1
|
Sharma V, Sharma P, Singh TG. Therapeutic potential of COX-2 inhibitors in neuropsychiatric disorders. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02932-0. [PMID: 40325255 DOI: 10.1007/s00702-025-02932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/10/2025] [Indexed: 05/07/2025]
Abstract
Neuropsychiatric disorders such as bipolar disorder, migraine, major depressive disorder, epilepsy, attention-deficit/hyperactivity disorder, autism spectrum disorder and schizophrenia, are a huge burden on global health, impacting millions of individuals worldwide and posing significant barriers to effective treatment. Despite advancements in medication and psychotherapy, many patients continue to suffer from severe symptoms and receive little alleviation. All of these conditions are quite frequent, yet they affect people in a way that is exceedingly detrimental. The increasing evidence suggests the connection between these disorders and inflammation. Therefore, the use of anti-inflammatory agents, namely cyclooxygenase-2 (COX-2) inhibitors, offers a new approach to prevent and treat neuropsychiatric disorders. This review discusses about the COX pathway and the role of COX-2 in the neuroinflammation. Furthermore, this review highlights the COX-2 inhibitors as a promising therapeutic agent in these neuropsychiatric disorders, however, further studies are required to assess appropriate illness stage-related indication.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
2
|
Karabulut Uzunçakmak S, Özcan H, Dirican E. Investigation of cytochrome B mutations, and UCP2 and STC1 gene expressions in patients with bipolar disorder. Psychiatr Genet 2025:00041444-990000000-00069. [PMID: 40207595 DOI: 10.1097/ypg.0000000000000389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
OBJECTIVE The aim herein was to investigate mitochondrial cytochrome B (MT-CYB) mutations in individuals with bipolar disorder. Stanniocalcin-1 (STC1) and uncoupling protein 2 (UCP2) mRNA expressions and their relationship with clinical data and each other were also investigated. METHOD The blood samples of 100 individuals were included in this study. Real-time PCR was used to evaluate mRNA expressions of STC1 and UCP2. Genetic alterations were investigated via Sanger DNA sequencing. An in silico analysis was performed to reveal the phenotypic effects of MT-CYB mutations. RESULTS In the MT-CYB gene of the bipolar disorder patients, the most seen mutations were the T194A A>G mutation at position 1532, G deletion at position 15498, and C>A L236I mutation at position 15452. Most of the mutations appeared to be neutral or benign. The UCP2 and STC1 mRNA expression levels were significantly higher in the patients than in the healthy controls (P = 0.0124 and P < 0.0001, respectively). The area under the curve values of the receiver operating characteristic curve analysis for UCP2 and STC1 were 0.6631 (P = 0.0123) and 0.8059 (P < 0.0001), respectively. No significant relationship was observed between the gene expressions and the routine laboratory findings. There was a positive correlation between the UCP2 and STC1 mRNA expressions in the bipolar disorder patients (r = 0.03559, P = 0.0306). CONCLUSION Expression of UCP2 and STC1 may be important parameters in bipolar disorder. MT-CYB mutations may be related to gene expressions. Comprehensive studies on bipolar disorder will help better understand UCP2 and STC1 gene functions.
Collapse
Affiliation(s)
- Sevgi Karabulut Uzunçakmak
- Health Services Vocational School, Department of Medical Services and Techniques, Bayburt University, Bayburt
| | - Halil Özcan
- Faculty of Medicine, Department of Psychiatry, Ataturk University, Erzurum, and
| | - Ebubekir Dirican
- Faculty of Medicine, Department of Medical Biology, Bilecik Seyh Edebali University, Bilecik, Türkiye
| |
Collapse
|
3
|
Li T, Ding Y, Zhang L, Li H, Liu F, Li P, Zhao J, Lv D, Lang B, Guo W. Potential associations between altered brain function, cognitive deficits and gene expressing profiles in bipolar disorder across three clinical stages. J Affect Disord 2025; 374:606-615. [PMID: 39832645 DOI: 10.1016/j.jad.2025.01.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
AIMS We aimed to determine the relationship between altered brain imaging characteristics, cognitive function and profiles of gene expression of bipolar disorder (BD). METHODS Functional magnetic resonance imaging (fMRI) was presented in three groups of BD participants (depressed, manic and euthymic) and healthy controls. Regional Homogeneity (ReHo) and region of interest based functional analysis combining with neuroimaging-transcription association analysis were utilized to investigate abnormalities and their correlation with clinical symptoms. RESULTS Our data showed that all three groups of BD patients exhibited significantly altered ReHo values whilst the bilateral precuneus/posterior cingulate cortex (PCC) and lateral occipital cortex exhibited significant increase in BD. Functional connectivity (FC) revealed distinct characteristics of the precuneus/PCC-based default mode network. ReHo values in the Precuneus/middle cingulate cortex displayed significantly negative correlations with cognition and YMRS scores. Gene enrichment analysis also revealed that ReHo values were spatially correlated with pathways including chromatin organization and innate immune response. CONCLUSION Altered ReHo values in specific brain regions may be associated with different clinical stages and increased FC in brain may potentially function as BD imaging biomarkers. The heterogeneity of gene expression was associated with altered brain imaging properties in BD, contributing to distinguishing different stages of BD from healthy individuals.
Collapse
Affiliation(s)
- Tingting Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yudan Ding
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Leyi Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Dongsheng Lv
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Center of Mental Health, Inner Mongolia Autonomous Region, Hohhot 010010, China.
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
4
|
Zhang W, Huang C, Yao H, Yang S, Jiapaer Z, Song J, Wang X. Retrotransposon: an insight into neurological disorders from perspectives of neurodevelopment and aging. Transl Neurodegener 2025; 14:14. [PMID: 40128823 PMCID: PMC11934714 DOI: 10.1186/s40035-025-00471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/21/2025] [Indexed: 03/26/2025] Open
Abstract
Neurological disorders present considerable challenges in diagnosis and treatment due to their complex and diverse etiology. Retrotransposons are a type of mobile genetic element that are increasingly revealed to play a role in these diseases. This review provides a detailed overview of recent developments in the study of retrotransposons in neurodevelopment, neuroaging, and neurological diseases. Retrotransposons, including long interspersed nuclear elements-1, Alu, SINE-VNTR-Alu, and endogenous retrovirus, play important regulatory roles in the development and aging of the nervous system. They have also been implicated in the pathological processes of several neurological diseases, including Alzheimer's disease, X-linked dystonia-parkinsonism, amyotrophic lateral sclerosis, autism spectrum disorder, and schizophrenia. Retrotransposons provide a new perspective for understanding the molecular mechanisms underlying neurological diseases and provide insights into diagnostic and therapeutic strategies of these diseases.
Collapse
Affiliation(s)
- Wenchuan Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenxuan Huang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyang Yao
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zeyidan Jiapaer
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang, China.
| | - Juan Song
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Ulrichsen A, Tröger A, Jauhar S, Severus E, Bauer M, Cleare A. Do sleep variables predict mood in bipolar disorder: A systematic review. J Affect Disord 2025; 373:364-373. [PMID: 39740744 DOI: 10.1016/j.jad.2024.12.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION Most people with bipolar disorder (BD) experience sleep disturbances across mood states and many identify sleep changes before both depressive and manic episodes. Nearly half of all patients have multiple relapses of BD and identifying early warning signs of relapse, such as sleep changes, could benefit both patients and clinicians as a preventive strategy. METHODS A systematic search of the databases Embase, APA PsychINFO, and MEDLINE was performed to identify studies that investigated the relationship between sleep changes and mood in BD. The review was registered with PROSPERO (CRD42023405950) and followed the PRISMA guidelines. Results were categorised based on the identified relationship between sleep changes and mood, e.g. sleep and depression correlation, and these are synthesised narratively. The Newcastle-Ottawa scale was used to assess the risk of bias (RoB). RESULTS The systematic literature search yielded 7159 records. 17 publications were included, describing 13 studies. Nine categories were identified describing the relationship between sleep and mood (e.g. sleep-mood correlations and comparing BD and HC on sleep duration). Regardless of sleep assessment (e.g. actigraphy), study duration or mood outcome, changes towards longer sleep, earlier onset and later wake-up were mostly followed by depressive mood, and vice versa for mania. 14 papers had a "fair" RoB rating. DISCUSSION Changes in sleep patterns appear to precede predictable mood changes in BD and could be used as early warning signs for patients and clinicians. The main limitation of the study is the high heterogeneity between study results, preventing the conduction of a meta-analysis.
Collapse
Affiliation(s)
- Andrea Ulrichsen
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London SE5 8AB, UK; Dresden University of Technology, Department of Psychiatry and Psychotherapy, University Hospital, Dresden, Germany.
| | - Anna Tröger
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London SE5 8AB, UK; Dresden University of Technology, Department of Psychiatry and Psychotherapy, University Hospital, Dresden, Germany.
| | - Sameer Jauhar
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London SE5 8AB, UK.
| | - Emanuel Severus
- Dresden University of Technology, Department of Psychiatry and Psychotherapy, University Hospital, Dresden, Germany.
| | - Michael Bauer
- Dresden University of Technology, Department of Psychiatry and Psychotherapy, University Hospital, Dresden, Germany.
| | - Anthony Cleare
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, London SE5 8AB, UK.
| |
Collapse
|
6
|
Fernández-Pereira C, Agís-Balboa RC. The Insulin-like Growth Factor Family as a Potential Peripheral Biomarker in Psychiatric Disorders: A Systematic Review. Int J Mol Sci 2025; 26:2561. [PMID: 40141202 PMCID: PMC11942524 DOI: 10.3390/ijms26062561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Psychiatric disorders (PDs), including schizophrenia (SZ), major depressive disorder (MDD), bipolar disorder (BD), autism spectrum disorder (ASD), among other disorders, represent a significant global health burden. Despite advancements in understanding their biological mechanisms, there is still no reliable objective and reliable biomarker; therefore, diagnosis remains largely reliant on subjective clinical assessments. Peripheral biomarkers in plasma or serum are interesting due to their accessibility, low cost, and potential to reflect central nervous system processes. Among these, the insulin-like growth factor (IGF) family, IGF-1, IGF-2, and IGF-binding proteins (IGFBPs), has gained attention for its roles in neuroplasticity, cognition, and neuroprotection, as well as for their capability to cross the blood-brain barrier. This review evaluates the evidence for IGF family alterations in PDs, with special focus on SZ, MDD, and BD, while also addressing other PDs covering almost 40 years of history. In SZ patients, IGF-1 alterations have been linked to metabolic dysregulation, treatment response, and hypothalamic-pituitary-adrenal axis dysfunction. In MDD patients, IGF-1 appears to compensate for impaired neurogenesis, although findings are inconsistent. Emerging studies on IGF-2 and IGFBPs suggest potential roles across PDs. While promising, heterogeneity among studies and methodological limitations highlights the need for further research to validate IGFs as reliable psychiatric biomarkers.
Collapse
Affiliation(s)
- Carlos Fernández-Pereira
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain;
- Translational Research in Neurological Diseases (ITEN) Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, 15706 Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
| | - Roberto Carlos Agís-Balboa
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain;
- Translational Research in Neurological Diseases (ITEN) Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, 15706 Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Chen J, Zhu J, Bao H, Tang L, Li B, Chen Z, Zhang Y, Hu Q. Challenging the Safety Threshold: Neurotoxicity in Bipolar Disorder Treatment with Lithium at Therapeutic Serum Levels. PSYCHIAT CLIN PSYCH 2025; 35:81-87. [PMID: 40224945 PMCID: PMC11992939 DOI: 10.5152/pcp.2025.24964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/18/2024] [Indexed: 04/15/2025] Open
Abstract
Bipolar disorder is a complex mental disorder that often requires long-term medication management. Lithium carbonate is widely used to prevent and treat the recurrence of bipolar disorder. However, even with normal serum lithium levels, some rare but serious side effects may occur. This case report describes a 42-year-old female patient with bipolar disorder who experienced "electrical shock-like" convulsions after taking lithium carbonate sustained-release tablets, despite having normal serum lithium concentrations. The patient had a history of emotional instability for 27 years, and no obvious psychotic symptoms such as hallucinations or delusions were found upon psychiatric examination at admission. On the 33rd day of medication, the patient began to experience frequent rapid convulsions in the head, neck, and upper body. Considering the possibility of drug side effects, lithium carbonate was discontinued, and the convulsions subsequently subsided. Electroencephalogram (EEG) examination showed no abnormalities. After 10 days of treatment, the convulsions had essentially disappeared. This case reminds clinicians that even with normal serum lithium levels, toxic symptoms may occur, and close monitoring of the patient's clinical manifestations and serum lithium levels is essential. Additionally, poor diet and reduced sodium intake may increase the risk of lithium toxicity, so these factors should also be taken into consideration.
Collapse
Affiliation(s)
- Jinbo Chen
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Jun Zhu
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Hehua Bao
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Lijuan Tang
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Benhan Li
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Zixuan Chen
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Yanli Zhang
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Qiang Hu
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, China
| |
Collapse
|
8
|
Wu D, Qu S, Sun H, Zhou S, Qu X, Chen Y, Hu H, Li X. Unveiling the brain mechanism underlying depression: 12 Years of insights from bibliometric and visualization analysis. Brain Res Bull 2025; 222:111246. [PMID: 39947302 DOI: 10.1016/j.brainresbull.2025.111246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
Depression is a common but serious mental health illness affected human's physiology and psychology. In contemporary times, neurophysiological research on depression has emerged as a prominent area of investigation, yet there remains a paucity of review elucidating the central mechanisms of depression in the brain. Consequently, we undertook a bibliometric analysis and visualization assessment to underscore recent advancements in research pertaining to the neural underpinnings of depression. By employing these methods, we have collected articles spanning the period from 2013 to 2024, shedding light on the latest insights into the brain mechanisms associated with depression. Bibliometric analysis found 16327 research papers in the field of brain mechanism underlying depression, overall showing a sustained growth trend. Through meticulous analysis of collected data on institutions and countries, authors, co-cited literature, keywords, etc., this paper humbly aims to tentatively identify future research hotspots and frontiers, hoping to modestly contribute to and stimulate further scholarly progress in the field.
Collapse
Affiliation(s)
- Donghai Wu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang 310053, China; Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Siying Qu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang 310053, China
| | - Haiju Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310053, China
| | - Shuting Zhou
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang 310053, China; Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xinyuan Qu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang 310053, China
| | - Yutian Chen
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang 310053, China
| | - Hantong Hu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang 310053, China
| | - Xiaoyu Li
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang 310053, China; Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
9
|
Saghab Torbati M, Zandbagleh A, Daliri MR, Ahmadi A, Rostami R, Kazemi R. Explainable AI for Bipolar Disorder Diagnosis Using Hjorth Parameters. Diagnostics (Basel) 2025; 15:316. [PMID: 39941246 PMCID: PMC11817202 DOI: 10.3390/diagnostics15030316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Despite the prevalence and severity of bipolar disorder (BD), current diagnostic approaches remain largely subjective. This study presents an automatic diagnostic framework using electroencephalography (EEG)-derived Hjorth parameters (activity, mobility, and complexity), aiming to establish objective neurophysiological markers for BD detection and provide insights into its underlying neural mechanisms. Methods: Using resting-state eyes-closed EEG data collected from 20 BD patients and 20 healthy controls (HCs), we developed a novel diagnostic approach based on Hjorth parameters extracted across multiple frequency bands. We employed a rigorous leave-one-subject-out cross-validation strategy to ensure robust, subject-independent assessment, combined with explainable artificial intelligence (XAI) to identify the most discriminative neural features. Results: Our approach achieved remarkable classification accuracy (92.05%), with the activity Hjorth parameters from beta and gamma frequency bands emerging as the most discriminative features. XAI analysis revealed that anterior brain regions in these higher frequency bands contributed most significantly to BD detection, providing new insights into the neurophysiological markers of BD. Conclusions: This study demonstrates the exceptional diagnostic utility of Hjorth parameters, particularly in higher frequency ranges and anterior brain regions, for BD detection. Our findings not only establish a promising framework for automated BD diagnosis but also offer valuable insights into the neurophysiological basis of bipolar and related disorders. The robust performance and interpretability of our approach suggest its potential as a clinical tool for objective BD diagnosis.
Collapse
Affiliation(s)
- Mehrnaz Saghab Torbati
- Neuroscience and Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran; (M.S.T.); (A.Z.)
| | - Ahmad Zandbagleh
- Neuroscience and Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran; (M.S.T.); (A.Z.)
| | - Mohammad Reza Daliri
- Neuroscience and Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran; (M.S.T.); (A.Z.)
| | - Amirmasoud Ahmadi
- Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany;
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran 1445983861, Iran;
| | - Reza Kazemi
- Department of Entrepreneurship Development, Faculty of Entrepreneurship, University of Tehran, Farshi Moghadam (16 St.), North Kargar Ave., Tehran 1439813141, Iran;
| |
Collapse
|
10
|
Göteson A, Holmén-Larsson J, Celik H, Pelanis A, Sellgren CM, Sparding T, Pålsson E, Zetterberg H, Blennow K, Jonsson L, Gobom J, Landén M. Mapping the Cerebrospinal Fluid Proteome in Bipolar Disorder. Biol Psychiatry 2025:S0006-3223(25)00029-0. [PMID: 39827936 DOI: 10.1016/j.biopsych.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Bipolar disorder (BD) is a severe psychiatric condition with unclear etiology and no established biomarkers. Here, we aimed to characterize the cerebrospinal fluid (CSF) proteome in euthymic individuals with BD to identify potential protein biomarkers. METHODS We used nano-flow liquid chromatography coupled to high-resolution mass spectrometry to quantify over 2000 CSF proteins in 374 individuals from two independent clinical cohorts (n = 164 cases + 89 controls and 66 cases + 55 controls, respectively). A subset of the cases was followed longitudinally and reexamined after a median of 6.5 years. RESULTS Differential abundance analysis revealed 41 proteins with robust case-control association in both cohorts. These included lower levels of synaptic proteins (e.g., APP, CLSTN1, NPTX2, NRXN1) and axon guidance and cell adhesion molecules (e.g., NEO1, NCAM1, SEMA7A) and higher levels of blood-brain barrier integrity proteins (e.g., VTN, SERPIN3) and complement components (e.g., C1RL, C3, C5). The findings were consistently driven by the BD type 1 subtype. Comparing BD type 1 participants with control participants increased discoverability, revealing 86 replicated associations despite a loss of statistical power. Moreover, longitudinal analyses of coexpression modules revealed dynamic changes in the CSF proteome composition that correlated with clinical outcomes, including disease severity, future manic episodes, and symptom improvement. Finally, we conducted association analyses of CSF proteins with genetic risk loci for BD and schizophrenia. CONCLUSIONS This study represents the first large-scale untargeted profiling of the CSF proteome in BD, unveiling potential biomarkers and providing in vivo support for altered synaptic and brain connectivity processes, impaired neurovascular integrity, and complement activation in the pathology of BD.
Collapse
Affiliation(s)
- Andreas Göteson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Jessica Holmén-Larsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Hatice Celik
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Aurimantas Pelanis
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Region Stockholm, Sweden
| | - Timea Sparding
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Pålsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, Dementia Research Centre, University College London Institute of Neurology, London, United Kingdom; UK Dementia Research Institute, University College London, London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute of Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of University of Science and Technology, Hefei, China
| | - Lina Jonsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
GENCHEVA TM, VALKOV BV, KANDILAROVA SS, STOYANOV DS. Psychiatric comorbidities in patients with anorexia nervosa: a narrative selective review. MINERVA PSYCHIATRY 2025; 65. [DOI: 10.23736/s2724-6612.24.02533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
|
12
|
He J, Liu F, Xu P, Xu T, Yu H, Wu B, Wang H, Chen J, Zhang K, Zhang J, Meng K, Yan X, Yang Q, Zhang X, Sun D, Chen X. Aerobic Exercise Improves the Overall Outcome of Type 2 Diabetes Mellitus Among People With Mental Disorders. Depress Anxiety 2024; 2024:6651804. [PMID: 40226688 PMCID: PMC11918971 DOI: 10.1155/da/6651804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/09/2024] [Indexed: 04/15/2025] Open
Abstract
The escalating global prevalence of type 2 diabetes mellitus (T2DM) and mental disorder (MD) including schizophrenia, bipolar disorder, major depressive disorder, and anxiety highlights the urgency for comprehensive therapeutic strategies. Aerobic exercise (AE) is a viable adjunct therapy, providing significant benefits for individuals dealing with both T2DM and MD. This review consolidates evidence on AE's role in alleviating the physiological and psychological effects of these comorbid conditions. It delves into the pathophysiological connections between T2DM and various MD, including depression, schizophrenia, anxiety, and bipolar disorder-emphasizing their reciprocal exacerbation. Key neurophysiological mechanisms through which AE confers benefits are explored, including neuroinflammation modulation, brain structure and neuroplasticity enhancement, growth factor expression regulation, and hypothalamic-pituitary-adrenal (HPA)/microbiota-gut-brain (MGB) axis normalization. Clinical results indicate that AE significantly improves both metabolic and psychological parameters in patients with T2DM and MD, providing a substantial argument for integrating AE into comprehensive treatment plans. Future research should aim to establish detailed, personalized exercise prescriptions and explore the long-term benefits of AE in this population. This review underscores the potential of AE to complement existing therapeutic modalities and enhance the management of patients with T2DM and MD.
Collapse
Affiliation(s)
- Jiaxuan He
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Fan Liu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Peiye Xu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Ting Xu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Baihui Wu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Jia Chen
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611100, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Junbei Zhang
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Kaikai Meng
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Da Sun
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Xia Chen
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| |
Collapse
|
13
|
Wang R, Wang C, Zhang G, Mundinano IC, Zheng G, Xiao Q, Zhong Y. Causal mechanisms of quadruple networks in pediatric bipolar disorder. Psychol Med 2024; 54:1-12. [PMID: 39679552 PMCID: PMC11769912 DOI: 10.1017/s0033291724002885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/12/2024] [Accepted: 10/22/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Pediatric bipolar disorder (PBD) is characterized by abnormal functional connectivity among distributed brain regions. Increasing evidence suggests a role for the limbic network (LN) and the triple network model in the pathophysiology of bipolar disorder (BD). However, the specific relationship between the LN and the triple network in PBD remains unclear. This study aimed to investigate the aberrant causal connections among these four core networks in PBD. METHOD Resting-state functional MRI scans from 92 PBD patients and 40 healthy controls (HCs) were analyzed. Dynamic Causal Modeling (DCM) was employed to assess effective connectivity (EC) among the four core networks. Parametric empirical Bayes (PEB) analysis was conducted to identify ECs associated with group differences, as well as depression and mania severity. Leave-one-out cross-validation (LOOCV) was used to test predictive accuracy. RESULT Compared to HCs, PBD patients exhibited primarily excitatory bottom-up connections from the LN to the salience network (SN) and bidirectional excitatory connections between the default mode network (DMN) and SN. In PBD, top-down connectivity from the triple network to the LN was excitatory in individuals with higher depression severity but inhibitory in those with higher mania severity. LOOCV identified dysconnectivity circuits involving the caudate and hippocampus as being associated with mania and depression severity, respectively. CONCLUSIONS Disrupted bottom-up connections from the LN to the triple network distinguish PBD patients from healthy controls, while top-down disruptions from the triple network to LN relate to mood state differences. These findings offer insight into the neural mechanisms of PBD.
Collapse
Affiliation(s)
- Rong Wang
- School of Psychology, Nanjing Normal University, Nanjing 210097, China
| | - Chun Wang
- Department of Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Gui Zhang
- School of Psychology, Nanjing Normal University, Nanjing 210097, China
| | - Inaki-Carril Mundinano
- Cognitive Neuroscience Laboratory, Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Gang Zheng
- Monash Biomedical Imaging, Monash University, Victoria 3800, Australia
| | - Qian Xiao
- Mental Health Centre of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing 210097, China
| |
Collapse
|
14
|
Dwyer DS. Converging evidence for functional connections between the lithium response and PI3K-Akt signaling. Transl Psychiatry 2024; 14:458. [PMID: 39487122 PMCID: PMC11530542 DOI: 10.1038/s41398-024-03160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024] Open
Affiliation(s)
- Donard S Dwyer
- Departments of Psychiatry and Behavioral Medicine, and Pharmacology, Toxicology and Neuroscience, LSU Health Shreveport, Shreveport, LA, USA.
| |
Collapse
|
15
|
Conger C, Cottler LB. Health concerns, access to care, and trust in research and researchers among community members with bipolar disorder. DISCOVER MENTAL HEALTH 2024; 4:34. [PMID: 39254896 PMCID: PMC11387570 DOI: 10.1007/s44192-024-00091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Data are needed on differences in community-dwelling populations with bipolar disorder (BP) regarding trust in research and access to care. We characterized community members by lifetime history of bipolar disorder. We hypothesized that those with BP would have less trust in research, visit a health provider less, and participate less in research than those without BP. We also hypothesized that those with BP would be more likely to have a history of marijuana (MJ) use. METHODS A cross-sectional design was used for this analysis. The study population consisted of 12,489 members (78.0%) from the HealthStreet community engagement program who were interviewed by a Community Health Worker about health history and demographics. RESULTS Among the sample, the rate of BP was 10.6% (n = 1326). Those reporting BP were more likely than those who did not (n = 11,163), to report muscle, bone, and mental health problems, to be younger, female, to have visited the doctor in the past 12 months, to be interested in participating in research, and be current MJ users. Trust did not differ between BP groups. CONCLUSIONS Our analysis found that persons with BP had higher access to care and more interest in research, thus our primary hypothesis was rejected. Our secondary hypothesis, that persons with BP were more likely to have a history of MJ use was upheld. These findings are important because they address a crucial gap in the literature surrounding BP and lay the groundwork for future community-level research.
Collapse
Affiliation(s)
- Christian Conger
- Department of Epidemiology, Colleges of Public Health and Health Professions and Medicine, University of Florida, Gainesville, FL, USA.
| | - Linda B Cottler
- Department of Epidemiology, Colleges of Public Health and Health Professions and Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Chaves-Filho A, Eyres C, Blöbaum L, Landwehr A, Tremblay MÈ. The emerging neuroimmune hypothesis of bipolar disorder: An updated overview of neuroimmune and microglial findings. J Neurochem 2024; 168:1780-1816. [PMID: 38504593 DOI: 10.1111/jnc.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Bipolar disorder (BD) is a severe and multifactorial disease, with onset usually in young adulthood, which follows a progressive course throughout life. Replicated epidemiological studies have suggested inflammatory mechanisms and neuroimmune risk factors as primary contributors to the onset and development of BD. While not all patients display overt markers of inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease and seems to be mood phase dependent, likely explaining the heterogeneity of findings observed in this population. As the brain's immune cells, microglia orchestrate the brain's immune response and play a critical role in maintaining the brain's health across the lifespan. Microglia are also highly sensitive to environmental changes and respond to physiological and pathological events by adapting their functions, structure, and molecular expression. Recently, it has been highlighted that instead of a single population of cells, microglia comprise a heterogeneous community with specialized states adjusted according to the local molecular cues and intercellular interactions. Early evidence has highlighted the contribution of microglia to BD neuropathology, notably for severe outcomes, such as suicidality. However, the roles and diversity of microglial states in this disease are still largely undermined. This review brings an updated overview of current literature on the contribution of neuroimmune risk factors for the onset and progression of BD, the most prominent neuroimmune abnormalities (including biomarker, neuroimaging, ex vivo studies) and the most recent findings of microglial involvement in BD neuropathology. Combining these different shreds of evidence, we aim to propose a unifying hypothesis for BD pathophysiology centered on neuroimmune abnormalities and microglia. Also, we highlight the urgent need to apply novel multi-system biology approaches to characterize the diversity of microglial states and functions involved in this enigmatic disorder, which can open bright perspectives for novel biomarkers and therapeutic discoveries.
Collapse
Affiliation(s)
- Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
| | - Capri Eyres
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leonie Blöbaum
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Antonia Landwehr
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Molecular Medicine, Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
17
|
Wang M, Wang S, Yuan G, Gao M, Zhao X, Chu Z, Gao D. Causal role of immune cells in bipolar disorder: a Mendelian randomization study. Front Psychiatry 2024; 15:1411280. [PMID: 39220183 PMCID: PMC11362081 DOI: 10.3389/fpsyt.2024.1411280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background The understanding of the immunological mechanisms underlying bipolar disorder (BD) has enhanced in recent years due to the extensive use of high-density genetic markers for genotyping and advancements in genome-wide association studies (GWAS). However, studies on the relationship between immune cells and the risk of BD remain limited, necessitating further investigation. Methods Bidirectional two-sample Mendelian Randomization (MR) analysis was employed to investigate the causal association between immune cell morphologies and bipolar disorder. Immune cell traits were collected from a research cohort in Sardinia, whereas the GWAS summary statistics for BD were obtained from the Psychiatric Genomics Consortium. Sensitivity analyses were conducted, and the combination of MR-Egger and MR-Presso was used to assess horizontal pleiotropy. Cochran's Q test was employed to evaluate heterogeneity, and the results were adjusted for false discovery rate (FDR). Results The study identified six immune cell phenotypes significantly associated with BD incidence (P< 0.01). These phenotypes include IgD- CD27- %lymphocyte, CD33br HLA DR+ CD14- AC, CD8 on CD28+ CD45RA+ CD8br, CD33br HLA DR+ AC, CD14 on CD14+ CD16+ monocyte, and HVEM on CD45RA- CD4+. After adjusting the FDR to 0.2, two immune cell phenotypes remained statistically significant: IgD-CD27-% lymphocyte (OR=1.099, 95% CI: 1.051-1.149, P = 3.51E-05, FDR=0.026) and CD33br HLA DR+ CD14-AC (OR=0.981, 95% CI: 0.971-0.991, P = 2.17E-04, FDR=0.079). In the reverse MR analysis, BD significantly impacted the phenotypes of four monocytes (P< 0.01), including CD64 on CD14+ CD16+ monocyte, CD64 on monocyte, CX3CR1 on CD14- CD16-, CD64 on CD14+ CD16- monocyte. However, after applying the FDR correction (FDR < 0.2), no statistically significant results were observed. Conclusions This MR investigation reveals associations between immune cell phenotypes, bipolar disorder, and genetics, providing novel perspectives on prospective therapeutic targets for bipolar disorder.
Collapse
Affiliation(s)
- Mengxuan Wang
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuo Wang
- Department of Intelligent and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoshan Yuan
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingzhou Gao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiyan Zhao
- Department of Foreign Studies, China University of Petroleum (East China), Qingdao, China
| | - Zhenhan Chu
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongmei Gao
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
18
|
Wu YK, Zhu LL, Li JT, Li Q, Dai YR, Li K, Mitchell PB, Si TM, Su YA. Striatal Functional Alterations Link to Distinct Symptomatology Across Mood States in Bipolar Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:777-785. [PMID: 38703823 DOI: 10.1016/j.bpsc.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND As a central hub in cognitive and emotional brain circuits, the striatum is considered likely to be integrally involved in the psychopathology of bipolar disorder (BD). However, it remains unclear how alterations in striatal function contribute to distinct symptomatology of BD during different mood states. METHODS Behavioral assessment (i.e., emotional symptoms and cognitive performance) and neuroimaging data were collected from 125 participants comprising 31 (hypo)manic, 31 depressive, and 31 euthymic patients with BD, and 32 healthy control participants. We compared the functional connectivity (FC) of striatal subregions across BD mood states with healthy control participants and then used a multivariate data-driven approach to explore dimensional associations between striatal connectivity and behavioral performance. Finally, we compared the FC and behavioral composite scores, which reflect the individual weighted representation of the associations, among different mood states. RESULTS Patients in all mood states exhibited increased FC between the bilateral ventral rostral putamen and ventrolateral thalamus. Bipolar (hypo)mania uniquely exhibited increased ventral rostral putamen connectivity and superior ventral striatum connectivity. One latent component was identified, whereby increased FCs of striatal subregions were associated with distinct psychopathological symptomatology (more manic symptoms, elevated positive mood, less depressive symptoms, and worse cognitive performance). Patients with bipolar (hypo)mania had the highest FC and behavioral composite scores while bipolar patients with depression had the lowest scores. CONCLUSIONS Our data demonstrated both trait features of BD and state features specific to bipolar (hypo)mania. The findings underscored the fundamental role of the striatum in the pathophysiological processes underlying specific symptomatology across all mood states.
Collapse
Affiliation(s)
- Yan-Kun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Lin-Lin Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qian Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - You-Ran Dai
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ke Li
- PLA Strategic support Force Characteristic Medical Center, Beijing, China
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, New South Wales, Australia; Black Dog Institute, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| |
Collapse
|
19
|
Anaya-Prado R, Cárdenas-Fregoso AP, Reyes-Perez AM, Ortiz-Hernandez DM, Quijano-Ortiz M, Delgado-Martinez MV, Pelayo-Romo AS, Anaya-Fernandez R, Anaya-Fernandez MM, Azcona-Ramirez CC, Garcia-Ramirez IF, Guerrero-Palomera MA, Gonzalez-Martinez D, Guerrero-Palomera CS, Paredes-Paredes K, Garcia-Perez C. The Biomolecular Basis of Gut Microbiome on Neurological Diseases. OBM NEUROBIOLOGY 2024; 08:1-40. [DOI: 10.21926/obm.neurobiol.2403232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The human gastrointestinal (GI) tract harbors many microorganisms, including viruses, protozoa, archaea, fungi, and bacteria. Altogether, these microbes constitute what we know as the gut microbiome (GM). These commensal communities have important implications for human health. They influence physiological processes through different mechanisms, including synthesizing neurotransmitters, regulating enzymatic pathways, and releasing molecules responsible for different signal pathways. The interaction between GM and brain function has been associated with the development and pathogenesis of neuropsychiatric diseases. This review discusses current studies targeting the regulation and modulation of GM in nerve, neuroendocrine, and immune pathways. Thus, we analyze current evidence on transcription, changes in composition, and specific interactions between the gut and brain from a biomolecular perspective. Special attention is paid to mood disorders and neurodegenerative diseases.
Collapse
|
20
|
Li C, Tian H, Li R, Jia F, Wang L, Ma X, Yang L, Zhang Q, Zhang Y, Yao K, Zhuo C. Molecular mechanisms of quetiapine bidirectional regulation of bipolar depression and mania based on network pharmacology and molecular docking: Evidence from computational biology. J Affect Disord 2024; 355:528-539. [PMID: 38518857 DOI: 10.1016/j.jad.2024.03.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Quetiapine monotherapy is recommended as the first-line option for acute mania and acute bipolar depression. However, the mechanism of action of quetiapine is unclear. Network pharmacology and molecular docking were employed to determine the molecular mechanisms of quetiapine bidirectional regulation of bipolar depression and mania. METHODS Putative target genes for quetiapine were collected from the GeneCard, SwissTargetPrediction, and DrugBank databases. Targets for bipolar depression and bipolar mania were identified from the DisGeNET and GeneCards databases. A protein-protein interaction (PPI) network was generated using the String database and imported into Cytoscape. DAVID and the Bioinformatics platform were employed to perform the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the top 15 core targets. The drug-pathway-target-disease network was constructed using Cytoscape. Finally, molecular docking was performed to evaluate the interactions between quetiapine and potential targets. RESULTS Targets for quetiapine actions against bipolar depression (126 targets) and bipolar mania (81 targets) were identified. Based on PPI and KEGG pathway analyses, quetiapine may affect bipolar depression by targeting the MAPK and PI3K/AKT insulin signaling pathways via BDNF, INS, EGFR, IGF1, and NGF, and it may affect bipolar mania by targeting the neuroactive ligand-receptor interaction signaling pathway via HTR1A, HTR1B, HTR2A, DRD2, and GRIN2B. Molecular docking revealed good binding affinity between quetiapine and potential targets. LIMITATIONS Pharmacological experiments should be conducted to verify and further explore these results. CONCLUSIONS Our findings suggest that quetiapine affects bipolar depression and bipolar mania through distinct biological core targets, and thus through different mechanisms. Furthermore, our results provide a theoretical basis for the clinical use of quetiapine and possible directions for new drug development.
Collapse
Affiliation(s)
- Chao Li
- Computational Biology Centre (CBC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin 300222, China; Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Hongjun Tian
- Animal Imaging Center (AIC) of Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China
| | - Ranli Li
- Computational Biology Centre (CBC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin 300222, China
| | - Feng Jia
- Computational Biology Centre (CBC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin 300222, China
| | - Lina Wang
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Xiaoyan Ma
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Lei Yang
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Qiuyu Zhang
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Ying Zhang
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Kaifang Yao
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Chuanjun Zhuo
- Computational Biology Centre (CBC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin 300222, China; Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin 300222, China.
| |
Collapse
|
21
|
Fernández-Pereira C, Penedo MA, Alonso-Núñez A, Rivera-Baltanás T, Viéitez I, Prieto-González JM, Vilariño-Vilariño MI, Olivares JM, Ortolano S, Agís-Balboa RC. Plasma IGFBP-3 and IGFBP-5 levels are decreased during acute manic episodes in bipolar disorder patients. Front Pharmacol 2024; 15:1384198. [PMID: 38720780 PMCID: PMC11076695 DOI: 10.3389/fphar.2024.1384198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction: Bipolar disorder (BD) is a recurrent and disabling psychiatric disorder related to low-grade peripheral inflammation and altered levels of the members of the insulin-like growth factor (IGF) family. The aim of this study was to evaluate the plasma levels of IGF-2, insulin-like growth factor-binding protein 1 (IGFBP-1), IGFBP-3, IGFBP-5, IGFBP-7, and inflammatory markers such as tumor necrosis factor α (TNF-α), monocyte chemoattractant protein 1 (MCP-1), and macrophage inflammatory protein 1β (MIP-1β). Methods: We used the Young Mania Rating Scale (YMRS) to determine the severity of the symptomatology, while proteins were measured by enzyme-linked immunosorbent assay (ELISA). We included 20 patients with BD who suffered a manic episode and 20 controls. Some BD patients (n = 10) were evaluated after a period (17 ± 8 days) of pharmacological treatment. Results: No statistical difference was found in IGF-2, IGFBP-1, IGFBP-7, TNF-α, and MIP-1β levels. However, IGFBP-3 and IGFBP-5 levels were found to be statistically decreased in BD patients. Conversely, the MCP-1 level was significantly increased in BD patients, but their levels were normalized after treatment. Intriguingly, only IGFBP-1 levels were significantly decreased after treatment. No significant correlation was found between the YMRS and any of the proteins studied either before or after treatment or between IGF proteins and inflammatory markers. Discussion: To some extent, IGFBP-3 and IGFBP-5 might be further explored as potential indicators of treatment responsiveness or diagnosis biomarkers in BD.
Collapse
Affiliation(s)
- Carlos Fernández-Pereira
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, Vigo, Spain
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, Santiago de Compostela, Spain
- Rare Disease and Pediatric Medicine Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Servizo Galego de Saúde-Universidade de Vigo (SERGAS-UVIGO), Vigo, Spain
- Translational Research in Neurological Diseases Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, Santiago de Compostela, Spain
| | - Maria Aránzazu Penedo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, Vigo, Spain
| | - Adrián Alonso-Núñez
- Rare Disease and Pediatric Medicine Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Servizo Galego de Saúde-Universidade de Vigo (SERGAS-UVIGO), Vigo, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, Vigo, Spain
| | - Irene Viéitez
- Rare Disease and Pediatric Medicine Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Servizo Galego de Saúde-Universidade de Vigo (SERGAS-UVIGO), Vigo, Spain
| | - José María Prieto-González
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, Santiago de Compostela, Spain
- Translational Research in Neurological Diseases Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, Santiago de Compostela, Spain
| | - María Isabel Vilariño-Vilariño
- Physiotherapy, Medicine and Biomedical Sciences Group, Faculty of Health Sciences, University of A Coruña, A Coruña, Spain
| | - José Manuel Olivares
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, Vigo, Spain
| | - Saida Ortolano
- Rare Disease and Pediatric Medicine Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Servizo Galego de Saúde-Universidade de Vigo (SERGAS-UVIGO), Vigo, Spain
| | - Roberto Carlos Agís-Balboa
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, Santiago de Compostela, Spain
- Translational Research in Neurological Diseases Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, Santiago de Compostela, Spain
| |
Collapse
|
22
|
Ye ZF, Hong YH, Yang JL, Tan MQ, Xie JM, Xu ZC. COVID-19 pandemic amplified mortality rates among adolescents with bipolar disorder through family-related factors. World J Clin Cases 2024; 12:1929-1935. [PMID: 38660544 PMCID: PMC11036512 DOI: 10.12998/wjcc.v12.i11.1929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Recently, a growing number of adolescents have been afflicted with mental disorders, with annual morbidity rates on the rise. This trend has been exacerbated by the global coronavirus disease 2019 (COVID-19) pandemic, leading to a surge in suicide and self-harm rates among this demographic. AIM To investigate the impact of the COVID-19 pandemic on adolescent bipolar disorder (BD), along with the underlying factors contributing to heightened rates of suicide and self-harm among adolescents. METHODS A comprehensive statistical analysis was conducted utilizing clinical interviews and self-reports obtained from patients or their guardians. Diagnostic criteria for BDs were based on the Diagnostic and statistical manual of mental disorders, international classification of diseases-11, and the National institute of mental health research domain criteria. Statistical analyses were performed using SPSS 26.0 software, with significance set at P < 0.05. RESULTS A cohort of 171 adolescents diagnosed with BD between January 1, 2018, and December 31, 2022, was included in the analysis. The gender distribution was 2.8:1 (female to male), with ages ranging from 11 to 18 years old. Major factors contributing to adolescent BDs included familial influences, academic stress, genetic predisposition and exposure to school-related violence. Notably, a significant increase in suicide attempts and self-harm incidents was observed among adolescents with BD during the COVID-19 pandemic. Statistical analysis indicated that the pandemic exacerbated familial discord and heightened academic stress, thereby amplifying the prevalence of suicidal behavior and self-harm among adolescents. CONCLUSION The COVID-19 pandemic has exacerbated familial tensions and intensified the incidence of suicide and self-harm among adolescents diagnosed with BD. This study underscores the urgent need for societal, familial and educational support systems to prioritize the well-being of adolescents and offers valuable insights and guidelines for the prevention, diagnosis and treatment of adolescent BDs.
Collapse
Affiliation(s)
- Zhuo-Fan Ye
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yi-Han Hong
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Huangshi 435003, Hubei Province, China
| | - Jian-Lin Yang
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Huangshi 435003, Hubei Province, China
| | - Meng-Qing Tan
- Psychological Children's Ward, Mental Health Center of Huangshi, Huangshi 435111, Hubei Province, China
| | - Ju-Min Xie
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Huangshi 435003, Hubei Province, China
| | - Zu-Cai Xu
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| |
Collapse
|
23
|
Samimi Ardestani SM, Amin-Esmaeili M, Seif P, Gudarzi SS, Rafiefarahzadi M, Semnani Y. Managing the Dual Diagnosis Dilemma of Bipolar Disorder and Substance Abuse in Clinical Settings. J Dual Diagn 2024; 20:178-187. [PMID: 38502951 DOI: 10.1080/15504263.2024.2328600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
OBJECTIVE Drug addiction is a chronic mental disorder that significantly impacts all aspects of an individual's life, and substance use disorder in patients with bipolar disorder. The objective of this study is to assess the frequency of substance abuse among patients with bipolar spectrum disorder. METHOD This cross-sectional study evaluated the frequency of bipolar spectrum disorder in patients taking methadone through various screening measures, including Mini Mental State Examination (MMSE), DSM IV criteria, Mood Disorders Questionnaire (MDQ), Goodwin and Ghaemi's criteria, and Akiskal classification for bipolar disorders. RESULTS Out of the total 197 participants in the study, 77 were identified as individuals engaging in poly-substance abuse. The investigation assessed the frequency of bipolar spectrum disorder based on various diagnostic criteria: 24% according to DSM-IV criteria, 29.9% using MDQ, 29.9% based on Ghaemi and Goodwin's criteria, and the highest rate at 48.2% when applying Akiskal's classification. CONCLUSIONS This study highlights the high frequency of bipolar disorder among individuals with substance use disorder, especially those with concomitant depression. Therefore, it is crucial to pay special attention to individuals with substance use disorder with co-existing bipolar disorder.
Collapse
Affiliation(s)
- Seyed Mehdi Samimi Ardestani
- Department of Psychiatry, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Amin-Esmaeili
- Associate Professor of Psychiatry, Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Seif
- Postdoc Research Fellowship, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
| | | | | | - Yousef Semnani
- Department of Psychiatry, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
King JD, Elliott T, Pitman A. Steroid-induced mania in a patient with previously well-controlled organic bipolar 1-like affective disorder secondary to acquired brain injury: case report and literature review. DISCOVER MENTAL HEALTH 2024; 4:8. [PMID: 38453827 PMCID: PMC10920485 DOI: 10.1007/s44192-024-00061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Steroid-induced neuropsychiatric sequelae are common, and pose significant risks to people usually receiving glucocorticoids in the context of physical illness. Steroid-induced mania and hypomania are the most common of the acute complications, yet despite great progress in understandings in neurophysiology there are no recent studies which review the factors which might predict who will experience this severe complication, nor are there consensus guidelines on management. We report the unusual case of a woman in her 50s admitted to a psychiatric unit with steroid-induced mania despite compliance with two mood stabilisers, several days after the administration of a Dexamethasone and Docetaxel chemotherapy regime adjunctive to lumpectomy for breast cancer. She had previously been diagnosed with an organic affective disorder (with classical bipolar 1 pattern) following severe ventriculitis related to ventricular drain insertion for obstructive hydrocephalus secondary to a colloid cyst. She had no psychiatric illness before this brain injury, but has a maternal history of idiopathic bipolar 1 affective disorder. Her episode of steroid-induced mania resolved following use of sedative medications, continuation of her existing mood stabilisers, and reductions of the steroid dosing in collaboration with her oncology team, which also protected her from further manic relapses during continued chemotherapy. Established mental illness, a family history, and acquired brain injury may reflect risk factors for steroid-induced mania through currently unclear pathways. Future epidemiological studies could better confirm these observations, and basic neuroscience may look to further explore the role of extrinsic glucocorticoids in the pathophysiology of affective disorders.
Collapse
Affiliation(s)
- Jacob D King
- Division of Psychiatry, Imperial College London, London, UK.
- Central and North West London NHS Foundation Trust, London, UK.
- Camden and Islington NHS Foundation Trust, London, UK.
| | - Thomas Elliott
- Camden and Islington NHS Foundation Trust, London, UK
- East London Foundation Trust, London, UK
| | - Alexandra Pitman
- Camden and Islington NHS Foundation Trust, London, UK
- Division of Psychiatry, University College London, London, UK
| |
Collapse
|
25
|
Wu YK, Su YA, Li L, Zhu LL, Li K, Li JT, Mitchell PB, Yan CG, Si TM. Brain functional changes across mood states in bipolar disorder: from a large-scale network perspective. Psychol Med 2024; 54:763-774. [PMID: 38084586 DOI: 10.1017/s0033291723002453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
BACKGROUND Exploring the neural basis related to different mood states is a critical issue for understanding the pathophysiology underlying mood switching in bipolar disorder (BD), but research has been scarce and inconsistent. METHODS Resting-state functional magnetic resonance imaging data were acquired from 162 patients with BD: 33 (hypo)manic, 64 euthymic, and 65 depressive, and 80 healthy controls (HCs). The differences of large-scale brain network functional connectivity (FC) between the four groups were compared and correlated with clinical characteristics. To validate the generalizability of our findings, we recruited a small longitudinal independent sample of BD patients (n = 11). In addition, we examined topological nodal properties across four groups as exploratory analysis. RESULTS A specific strengthened pattern of network FC, predominantly involving the default mode network (DMN), was observed in (hypo)manic patients when compared with HCs and bipolar patients in other mood states. Longitudinal observation revealed an increase in several network FCs in patients during (hypo)manic episode. Both samples evidenced an increase in the FC between the DMN and ventral attention network, and between the DMN and limbic network (LN) related to (hypo)mania. The altered network connections were correlated with mania severity and positive affect. Bipolar depressive patients exhibited decreased FC within the LN compared with HCs. The exploratory analysis also revealed an increase in degree in (hypo)manic patients. CONCLUSIONS Our findings identify a distributed pattern of large-scale network disturbances in the unique context of (hypo)mania and thus provide new evidence for our understanding of the neural mechanism of BD.
Collapse
Affiliation(s)
- Yan-Kun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Le Li
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Center for Cognitive Science of Language, Beijing Language and Culture University, Beijing, China
| | - Lin-Lin Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ke Li
- PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, Australia
- Black Dog Institute, Prince of Wales Hospital, Sydney, Australia
| | - Chao-Gan Yan
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
26
|
Chen M, Wang Z, Xu H, Li W, Teng P, Ma L. Genetics of mood instability and risk of cardiovascular diseases: A univariable and multivariable Mendelian randomization study. J Affect Disord 2024; 347:406-413. [PMID: 37992774 DOI: 10.1016/j.jad.2023.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are significant contributors to global disability and mortality. In addition to traditional cardiovascular risk factors, emerging evidence has suggested that mental health plays a critical role as a risk factor for CVDs. The present study aimed to determine the associations between mood instability and CVDs using Mendelian randomization (MR) analysis. METHODS As instrumental variables, we used 62 independent single-nucleotide polymorphisms associated with mood instability at the genome-wide significance threshold in the UK Biobank. Summary-level data for seven CVDs were obtained from the publicly available genome-wide association studies. The estimates were pooled by using a random-effects inverse-variance weighted method. The results were further validated in sensitivity analysis where different MR methods were compared. RESULTS After correcting for multiple testing, our analysis revealed that genetic liability to mood instability was associated with increased odds of six cardiovascular diseases, including deep vein thrombosis (odds ratio (OR) 1.21; confidence interval (CI) 1.03-1.42), pulmonary embolism (OR 1.42; 95 % CI 1.09-1.85), heart failure (OR 1.20; 95 % CI 1.09-1.32), arterial hypertension (OR 1.22; 95 % CI 1.11-1.34), myocardial infarction (OR 1.25; 95 % CI 1.11-1.40), and coronary artery disease (OR 1.25; 95 % CI 1.13-1.39). Further, the genetic liability to mood instability was associated with HDL cholesterol, triglycerides, body mass index, smoking, and depression. In multivariable MR models, the association between genetic liability to mood instability and CVDs remained independent from those cardiovascular risk factors. CONCLUSION The present MR study suggests potential causal associations of genetic liability to mood instability with increased risk of a broad range of CVDs.
Collapse
Affiliation(s)
- Miao Chen
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Wang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hongfei Xu
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weidong Li
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Teng
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Ma
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
27
|
Meng J, Cai Y, Yao J, Yan H. Bidirectional causal relationship between psychiatric disorders and osteoarthritis: A univariate and multivariate Mendelian randomization study. Brain Behav 2024; 14:e3429. [PMID: 38361326 PMCID: PMC10869882 DOI: 10.1002/brb3.3429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/11/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Observational studies have shown associations between psychiatric disorders and osteoarthritis (OA). However, the causal impact of different psychiatric disorder types on specific sites of osteoarthritis remains unclear. This study aimed to comprehensively understand the potential causal associations between psychiatric disorders and osteoarthritis using Mendelian randomization (MR) analysis. METHODS We collected data from genome-wide association studies of knee osteoarthritis (KOA) (n = 403,124), hip osteoarthritis (HOA) (n = 393,873), osteoarthritis of the knee or hip (KHOA) (n = 417,596), as well as three psychiatric disorders: bipolar disorder (n = 41,917), major depressive disorder (n = 170,756), and schizophrenia (n = 76,755) among European populations. We applied bidirectional univariate and multivariate MR analyses, including inverse variance weighted, Mendelian randomization-Egger, weighted median, simple mode, and weighted mode. We considered p < .05 as a criterion for identifying potential evidence of association. Bonferroni correction was used for multiple tests. RESULTS Our univariate MR analysis results demonstrated that bipolar disorder is a protective factor for KOA (OR = 0.90, 95% CI = 0.83 to 0.97, p = 0.0048) and may also be protective for KHOA (p = 0.02). Conversely, major depression has a positive causal effect on both KOA (OR = 1.27; 95% CI = 1.08 to 1.49; p = 0.0036) and KHOA (OR = 1.24; 95% CI = 1.12 to 1.37; p = 3.62×10-05 ). Furthermore, our analysis suggested that KHOA may be a risk factor for major depression (OR = 1.06; 95% CI = 1.00 to 1.12; p = 0.0469) in reverse MR. After adjusting smoking (OR = 1.46; 95% CI = 1.19 to 1.65; p = 0.0032) and body mass index (OR = 1.44; 95% CI = 1.09 to 1.81; p = 8.56×10-04 ), the casual association between major depression and KHOA remained. CONCLUSION Our study indicates that major depression is a great risk factor for KHOA, increasing the likelihood of their occurrence. However, further in-depth studies will be required to validate these results and elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jinzhi Meng
- Bone and Joint SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Youran Cai
- Department of OphthalmologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jun Yao
- Bone and Joint SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Haiwei Yan
- Department of Sports MedicineThe Fourth Affiliated Hospital of Guangxi Medical UniversityLiuzhouChina
| |
Collapse
|
28
|
Chen Y, Guan W, Wang ML, Lin XY. PI3K-AKT/mTOR Signaling in Psychiatric Disorders: A Valuable Target to Stimulate or Suppress? Int J Neuropsychopharmacol 2024; 27:pyae010. [PMID: 38365306 PMCID: PMC10888523 DOI: 10.1093/ijnp/pyae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Economic development and increased stress have considerably increased the prevalence of psychiatric disorders in recent years, which rank as some of the most prevalent diseases globally. Several factors, including chronic social stress, genetic inheritance, and autogenous diseases, lead to the development and progression of psychiatric disorders. Clinical treatments for psychiatric disorders include psychotherapy, chemotherapy, and electric shock therapy. Although various achievements have been made researching psychiatric disorders, the pathogenesis of these diseases has not been fully understood yet, and serious adverse effects and resistance to antipsychotics are major obstacles to treating patients with psychiatric disorders. Recent studies have shown that the mammalian target of rapamycin (mTOR) is a central signaling hub that functions in nerve growth, synapse formation, and plasticity. The PI3K-AKT/mTOR pathway is a critical target for mediating the rapid antidepressant effects of these pharmacological agents in clinical and preclinical research. Abnormal PI3K-AKT/mTOR signaling is closely associated with the pathogenesis of several neurodevelopmental disorders. In this review, we focused on the role of mTOR signaling and the related aberrant neurogenesis in psychiatric disorders. Elucidating the neurobiology of the PI3K-AKT/mTOR signaling pathway in psychiatric disorders and its actions in response to antidepressants will help us better understand brain development and quickly identify new therapeutic targets for the treatment of these mental illnesses.
Collapse
Affiliation(s)
- Yan Chen
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China
| | - Mei-Lan Wang
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Xiao-Yun Lin
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
29
|
Squarcina L, Lucini Paioni S, Bellani M, Rossetti MG, Houenou J, Polosan M, Phillips ML, Wessa M, Brambilla P. White matter integrity in bipolar disorder investigated with diffusion tensor magnetic resonance imaging and fractal geometry. J Affect Disord 2024; 345:200-207. [PMID: 37863367 DOI: 10.1016/j.jad.2023.10.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/14/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Growing evidence suggests the presence of white matter (WM) alterations in bipolar disorder (BD). In this study we aimed to investigate the state of WM structures, in terms of tissue integrity and morphological complexity, in BD patients compared to healthy controls (HC), in an attempt to better elucidate the microstructural changes associated with BD. METHODS We collected a dataset of 399 Diffusion Tensor Magnetic Resonance Imaging (167 BD and 232 healthy controls) images, acquired at five different sites, which was processed with Tract-Based Spatial Statistics (TBSS) and fractal analysis. RESULTS The TBSS analysis demonstrated significantly lower FA values in the BD group. Diffusion abnormalities were primarily located in the temporo-parietal network. The Fractal Dimension (FD) analysis did not reveal consistent significant differences in the morphological complexity of WM structures between the groups. When the FD values of patients were considered individually, it is possible to notice some localized significant deviations from the healthy population. LIMITATIONS DTI sequences have not been harmonized before acquisition, samples' sizes are heterogeneous. CONCLUSIONS This study, by applying both TBSS and FD analyses, allows to evaluate diffusion and structural alterations of WM at the same time. The evaluation of WM integrity from these two different perspectives could be useful to better understand the pathophysiological and morphological changes underpinning bipolar disorder.
Collapse
Affiliation(s)
- Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Susanna Lucini Paioni
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Marcella Bellani
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Maria Gloria Rossetti
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; UOC Psichiatria, Azienda Ospedaliera Universitaria Integrata (AOUI), Verona, Italy
| | - Josselin Houenou
- APHP, Mondor Univ Hospitals, DMU IMPACT, INSERM U955, Translational NeuroPsychiatry Team, UPEC, Créteil, France & NeuroSpin, UNIACT Lab, PsyBrain Team, CEA Saclay, Gif-sur-Yvette, France
| | - Mircea Polosan
- Univ. Grenoble-Alpes, Grenoble Institut Neurosciences, Inserm U1216, CHU Grenoble Alpes, France
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Michèle Wessa
- Department of Clinical Psychology and Neuropsychology, Institute of Psychology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy.; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| |
Collapse
|
30
|
Huang S, Wen X, Liu Z, Li C, He Y, Liang J, Huang W. Distinguishing functional and structural MRI abnormalities between bipolar and unipolar depression. Front Psychiatry 2023; 14:1343195. [PMID: 38169701 PMCID: PMC10758430 DOI: 10.3389/fpsyt.2023.1343195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Background This study aims to investigate the underlying characteristics of spontaneous brain activity by analyzing the volumes of the hippocampus and parahippocampal gyrus, as well as the fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo), in order to differentiate between bipolar disorder (BD) and unipolar depressive disorder. Methods A total of 46 healthy controls, 58 patients with major depressive disorder (MDD), and 61 patients with BD participated in the study and underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans. The researchers calculated the differences in volume, fALFF, and ReHo values among the three groups. Additionally, they conducted correlation analyses to examine the relationships between clinical variables and the aforementioned brain measures. Results The results showed that the BD group exhibited increased fALFF in the hippocampus compared to the healthy control (HC) and MDD groups. Furthermore, the ReHo values in the hippocampus and parahippocampal gyrus were significantly higher in the BD group compared to the HC group. The findings from the person correlation analysis indicated a positive relationship between ReHo values in the hippocampus and both HAMD and HAMA scores. Moreover, there was no correlation between the volumes, fALFF, and ReHo values in the hippocampus and parahippocampal gyrus, and cognitive function levels (RBANS). Conclusion Taken together, these aberrant patterns of intrinsic brain activity in the hippocampus and parahippocampal gyrus may serve as quantitative indicators for distinguishing between BD and unipolar depression.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiaquan Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Wei Huang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| |
Collapse
|
31
|
Thomaidis GV, Papadimitriou K, Michos S, Chartampilas E, Tsamardinos I. A characteristic cerebellar biosignature for bipolar disorder, identified with fully automatic machine learning. IBRO Neurosci Rep 2023; 15:77-89. [PMID: 38025660 PMCID: PMC10668096 DOI: 10.1016/j.ibneur.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 12/01/2023] Open
Abstract
Background Transcriptomic profile differences between patients with bipolar disorder and healthy controls can be identified using machine learning and can provide information about the potential role of the cerebellum in the pathogenesis of bipolar disorder.With this aim, user-friendly, fully automated machine learning algorithms can achieve extremely high classification scores and disease-related predictive biosignature identification, in short time frames and scaled down to small datasets. Method A fully automated machine learning platform, based on the most suitable algorithm selection and relevant set of hyper-parameter values, was applied on a preprocessed transcriptomics dataset, in order to produce a model for biosignature selection and to classify subjects into groups of patients and controls. The parent GEO datasets were originally produced from the cerebellar and parietal lobe tissue of deceased bipolar patients and healthy controls, using Affymetrix Human Gene 1.0 ST Array. Results Patients and controls were classified into two separate groups, with no close-to-the-boundary cases, and this classification was based on the cerebellar transcriptomic biosignature of 25 features (genes), with Area Under Curve 0.929 and Average Precision 0.955. The biosignature includes both genes connected before to bipolar disorder, depression, psychosis or epilepsy, as well as genes not linked before with any psychiatric disease. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed participation of 4 identified features in 6 pathways which have also been associated with bipolar disorder. Conclusion Automated machine learning (AutoML) managed to identify accurately 25 genes that can jointly - in a multivariate-fashion - separate bipolar patients from healthy controls with high predictive power. The discovered features lead to new biological insights. Machine Learning (ML) analysis considers the features in combination (in contrast to standard differential expression analysis), removing both irrelevant as well as redundant markers, and thus, focusing to biological interpretation.
Collapse
Affiliation(s)
- Georgios V. Thomaidis
- Greek National Health System, Psychiatric Department, Katerini General Hospital, Katerini, Greece
| | - Konstantinos Papadimitriou
- Greek National Health System, G. Papanikolaou General Hospital, Organizational Unit - Psychiatric Hospital of Thessaloniki, Thessaloniki, Greece
| | | | - Evangelos Chartampilas
- Laboratory of Radiology, AHEPA General Hospital, University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
32
|
Tubbs JD, Leung PB, Zhong Y, Zhan N, Hui TC, Ho KK, Hung KS, Cheung EF, So HC, Lui SS, Sham PC. Pathway-Specific Polygenic Scores Improve Cross-Ancestry Prediction of Psychosis and Clinical Outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.01.23294957. [PMID: 37790317 PMCID: PMC10543247 DOI: 10.1101/2023.09.01.23294957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Psychotic disorders are debilitating conditions with disproportionately high public health burden. Genetic studies indicate high heritability, but current polygenic scores (PGS) account for only a fraction of variance in psychosis risk. PGS often show poor portability across ancestries, performing significantly worse in non-European populations. Pathway-specific PGS (pPGS), which restrict PGS to genomic locations within distinct biological units, could lead to increased mechanistic understanding of pathways that lead to risk and improve cross-ancestry prediction by reducing noise in genetic predictors. This study examined the predictive power of genome-wide PGS and nine pathway-specific pPGS in a unique Chinese-ancestry sample of deeply-phenotyped psychosis patients and non-psychiatric controls. We found strong evidence for the involvement of schizophrenia-associated risk variants within "nervous system development" (p=2.5e-4) and "regulation of neuron differentiation" pathways (p=3.0e-4) in predicting risk for psychosis. We also found the "ion channel complex" pPGS, with weights derived from GWAS of bipolar disorder, to be strongly associated with the number of inpatient psychiatry admissions a patient experiences (p=1.5e-3) and account for a majority of the signal in the overall bipolar PGS. Importantly, although the schizophrenia genome-wide PGS alone explained only 3.7% of the variance in liability to psychosis in this Chinese ancestry sample, the addition of the schizophrenia-weighted pPGS for "nervous system development" and "regulation of neuron differentiation" increased the variance explained to 6.9%, which is on-par with the predictive power of PGS in European ancestry samples. Thus, not only can pPGS provide greater insight into mechanisms underlying genetic risk for disease and clinical outcomes, but may also improve cross-ancestry risk prediction accuracy.
Collapse
Affiliation(s)
- Justin D. Tubbs
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Perry B.M. Leung
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Yuanxin Zhong
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Na Zhan
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Tomy C.K. Hui
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Karen K.Y. Ho
- Department of General Adult Psychiatry, Castle Peak Hospital, Hong Kong SAR
| | - Karen S.Y. Hung
- Department of General Adult Psychiatry, Castle Peak Hospital, Hong Kong SAR
| | - Eric F.C. Cheung
- Department of General Adult Psychiatry, Castle Peak Hospital, Hong Kong SAR
| | - Hon-Cheong So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Simon S.Y. Lui
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Pak C. Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
33
|
Li D, Ma Y, Cui F, Yang Y, Liu R, Tang L, Wang J, Tian Y. Long-term exposure to ambient air pollution, genetic susceptibility, and the incidence of bipolar disorder: A prospective cohort study. Psychiatry Res 2023; 327:115396. [PMID: 37549511 DOI: 10.1016/j.psychres.2023.115396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
There is mounting recent evidence showing that air pollution exposure may be related to the risk of mental health, yet the association between long-term exposure to air pollution and the risk of incident bipolar disorder (BD) remains unclear. Thus we aim to identify associations between air pollution and the incidence of BD in a prospective population-based cohort. In total, 482,726 participants who were free of BD from the UK Biobank were included in this prospective study. We applied time-varying Cox proportional hazards models, accounting for relevant confounders, and used annual-year moving averages of air pollution as time-varying exposures. The genetic risk for BD was categorized into three categories (low, intermediate, and high) according to the tertiles of polygenic risk score. During a median of 10.79-year follow-up, 923 incident BD events were recorded. Long-term exposures to PM2.5, PM10, NO2, and NOx were associated with increased BD risk. Estimated HRs (95% CIs) for each interquartile range increase in PM2.5, PM10, NO2, and NOx concentrations were 1.31 (1.18-1.45), 1.19 (1.09-1.31), 1.19 (1.08-1.30), and 1.16 (1.07-1.26), respectively. Associations were still observed and even stronger at pollutant concentrations lower than WHO air quality guideline. In subgroup analysis stratified by genetic risk, we observed consistent associations between all pollutants and BD risk in intermediate and high genetic risk groups, but not in low genetic risk group. For example, the HRs (95% CIs) for PM2.5 were 1.00 (0.94-1.53), 1.30 (1.06-1.59), and 1.34 (1.16-1.54) in low, intermediate, and high genetic groups, respectively. In conclusion, long-term exposure to air pollution was significantly associated with an elevated risk of BD. Associations of air pollution with BD occurred only within intermediate and high genetic risk categories and were even stronger at the pollutants levels below WHO air quality guidelines. These findings could help inform policy makers regarding ambient air quality standards and BD management.
Collapse
Affiliation(s)
- Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Feipeng Cui
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Yingping Yang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Run Liu
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
34
|
Machado-Vieira R, Courtes AC, Zarate CA, Henter ID, Manji HK. Non-canonical pathways in the pathophysiology and therapeutics of bipolar disorder. Front Neurosci 2023; 17:1228455. [PMID: 37592949 PMCID: PMC10427509 DOI: 10.3389/fnins.2023.1228455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Bipolar disorder (BD) is characterized by extreme mood swings ranging from manic/hypomanic to depressive episodes. The severity, duration, and frequency of these episodes can vary widely between individuals, significantly impacting quality of life. Individuals with BD spend almost half their lives experiencing mood symptoms, especially depression, as well as associated clinical dimensions such as anhedonia, fatigue, suicidality, anxiety, and neurovegetative symptoms. Persistent mood symptoms have been associated with premature mortality, accelerated aging, and elevated prevalence of treatment-resistant depression. Recent efforts have expanded our understanding of the neurobiology of BD and the downstream targets that may help track clinical outcomes and drug development. However, as a polygenic disorder, the neurobiology of BD is complex and involves biological changes in several organelles and downstream targets (pre-, post-, and extra-synaptic), including mitochondrial dysfunction, oxidative stress, altered monoaminergic and glutamatergic systems, lower neurotrophic factor levels, and changes in immune-inflammatory systems. The field has thus moved toward identifying more precise neurobiological targets that, in turn, may help develop personalized approaches and more reliable biomarkers for treatment prediction. Diverse pharmacological and non-pharmacological approaches targeting neurobiological pathways other than neurotransmission have also been tested in mood disorders. This article reviews different neurobiological targets and pathophysiological findings in non-canonical pathways in BD that may offer opportunities to support drug development and identify new, clinically relevant biological mechanisms. These include: neuroinflammation; mitochondrial function; calcium channels; oxidative stress; the glycogen synthase kinase-3 (GSK3) pathway; protein kinase C (PKC); brain-derived neurotrophic factor (BDNF); histone deacetylase (HDAC); and the purinergic signaling pathway.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, United States
| | - Alan C. Courtes
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, United States
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Ioline D. Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Husseini K. Manji
- Deparment of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Ortega MA, Álvarez-Mon MA, García-Montero C, Fraile-Martínez Ó, Monserrat J, Martinez-Rozas L, Rodríguez-Jiménez R, Álvarez-Mon M, Lahera G. Microbiota-gut-brain axis mechanisms in the complex network of bipolar disorders: potential clinical implications and translational opportunities. Mol Psychiatry 2023; 28:2645-2673. [PMID: 36707651 PMCID: PMC10615769 DOI: 10.1038/s41380-023-01964-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Bipolar disorders (BD) represent a severe leading disabling mental condition worldwide characterized by episodic and often progressive mood fluctuations with manic and depressive stages. The biological mechanisms underlying the pathophysiology of BD remain incompletely understood, but it seems that there is a complex picture of genetic and environmental factors implicated. Nowadays, gut microbiota is in the spotlight of new research related to this kind of psychiatric disorder, as it can be consistently related to several pathophysiological events observed in BD. In the context of the so-called microbiota-gut-brain (MGB) axis, it is shown to have a strong influence on host neuromodulation and endocrine functions (i.e., controlling the synthesis of neurotransmitters like serotonin or mediating the activation of the hypothalamic-pituitary-adrenal axis), as well as in modulation of host immune responses, critically regulating intestinal, systemic and brain inflammation (neuroinflammation). The present review aims to elucidate pathophysiological mechanisms derived from the MGB axis disruption and possible therapeutic approaches mainly focusing on gut microbiota in the complex network of BD. Understanding the mechanisms of gut microbiota and its bidirectional communication with the immune and other systems can shed light on the discovery of new therapies for improving the clinical management of these patients. Besides, the effect of psychiatric drugs on gut microbiota currently used in BD patients, together with new therapeutical approaches targeting this ecosystem (dietary patterns, probiotics, prebiotics, and other novelties) will also be contemplated.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain.
| | - Miguel Angel Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Lucia Martinez-Rozas
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias (CIBEREHD), Alcalá de Henares, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| |
Collapse
|
36
|
Lam XJ, Xu B, Yeo PL, Cheah PS, Ling KH. Mitochondria dysfunction and bipolar disorder: From pathology to therapy. IBRO Neurosci Rep 2023; 14:407-418. [PMID: 37388495 PMCID: PMC10300489 DOI: 10.1016/j.ibneur.2023.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 04/08/2023] [Indexed: 07/01/2023] Open
Abstract
Bipolar disorder (BD) is one of the major psychiatric diseases in which the impairment of mitochondrial functions has been closely connected or associated with the disease pathologies. Different lines of evidence of the close connection between mitochondria dysfunction and BD were discussed with a particular focus on (1) dysregulation of energy metabolism, (2) effect of genetic variants, (3) oxidative stress, cell death and apoptosis, (4) dysregulated calcium homeostasis and electrophysiology, and (5) current as well as potential treatments targeting at restoring mitochondrial functions. Currently, pharmacological interventions generally provide limited efficacy in preventing relapses or recovery from mania or depression episodes. Thus, understanding mitochondrial pathology in BD will lead to novel agents targeting mitochondrial dysfunction and formulating new effective therapy for BD.
Collapse
Affiliation(s)
- Xin-Jieh Lam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Bingzhe Xu
- School of Biomedical Engineering, Sun Yat-sen University, 132 Daxuecheng Outer Ring E Rd, Panyu Qu, Guangzhou Shi, Guangdong 511434, People's Republic of China
| | - Pei-Ling Yeo
- School of Postgraduate Studies and Research, International Medical University, 126, Jalan Jalil Perkasa 19, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
37
|
Bertschy G, Martz E, Weibel S, Weiner L. Psychopathological Dissection of Bipolar Disorder and ADHD: Focussing on Racing Thoughts and Verbal Fluency . Neuropsychiatr Dis Treat 2023; 19:1153-1168. [PMID: 37197328 PMCID: PMC10184890 DOI: 10.2147/ndt.s401330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
In the present study, we propose a review and a synthesis of the work of our group about the phenomenology and the cognitive mechanisms of racing thoughts in bipolar disorder (BD) and ADHD. Contrary to the mainstream idea according to which racing thoughts are pathognomonic of BD, our work suggests that racing thoughts are enhanced in ADHD compared to hypomanic episodes of BD, whereas in euthymic episodes of BD self-reported racing thoughts are similar to the rates reported by healthy controls. Using verbal fluency tasks, we found many similarities between bipolar and ADHD subjects with one clear difference: lexical search strategy in hypomania is based on phonemic similarities rather than semantic-relatedness. However, this distinction observed in this cognitive task is certainly difficult to grasp during a clinical interview aiming to differentiate mild hypomania from combined ADHD presentation. The main landmark to distinguish them remains the episodic nature of bipolar disorders as opposed to the lifelong presentation of ADHD symptoms, a dichotomous view that is not so clear-cut in clinical practice.
Collapse
Affiliation(s)
- Gilles Bertschy
- Pôle de Psychiatrie, santé mentale & addictologie des Hôpitaux Universitaires de Strasbourg, Strasbourg, F-67000, France
- INSERM U1114, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, F-67000, France
| | | | - Sebastien Weibel
- Pôle de Psychiatrie, santé mentale & addictologie des Hôpitaux Universitaires de Strasbourg, Strasbourg, F-67000, France
- INSERM U1114, Strasbourg, F-67000, France
| | - Luisa Weiner
- Pôle de Psychiatrie, santé mentale & addictologie des Hôpitaux Universitaires de Strasbourg, Strasbourg, F-67000, France
- Laboratoire de Psychologie des Cognitions, Strasbourg, F-67000, France
- Faculté de Psychologie, Université de Strasbourg, Strasbourg, F-67000, France
| |
Collapse
|
38
|
Gao K, Ayati M, Kaye NM, Koyuturk M, Calabrese JR, Ganocy SJ, Lazarus HM, Christian E, Kaplan D. Differences in intracellular protein levels in monocytes and CD4 + lymphocytes between bipolar depressed patients and healthy controls: A pilot study with tyramine-based signal-amplified flow cytometry. J Affect Disord 2023; 328:116-127. [PMID: 36806598 DOI: 10.1016/j.jad.2023.02.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Molecular biomarkers for bipolar disorder (BD) that distinguish it from other manifestations of depressive symptoms remain unknown. The aim of this study was to determine if a very sensitive tyramine-based signal-amplification technology for flow cytometry (CellPrint™) could facilitate the identification of cell-specific analyte expression profiles of peripheral blood cells for bipolar depression (BPD) versus healthy controls (HCs). METHODS The diagnosis of psychiatric disorders was ascertained with Mini International Neuropsychiatric Interview for DSM-5. Expression levels for eighteen protein analytes previously shown to be related to bipolar disorder were assessed with CellPrint™ in CD4+ T cells and monocytes of bipolar patients and HCs. Implementation of protein-protein interaction (PPI) network and pathway analysis was subsequently used to identify new analytes and pathways for subsequent interrogations. RESULTS Fourteen drug-naïve or -free patients with bipolar I or II depression and 17 healthy controls (HCs) were enrolled. The most distinguishable changes in analyte expression based on t-tests included GSK3β, HMGB1, IRS2, phospho-GSK3αβ, phospho-RELA, and TSPO in CD4+ T cells and calmodulin, GSK3β, IRS2, and phospho-HS1 in monocytes. Subsequent PPI and pathway analysis indicated that prolactin, leptin, BDNF, and interleukin-3 signal pathways were significantly different between bipolar patients and HCs. LIMITATION The sample size of the study was small and 2 patients were on medications. CONCLUSION In this pilot study, CellPrint™ was able to detect differences in cell-specific protein levels between BPD patients and HCs. A subsequent study including samples from patients with BPD, major depressive disorder, and HCs is warranted.
Collapse
Affiliation(s)
- Keming Gao
- Department of Psychiatry, University Hospitals Cleveland Medical Center, Cleveland, OH, United States of America; Case Western Reserve University School of Medicine, Cleveland, OH, United States of America.
| | - Marzieh Ayati
- Department of Computer Science, University of Texas Rio Grande Valley, Edinburg, TX, United States of America
| | - Nicholas M Kaye
- CellPrint Biotechnology, Cleveland, OH, United States of America
| | - Mehmet Koyuturk
- Department of Computer and Data Sciences, Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, United States of America
| | - Joseph R Calabrese
- Department of Psychiatry, University Hospitals Cleveland Medical Center, Cleveland, OH, United States of America; Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Stephen J Ganocy
- Department of Psychiatry, University Hospitals Cleveland Medical Center, Cleveland, OH, United States of America; Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Hillard M Lazarus
- Case Western Reserve University School of Medicine, Cleveland, OH, United States of America; CellPrint Biotechnology, Cleveland, OH, United States of America; Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, United States of America
| | - Eric Christian
- CellPrint Biotechnology, Cleveland, OH, United States of America
| | - David Kaplan
- CellPrint Biotechnology, Cleveland, OH, United States of America
| |
Collapse
|
39
|
Li S, Xu X, Qiu Y, Teng Z, Liu J, Yuan H, Chen J, Tan Y, Yang M, Jin K, Xu B, Tang H, Zhao Z, Wang B, Xiang H, Wu H. Alternations of vitamin D and cognitive function in first-diagnosed and drug-naïve BD patients: Physical activity as a moderator. J Affect Disord 2023; 323:153-161. [PMID: 36436763 DOI: 10.1016/j.jad.2022.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/13/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The pathophysiological mechanism of cognitive impairments of bipolar disorder (BD) has not yet been completely revealed. It is well known that Vitamin D and physical activity (PA) are associated with BD. However, specific links between Vitamin D and cognitive deficits in BD are still unclear. METHOD The serum levels of vitamin D were measured. The cognitive performances of 102 first-diagnosed and drug-naïve BD patients were evaluated for analysis. The repeatable battery for the assessment of neuropsychological status (RBANS) and the Stroop Color-Word test was used in this study. PA was collected by international physical activity questionnaire. RESULT Patients with BD had high levels of serum vitamin D. Furthermore, immediate and delayed memory was negatively associated with vitamin D levels in patients' group. The serum levels of vitamin D in patients with low PA were positively associated with memory. However, increased PA attenuated the protective effect of vitamin D on executive cognition. CONCLUSION It is concluded that the increased levels of vitamin D were observed in the serum of patients with BD. Thus, it is found that more PA is less beneficial to cognition of patients with BD than longer resting.
Collapse
Affiliation(s)
- Sujuan Li
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xuelei Xu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Qiu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ziwei Teng
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jieyu Liu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Yuan
- Department of Stomatology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yuxi Tan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Min Yang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Kun Jin
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Baoyan Xu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hebei Provincial Mental Health Center, No.572 Dongfeng East RD., Baoding City 071000, Hebei Province, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Tang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ziru Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Xiang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Haishan Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
40
|
Jing P, Su J, Zheng C, Mei X, Zhang X. A retrospective study of psychotropic drug treatments in bipolar disorder at acute and maintenance episodes. Front Psychiatry 2023; 14:1057780. [PMID: 36824669 PMCID: PMC9942488 DOI: 10.3389/fpsyt.2023.1057780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Bipolar disorder (BD) is predominantly treated with psychotropic drugs, but BD is a complex medical condition and the contribution of psychotropic drugs is not clear. The objectives of this study are: (1) to present psychotropic drugs used in patients with BD; (2) to access changes of psychotropic drug treatments in acute and maintenance episodes. METHODS The study retrospectively evaluated the medical records of inpatients in the Ningbo Kangning Hospital from January 2019 to December 2019. The medical history of each subject was collected completely, including sociodemographic (gender, age, marital status, and so on) and clinical characteristics at baseline and within 12 months of admission. RESULTS The study ultimately included 204 patients with BD. After 12 months, 73.0% of the patients still took drugs. Mood stabilizers (72-90%) and antipsychotics (77-95%) were still the most important drugs in patients with BD. Antidepressants (34-40%) and benzodiazepines (20-34%) were the other frequently used drug classes. For mood stabilizers, 40-56% of patients were prescribed lithium. For antipsychotic, 54-65% of patients were prescribed quetiapine. Sertraline (6-9%) and fluoxetine (5-9%) were the antidepressant that most frequently prescribed. Lorazepam (10-18%) was the most commonly used benzodiazepine. In psychotropic polypharmacy, the most frequently taken was mood stabilizer plus antipsychotic co-treatment, about 36-44% of all patients. A total of 35-48% of patients treated by two psychotropic drugs and 24-36% received three. CONCLUSION The first 6 months after treatment is very important to medication adherence. Mood stabilizers and antipsychotic remained the primary treatment for BD. Antipsychotic is on the rise in the treatment of BD.
Collapse
Affiliation(s)
- Pan Jing
- School of Medicine, Soochow University, Suzhou, China
- Department of Psychiatric, Ningbo Kangning Hospital, Ningbo, China
| | - Jianjun Su
- Department of Psychiatric, Ningbo Kangning Hospital, Ningbo, China
| | - Chengying Zheng
- Department of Psychiatric, Ningbo Kangning Hospital, Ningbo, China
| | - Xi Mei
- Department of Psychiatric, Ningbo Kangning Hospital, Ningbo, China
| | - Xiaobin Zhang
- School of Medicine, Soochow University, Suzhou, China
- Department of Psychiatric, Suzhou Guangji Hospital, Suzhou, China
| |
Collapse
|
41
|
Xiang S, Wang R, Hua L, Song J, Qian S, Jin Y, Zhang B, Ding X. Assessment of Bidirectional Relationships between Mental Illness and Rheumatoid Arthritis: A Two-Sample Mendelian Randomization Study. J Clin Med 2023; 12:944. [PMID: 36769592 PMCID: PMC9917759 DOI: 10.3390/jcm12030944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
A correlation between mental illness and systemic rheumatoid arthritis (RA) has been observed in several prior investigations. However, little is known about the causative relationship between them. The present study aimed to systematically investigate the potential association between genetically determined mental illness and RA. Two-sample bidirectional Mendelian randomization (MR) analysis was performed using publicly released genome-wide association studies (GWAS). We selected independent genetic variants associated with four mental illnesses (bipolar disorder, broad depression, major depression, and anxiety) as instrumental variables. The inverse variance weighted (IVW) method was used as the primary analysis to assess the causal relationship between mental illness and RA. Results of the IVW analysis suggested that genetic predisposition to bipolar disorder was associated with a decreased risk of RA (odds ratio [OR] = 0.825, 95% CI = 0.716 to 0.95, p = 0.007). Furthermore, we did not find a significant causal effect of RA on bipolar disorder in the reverse MR analysis (p > 0.05). In addition, our study found no evidence of a bidirectional causal relationship between genetically predicted broad depression, major depression, anxiety, and RA (p > 0.05). The genetically proxied bipolar disorder population has a lower RA risk, which may indicate that there is a hidden mechanism for inhibiting the pathogenesis of RA in bipolar disorder. However, results do not support a causal connection between depression, anxiety, and RA.
Collapse
Affiliation(s)
- Shate Xiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Rongyun Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lijiangshan Hua
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jie Song
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Suhai Qian
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yibo Jin
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bingyue Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinghong Ding
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
42
|
Interplay between activation of endogenous retroviruses and inflammation as common pathogenic mechanism in neurological and psychiatric disorders. Brain Behav Immun 2023; 107:242-252. [PMID: 36270439 DOI: 10.1016/j.bbi.2022.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 12/05/2022] Open
Abstract
Human endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into our genome through germline infections and insertions during evolution. They have repeatedly been implicated in the aetiology and pathophysiology of numerous human disorders, particularly in those that affect the central nervous system. In addition to the known association of ERVs with multiple sclerosis and amyotrophic lateral sclerosis, a growing number of studies links the induction and expression of these retroviral elements with the onset and severity of neurodevelopmental and psychiatric disorders. Although these disorders differ in terms of overall disease pathology and causalities, a certain degree of (subclinical) chronic inflammation can be identified in all of them. Based on these commonalities, we discuss the bidirectional relationship between ERV expression and inflammation and highlight that numerous entry points to this reciprocal sequence of events exist, including initial infections with ERV-activating pathogens, exposure to non-infectious inflammatory stimuli, and conditions in which epigenetic silencing of ERV elements is disrupted.
Collapse
|
43
|
Aarsland TIM, Instanes JT, Posserud MBR, Ulvik A, Kessler U, Haavik J. Changes in Tryptophan-Kynurenine Metabolism in Patients with Depression Undergoing ECT-A Systematic Review. Pharmaceuticals (Basel) 2022; 15:1439. [PMID: 36422569 PMCID: PMC9694349 DOI: 10.3390/ph15111439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 10/29/2023] Open
Abstract
The kynurenine pathway of tryptophan (Trp) metabolism generates multiple biologically active metabolites (kynurenines) that have been implicated in neuropsychiatric disorders. It has been suggested that modulation of kynurenine metabolism could be involved in the therapeutic effect of electroconvulsive therapy (ECT). We performed a systematic review with aims of summarizing changes in Trp and/or kynurenines after ECT and assessing methodological issues. The inclusion criterium was measures of Trp and/or kynurenines before and after ECT. Animal studies and studies using Trp administration or Trp depletion were excluded. Embase, MEDLINE, PsycInfo and PubMed were searched, most recently in July 2022. Outcomes were levels of Trp, kynurenines and ratios before and after ECT. Data on factors affecting Trp metabolism and ECT were collected for interpretation and discussion of the reported changes. We included 17 studies with repeated measures for a total of 386 patients and 27 controls. Synthesis using vote counting based on the direction of effect found no evidence of effect of ECT on any outcome variable. There were considerable variations in design, patient characteristics and reported items. We suggest that future studies should include larger samples, assess important covariates and determine between- and within-subject variability. PROSPERO (CRD42020187003).
Collapse
Affiliation(s)
| | | | - Maj-Britt Rocio Posserud
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5020 Bergen, Norway
| | - Ute Kessler
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
44
|
Mandal PK, Gaur S, Roy RG, Samkaria A, Ingole R, Goel A. Schizophrenia, Bipolar and Major Depressive Disorders: Overview of Clinical Features, Neurotransmitter Alterations, Pharmacological Interventions, and Impact of Oxidative Stress in the Disease Process. ACS Chem Neurosci 2022; 13:2784-2802. [PMID: 36125113 DOI: 10.1021/acschemneuro.2c00420] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Psychiatric disorders are one of the leading causes of disability worldwide and affect the quality of life of both individuals and the society. The current understanding of these disorders points toward receptor dysfunction and neurotransmitter imbalances in the brain. Treatment protocols are hence oriented toward normalizing these imbalances and ameliorating the symptoms. However, recent literature has indicated the possible role of depleted levels of antioxidants like glutathione (GSH) as well as an alteration in the levels of the pro-oxidant, iron in the pathogenesis of major psychiatric diseases, viz., schizophrenia (Sz), bipolar disorder (BD), and major depressive disorder (MDD). This review aims to highlight the involvement of oxidative stress (OS) in these psychiatric disorders. An overview of the clinical features, neurotransmitter abnormalities, and pharmacological treatments concerning these psychiatric disorders has also been presented. Furthermore, it attempts to synthesize literature from existing magnetic resonance spectroscopy (MRS) and quantitative susceptibility mapping (QSM) studies for these disorders, assessing GSH and iron, respectively. This manuscript is a sincere attempt to stimulate research discussion to advance the knowledge base for further understanding of the pathoetiology of Sz, BD, and MDD.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India.,The Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne 3052, Australia
| | - Shradha Gaur
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | - Rimil Guha Roy
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | | | - Anshika Goel
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| |
Collapse
|
45
|
Kamal ZM, Dutta S, Rahman S, Etando A, Hasan E, Nahar SN, Wan Ahmad Fakuradzi WFS, Sinha S, Haque M, Ahmad R. Therapeutic Application of Lithium in Bipolar Disorders: A Brief Review. Cureus 2022; 14:e29332. [PMID: 36159362 PMCID: PMC9484534 DOI: 10.7759/cureus.29332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
|
46
|
Chakrabarti S, Singh N. Psychotic symptoms in bipolar disorder and their impact on the illness: A systematic review. World J Psychiatry 2022; 12:1204-1232. [PMID: 36186500 PMCID: PMC9521535 DOI: 10.5498/wjp.v12.i9.1204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/02/2022] [Accepted: 08/26/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lifetime psychotic symptoms are present in over half of the patients with bipolar disorder (BD) and can have an adverse effect on its course, outcome, and treatment. However, despite a considerable amount of research, the impact of psychotic symptoms on BD remains unclear, and there are very few systematic reviews on the subject.
AIM To examine the extent of psychotic symptoms in BD and their impact on several aspects of the illness.
METHODS The Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. An electronic literature search of six English-language databases and a manual search was undertaken to identify published articles on psychotic symptoms in BD from January 1940 to December 2021. Combinations of the relevant Medical Subject Headings terms were used to search for these studies. Articles were selected after a screening phase, followed by a review of the full texts of the articles. Assessment of the methodological quality of the studies and the risk of bias was conducted using standard tools.
RESULTS This systematic review included 339 studies of patients with BD. Lifetime psychosis was found in more than a half to two-thirds of the patients, while current psychosis was found in a little less than half of them. Delusions were more common than hallucinations in all phases of BD. About a third of the patients reported first-rank symptoms or mood-incongruent psychotic symptoms, particularly during manic episodes. Psychotic symptoms were more frequent in bipolar type I compared to bipolar type II disorder and in mania or mixed episodes compared to bipolar depression. Although psychotic symptoms were not more severe in BD, the severity of the illness in psychotic BD was consistently greater. Psychosis was usually associated with poor insight and a higher frequency of agitation, anxiety, and hostility but not with psychiatric comorbidity. Psychosis was consistently linked with increased rates and the duration of hospitalizations, switching among patients with depression, and poorer outcomes with mood-incongruent symptoms. In contrast, psychosis was less likely to be accompanied by a rapid-cycling course, longer illness duration, and heightened suicidal risk. There was no significant impact of psychosis on the other parameters of course and outcome.
CONCLUSION Though psychotic symptoms are very common in BD, they are not always associated with an adverse impact on BD and its course and outcome.
Collapse
Affiliation(s)
- Subho Chakrabarti
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, UT, India
| | - Navdeep Singh
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, UT, India
| |
Collapse
|
47
|
Hindley G, O'Connell KS, Rahman Z, Frei O, Bahrami S, Shadrin A, Høegh MC, Cheng W, Karadag N, Lin A, Rødevand L, Fan CC, Djurovic S, Lagerberg TV, Dale AM, Smeland OB, Andreassen OA. The shared genetic basis of mood instability and psychiatric disorders: A cross-trait genome-wide association analysis. Am J Med Genet B Neuropsychiatr Genet 2022; 189:207-218. [PMID: 35841185 PMCID: PMC9541703 DOI: 10.1002/ajmg.b.32907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/12/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022]
Abstract
Recent genome-wide association studies of mood instability (MOOD) have found significant positive genetic correlation with major depression (DEP) and weak correlations with other psychiatric disorders. We investigated the polygenic overlap between MOOD and psychiatric disorders beyond genetic correlation to better characterize putative shared genetic determinants. GWAS summary statistics for schizophrenia (SCZ, n = 105,318), bipolar disorder (BIP, n = 413,466), DEP (n = 450,619), attention-deficit hyperactivity disorder (ADHD, n = 53,293), and MOOD (n = 363,705) were analyzed using the bivariate causal mixture model and conjunctional false discovery rate methods. MOOD correlated positively with all psychiatric disorders, but with wide variation in strength (rg = 0.10-0.62). Of 10.4 K genomic variants influencing MOOD, 4 K-9.4 K influenced psychiatric disorders. Furthermore, MOOD was jointly associated with DEP at 163 loci, SCZ at 110, BIP at 60 and ADHD at 25. Fifty-three jointly associated loci were overlapping across two or more disorders, seven of which had discordant effect directions on psychiatric disorders. Genes mapped to loci associated with MOOD and all four disorders were enriched in a single gene-set, "synapse organization." The extensive polygenic overlap indicates shared molecular underpinnings across MOOD and psychiatric disorders. However, distinct patterns of genetic correlation and effect directions may relate to differences in the core clinical features of each disorder.
Collapse
Affiliation(s)
- Guy Hindley
- NORMENT Centre, Institute of Clinical MedicineUniversity of Oslo and Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- Psychosis StudiesInstitute of Psychiatry, Psychology and Neurosciences, King's College LondonLondonUK
| | - Kevin S. O'Connell
- NORMENT Centre, Institute of Clinical MedicineUniversity of Oslo and Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
| | - Zillur Rahman
- NORMENT Centre, Institute of Clinical MedicineUniversity of Oslo and Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical MedicineUniversity of Oslo and Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- Center for Bioinformatics, Department of InformaticsUniversity of OsloOsloNorway
| | - Shahram Bahrami
- NORMENT Centre, Institute of Clinical MedicineUniversity of Oslo and Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical MedicineUniversity of Oslo and Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
| | - Margrethe C. Høegh
- NORMENT Centre, Institute of Clinical MedicineUniversity of Oslo and Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
| | - Weiqiu Cheng
- NORMENT Centre, Institute of Clinical MedicineUniversity of Oslo and Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
| | - Naz Karadag
- NORMENT Centre, Institute of Clinical MedicineUniversity of Oslo and Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
| | - Aihua Lin
- NORMENT Centre, Institute of Clinical MedicineUniversity of Oslo and Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
| | - Linn Rødevand
- NORMENT Centre, Institute of Clinical MedicineUniversity of Oslo and Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
| | - Chun C. Fan
- Department of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
- Multimodal Imaging LaboratoryUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Cognitive ScienceUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Srdjan Djurovic
- Department of Medical GeneticsOslo University HospitalOsloNorway
- NORMENT Centre, Department of Clinical ScienceUniversity of BergenBergenNorway
- KG Jebsen Centre for Neurodevelopmental disordersUniversity of OsloOsloNorway
| | - Trine V. Lagerberg
- NORMENT Centre, Institute of Clinical MedicineUniversity of Oslo and Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
| | - Anders M. Dale
- Department of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
- Multimodal Imaging LaboratoryUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Olav B. Smeland
- NORMENT Centre, Institute of Clinical MedicineUniversity of Oslo and Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
| | - Ole A. Andreassen
- NORMENT Centre, Institute of Clinical MedicineUniversity of Oslo and Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- KG Jebsen Centre for Neurodevelopmental disordersUniversity of OsloOsloNorway
| |
Collapse
|
48
|
McInnis MG, Andreassen OA, Andreazza AC, Alon U, Berk M, Brister T, Burdick KE, Cui D, Frye M, Leboyer M, Mitchell PB, Merikangas K, Nierenberg AA, Nurnberger JI, Pham D, Vieta E, Yatham LN, Young AH. Strategies and foundations for scientific discovery in longitudinal studies of bipolar disorder. Bipolar Disord 2022; 24:499-508. [PMID: 35244317 PMCID: PMC9440950 DOI: 10.1111/bdi.13198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Bipolar disorder (BD) is a complex and dynamic condition with a typical onset in late adolescence or early adulthood followed by an episodic course with intervening periods of subthreshold symptoms or euthymia. It is complicated by the accumulation of comorbid medical and psychiatric disorders. The etiology of BD remains unknown and no reliable biological markers have yet been identified. This is likely due to lack of comprehensive ontological framework and, most importantly, the fact that most studies have been based on small nonrepresentative clinical samples with cross-sectional designs. We propose to establish large, global longitudinal cohorts of BD studied consistently in a multidimensional and multidisciplinary manner to determine etiology and help improve treatment. Herein we propose collection of a broad range of data that reflect the heterogenic phenotypic manifestations of BD that include dimensional and categorical measures of mood, neurocognitive, personality, behavior, sleep and circadian, life-story, and outcomes domains. In combination with genetic and biological information such an approach promotes the integrating and harmonizing of data within and across current ontology systems while supporting a paradigm shift that will facilitate discovery and become the basis for novel hypotheses.
Collapse
Affiliation(s)
| | - Ole A. Andreassen
- NORMENT CentreUniversity of Oslo and Oslo University HospitalOsloNorway
| | - Ana C. Andreazza
- Department of Pharmacology & ToxicologyTemerty Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| | | | - Michael Berk
- Deakin UniversityIMPACT – the Institute for Mental and Physical Health and Clinical TranslationSchool of MedicineBarwon HealthGeelongAustralia
- OrygenThe National Centre of Excellence in Youth Mental HealthCentre for Youth Mental HealthFlorey Institute for Neuroscience and Mental Health and the Department of PsychiatryThe University of MelbourneMelbourneAustralia
| | - Teri Brister
- National Alliance on Mental IllnessArlingtonVirginiaUSA
| | | | - Donghong Cui
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghai Mental Health CenterShangaiChina
| | | | - Marion Leboyer
- Département de psychiatrieUniversité Paris Est Creteil (UPEC)AP‐HPHôpitaux Universitaires H. MondorDMU IMPACTINSERM, translational NeuropsychiatryFondation FondaMentalCreteilFrance
| | | | - Kathleen Merikangas
- Intramural Research ProgramNational Institute of Mental HealthBethesdaMarylandUSA
| | | | | | - Daniel Pham
- Milken InstituteCenter for Strategic PhilanthopyWashingtonDistrict of ColumbiaUSA
| | - Eduard Vieta
- Bipolar and Depressive disorders UnitHospital ClinicInstitute of NeuroscienceUniversity of BarcelonaIDIBAPSCIBERSAMBarcelonaCataloniaSpain
| | | | - Allan H. Young
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and NeuroscienceKing’s College London & South London and Maudsley NHS Foundation TrustBethlem Royal HospitalBeckenhamKentUK
| |
Collapse
|
49
|
Phenotypes, mechanisms and therapeutics: insights from bipolar disorder GWAS findings. Mol Psychiatry 2022; 27:2927-2939. [PMID: 35351989 DOI: 10.1038/s41380-022-01523-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 12/25/2022]
Abstract
Genome-wide association studies (GWAS) have reported substantial genomic loci significantly associated with clinical risk of bipolar disorder (BD), and studies combining techniques of genetics, neuroscience, neuroimaging, and pharmacology are believed to help tackle clinical problems (e.g., identifying novel therapeutic targets). However, translating findings of psychiatric genetics into biological mechanisms underlying BD pathogenesis remains less successful. Biological impacts of majority of BD GWAS risk loci are obscure, and the involvement of many GWAS risk genes in this illness is yet to be investigated. It is thus necessary to review the progress of applying BD GWAS risk genes in the research and intervention of the disorder. A comprehensive literature search found that a number of such risk genes had been investigated in cellular or animal models, even before they were highlighted in BD GWAS. Intriguingly, manipulation of many BD risk genes (e.g., ANK3, CACNA1C, CACNA1B, HOMER1, KCNB1, MCHR1, NCAN, SHANK2 etc.) resulted in altered murine behaviors largely restoring BD clinical manifestations, including mania-like symptoms such as hyperactivity, anxiolytic-like behavior, as well as antidepressant-like behavior, and these abnormalities could be attenuated by mood stabilizers. In addition to recapitulating phenotypic characteristics of BD, some GWAS risk genes further provided clues for the neurobiology of this illness, such as aberrant activation and functional connectivity of brain areas in the limbic system, and modulated dendritic spine morphogenesis as well as synaptic plasticity and transmission. Therefore, BD GWAS risk genes are undoubtedly pivotal resources for modeling this illness, and might be translational therapeutic targets in the future clinical management of BD. We discuss both promising prospects and cautions in utilizing the bulk of useful resources generated by GWAS studies. Systematic integrations of findings from genetic and neuroscience studies are called for to promote our understanding and intervention of BD.
Collapse
|
50
|
Sheikh M, Qassem M, Kyriacou PA. Optical Detection of Lithium Therapeutic Levels in Porcine Interstitial Fluid Collected Using a Hollow Microneedle. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4257-4260. [PMID: 36086355 DOI: 10.1109/embc48229.2022.9871289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bipolar disorder (BD), a recurrent chronic disorder characterized by mood fluctuating between episodes of mood elevation and depression, is a leading cause of disability worldwide. Lithium is the most widely used medication for management of BD. However, despite its effectiveness in preventing and reducing mood swings and suicidality, it is a potentially hazardous drug. Lithium has a very narrow therapeutic range (0.4-1.2 mmol/L) with the upper limit being uncomfortably close to toxic levels, hence lithium levels should be monitored regularly. The current techniques of monitoring lithium levels require frequent blood tests and elaborate laboratory methods that cannot be translated into point of care devices for personal monitoring. Dermal interstitial fluid (ISF), an underutilized information-rich biofluid, can be accessed using non-invasive techniques and the lithium concentration in ISF has been found to be proportional to concentration in serum. In the current study a microneedle-based sampling method to extract ISF from porcine skin, as it is similar in anatomy to human skin, was employed. Optical determination of lithium therapeutic concentrations in porcine ISF using a colorimetric method based on the reaction between chromogenic agent Quinizarin and Li+ ion was then performed. The resulting spectra show spectral variations which are related to lithium concentrations in spiked samples of porcine ISF, hence suggesting the feasibility of utilizing ISF for real-time and minimally-invasive lithium drug monitoring.
Collapse
|