Ruminococcaceae and Pseudomonadaceae. Moreover, a significant positive correlation was found between the body condition of tree sparrow nestlings and the abundance of Bifidobacteriaceae in BY. Collectively, our findings indicate that the gut microbiota of tree sparrow nestlings is susceptible to heavy metals during early development. However, the results also highlight the presence of adaptive responses that enable them to effectively cope with environmental heavy metal pollution.
Collapse
Affiliation(s)
- Sheng Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Shen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shengnan Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhaocun Lin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Su
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fei Jin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
31
|
Mi JX, Liu KL, Ding WL, Zhang MH, Wang XF, Shaukat A, Rehman MU, Jiao XL, Huang SC. Comparative analysis of the gut microbiota of wild wintering whooper swans (Cygnus Cygnus), captive black swans (Cygnus Atratus), and mute swans (Cygnus Olor) in Sanmenxia Swan National Wetland Park of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93731-93743. [PMID: 37515622 DOI: 10.1007/s11356-023-28876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
The gastrointestinal microbiota, a complex ecosystem, is involved in the physiological activities of hosts and the development of diseases. Birds occupy a critical ecological niche in the ecosystem, performing a variety of ecological functions and possessing a complex gut microbiota composition. However, the gut microbiota of wild and captive birds has received less attention in the same region. We profiled the fecal gut microbiome of wild wintering whooper swans (Cygnus Cygnus; Cyg group, n = 25), captive black swans (Cygnus Atratus; Atr group, n = 20), and mute swans (Cygnus Olor; Olor group, n = 30) using 16S rRNA gene sequencing to reveal differences in the gut microbial ecology. The results revealed that the three species of swans differed significantly in terms of the alpha and beta diversity of their gut microbiota, as measured by ACE, Chao1, Simpson and Shannon indices, principal coordinates analysis (PCoA) and non-metricmulti-dimensional scaling (NMDS) respectively. Based on the results of the linear discriminant analysis effect size (LEfSe) and random forest analysis, we found that there were substantial differences in the relative abundance of Gottschalkia, Trichococcus, Enterococcus, and Kurthia among the three groups. Furthermore, an advantageous pattern of interactions between microorganisms was shown by the association network analysis. Among these, Gottschalkia had the higher area under curve (AUC), which was 0.939 (CI = 0.879-0.999), indicating that it might be used as a biomarker to distinguish between wild and captive black swans. Additionally, PICRUSt2 predictions indicated significant differences in gut microbiota functions between wild and captive trumpeter swans, with the gut microbiota functions of Cyg group focusing on carbohydrate metabolism, membrane transport, cofactor, and vitamin metabolism pathways, the Atr group on lipid metabolism, and the Olor group on cell motility, amino acid metabolism, and replication and repair pathways. These findings showed that the gut microbiota of wild and captive swans differed, which is beneficial to understand the gut microecology of swans and to improve regional wildlife conservation strategies.
Collapse
Affiliation(s)
- Jun-Xian Mi
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, China
| | - Kai-Li Liu
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China
| | - Wen-Li Ding
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China
| | - Ming-Hui Zhang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China
| | - Xue-Fei Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, China
| | - Mujeeb Ur Rehman
- Directorate Planning & Development, Livestock & Dairy Development Department, Quetta, Balochistan, 87500, Pakistan
| | - Xi-Lan Jiao
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China.
| |
Collapse
|
32
|
Edwards J, Hoffbeck C, West AG, Pas A, Taylor MW. 16S rRNA gene-based microbiota profiles from diverse avian faeces are largely independent of DNA preservation and extraction method. Front Microbiol 2023; 14:1239167. [PMID: 37675430 PMCID: PMC10477782 DOI: 10.3389/fmicb.2023.1239167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/24/2023] [Indexed: 09/08/2023] Open
Abstract
The avian gut microbiota has been the subject of considerable recent attention, with potential implications for diverse fields such as the poultry industry, microbial ecology, and conservation. Faecal microbiotas are frequently used as a non-invasive proxy for the gut microbiota, however the extraction of high-quality microbial DNA from avian faeces has often proven challenging. Here we aimed to evaluate the performance of two DNA preservation methods (95% ethanol and RNAlater) and five extraction approaches (IndiSpin Pathogen Kit, QIAamp PowerFecal Pro DNA Kit, MicroGEM PrepGEM Bacteria Kit, ZymoBIOMICS DNA Miniprep Kit, and an in-house phase separation-based method) for studying the avian gut microbiota. Systematic testing of the efficacy of these approaches on faecal samples from an initial three avian species (chicken, ostrich, and the flightless parrot kākāpō) revealed substantial differences in the quality, quantity and integrity of extracted DNA, but negligible influence of applied method on 16S rRNA gene-based microbiota profiles. Subsequent testing with a selected combination of preservation and extraction method on 10 further phylogenetically and ecologically diverse avian species reiterated the efficacy of the chosen approach, with bacterial community structure clustering strongly by technical replicates for a given avian species. Our finding that marked differences in extraction efficacy do not appear to influence 16S rRNA gene-based bacterial community profiles provides an important foundation for ongoing research on the avian gut microbiota.
Collapse
Affiliation(s)
- Johnson Edwards
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Carmen Hoffbeck
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Annie G. West
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - An Pas
- New Zealand Centre for Conservation Medicine, Auckland Zoo, Auckland, New Zealand
| | - Michael W. Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
33
|
Zhai J, Wang Y, Tang B, Zheng S, He S, Zhao W, Chen H, Lin J, Li F, Bao Y, Lancuo Z, Sharshov K, Liu C, Wang W. Comparative analysis of gut DNA viromes in wild and captive Himalayan vultures. Front Microbiol 2023; 14:1120838. [PMID: 37601346 PMCID: PMC10433386 DOI: 10.3389/fmicb.2023.1120838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Himalayan vultures (Gyps hinalayensis) are widely distributed on the Qinghai-Tibetan Plateau and play a crucial role in maintaining the ecological balance by feeding on decayed corpses of wild and domestic animals. Large-scale culture and metagenomics studies have broadened our understanding of viral diversity in animals' gastrointestinal tracts. However, despite the importance of gut viral communities in regulating bacterial diversity and performing symbiotic functions, no gut viral study has been conducted on Himalayan vultures. Furthermore, the impact of captivity on the gut virome of these vultures remains unknown. Methods In this study, metagenomic sequencing methods targeting DNA of virus-like particles enriched from feces were used to characterize the gut DNA viromes of wild and captive Himalayan vultures. Results In total, 22,938 unique viral operational taxonomic units (vOTUs) were identified and assigned to 140 viral genera in 41 viral families. These families included viruses associated with bacteria, animals, plants, insects, and archaea. Phage communities, including Siphoviridae, Microviridae, Myoviridae, Inoviridae, and Herelleviridae, dominated the gut virome of Himalayan vultures. Wild vultures exhibited higher viral richness and diversity compared with those in captivity. The functional capacity of the gut virome was characterized by identifying 93 KEGG pathways, which were significantly enriched in metabolism and genetic information processing. Abundant auxiliary metabolic genes, such as carbohydrate-active enzyme, and antibiotic resistance genes, were also found in the vultures' gut virome. Discussion Our findings reveal the complex and diverse viral community present in the gut virome of Himalayan vultures, which varies between wild, and captive states. The DNA virome dataset establishes a baseline for the vultures' gut virome and will serve as a reference for future virus isolation and cultivation. Understanding the impact of captivity on the gut virome contributes to our knowledge of vultures' response to captivity and aids in optimizing their rehabilitation and implementing protective measures.
Collapse
Affiliation(s)
- Jundie Zhai
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - You Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Boyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Sisi Zheng
- Animal Disease Prevention and Control Center of Qinghai Province, Xining, Qinghai, China
| | - Shunfu He
- Xining Wildlife Park of Qinghai Province, Xining, Qinghai, China
| | - Wenxin Zhao
- Xining Wildlife Park of Qinghai Province, Xining, Qinghai, China
| | - Hanxi Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Jun Lin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Feng Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Yuzi Bao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Zhuoma Lancuo
- College of Finance and Economics, Qinghai University, Xining, Qinghai, China
| | - Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Chuanfa Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
34
|
Herder EA, Skeen HR, Lutz HL, Hird SM. Body Size Poorly Predicts Host-Associated Microbial Diversity in Wild Birds. Microbiol Spectr 2023; 11:e0374922. [PMID: 37039681 PMCID: PMC10269867 DOI: 10.1128/spectrum.03749-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/12/2023] [Indexed: 04/12/2023] Open
Abstract
The composition and diversity of avian microbiota are shaped by many factors, including host ecologies and environmental variables. In this study, we examine microbial diversity across 214 bird species sampled in Malawi at five major body sites: blood, buccal cavity, gizzard, intestinal tract, and cloaca. Microbial community dissimilarity differed significantly across body sites. Ecological theory predicts that as area increases, so does diversity. We tested the hypothesis that avian microbiota diversity is correlated with body size, used as a proxy for area, using comparative phylogenetic methods. Using Pagel's lambda, we found that few microbial diversity metrics had significant phylogenetic signals. Phylogenetic generalized least squares identified a significant but weak negative correlation between host size and microbial diversity of the blood and a similarly significant but weakly positive correlation between the cloacal microbiota and host size among birds within the order Passeriformes. Phylosymbiosis, or a congruent branching pattern between host phylogeny and their associated microbiota similarity, was tested and found to be weak or not significant in four of the body sites with sufficient sample size (blood, buccal, cloaca, and intestines). Taken together, these results suggest that the avian microbiome is highly variable, with microbiota diversity demonstrating few clear associations with bird size. Finally, the blood microbiota have a unique relationship with host size. IMPORTANCE All animals coexist and interact with microorganisms, including bacteria, archaea, microscopic eukaryotes, and viruses. These microorganisms can have an enormous influence on the biology and health of macro-organisms. However, the general rules that govern these host-associated microbial communities are poorly described, especially in wild animals. In this paper, we investigate the microbial communities of over 200 species of birds from Malawi and characterize five body site bacterial microbiota in depth. Because the evolutionary relationships of the host underlie the relationship between any host-associated microbiota relationships, we use phylogenetic comparative methods to account for this relationship. We find that the size of a host (the bird) and the diversity and composition of the microbiota are largely uncorrelated. We also find that the general pattern of similarity between host phylogeny and microbiota similarity is weak. Together, we see that bird microbiota are not strongly tied to host size or evolutionary history.
Collapse
Affiliation(s)
- Elizabeth A. Herder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Heather R. Skeen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
| | - Holly L. Lutz
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
- Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
| | - Sarah M. Hird
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
35
|
Li W, Zhao J, Tian H, Shen Y, Wang Y, Shao M, Xiong T, Yao Y, Zhang L, Chen X, Xiao H, Xiong Y, Yang S, Tan C, Xu H. Gut microbiota enhance energy accumulation of black-necked crane to cope with impending migration. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12598-x. [PMID: 37249588 DOI: 10.1007/s00253-023-12598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Less is known about the role of gut microbiota in overwintering environmental adaptation in migratory birds. Here, we performed metagenomic sequencing on fresh fecal samples (n = 24) collected during 4 periods of overwintering (Dec: early; Jan: middle I; Feb: middle II; Mar: late) to characterize gut microbial taxonomic and functional characteristics of black-necked crane (Grus nigricollis). The results demonstrated no significant change in microbial diversity among overwintering periods. Analysis of compositions of microbiomes with bias correction (ANCOM-BC) determined 15 Proteobacteria species enriched in late overwintering period. Based on previous reports, these species are associated with degradation of chitin, cellulose, and lipids. Meanwhile, fatty acid degradation and betalain biosynthesis pathways are enriched in late overwintering period. Furthermore, metagenomic binning obtained 91 high-quality bins (completeness >70% and contamination <10%), 5 of which enriched in late overwintering period. Carnobacterium maltaromaticum, unknown Enterobacteriaceae, and Yersinia frederiksenii have genes for chitin and cellulose degradation, acetate, and glutamate production. Unknown Enterobacteriaceae and Y. frederiksenii hold genes for synthesis of 10 essential amino acids required by birds, and the latter has genes for γ-aminobutyrate production. C. maltaromaticum has genes for pyridoxal synthesis. These results implied the gut microbiota is adapted to the host diet and may help black-necked cranes in pre-migratory energy accumulation by degrading the complex polysaccharide in their diet, supplying essential amino acids and vitamin pyridoxal, and producing acetate, glutamate, and γ-aminobutyrate that could stimulate host feeding. Additionally, enriched Proteobacteria also encoded more carbohydrate-active enzymes (CAZymes) and antibiotic resistance genes (ARGs) in late overwintering period. KEY POINTS: • Differences in gut microbiota function during overwintering period of black-necked cranes depend mainly on changes in core microbiota abundance • Gut microbiota of black-necked crane adapted to the diet during overwintering period • Gut microbiota could help black-necked cranes to accumulate more energy in the late overwintering period.
Collapse
Affiliation(s)
- Wenhao Li
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Junsong Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Hong Tian
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Yanqiong Shen
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Yuanjian Wang
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Yunnan Province, Zhaotong, 657000, Yunnan, China
| | - Mingcui Shao
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Yunnan Province, Zhaotong, 657000, Yunnan, China
| | - Tingsong Xiong
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Yunnan Province, Zhaotong, 657000, Yunnan, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Lin Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xinyu Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Hongtao Xiao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ying Xiong
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Cui Tan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
36
|
Turjeman S. Advances in the study of microbiota in reproductive biology: A short review of recent research, following Leclaire et al. (2022). Mol Ecol 2023; 32:2111-2114. [PMID: 36748907 DOI: 10.1111/mec.16876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
Research on microbiota dynamics in humans (Gilbert et al., 2018), model organisms (Douglas, 2019), and free-ranging, wild animals (Grond et al., 2018) has taken off in the past decades, and even in nonmodel organisms, research has already shifted from initial characterization studies to those examining associations with behaviour and fitness (Bodawatta et al., 2022; Corl et al., 2020; Risely et al., 2018; Turjeman et al., 2020). The microbiota is known to change through pregnancy and parturition (Koren et al., 2012), and there is also evidence in humans that infertility may be associated with microbiota composition (Silva & Giacobini, 2019), but how the microbiota is related to reproductive fitness in free-ranging species is largely understudied or primarily focused on pathogen transmission (sexually transmitted infection) (Lombardo, 1998; Sheldon, 1993). In a From the Cover article in this issue of Molecular Ecology, Leclaire et al. (2022) begin to tease apart the relationship between the microbiota and reproductive fitness using the black-legged kittiwake (Rissa tridactyla) as their study species. Following characterization of the microbiota in multiple body sites of breeders and nonbreeders, they discovered that breeding and nonbreeding females had distinct microbiota, that higher performing female breeders had lower abundances of potentially pathogenic taxa, and that feathers of these birds were characterized by reduced microbiota diversity compared to low-performance breeders. Leclaire and her colleagues provide some of the first evidence of body-wide differences in microbiota composition in relation to breeding status. Their research further supports the relationship between the microbiota and host fitness, and additional studies focusing on this topic can continue to unravel intricacies in host-microbiota-reproductive strategy evolution (Comizzoli et al., 2021; Rowe et al., 2020). Here, I review the results of Leclaire et al. (2022) and provide a wider context for their research by reviewing other studies in the field, focusing on avian species.
Collapse
Affiliation(s)
- Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
37
|
Rajarajan A, Wolinska J, Walser JC, Dennis SR, Spaak P. Host-Associated Bacterial Communities Vary Between Daphnia galeata Genotypes but Not by Host Genetic Distance. MICROBIAL ECOLOGY 2023; 85:1578-1589. [PMID: 35486140 PMCID: PMC10167167 DOI: 10.1007/s00248-022-02011-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/08/2022] [Indexed: 05/10/2023]
Abstract
Host genotype may shape host-associated bacterial communities (commonly referred to as microbiomes). We sought to determine (a) whether bacterial communities vary among host genotypes in the water flea Daphnia galeata and (b) if this difference is driven by the genetic distance between host genotypes, by using D. galeata genotypes hatched from sediments of different time periods. We used 16S amplicon sequencing to profile the gut and body bacterial communities of eight D. galeata genotypes hatched from resting eggs; these were isolated from two distinct sediment layers (dating to 1989 and 2009) of a single sediment core of the lake Greifensee, and maintained in a common garden in laboratory cultures for 5 years. In general, bacterial community composition varied in both the Daphnia guts and bodies; but not between genotypes from different sediment layers. Specifically, genetic distances between host genotypes did not correlate with beta diversity of bacterial communities in Daphnia guts and bodies. Our results indicate that Daphnia bacterial community structure is to some extent determined by a host genetic component, but that genetic distances between hosts do not correlate with diverging bacterial communities.
Collapse
Affiliation(s)
- Amruta Rajarajan
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institut Für Biologie, Freie Universität Berlin (FU), Berlin, Germany
| | | | - Stuart R Dennis
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Piet Spaak
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| |
Collapse
|
38
|
Diez-Méndez D, Bodawatta KH, Freiberga I, Klečková I, Jønsson KA, Poulsen M, Sam K. Indirect maternal effects via nest microbiome composition drive gut colonization in altricial chicks. Mol Ecol 2023. [PMID: 37096441 DOI: 10.1111/mec.16959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
Gut microbial communities are complex and heterogeneous and play critical roles for animal hosts. Early-life disruptions to microbiome establishment can negatively impact host fitness and development. However, the consequences of such early-life disruptions remain unknown in wild birds. To help fill this gap, we investigated the effect of continuous early-life gut microbiome disruptions on the establishment and development of gut communities in wild Great tit (Parus major) and Blue tit (Cyanistes caeruleus) nestlings by applying antibiotics and probiotics. Treatment neither affected nestling growth nor their gut microbiome composition. Independent of treatment, nestling gut microbiomes of both species grouped by brood, which shared the highest numbers of bacterial taxa with both nest environment and their mother. Although fathers showed different gut communities than their nestlings and nests, they still contributed to structuring chick microbiomes. Lastly, we observed that the distance between nests increased inter-brood microbiome dissimilarity, but only in Great tits, indicating that species-specific foraging behaviour and/or microhabitat influence gut microbiomes. Overall, the strong maternal effect, driven by continuous recolonization from the nest environment and vertical transfer of microbes during feeding, appears to provide resilience towards early-life disruptions in nestling gut microbiomes.
Collapse
Affiliation(s)
- David Diez-Méndez
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Kasun H Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Inga Freiberga
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Irena Klečková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Knud A Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Katerina Sam
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
39
|
Liukkonen M, Hukkanen M, Cossin-Sevrin N, Stier A, Vesterinen E, Grond K, Ruuskanen S. No evidence for associations between brood size, gut microbiome diversity and survival in great tit (Parus major) nestlings. Anim Microbiome 2023; 5:19. [PMID: 36949549 PMCID: PMC10031902 DOI: 10.1186/s42523-023-00241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND The gut microbiome forms at an early stage, yet data on the environmental factors influencing the development of wild avian microbiomes is limited. As the gut microbiome is a vital part of organismal health, it is important to understand how it may connect to host performance. The early studies with wild gut microbiome have shown that the rearing environment may be of importance in gut microbiome formation, yet the results vary across taxa, and the effects of specific environmental factors have not been characterized. Here, wild great tit (Parus major) broods were manipulated to either reduce or enlarge the original brood soon after hatching. We investigated if brood size was associated with nestling bacterial gut microbiome, and whether gut microbiome diversity predicted survival. Fecal samples were collected at mid-nestling stage and sequenced with the 16S rRNA gene amplicon sequencing, and nestling growth and survival were measured. RESULTS Gut microbiome diversity showed high variation between individuals, but this variation was not significantly explained by brood size or body mass. Additionally, we did not find a significant effect of brood size on body mass or gut microbiome composition. We also demonstrated that early handling had no impact on nestling performance or gut microbiome. Furthermore, we found no significant association between gut microbiome diversity and short-term (survival to fledging) or mid-term (apparent juvenile) survival. CONCLUSIONS We found no clear association between early-life environment, offspring condition and gut microbiome. This suggests that brood size is not a significantly contributing factor to great tit nestling condition, and that other environmental and genetic factors may be more strongly linked to offspring condition and gut microbiome. Future studies should expand into other early-life environmental factors e.g., diet composition and quality, and parental influences.
Collapse
Affiliation(s)
- Martta Liukkonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyvaskyla, Finland.
| | - Mikaela Hukkanen
- Department of Biology, University of Turku, Turku, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | | | - Antoine Stier
- Department of Biology, University of Turku, Turku, Finland
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69622, Lyon, France
- Institut Pluridisciplinaire Hubert Curien, UMR7178, Université de Strasbourg, CNRS, Strasbourg, France
| | | | - Kirsten Grond
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, 99508, USA
| | - Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyvaskyla, Finland
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
40
|
Kim JE, Tun HM, Bennett DC, Leung FC, Cheng KM. Microbial diversity and metabolic function in duodenum, jejunum and ileum of emu (Dromaius novaehollandiae). Sci Rep 2023; 13:4488. [PMID: 36934111 PMCID: PMC10024708 DOI: 10.1038/s41598-023-31684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 03/20/2023] Open
Abstract
Emus (Dromaius novaehollandiae), a large flightless omnivorous ratite, are farmed for their fat and meat. Emu fat can be rendered into oil for therapeutic and cosmetic use. They are capable of gaining a significant portion of its daily energy requirement from the digestion of plant fibre. Despite of its large body size and low metabolic rate, emus have a relatively simple gastroinstetinal (GI) tract with a short mean digesta retention time. However, little is known about the GI microbial diversity of emus. The objective of this study was to characterize the intraluminal intestinal bacterial community in the different segments of small intestine (duodenum, jejunum, and ileum) using pyrotag sequencing and compare that with the ceca. Gut content samples were collected from each of four adult emus (2 males, 2 females; 5-6 years old) that were free ranged but supplemented with a barley-alfalfa-canola based diet. We amplified the V3-V5 region of 16S rRNA gene to identify the bacterial community using Roche 454 Junior system. After quality trimming, a total of 165,585 sequence reads were obtained from different segments of the small intestine (SI). A total of 701 operational taxonomic units (OTUs) were identified in the different segments of small intestine. Firmicutes (14-99%) and Proteobacteria (0.5-76%) were the most predominant bacterial phyla in the small intestine. Based on species richness estimation (Chao1 index), the average number of estimated OTUs in the small intestinal compartments were 148 in Duodenum, 167 in Jejunum, and 85 in Ileum, respectively. Low number of core OTUs identified in each compartment of small intestine across individual birds (Duodenum: 13 OTUs, Jejunum: 2 OTUs, Ileum: 14 OTUs) indicated unique bacterial community in each bird. Moreover, only 2 OTUs (Escherichia and Sinobacteraceae) were identified as core bacteria along the whole small intestine. PICRUSt analysis has indicated that the detoxification of plant material and environmental chemicals seem to be performed by SI microbiota, especially those in the jejunum. The emu cecal microbiome has more genes than SI segments involving in protective or immune response to enteric pathogens. Microbial digestion and fermentation is mostly in the jejunum and ceca. This is the first study to characterize the microbiota of different compartments of the emu intestines via gut samples and not fecal samples. Results from this study allow us to further investigate the influence of the seasonal and physiological changes of intestinal microbiota on the nutrition of emus and indirectly influence the fatty acid composition of emu fat.
Collapse
Affiliation(s)
- Ji Eun Kim
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Hein M Tun
- School of Public Health, Li Ka Shing, Faculty of Medicine, HKU-Pasteur Research Pole, University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- JC School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Darin C Bennett
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Animal Science Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Frederick C Leung
- School of Biological Sciences, Faculty of Science, University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Kimberly M Cheng
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
41
|
Bogomolnaya L, Talamantes M, Rocha J, Nagarajan A, Zhu W, Spiga L, Winter MG, Konganti K, Adams LG, Winter S, Andrews-Polymenis H. Taxonomic and Metagenomic Analyses Define the Development of the Microbiota in the Chick. mBio 2023; 14:e0244422. [PMID: 36475774 PMCID: PMC9973254 DOI: 10.1128/mbio.02444-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
Chicks are ideal to follow the development of the intestinal microbiota and to understand how a pathogen perturbs this developing population. Taxonomic/metagenomic analyses captured the development of the chick microbiota in unperturbed chicks and in chicks infected with Salmonella enterica serotype Typhimurium (STm) during development. Taxonomic analysis suggests that colonization by the chicken microbiota takes place in several waves. The cecal microbiota stabilizes at day 12 posthatch with prominent Gammaproteobacteria and Clostridiales. Introduction of S. Typhimurium at day 4 posthatch disrupted the expected waves of intestinal colonization. Taxonomic and metagenomic shotgun sequencing analyses allowed us to identify species present in uninfected chicks. Untargeted metabolomics suggested different metabolic activities in infected chick microbiota. This analysis and gas chromatography-mass spectrometry on ingesta confirmed that lactic acid in cecal content coincides with the stable presence of enterococci in STm-infected chicks. Unique metabolites, including 2-isopropylmalic acid, an intermediate in the biosynthesis of leucine, were present only in the cecal content of STm-infected chicks. The metagenomic data suggested that the microbiota in STm-infected chicks contained a higher abundance of genes, from STm itself, involved in branched-chain amino acid synthesis. We generated an ilvC deletion mutant (STM3909) encoding ketol-acid-reductoisomerase, a gene required for the production of l-isoleucine and l-valine. ΔilvC mutants are disadvantaged for growth during competitive infection with the wild type. Providing the ilvC gene in trans restored the growth of the ΔilvC mutant. Our integrative approach identified biochemical pathways used by STm to establish a colonization niche in the chick intestine during development. IMPORTANCE Chicks are an ideal model to follow the development of the intestinal microbiota and to understand how a pathogen perturbs this developing population. Using taxonomic and metagenomic analyses, we captured the development of chick microbiota to 19 days posthatch in unperturbed chicks and in chicks infected with Salmonella enterica serotype Typhimurium (STm). We show that normal development of the microbiota takes place in waves and is altered in the presence of a pathogen. Metagenomics and metabolomics suggested that branched-chain amino acid biosynthesis is especially important for Salmonella growth in the infected chick intestine. Salmonella mutants unable to make l-isoleucine and l-valine colonize the chick intestine poorly. Restoration of the pathway for biosynthesis of these amino acids restored the colonizing ability of Salmonella. Integration of multiple analyses allowed us to correctly identify biochemical pathways used by Salmonella to establish a niche for colonization in the chick intestine during development.
Collapse
Affiliation(s)
- Lydia Bogomolnaya
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, USA
- Deparment of Biomedical Sciences, Marshall University, Huntington, West Virginia, USA
| | - Marissa Talamantes
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, USA
| | - Joana Rocha
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, USA
| | - Aravindh Nagarajan
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, USA
| | - Wenhan Zhu
- Department of Microbiology and Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Luisella Spiga
- Department of Microbiology and Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Maria G. Winter
- Department of Microbiology and Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kranti Konganti
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M, College Station, Texas, USA
| | - L. Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M, College Station, Texas, USA
| | - Sebastian Winter
- Department of Microbiology and Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Helene Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
42
|
García-Amado MA, Rudolf CA, Fuentes-Fuentes MDM, Chorna N, Martínez LM, Godoy-Vitorino F. Bacterial composition along the digestive tract of the Horned Screamer ( Anhima cornuta), a tropical herbivorous bird. PeerJ 2023; 11:e14805. [PMID: 36815987 PMCID: PMC9933741 DOI: 10.7717/peerj.14805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/05/2023] [Indexed: 02/15/2023] Open
Abstract
Background The Horned Screamer (Anhima cornuta) is an herbivorous bird that inhabits wetlands of the South American tropical region. We hypothesize that due to its herbivorous niche, its digestive tract compartments may have bacteria specialized in fermenting complex plant carbohydrates. To test this hypothesis, we compared the bacterial communities along the gastrointestinal tract (GIT) of a Horned Screamer captured in Venezuela. Methods Samples were taken from tissues and content of the proventriculus and the small intestine (considered for this study as upper GIT), and the large intestine and cecum (lower GIT). The bacterial community was characterized by sequencing the V4 region of the 16S rRNA gene. Bioinformatic analysis was performed using QIIME, QIITA and Microbiome Analyst. The association between microbial taxonomy and function was analyzed using their Greengenes OTU IDs and a custom KEGG BRITE hierarchical tree and visualized with BURRITO. Results The Screamer's gastrointestinal microbiota was composed by seven phyla being Firmicutes and Bacteroidetes the most predominant. The dominant taxa in the upper GIT were Helicobacter, Vibrio, Enterobacter, Acinetobacter and Staphylococcus. The dominant taxa in the lower GIT were Oribacterium, Blautia, Roseburia, Ruminococcus, Desulfovibrio, Intestinimonas, Marvinbryantia and Parabacteroides. Complete degradation of cellulose to the end-products acetate, propanoate, butanoate and acetoacetate was found in the upper and lower GIT without significant differences. Conclusion Our study confirmed changes in bacterial community composition throughout the GIT of the Horned Screamer primarily associated with the production of metabolic end-products of carbohydrate digestion essential for the fermentation of the herbivorous diet.
Collapse
Affiliation(s)
- María Alexandra García-Amado
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Miranda, Venezuela
| | - Carla A. Rudolf
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Miranda, Venezuela
| | | | - Nataliya Chorna
- Biochemistry Department, University of Puerto Rico School of Medicine, San Juan, PR, Puerto Rico
| | | | - Filipa Godoy-Vitorino
- Microbiology Department, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
43
|
Deviche P, Sweazea K, Angelier F. Past and future: Urbanization and the avian endocrine system. Gen Comp Endocrinol 2023; 332:114159. [PMID: 36368439 DOI: 10.1016/j.ygcen.2022.114159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022]
Abstract
Urban environments are evolutionarily novel and differ from natural environments in many respects including food and/or water availability, predation, noise, light, air quality, pathogens, biodiversity, and temperature. The success of organisms in urban environments requires physiological plasticity and adjustments that have been described extensively, including in birds residing in geographically and climatically diverse regions. These studies have revealed a few relatively consistent differences between urban and non-urban conspecifics. For example, seasonally breeding urban birds often develop their reproductive system earlier than non-urban birds, perhaps in response to more abundant trophic resources. In most instances, however, analyses of existing data indicate no general pattern distinguishing urban and non-urban birds. It is, for instance, often hypothesized that urban environments are stressful, yet the activity of the hypothalamus-pituitary-adrenal axis does not differ consistently between urban and non-urban birds. A similar conclusion is reached by comparing blood indices of metabolism. The origin of these disparities remains poorly understood, partly because many studies are correlative rather than aiming at establishing causality, which effectively limits our ability to formulate specific hypotheses regarding the impacts of urbanization on wildlife. We suggest that future research will benefit from prioritizing mechanistic approaches to identify environmental factors that shape the phenotypic responses of organisms to urbanization and the neuroendocrine and metabolic bases of these responses. Further, it will be critical to elucidate whether factors affect these responses (a) cumulatively or synergistically; and (b) differentially as a function of age, sex, reproductive status, season, and mobility within the urban environment. Research to date has used various taxa that differ greatly not only phylogenetically, but also with regard to ecological requirements, social systems, propensity to consume anthropogenic food, and behavioral responses to human presence. Researchers may instead benefit from standardizing approaches to examine a small number of representative models with wide geographic distribution and that occupy diverse urban ecosystems.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Karen Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Frederic Angelier
- Centre d'Etudes Biologiques de Chizé, UMR7372, CNRS - La Rochelle Universite, Villiers en Bois, France
| |
Collapse
|
44
|
Zhou T, Liu S, Jiang A. Comparison of gut microbiota between immigrant and native populations of the Silver-eared Mesia ( Leiothrix argentauris) living in mining area. Front Microbiol 2023; 14:1076523. [PMID: 36760498 PMCID: PMC9904241 DOI: 10.3389/fmicb.2023.1076523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
The complex gut bacterial communities have a major impact on organismal health. However, knowledge of the effects of habitat change on the gut microbiota of wild birds is limited. In this study, we characterized the gut microbiota of two different subspecies of the Silver-eared Mesia (Leiothrix argentauris), the native subspecies (L. a. rubrogularis) and immigrant subspecies (L. a. vernayi), using 16S rRNA gene high-throughput sequencing. These two subspecies live in a trace metal-contaminated area, and L. a. vernayi was trafficked. They are an excellent system for studying how the gut microbiome of wild animal changes when they move to new habitats. We hypothesized that the immigrant subspecies would develop the same adaptations as the native subspecies in response to habitat changes. The results showed that there were no significant differences in the composition, diversity, or functional metabolism of gut microbiota between native and immigrant subspecies under the combined action of similar influencing factors (the p values of all analyses of variance >0.05). In addition, the composition and functional metabolism of gut microbiota in two subspecies showed adaptation against trace metal damage. Linear discriminant analysis effect size (LEfSe) analysis revealed that Massilia in the intestinal microbiota of immigrant subspecies was significantly higher than that of native subspecies, suggesting that immigrant subspecies suffered habitat change. Finally, we found that these two subspecies living in the mining area had an extremely high proportion of pathogenic bacteria in their gut microbiota (about 90%), much higher than in other species (about 50%) living in wild environment. Our results revealed the adaptation of intestinal microbiota of immigrant Silver-eared Mesias under heavy metals stress, which would provide guidance for biodiversity conservation and pollution management in mining area.
Collapse
|
45
|
Joakim RL, Irham M, Haryoko T, Rowe KMC, Dalimunthe Y, Anita S, Achmadi AS, McGuire JA, Perkins S, Bowie RCK. Geography and elevation as drivers of cloacal microbiome assemblages of a passerine bird distributed across Sulawesi, Indonesia. Anim Microbiome 2023; 5:4. [PMID: 36647179 PMCID: PMC9841722 DOI: 10.1186/s42523-022-00219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 12/13/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Empirical field studies allow us to view how ecological and environmental processes shape the biodiversity of our planet, but collecting samples in situ creates inherent challenges. The majority of empirical vertebrate gut microbiome research compares multiple host species against abiotic and biotic factors, increasing the potential for confounding environmental variables. To minimize these confounding factors, we focus on a single species of passerine bird found throughout the geologically complex island of Sulawesi, Indonesia. We assessed the effects of two environmental factors, geographic Areas of Endemism (AOEs) and elevation, as well as host sex on the gut microbiota assemblages of the Sulawesi Babbler, Pellorneum celebense, from three different mountains across the island. Using cloacal swabs, high-throughput-amplicon sequencing, and multiple statistical models, we identified the core microbiome and determined the signal of these three factors on microbial composition. RESULTS The five most prevalent bacterial phyla within the gut microbiome of P. celebense were Proteobacteria (32.6%), Actinobacteria (25.2%), Firmicutes (22.1%), Bacteroidetes (8.7%), and Plantomycetes (2.6%). These results are similar to those identified in prior studies of passeriform microbiomes. Overall, microbiota diversity decreased as elevation increased, irrespective of sex or AOE. A single ASV of Clostridium was enriched in higher elevation samples, while lower elevation samples were enriched with the genera Perlucidibaca (Family Moraxellaceae), Lachnoclostridium (Family Lachnospiraceae), and an unidentified species in the Family Pseudonocardiaceae. CONCLUSIONS While the core microbiota families recovered here are consistent with other passerine studies, the decreases in diversity as elevation increases has only been seen in non-avian hosts. Additionally, the increased abundance of Clostridium at high elevations suggests a potential microbial response to lower oxygen levels. This study emphasizes the importance of incorporating multiple statistical models and abiotic factors such as elevation in empirical microbiome research, and is the first to describe an avian gut microbiome from the island of Sulawesi.
Collapse
Affiliation(s)
- Rachael L Joakim
- Department of Biology, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA.
- The Graduate Center of The City University of New York, Biology Program, 365 5Th Ave, New York, NY, 10016, USA.
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA.
- The Richard Gilder Graduate School, American Museum of Natural History, New York, NY, 10024, USA.
| | - Mohammad Irham
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Tri Haryoko
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Karen M C Rowe
- Sciences Department, Museums Victoria, Carlton, VIC, Australia
- BioSciences Department, University of Melbourne, Parkville, VIC, Australia
| | - Yohanna Dalimunthe
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Syahfitri Anita
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Anang S Achmadi
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Jimmy A McGuire
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Susan Perkins
- Department of Biology, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
- The Graduate Center of The City University of New York, Biology Program, 365 5Th Ave, New York, NY, 10016, USA
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
46
|
Baiz MD, Benavides C A, Miller ET, Wood AW, Toews DPL. Gut microbiome composition better reflects host phylogeny than diet diversity in breeding wood-warblers. Mol Ecol 2023; 32:518-536. [PMID: 36325817 DOI: 10.1111/mec.16762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Understanding the factors that shape microbiomes can provide insight into the importance of host-symbiont interactions and on co-evolutionary dynamics. Unlike for mammals, previous studies have found little or no support for an influence of host evolutionary history on avian gut microbiome diversity and instead have suggested a greater influence of the environment or diet due to fast gut turnover. Because effects of different factors may be conflated by captivity and sampling design, examining natural variation using large sample sizes is important. Our goal was to overcome these limitations by sampling wild birds to compare environmental, dietary and evolutionary influences on gut microbiome structure. We performed faecal metabarcoding to characterize both the gut microbiome and diet of 15 wood-warbler species across a 4-year period and from two geographical localities. We find host taxonomy generally explained ~10% of the variation between individuals, which is ~6-fold more variation of any other factor considered, including diet diversity. Further, gut microbiome similarity was more congruent with the host phylogeny than with host diet similarity and we found little association between diet diversity and microbiome diversity. Together, our results suggest evolutionary history is the strongest predictor of gut microbiome differentiation among wood-warblers. Although the phylogenetic signal of the warbler gut microbiome is not very strong, our data suggest that a stronger influence of diet (as measured by diet diversity) does not account for this pattern. The mechanism underlying this phylogenetic signal is not clear, but we argue host traits may filter colonization and maintenance of microbes.
Collapse
Affiliation(s)
- Marcella D Baiz
- Department of Biology, Pennylvania State University, University Park, Pennsylvania, USA
| | - Andrea Benavides C
- Department of Biology, Pennylvania State University, University Park, Pennsylvania, USA
| | | | - Andrew W Wood
- Department of Biology, Pennylvania State University, University Park, Pennsylvania, USA
| | - David P L Toews
- Department of Biology, Pennylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
47
|
Luo Y, Tan L, Zhang H, Bi W, Zhao L, Wang X, Lu X, Xu X, Sun R, Alvarez PJJ. Characteristics of Wild Bird Resistomes and Dissemination of Antibiotic Resistance Genes in Interconnected Bird-Habitat Systems Revealed by Similarity of blaTEM Polymorphic Sequences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15084-15095. [PMID: 35700319 DOI: 10.1021/acs.est.2c01633] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wild birds are known to harbor and discharge antibiotic-resistant bacteria (ARB) and their associated antibiotic resistance genes (ARGs). However, assessments of their contribution to the dissemination of antibiotic resistance in the environment are limited to culture-dependent bacterial snapshots. Here, we present a high-throughput sequencing study that corroborates extensive ARG exchange between wild bird feces and their habitats and implies the need to scrutinize high-mobility birds as potential vectors for global propagation of ARGs. We characterized the resistome (281 ARGs) and microbiome of seven wild bird species and their terrestrial and aquatic habitats. The resistomes of bird feces were influenced by the microbial community structure, mobile genetic elements (MGEs), and residual antibiotics. We designated 33 ARGs found in more than 90% of the bird fecal samples as core ARGs of wild bird feces, among which 16 ARGs were shared as core ARGs in both wild bird feces and their habitats; these genes represent a large proportion of both the bird feces (35.0 ± 15.9%) and the environmental resistome (29.9 ± 21.4%). One of the most detected β-lactam resistance genes (blaTEM, commonly harbored by multidrug resistant "superbugs") was used as molecular marker to demonstrate the high interconnectivity of ARGs between the microbiomes of wild birds and their habitats. Overall, this work provides a comprehensive analysis of the wild bird resistome and underscores the importance to consider genetic exchange between animals and the environment in the One Health approach.
Collapse
Affiliation(s)
- Yi Luo
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Lu Tan
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hanhui Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Wenjing Bi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lin Zhao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaolong Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xueqiang Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ximing Xu
- Key Laboratory for Medical Data Analysis and Statistical Research of Tianjin School of Statistics and Data Science, Nankai University, Tianjin 300071, China
| | - Ruonan Sun
- Dept of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Pedro J J Alvarez
- Dept of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
48
|
Costanzo A, Ambrosini R, Franzetti A, Romano A, Cecere JG, Morganti M, Rubolini D, Gandolfi I. The cloacal microbiome of a cavity-nesting raptor, the lesser kestrel ( Falco naumanni). PeerJ 2022; 10:e13927. [PMID: 36221261 PMCID: PMC9548316 DOI: 10.7717/peerj.13927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/30/2022] [Indexed: 01/19/2023] Open
Abstract
Background Microbial communities are found on any part of animal bodies exposed to the environment, and are particularly prominent in the gut, where they play such a major role in the host metabolism and physiology to be considered a "second genome". These communities, collectively known as "microbiome", are well studied in humans and model species, while studies on wild animals have lagged behind. This is unfortunate, as different studies suggested the central role of the gut microbiome in shaping the evolutionary trajectories of species and their population dynamics. Among bird species, only few descriptions of raptor gut microbiomes are available, and mainly carried out on captive individuals. Objectives In this study, we aimed at improving the knowledge of raptor microbiomes by providing the first description of the gut microbiome of the lesser kestrel (Falco naumanni), a cavity-nesting raptor. Results The gut microbiome of the lesser kestrel was dominated by Actinobacteria (83.9%), Proteobacteria (8.6%) and Firmicutes (4.3%). We detected no differences in microbiome composition between males and females. Furthermore, the general composition of the microbiome appears similar to that of phylogenetically distant cavity-nesting species. Conclusions Our results broaden the knowledge of raptor gut microbial communities and let us hypothesize that the distinct nest environment in terms of microclimate and presence of organic material from previous breeding attempts, to which cavity-nesting species that reuse the nest are exposed, might be an important driver shaping microbiomes.
Collapse
Affiliation(s)
- Alessandra Costanzo
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | - Roberto Ambrosini
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milan—Bicocca, Milan, Italy
| | - Andrea Romano
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | - Jacopo G. Cecere
- Area Avifauna Migratrice, Istituto Superiore per La Protezione e La Ricerca Ambientale (ISPRA), Ozzano Emilia, (BO), Italy
| | - Michelangelo Morganti
- IRSA-CNR, Water Research Institute-National Research Council of Italy, Brugherio, Italy
| | - Diego Rubolini
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
- IRSA-CNR, Water Research Institute-National Research Council of Italy, Brugherio, Italy
| | - Isabella Gandolfi
- Department of Earth and Environmental Sciences, University of Milan—Bicocca, Milan, Italy
| |
Collapse
|
49
|
Mohr AE, Basile AJ, Sweazea KL. An urban diet differentially alters the gut microbiome and metabolomic profiles compared with a seed diet in mourning doves. Am J Physiol Regul Integr Comp Physiol 2022; 323:R385-R396. [PMID: 35913000 PMCID: PMC9484994 DOI: 10.1152/ajpregu.00323.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
Urbanization influences food quality and availability for many avian species, with increased access to human refuse and food subsidies in built environments. In relation to such nutritional intakes and their presumed impact on microbes harbored in the intestinal tract and metabolic profiles of host physiological systems, our overall knowledge of the role of gut microbiome (GM) and metabolomic expression in the avian host lags far behind our understanding of mammals. Therefore, the objective of this investigation was to examine the potential differential effect of an urban modeled versus control (i.e., bird seed) diet on the GM, the metabolic profiles of plasma, liver, adipose, kidney, and muscle tissues, and circulating endotoxin and inflammatory factors in urban-caught mourning doves (Zenaida macroura). We hypothesized that the urban diet would differently impact the profiles of the GM and tissue metabolomes and increase plasma lipopolysaccharide (LPS) and proinflammatory factors compared with animals fed a seed diet. After a 4-wk-diet period, contents of the large intestine were sequenced to profile the microbiome, metabolomic analyses were performed on plasma and tissue homogenates, and circulating LPS and inflammatory markers were assessed. The composition of the GM was significantly dissimilar between diets, with greater abundance of Erysipelatoclostridiaceae, Sanguibacteraceae, Oribacterium, and Sanguibacter and decreased circulating LPS in the urban-fed birds. These differences were largely not reflected in the surveyed metabolomes and plasma inflammatory markers. This research supports the notion that the microbial composition in urban doves is impacted by diet, though may only weakly associate with host physiology.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, Arizona
| | - Anthony J Basile
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
50
|
West AG, Digby A, Lear G, Taylor MW, Bromley M, Buckley E, Chatterton J, Cox MP, Cramer RA, Crane J, Dearden PK, Eason D, Fisher MC, Gago S, Gartrell B, Gemmell NJ, Glare TR, Guhlin J, Howard J, Lacap-Bugler D, Le Lec M, Lin XX, Lofgren L, Mackay J, Meis J, Morelli KA, Perrott J, Petterson M, Quinones-Mateu M, Rhodes J, Roberts J, Stajich J, Taylor MW, Tebbutt SJ, Truter-Meyer A, Uddstrom L, Urban L, van Rhijn N, Vercoe D, Vesely E, Weir BS, West AG, Winter DJ, Yeung J, Taylor MW. Influence of management practice on the microbiota of a critically endangered species: a longitudinal study of kākāpō chick faeces and associated nest litter. Anim Microbiome 2022; 4:55. [PMID: 36175950 PMCID: PMC9523977 DOI: 10.1186/s42523-022-00204-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/29/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The critically endangered kākāpō is a flightless, nocturnal parrot endemic to Aotearoa New Zealand. Recent efforts to describe the gastrointestinal microbial community of this threatened herbivore revealed a low-diversity microbiota that is often dominated by Escherichia-Shigella bacteria. Given the importance of associated microbial communities to animal health, and increasing appreciation of their potential relevance to threatened species conservation, we sought to better understand the development of this unusual gut microbiota profile. To this end, we conducted a longitudinal analysis of faecal material collected from kākāpō chicks during the 2019 breeding season, in addition to associated nest litter material. RESULTS Using an experimental approach rarely seen in studies of threatened species microbiota, we evaluated the impact of a regular conservation practice on the developing kākāpō microbiota, namely the removal of faecal material from nests. Artificially removing chick faeces from nests had negligible impact on bacterial community diversity for either chicks or nests (p > 0.05). However, the gut microbiota did change significantly over time as chick age increased (p < 0.01), with an increasing relative abundance of Escherichia-Shigella coli over the study period and similar observations for the associated nest litter microbiota (p < 0.01). Supplementary feeding substantially altered gut bacterial diversity of kākāpō chicks (p < 0.01), characterised by a significant increase in Lactobacillus bacteria. CONCLUSIONS Overall, chick age and hand rearing conditions had the most marked impact on faecal bacterial communities. Similarly, the surrounding nest litter microbiota changed significantly over time since a kākāpō chick was first placed in the nest, though we found no evidence that removal of faecal material influenced the bacterial communities of either litter or faecal samples. Taken together, these observations will inform ongoing conservation and management of this most enigmatic of bird species.
Collapse
Affiliation(s)
- Annie G. West
- grid.9654.e0000 0004 0372 3343School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Andrew Digby
- Department of Conservation, Kākāpō Recovery Team, PO Box 743, Invercargill, New Zealand
| | - Gavin Lear
- grid.9654.e0000 0004 0372 3343School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Kākāpō Recovery Team
- Department of Conservation, Kākāpō Recovery Team, PO Box 743, Invercargill, New Zealand
| | | | - Michael W. Taylor
- grid.9654.e0000 0004 0372 3343School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|