1
|
Lucidi M, Capecchi G, Spagnoli C, Basile A, Artuso I, Persichetti L, Fardelli E, Capellini G, Visaggio D, Imperi F, Rampioni G, Leoni L, Visca P. The response to desiccation in Acinetobacter baumannii. Virulence 2025; 16:2490209. [PMID: 40220276 PMCID: PMC12005421 DOI: 10.1080/21505594.2025.2490209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/10/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
The long-term resistance to desiccation on abiotic surfaces is a key determinant of the adaptive success of Acinetobacter baumannii as a healthcare-associated bacterial pathogen. Here, the cellular and molecular mechanisms enabling A. baumannii to resist desiccation and persist on abiotic surfaces were investigated. Experiments were set up to mimic the A. baumannii response to air-drying that would occur when bacterial cells contaminate fomites in hospitals. Resistance to desiccation and transition to the "viable but nonculturable" (VBNC) state were determined in the laboratory-adapted strain ATCC 19606T and the epidemic strain ACICU. Culturability, membrane integrity, metabolic activity, virulence, and gene expression profile were compared between the two strains at different stages of desiccation. Upon desiccation, ATCC 19606T and ACICU cells lose culturability and membrane integrity, lower their metabolism, and enter the VBNC state. However, desiccated A. baumannii cells fully recover culturability and virulence in an insect infection model following rehydration in physiological buffers or human biological fluids. Transcriptome and chemical analyses of A. baumannii cells during desiccation unveiled the production of protective metabolites (L-cysteine and L-glutamate) and decreased energetic metabolism consequent to activation of the glyoxylate shunt (GS) pathway, as confirmed by reduced resuscitation efficiency of aceA mutants, lacking the key enzyme of the GS pathway. VBNC cell formation and extensive metabolic reprogramming provide a biological basis for the response of A. baumannii to desiccation, with implications on environmental control measures aimed at preventing the transmission of A. baumannii infection in hospitals.
Collapse
Affiliation(s)
- Massimiliano Lucidi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | | | | | | | - Irene Artuso
- Department of Science, Roma Tre University, Rome, Italy
| | | | | | | | - Daniela Visaggio
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Giordano Rampioni
- Department of Science, Roma Tre University, Rome, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Livia Leoni
- Department of Science, Roma Tre University, Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
2
|
Wen T, Meng L, Zhao F, Shi Y, Zhang T. Autocrine peptides inhibited the formation of VBNC state of Staphylococcus aureus. Microbiol Res 2025; 294:128103. [PMID: 39965278 DOI: 10.1016/j.micres.2025.128103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Viable but non-culturable (VBNC) Staphylococcus aureus cannot form colonies on a medium, causing a false negative result in culture-based detection, which is a potential hazard to human health. In this study, four peptides (PVSS.a-1, PVSS.a-2, PVSS.a-3, and PVSS.a-4) were identified in the suspension of S. aureus during the VBNC state induction. Notably, PVSS.a-1 and PVSS.a-2 prolonged the entry of S. aureus into the VBNC state in citric acid solution (pH 4.0) at 4℃ by 83 % and 103 %, respectively. Such a delaying effect indicates that S. aureus might be forced to enter the VBNC state under pressure, rather than actively. Microscopic observation and zeta-potential determination suggested that PVSS.a-1 and PVSS.a-2 improved the aggregation of S. aureus cells. Furthermore, the two peptides were demonstrated to enter cells by FITC-label localization detection, and changed internal structures and improved intracellular enzyme activities occurred in the two peptide-treated cells. Through the analysis of interactions with DNA and proteins of S. aureus, it was found that PVSS.a-1 and PVSS.a-2 might affect cellular processes, including cell division, transcription, translation, and material and energy metabolisms. These alterations improved the viability and culturability of S. aureus, thereby delaying VBNC formation. In summary, our study reveals how autocrine peptides delay VBNC formation of S. aureus, and provides a new insight into the real intention of bacteria to form VBNC state under adverse conditions.
Collapse
Affiliation(s)
- Tao Wen
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China
| | - Lingling Meng
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China
| | - Feng Zhao
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China; Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Heilongjiang, China.
| | - Ying Shi
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China
| |
Collapse
|
3
|
Zhang T, Cheng F, Fan L, Zhang YN, Qu J, Peijnenburg WJGM. Non-negligible effects of sunlight irradiation on generation of VBNC-state antibiotic resistant bacteria in natural water. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138397. [PMID: 40280065 DOI: 10.1016/j.jhazmat.2025.138397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/18/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The viable but non-culturable (VBNC) state antibiotic resistant bacteria (ARB) poses significant environmental risk. The mechanism by which simulated sunlight irradiation induces ARB to enter the VBNC state remains unclear. This study systematically explored the photochemical generation mechanism of VBNC-ARB in natural water. Ampicillin-resistant Escherichia coli (AR E. coli) was selected as a representative ARB. The results showed that AR E. coli lost cultivability under sunlight with 91.1 % of AR E. coli entering the VBNC state. Suwannee River fulvic acid (SRFA) slightly enhanced this effect and can induce 95.9 % of AR E. coli into the VBNC state. Under sunlight exposure, oxidative stress and the toxin-antitoxin (TA) system in AR E. coli were identified as key factors in inducing the VBNC state. This process was accompanied by a deterioration in cell membrane fluidity, upregulation of cell wall and outer membrane-related genes, and toxin-mediated inhibition of DNA replication. Importantly, AR E. coli retained intact antibiotic resistance genes (ARGs) and could reactivate these genes in the dark, with SRFA promoting this recovery. Therefore, VBNC-ARB remains antibiotic resistance and increases virulence expression, consequently increasing human health risks. These findings underscore the need for effective strategies to manage VBNC-ARB in environmental systems.
Collapse
Affiliation(s)
- Tingting Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fangyuan Cheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Linyi Fan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
4
|
Fei S, Li X, Han Z, Sun F, Xiao X, Dong F, Shen C, Su X. Enhanced dechlorination and degradation of Aroclor 1260 by resuscitation-promoting factor under alternating anaerobic-aerobic conditions: Superior performance and associated microbial populations. ENVIRONMENTAL RESEARCH 2025; 276:121531. [PMID: 40185272 DOI: 10.1016/j.envres.2025.121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The combined processes of dechlorination and degradation are essential for the effective bioremediation of environments contaminated with complex polychlorinated biphenyl (PCB) mixtures. Although resuscitation-promoting factor (Rpf) has been reported to enhance anaerobic dechlorination and aerobic degradation of PCBs by microorganisms, its impact on microbial populations during alternating anaerobic-aerobic treatments remains unexplored. This study investigated the dechlorination and degradation of Aroclor 1260 under anaerobic (AN), aerobic (AE), and alternating anaerobic-aerobic (AA) conditions, both with and without Rpf supplementation. The results demonstrated that Rpf significantly promoted Aroclor 1260 dechlorination under AN conditions, enhanced degradation under AE conditions, and markedly improved both processes under AA conditions, achieving nearly twice the degradation efficiency compared to AE alone. Furthermore, Rpf supplementation significantly increased the abundance of dechlorination-associated microbial taxa, including members of Firmicutes, Chloroflexi, Bacteroidota, and Desulfobacterota under AN conditions, as well as degradation-associated genera such as Pseudomonas and Sphingomonas under AE and AA conditions. Rpf also strengthened microbial interactions by enhancing positive correlations among functional populations and increasing network complexity. These findings establish Rpf as a powerful enhancer of PCB dechlorination and degradation, which provide valuable insights into its superior efficiency in PCB removal under AA conditions.
Collapse
Affiliation(s)
- Sijia Fei
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiaonan Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Zhen Han
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiao Xiao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Feng Dong
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
5
|
Juncu S, Minea H, Lungu A, Jucan A, Avram R, Buzuleac AM, Cojocariu C, Diaconu LS, Stanciu C, Trifan A, Sîngeap AM. Fluoroquinolones for the Prophylaxis of Spontaneous Bacterial Peritonitis in Patients with Liver Cirrhosis: Are They Losing Ground? Life (Basel) 2025; 15:586. [PMID: 40283141 PMCID: PMC12028953 DOI: 10.3390/life15040586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Spontaneous bacterial peritonitis (SBP) is the most common bacterial infection in cirrhotic patients. Historically, the bacterial spectrum was dominated by Gram-negative bacteria. However, recent studies showed that fluoroquinolone (FQ)-based prophylaxis promotes the intestinal overgrowth of Gram-positive bacteria and contributes to the selection of quinolone-resistant Gram-negative bacteria, increasing multidrug-resistant (MDR) organism infections. FQ resistance rates reach up to nearly one-third in community-acquired cases and 50% in hospital-acquired cases, raising concerns about FQ efficacy. Moreover, rare but serious side effects further limit FQ use. Predictive factors of FQ treatment failure have been identified, guiding management strategies. Rifaximin has emerged as a promising alternative for SBP prophylaxis, with encouraging results. This review aims to explore the shifting role of FQ-based SBP prophylaxis, focusing on the emerging concerns, side effects, and alternative strategies. While norfloxacin remains a first-line prophylactic in cirrhotic patients with low ascitic protein levels, its efficacy appears to be reduced in those with advanced liver failure or additional risk factors for MDR organisms. In these subgroups, alternative prophylactics, such as trimethoprim-sulfamethoxazole or rifaximin, may be preferable. We propose a risk-stratification approach to guide treatment selection, with further studies needed to refine these criteria.
Collapse
Affiliation(s)
- Simona Juncu
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (A.L.); (A.J.); (R.A.); (A.-M.B.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Horia Minea
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (A.L.); (A.J.); (R.A.); (A.-M.B.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Andreea Lungu
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (A.L.); (A.J.); (R.A.); (A.-M.B.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Alina Jucan
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (A.L.); (A.J.); (R.A.); (A.-M.B.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Raluca Avram
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (A.L.); (A.J.); (R.A.); (A.-M.B.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Ana-Maria Buzuleac
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (A.L.); (A.J.); (R.A.); (A.-M.B.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Camelia Cojocariu
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (A.L.); (A.J.); (R.A.); (A.-M.B.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Laura Sorina Diaconu
- Department of Internal Medicine and Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Internal Medicine and Gastroenterology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Carol Stanciu
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (A.L.); (A.J.); (R.A.); (A.-M.B.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (A.L.); (A.J.); (R.A.); (A.-M.B.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Ana-Maria Sîngeap
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (A.L.); (A.J.); (R.A.); (A.-M.B.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| |
Collapse
|
6
|
Wang J, Dong Q, Chen X, Feng B, Qu Y, Lin T, Bai Y, Liu P, Zhou C, Suo Y. Potential genetic markers of biofilm formation ability by Listeria monocytogenes isolated from fresh agricultural products. Int J Food Microbiol 2025; 433:111118. [PMID: 39978299 DOI: 10.1016/j.ijfoodmicro.2025.111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
The ability of Listeria monocytogenes to form biofilms is the key to its persistence in the food industry. Biofilm phenotype assessment is mainly based on physical and chemical methods, which are time-consuming. The aim of this study was to analyze genetic differences in the biofilm-forming ability of L. monocytogenes, found potential genetic markers, and quickly determined the biofilm phenotype. In particular, 103 strains of L. monocytogenes from agricultural products, were evaluated through multilocus sequence typing and their biofilm formation assays. The genetic characteristics of 12 representative strains were analyzed by comparative genomics, and the relevant genetic characteristics of the 103 strains were verified by polymerase chain reaction technology. The 103 strains were divided into 22 sequence types (STs), and top six types were ranked from high to low according to the median of biofilm biomass as follows: ST91, ST87, ST8, ST9, ST121, ST155, and all of them exhibited 2-3 biofilm phenotypes (strong, medium and weak). Comparative genomics analysis and verification identified the vip gene as a preliminary genetic marker for biofilm phenotypes, and the accuracy of determination can be improved by combining vip with 1-3 genes (srmB, cycB, and uvrB) or STs (ST8, ST87, and ST121). In addition, the smc_4, srmB-inlH, inlH and ssbA genes could accurately distinguish the phenotypes of ST9, ST155, ST91 and other STs. These genetic markers could be used as key targets for rapid determination of the biofilm phenotype of L. monocytogenes, thereby providing useful guidance for the optimization of disinfection processes in the food industry.
Collapse
Affiliation(s)
- Jing Wang
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiujin Chen
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Bo Feng
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yang Qu
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Ting Lin
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yalong Bai
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Peihong Liu
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Changyan Zhou
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yujuan Suo
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
7
|
Salzer A, Ingrassia S, Iyer P, Sauer L, Rapp J, Dobritz R, Müller J, Link H, Wolz C. (p)ppGpp-mediated GTP homeostasis ensures survival and antibiotic tolerance of Staphylococcus aureus. Commun Biol 2025; 8:508. [PMID: 40155724 PMCID: PMC11953324 DOI: 10.1038/s42003-025-07910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
Antibiotic tolerance in non-growing bacterial populations is of major concern regarding antibiotic treatment failures. Whether and how the messenger molecule (p)ppGpp contributes to this phenomenon is controversial. We show for Staphylococcus aureus that (p)ppGpp-dependent restriction of the GTP pool is essential for the culturability of starved cells. Survival was independent of the GTP-responsive regulator CodY. Elevated GTP levels in a starved (p)ppGpp-deficient mutant led to quiescent state characterised by alterations in membrane architecture and a decrease of the proton motive force (PMF). This was accompanied by dysregulation of components involved in electron transport, including qoxABCD, encoding the main terminal oxidase. Increasing qoxABCD transcription by mutation of the transcription start site (iATP to iGTP) partially restored the culturability of the (p)ppGpp-deficient mutant. Thus, regulation of nucleotide-dependent promoters by altered nucleotide levels contribute to starvation adaptability. Loss of PMF under high GTP conditions also renders bacteria susceptible to antibiotics. Thus, targeting the PMF or nucleotide availability may be a valuable strategy to combat antibiotic tolerance.
Collapse
Affiliation(s)
- Andrea Salzer
- Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Sophia Ingrassia
- Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Parvati Iyer
- Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Lisa Sauer
- Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Johanna Rapp
- Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Ronja Dobritz
- Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Jennifer Müller
- Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Hannes Link
- Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany.
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Qiao J, Zhu W, Du D, Morigen M. Characterizing Common Factors Affecting Replication Initiation During H 2O 2 Exposure and Genetic Mutation-Induced Oxidative Stress in Escherichia coli. Int J Mol Sci 2025; 26:2968. [PMID: 40243598 PMCID: PMC11989076 DOI: 10.3390/ijms26072968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Oxidative stress is prevalent in organisms, and excessive oxidative damage can trigger cell death. Bacteria have evolved multiple pathways to cope with adverse stress, including the regulation of the cell cycle. Previous studies show that non-lethal exposure to H2O2 and mutations in antioxidant enzymes suppress replication initiation in Escherichia coli. The existence of common regulatory factors governing replication initiation across diverse causes-induced oxidative stress remains unclear. In this study, we utilized flow cytometry to determine the replication pattern of E. coli, and found that oxidative stress also participated in the inhibition of replication initiation by a defective iron regulation (fur-bfr-dps deletion). Adding a certain level of ATP promoted replication initiation in various antioxidant enzyme-deficient mutants and the ΔfurΔbfrΔdps mutant, suggesting that low ATP levels could be a common factor in the inhibition of replication initiation by different causes-induced oxidative stress. More potential common factors were screened using proteomics, followed by genetic validation with H2O2 stress. We found that oxidative stress might mediate the inhibition of replication initiation by interfering with the metabolism of glycine, glutamate, ornithine, and aspartate. Blocking CcmA-dependent cytochrome c biosynthesis, deleting the efflux pump proteins MdtABCD and TolC, or the arabinose transporter AraFHG eliminated the replication initiation inhibition by H2O2. In conclusion, this study uncovers a common multifactorial pathway of different causes-induced oxidative stress inhibiting replication initiation. Dormant and persistent bacteria exhibit an arrested or slow cell cycle, and non-lethal oxidative stress promotes their formation. Our findings contribute to exploring strategies to limit dormant and persistent bacterial formation by maintaining faster DNA replication initiation (cell cycle progression).
Collapse
Affiliation(s)
- Jiaxin Qiao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (J.Q.); (D.D.)
| | - Weiwei Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dongdong Du
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (J.Q.); (D.D.)
| | - Morigen Morigen
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (J.Q.); (D.D.)
| |
Collapse
|
9
|
Gatta E, Abd El E, Brunoldi M, Irfan M, Isolabella T, Massabò D, Parodi F, Prati P, Vernocchi V, Mazzei F. Viability studies of bacterial strains exposed to nitrogen oxides and light in controlled atmospheric conditions. Sci Rep 2025; 15:10320. [PMID: 40133562 PMCID: PMC11937341 DOI: 10.1038/s41598-025-94898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Airborne biological particles, such as pollen, fungi, bacteria, viruses, and plant or animal detritus, are known as bioaerosols. Understanding bioaerosols' behavior, especially their reaction to pollutants and atmospheric conditions, is crucial for addressing environmental and health issues related to air quality. Such complex investigations can benefit from experiments in controlled but realistic environments, such as the Atmospheric Simulation Chamber facility ChAMBRe (Chamber for Aerosol Modeling and Bio-aerosol Research). In this work, we report on the results of several experiments that were conducted at ChAMBRe using three strains of bacteria: E. coli, B. subtilis, and P. fluorescens. The goal of these experiments was to quantitively study how the culturability of these bacteria is affected by exposure to NO, NO2, and light. The experimental approach was simple but carefully controlled: before being introduced into ChAMBRe, the bacteria samples were characterized using three different methods to determine the ratio of viable to total bacteria. The bacteria suspension was then aerosolized and introduced into ChAMBRe, where it was exposed to two different concentrations of NO and NO2, in dark conditions and with simulated solar radiation. The culturability of the bacteria was assessed by collecting bacteria samples directly onto Petri dishes by an Andersen impactor at various time intervals after the end of injection. Finally, the formed bacteria colonies were counted after 24-48 h of incubation to measure their culturability and the temporal trend. The results show a reduction of culturability for all bacteria strains when exposed to NO2 (from 50 to 70%) and to high concentrations of NO (i.e. around 30% at more than 1200 ppb) at concentration values higher than the typical urban ambient values. Even higher effects were observed exposing the bacteria strain to a proxy of solar light. The findings show how atmospheric simulation chambers help the comprehension of interactions between pollutants and bioaerosols in controlled atmospheric environments.
Collapse
Affiliation(s)
- Elena Gatta
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| | - Elena Abd El
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
- INFN - Sezione di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| | - Marco Brunoldi
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
- INFN - Sezione di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| | - Muhammad Irfan
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| | - Tommaso Isolabella
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
- INFN - Sezione di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| | - Dario Massabò
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
- INFN - Sezione di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| | - Franco Parodi
- INFN - Sezione di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| | - Paolo Prati
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
- INFN - Sezione di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| | | | - Federico Mazzei
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
- INFN - Sezione di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| |
Collapse
|
10
|
Maughan L, Whyte P, Bolton D. The bacterial quality and safety of cold smoked salmon during production and subsequent chilled storage. J Appl Microbiol 2025; 136:lxaf035. [PMID: 39953903 DOI: 10.1093/jambio/lxaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
AIM This study aimed to investigate the bacteriology of cold smoked salmon (CSS), specifically changes in the bacterial quality (total viable count and total Enterobacteriaceae count), the concentration of spoilage bacteria (lactic acid bacteria, hydrogen sulphide producing bacteria and Pseudomonas spp.) and Listeria monocytogenes during salting, washing, smoking, maturation, packaging and chilled storage. METHODS AND RESULTS In-plant and laboratory based studies were undertaken. The salt concentration, pH and aw of the commercial product were 3.8% (w/w), 5.9% and 0.95%, respectively while those of the laboratory prepared CSS were 1.1%, 6.2%, and 0.94%. Although the CSS preparation process enhanced microbial quality, as determined by significant (P < 0.05) reductions in indicator and spoilage bacterial counts, L. monocytogenes was unaffected and all bacteria showed significant (P < 0.05) growth during chilled storage of the final product. CONCLUSIONS The microbial quality and safety of CSS is reliant on using uncontaminated fillets, good hygiene practices and ensuring that the shelf life does not afford L. monocytogenes sufficient time to exceed the 100 cfu g-1 maximum allowed in current EU legislation (EC 2073/2005).
Collapse
Affiliation(s)
- Léon Maughan
- Teagasc Food Research Centre, Ashtown, Dublin 15, D15KN3K, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 R7R0, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 R7R0, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, Dublin 15, D15KN3K, Ireland
| |
Collapse
|
11
|
Xu L, Zhang X, Wang W, Shen J, Ma K, Wang H, Xue T. The global regulator SpoVG is involved in biofilm formation and stress response in foodborne Staphylococcus aureus. Int J Food Microbiol 2025; 428:110997. [PMID: 39616895 DOI: 10.1016/j.ijfoodmicro.2024.110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Staphylococcus aureus (S. aureus) is a primary culprit of food poisoning. As a highly adaptable pathogen, S. aureus demonstrates formidable biofilm-forming and stress tolerance capabilities, inducing significant challenges to eradicate food contamination caused by this organism. SpoVG, a regulatory protein in S. aureus, controls the expression of numerous genes. However, its role in biofilm formation and stress response in foodborne S. aureus remains to be elucidated. In this study, we investigated the functions of SpoVG involved in food-related stress responses and biofilm formation in S. aureus RMSA50. The results demonstrated that SpoVG deletion enhanced biofilm formation and resistance to heat and desiccation, while decreased tolerance to oxidative stress. Further analysis revealed that cell aggregation and the accumulation of extracellular DNA (eDNA) may contribute to the enhanced biofilm formation. Real-time quantitative reverse transcription-PCR (RT-qPCR) revealed that the expression levels of nuc and sasC, which are related to cell aggregation and eDNA concentration, were significantly altered in the spoVG mutant. Electrophoretic mobility shift assays (EMSA) confirmed that SpoVG directly binds to the promoter region of nuc and sasC to regulate their expression. These findings suggest that SpoVG may serve as a target to decrease biofilm formation and control S. aureus contamination in the food industry.
Collapse
Affiliation(s)
- Li Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xin Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiawei Shen
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Kai Ma
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China; Food Procession Research Institude, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
12
|
Lin Z, He S, Liang Z, Li D. Temperature cycling between 4 °C and 37 °C could reduce Salmonella viability in low-moisture foods. Int J Food Microbiol 2025; 428:110995. [PMID: 39612661 DOI: 10.1016/j.ijfoodmicro.2024.110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Low-moisture foods (LMFs) have been linked to Salmonella transmission due to the remarkable resilience of Salmonella against desiccation, allowing its survival for extended periods. Being metabolically inactive, Salmonella in LMFs exhibit extraordinary resistance to inactivation treatments. This study proposes a novel strategy for mitigating Salmonella in LMF products through a temperature cycling (TC) approach. Alternating the temperature between 4 °C and 37 °C on a daily basis reduced the viability of S. Typhimurium air-dried on surfaces by >4 log after 6 days. TC also diminished Salmonella resistance to acidity and reduced its virulence. The mechanism was elucidated through an integrated analysis of transcriptomics and proteomics data. Specifically, transcriptomic data revealed elevated levels of protein synthesis alongside active energy metabolism. Proteomic analysis demonstrated that these protein activities were associated primarily with the heat shock protein response. Taken together, the principal mechanism by which TC exerts its inhibitory effect appears to be the repeated induction of heat shock protein synthesis within Salmonella, ultimately leading to energy depletion. Finally, the efficacy of TC was validated on representative LMF samples, including flour, protein powder, and mixed spices. The most notable effect was observed in the mixed spices, with a reduction of 2.7 ± 0.2 log after 6 days (P < 0.05). In conclusion, the TC approach demonstrated in this study provides valuable insights into the management of foodborne pathogens in LMFs.
Collapse
Affiliation(s)
- Zejia Lin
- Department of Food Science & Technology, National University of Singapore, Singapore 117543, Singapore
| | - Shuang He
- Department of Food Science & Technology, National University of Singapore, Singapore 117543, Singapore
| | - Zhiqian Liang
- Department of Food Science & Technology, National University of Singapore, Singapore 117543, Singapore
| | - Dan Li
- Department of Food Science & Technology, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
13
|
Bollen C, Louwagie S, Deroover F, Duverger W, Khodaparast L, Khodaparast L, Hofkens D, Schymkowitz J, Rousseau F, Dewachter L, Michiels J. Composition and liquid-to-solid maturation of protein aggregates contribute to bacterial dormancy development and recovery. Nat Commun 2025; 16:1046. [PMID: 39865082 PMCID: PMC11770139 DOI: 10.1038/s41467-025-56387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025] Open
Abstract
Recalcitrant bacterial infections can be caused by various types of dormant bacteria, including persisters and viable but nonculturable (VBNC) cells. Despite their clinical importance, we know fairly little about bacterial dormancy development and recovery. Previously, we established a correlation between protein aggregation and dormancy in Escherichia coli. Here, we present further support for a direct relationship between both. Our experiments demonstrate that aggregates progressively sequester proteins involved in energy production, thereby likely causing ATP depletion and dormancy. Furthermore, we demonstrate that structural features of protein aggregates determine the cell's ability to exit dormancy and resume growth. Proteins were shown to first assemble in liquid-like condensates that solidify over time. This liquid-to-solid phase transition impedes aggregate dissolution, thereby preventing growth resumption. Our data support a model in which aggregate structure, rather than cellular activity, marks the transition from the persister to the VBNC state.
Collapse
Affiliation(s)
- Celien Bollen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Sofie Louwagie
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Femke Deroover
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Wouter Duverger
- Switch Laboratory, Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ladan Khodaparast
- Switch Laboratory, Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Laleh Khodaparast
- Switch Laboratory, Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dieter Hofkens
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
- de Duve institute, Université catholique de Louvain, Brussels, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Tchatchiashvili T, Jundzill M, Marquet M, Mirza KA, Pletz MW, Makarewicz O, Thieme L. CAM/TMA-DPH as a promising alternative to SYTO9/PI for cell viability assessment in bacterial biofilms. Front Cell Infect Microbiol 2025; 14:1508016. [PMID: 39906213 PMCID: PMC11790577 DOI: 10.3389/fcimb.2024.1508016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025] Open
Abstract
Introduction Accurately assessing biofilm viability is essential for evaluating both biofilm formation and the efficacy of antibacterial treatments. Traditional SYTO9 and propidium iodide (PI) live/dead staining in biofilm viability assays often ace challenges due to non-specific staining, limiting precise differentiation between live and dead cells. To address this limitation, we investigated an alternative staining method employing calcein acetoxymethyl (CAM) to detect viable cells based on esterase activity, and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate (TMA-DPH) to assess the remaining biofilm population. Methods Biofilms of Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecium were matured and exposed to varying concentrations of antibiotics or sterile medium. Biofilm viability was assessed using CAM/TMA-DPH or SYTO9/PIstaining, followed by analysis with confocal laser scanning microscopy (CLSM) and ImageJ-based biofilm surface coverage quantification. Viability findings were compared with colony-forming units (CFU/mL), a standard microbial viability measure. Results CAM/TMA-DPH staining demonstrated strong positive correlations with CFU counts across all bacterial species (r = 0.59 - 0.91), accurately reflecting biofilm vitality. In contrast, SYTO9/PI staining consistently underestimated the viability of untreated biofilms, particularly in Klebsiella pneumoniae, where a negative correlation with CFU/mL was observed (r = -0.04). Positive correlations for SYTO9/PI staining were noted in other species (r = 0.65 - 0.79). These findings underscore the limitations of membrane integrity-based staining methods and highlight the advantages of metabolic-based probes like CAM/TMA-DPH. Discussion Our findings suggest that CAM/TMA-DPH staining provides a promising alternative to SYTO9/PI for cell viability assessment in bacterial biofilms, highlighting the advantages of metabolic-based probes over traditional membrane integrity assays. The consistency of CAM/TMA-DPH staining across different bacterial species underscores its potential to advance studies on biofilm and contribute to the development of more effective anti-biofilm treatments, which is essential for clinical management of biofilm-associated infections.
Collapse
Affiliation(s)
- Tinatini Tchatchiashvili
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Mateusz Jundzill
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Mike Marquet
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Kamran A. Mirza
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Mathias W. Pletz
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Oliwia Makarewicz
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Lara Thieme
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| |
Collapse
|
15
|
Xu J, Jensen MKS, Lassen SB, Brandt KK, Dechesne A, Smets BF. Aeromonas isolation reveals this genus's contribution to antimicrobial resistance fluxes across the wastewater-treated water-river interface. J Appl Microbiol 2025; 136:lxae302. [PMID: 39701815 DOI: 10.1093/jambio/lxae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024]
Abstract
AIM Aeromonas spp. are common members of water and wastewater microbiomes, but some are listed as opportunistic pathogens and are often reported to carry antimicrobial resistance (AMR) genes. We aimed to assess the performance of isolation media for capturing their distribution and their role in AMR dissemination into aquatic environments. METHODS AND RESULTS We investigated the abundance, diversity, and AMR profile of Aeromonas isolates from wastewater and receiving water bodies at five municipal wastewater treatment plants in Denmark using three isolation media. This was then compared with the diversity estimated from community-wide 16S rRNA gene amplicon sequencing and resistance patterns inferred from high-throughput qPCR of resistance genes. Isolates from ampicillin sheep blood agar were the most phylogenetically diverse, but the overall Aeromonas recovery on the three media was similarly good and matched the dominant amplicon sequence variants. While the dominant phylotypes were ubiquitous, some types were only detected in treated wastewater and the receiving rivers. The resistance prevalence was moderate and mostly to beta-lactams and tetracyclines. Isolates resistant to piperacilin-tazobactam, cefepime, and tetracycline downstream of the plants were linked to wastewater origin. CONCLUSION Overall, our work demonstrates Aeromonas and Aeromonas-mediated AMR fluxes at the wastewater/environment interfaces and provides methodological bases for monitoring aeromonads in wastewater and surface waters.
Collapse
Affiliation(s)
- Jianxin Xu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, 2800 Kgs. Lyngby, Denmark
| | - Mia Kristine Staal Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Sino-Danish Center for Education and Research (SDC), Beijing 100049, China
| | - Simon Bo Lassen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Sino-Danish Center for Education and Research (SDC), Beijing 100049, China
| | - Arnaud Dechesne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, 2800 Kgs. Lyngby, Denmark
| | - Barth F Smets
- Department of Biological and Chemical Engineering - Environmental Engineering, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| |
Collapse
|
16
|
Xiao Y, Wang J, Sun P, Ding T, Li J, Deng Y. Formation and resuscitation of viable but non-culturable (VBNC) yeast in the food industry: A review. Int J Food Microbiol 2025; 426:110901. [PMID: 39243533 DOI: 10.1016/j.ijfoodmicro.2024.110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The viable but non-culturable (VBNC) state is a survival strategy adopted by microorganisms in response to unfavorable conditions in the environment. VBNC cells are unable to form colonies but still maintain a low level of activity, posing a potential threat to food safety and public health. Therefore, the development of effective strategies to prevent the formation and resuscitation of VBNC cells of microorganisms is a key challenge in food science and microbiology research. However, current research on VBNC cells has primarily focused on bacteria, with relatively limited reports on fungi. This paper provides a comprehensive and systematic review of yeast in the VBNC state, discussing various factors that induce and facilitate resuscitation, along with detection methods and formation and recovery mechanisms. A comprehensive understanding of the induction and resuscitation of yeast in the VBNC state and exploration of its molecular mechanism hold significant implications for food safety and public health. It is imperative to enhance our comprehension of the underlying mechanisms and contributory factors pertaining to VBNC yeast, thereby facilitating the efficient management of the food fermentation process and ensuring the integrity of food quality and safety.
Collapse
Affiliation(s)
- Yang Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; School of Food Engineering, Qingdao Institute of Technology, Qingdao 266300, China
| | - Jiayang Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Pengdong Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Ting Ding
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Jingyuan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yang Deng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
17
|
Papa M, Wasit A, Pecora J, Bergholz TM, Yi J. Detection of Viable but Nonculturable E. coli Induced by Low-Level Antimicrobials Using AI-Enabled Hyperspectral Microscopy. J Food Prot 2025; 88:100430. [PMID: 39662736 DOI: 10.1016/j.jfp.2024.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Rapid detection of bacterial pathogens is essential for food safety and public health, yet bacteria can evade detection by entering a viable but nonculturable (VBNC) state under sublethal stress, such as antimicrobial residues. These bacteria remain active but undetectable by standard culture-based methods without extensive enrichment, necessitating advanced detection methods. This study developed an AI-enabled hyperspectral microscope imaging (HMI) framework for rapid VBNC detection under low-level antimicrobials. The objectives were to (i) induce the VBNC state in Escherichia coli K-12 by exposure to selected antimicrobial stressors, (ii) obtain HMI data capturing physiological changes in VBNC cells, and (iii) automate the classification of normal and VBNC cells using deep learning image classification. The VBNC state was induced by low-level oxidative (0.01% hydrogen peroxide) and acidic (0.001% peracetic acid) stressors for 3 days, confirmed by live-dead staining and plate counting. HMI provided spatial and spectral data, extracted into pseudo-RGB images using three characteristic spectral wavelengths. An EfficientNetV2-based convolutional neural network architecture was trained on these pseudo-RGB images, achieving 97.1% accuracy of VBNC classification (n = 200), outperforming the model trained on RGB images at 83.3%. The results highlight the potential for rapid, automated VBNC detection using AI-enabled hyperspectral microscopy, contributing to timely intervention to prevent foodborne illnesses and outbreaks.
Collapse
Affiliation(s)
- MeiLi Papa
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Aarham Wasit
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Justin Pecora
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Teresa M Bergholz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Jiyoon Yi
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
18
|
Hoch E, Briandet R, Hezard B, Lintz A, Stahl V, Omhover-Fougy L. Assessment of Viability of Listeria monocytogenes by Flow Cytometry. Methods Mol Biol 2025; 2852:105-122. [PMID: 39235739 DOI: 10.1007/978-1-0716-4100-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
In food industry, Listeria monocytogenes contamination can occur accidentally despite the quality control of raw materials and factory. Decontamination processes or inhibitory effects of ingredients/additives in food products are set up to ensure compliance with hygiene and microbiological criteria. These actions represent stresses for the pathogenic agent, causing fluctuations in its physiological states. Moreover, during these environmental stresses, Listeria monocytogenes can enter in a viable but nonculturable (VBNC) state which is not detected by plate counting but by flow cytometry. This technique coupled with cell staining by fluorescent dyes offers the possibility to assess different physiological states based on different cellular parameters: enzymatic activity, transmembrane integrity, membrane potential, and respiratory activity. In this chapter, we present a method to assess the viability of foodborne pathogens using a double-staining principle based on the assessment of membrane integrity and intracellular esterase activity.
Collapse
Affiliation(s)
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
19
|
Schmid C, Hilbi H. Rapid Icm/Dot T4SS Inactivation Prevents Resuscitation of Heat-Induced VBNC Legionella pneumophila by Amoebae. Environ Microbiol 2025; 27:e70035. [PMID: 39810465 DOI: 10.1111/1462-2920.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Icm/Dot Type IV secretion system (T4SS) to replicate in amoebae and macrophages. The opportunistic pathogen responds to stress by forming 'viable but non-culturable' (VBNC) cells, which cannot be detected by standard cultivation-based techniques. In this study, we document that L. pneumophila enters the VBNC state after exposure to heat stress at 50°C for 30 h, at 55°C for 5 h or at 60°C for 30 min, while still retaining metabolic activity and intact cell membranes. Resuscitation of heat-induced VBNC L. pneumophila neither occurred in amoebae nor in macrophages. VBNC L. pneumophila showed impaired uptake by phagocytes, formation of Legionella-containing vacuoles (LCVs), and Icm/Dot-dependent secretion of effector proteins. The T4SS was rapidly inactivated already upon exposure to 50°C for 3-5 h, while the bacteria were still culturable. The Legionella quorum sensing (Lqs)-LvbR network is implicated in VBNC induction, since the ∆lvbR and ∆lqsR mutant strains showed a more pronounced heat sensitivity than the parental strain, and the ∆lqsA mutant was less heat sensitive. Taken together, our results reveal that heat exposure of L. pneumophila rapidly inactivates the Icm/Dot T4SS before the VBNC state is induced, thus impairing resuscitation by amoebae.
Collapse
Affiliation(s)
- Camille Schmid
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
20
|
Xu Y, Li H, Ding Y, Zhang D, Liu W. How nanoscale plastics facilitate the evolution of antibiotic resistance? JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136157. [PMID: 39423639 DOI: 10.1016/j.jhazmat.2024.136157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/29/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
The plastic can enhance the proliferation of antibiotic resistance genes (ARGs), however, the effect of nanoplastics (NPLs) on bacterial antibiotic resistance has not been clearly explained. Herein, we explored the effects and mechanisms of NPLs of different sizes (200 and 600 nm) on the evolution of antibiotic resistance in Serratia marcescens. The results indicated that the evolution of bacterial antibiotic resistance could be promoted under NPLs exposure, which the median of relative abundance of ARGs was 1.11-1.46 times compared to the treatment without NPLs. Transcriptomic analysis showed that the larger size of NPLs mainly increased the permeability of bacterial cell membranes to efflux antibiotics, thus potentiating antibiotic resistance. While, the smaller NPLs is more than that, its enhanced the expression of antibiotic resistance by modulating bacterial metabolic processes. The genome SNP analysis found that the NPLs could cause the genetic mutation occurrence to alter the membrane transport and metabolism processes, and it increased at a size of 200 nm more than at 600 nm NPLs. Importantly, we demonstrated that the horizontal transfer of ARGs was augmented due to the NPLs could dock to bacterial surface proteins and pull their movement to contact with other bacteria (binding energy of membrane proteins: -8.54 kcal/mol), especially the smaller size. It suggests that NPLs will also contribute to the proliferation of ARGs in the environment. This study provides data for understanding the risk of bacterial resistance.
Collapse
Affiliation(s)
- Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yinuo Ding
- Jilin Agriculture University, College of Life Science, Jilin 130118, China
| | - Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Wei Liu
- Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Switzerland.
| |
Collapse
|
21
|
Li B, Yang Y, Kou X, Yang M, Normakhamatov N, Alasmari AF, Xin B, Tan Y. Water-soluble polysaccharides extracted from Enteromorpha prolifera/PVA composite film functionalized as ε-polylysine with improved mechanical and antibacterial properties. Int J Biol Macromol 2024; 282:136697. [PMID: 39427792 DOI: 10.1016/j.ijbiomac.2024.136697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The issue of environmental protection has received sustained and widespread attention. In order to reduce environmental pollution related to traditional plastics, it is an incessant demand to design novel environment-friendly food packaging materials with excellent performance. Sulfated polysaccharide extracted from the "green tide" marine pollution Enteromorpha prolifera (SPE) has been innovatively transformed into a film-forming material for better utilization. The insufficient mechanical properties and limited functionalities, however, hinder its wide application. In this study, polyvinyl alcohol (PVA) was blended to enhance its mechanical properties and ε-polylysine (ε-PL) was incorporated to endow it with antimicrobial performance. A novel and biodegradable film composed of SPE, PVA, and ε-PL was fabricated by casting method. We further determined the physicochemical properties of composited films. Mechanical performance test revealed the tensile strength of SPE-PVA-PL films increased from 5.56 MPa to 6.65 MPa and the E% increased from 128.8 % to 246.9 % compared with that of SPE-PVA films. Antimicrobial tests showed the excellent antibacterial activity of SPE-PVA-PL films against representative microbial species, Staphylococcus aureus and Escherichia coli. The results of this study suggested that the SPE-based composite film has the potential to be used as a potential food packaging and wound dressing materials.
Collapse
Affiliation(s)
- Bing Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Yingying Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Xinhua Kou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Manli Yang
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Nodirali Normakhamatov
- Tashkent Pharmaceutical Institute, Ministry of the Health of Uzbekistan, Aybek str, 45, Tashkent 100015, Uzbekistan
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bingchang Xin
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China.
| | - Yulong Tan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China.
| |
Collapse
|
22
|
Gou Y, Liu D, Xin Y, Wang T, Li J, Xi Y, Zheng X, Che T, Zhang Y, Li T, Feng J. Viable but nonculturable state in the zoonotic pathogen Bartonella henselae induced by low-grade fever temperature and antibiotic treatment. Front Cell Infect Microbiol 2024; 14:1486426. [PMID: 39639866 PMCID: PMC11619046 DOI: 10.3389/fcimb.2024.1486426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024] Open
Abstract
The zoonotic pathogen Bartonella henselae is responsible for diverse human diseases, from mild to life-threatening, but it often eludes detection in culture-based assays. This study investigates the potential of B. henselae to enter a viable but nonculturable (VBNC) state when exposed to human fever temperature or antibiotics, with this state confirmed by successful resuscitation. Viability was assessed using SYBR Green I/PI staining and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR), while culturability was determined through colony-forming unit (CFU) counting on blood agar plates. Resuscitation of VBNC cells was attempted using modified Schneider's medium with 10% defibrillated sheep blood. In the results, B. henselae cells entered a VBNC state after 19 days of exposure to 38.8°C. Antibiotics, particularly with bactericidal activity, induced the VBNC state within 4 days treatment. Successful resuscitation confirmed the VBNC state developed via the above two strategies. Transmission electron microscopy (TEM) examination revealed intact cell structures and dense cytosol in VBNC cells, with a significant increase in plasmolytic cells. Notably, VBNC cells demonstrated greater drug tolerance than cells in the stationary phase, which encompassed a substantial portion of persisters. Proteomic analysis revealed the up-regulation of proteins linked to host cell invasion and stress resistance, while proteins related to signaling and cellular processes were down-regulated. Fluorescence in situ hybridization (FISH) analysis confirmed that the VBNC state truly boosted B. henselae's invasion of HUVECs. This study highlights B. henselae's capacity to enter a VBNC state under thermal and antibiotic stress, emphasizing the urgent need for advanced diagnostic and therapeutic strategies to effectively target VBNC cells, which complicate diagnosis and treatment.
Collapse
Affiliation(s)
- Yuze Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Dongxia Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Yuxian Xin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Ting Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jiaxin Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yiwen Xi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoling Zheng
- Department of Scientific Experimental Research, Innovation Center of Functional Genomics and Molecular Diagnostics Technology of Gansu Province, Lanzhou, China
| | - Tuanjie Che
- Department of Scientific Experimental Research, Innovation Center of Functional Genomics and Molecular Diagnostics Technology of Gansu Province, Lanzhou, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center for Microbiome and Disease Research, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Tingting Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jie Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Yu G, Huang TY, Li Y. Kanamycin promotes biofilm viability of MRSA strains showing extremely high resistance to kanamycin. Microb Pathog 2024; 196:106986. [PMID: 39353484 DOI: 10.1016/j.micpath.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Staphylococcus aureus is widely distributed in environment and can cause various human infection and food poisoning cases. Also, this pathogen is a typical biofilm former, which further complicates its pathogenicity. Antibiotics have been widely used to eliminate pathogenic bacteria, but their indiscriminate use has also led to the widespread emergence of drug-resistant bacteria, such as Methicillin-Resistant Staphylococcus aureus (MRSA). In this study, the effect of antibiotics on biofilm formation of MRSA strains 875 and 184 was explored. Firstly, MRSA 875 belongs to SCCmec type IV, ST239, carrying the atl, icaA, icaD, icaBC, and aap genes, and MRSA 184 belongs to SCCmec type II, ST5, carrying the atl, icaD, icaBC, aap, and agr genes. Then, a total of 8 antibiotics have been selected, including kanamycin, gentamycin, cipprofloxacin, erythromycin, meropenem, penicillin G, tetracycline, vancomycin. Minimum inhibitory concentrations (MICs) of each antibiotic were determined, and MIC of MRSA 875 and 184 to kanamycin/gentamicin are 2048/64 μg/mL and 2048/4 μg/mL, respectively. A total of 10 concentrations, ranging from 1/128 to 4 MIC with 2-fold, were used to study biofilm formation. Biofilm biomass and viability were determined during different phases, including initial adhesion (8 h), proliferation (16 h), accumulation (24 h) and maturation (48 h). Importantly, kanamycin at specific concentrations showed significant promotion of biofilm biomass and biofilm viability, with none of such observation acquired from other antibiotics. This study provides scientific basis and new research ideas for the quality control technology of microorganisms and safety prevention of MRSA.
Collapse
Affiliation(s)
- Guangchao Yu
- Center of Clinical Laboratory Medicine, First Affiliated Hospital of Jinan University, Guangzhou, China; Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Teng Yi Huang
- Department of Diagnostics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Yu Li
- Department of Pathology, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
24
|
Liao H, Yan X, Wang C, Huang C, Zhang W, Xiao L, Jiang J, Bao Y, Huang T, Zhang H, Guo C, Zhang Y, Pu Y. Cyclic di-GMP as an antitoxin regulates bacterial genome stability and antibiotic persistence in biofilms. eLife 2024; 13:RP99194. [PMID: 39365286 PMCID: PMC11452175 DOI: 10.7554/elife.99194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Biofilms are complex bacterial communities characterized by a high persister prevalence, which contributes to chronic and relapsing infections. Historically, persister formation in biofilms has been linked to constraints imposed by their dense structures. However, we observed an elevated persister frequency accompanying the stage of cell adhesion, marking the onset of biofilm development. Subsequent mechanistic studies uncovered a comparable type of toxin-antitoxin (TA) module (TA-like system) triggered by cell adhesion, which is responsible for this elevation. In this module, the toxin HipH acts as a genotoxic deoxyribonuclease, inducing DNA double strand breaks and genome instability. While the second messenger c-di-GMP functions as the antitoxin, exerting control over HipH expression and activity. The dynamic interplay between c-di-GMP and HipH levels emerges as a crucial determinant governing genome stability and persister generation within biofilms. These findings unveil a unique TA system, where small molecules act as the antitoxin, outlining a biofilm-specific molecular mechanism influencing genome stability and antibiotic persistence, with potential implications for treating biofilm infections.
Collapse
Affiliation(s)
- Hebin Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
- Translational Medicine Research Center, North Sichuan Medical CollegeNanchongChina
| | - Xiaodan Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Chenyi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Chun Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Wei Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Leyi Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Jun Jiang
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Yongjia Bao
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Tao Huang
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Hanbo Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Chunming Guo
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
- Taikang Center for Life and Medical Sciences, Wuhan UniversityWuhanChina
| | - Yingying Pu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
- Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, State Key Laboratory of Virology and Medical Research Institute, Wuhan University School of Basic Medical SciencesWuhanChina
| |
Collapse
|
25
|
Jiang Z, Wang Y, Bai S, Bai C, Tu Z, Li H, Guo P, Liao T, Qiu L. The viable but non-culturable (VBNC) status of Shewanella putrefaciens (S. putrefaciens) with thermosonication (TS) treatment. ULTRASONICS SONOCHEMISTRY 2024; 109:107008. [PMID: 39096846 PMCID: PMC11345692 DOI: 10.1016/j.ultsonch.2024.107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Although thermosonication (TS) treatment has been widely used in food sterilization, the viable but non-culturable (VBNC) of bacteria with TS treatment has still concerned potential food safety and public health. The molecular mechanism of VBNC status of bacteria with TS treatment is not clearly known. Therefore, in this study, we used Shewanella putrefaciens, which was a common putrefactive bacteria in aquatic products, to study the VBNC state of bacteria with TS treatment. Firstly, our results revealed that S. putrefaciens still could enter the VBNC state after TS treatments: 50 kHz, 300 W, 30 min ultrasonic treatment and 70 °C heating; Subsequently, we found the VBNC state of S. putrefaciens can resist the damage of TS treatment, such as cell wall break, DNA degradation, etc; Finally, four-dimensional data-independent acquisition-based proteomics showed that under VBNC state, S. putrefaciens upregulated functional proteins to resist TS treatment, such as: ribosomal proteins to accelerate the synthesis of stress proteins to counteract TS treatments, ornithine decarboxylase SpeF and MraY to repair TS treatment-induced damage, etc. Meanwhile, S. putrefaciens downregulates metabolic and transport functional proteins such as dehydrogenase to reduce the metabolism. Importantly, among those proteins, the ribosomal transcriptional regulatory protein family, such as rpsB, etc, may be the key proteins for S. putrefaciens entering VBNC state. This finding can provide some new strategies for preventing VBNC status of bacteria with TS treatment, such as: inhibition of key proteins, etc.
Collapse
Affiliation(s)
- Ziwei Jiang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China; School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 4300731, China
| | - Yi Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Shunjie Bai
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Chan Bai
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Ziyi Tu
- HuBei Crawfish Industrial Tech Ltd., Qianjiang 433100, China
| | - Hailan Li
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Peng Guo
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Tao Liao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China.
| | - Liang Qiu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China.
| |
Collapse
|
26
|
Kungwani NA, Panda J, Mishra AK, Chavda N, Shukla S, Vikhe K, Sharma G, Mohanta YK, Sharifi-Rad M. Combating bacterial biofilms and related drug resistance: Role of phyto-derived adjuvant and nanomaterials. Microb Pathog 2024; 195:106874. [PMID: 39181190 DOI: 10.1016/j.micpath.2024.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The emergence of antimicrobial resistance (AMR) in clinical microbes has led to a search for novel antibiotics for combating bacterial infections. The treatment of bacterial infections becomes more challenging with the onset of biofilm formation. AMR is further accelerated by biofilm physiology and differential gene expression in bacteria with an inherent resistance to conventional antibiotics. In the search for innovative strategies to control the spread of AMR in clinical isolates, plant-derived therapeutic metabolites can be repurposed to control biofilm-associated drug resistance. Unlike antibiotics, designed to act on a single cellular process, phytochemicals can simultaneously target multiple cellular components. Furthermore, they can disrupt biofilm formation and inhibit quorum sensing, offering a comprehensive approach to combat bacterial infections. In bacterial biofilms, the first line of AMR is due to biofilms associated with the extracellular matrix, diffusion barriers, quorum sensing, and persister cells. These extracellular barriers can be overcome using phytochemical-based antibiotic adjuvants to increase the efficacy of antibiotic treatment and restrict the spread of AMR. Furthermore, phytochemicals can be used to target bacterial intracellular machinery such as DNA replication, protein synthesis, efflux pumps, and degrading enzymes. In parallel with pristine phytochemicals, phyto-derived nanomaterials have emerged as an effective means of fighting bacterial biofilms. These nanomaterials can be formulated to cross the biofilm barriers and function on cellular targets. This review focuses on the synergistic effects of phytochemicals and phyto-derived nanomaterials in controlling the progression of biofilm-related AMR. IT provides comprehensive insights into recent advancements and the underlying mechanisms of the use of phyto-derived adjuvants and nanomaterials.
Collapse
Affiliation(s)
- Neelam Amit Kungwani
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9th Mile, Baridua, Ri-Bhoi, 793101, Meghalaya, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | | | - Sudhir Shukla
- Homi Bhabha National Institute, Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, Tamilnadu, 603102, India
| | - Kalyani Vikhe
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Gunjan Sharma
- Department of Plant Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9th Mile, Baridua, Ri-Bhoi, 793101, Meghalaya, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, 98613-35856, Iran.
| |
Collapse
|
27
|
Dhaouadi Y, Hashemi MJ, Ren D. Persistence and Culturability of Escherichia coli under Induced Toxin Expression. Antibiotics (Basel) 2024; 13:863. [PMID: 39335036 PMCID: PMC11428644 DOI: 10.3390/antibiotics13090863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Bacteria are well known to enter dormancy under stress conditions. However, the mechanisms of different dormancy-related phenotypes are still under debate and many questions remain unanswered. This study aims to better understand the effects of toxin gene expression on the dormancy of Escherichia coli. METHODS The effects of toxin gene expression on growth, persistence, and culturability were characterized. Specifically, we detailed dose- and time-dependent dormancy of E. coli and its susceptibility to ofloxacin via arabinose-induced hipA toxin gene expression under the PBAD promoter. A new plot was developed to better describe the dynamic changes in culturability and persistence. The expression level of hipA was determined using qPCR and cellular activities were monitored using fluorescence imaging and flow cytometry. RESULTS High-level persister formation and strong tolerance to ofloxacin were observed after high-level hipA induction. The new plot reveals more information than the changes in persistence alone, e.g., reduced culturability of E. coli and thus deeper dormancy under high-level hipA induction. Consistently, controlled hipA induction led to decreased cellular activities at promoter PrrnBP1 and an increase in the non-culturable subpopulation. CONCLUSIONS Overall, this study provides new insights into dormancy induced by toxin gene expression and a more comprehensive view of persistence and culturability. The findings may help develop better control agents against dormant bacterial cells.
Collapse
Affiliation(s)
- Yousr Dhaouadi
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (Y.D.); (M.J.H.)
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Mohamad Javad Hashemi
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (Y.D.); (M.J.H.)
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (Y.D.); (M.J.H.)
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
28
|
Zhang J, Lu Z, Feng L, Qu D, Zhu J. Identification of microbial communities and multi-species biofilms contamination in seafood processing environments with different hygiene conditions. Food Microbiol 2024; 122:104553. [PMID: 38839233 DOI: 10.1016/j.fm.2024.104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 06/07/2024]
Abstract
Biofilms formed by spoilage and pathogenic bacteria increase microbial persistence, causing an adverse influence on the quality of seafood. The mono-species biofilms are widely reported, however, the contamination of multi-species biofilms and their matrix in food environments are still not fully understood. Here, we assessed the contamination of multi-species biofilms in three seafood processing environments with different hygiene levels by detecting bacterial number and three biofilm matrix components (carbohydrates, extracellular DNA (eDNA), and proteins). Samples comprising seven food matrix surfaces and eight food processing equipment surfaces were collected from two seafood processing plants (XY and XC) and one seafood market (CC). The results showed that the bacterial counts ranged from 1.89 to 4.91 CFU/cm2 and 5.68 to 9.15 BCE/cm2 in these surfaces by cultivation and real-time PCR, respectively. Six biofilm hotspots were identified, including four in CC and two in XY. Among the three processing environments, the amplicon sequence variants (ASVs) of Proteobacteria, Bacteroidetes, and Actinobacteria decreased with improved processing hygiene, while Firmicutes showed a decrease in the four most abundant phyla. The most prevalent bacteria belonged to genera Psychrobacter, Acinetobacter, and Pseudomonas, demonstrating the significant differences and alteration in bacterial community composition during different environments. From the biofilm hotspots, 15 isolates with strong biofilm forming ability were identified, including 7 Pseudomonas, 7 Acinetobacter, and 1 Psychrobacter. The Pseudomonas isolates exhibited the highest production of EPS components and three strong motilities, whose characteristics were positively correlated. Thus, this study verified the presence of multi-species biofilms in seafood processing environments, offering preliminary insights into the diversity of microbial communities during processing. It highlights potential contamination sources and emphasizes the importance of understanding biofilms composition to control biofilms formation in seafood processing environments.
Collapse
Affiliation(s)
- Jun Zhang
- College of Food Science and Biotechnology, Food Safety Key Laboratory of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Zhong Lu
- College of Food Science and Biotechnology, Food Safety Key Laboratory of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Lifang Feng
- College of Food Science and Biotechnology, Food Safety Key Laboratory of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Daofeng Qu
- College of Food Science and Biotechnology, Food Safety Key Laboratory of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Food Safety Key Laboratory of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
29
|
Saubade F, Cossec N, Giguelay Gesret L, Kouamé C, Ellouze M, Gérard C, Couvert O, Desriac N. Heat resistance of five spoilage microorganisms in a carbonated broth. Food Microbiol 2024; 122:104545. [PMID: 38839231 DOI: 10.1016/j.fm.2024.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 06/07/2024]
Abstract
Despite their acidic pH, carbonated beverages can be contaminated by spoilage microorganisms. Thermal treatments, before and/or after carbonation, are usually applied to prevent the growth of these microorganisms. However, the impact of CO2 on the heat resistance of spoilage microorganisms has never been studied. A better understanding of the combined impact of CO2 and pH on the heat resistance of spoilage microorganisms commonly found in carbonated beverages might allow to optimize thermal treatment. Five microorganisms were selected for this study: Alicyclobacillus acidoterrestris (spores), Aspergillus niger (spores), Byssochlamys fulva (spores), Saccharomyces cerevisiae (vegetative cells), and Zygosaccharomyces parabailii (vegetative cells). A method was developed to assess the impact of heat treatments in carbonated media on microbial resistance. The heat resistances of the five studied species are coherent with the literature, when data were available. However, neither the dissolved CO2 concentration (from 0 to 7 g/L), nor the pH (from 2.8 to 4.1) have an impact on the heat resistance of the selected microorganisms, except for As. niger, for which the presence of dissolved CO2 reduced the heat resistance. This study improved our knowledge about the heat resistance of some spoilage microorganisms in presence of CO2.
Collapse
Affiliation(s)
- Fabien Saubade
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000, Quimper, France.
| | - Noëmie Cossec
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000, Quimper, France.
| | - Luc Giguelay Gesret
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000, Quimper, France.
| | - Christelle Kouamé
- NPTC Nestlé Waters, 1020 avenue Georges Clémenceau, F-88800, Vittel, France.
| | | | | | - Olivier Couvert
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000, Quimper, France.
| | - Noémie Desriac
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000, Quimper, France.
| |
Collapse
|
30
|
Hu X, Wang X, Ren H, Li C, Zhang B, Shi R, Wang Y, Lu S, Li Y, Lu Q, Liu Z, Hu P. Preliminary Study of the Characterization of the Viable but Noncultivable State of Yersinia enterocolitica Induced by Chloride and UV Irradiation. Microorganisms 2024; 12:1778. [PMID: 39338453 PMCID: PMC11434376 DOI: 10.3390/microorganisms12091778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
The viable but non-culturable (VBNC) state is a survival strategy for many foodborne pathogens under adverse conditions. Yersinia enterocolitica (Y. enterocolitica) as a kind of primary foodborne pathogen, and it is crucial to investigate its survival strategies and potential risks in the food chain. In this study, the effectiveness of ultraviolet (UV) irradiation and chlorine treatment in disinfecting the foodborne pathogen Y. enterocolitica was investigated. The results indicated that both UV irradiation and chlorine treatment can induce the VBNC state in Y. enterocolitica. The bacteria completely lost culturability after being treated with 25 mg/L of NaClO for 30 min and a UV dose of 100 mJ/cm². The number of culturable and viable cells were detected using plate counting and a combination of fluorescein and propidium iodide (live/dead cells). Further research found that these VBNC cells exhibited reduced intracellular Adenosine Triphosphate (ATP) levels, and increased levels of reactive oxygen species (ROS) compared to non-induced cells. Morphologically, the cells changed from a rod shape to a shorter, coccobacillary shape with small vacuoles forming at the edges, indicating structural changes. Both condition-induced VBNC-state cells were able to resuscitate in tryptic soy broth (TSB) medium supplemented with Tween 80, sodium pyruvate, and glucose. These findings contribute to a better understanding of the survival mechanisms of Y. enterocolitica in the environment and are of significant importance for the development of effective disinfection strategies.
Collapse
Affiliation(s)
- Xueyu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoxu Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Honglin Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chengwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ruoran Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuzhu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shiying Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yansong Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qiang Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zengshan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Pan Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
31
|
Ramesh R, Sathiyamurthy K, Meganathan V, Athmanathan B. Induction and comparative resuscitation of viable but nonculturable state on Vibrio parahaemolyticus serotypes O3:K6 and O1:K25. Arch Microbiol 2024; 206:376. [PMID: 39141167 DOI: 10.1007/s00203-024-04102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024]
Abstract
Vibrio parahaemolyticus, an important food-borne pathogens found to be associated with seafoods and marine environs. It has been a topic of debate for many decades that most pathogens are known to enter a viable but nonculturable (VBNC) state under cold temperature and nutrient limited conditions. The present study examined the time required for the induction of VBNC state and the revival strategies of both the endemic O3:K6 and O1:K25 sporadic strains of V. parahaemolyticus. The results revealed that V. parahaemolyticus survived even after 55 days of incubation in nutrient starved media such as phosphate buffered saline (PBS) and Coastal Water (CW) and could be recovered by temperature upshift method, and compared the resuscitation using Dulbecco's Modified Eagle Medium (DMEM), sheep blood serum, chitin flakes with live Artemia salina, and the results suggests that chitin plays a significant role in regulating the VBNC state. It was also confirmed by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscope (SEM) analysis that VBNC cells can alter their morphology to coccoid forms in order to survive in most extreme nutrient limited environment. Further data on the promoting factors and the exact mechanism that resuscitate VBNC V. parahaemolyticus in cold natural environments and frozen foods are needed to perform a robust risk assessment.
Collapse
Affiliation(s)
- Rohini Ramesh
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Karuppanan Sathiyamurthy
- Department of Bio Medical Science, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Velmurugan Meganathan
- Department of Cellular and Molecular Biology Lab, University of Texas Health Science Center at Tyler, Tyler, USA
| | - Baskaran Athmanathan
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India.
| |
Collapse
|
32
|
Li L, Bae S. Quantitative detection and survival analysis of VBNC Salmonella Typhimurium in flour using droplet digital PCR and DNA-intercalating dyes. Microbiol Spectr 2024; 12:e0024924. [PMID: 38975767 PMCID: PMC11302299 DOI: 10.1128/spectrum.00249-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/13/2024] [Indexed: 07/09/2024] Open
Abstract
The difficulty in detecting viable but non-culturable (VBNC) Salmonella by culture-dependent methods poses a risk to food safety. In our study, we applied a viability test to Salmonella following a lethal treatment and to flour samples inoculated with Salmonella to evaluate the effectiveness of viability polymerase chain reaction (PCR). Our findings revealed that the combination of both ddPCR and qPCR with those DNA-intercalating dyes could quantify viable cells at low concentrations when the plate counting method failed to detect them post-inactivation. Prolonged UV exposure did not induce cell membrane disruption, as confirmed with PMA-ddPCR, with insignificant differences in gene copies. However, samples exposed to DyeTox13 and DyeTox13 + EMA showed lower gene copy numbers, implying that enzymatic activity was decreased by UV exposure duration. In addition, temperature-dependent survival in flour revealed uniform decay rates and D values (time required for a 1 log reduction) of DNA in untreated samples across various temperatures. By contrast, different decay rates were observed with DNA-intercalating dyes (DyeTox13 and DyeTox13 + EMA), showing faster metabolic activity loss at higher temperatures in flour. The decay rates and D values, determined through plate counting and those DNA-intercalating dyes, indicated the potential presence of VBNC Salmonella. A strong correlation between DyeTox13 dyes and the plate counting method suggested DyeTox13 as a rapid alternative for detecting Salmonella in flour. The ddPCR with DNA-intercalating dyes could effectively evaluate Salmonella viability, facilitating more precise monitoring of VBNC in food. IMPORTANCE Salmonella, a major foodborne pathogen, poses significant risks, particularly to vulnerable groups like infants, older people, and the immunocompromised. Accurate detection is vital for public health and food safety, given its potential to cause severe and life-threatening symptoms. Our study demonstrated digital polymerase chain reaction (ddPCR) with DNA-intercalating dyes for identifying the different physiological statuses of Salmonella. Also, the application of ddPCR with DNA-intercalating dyes offers quantification of viable cells post-disinfection as an alternative method in food. Utilizing ddPCR and DNA-intercalating dyes, we enhanced the detection of VBNC Salmonella, a form often undetectable by conventional methods. This innovative approach could significantly improve the precision and efficiency of detection for viable Salmonella. By providing deeper insights into its transmission potential, our method is a critical tool in preventing outbreaks and ensuring the safety of food products. This research contributes substantially to global efforts in controlling foodborne illnesses and safeguarding public health.
Collapse
Affiliation(s)
- Liyan Li
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Somerton BT, Morgan BL. Comparison of plate counting with flow cytometry, using four different fluorescent dye techniques, for the enumeration of Bacillus cereus in milk. J Microbiol Methods 2024; 223:106978. [PMID: 38936432 DOI: 10.1016/j.mimet.2024.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
This study aimed to compare the performance of flow cytometry methods with plate counting for the enumeration of bacteria, using Bacillus cereus as a model organism. It was found that the cFDA-propidium iodide, CellROX™ Green-propidium iodide, and DiOC2 dye techniques had similar accuracy to plate counting, while the SYTO 24-propidium iodide dye technique was not as accurate. The four dye techniques had comparable precision to plate counting, with the CellROX™ Green-propidium iodide dye having the greatest precision. The consistency of the position and shape of the cell clusters on the flow cytometry plots, and the extent of separation of the cell from background clusters, was greatest with the DiOC2 and CellROX™ Green-propidium iodide dyes. Furthermore, the DiOC2 and CellROX™ Green-propidium iodide dyes performed well, even when a sample was measured containing reconstituted whole milk powder at a 10-1 dilution, without the use of sample preparation to specifically remove the milk constituents prior to measurement. Given gating of only one cell cluster was required to be managed with the DiOC2 dye, to determine the viable number of cells, it was found that the DiOC2 dye had the greatest ease-of-use. Overall, results indicated that the DiOC2 dye is an ideal candidate for the enumeration of viable bacteria in dairy samples on a high-throughput, routine basis.
Collapse
Affiliation(s)
- Ben T Somerton
- Fonterra Research & Development Centre, Fonterra, Palmerston North, New Zealand.
| | - Brooke L Morgan
- Fonterra Research & Development Centre, Fonterra, Palmerston North, New Zealand
| |
Collapse
|
34
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Baker‐Austin C, Hervio‐Heath D, Martinez‐Urtaza J, Caro ES, Strauch E, Thébault A, Guerra B, Messens W, Simon AC, Barcia‐Cruz R, Suffredini E. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. EFSA J 2024; 22:e8896. [PMID: 39045511 PMCID: PMC11263920 DOI: 10.2903/j.efsa.2024.8896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae are the Vibrio spp. of highest relevance for public health in the EU through seafood consumption. Infection with V. parahaemolyticus is associated with the haemolysins thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH) and mainly leads to acute gastroenteritis. V. vulnificus infections can lead to sepsis and death in susceptible individuals. V. cholerae non-O1/non-O139 can cause mild gastroenteritis or lead to severe infections, including sepsis, in susceptible individuals. The pooled prevalence estimate in seafood is 19.6% (95% CI 13.7-27.4), 6.1% (95% CI 3.0-11.8) and 4.1% (95% CI 2.4-6.9) for V. parahaemolyticus, V. vulnificus and non-choleragenic V. cholerae, respectively. Approximately one out of five V. parahaemolyticus-positive samples contain pathogenic strains. A large spectrum of antimicrobial resistances, some of which are intrinsic, has been found in vibrios isolated from seafood or food-borne infections in Europe. Genes conferring resistance to medically important antimicrobials and associated with mobile genetic elements are increasingly detected in vibrios. Temperature and salinity are the most relevant drivers for Vibrio abundance in the aquatic environment. It is anticipated that the occurrence and levels of the relevant Vibrio spp. in seafood will increase in response to coastal warming and extreme weather events, especially in low-salinity/brackish waters. While some measures, like high-pressure processing, irradiation or depuration reduce the levels of Vibrio spp. in seafood, maintaining the cold chain is important to prevent their growth. Available risk assessments addressed V. parahaemolyticus in various types of seafood and V. vulnificus in raw oysters and octopus. A quantitative microbiological risk assessment relevant in an EU context would be V. parahaemolyticus in bivalve molluscs (oysters), evaluating the effect of mitigations, especially in a climate change scenario. Knowledge gaps related to Vibrio spp. in seafood and aquatic environments are identified and future research needs are prioritised.
Collapse
|
35
|
Wang J, Huo L, Bian K, He H, Dodd MC, Pinto AJ, Huang CH. Efficacy and Mechanism of Antibiotic Resistance Gene Degradation and Cell Membrane Damage during Ultraviolet Advanced Oxidation Processes. ACS ES&T WATER 2024; 4:2746-2755. [PMID: 38903200 PMCID: PMC11186015 DOI: 10.1021/acsestwater.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Combinations of UV with oxidants can initiate advanced oxidation processes (AOPs) and enhance bacterial inactivation. However, the effectiveness and mechanisms of UV-AOPs in damaging nucleic acids (e.g., antibiotic resistance genes (ARGs)) and cell integrity represent a knowledge gap. This study comprehensively compared ARG degradation and cell membrane damage under three different UV-AOPs. The extracellular ARG (eARG) removal efficiency followed the order of UV/chlorine > UV/H2O2 > UV/peracetic acid (PAA). Hydroxyl radical (•OH) and reactive chlorine species (RCS) largely contributed to eARG removal, while organic radicals made a minor contribution. For intracellular ARGs (iARGs), UV/H2O2 did not remove better than UV alone due to the scavenging of •OH by cell components, whereas UV/PAA provided a modest synergism, likely due to diffusion of PAA into cells and intracellular •OH generation. Comparatively, UV/chlorine achieved significant synergistic iARG removal, suggesting the critical role of the RCS in resisting cellular scavenging and inactivating ARGs. Additionally, flow cytometry analysis demonstrated that membrane damage was mainly attributed to chlorine oxidation, while the impacts of radicals, H2O2, and PAA were negligible. These results provide mechanistic insights into bacterial inactivation and fate of ARGs during UV-AOPs, and shed light on the suitability of quantitative polymerase chain reaction (qPCR) and flow cytometry in assessing disinfection performance.
Collapse
Affiliation(s)
- Junyue Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Linxuan Huo
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kaiqin Bian
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huan He
- State
Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory
of Yangtze Water Environment, Ministry of Education, College of Environmental
Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Michael C. Dodd
- Department
of Civil and Environmental Engineering, University of Washington (UW), Seattle, Washington 98195-2700, United States
| | - Ameet J. Pinto
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
36
|
Lin Q, Sheng M, Kang Z, Xu J, Gao Y, Ma S, Xin B, Tan Y. Synergistic and antibiofilm activity of DNase I and glucose oxidase loaded chitosan nanoparticles against dual-species biofilms of Listeria monocytogenes and Salmonella. Int J Biol Macromol 2024; 269:131943. [PMID: 38688332 DOI: 10.1016/j.ijbiomac.2024.131943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Salmonella and Listeria monocytogenes are two of the most common foodborne pathogens in the food industry. They form dual-species biofilms, which have a higher sensitivity to antimicrobial treatment and a greater microbial adhesion. In this experiment, we loaded DNase I and glucose oxidase (GOX) on chitosan nanoparticles (CSNPs) to explore their inhibitory effects on and disruption of dual-species biofilms of Salmonella enterica and L. monocytogenes. Transmission electron microscopy (TEM) showed that CSNP-DNase-GOX and CSNPs were spherical in shape. CSNP-DNase-GOX was shifted and altered compared to the infrared peaks of CSNPs. CSNPs loaded with DNase I and GOX showed an increase in the particle size and an alteration in the polydispersity index (PDI) and the zeta potential. Compared to free DNase I or GOX, DNase I and GOX loaded on CSNPs had higher stability at different temperatures. CSNP-DNase-GOX was more effective in inhibiting dual-species biofilms than CSNP-GOX. Scanning electron microscopy (SEM) and fluorescence microscopy were used to observe the structure of the biofilm, which further illustrated that CSNP-DNase-GOX disrupted the dual-species biofilms of S. enterica and L. monocytogenes.
Collapse
Affiliation(s)
- Quan Lin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China; Shandong Technology Innovation Center of Special Food, Qingdao, China; Qingdao Special Food Research Institute, Qingdao, China
| | - Maokun Sheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China; Shandong Technology Innovation Center of Special Food, Qingdao, China; Qingdao Special Food Research Institute, Qingdao, China
| | - Zhaodi Kang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China; Shandong Technology Innovation Center of Special Food, Qingdao, China; Qingdao Special Food Research Institute, Qingdao, China
| | - Jiaman Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China; Shandong Technology Innovation Center of Special Food, Qingdao, China; Qingdao Special Food Research Institute, Qingdao, China
| | - Yan Gao
- Marine Science Research Institute of Shandong Province (National Oceanographic Center of Qingdao), Qingdao, China
| | - Su Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Bingchang Xin
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yulong Tan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China; Shandong Technology Innovation Center of Special Food, Qingdao, China; Qingdao Special Food Research Institute, Qingdao, China.
| |
Collapse
|
37
|
Liu X, Liu S, Wang Y, Shi Y, Chen Q. New insights into the antibiofilm activity and mechanism of Mannosylerythritol Lipid-A against Listeria monocytogenes EGD-e. Biofilm 2024; 7:100201. [PMID: 38779407 PMCID: PMC11108854 DOI: 10.1016/j.bioflm.2024.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Listeria monocytogenes is one of the leading causative agents of foodborne disease outbreaks worldwide. Herein, the antibiofilm effect and mechanism of Mannosylerythritol Lipid-A against L. monocytogenes EGD-e is reported for the first time. MEL-A effectively attenuated biofilm formation while reducing the viability and motility of bacteria within the biofilm in the early stage, and influenced bacterial adhesion by affecting the secretion of extracellular polysaccharides and eDNA. RT-qPCR revealed that MEL-A significantly suppressed the expression of genes involved in flagellar movement and virulence. Untargeted LC-MS metabolomics indicated that MEL-A affected the fluidity and permeability of cell membranes by significantly upregulating unsaturated fatty acids, lipids and glycoside metabolites, and affected protein biosynthesis, nucleotide metabolism and DNA synthesis and repair by significantly downregulating amino acid metabolism and nucleic acid metabolism. These pathways may constitute the key targets of biofilm formation inhibition by MEL-A. Furthermore, MEL-A showed good removal effects on mature biofilms under different temperatures, different materials and milk. Our data indicated that MEL-A could be used as a novel antibiofilm agent to improve food safety. Our study provides new insights into the possible inhibitory mechanism of MEL-A and the response of L. monocytogenes EGD-e to MEL-A.
Collapse
Affiliation(s)
- Xiayu Liu
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314100, China
| | - Siyu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314100, China
| | - Yuxi Wang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314100, China
| |
Collapse
|
38
|
Luo C, Chen C, Xian X, Cai WF, Yu X, Ye C. The secondary outbreak risk and mechanisms of Microcystis aeruginosa after H 2O 2 treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134196. [PMID: 38603907 DOI: 10.1016/j.jhazmat.2024.134196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
The secondary outbreak of cyanobacteria after algicide treatment has been a serious problem to water ecosystems. Hydrogen peroxide (H2O2) is an algaecide widely used in practice, but similar re-bloom problems are inevitably encountered. Our work found that Microcystis aeruginosa (M. aeruginosa) temporarily hibernates after H2O2 treatment, but there is still a risk of secondary outbreaks. Interestingly, the dormant period was as long as 20 and 28 days in 5 mg L-1 and 20 mg L-1 H2O2 treatment groups, respectively, but the photosynthetic activity was both restored much earlier (within 14 days). Subsequently, a quantitative imaging flow cytometry-based method was constructed and confirmed that the re-bloom had undergone two stages including first recovery and then re-division. The expression of ftsZ and fabZ genes showed that M. aeruginosa had active transcription processes related to cell division protein and fatty acid synthesis during the dormancy stat. Furthermore, metabolomics suggested that the recovery of M. aeruginosa was mainly by activating folate and salicylic acid synthesis pathways, which promoted environmental stress resistance, DNA synthesis, and cell membrane repair. This study reported the comprehensive mechanisms of secondary outbreak of M. aeruginosa after H2O2 treatment. The findings suggest that optimizing the dosage and frequency of H2O2, as well as exploring the potential use of salicylic acid and folic acid inhibitors, could be promising directions for future algal control strategies.
Collapse
Affiliation(s)
- Chen Luo
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Chenlan Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xuanxuan Xian
- Ecological &Environment Monitoring Center of Zhejiang Province, Hangzhou 310012, China
| | - Wei-Feng Cai
- Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361103. China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| | - Chengsong Ye
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
39
|
Vigil-Cuate LK, Avila-Reyes SV, Camacho-Díaz BH, Hernández-Sánchez H, Osorio-Díaz P, Jiménez-Aparicio AR, Robert P, Arenas-Ocampo ML. Effect of Agavins and Agave Syrup Use in the Formulation of a Synbiotic Gelatin Gummy with Microcapsules of Saccharomyces Boulardii. Gels 2024; 10:299. [PMID: 38786216 PMCID: PMC11121532 DOI: 10.3390/gels10050299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Agavins are reserve carbohydrates found in agave plants; they present texture-modifying properties and prebiotic capacity by increasing the viability of the intestinal microbiota. Through its hydrolysis, agave syrup (AS) can be obtained and can be used as a sweetener in food matrices. The objective of this work was to evaluate the effect of the variation in the content of agavins and AS on the physical, structural, and viability properties of Saccharomyces boulardii encapsulates incorporated into gelatin gummies. An RSM was used to obtain an optimized formulation of gelatin gummies. The properties of the gel in the gummy were characterized by a texture profile analysis and Aw. The humidity and sugar content were determined. A sucrose gummy was used as a control for the variable ranges. Alginate microcapsules containing S. boulardii were added to the optimized gummy formulation to obtain a synbiotic gummy. The viability of S. boulardii and changes in the structure of the alginate gel of the microcapsules in the synbiotic gummy were evaluated for 24 days by image digital analysis (IDA). The agavins and agave syrup significantly affected the texture properties (<1 N) and the Aw (>0.85). The IDA showed a change in the gel network and an increase in viability by confocal microscopy from day 18. The number of pores in the gel increased, but their size decreased with an increase in the number of S. boulardii cells. Agavins and cells alter the structure of capsules in gummies without affecting their viability.
Collapse
Affiliation(s)
- Liliana K. Vigil-Cuate
- Instituto Politécnico Nacional-CEPROBI, Carretera Yautepec-Jojutla, Km.6 calle CEPROBI No.8, Colonia San Isidro, Yautepec C.P. 62730, Mexico; (L.K.V.-C.); (B.H.C.-D.); (P.O.-D.); (A.R.J.-A.)
| | - Sandra V. Avila-Reyes
- CONAHCyT-Instituto Politécnico Nacional-CEPROBI, Carretera Yautepec-Jojutla, Km.6 calle CEPROBI No.8, Colonia San Isidro, Yautepec C.P. 62730, Mexico
| | - Brenda H. Camacho-Díaz
- Instituto Politécnico Nacional-CEPROBI, Carretera Yautepec-Jojutla, Km.6 calle CEPROBI No.8, Colonia San Isidro, Yautepec C.P. 62730, Mexico; (L.K.V.-C.); (B.H.C.-D.); (P.O.-D.); (A.R.J.-A.)
| | - Humberto Hernández-Sánchez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico City C.P. 07738, Mexico;
| | - Perla Osorio-Díaz
- Instituto Politécnico Nacional-CEPROBI, Carretera Yautepec-Jojutla, Km.6 calle CEPROBI No.8, Colonia San Isidro, Yautepec C.P. 62730, Mexico; (L.K.V.-C.); (B.H.C.-D.); (P.O.-D.); (A.R.J.-A.)
| | - Antonio R. Jiménez-Aparicio
- Instituto Politécnico Nacional-CEPROBI, Carretera Yautepec-Jojutla, Km.6 calle CEPROBI No.8, Colonia San Isidro, Yautepec C.P. 62730, Mexico; (L.K.V.-C.); (B.H.C.-D.); (P.O.-D.); (A.R.J.-A.)
| | - Paz Robert
- Departamento de Ciencias de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago C.P. 8380494, Chile;
| | - Martha L. Arenas-Ocampo
- Instituto Politécnico Nacional-CEPROBI, Carretera Yautepec-Jojutla, Km.6 calle CEPROBI No.8, Colonia San Isidro, Yautepec C.P. 62730, Mexico; (L.K.V.-C.); (B.H.C.-D.); (P.O.-D.); (A.R.J.-A.)
| |
Collapse
|
40
|
Debnath A, Miyoshi SI. Effect of physicochemical and microbiological factors on the development of viable but non-culturable and resuscitation states of Vibrio cholerae. Arch Microbiol 2024; 206:224. [PMID: 38642319 DOI: 10.1007/s00203-024-03956-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Vibrio cholerae can endure harsh environmental conditions by transitioning into viable but non-culturable (VBNC) form and resuscitate upon return of appropriate conditions. METHOD In this study, we assessed the impact of physicochemical and microbiological factors, on the development of low temperature-induced VBNC state and subsequent recovery by temperature upshift. RESULTS In estuarine water, Vibrio cholerae exhibits a slower decline in culturability over a period of 77 days as compared to 10 days in fresh water. When variable cell numbers from different growth phases were used for VBNC induction, it was observed that the higher inoculum size (106-107 cfu ml-1) from the late log phase culture appears to be crucial for entering the VBNC state. Conversely, starved cells could enter the VBNC state with an initial inoculum of 104-105 cfu ml-1, followed by resuscitation as well. The addition of glucose, GlcNAc and mannitol differentially affects progression into VBNC, while the addition of tryptone, yeast extract and casamino acid facilitated early entry into the VBNC state and shortened the length of the recovery period. CONCLUSION Altogether these findings demonstrated that the ionic strength of water, inoculum size and the availability of nutrients played distinct roles during VBNC induction and resuscitation.
Collapse
Affiliation(s)
- Anusuya Debnath
- Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, 700-8530, Japan.
- Department of Biotechnology, Brainware University, Kolkata, India.
| | - Shin-Ichi Miyoshi
- Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, 700-8530, Japan
| |
Collapse
|
41
|
Gricajeva A, Buchovec I, Kalėdienė L, Badokas K, Vitta P. Evaluation of visible light and natural photosensitizers against Staphylococcus epidermidis and Staphylococcus saprophyticus planktonic cells and biofilm. Heliyon 2024; 10:e28811. [PMID: 38596007 PMCID: PMC11002230 DOI: 10.1016/j.heliyon.2024.e28811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Antimicrobial photoinactivation (API) has shown some promise in potentially treating different nosocomial bacterial infections, however, its application on staphylococci, especially other than Staphylococcus aureus or methicillin-resistant S. aureus (MRSA) species is still limited. Although S. aureus is a well-known and important nosocomial pathogen, several other species of the genus, particularly coagulase-negative Staphylococcus (CNS) species such as Staphylococcus epidermidis and Staphylococcus saprophyticus, can also cause healthcare-associated infections and foodborne intoxications. CNS are often involved in resilient biofilm formation on medical devices and can cause infections in patients with compromised immune systems or those undergoing invasive procedures. In this study, the effects of chlorophyllin and riboflavin-mediated API on S. epidermidis and S. saprophyticus planktonic cells and biofilm are demonstrated for the first time. Based on the residual growth determination and metabolic reduction ability changes, higher inactivating efficiency of chlorophyllin-mediated API was determined against the planktonic cells of both tested species of bacteria and against S. saprophyticus biofilm. Some insights on whether aqueous solutions of riboflavin and chlorophyllin, when illuminated with optimal exciting wavelength (440 nm and 402 nm, respectively) generate O2-•, are also provided in this work.
Collapse
Affiliation(s)
- Alisa Gricajeva
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Sauletekio avenue 7, LT-10257, Vilnius, Lithuania
| | - Irina Buchovec
- Institute of Photonics and Nanotechnology, Faculty of Physics, Sauletekio avenue 3, LT-10257, Vilnius University, Vilnius, Lithuania
| | - Lilija Kalėdienė
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Sauletekio avenue 7, LT-10257, Vilnius, Lithuania
| | - Kazimieras Badokas
- Institute of Photonics and Nanotechnology, Faculty of Physics, Sauletekio avenue 3, LT-10257, Vilnius University, Vilnius, Lithuania
| | - Pranciškus Vitta
- Institute of Photonics and Nanotechnology, Faculty of Physics, Sauletekio avenue 3, LT-10257, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
42
|
Ji C, Guo J, Ma Y, Xu X, Zang T, Liu S, An Z, Yang M, He X, Zheng W. Application Progress of Culturomics in the Isolated Culture of Rhizobacteria: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7586-7595. [PMID: 38530921 DOI: 10.1021/acs.jafc.3c08885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Comprehending the structure and function of rhizobacteria components and their regulation are crucial for sustainable agricultural management. However, obtaining comprehensive species information for most bacteria in the natural environment, particularly rhizobacteria, presents a challenge using traditional culture methods. To obtain diverse and pure cultures of rhizobacteria, this study primarily reviews the evolution of rhizobacteria culturomics and associated culture methods. Furthermore, it explores new strategies for enhancing the application of culturomics, providing valuable insights into efficiently enriching and isolate target bacterial strains/groups from the environment. The findings will help improve rhizobacteria's culturability and enrich the functional bacterial library.
Collapse
Affiliation(s)
- Chao Ji
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Junli Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Ying Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Xiangfu Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Tongyu Zang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Sentao Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zhenzhen An
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Wenjie Zheng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan 650224, China
| |
Collapse
|
43
|
Shi Y, Wen T, Zhao F, Hu J. Bacteriostasis of nisin against planktonic and biofilm bacteria: Its mechanism and application. J Food Sci 2024; 89:1894-1916. [PMID: 38477236 DOI: 10.1111/1750-3841.17001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Food safety incidents caused by bacterial contamination have always been one of the public safety issues of social concern. Planktonic cells, viable but non-culturable (VBNC) cells, and biofilm cells of bacteria can coexist in food or food processing, posing more serious challenges to public health and safety by increasing bacterial survival and difficulty in detection. As a non-toxic, no side effect, and highly effective bacteriostatic substance, nisin has received wide attention from researchers. In this review, we summarized the species and biosynthesis of nisin, the effects of nisin alone or in combination with other treatments on planktonic and biofilm cells, and its applications in the fields of food, feed, and medicine by consulting numerous studies. Meanwhile, the mechanism of nisin on planktonic and biofilm cells was proposed based on existing researches. Nisin not only has antibacterial activity against most G+ bacteria but also exhibits a bacteriostatic effect on G- bacteria when combined with other antibacterial treatments. In addition to planktonic cells, nisin also has significant effects on bacterial cells in biofilms by changing the thickness, density, and composition of biofilms. Based on the three action processes of nisin on biofilms, we summarized the changes of bacteria in biofilms, including the causes of bacterial death and the formation of the VBNC state. We consider that research on the relationship between nisin and VBNC state should be strengthened.
Collapse
Affiliation(s)
- Ying Shi
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Tao Wen
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Feng Zhao
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Jia Hu
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| |
Collapse
|
44
|
Yang H, He D, Fan L, Cheng F, Zhou Y, Lei Y, Zhang YN, Yang X, Qu J. Evaluating the Impact of Cl 2•- Generation on Antibiotic-Resistance Contamination Removal via UV/Peroxydisulfate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5578-5588. [PMID: 38477971 DOI: 10.1021/acs.est.3c09952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The removal of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) using sulfate anion radical (SO4•-)-based advanced oxidation processes has gained considerable attention recently. However, immense uncertainties persist in technology transfer. Particularly, the impact of dichlorine radical (Cl2•-) generation during SO4•--mediated disinfection on ARB/ARGs removal remains unclear, despite the Cl2•- concentration reaching levels notably higher than those of SO4•- in certain SO4•--based procedures applied to secondary effluents, hospital wastewaters, and marine waters. The experimental results of this study reveal a detrimental effect on the disinfection efficiency of tetracycline-resistant Escherichia coli (Tc-ARB) during SO4•--mediated treatment owing to Cl2•- generation. Through a comparative investigation of the distinct inactivation mechanisms of Tc-ARB in the Cl2•-- and SO4•--mediated disinfection processes, encompassing various perspectives, we confirm that Cl2•- is less effective in inducing cellular structural damage, perturbing cellular metabolic activity, disrupting antioxidant enzyme system, damaging genetic material, and inducing the viable but nonculturable state. Consequently, this diminishes the disinfection efficiency of SO4•--mediated treatment owing to Cl2•- generation. Importantly, the results indicate that Cl2•- generation increases the potential risk associated with the dark reactivation of Tc-ARB and the vertical gene transfer process of tetracycline-resistant genes following SO4•--mediated disinfection. This study underscores the undesired role of Cl2•- for ARB/ARGs removal during the SO4•--mediated disinfection process.
Collapse
Affiliation(s)
- Hao Yang
- School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Dongyang He
- School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Linyi Fan
- School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Fangyuan Cheng
- School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Ya-Nan Zhang
- School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| |
Collapse
|
45
|
Ekundayo TC, Ijabadeniyi OA. Global and regional prevalence of Cronobacter sakazakii in powdered milk and flour. Sci Rep 2024; 14:6865. [PMID: 38514864 PMCID: PMC10957878 DOI: 10.1038/s41598-024-57586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
Cronobacter sakazakii (Cz) infections linked with powdered milk/flour (PMF) are on the increase in recent times. The current study aimed at assessing worldwide and regional prevalence of Cz in PMF. Cz-PMF-directed data were conscientiously mined in four mega-databases via topic-field driven PRISMA protocol without any restriction. Bivariate analysis of datasets was conducted and then fitted to random-intercept logistic mixed-effects regressions with leave-one-study-out-cross-validation (LOSOCV). Small-study effects were assayed via Egger's regression tests. Contributing factors to Cz contamination/detection in PMF were determined using 1000-permutation-bootstrapped meta-regressions. A total of 3761 records were found out of which 68 studies were included. Sample-size showed considerable correlation with Cz positivity (r = 0.75, p = 2.5e-17), Milkprod2020 (r = 0.33, p = 1.820e-03), and SuDI (r = - 0.30, p = 4.11e-03). The global prevalence of Cz in PMF was 8.39% (95%CI 6.06-11.51, PI: 0.46-64.35) with LOSOCV value of 7.66% (6.39-9.15; PI: 3.10-17.70). Cz prevalence in PMF varies significantly (p < 0.05) with detection methods, DNA extraction method, across continents, WHO regions, and world bank regions. Nation, detection method, world bank region, WHO region, and sample size explained 53.88%, 19.62%, 19.03%, 15.63%, and 9.22% of the true differences in the Cz prevalence in PMF, respectively. In conclusion, the results indicated that national will power in the monitoring and surveillance of Cz in PMF matched with adequate sample size and appropriate detection methods will go a long way in preventing Cz contamination and infections.
Collapse
Affiliation(s)
- Temitope C Ekundayo
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Steve Biko Rd, Musgrave, Berea, Durban, South Africa.
| | - Oluwatosin A Ijabadeniyi
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Steve Biko Rd, Musgrave, Berea, Durban, South Africa
| |
Collapse
|
46
|
Hawer H, Burmester R, Sonnenberg N, Weiß K. Detection of endotoxins from selected drinking water microbiota using an LAL-based assay and its implications for human health. JOURNAL OF WATER AND HEALTH 2024; 22:290-295. [PMID: 38421623 PMCID: wh_2024_207 DOI: 10.2166/wh.2024.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Endotoxins are pyrogenic lipopolysaccharides from Gram-negative bacteria that are known to induce fever, septic shock, and multiple organ failure, posing a substantial risk to human health. Drinking water systems are especially prone to home microbiomes containing a large variety of Gram-negative bacteria. Consumption of water from these systems in developed countries is generally regarded as non-hazardous to humans due to the low number of non-pathogenic bacterial cells per milliliter and oral admission. To assess potential risks posed by endotoxins in drinking water systems, we conducted a conventional microbiological investigation on a local community water system in the north of Germany and mined the resulting data to investigate the endotoxin contents of some of the most abundant microbiota found during these analyses. Using a Limulus amoebocyte lysate (LAL) -based endotoxin detection method, average normalized endotoxin content was determined. Although the average culturable amounts of microbiota in the drinking water system were insufficient to exert endotoxin levels critical to human health, peaks and acute contaminations may pose substantial health risks.
Collapse
Affiliation(s)
- Harmen Hawer
- Panpharma GmbH, Bunsenstraße 4, 22946, Trittau, Germany E-mail:
| | | | | | - Katja Weiß
- Panpharma GmbH, Bunsenstraße 4, 22946, Trittau, Germany
| |
Collapse
|
47
|
Zou Y, Li X, Mao Y, Song W, Liu Q. Enhanced Biofilm Formation by Tetracycline in a Staphylococcus aureus Naturally Lacking ica Operon and atl. Microb Drug Resist 2024; 30:82-90. [PMID: 38252794 DOI: 10.1089/mdr.2023.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Staphylococcus aureus is a major, widespread pathogen, and its biofilm-forming characteristics make it even more difficult to eliminate by biocides. Tetracycline (TCY) is a major broad-spectrum antibiotic, the residues of which can cause deleterious health impacts, and subinhibitory concentrations of TCY have the potential to increase biofilm formation in S. aureus. In this study, we showed how the biofilm formation of S. aureus 123786 is enhanced in the presence of TCY at specific subinhibitory concentrations. S. aureus 123786 used in this study was identified as Staphylococcal Cassette Chromosome mec III, sequence type239 and naturally lacking ica operon and atl gene. Two assays were performed to quantify the formation of S. aureus biofilm. In the crystal violet (CV) assay, the absorbance values of biofilm stained with CV at optical density (OD)540 nm increased after 8 and 16 hr of incubation when the concentration of TCY was 1/2 minimum inhibitory concentration (MIC), whereas at the concentration of 1/16 MIC, the absorbance values increased after 16 and 24 hr of incubation. In tetrazolium salt reduction assay, the absorbance value at OD490 nm of S. aureus 123786 biofilms mixed with 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium solution increased after 8 hr when the concentration of TCY was 1/4 MIC, which may be correlated with the higher proliferation and maturation of biofilm. In conclusion, the biofilm formation of S. aureus 123786 could be enhanced in the presence of TCY at specific subinhibitory concentrations.
Collapse
Affiliation(s)
- Yimin Zou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejie Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yanxiong Mao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjuan Song
- Department of Economics, School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Liu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
48
|
Winter H, Wagner R, Ehlbeck J, Urich T, Schnabel U. Deep Impact: Shifts of Native Cultivable Microbial Communities on Fresh Lettuce after Treatment with Plasma-Treated Water. Foods 2024; 13:282. [PMID: 38254583 PMCID: PMC10815073 DOI: 10.3390/foods13020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Foods consumed raw, such as lettuce, can host food-borne human-pathogenic bacteria. In the worst-case, these diseases cause to death. To limit illness and industrial losses, one innovative sanitation method is non-thermal plasma, which offers an extremely efficient reduction of living microbial biomass. Unfortunately, the total viable count (TVC), one of the most common methods for quantifying antimicrobial effects, provides no detailed insights into the composition of the surviving microbial community after treatment. To address this information gap, different special agars were used to investigate the reduction efficiency of plasma-treated water (PTW) on different native cultivable microorganisms. All tested cultivable microbial groups were reduced using PTW. Gram-negative bacteria showed a reduction of 3.81 log10, and Gram-positive bacteria showed a reduction of 3.49 log10. Fungi were reduced by 3.89 log10. These results were further validated using a live/dead assay. MALDI-ToF (matrix-assisted laser-desorption-ionization time-of-flight)-based determination was used for a diversified overview. The results demonstrated that Gram-negative bacteria were strongly reduced. Interestingly, Gram-positive bacteria and fungi were reduced by nearly equal amounts, but could still recover from PTW treatment. MALDI-ToF mainly identified Pseudomonas spp. and groups of Bacillus on the tested lettuce. These results indicate that the PTW treatment could efficiently achieve a ubiquitous, spectrum-wide reduction of microbial life.
Collapse
Affiliation(s)
- Hauke Winter
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany; (H.W.); (R.W.); (J.E.)
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany;
| | - Robert Wagner
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany; (H.W.); (R.W.); (J.E.)
| | - Jörg Ehlbeck
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany; (H.W.); (R.W.); (J.E.)
| | - Tim Urich
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany;
| | - Uta Schnabel
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany; (H.W.); (R.W.); (J.E.)
| |
Collapse
|
49
|
Xu Z, Deng Y. Editorial: Community series in emerging frontiers in the formation of viable but non-culturable microorganisms and biofilms during food processing, volume II. Front Microbiol 2023; 14:1306559. [PMID: 37942079 PMCID: PMC10628741 DOI: 10.3389/fmicb.2023.1306559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Affiliation(s)
- Zhenbo Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yang Deng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
50
|
Liang J, Huang TY, Li X, Gao Y. Germicidal effect of intense pulsed light on Pseudomonas aeruginosa in food processing. Front Microbiol 2023; 14:1247364. [PMID: 37692381 PMCID: PMC10484712 DOI: 10.3389/fmicb.2023.1247364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Background Pseudomonas aeruginosa (P. aeruginosa) can cause serious infections in many parts of the body and is also an underestimated foodborne pathogen. Intense pulsed light sterilization is recognized for its high sterilization efficiency, flexible and safe operation and ease of installation on production lines, which makes up for the shortcomings of several other physical sterilization technologies. Methods This experiment studied the killing efficiency of different capacitances (650 μF, 470 μF, and 220 μF) of intense pulsed light on foodborne pathogenic microorganisms P. aeruginosa in the models of liquid food models, 96-well cell plates, and polycarbonate membrane models at room temperature (25°C) and refrigerated (4°C) environments to provide data to support the application of IPL sterilization devices in food processing. Results The IPL was very effective in killing P. aeruginosa in the planktonic state as well as in the early and mature biofilm states, meeting target kill rates of 100%, 99.99%, and 94.33% for a given number of exposures. The biofilms formed in the polycarbonate membrane model and the 96-well plate model were more resistant to killing compared to the planktonic state. To achieve the same bactericidal effect, the number of flashes increased with decreasing capacitance. Conclusion The bactericidal effect of IPL on P. aeruginosa was significantly influenced by the state of the bacterium. The larger the capacitance the higher the number of pulses and the better the sterilization effect on P. aeruginosa.
Collapse
Affiliation(s)
- Jinglong Liang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Teng Yi Huang
- Department of Diagnostics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xuejie Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Yan Gao
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|